[go: up one dir, main page]

WO2021124501A1 - Stator, motor, compressor, and air conditioning device - Google Patents

Stator, motor, compressor, and air conditioning device Download PDF

Info

Publication number
WO2021124501A1
WO2021124501A1 PCT/JP2019/049750 JP2019049750W WO2021124501A1 WO 2021124501 A1 WO2021124501 A1 WO 2021124501A1 JP 2019049750 W JP2019049750 W JP 2019049750W WO 2021124501 A1 WO2021124501 A1 WO 2021124501A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
core
core portion
shell
stator
Prior art date
Application number
PCT/JP2019/049750
Other languages
French (fr)
Japanese (ja)
Inventor
勇二 廣澤
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/049750 priority Critical patent/WO2021124501A1/en
Priority to JP2021565251A priority patent/JP7285961B2/en
Publication of WO2021124501A1 publication Critical patent/WO2021124501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a stator, a motor, a compressor and an air conditioner.
  • the stator of the motor is equipped with a stator core in which steel plates are laminated.
  • the stator core is generally fixed inside a shell of a compressor or the like (for example, Patent Document 1).
  • stator core In order to firmly fix the stator core to the shell, it is necessary to fix the stator core to the shell by shrink fitting or press fitting.
  • the stator core when the stator core is fixed to the shell by shrink fitting or press fitting, the magnetic characteristics of the stator core may change due to the compressive stress received from the shell, and the iron loss may increase.
  • the present invention has been made to solve the above problems, and an object of the present invention is to firmly fix the stator core to the shell and reduce iron loss.
  • the stator according to one aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the number of caulked portions per sheet of at least one second steel sheet is smaller than the number of caulked portions per sheet of at least one first steel sheet.
  • the stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the total area of the crimped portion per sheet of the at least one second steel sheet is smaller than the total area of the crimped portion per sheet of the at least one first steel sheet.
  • the stator according to still another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the depth of the crimped portion of at least one second steel plate is shallower than the depth of the crimped portion of at least one first steel plate.
  • the stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the angle formed by the side surface of the crimped portion of at least one second steel plate and the axis is larger than the angle formed by the side surface of the crimped portion of at least one first steel plate and the axis.
  • the stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the crimped portion of at least one second steel plate has a rectangular shape in a plane orthogonal to the direction of the axis.
  • the crimped portion of at least one first steel sheet has a circular shape in a plane orthogonal to the direction of the axis.
  • the stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis.
  • the first core portion faces the shell at intervals, and the second core portion abuts on the shell.
  • the first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion.
  • the second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion.
  • the load required to peel off the second steel plate is smaller than the load required to peel off the first steel plate.
  • the stator core is firmly fixed to the shell. can do. Further, the iron loss can be further reduced by reducing the number of crimped portions in the second core portion that comes into contact with the shell.
  • FIG. It is a cross-sectional view which shows the electric motor and the shell of Embodiment 1.
  • FIG. It is sectional drawing which shows the stator core of Embodiment 1.
  • FIG. It is a perspective view (A) which shows the division core of Embodiment 1, and the perspective view (B) which shows the division core, an insulator and an insulating film.
  • FIG. It is a cross-sectional view (A) of the line segment 5A-5A shown in FIG. 4 and the cross-sectional view (B) of the line segment 5B-5B. It is a vertical sectional view which shows the electric motor of Embodiment 1.
  • FIG. 1 It is a figure (A) which shows the 1st steel plate of the 1st core part of Embodiment 1 and the figure (B) which shows the 2nd steel plate of a 2nd core part. It is a figure (A) which shows the 1st steel plate of the 1st core part, and the figure (B) which shows the 2nd steel plate of a 2nd core part of the 1st modification of Embodiment 1.
  • FIG. It is a figure (A) which shows the 1st steel plate of the 1st core part, and the figure (B) which shows the 2nd steel plate of a 2nd core part of the 2nd modification of Embodiment 1.
  • the figure (A) which shows the 1st steel plate of the 1st core part of the modification of Embodiment 2, the figure (B) which shows the 2nd steel plate of the 2nd core part, and the area of each caulking part are explained. It is a schematic diagram (C) for this.
  • FIG. (C) shows the second steel plate of the second core portion of the third embodiment, the cross-sectional view (B) of the line segment 13B-13B shown in FIG. 13 (A), and the line shown in FIG. 13 (A). It is sectional drawing (C) in the minute 13C-13C.
  • FIG. (A) showing the first steel plate of the first core portion of the first embodiment, the cross-sectional view (B) of the line segment 14B-14B shown in FIG. 14 (A), and the line shown in FIG. 14 (A). It is sectional drawing (C) in the minute 14C-14C.
  • FIG. (A) showing the second steel plate of the second core portion of the second core portion of the fourth embodiment, the cross-sectional view (B) of the line segment 15B-15B shown in FIG. 15 (A), and the line shown in FIG. 15 (A). It is sectional drawing (C) in the minute 15C-15C.
  • FIG. (A) showing the first steel plate of the first core portion of the first embodiment, the cross-sectional view (B) of the line segment 16B-16B shown in FIG. 16 (A), and the line shown in FIG. 16 (A). It is sectional drawing (C) in the minute 16C-16C.
  • FIG. 17 (A) showing the second steel plate of the second core portion of the second core portion of the fifth embodiment, the cross-sectional view (B) of the line segment 17B-17B shown in FIG. 17 (A), and the line shown in FIG. 17 (A).
  • It is a vertical cross-sectional view which shows the example which fixed the 1st core part and the 2nd core part with a fixing pin.
  • FIG. 1 It is a figure (A), (B) which shows the example of the split core which constitutes a stator core. It is a schematic diagram for demonstrating the joint wrap which connects two split cores. It is a vertical cross-sectional view which shows the example which provided the 2nd core part at both ends and the center part in the axial direction of a stator core. It is an enlarged view which shows an example of the cross-sectional shape of the caulking part. It is sectional drawing which shows the compressor to which the motor of each embodiment is applicable. It is a figure which shows the air conditioner provided with the compressor of FIG.
  • FIG. 1 is a cross-sectional view showing the motor 100 of the first embodiment.
  • the electric motor 100 is a permanent magnet embedded motor in which a permanent magnet 55 is embedded in a rotor 5, and is used, for example, in a compressor 500 (FIG. 25).
  • the electric motor 100 is an electric motor called an inner rotor type, and has a rotatable rotor 5 and a stator 1 provided so as to surround the rotor 5. An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5.
  • the electric motor 100 is incorporated inside the shell 40 of the compressor 500.
  • the direction of the axis C1 which is the rotation axis of the rotor 5 is referred to as "axial direction”.
  • the circumferential direction around the axis C1 (indicated by the arrow R in FIG. 1) is referred to as a "circumferential direction”.
  • the radial direction centered on the axis C1 is referred to as a "diameter direction”.
  • a cross-sectional view on a plane orthogonal to the axis C1 is referred to as a "cross-sectional view”
  • a cross-sectional view on a plane parallel to the axis C1 is referred to as a "vertical cross-sectional view”.
  • the rotor 5 has a cylindrical rotor core 50, a permanent magnet 55 attached to the rotor core 50, and a shaft 60 fixed to a central portion of the rotor core 50.
  • the shaft 60 is, for example, the shaft of the compressor 500 (FIG. 25).
  • the rotor core 50 is made by laminating electromagnetic steel sheets in the axial direction and integrating them by a caulking portion.
  • the thickness of the electromagnetic steel sheet is, for example, 0.1 to 0.7 mm, and here it is 0.35 mm.
  • a shaft hole 54 is formed at the radial center of the rotor core 50, and the shaft 60 described above is fixed to the shaft hole 54.
  • Each magnet insertion hole 51 is formed from one end to the other end in the axial direction of the rotor core 50.
  • Each magnet insertion hole 51 corresponds to one magnetic pole.
  • the number of magnet insertion holes 51 here is 6, so the number of magnetic poles is 6.
  • the number of magnetic poles is not limited to 6, and may be 2 or more.
  • the magnet insertion hole 51 extends linearly on a plane orthogonal to the axis C1.
  • One permanent magnet 55 is arranged in each magnet insertion hole 51.
  • the permanent magnets 55 arranged in the adjacent magnet insertion holes 51 are magnetized so that the opposite poles face outward in the radial direction.
  • the magnet insertion hole 51 may have a V-shape whose circumferential center protrudes inward in the radial direction. Further, two or more permanent magnets 55 may be arranged in each magnet insertion hole 51.
  • the permanent magnet 55 is a flat plate-shaped member that is long in the axial direction and has a thickness in the radial direction of the rotor core 50.
  • the thickness of the permanent magnet 55 is, for example, 2 mm.
  • the permanent magnet 55 is composed of, for example, a rare earth magnet containing neodymium (Nd), iron (Fe) and boron (B).
  • the permanent magnet 55 is magnetized in the thickness direction.
  • Rare earth magnets have the property that the coercive force decreases as the temperature rises, and the rate of decrease is -0.5 to -0.6% / K.
  • a coercive force of 1100 to 1500 A / m is required to prevent demagnetization of the rare earth magnet when the maximum load assumed by the compressor is generated.
  • the coercive force at room temperature (20 ° C.) is 1800 to 2300 A / m.
  • Dy dysprosium
  • the coercive force of the rare earth magnet at room temperature is 1800 A / m in the state where Dy is not added, and becomes 2300 A / m by adding 2% by weight of Dy.
  • the addition of Dy causes an increase in manufacturing cost and a decrease in residual magnetic flux density. Therefore, it is desirable to reduce the amount of Dy added as much as possible or not to add Dy.
  • a flux barrier 52 as a leakage flux suppressing hole is formed at both ends of the magnet insertion hole 51 in the circumferential direction.
  • the core portion between the flux barrier 52 and the outer circumference of the rotor core 50 is a thin portion in order to suppress a short circuit of magnetic flux between adjacent magnetic poles. It is desirable that the thickness of the thin portion is the same as the thickness of the electromagnetic steel plate of the rotor core 50.
  • a slit 53 is formed on the radial outer side of the magnet insertion hole 51.
  • the slit 53 is for smoothing the distribution of the magnetic flux from the permanent magnet 55 toward the stator 1 and suppressing torque ripple.
  • the number, arrangement and shape of the slits 53 are arbitrary.
  • the rotor core 50 does not necessarily have to have the slit 53.
  • Holes 57 and 58 serving as a passage for the refrigerant of the compressor 500 are formed inside the magnet insertion hole 51 in the radial direction.
  • the hole 57 is formed at a position corresponding to the poles, and the hole 58 is formed at a position corresponding to the center of the pole.
  • the arrangement of the holes 57 and 58 can be changed as appropriate.
  • the rotor core 50 does not necessarily have holes 57 and 58.
  • the stator 1 has a stator core 10, an insulator 20 and an insulating film 25 attached to the stator core 10, and a coil 3 wound around the stator core 10 via the insulator 20 and the insulating film 25.
  • FIG. 2 is a cross-sectional view showing the stator core 10.
  • the stator core 10 is formed by laminating electromagnetic steel sheets in the axial direction and integrally fixing them by a caulking portion 15.
  • the thickness of the electromagnetic steel sheet is, for example, 0.1 to 0.7 mm, and here it is 0.35 mm.
  • the caulking portion 15 is formed by pressing a caulking metal fitting against the surface of the electromagnetic steel sheet, and becomes a concave portion on one surface (the front surface) side of the electromagnetic steel sheet and a convex portion on the other surface (the back surface) side. ing. The details of the caulking portion 15 will be described later.
  • the stator core 10 has an annular yoke portion 11 centered on the axis C1 and a plurality of teeth 12 extending radially inward from the yoke portion 11.
  • the yoke portion 11 has an outer peripheral circumference 111 and an inner peripheral circumference 112.
  • Teeth 12 are formed at regular intervals in the circumferential direction.
  • the number of teeth 12 is 9 here, but it may be 2 or more.
  • a slot 13 for accommodating the coil 3 is formed between the adjacent teeth 12.
  • the teeth 12 has a tooth tip portion 121 facing the rotor 5 (FIG. 1).
  • the width of the tooth 12 in the circumferential direction is constant except for the tooth tip portion 121, and the width of the tooth tip portion 121 is wider than that.
  • the side surface 122 of the teeth 12 and the inner circumference 112 of the yoke portion 11 face the slot 13.
  • a recess 18 is formed on the outer circumference 111 of the yoke portion 11.
  • the recess 18 forms an axial refrigerant passage with the inner circumference 41 (FIG. 1) of the shell 40.
  • the circumferential position of the recess 18 coincides with the teeth 12.
  • the yoke portion 11 does not necessarily have to have the recess 18.
  • the stator core 10 has a configuration in which a plurality of divided cores 8 are connected in the circumferential direction for each tooth 12.
  • the number of divided cores 8 is, for example, 9.
  • These split cores 8 are joined to each other by a split surface 14 formed on the yoke portion 11.
  • the split cores 8 are connected to each other at a thin-walled connecting portion on the outer peripheral side of the split surface 14, or are joined to each other by welding on the split surface 14. This will be described later with reference to FIGS. 21 (A) and 21 (B).
  • FIG. 3A is a perspective view showing the split core 8.
  • FIG. 3B is a perspective view showing the split core 8, the insulator 20 attached to the split core 8, and the insulating film 25.
  • the split core 8 has a yoke portion 11 divided in the circumferential direction and teeth 12 extending radially inward from the yoke portion 11.
  • the insulators 20 are attached to both ends of the split core 8 in the axial direction.
  • the insulator 20 is made of a resin such as polybutylene terephthalate (PBT).
  • Each insulator 20 has a wall portion 23 attached to the yoke portion 11, a body portion 22 attached to the main portion of the teeth 12, and a flange portion 21 attached to the tooth tip portion 121.
  • a coil 3 (FIG. 1) is wound around the body portion 22, and the flange portion 21 and the wall portion 23 guide the coil 3 wound around the body portion 22 from both sides in the radial direction.
  • An insulating film 25 is attached to the side surface 122 of the teeth 12 and the inner circumference 112 of the yoke portion 11.
  • the insulating film 25 is made of, for example, a resin of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the insulator 20 and the insulating film 25 form an insulating portion that electrically insulates the stator core 10 and the coil 3.
  • the coil 3 is composed of, for example, a magnet wire, and is wound around the teeth 12 via an insulator 20 and an insulating film 25.
  • the wire diameter of the coil 3 is, for example, 1.0 mm.
  • the coil 3 is wound around each tooth 12 by a concentrated winding, for example, for 80 turns.
  • the wire diameter and the number of turns of the coil 3 are determined according to the required rotation speed, torque, applied voltage, or area of the slot 13.
  • FIG. 4 is a vertical cross-sectional view showing the motor 100 and the shell 40.
  • the stator core 10 of the stator 1 is fitted inside the shell 40 by shrink fitting or press fitting.
  • the shell 40 is a part of the closed container 507 of the compressor 500 (FIG. 25).
  • the stator core 10 has a first core portion 10A and a second core portion 10B in the axial direction.
  • the first core portion 10A faces the inner circumference 41 of the shell 40 at intervals.
  • the second core portion 10B is in contact with the inner circumference 41 of the shell 40.
  • the outer circumference of the first core portion 10A (indicated by reference numeral 110) is formed at a position retracted radially inward from the outer circumference 111 of the second core portion 10B, and is separated from the inner circumference 41 of the shell 40. There is. The outer circumference 111 of the second core portion 10B abuts on the inner circumference 41 of the shell 40.
  • the first core portion 10A is arranged at the center of the stator core 10 in the axial direction, and the second core portions 10B are arranged on both sides of the first core portion 10A in the axial direction. That is, the second core portion 10B is arranged at both ends in the axial direction of the stator core 10.
  • the arrangement and number of the core portions 10A and 10B are not limited to this example.
  • the compressive stress from the shell 40 does not act on the first core portion 10A. , Acts on the second core portion 10B.
  • Electrical steel sheets have the property that their magnetic properties change when they receive compressive stress, and iron loss increases. Therefore, since the first core portion 10A is not subjected to the compressive stress from the shell 40, the increase in iron loss is suppressed. Further, when the second core portion 10B comes into contact with the shell 40, the stator core 10 is firmly fixed to the shell 40.
  • FIG. 5A is a cross-sectional view of the line segment 5A-5A shown in FIG. 4, that is, a cross-sectional view of the first core portion 10A.
  • FIG. 5B is a cross-sectional view of the line segment 5B-5B shown in FIG. 4, that is, a cross-sectional view of the second core portion 10B.
  • an annular gap G is formed between the outer circumference 110 of the first core portion 10A and the inner circumference 41 of the shell 40.
  • the outer circumference 111 of the second core portion 10B is in contact with the inner circumference 41 of the shell 40, and the gap G as shown in FIG. 5 (A) is not formed. ..
  • FIG. 6 is a vertical cross-sectional view showing the motor 100. As shown in FIG. 6, the outer diameter A1 of the first core portion 10A is smaller than the outer diameter A2 of the second core portion 10B. The inner diameter of the first core portion 10A and the inner diameter of the second core portion 10B are the same as each other.
  • Both the first core portion 10A and the second core portion 10B are made by laminating electromagnetic steel sheets in the axial direction.
  • the electromagnetic steel plate constituting the first core portion 10A is referred to as a first steel plate 9A
  • the electromagnetic steel plate constituting the second core portion 10B is referred to as a second steel plate 9B.
  • the first steel plate 9A and the second steel plate 9B have the same configuration as each other except for the outer diameter and the number of crimped portions 15.
  • FIG. 7A is a plan view showing a first steel plate 9A of the first core portion 10A.
  • FIG. 7B is a plan view showing a second steel plate 9B of the second core portion 10B. Note that FIGS. 7A and 7B show a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A and the second steel plate 9B. The same applies to FIGS. 8 (A) to 9 (B) described later.
  • each of the crimped portions 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • a crimped portion having such a shape is referred to as a V crimped portion.
  • the crimped portion 15 of the first steel plate 9A is formed at one location on the teeth center line M in the teeth 12 and two locations symmetrical with respect to the teeth center line M in the yoke portion 11.
  • the crimped portion 15 formed on the teeth 12 is long in the extending direction of the teeth 12, and the crimped portion 15 formed on the yoke portion 11 is long in the extending direction of the yoke portion 11 (more specifically, the teeth center line M). Long in the direction orthogonal to).
  • caulking portion 15 is formed on one second steel plate 9B for each divided core 8.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • the crimped portion 15 of the second steel plate 9B is formed at two locations symmetrical with respect to the tooth center line M in the yoke portion 11.
  • the caulking portion 15 is long in the extending direction of the yoke portion 11 (more specifically, the direction orthogonal to the tooth center line M).
  • stator core 10 has nine divided cores 8, when the nine divided cores 8 are totaled, one first steel plate 9A has 27 (3 ⁇ 9) caulked portions 15 (FIG. 5 (A)). )), One second steel plate 9B has 18 (2 ⁇ 9) caulked portions 15 (see FIG. 5 (B)).
  • the 18 caulking portions 15 of the second steel plate 9B are the yoke portions of the 27 caulking portions 15 of the first steel plate 9A. It is arranged at a position where it overlaps with the 18 caulking portions 15 provided in 11 in the axial direction. Therefore, the caulking portion 15 of the second core portion 10B and the same number of caulking portions 15 of the first core portion 10A are engaged with each other, and the first core portion 10A and the second core portion 10B are fixed. Will be done.
  • the number of crimped portions 15 per sheet of the first steel plate 9A and the number of caulked portions 15 per sheet of the second steel plate 9B are not limited to the examples described here.
  • the number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
  • the area and shape of the crimped portion 15 of the first steel plate 9A in the plane orthogonal to the axial direction are the same as those of the crimped portion 15 of the second steel plate 9B. This is because the first core portion 10A and the second core portion 10B are more firmly fixed in this way.
  • the energy consumed when the magnetic flux changes inside the stator core 10 and the rotor core 50 is referred to as iron loss. Since the change in magnetic flux is small in the rotor core 50, most of the iron loss in the motor 100 is the iron loss in the stator core 10.
  • the iron loss is represented by the sum of the hysteresis loss and the eddy current loss.
  • the hysteresis loss is proportional to the frequency of the magnetic flux change
  • the eddy current loss is proportional to the square of the frequency.
  • the compressive stress is generated by punching of an electromagnetic steel sheet or press-fitting or shrink-fitting into a shell 40.
  • Press-fitting or shrink-fitting into the shell 40 is performed with a fixing force of a certain level or more in order to improve the roundness of the stator core 10 and firmly fix the stator core 10 to the shell 40.
  • the product of the contact area between the stator core 10 and the shell 40 and the average stress acting on the area is defined as the shrink fitting load.
  • the shrink fitting load is an index of the fixing force for fixing the stator core 10 to the shell 40.
  • the first core portion 10A of the stator core 10 does not come into contact with the shell 40 and is not subjected to compressive stress. Therefore, the increase in iron loss in the first core portion 10A hardly occurs, and the efficiency of the motor can be improved.
  • the first core portion 10A occupies 50% of the axial length of the stator core 10.
  • the contact area between the stator core 10 and the shell 40 is half the contact area in the comparative example.
  • a compressive stress twice that of the comparative example acts on the second core portion 10B.
  • the iron loss per unit volume in the first core portion 10A can be considered to be 1.
  • the second core portion 10B receives a compressive stress from the shell 40, and the magnitude of the compressive stress is twice that of the comparative example.
  • the iron loss per unit volume is smaller than twice due to the saturation of the iron loss.
  • the iron loss per unit volume of the second core portion 10B is 2.4, which is 1.2 times that of the comparative example
  • the first core portion 10A and the second core portion 10B are respectively.
  • the iron loss in the stator core 10 can be reduced by utilizing the saturation of the iron loss due to the stress concentration on the second core portion 10B.
  • the region where the compressive stress from the shell 40 is most concentrated is the region between the outer circumference of the stator core 10 that abuts on the shell 40 and the crimped portion 15.
  • first core portion 10A Since the first core portion 10A is not fixed to the shell 40, its shape is likely to change. In particular, mutual misalignment of the first steel sheet 9A is likely to occur. On the other hand, since the second core portion 10B is fixed to the shell 40, its shape is unlikely to change.
  • first steel plate 9A of the first core portion 10A needs to be fixed to each other with a high fastening strength, whereas the second steel plate 9B of the second core portion 10B has a relatively low fastening strength. It may be fixed.
  • the number of caulking portions 15 per sheet of the second steel plate 9B of the second core portion 10B is changed to the number of caulking portions 15 per sheet of the first steel plate 9A of the first core portion 10A. It is less than the number of parts 15.
  • the fastening strength is increased by increasing the number of caulking portions 15.
  • the second steel plates 9B of the second core portion 10B by reducing the number of the crimped portions 15, it is difficult to concentrate the compressive stress and the increase in iron loss is suppressed.
  • the stator core 10 has a first core portion 10A that does not abut on the shell 40 and a second core portion 10B that abuts on the shell 40, and is a caulked portion per sheet of the second steel plate 9B. Since the number of 15 is smaller than the number of caulked portions 15 per sheet of the first steel plate 9A, an increase in iron loss is suppressed to improve motor efficiency, and the stator core 10 is firmly fixed to the shell 40. can do.
  • the crimped portion 15 of the second steel plate 9B is arranged so as to overlap with the crimped portion 15 of the first steel plate 9A in the same number as the crimped portion 15 in the axial direction. Therefore, the first core portion 10A and the second core portion 10B can be fixed by engaging the caulking portion 15 of the first steel plate 9A and the caulking portion 15 of the second steel plate 9B.
  • the first core portion 10A and the second core portion 10A and the second The core portion 10B can be fixed more firmly.
  • the number of caulked portions 15 of the second steel plate 9B is 18 (two per divided core 8), and the number of caulked portions 15 of the first steel plate 9A is 27 (3 per divided core 8).
  • the number is not limited to these.
  • the number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
  • the number of caulking portions 15 per sheet of all the second steel plates 9B of the second core portion 10B is the number of caulking portions per sheet of all the first steel plates 9A of the first steel plate 9A. Less than the number of parts 15. However, the number of caulked portions 15 per at least one second steel plate 9B of the second core portion 10B is per one of at least one first steel plate 9A of the first core portion 10A. It may be less than the number of caulking portions 15.
  • stator core 10 is not limited to one in which a plurality of divided cores 8 are connected in the circumferential direction (FIG. 2), and may be one in which annularly punched electromagnetic steel sheets are laminated in the axial direction.
  • the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40.
  • the number of caulking portions 15 per sheet of at least one second steel plate 9B of the core portion 10B of 2 is the number of caulking portions per sheet of at least one first steel plate 9A of the first core portion 10A. Less than the number of 15. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • both ends of the stator core 10 in the axial direction are fitted to the shell 40.
  • the stator core 10 can be fixed to the shell 40 in a stable state.
  • At least one caulking portion 15 of the second steel plate 9B is arranged at a position where it overlaps with at least one caulking portion 15 of the first steel plate 9A in the axial direction, the caulking portions 15 are engaged with each other. , The first core portion 10A and the second core portion 10B can be fixed.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B both have a rectangular shape in a plane orthogonal to the axial direction, the first core portion 10A and the second core portion 10A and the second The core portion 10B can be firmly fixed.
  • FIG. 8A is a plan view showing a first steel plate 9A of the first core portion 10A of the first modification.
  • FIG. 8B is a plan view showing a second steel plate 9B of the second core portion 10B of the first modification.
  • the caulked portion 15 (FIGS. 7 (A) and 7 (B)) of the first steel plate 9A of the first embodiment had a rectangular shape in a plane orthogonal to the axial direction.
  • the crimped portion 16 of the first steel plate 9A of the first modification has a circular shape in a plane orthogonal to the axial direction.
  • Such a caulking portion is also referred to as a round caulking portion.
  • the crimped portion 16 of the second steel plate 9B of the first modification has a circular shape in a plane orthogonal to the axial direction.
  • the stator core 10 of the first modification is configured in the same manner as the stator core 10 of the first embodiment except for the caulking portion 16.
  • the number of crimped portions 16 per sheet of the first steel plate 9A is three for each divided core 8
  • the number of caulked portions 16 per sheet of the second steel plate 9B is one divided core.
  • the number is two per eight, but is not limited to these numbers.
  • the number of crimped portions 16 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 16 per sheet of the first steel plate 9A.
  • the circular caulking portion (round caulking portion) 16 in the plane orthogonal to the axial direction has a longer peripheral length of the side surface portion than the rectangular caulking portion (V caulking portion) 15 having the same area. Therefore, by using the circular caulking portion 16, higher fastening hardness can be obtained as compared with the case where the rectangular caulking portion 15 is used.
  • rectangular caulking portion 15 shown in FIGS. 7A and 7B and the circular caulking portion 16 shown in FIGS. 8A and 8B may be used in combination.
  • FIG. 9A is a plan view showing a first steel plate 9A of the first core portion 10A of the second modification.
  • FIG. 9B is a plan view showing a second steel plate 9B of the second core portion 10B of the second modification.
  • the first steel plate 9A of the first core portion 10A has the caulking portion 15, but the second core portion 10B is the second.
  • the steel plate 9B of the above does not have a caulking portion 15.
  • the fastening strength of the second steel plate 9B of the second core portion 10B may be relatively low. Therefore, in the second modification, the caulking portion 15 is not provided on the second steel plate 9B, and the second steel plates 9B are fixed to each other by, for example, an adhesive.
  • the number of caulked portions 15 per sheet of the first steel plate 9A is two for each divided core 8.
  • the number of caulked portions 15 per sheet of the second steel plate 9B may be one or more.
  • FIG. 9A shows a rectangular caulking portion 15 in a plane orthogonal to the axial direction, but as shown in FIG. 8A, a circular shape is shown in a plane orthogonal to the axial direction.
  • the caulking portion 16 of the above may be used.
  • the stator core 10 of the second modification is configured in the same manner as the stator core 10 of the first embodiment except for the number of caulked portions 15 in the first steel plate 9A and the second steel plate 9B.
  • FIG. 10A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the second embodiment.
  • FIG. 10B is a plan view showing a second steel plate 9B of the second core portion 10B. Note that FIGS. 10A and 10B show a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A and the second steel plate 9B. The same applies to FIGS. 11A and 11B described later.
  • two caulking portions 15 are formed on one first steel plate 9A for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the crimped portion 15 of the first steel plate 9A has a rectangular shape in a plane orthogonal to the axial direction.
  • two caulking portions 15 are formed on one second steel plate 9B for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the crimped portion 15 of the second steel plate 9B has a rectangular shape in a plane orthogonal to the axial direction.
  • the number of crimped portions 15 per sheet of the first steel plate 9A is the same as the number of caulked portions 15 per sheet of the second steel plate 9B.
  • each crimped portion 15 of the second steel plate 9B is smaller than the area of each crimped portion 15 of the first steel plate 9A. This point will be described below.
  • FIG. 10C is a schematic diagram for explaining the area of the caulked portion 15.
  • the surface on the side to which the force is applied by the caulking metal fitting is the front surface 101, and the surface on the opposite side is the back surface 102.
  • the crimped portion 15 is a concave portion on the front surface 101 side and a convex portion on the back surface 102 side.
  • the recess of the caulking portion 15 has a bottom surface 15a which is a plane orthogonal to the axial direction, and side surfaces 15b and 15c around the bottom surface 15a.
  • the bottom surface 15a is rectangular.
  • the side surface 15b extends along the short side of the bottom surface 15a, and the side surface 15c extends along the long side of the bottom surface 15a.
  • the area S of the bottom surface 15a is represented by Lx ⁇ Ly.
  • the caulking portion 15 is provided on the yoke portion 11, the long side of the bottom surface 15a is orthogonal to the tooth center line M.
  • the caulking portion 15 is provided on the teeth 12, the long side of the bottom surface 15a is parallel to the teeth center line M.
  • the total area of the caulked portions 15 per sheet of the first steel plate 9A is the area S1 of each caulked portion 15 multiplied by the number of caulked portions 15 per sheet of the first steel plate 9A.
  • the total area of the caulked portions 15 per sheet of the second steel plate 9B is obtained by multiplying the area S2 of each caulked portion 15 by the number of caulked portions 15 per sheet of the second steel plate 9B. is there.
  • each crimped portion 15 of the second steel plate 9B is smaller than the area S1 of each crimped portion 15 of the first steel plate 9A, and the first steel plate 9A and the second steel plate 9B are crimped per sheet. Since the number of portions 15 is the same, the total area of the crimped portions 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portions 15 per sheet of the first steel plate 9A.
  • the fastening strength of the second steel plate 9B may be relatively small.
  • the second core It is possible to reduce the iron loss in the portion 10B and firmly fix the first steel plate 9A of the first core portion 10A.
  • the total area of the caulked portions 15 per sheet of all the second steel plates 9B of the second core portion 10B is the caulked portion 15 per sheet of the first steel plate 9A of the first core portion 10A. Is smaller than the total area of.
  • the total area of at least one second steel plate 9B of the second core portion 10B is the total area of the caulked portion 15 per one of at least one first steel plate 9A of the first core portion 10A. It should be less than.
  • the number of caulked portions 15 per sheet of the first steel plate 9A and the number of caulked portions 15 per sheet of the second steel plate 9B are set to be the same, but the numbers do not necessarily have to be the same. Absent.
  • the number of crimped portions may be different as long as the total area of the crimped portions 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portions 15 per sheet of the first steel plate 9A.
  • the number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
  • the caulking portion 15 is provided on the yoke portion 11, but the teeth 12 may be provided.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
  • the motor of the second embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least.
  • the total area of the crimped portion 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 15 per sheet of the first steel plate 9A at least. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • FIG. 11A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the modified example.
  • FIG. 11B is a plan view showing a second steel plate 9B of the second core portion 10B.
  • two caulking portions 16 are formed on one first steel plate 9A for each divided core 8.
  • the two caulking portions 16 are formed in the yoke portion 11.
  • the crimped portion 16 of the first steel plate 9A has a circular shape in a plane orthogonal to the axial direction.
  • two caulking portions 16 are formed on one second steel plate 9B for each divided core 8.
  • the two caulking portions 16 are formed in the yoke portion 11.
  • the crimped portion 16 of the second steel plate 9B has a circular shape in a plane orthogonal to the axial direction.
  • FIG. 11C is a schematic diagram for explaining the area of the caulked portion 16.
  • the caulked portion 16 is a concave portion on the front surface 101 side of the steel plate 9, and a convex portion on the back surface 102 side.
  • the recess of the caulking portion 16 has a bottom surface 16a which is a plane orthogonal to the axial direction and a side surface 16b around the bottom surface 16a.
  • the bottom surface 16a is circular, and the side surface 16b extends in a circumferential shape.
  • the area S of the bottom surface 16a is represented by (D / 2) 2 ⁇ ⁇ .
  • each crimped portion 16 of the second steel plate 9B is smaller than the area S1 of each crimped portion 16 of the first steel plate 9A. Further, the number of caulked portions 16 per sheet of the first steel plate 9A and the number of caulked portions 16 per sheet of the second steel plate 9B are the same. Therefore, the total area of the crimped portion 16 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 16 per sheet of the first steel plate 9A.
  • the iron loss in the second core portion 10B can be reduced, and the first steel plate 9A in the first core portion 10A can be firmly fixed. Since the crimped portion 16 having a circular shape in the plane orthogonal to the axial direction has a longer peripheral length of the side surface portion than the rectangular crimped portion 15 having the same area, a higher fastening hardness can be obtained.
  • each of the steel plates 9A and 9B The number of caulking portions 16 is arbitrary.
  • the crimped portion 16 of the first steel plate 9A and the crimped portion 16 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
  • the stator core 10 of this modified example has the same configuration as the stator core 10 of the second embodiment except for the caulking portion 16.
  • the total area of the crimped portion 16 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 16 per sheet of the first steel plate 9A, so that the iron loss increases. It can be suppressed and the stator core 10 can be firmly fixed to the shell 40.
  • rectangular caulking portion 15 shown in FIGS. 10A and 10B and the circular caulking portion 16 shown in FIGS. 11A and 11B may be used in combination.
  • FIG. 12A is a plan view showing the first steel plate 9A of the first core portion 10A in the stator core 10 of the third embodiment. Note that FIG. 12A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
  • two caulking portions 15 are formed on one first steel plate 9A for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • FIG. 12B is a cross-sectional view of the line segment 12B-12B shown in FIG. 12A, and is a cross-sectional view of the surface along the long side of the caulked portion 15.
  • 12 (C) is a cross-sectional view of the line segment 12C-12C shown in FIG. 12 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
  • the caulked portion 15 protrudes from the back surface 102 of the first steel plate 9A.
  • the most protruding protruding surface 15d of the caulked portion 15 is a plane orthogonal to the axial direction.
  • the distance from the back surface 102 of the first steel plate 9A to the protruding surface 15d of the caulked portion 15 is referred to as a depth D1.
  • FIG. 13A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the third embodiment. Note that FIG. 13A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
  • two caulking portions 15 are formed on one second steel plate 9B for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • FIG. 13 (B) is a cross-sectional view of the line segment 13B-13B shown in FIG. 13 (A), and is a cross-sectional view of the surface along the long side of the caulked portion 15.
  • 13 (C) is a cross-sectional view of the line segment 13C-13C shown in FIG. 13 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
  • the caulked portion 15 protrudes from the back surface 102 of the second steel plate 9B.
  • the most protruding protruding surface 15d of the caulked portion 15 is a plane orthogonal to the axial direction.
  • the distance from the back surface 102 of the second steel plate 9B to the protruding surface 15d of the caulked portion 15 is referred to as a depth D2.
  • the depth D2 of the crimped portion 15 of the second steel plate 9B is shallower than the depth D1 of the crimped portion 15 of the first steel plate 9A.
  • the greater the depth of the caulking portion 15 (also referred to as the caulking depth), the greater the area in which the steel plates come into contact with each other on the side surfaces 15b and 15c of the caulking portion 15, and the higher the fastening strength.
  • the fastening strength of the second steel plate 9B may be relatively small.
  • the second core portion The iron loss at 10B can be reduced, and the first steel plate 9A of the first core portion 10A can be firmly fixed.
  • the depth D2 of the crimped portions 15 of all the second steel plates 9B of the second core portion 10B is shallower than the D1 of the crimped portions 15 of all the first steel plates 9A of the first core portion 10A. ..
  • the depth D2 of the crimped portion 15 of at least one second steel plate 9B of the second core portion 10B is larger than the depth D1 of the at least one first steel plate 9A of the first core portion 10A. It should be shallow.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B have a rectangular shape in a plane orthogonal to the axial direction, as shown in FIGS. 11A to 11C. Like the crimped portion 16 shown, it may have a circular shape.
  • the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 12A and 13A, the caulking portion 15 is provided on the yoke portion 11, but it may be provided on the teeth 12.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
  • the motor of the third embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least.
  • the depth D2 of the crimped portion 15 of one second steel plate 9B is shallower than the depth D1 of the crimped portion 15 of at least one first steel plate 9A. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • FIG. 14A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the fourth embodiment. Note that FIG. 14A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
  • the two caulking portions 15 are formed on one first steel plate 9A for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • FIG. 14 (B) is a cross-sectional view of the line segment 14B-14B shown in FIG. 14 (A), and is a cross-sectional view of the surface along the long side of the caulked portion 15.
  • 14 (C) is a cross-sectional view of the line segment 14C-14C shown in FIG. 14 (A), and is a cross-sectional view of the surface of the caulked portion 15 along the short side.
  • the caulked portion 15 of the first steel plate 9A has a rectangular bottom surface 15a, a side surface 15b extending along the short side of the bottom surface 15a, and the length of the bottom surface 15a. It has a side surface 15c extending along the side.
  • the axial direction is indicated by a straight line N.
  • the angle (that is, the opening angle) formed by the two side surfaces 15b facing the long side direction of the crimped portion 15 of the first steel plate 9A is 30 to 150 degrees.
  • the angle (that is, opening angle) formed by the two side surfaces 15c facing each other in the short side direction of the caulked portion 15 is also 30 to 150 degrees.
  • the angle formed by the two side surfaces 15b (FIG. 14B) is larger than the angle formed by the two side surfaces 15c.
  • the angle R1 (1/2 of the opening angle) formed by the side surface 15b and the axial direction is 15 to 75 degrees.
  • the angle r1 formed by the side surface 15c and the axial direction is also 15 to 75 degrees.
  • the angle R1 formed by the side surface 15b and the axial direction is larger than the angle r1 formed by the side surface 15c and the axial direction.
  • the angle R1 formed by the side surface 15b and the axial direction is larger than the angle r1 formed by the side surface 15c and the axial direction, so that the cross section in the long side direction (FIG. 14 (B)).
  • the fastening strength in the above is lower than the fastening strength in the cross section in the short side direction (FIG. 14 (C)).
  • FIG. 15A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the fourth embodiment. Note that FIG. 15A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
  • two caulking portions 15 are formed on one second steel plate 9B for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • FIG. 15B is a cross-sectional view of the line segment 15B-15B shown in FIG. 15A, and is a cross-sectional view of the surface along the long side of the caulked portion 15.
  • 15 (C) is a cross-sectional view of the line segment 15C-15C shown in FIG. 15 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
  • the caulked portion 15 of the second steel plate 9B has a rectangular bottom surface 15a, a side surface 15b extending along the short side of the bottom surface 15a, and the length of the bottom surface 15a. It has a side surface 15c extending along the side.
  • the angle (that is, the opening angle) formed by the two side surfaces 15b facing the long side direction of the crimped portion 15 of the second steel plate 9B is 30 to 150 degrees.
  • the angle formed by the two side surfaces 15c facing each other in the short side direction of the crimped portion 15 is also 30 to 150 degrees.
  • the angle formed by the two side surfaces 15b is larger than the angle formed by the two side surfaces 15c.
  • the angle R2 (1/2 of the opening angle) formed by the side surface 15b and the axial direction is 15 to 75 degrees.
  • the angle r2 formed by the side surface 15c and the axial direction is also 15 to 75 degrees.
  • the angle R2 formed by the side surface 15b and the axial direction is larger than the angle r2 formed by the side surface 15c and the axial direction. Therefore, the fastening strength in the cross section in the long side direction (FIG. 15 (B)) is lower than the fastening strength in the cross section in the short side direction (FIG. 15 (C)).
  • the maximum angle (that is, the angle R2) formed by the side surfaces 15b and 15c of the crimped portion 15 of the second steel plate 9B and the axial direction is the side surfaces 15b and 15c of the crimped portion 15 of the first steel plate 9A. It is larger than the maximum angle (that is, the angle R1) formed by the axial direction.
  • the fastening strength of the crimped portion 15 of the second steel plate 9B in the long side direction is lower than the fastening strength of the first steel plate 9A in the long side direction.
  • the fastening strength of the second steel plate 9B may be relatively small.
  • the maximum angle (angle R2) formed by the side surface of the crimped portion 15 of the second steel plate 9B and the axial direction is larger than the maximum angle (angle R1) formed by the side surface of the crimped portion 15 of the first steel plate 9A and the axial direction. Since it is large, the iron loss in the second core portion 10B can be reduced, and the first steel plate 9A in the first core portion 10A can be firmly fixed.
  • the fastening strength of the second steel plate 9B is particularly low in the longitudinal direction of the crimped portion 15, it is an issue to suppress the misalignment of the second steel plate 9B in that direction. If the longitudinal direction of the crimped portion 15 coincides with the circumferential direction of the stator core 10, compressive stress is unlikely to be applied to the second steel plate 9B in the longitudinal direction of the crimped portion 15, so that the misalignment of the second steel plate 9B is prevented. be able to.
  • the maximum angle formed by the side surfaces 15b, 15c of the crimped portion 15 of all the second steel plates 9B of the second core portion 10B and the axial direction is the maximum angle formed by all the first steel plates 9A of the first core portion 10A. It is larger than the maximum angle formed by the side surfaces 15b and 15c of the caulked portion 15 and the axial direction.
  • the maximum angle formed by the side surfaces 15b, 15c of the crimped portion 15 of the second steel plate 9B of the second core portion 10B and the axial direction is the first one of at least one of the first core portions 10A. It may be larger than the maximum angle formed by the side surfaces 15b and 15c of the crimped portion 15 of the steel plate 9A and the axial direction.
  • Both the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B have a rectangular shape in a plane orthogonal to the axial direction, but FIGS. 11A to 11C have a rectangular shape. It may have a circular shape like the crimped portion 16 shown in 1.
  • the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 14 (A) and 15 (A), the caulking portion 15 is provided on the yoke portion 11, but the teeth 12 may be provided.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
  • the motor of the fourth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least.
  • the maximum angle (angle R2) formed by the side surface of the crimped portion 15 of the second steel plate 9B and the axial direction is the maximum formed by the side surface of the crimped portion 15 of the first steel plate 9A and the axial direction. It is larger than the angle (angle R1). Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • FIG. 16A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the fifth embodiment. Note that FIG. 16A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
  • two caulking portions 16 are formed on one first steel plate 9A for each divided core 8.
  • the two caulking portions 16 are formed in the yoke portion 11.
  • the caulking portion 16 has a circular shape in a plane orthogonal to the axial direction.
  • FIG. 16B is a cross-sectional view of the line segment 16B-16B shown in FIG. 16A.
  • 16 (C) is a cross-sectional view of the line segment 16C-16C shown in FIG. 16 (A).
  • the opening angle of the side surface 16b is 0 to 30 degrees, and the angle R1 formed by the side surface 16b and the axial direction is 0 to 15 degrees.
  • FIG. 17A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the fifth embodiment. Note that FIG. 15A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
  • two caulking portions 15 are formed on one second steel plate 9B for each divided core 8.
  • the two caulking portions 15 are formed in the yoke portion 11.
  • the caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
  • FIG. 17B is a cross-sectional view of the line segment 17B-17B shown in FIG. 17A, and is a cross-sectional view of the surface along the long side of the caulked portion 15.
  • FIG. 17C is a cross-sectional view of the line segment 17C-17C shown in FIG. 17A, and is a cross-sectional view of the surface of the caulked portion 15 along the short side.
  • the angle R2 formed by the side surface 15b and the axial direction is 15 to 75 degrees
  • the angle r2 formed by the side surface 15c and the axial direction is also 15 to 75 degrees.
  • the angle R2 formed by the side surface 15b and the axial direction is larger than the angle r2 formed by the side surface 15c and the axial direction.
  • the circular caulking portion 16 (round caulking portion) in the plane orthogonal to the axial direction is the axial direction of the side surface 15b as compared with the rectangular caulking portion 15 (V caulking portion) in the plane orthogonal to the axial direction. Since the inclination from is small, the fastening strength is high.
  • a rectangular caulking portion 15 is used for the second steel plate 9B of the second core portion 10B in a plane orthogonal to the axial direction, and the first steel plate 9A of the first core portion 10A is used.
  • the circular caulking portion 16 in the plane orthogonal to the axial direction, the iron loss in the second core portion 10B is reduced, and the first steel plate 9A of the first core portion 10A is strengthened. Can be fixed to.
  • the crimped portions 16 of all the second steel plates 9B of the second core portion 10B have a rectangular shape
  • the crimped portions 15 of all the first steel plates 9A of the first core portion 10A have a circular shape.
  • the caulking portion 16 of at least one second steel plate 9B of the second core portion 10B has a rectangular shape
  • the caulking portion 15 of at least one first steel plate 9A of the first core portion 10A has a rectangular shape. It suffices to have a circular shape.
  • the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 16A and 17A, the caulking portions 15 and 16 are provided on the yoke portion 11, but may be provided on the teeth 12.
  • the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
  • the motor of the fifth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least.
  • the crimped portion 15 of one second steel plate 9B has a rectangular shape in a plane orthogonal to the axial direction, and the crimped portion 15 of at least one first steel plate 9A is a circle in a plane orthogonal to the axial direction. Has a shape. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • FIG. 18A is a schematic view showing a method of measuring the peel strength of the first core portion 10A of the stator core 10.
  • FIG. 18B is a schematic view showing a method of measuring the peel strength of the second core portion 10B of the stator core 10.
  • the peel strength is measured separately for the first core portion 10A and the second core portion 10B. Therefore, the first core portion 10A and the second core portion 10B are not incorporated in the shell 40, and the coil 3 is not wound.
  • both ends of the first core portion 10A in the axial direction are gripped by a pair of grip portions 61, and an axial tensile force is applied to the first core portion 10A.
  • F1 be the load when the first steel plate 9A is peeled off in the first core portion 10A.
  • both ends of the second core portion 10B in the axial direction are gripped by a pair of grip portions 61, and an axial tensile force is applied to the second core portion 10B.
  • F2 be the load when the second steel plate 9B is peeled off in the second core portion 10B.
  • the number of laminated steel plates may be different between the first core portion 10A and the second core portion 10B.
  • the first core portion 10A and the second core portion 10B may have any of the configurations described in the first to fifth embodiments. In either case, since the fastening strength of the second steel plate 9B of the second core portion 10B is lower than the fastening strength of the first steel plate 9A of the first core portion 10A, the second steel plate 9B is peeled off. The load required for this is smaller than the load required for peeling the first steel sheet 9A.
  • the load required for peeling the second steel plate 9B is smaller than the load required for peeling the first steel plate 9A, as described in the first to fifth embodiments,
  • the increase in iron loss can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
  • the caulking portion 15 of the yoke portion 11 of the second steel plate 9B (FIG. 7 (B)). ) Engage with the concave portion of the caulked portion 15 (FIG. 7 (A)) of the yoke portion 11 of the first steel plate 9A.
  • the convex portion of the crimped portion 15 (FIG. 7 (A)) of the teeth 12 of the first core portion 10A is formed. Since the flat surfaces of the teeth 12 of the second core portion 10B face each other, the engagement state between the convex portion and the concave portion cannot be obtained.
  • the convex portion of the caulking portion 15 (FIG. 10 (A)) having a large area is the caulking portion 15 having a small area (FIG. 10 (A)). Since it faces the concave portion of FIG. 10 (B), the engagement state between the convex portion and the concave portion cannot be obtained.
  • the adhesive layer 7 is between the first steel plate 9A at the end of the first core portion 10A and the second steel plate 9B at the end of the second core portion 10B. Is provided, and the convex portion of the crimped portion 15 fits inside the adhesive layer 7. Therefore, the first core portion 10A and the second core portion 10B can be reliably fixed. Further, when the first core portion 10A and the second core portion 10B are laminated, the recess of the caulking portion 15 (FIG. 10 (B)) having a small area is deformed, and the caulking portion 15 (FIG. 10 (A)) having a large area is deformed. )) May engage with the convex part.
  • a through hole 105 is formed through the first core portion 10A and the second core portion 10B of the stator core 10 in the axial direction, and a metal fixing pin 81 is formed in the through hole 105.
  • the first core portion 10A and the second core portion 10B may be firmly fixed by fitting.
  • ⁇ Structure of split core> 21 (A) and 21 (B) are schematic views for explaining the divided core 8 constituting the stator core 10 of the first to fifth embodiments.
  • stator core 10 shown in FIG. 21 (A) a plurality of divided cores 8 are connected by a thin-walled connecting portion 17 formed on the outer peripheral side of the yoke portion 11 and extend in a strip shape.
  • the thin-walled connecting portion 17 is a thin-walled portion formed on the outer peripheral side of the dividing surface 14 in the yoke portion 11.
  • stator core 10 shown in FIG. 21 (B) a plurality of divided cores 8 are independently configured. By welding the split cores 8 to each other on the split surface 14, the annular stator core 10 shown in FIG. 2 is obtained.
  • stator core 10 shown in FIGS. 21A and 21B has a plurality of divided cores 8 connected to each other, the roundness is improved as compared with the stator core in which the electromagnetic steel sheets punched in an annular shape are laminated. Hateful.
  • the compressive stress from the shell 40 is concentrated on the second core portion 10B of the stator core 10, and the stator core 10 is strongly tightened, so that the roundness can be improved.
  • the joint wrap shown in FIG. 22 may be provided instead of the thin-walled connecting portion 17 shown in FIG. 21 (A).
  • the joint wrap is a support shaft Z for deforming the split core 8 from a strip shape to an annular shape by alternately combining the caulking portions 19 formed on the steel plates 9 of the adjacent split cores 8.
  • stator core is not limited to the one configured by combining a plurality of divided cores 8 (FIG. 2), and may be a laminated electric steel sheet punched in an annular shape.
  • FIG. 23 is a vertical cross-sectional view showing another configuration example of the motor 100.
  • the second core portions 10B are arranged at both ends in the axial direction of the stator core 10, and the first core portion 10A is arranged at the center in the axial direction (see FIG. 4).
  • the second core portions 10B are arranged at a total of three locations, the center in the axial direction and both ends in the axial direction of the stator core 10. Further, the first core portion 10A is arranged at two locations on both sides of the second core portion 10B at the center in the axial direction.
  • stator core 10 can be firmly held by the second core portion 10B coming into contact with the shell 40, and the first core portion 10A does not come into contact with the shell 40, so that the compression is performed. Iron loss due to stress can be reduced.
  • first core portion 10A and the second core portion 10B is not limited to the arrangement shown in FIGS. 4 and 23.
  • the first core portion 10A and the second core portion 10B are arranged in the axial direction, the first core portion 10A faces the shell 40 at intervals, and the second core portion 10B abuts on the shell 40. I just need to be there.
  • FIG. 24 is a schematic view showing the cross-sectional shape of the crimped portion 15 in the long side direction.
  • FIG. 24 is a diagram created based on an enlarged image obtained by cutting the stator core 10 in a plane parallel to the axial direction and observing the cut plane with a microscope. From FIG. 24, it can be seen that the bottom surface 15a of the crimped portion 15 is a flat surface orthogonal to the axial direction, and the side surface 15b is a surface inclined with respect to the axial direction.
  • FIG. 25 is a vertical cross-sectional view showing the compressor 500.
  • the compressor 500 is a rotary compressor and is used, for example, in an air conditioner 400 (FIG. 26).
  • the compressor 500 includes a compression mechanism unit 501, an electric motor 100 for driving the compression mechanism unit 501, a shaft 60 for connecting the compression mechanism unit 501 and the electric motor 100, and a closed container 507 for accommodating these.
  • the axial direction of the shaft 60 is the vertical direction
  • the electric motor 100 is arranged above the compression mechanism portion 501.
  • the closed container 507 is a container made of a steel plate, and has a cylindrical shell 40, a container upper portion that covers the upper side of the shell 40, and a container bottom that covers the lower side of the shell 40.
  • the stator 1 of the electric motor 100 is incorporated inside the shell 40 of the closed container 507 by shrink fitting, press fitting, welding, or the like.
  • a discharge pipe 512 for discharging the refrigerant to the outside and a terminal 511 for supplying electric power to the motor 100 are provided.
  • an accumulator 510 for storing the refrigerant gas is attached to the outside of the closed container 507.
  • Refrigerating machine oil that lubricates the bearing portion of the compression mechanism portion 501 is stored in the bottom of the closed container 507.
  • the compression mechanism unit 501 includes a cylinder 502 having a cylinder chamber 503, a rolling piston 504 fixed to a shaft 60, a vane that divides the inside of the cylinder chamber 503 into a suction side and a compression side, and both ends in the axial direction of the cylinder chamber 503. It has an upper frame 505 and a lower frame 506 that close the frame.
  • Both the upper frame 505 and the lower frame 506 have a bearing portion that rotatably supports the shaft 60.
  • An upper discharge muffler 508 and a lower discharge muffler 509 are attached to the upper frame 505 and the lower frame 506, respectively.
  • the cylinder 502 is provided with a cylindrical cylinder chamber 503 centered on the axis C1.
  • An eccentric shaft portion 60a of the shaft 60 is located inside the cylinder chamber 503.
  • the eccentric shaft portion 60a has a center eccentric with respect to the axis C1.
  • a rolling piston 504 is fitted on the outer circumference of the eccentric shaft portion 60a.
  • the cylinder 502 is formed with a suction port 515 for sucking the refrigerant gas in the cylinder chamber 503.
  • a suction pipe 513 communicating with the suction port 515 is attached to the closed container 507, and refrigerant gas is supplied from the accumulator 510 to the cylinder chamber 503 via the suction pipe 513.
  • Low-pressure refrigerant gas and liquid refrigerant are mixedly supplied to the compressor 500 from the refrigerant circuit of the air conditioner 400 (FIG. 26), but when the liquid refrigerant flows into the compression mechanism section 501 and is compressed. , It causes a failure of the compression mechanism unit 501. Therefore, the accumulator 510 separates the liquid refrigerant and the refrigerant gas, and supplies only the refrigerant gas to the compression mechanism unit 501.
  • refrigerant for example, R410A, R407C, R22, etc. may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant having a low GWP (global warming potential).
  • GWP global warming potential
  • the operation of the compressor 500 is as follows.
  • an electric current is supplied from the terminal 511 to the coil 3 of the stator 1
  • an attractive force and a repulsive force are generated between the stator 1 and the rotor 5 due to the rotating magnetic field generated by the electric current and the magnetic field of the permanent magnet 55 of the rotor 5.
  • the rotor 5 rotates.
  • the shaft 60 fixed to the rotor 5 also rotates.
  • the refrigerant compressed in the cylinder chamber 503 is discharged into the closed container 507 through a discharge port and discharge mufflers 508 and 509 (not shown).
  • the refrigerant discharged into the closed container 507 rises in the closed container 507 through the holes 57, 58 (FIG. 1) of the rotor core 50, is discharged from the discharge pipe 512, and is discharged from the discharge pipe 512, and is discharged from the air conditioner 400 (FIG. 26). It is sent to the refrigerant circuit of.
  • FIG. 26 is a diagram showing an air conditioner 400.
  • the air conditioner 400 includes the compressor 500, a four-way valve 401 as a switching valve, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that depressurizes the refrigerant, and an evaporator 404 that evaporates the refrigerant. It is provided with a refrigerant pipe 410 for connecting the above.
  • the compressor 500, the four-way valve 401, the condenser 402, the decompression device 403, and the evaporator 404 are connected by a refrigerant pipe 410 to form a refrigerant circuit. Further, the compressor 500 includes an outdoor blower 405 facing the condenser 402 and an indoor blower 406 facing the evaporator 404.
  • the operation of the air conditioner 400 is as follows.
  • the compressor 500 compresses the sucked refrigerant and sends it out as a high-temperature and high-pressure refrigerant gas.
  • the four-way valve 401 switches the flow direction of the refrigerant, and during the cooling operation, as shown in FIG. 26, the refrigerant sent out from the compressor 500 flows to the condenser 402.
  • the condenser 402 exchanges heat between the refrigerant sent from the compressor 500 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant.
  • the depressurizing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature low-pressure liquid refrigerant.
  • the evaporator 404 exchanges heat between the low-temperature low-pressure liquid refrigerant sent from the decompression device 403 and the indoor air, evaporates (vaporizes) the refrigerant, and sends it out as a refrigerant gas.
  • the air whose heat has been taken away by the evaporator 404 is supplied to the room, which is the air-conditioned space, by the indoor blower 406.
  • the four-way valve 401 sends the refrigerant sent from the compressor 500 to the evaporator 404.
  • the evaporator 404 functions as a condenser
  • the condenser 402 functions as an evaporator.
  • the operating efficiency of the air conditioner 400 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

This stator for a motor assembled in a shell has a stator core having a first core section and a second core section in the axial direction thereof. The first core section faces the shell with a gap therebetween, and the second core section is in contact with the shell. The first core section has first steel plates stacked in the axial direction and fixed by caulking sections. The second core section has second steel plates stacked in the axial direction and fixed by caulking sections. The number of caulking sections per at least one second steel plate is smaller than the number of caulking sections per at least one first steel plate.

Description

ステータ、電動機、圧縮機および空気調和装置Stator, motor, compressor and air conditioner
 本発明は、ステータ、電動機、圧縮機および空気調和装置に関する。 The present invention relates to a stator, a motor, a compressor and an air conditioner.
 電動機のステータは、鋼板を積層したステータコアを備える。ステータコアは、一般に、圧縮機等のシェルの内側に固定される(例えば、特許文献1)。 The stator of the motor is equipped with a stator core in which steel plates are laminated. The stator core is generally fixed inside a shell of a compressor or the like (for example, Patent Document 1).
特開2005-151648号公報(図1参照)Japanese Unexamined Patent Publication No. 2005-151648 (see FIG. 1)
 ステータコアをシェルに強固に固定するためには、ステータコアを焼嵌めまたは圧入によってシェルに固定する必要がある。一方、ステータコアを焼嵌めまたは圧入によってシェルに固定すると、ステータコアがシェルから受ける圧縮応力により、ステータコアの磁気特性が変化し、鉄損が増加する可能性がある。 In order to firmly fix the stator core to the shell, it is necessary to fix the stator core to the shell by shrink fitting or press fitting. On the other hand, when the stator core is fixed to the shell by shrink fitting or press fitting, the magnetic characteristics of the stator core may change due to the compressive stress received from the shell, and the iron loss may increase.
 本発明は、上記の課題を解決するためになされたものであり、ステータコアをシェルに強固に固定し、且つ鉄損を低減することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to firmly fix the stator core to the shell and reduce iron loss.
 本発明の一態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。少なくとも1枚の第2の鋼板の1枚当たりのカシメ部の数は、少なくとも1枚の第1の鋼板の1枚当たりのカシメ部の数よりも少ない。 The stator according to one aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The number of caulked portions per sheet of at least one second steel sheet is smaller than the number of caulked portions per sheet of at least one first steel sheet.
 本発明の別の態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。少なくとも1枚の第2の鋼板の1枚当たりのカシメ部の総面積は、少なくとも1枚の第1の鋼板の1枚当たりのカシメ部の総面積よりも小さい。 The stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The total area of the crimped portion per sheet of the at least one second steel sheet is smaller than the total area of the crimped portion per sheet of the at least one first steel sheet.
 本発明のさらに別の態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。少なくとも1枚の第2の鋼板のカシメ部の深さは、少なくとも1枚の第1の鋼板のカシメ部の深さよりも浅い。 The stator according to still another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The depth of the crimped portion of at least one second steel plate is shallower than the depth of the crimped portion of at least one first steel plate.
 本発明の他の態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。少なくとも1枚の第2の鋼板のカシメ部の側面と軸線とのなす角度が、少なくとも1枚の第1の鋼板のカシメ部の側面と軸線とのなす角度よりも大きい。 The stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The angle formed by the side surface of the crimped portion of at least one second steel plate and the axis is larger than the angle formed by the side surface of the crimped portion of at least one first steel plate and the axis.
 本発明の他の態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。少なくとも1枚の第2の鋼板のカシメ部は、軸線の方向に直交する面において長方形形状を有する。少なくとも1枚の第1の鋼板のカシメ部は、軸線の方向に直交する面において円形状を有する。 The stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The crimped portion of at least one second steel plate has a rectangular shape in a plane orthogonal to the direction of the axis. The crimped portion of at least one first steel sheet has a circular shape in a plane orthogonal to the direction of the axis.
 本発明の他の態様によるステータは、シェルに組み込まれる電動機のステータであって、軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有する。第1のコア部はシェルに間隔をあけて対向し、第2のコア部はシェルに当接する。第1のコア部は、軸線の方向に積層されてカシメ部で固定された第1の鋼板を有する。第2のコア部は、軸線の方向に積層されてカシメ部で固定された第2の鋼板を有する。第2の鋼板を剥離させるために必要な荷重は、第1の鋼板を剥離させるために必要な荷重よりも小さい。 The stator according to another aspect of the present invention is a stator of an electric motor incorporated in a shell, and has a stator core having a first core portion and a second core portion in the direction of the axis. The first core portion faces the shell at intervals, and the second core portion abuts on the shell. The first core portion has a first steel plate laminated in the axial direction and fixed by a caulking portion. The second core portion has a second steel plate laminated in the direction of the axis and fixed by the caulking portion. The load required to peel off the second steel plate is smaller than the load required to peel off the first steel plate.
 上記の構成によれば、第1のコア部がシェルに当接しないため、鉄損の増加を抑制することができ、第2のコア部がシェルに当接するため、ステータコアをシェルに強固に固定することができる。また、シェルに当接する第2のコア部で、カシメ部の数を少なくすること等により、鉄損をさらに低減することができる。 According to the above configuration, since the first core portion does not abut on the shell, an increase in iron loss can be suppressed, and since the second core portion abuts on the shell, the stator core is firmly fixed to the shell. can do. Further, the iron loss can be further reduced by reducing the number of crimped portions in the second core portion that comes into contact with the shell.
実施の形態1の電動機およびシェルを示す横断面図である。It is a cross-sectional view which shows the electric motor and the shell of Embodiment 1. FIG. 実施の形態1のステータコアを示す横断面図である。It is sectional drawing which shows the stator core of Embodiment 1. FIG. 実施の形態1の分割コアを示す斜視図(A)、並びに分割コア、インシュレータおよび絶縁フィルムを示す斜視図(B)である。It is a perspective view (A) which shows the division core of Embodiment 1, and the perspective view (B) which shows the division core, an insulator and an insulating film. 実施の形態1の電動機およびシェルを示す縦断面図である。It is a vertical sectional view which shows the electric motor and the shell of Embodiment 1. FIG. 図4に示す線分5A-5Aにおける断面図(A)と、線分5B-5Bにおける断面図(B)である。It is a cross-sectional view (A) of the line segment 5A-5A shown in FIG. 4 and the cross-sectional view (B) of the line segment 5B-5B. 実施の形態1の電動機を示す縦断面図である。It is a vertical sectional view which shows the electric motor of Embodiment 1. FIG. 実施の形態1の第1のコア部の第1の鋼板を示す図(A)および第2のコア部の第2の鋼板を示す図(B)である。It is a figure (A) which shows the 1st steel plate of the 1st core part of Embodiment 1 and the figure (B) which shows the 2nd steel plate of a 2nd core part. 実施の形態1の第1変形例の第1のコア部の第1の鋼板を示す図(A)および第2のコア部の第2の鋼板を示す図(B)である。It is a figure (A) which shows the 1st steel plate of the 1st core part, and the figure (B) which shows the 2nd steel plate of a 2nd core part of the 1st modification of Embodiment 1. FIG. 実施の形態1の第2変形例の第1のコア部の第1の鋼板を示す図(A)および第2のコア部の第2の鋼板を示す図(B)である。It is a figure (A) which shows the 1st steel plate of the 1st core part, and the figure (B) which shows the 2nd steel plate of a 2nd core part of the 2nd modification of Embodiment 1. FIG. 実施の形態2の第1のコア部の第1の鋼板を示す図(A)、第2のコア部の第2の鋼板を示す図(B)、および各カシメ部の面積を説明するための模式図(C)である。A diagram (A) showing a first steel plate of the first core portion of the second embodiment, a diagram (B) showing a second steel plate of the second core portion, and an area for explaining the area of each caulked portion. It is a schematic diagram (C). 実施の形態2の変形例の第1のコア部の第1の鋼板を示す図(A)、第2のコア部の第2の鋼板を示す図(B)、および各カシメ部の面積を説明するための模式図(C)である。The figure (A) which shows the 1st steel plate of the 1st core part of the modification of Embodiment 2, the figure (B) which shows the 2nd steel plate of the 2nd core part, and the area of each caulking part are explained. It is a schematic diagram (C) for this. 実施の形態3の第1のコア部の第1の鋼板を示す図(A)、図12(A)に示す線分12B-12Bにおける断面図(B)、および図12(A)に示す線分12C-12Cにおける断面図(C)である。FIG. (A) showing the first steel plate of the first core portion of the first embodiment, the cross-sectional view (B) of the line segment 12B-12B shown in FIG. 12 (A), and the line shown in FIG. 12 (A). It is sectional drawing (C) in the minute 12C-12C. 実施の形態3の第2のコア部の第2の鋼板を示す図(A)、図13(A)に示す線分13B-13Bにおける断面図(B)、および図13(A)に示す線分13C-13Cにおける断面図(C)である。FIG. (A) showing the second steel plate of the second core portion of the third embodiment, the cross-sectional view (B) of the line segment 13B-13B shown in FIG. 13 (A), and the line shown in FIG. 13 (A). It is sectional drawing (C) in the minute 13C-13C. 実施の形態4の第1のコア部の第1の鋼板を示す図(A)、図14(A)に示す線分14B-14Bにおける断面図(B)、および図14(A)に示す線分14C-14Cにおける断面図(C)である。FIG. (A) showing the first steel plate of the first core portion of the first embodiment, the cross-sectional view (B) of the line segment 14B-14B shown in FIG. 14 (A), and the line shown in FIG. 14 (A). It is sectional drawing (C) in the minute 14C-14C. 実施の形態4の第2のコア部の第2の鋼板を示す図(A)、図15(A)に示す線分15B-15Bにおける断面図(B)、および図15(A)に示す線分15C-15Cにおける断面図(C)である。FIG. (A) showing the second steel plate of the second core portion of the second core portion of the fourth embodiment, the cross-sectional view (B) of the line segment 15B-15B shown in FIG. 15 (A), and the line shown in FIG. 15 (A). It is sectional drawing (C) in the minute 15C-15C. 実施の形態5の第1のコア部の第1の鋼板を示す図(A)、図16(A)に示す線分16B-16Bにおける断面図(B)、および図16(A)に示す線分16C-16Cにおける断面図(C)である。FIG. (A) showing the first steel plate of the first core portion of the first embodiment, the cross-sectional view (B) of the line segment 16B-16B shown in FIG. 16 (A), and the line shown in FIG. 16 (A). It is sectional drawing (C) in the minute 16C-16C. 実施の形態5の第2のコア部の第2の鋼板を示す図(A)、図17(A)に示す線分17B-17Bにおける断面図(B)、および図17(A)に示す線分17C-17Cにおける断面図(C)である。FIG. (A) showing the second steel plate of the second core portion of the second core portion of the fifth embodiment, the cross-sectional view (B) of the line segment 17B-17B shown in FIG. 17 (A), and the line shown in FIG. 17 (A). It is sectional drawing (C) in the minute 17C-17C. 第1のコア部の剥離荷重の測定方法を示す図(A)、および第2のコア部の剥離荷重の測定方法を示す図(B)である。It is a figure (A) which shows the measuring method of the peeling load of the 1st core part, and the figure (B) which shows the measuring method of the peeling load of a 2nd core part. 第1のコア部と第2のコア部との境界部分を示す模式図である。It is a schematic diagram which shows the boundary part between the 1st core part and the 2nd core part. 第1のコア部と第2のコア部とを固定ピンで固定した例を示す縦断面図である。It is a vertical cross-sectional view which shows the example which fixed the 1st core part and the 2nd core part with a fixing pin. ステータコアを構成する分割コアの例を示す図(A),(B)である。It is a figure (A), (B) which shows the example of the split core which constitutes a stator core. 2つの分割コアを連結するジョイントラップを説明するための模式図である。It is a schematic diagram for demonstrating the joint wrap which connects two split cores. ステータコアの軸方向両端部と中央部に第2のコア部を設けた例を示す縦断面図である。It is a vertical cross-sectional view which shows the example which provided the 2nd core part at both ends and the center part in the axial direction of a stator core. カシメ部の断面形状の一例を示す拡大図である。It is an enlarged view which shows an example of the cross-sectional shape of the caulking part. 各実施の形態の電動機が適用可能な圧縮機を示す断面図である。It is sectional drawing which shows the compressor to which the motor of each embodiment is applicable. 図25の圧縮機を備えた空気調和装置を示す図である。It is a figure which shows the air conditioner provided with the compressor of FIG.
実施の形態1.
<電動機の構成>
 まず、実施の形態1の電動機100について説明する。図1は、実施の形態1の電動機100を示す横断面図である。電動機100は、ロータ5に永久磁石55が埋め込まれた永久磁石埋込型電動機であり、例えば圧縮機500(図25)に用いられる。
Embodiment 1.
<Motor configuration>
First, the electric motor 100 of the first embodiment will be described. FIG. 1 is a cross-sectional view showing the motor 100 of the first embodiment. The electric motor 100 is a permanent magnet embedded motor in which a permanent magnet 55 is embedded in a rotor 5, and is used, for example, in a compressor 500 (FIG. 25).
 電動機100は、インナーロータ型と呼ばれる電動機であり、回転可能なロータ5と、ロータ5を囲むように設けられたステータ1とを有する。ステータ1とロータ5との間には、例えば0.3~1.0mmのエアギャップが形成されている。電動機100は、圧縮機500のシェル40の内側に組み込まれている。 The electric motor 100 is an electric motor called an inner rotor type, and has a rotatable rotor 5 and a stator 1 provided so as to surround the rotor 5. An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5. The electric motor 100 is incorporated inside the shell 40 of the compressor 500.
 以下では、ロータ5の回転軸である軸線C1の方向を、「軸方向」と称する。軸線C1を中心とする周方向(図1に矢印Rで示す)を、「周方向」と称する。軸線C1を中心とする半径方向を、「径方向」と称する。軸線C1に直交する面における断面図を「横断面図」と称し、軸線C1と平行な面における断面図を「縦断面図」と称する。 Hereinafter, the direction of the axis C1 which is the rotation axis of the rotor 5 is referred to as "axial direction". The circumferential direction around the axis C1 (indicated by the arrow R in FIG. 1) is referred to as a "circumferential direction". The radial direction centered on the axis C1 is referred to as a "diameter direction". A cross-sectional view on a plane orthogonal to the axis C1 is referred to as a "cross-sectional view", and a cross-sectional view on a plane parallel to the axis C1 is referred to as a "vertical cross-sectional view".
<ロータの構成>
 ロータ5は、円筒状のロータコア50と、ロータコア50に取り付けられた永久磁石55と、ロータコア50の中央部に固定されたシャフト60とを有する。シャフト60は、例えば、圧縮機500(図25)のシャフトである。
<Rotor configuration>
The rotor 5 has a cylindrical rotor core 50, a permanent magnet 55 attached to the rotor core 50, and a shaft 60 fixed to a central portion of the rotor core 50. The shaft 60 is, for example, the shaft of the compressor 500 (FIG. 25).
 ロータコア50は、電磁鋼板を軸方向に積層し、カシメ部により一体化したものである。電磁鋼板の板厚は、例えば0.1~0.7mmであり、ここでは0.35mmである。ロータコア50の径方向中心にはシャフト孔54が形成され、上述したシャフト60が固定されている。 The rotor core 50 is made by laminating electromagnetic steel sheets in the axial direction and integrating them by a caulking portion. The thickness of the electromagnetic steel sheet is, for example, 0.1 to 0.7 mm, and here it is 0.35 mm. A shaft hole 54 is formed at the radial center of the rotor core 50, and the shaft 60 described above is fixed to the shaft hole 54.
 ロータコア50の外周に沿って、永久磁石55が挿入される複数の磁石挿入孔51が形成されている。各磁石挿入孔51は、ロータコア50の軸方向の一端から他端まで形成されている。各磁石挿入孔51は、1磁極に相当する。磁石挿入孔51の数は、ここでは6であり、従って磁極数は6である。但し、磁極数は6に限定されるものではなく、2以上であればよい。 Along the outer circumference of the rotor core 50, a plurality of magnet insertion holes 51 into which the permanent magnets 55 are inserted are formed. Each magnet insertion hole 51 is formed from one end to the other end in the axial direction of the rotor core 50. Each magnet insertion hole 51 corresponds to one magnetic pole. The number of magnet insertion holes 51 here is 6, so the number of magnetic poles is 6. However, the number of magnetic poles is not limited to 6, and may be 2 or more.
 磁石挿入孔51は、軸線C1に直交する面において直線状に延在している。各磁石挿入孔51には、永久磁石55が1つずつ配置されている。隣り合う磁石挿入孔51に配置された永久磁石55は、互いに反対の極が径方向外側を向くように着磁されている。 The magnet insertion hole 51 extends linearly on a plane orthogonal to the axis C1. One permanent magnet 55 is arranged in each magnet insertion hole 51. The permanent magnets 55 arranged in the adjacent magnet insertion holes 51 are magnetized so that the opposite poles face outward in the radial direction.
 なお、磁石挿入孔51は、周方向中心が径方向内側に突出するV字状であってもよい。また、各磁石挿入孔51に2つ以上の永久磁石55を配置してもよい。 The magnet insertion hole 51 may have a V-shape whose circumferential center protrudes inward in the radial direction. Further, two or more permanent magnets 55 may be arranged in each magnet insertion hole 51.
 永久磁石55は、軸方向に長い平板状の部材であり、ロータコア50の径方向に厚さを有する。永久磁石55の厚さは、例えば2mmである。永久磁石55は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を含有する希土類磁石で構成されている。永久磁石55は、厚さ方向に着磁されている。 The permanent magnet 55 is a flat plate-shaped member that is long in the axial direction and has a thickness in the radial direction of the rotor core 50. The thickness of the permanent magnet 55 is, for example, 2 mm. The permanent magnet 55 is composed of, for example, a rare earth magnet containing neodymium (Nd), iron (Fe) and boron (B). The permanent magnet 55 is magnetized in the thickness direction.
 希土類磁石は、温度の上昇と共に保磁力が低下する性質を有し、低下率は-0.5~-0.6%/Kである。圧縮機で想定される最大負荷発生時に希土類磁石の減磁が生じないようにするためには、1100~1500A/mの保磁力が必要である。この保磁力を150℃の雰囲気温度下で確保するためには、常温(20℃)での保磁力が1800~2300A/mであることが必要である。 Rare earth magnets have the property that the coercive force decreases as the temperature rises, and the rate of decrease is -0.5 to -0.6% / K. A coercive force of 1100 to 1500 A / m is required to prevent demagnetization of the rare earth magnet when the maximum load assumed by the compressor is generated. In order to secure this coercive force at an atmospheric temperature of 150 ° C., it is necessary that the coercive force at room temperature (20 ° C.) is 1800 to 2300 A / m.
 そのため、希土類磁石には、ディスプロシウム(Dy)を添加してもよい。希土類磁石の常温での保磁力は、Dyを添加していない状態で1800A/mであり、2重量%のDyを添加することで2300A/mとなる。但し、Dyの添加は製造コストの増加の原因となり、また残留磁束密度の低下を招く。そのため、Dyの添加量をできるだけ少なくするか、またはDyを添加しないことが望ましい。 Therefore, dysprosium (Dy) may be added to the rare earth magnet. The coercive force of the rare earth magnet at room temperature is 1800 A / m in the state where Dy is not added, and becomes 2300 A / m by adding 2% by weight of Dy. However, the addition of Dy causes an increase in manufacturing cost and a decrease in residual magnetic flux density. Therefore, it is desirable to reduce the amount of Dy added as much as possible or not to add Dy.
 磁石挿入孔51の周方向両端部には、漏れ磁束抑制穴としてのフラックスバリア52が形成されている。フラックスバリア52とロータコア50の外周との間のコア部分は、隣り合う磁極間の磁束の短絡を抑制するため、薄肉部となっている。薄肉部の厚さは、ロータコア50の電磁鋼板の板厚と同じであることが望ましい。 A flux barrier 52 as a leakage flux suppressing hole is formed at both ends of the magnet insertion hole 51 in the circumferential direction. The core portion between the flux barrier 52 and the outer circumference of the rotor core 50 is a thin portion in order to suppress a short circuit of magnetic flux between adjacent magnetic poles. It is desirable that the thickness of the thin portion is the same as the thickness of the electromagnetic steel plate of the rotor core 50.
 磁石挿入孔51の径方向外側には、スリット53が形成されている。スリット53は、永久磁石55からステータ1に向かう磁束の分布を滑らかにし、トルクリプルを抑制するためのものである。スリット53の数、配置および形状は任意である。なお、ロータコア50は、必ずしもスリット53を有さなくてもよい。 A slit 53 is formed on the radial outer side of the magnet insertion hole 51. The slit 53 is for smoothing the distribution of the magnetic flux from the permanent magnet 55 toward the stator 1 and suppressing torque ripple. The number, arrangement and shape of the slits 53 are arbitrary. The rotor core 50 does not necessarily have to have the slit 53.
 磁石挿入孔51の径方向内側には、圧縮機500(図25)の冷媒の通路となる穴部57,58が形成されている。穴部57は、極間に対応する位置に形成され、穴部58は、極中心に対応する位置に形成されている。但し、穴部57,58の配置は、適宜変更することができる。また、ロータコア50は、必ずしも穴部57,58を有さなくてもよい。 Holes 57 and 58 serving as a passage for the refrigerant of the compressor 500 (FIG. 25) are formed inside the magnet insertion hole 51 in the radial direction. The hole 57 is formed at a position corresponding to the poles, and the hole 58 is formed at a position corresponding to the center of the pole. However, the arrangement of the holes 57 and 58 can be changed as appropriate. Further, the rotor core 50 does not necessarily have holes 57 and 58.
<ステータの構成>
 ステータ1は、ステータコア10と、ステータコア10に取り付けられたインシュレータ20および絶縁フィルム25と、インシュレータ20および絶縁フィルム25を介してステータコア10に巻き付けられたコイル3とを有する。
<Constituent configuration>
The stator 1 has a stator core 10, an insulator 20 and an insulating film 25 attached to the stator core 10, and a coil 3 wound around the stator core 10 via the insulator 20 and the insulating film 25.
 図2は、ステータコア10を示す横断面図である。ステータコア10は、電磁鋼板を軸方向に積層し、カシメ部15により一体的に固定したものである。電磁鋼板の板厚は、例えば0.1~0.7mmであり、ここでは0.35mmである。 FIG. 2 is a cross-sectional view showing the stator core 10. The stator core 10 is formed by laminating electromagnetic steel sheets in the axial direction and integrally fixing them by a caulking portion 15. The thickness of the electromagnetic steel sheet is, for example, 0.1 to 0.7 mm, and here it is 0.35 mm.
 カシメ部15は、電磁鋼板の表面にカシメ用金具を押し当てることで形成され、電磁鋼板の一方の面(表面とする)側では凹部、他方の面(裏面とする)側では凸部となっている。カシメ部15の詳細については、後述する。 The caulking portion 15 is formed by pressing a caulking metal fitting against the surface of the electromagnetic steel sheet, and becomes a concave portion on one surface (the front surface) side of the electromagnetic steel sheet and a convex portion on the other surface (the back surface) side. ing. The details of the caulking portion 15 will be described later.
 ステータコア10は、軸線C1を中心とする環状のヨーク部11と、ヨーク部11から径方向内側に延在する複数のティース12とを有する。ヨーク部11は、外周111および内周112を有する。 The stator core 10 has an annular yoke portion 11 centered on the axis C1 and a plurality of teeth 12 extending radially inward from the yoke portion 11. The yoke portion 11 has an outer peripheral circumference 111 and an inner peripheral circumference 112.
 ティース12は、周方向に一定間隔で形成されている。ティース12の数は、ここでは9であるが、2以上であればよい。隣り合うティース12の間には、コイル3を収容するスロット13が形成される。 Teeth 12 are formed at regular intervals in the circumferential direction. The number of teeth 12 is 9 here, but it may be 2 or more. A slot 13 for accommodating the coil 3 is formed between the adjacent teeth 12.
 ティース12は、ロータ5(図1)に対向する歯先部121を有する。ティース12の周方向の幅は、歯先部121を除いて一定であり、歯先部121の幅はそれよりも広い。ティース12の側面122と、ヨーク部11の内周112とは、スロット13に面している。 The teeth 12 has a tooth tip portion 121 facing the rotor 5 (FIG. 1). The width of the tooth 12 in the circumferential direction is constant except for the tooth tip portion 121, and the width of the tooth tip portion 121 is wider than that. The side surface 122 of the teeth 12 and the inner circumference 112 of the yoke portion 11 face the slot 13.
 ヨーク部11の外周111には、凹部18が形成されている。凹部18は、シェル40の内周41(図1)との間に、軸方向の冷媒の通路を形成する。凹部18の周方向位置は、ティース12と一致している。なお、ヨーク部11は、必ずしも凹部18を有さなくてもよい。 A recess 18 is formed on the outer circumference 111 of the yoke portion 11. The recess 18 forms an axial refrigerant passage with the inner circumference 41 (FIG. 1) of the shell 40. The circumferential position of the recess 18 coincides with the teeth 12. The yoke portion 11 does not necessarily have to have the recess 18.
 ステータコア10は、ティース12毎に複数の分割コア8が周方向に連結された構成を有する。分割コア8の数は、例えば9である。これらの分割コア8は、ヨーク部11に形成された分割面14で互いに接合されている。 The stator core 10 has a configuration in which a plurality of divided cores 8 are connected in the circumferential direction for each tooth 12. The number of divided cores 8 is, for example, 9. These split cores 8 are joined to each other by a split surface 14 formed on the yoke portion 11.
 分割コア8は、分割面14の外周側の薄肉連結部で互いに連結され、あるいは分割面14での溶接により互いに接合される。これについては、図21(A)および(B)を参照して後述する。 The split cores 8 are connected to each other at a thin-walled connecting portion on the outer peripheral side of the split surface 14, or are joined to each other by welding on the split surface 14. This will be described later with reference to FIGS. 21 (A) and 21 (B).
 図3(A)は、分割コア8を示す斜視図である。図3(B)は、分割コア8と、これに取り付けられたインシュレータ20および絶縁フィルム25を示す斜視図である。図3(A)に示すように、分割コア8は、周方向に分割されたヨーク部11と、ヨーク部11から径方向内側に延在するティース12とを有する。 FIG. 3A is a perspective view showing the split core 8. FIG. 3B is a perspective view showing the split core 8, the insulator 20 attached to the split core 8, and the insulating film 25. As shown in FIG. 3A, the split core 8 has a yoke portion 11 divided in the circumferential direction and teeth 12 extending radially inward from the yoke portion 11.
 図3(B)に示すように、インシュレータ20は、分割コア8の軸方向の両端部にそれぞれ取り付けられる。インシュレータ20は、例えばポリブチレンテレフタレート(PBT)等の樹脂で構成される。 As shown in FIG. 3B, the insulators 20 are attached to both ends of the split core 8 in the axial direction. The insulator 20 is made of a resin such as polybutylene terephthalate (PBT).
 各インシュレータ20は、ヨーク部11に取り付けられる壁部23と、ティース12の主部に取り付けられる胴部22と、歯先部121に取り付けられるフランジ部21とを有する。胴部22にはコイル3(図1)が巻き付けられ、フランジ部21および壁部23は、胴部22に巻き付けられたコイル3を径方向両側からガイドする。 Each insulator 20 has a wall portion 23 attached to the yoke portion 11, a body portion 22 attached to the main portion of the teeth 12, and a flange portion 21 attached to the tooth tip portion 121. A coil 3 (FIG. 1) is wound around the body portion 22, and the flange portion 21 and the wall portion 23 guide the coil 3 wound around the body portion 22 from both sides in the radial direction.
 ティース12の側面122およびヨーク部11の内周112には、絶縁フィルム25が貼り付けられる。絶縁フィルム25は、例えばポリエチレンテレフタレート(PET)の樹脂で構成される。インシュレータ20および絶縁フィルム25は、ステータコア10とコイル3とを電気的に絶縁する絶縁部を構成する。 An insulating film 25 is attached to the side surface 122 of the teeth 12 and the inner circumference 112 of the yoke portion 11. The insulating film 25 is made of, for example, a resin of polyethylene terephthalate (PET). The insulator 20 and the insulating film 25 form an insulating portion that electrically insulates the stator core 10 and the coil 3.
 図1に戻り、コイル3は、例えばマグネットワイヤで構成され、インシュレータ20および絶縁フィルム25を介してティース12に巻き付けられている。コイル3の線径は、例えば1.0mmである。コイル3は、各ティース12に、集中巻により例えば80ターン巻かれている。なお、コイル3の線径およびターン数は、要求される回転数、トルク、印加電圧あるいはスロット13の面積に応じて決定される。 Returning to FIG. 1, the coil 3 is composed of, for example, a magnet wire, and is wound around the teeth 12 via an insulator 20 and an insulating film 25. The wire diameter of the coil 3 is, for example, 1.0 mm. The coil 3 is wound around each tooth 12 by a concentrated winding, for example, for 80 turns. The wire diameter and the number of turns of the coil 3 are determined according to the required rotation speed, torque, applied voltage, or area of the slot 13.
 図4は、電動機100およびシェル40を示す縦断面図である。ステータ1のステータコア10は、焼嵌めまたは圧入により、シェル40の内側に嵌合する。シェル40は、圧縮機500(図25)の密閉容器507の一部である。 FIG. 4 is a vertical cross-sectional view showing the motor 100 and the shell 40. The stator core 10 of the stator 1 is fitted inside the shell 40 by shrink fitting or press fitting. The shell 40 is a part of the closed container 507 of the compressor 500 (FIG. 25).
 ステータコア10は、軸方向に、第1のコア部10Aと第2のコア部10Bとを有する。第1のコア部10Aは、シェル40の内周41に間隔をあけて対向している。第2のコア部10Bは、シェル40の内周41に当接している。 The stator core 10 has a first core portion 10A and a second core portion 10B in the axial direction. The first core portion 10A faces the inner circumference 41 of the shell 40 at intervals. The second core portion 10B is in contact with the inner circumference 41 of the shell 40.
 すなわち、第1のコア部10Aの外周(符号110で示す)は、第2のコア部10Bの外周111よりも径方向内側に退避した位置に形成され、シェル40の内周41から離間している。第2のコア部10Bの外周111は、シェル40の内周41に当接する。 That is, the outer circumference of the first core portion 10A (indicated by reference numeral 110) is formed at a position retracted radially inward from the outer circumference 111 of the second core portion 10B, and is separated from the inner circumference 41 of the shell 40. There is. The outer circumference 111 of the second core portion 10B abuts on the inner circumference 41 of the shell 40.
 ここでは、ステータコア10の軸方向中央に第1のコア部10Aが配置され、第1のコア部10Aの軸方向両側に第2のコア部10Bがそれぞれ配置されている。すなわち、第2のコア部10Bは、ステータコア10の軸方向両端に配置されている。但し、コア部10A,10Bの配置および数は、この例に限定されるものではない。 Here, the first core portion 10A is arranged at the center of the stator core 10 in the axial direction, and the second core portions 10B are arranged on both sides of the first core portion 10A in the axial direction. That is, the second core portion 10B is arranged at both ends in the axial direction of the stator core 10. However, the arrangement and number of the core portions 10A and 10B are not limited to this example.
 第1のコア部10Aはシェル40に当接せず、第2のコア部10Bはシェル40に当接しているため、シェル40からの圧縮応力は、第1のコア部10Aには作用せず、第2のコア部10Bに作用する。 Since the first core portion 10A does not abut on the shell 40 and the second core portion 10B abuts on the shell 40, the compressive stress from the shell 40 does not act on the first core portion 10A. , Acts on the second core portion 10B.
 電磁鋼板は、圧縮応力を受けると磁気特性が変化し、鉄損が増加する性質がある。そのため、第1のコア部10Aがシェル40からの圧縮応力を受けないことにより、鉄損の増加が抑制される。また、第2のコア部10Bがシェル40に当接することにより、シェル40に対してステータコア10が強固に固定される。 Electrical steel sheets have the property that their magnetic properties change when they receive compressive stress, and iron loss increases. Therefore, since the first core portion 10A is not subjected to the compressive stress from the shell 40, the increase in iron loss is suppressed. Further, when the second core portion 10B comes into contact with the shell 40, the stator core 10 is firmly fixed to the shell 40.
 図5(A)は、図4に示す線分5A-5Aにおける断面図、すなわち第1のコア部10Aにおける横断面図である。図5(B)は、図4に示す線分5B-5Bにおける断面図、すなわち第2のコア部10Bにおける横断面図である。 FIG. 5A is a cross-sectional view of the line segment 5A-5A shown in FIG. 4, that is, a cross-sectional view of the first core portion 10A. FIG. 5B is a cross-sectional view of the line segment 5B-5B shown in FIG. 4, that is, a cross-sectional view of the second core portion 10B.
 図5(A)に示すように、第1のコア部10Aの外周110と、シェル40の内周41との間には、環状の隙間Gが形成される。一方、図5(B)に示すように、第2のコア部10Bの外周111は、シェル40の内周41に当接しており、図5(A)に示したような隙間Gは形成されない。 As shown in FIG. 5A, an annular gap G is formed between the outer circumference 110 of the first core portion 10A and the inner circumference 41 of the shell 40. On the other hand, as shown in FIG. 5 (B), the outer circumference 111 of the second core portion 10B is in contact with the inner circumference 41 of the shell 40, and the gap G as shown in FIG. 5 (A) is not formed. ..
 図6は、電動機100を示す縦断面図である。図6に示すように、第1のコア部10Aの外径A1は、第2のコア部10Bの外径A2よりも小さい。なお、第1のコア部10Aの内径と第2のコア部10Bの内径とは、互いに同じである。 FIG. 6 is a vertical cross-sectional view showing the motor 100. As shown in FIG. 6, the outer diameter A1 of the first core portion 10A is smaller than the outer diameter A2 of the second core portion 10B. The inner diameter of the first core portion 10A and the inner diameter of the second core portion 10B are the same as each other.
 第1のコア部10Aおよび第2のコア部10Bは、いずれも、電磁鋼板を軸方向に積層したものである。第1のコア部10Aを構成する電磁鋼板を第1の鋼板9Aと称し、第2のコア部10Bを構成する電磁鋼板を第2の鋼板9Bと称する。第1の鋼板9Aおよび第2の鋼板9Bは、外径およびカシメ部15の数を除き、互いに同じ構成を有する。 Both the first core portion 10A and the second core portion 10B are made by laminating electromagnetic steel sheets in the axial direction. The electromagnetic steel plate constituting the first core portion 10A is referred to as a first steel plate 9A, and the electromagnetic steel plate constituting the second core portion 10B is referred to as a second steel plate 9B. The first steel plate 9A and the second steel plate 9B have the same configuration as each other except for the outer diameter and the number of crimped portions 15.
 図7(A)は、第1のコア部10Aの第1の鋼板9Aを示す平面図である。図7(B)は、第2のコア部10Bの第2の鋼板9Bを示す平面図である。なお、図7(A)および(B)では、第1の鋼板9Aおよび第2の鋼板9Bの1つの分割コア8(図2)に含まれる部分を示している。後述する図8(A)~図9(B)も同様である。 FIG. 7A is a plan view showing a first steel plate 9A of the first core portion 10A. FIG. 7B is a plan view showing a second steel plate 9B of the second core portion 10B. Note that FIGS. 7A and 7B show a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A and the second steel plate 9B. The same applies to FIGS. 8 (A) to 9 (B) described later.
 図7(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、3つのカシメ部15が形成されている。カシメ部15は、いずれも、軸方向に直交する面内で長方形形状を有する。このような形状のカシメ部を、Vカシメ部と称する。 As shown in FIG. 7A, three caulking portions 15 are formed on one first steel plate 9A for each divided core 8. Each of the crimped portions 15 has a rectangular shape in a plane orthogonal to the axial direction. A crimped portion having such a shape is referred to as a V crimped portion.
 ここでは、ティース12の周方向中心を通る径方向の直線を、ティース中心線Mと称する。第1の鋼板9Aのカシメ部15は、ティース12におけるティース中心線M上の1箇所と、ヨーク部11におけるティース中心線Mに対して対称な2箇所に形成されている。ティース12に形成されたカシメ部15は、ティース12の延在方向に長く、ヨーク部11に形成されたカシメ部15は、ヨーク部11の延在方向(より具体的には、ティース中心線Mに直交する方向)に長い。 Here, the radial straight line passing through the circumferential center of the teeth 12 is referred to as the teeth center line M. The crimped portion 15 of the first steel plate 9A is formed at one location on the teeth center line M in the teeth 12 and two locations symmetrical with respect to the teeth center line M in the yoke portion 11. The crimped portion 15 formed on the teeth 12 is long in the extending direction of the teeth 12, and the crimped portion 15 formed on the yoke portion 11 is long in the extending direction of the yoke portion 11 (more specifically, the teeth center line M). Long in the direction orthogonal to).
 図7(B)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部15が形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 7B, two caulking portions 15 are formed on one second steel plate 9B for each divided core 8. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 第2の鋼板9Bのカシメ部15は、ヨーク部11におけるティース中心線Mに対して対称な2箇所にそれぞれ形成されている。カシメ部15は、ヨーク部11の延在方向(より具体的には、ティース中心線Mに直交する方向)に長い。 The crimped portion 15 of the second steel plate 9B is formed at two locations symmetrical with respect to the tooth center line M in the yoke portion 11. The caulking portion 15 is long in the extending direction of the yoke portion 11 (more specifically, the direction orthogonal to the tooth center line M).
 ステータコア10は9つの分割コア8を有するため、9つの分割コア8を合計すると、1枚の第1の鋼板9Aは27個(3個×9)のカシメ部15を有し(図5(A)参照)、1枚の第2の鋼板9Bは18個(2個×9)のカシメ部15を有する(図5(B)参照)。 Since the stator core 10 has nine divided cores 8, when the nine divided cores 8 are totaled, one first steel plate 9A has 27 (3 × 9) caulked portions 15 (FIG. 5 (A)). )), One second steel plate 9B has 18 (2 × 9) caulked portions 15 (see FIG. 5 (B)).
 図5(A)および図5(B)に示されているように、第2の鋼板9Bの18個のカシメ部15は、第1の鋼板9Aの27個のカシメ部15のうち、ヨーク部11に設けられた18個のカシメ部15と、軸方向に重なり合う位置に配置されている。そのため、第2のコア部10Bのカシメ部15と、これと同数の第1のコア部10Aのカシメ部15とが係合し、第1のコア部10Aと第2のコア部10Bとが固定される。 As shown in FIGS. 5A and 5B, the 18 caulking portions 15 of the second steel plate 9B are the yoke portions of the 27 caulking portions 15 of the first steel plate 9A. It is arranged at a position where it overlaps with the 18 caulking portions 15 provided in 11 in the axial direction. Therefore, the caulking portion 15 of the second core portion 10B and the same number of caulking portions 15 of the first core portion 10A are engaged with each other, and the first core portion 10A and the second core portion 10B are fixed. Will be done.
 第1の鋼板9Aの1枚当たりのカシメ部15の数および第2の鋼板9Bの1枚当たりのカシメ部15の数は、ここで説明した例に限定されるものではない。第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少なければよい。 The number of crimped portions 15 per sheet of the first steel plate 9A and the number of caulked portions 15 per sheet of the second steel plate 9B are not limited to the examples described here. The number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
 また、第1の鋼板9Aのカシメ部15の軸方向に直交する面内における面積および形状は、第2の鋼板9Bのカシメ部15と互いに同じであることが望ましい。このようにすれば、第1のコア部10Aと第2のコア部10Bとが、より強固に固定されるためである。 Further, it is desirable that the area and shape of the crimped portion 15 of the first steel plate 9A in the plane orthogonal to the axial direction are the same as those of the crimped portion 15 of the second steel plate 9B. This is because the first core portion 10A and the second core portion 10B are more firmly fixed in this way.
<作用>
 次に、実施の形態1の電動機100の作用について説明する。まず、ステータコア10を、シェル40に当接しない第1のコア部10Aと、シェル40に当接する第2のコア部10Bとで構成したことによる作用について説明する。
<Action>
Next, the operation of the electric motor 100 of the first embodiment will be described. First, the operation of the stator core 10 being composed of the first core portion 10A that does not abut on the shell 40 and the second core portion 10B that abuts on the shell 40 will be described.
 電動機100において、ステータコア10およびロータコア50の内部で磁束が変化するときに消費されるエネルギーを、鉄損と称する。ロータコア50内では磁束の変化が小さいため、電動機100における鉄損の殆どは、ステータコア10における鉄損である。鉄損は、ヒステリシス損と渦電流損との和で表される。ヒステリシス損は磁束変化の周波数に比例し、渦電流損は周波数の2乗に比例する。 In the motor 100, the energy consumed when the magnetic flux changes inside the stator core 10 and the rotor core 50 is referred to as iron loss. Since the change in magnetic flux is small in the rotor core 50, most of the iron loss in the motor 100 is the iron loss in the stator core 10. The iron loss is represented by the sum of the hysteresis loss and the eddy current loss. The hysteresis loss is proportional to the frequency of the magnetic flux change, and the eddy current loss is proportional to the square of the frequency.
 ステータコア10を構成する電磁鋼板は、圧縮応力を受けると磁気特性が劣化し、鉄損が増加する。圧縮応力は、電磁鋼板の打ち抜き、あるいはシェル40への圧入または焼嵌めによって発生する。 When the electromagnetic steel sheet constituting the stator core 10 receives compressive stress, its magnetic properties deteriorate and iron loss increases. The compressive stress is generated by punching of an electromagnetic steel sheet or press-fitting or shrink-fitting into a shell 40.
 シェル40への圧入または焼嵌めは、ステータコア10の真円度を向上し、ステータコア10をシェル40に強固に固定するため、一定以上の固定力で行う必要がある。ステータコア10とシェル40との接触面積と、その面積に働く平均応力との積を、焼嵌め荷重とする。焼嵌め荷重は、ステータコア10をシェル40に固定する固定力の指標である。 Press-fitting or shrink-fitting into the shell 40 is performed with a fixing force of a certain level or more in order to improve the roundness of the stator core 10 and firmly fix the stator core 10 to the shell 40. The product of the contact area between the stator core 10 and the shell 40 and the average stress acting on the area is defined as the shrink fitting load. The shrink fitting load is an index of the fixing force for fixing the stator core 10 to the shell 40.
 ステータコア10の外周面の全体がシェル40に嵌合する構成では、ステータコア10全体で鉄損が増加し、その結果、電動機効率が低下する。 In a configuration in which the entire outer peripheral surface of the stator core 10 is fitted to the shell 40, iron loss increases in the entire stator core 10, and as a result, motor efficiency decreases.
 これに対し、実施の形態1の電動機100では、ステータコア10の第1のコア部10Aがシェル40に当接せず、圧縮応力を受けない。そのため、第1のコア部10Aでの鉄損の増加は殆ど発生せず、電動機効率を向上することができる。 On the other hand, in the motor 100 of the first embodiment, the first core portion 10A of the stator core 10 does not come into contact with the shell 40 and is not subjected to compressive stress. Therefore, the increase in iron loss in the first core portion 10A hardly occurs, and the efficiency of the motor can be improved.
 鉄損の低減効果について、具体的な数値例を用いて説明する。ステータコア10の外周面全体をシェル40に嵌合させた電動機(比較例と称する)において、ステータコア10の焼嵌めまたは圧入前の単位体積当たりの鉄損を1とし、焼嵌めまたは圧入によって鉄損が2まで増加したと仮定する。 The effect of reducing iron loss will be explained using specific numerical examples. In an electric motor (referred to as a comparative example) in which the entire outer peripheral surface of the stator core 10 is fitted to the shell 40, the iron loss per unit volume before shrink fitting or press fitting of the stator core 10 is set to 1, and iron loss is caused by shrink fitting or press fitting. Suppose it has increased to 2.
 実施の形態1の電動機100において、第1のコア部10Aがステータコア10の軸方向長さの50%を占めていると仮定する。この場合、ステータコア10とシェル40との接触面積は、比較例における接触面積の半分になる。焼嵌め荷重を比較例と同じとすると、第2のコア部10Bには比較例の2倍の圧縮応力が作用する。 In the electric motor 100 of the first embodiment, it is assumed that the first core portion 10A occupies 50% of the axial length of the stator core 10. In this case, the contact area between the stator core 10 and the shell 40 is half the contact area in the comparative example. Assuming that the shrink fitting load is the same as that of the comparative example, a compressive stress twice that of the comparative example acts on the second core portion 10B.
 第1のコア部10Aはシェル40から圧縮応力を受けないため、第1のコア部10Aにおける単位体積当たりの鉄損は1と考えることができる。一方、第2のコア部10Bはシェル40から圧縮応力を受け、その圧縮応力の大きさは比較例の2倍である。 Since the first core portion 10A does not receive compressive stress from the shell 40, the iron loss per unit volume in the first core portion 10A can be considered to be 1. On the other hand, the second core portion 10B receives a compressive stress from the shell 40, and the magnitude of the compressive stress is twice that of the comparative example.
 第2のコア部10Bでは、圧縮応力が2倍になっても、鉄損の飽和のため、単位体積当たりの鉄損は2倍よりも小さくなる。例えば、第2のコア部10Bの単位体積当たりの鉄損が、比較例の1.2倍の2.4であると仮定すると、第1のコア部10Aと第2のコア部10Bとがそれぞれ50%を占めるステータコア10の単位体積当たりの鉄損の平均は、(2.4×0.5)+(1×0.5)=1.7となる。この値は、比較例のステータコア10の単位体積当たりの鉄損(=2)よりも小さい。このことから、実施の形態1の電動機100により、鉄損の低減効果が得られることが分かる。 In the second core portion 10B, even if the compressive stress is doubled, the iron loss per unit volume is smaller than twice due to the saturation of the iron loss. For example, assuming that the iron loss per unit volume of the second core portion 10B is 2.4, which is 1.2 times that of the comparative example, the first core portion 10A and the second core portion 10B are respectively. The average iron loss per unit volume of the stator core 10 that occupies 50% is (2.4 × 0.5) + (1 × 0.5) = 1.7. This value is smaller than the iron loss (= 2) per unit volume of the stator core 10 of the comparative example. From this, it can be seen that the motor 100 of the first embodiment has the effect of reducing iron loss.
 そのため、実施の形態1によれば、ステータコア10をシェル40に強固に固定しながら、鉄損の増加を抑制することができる。言い換えると、第2のコア部10Bへの応力集中に伴う鉄損の飽和を利用して、ステータコア10における鉄損を低減することができる。 Therefore, according to the first embodiment, it is possible to suppress an increase in iron loss while firmly fixing the stator core 10 to the shell 40. In other words, the iron loss in the stator core 10 can be reduced by utilizing the saturation of the iron loss due to the stress concentration on the second core portion 10B.
 次に、第1のコア部10Aの第1の鋼板9Aにおけるカシメ部15の数を、第2のコア部10Bの第2の鋼板9Bにおけるカシメ部15の数よりも少なくしたことによる作用について説明する。 Next, the effect of reducing the number of caulking portions 15 of the first core portion 10A in the first steel plate 9A to the number of caulking portions 15 in the second steel plate 9B of the second core portion 10B will be described. To do.
 ステータコア10において、シェル40からの圧縮応力が最も集中する領域は、シェル40に当接するステータコア10の外周とカシメ部15との間の領域である。カシメ部15の締結強度が高いほど、圧縮応力が集中しやすくなり、鉄損が増加しやすい。 In the stator core 10, the region where the compressive stress from the shell 40 is most concentrated is the region between the outer circumference of the stator core 10 that abuts on the shell 40 and the crimped portion 15. The higher the fastening strength of the caulked portion 15, the more easily the compressive stress is concentrated and the more iron loss is likely to increase.
 第1のコア部10Aは、シェル40に固定されないため、形状が変化しやすい。特に、第1の鋼板9Aの相互の位置ずれが生じやすい。これに対し、第2のコア部10Bは、シェル40に固定されるため、形状が変化しにくい。 Since the first core portion 10A is not fixed to the shell 40, its shape is likely to change. In particular, mutual misalignment of the first steel sheet 9A is likely to occur. On the other hand, since the second core portion 10B is fixed to the shell 40, its shape is unlikely to change.
 すなわち、第1のコア部10Aの第1の鋼板9Aは、高い締結強度で互いに固定する必要があるのに対し、第2のコア部10Bの第2の鋼板9Bは、比較的低い締結強度で固定してもよい。 That is, the first steel plate 9A of the first core portion 10A needs to be fixed to each other with a high fastening strength, whereas the second steel plate 9B of the second core portion 10B has a relatively low fastening strength. It may be fixed.
 そこで、実施の形態1では、第2のコア部10Bの第2の鋼板9Bの1枚当たりのカシメ部15の数を、第1のコア部10Aの第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少なくしている。 Therefore, in the first embodiment, the number of caulking portions 15 per sheet of the second steel plate 9B of the second core portion 10B is changed to the number of caulking portions 15 per sheet of the first steel plate 9A of the first core portion 10A. It is less than the number of parts 15.
 言い換えると、第1のコア部10Aの各第1の鋼板9Aでは、カシメ部15の数を多くすることにより締結強度を高めている。これに対し、第2のコア部10Bの各第2の鋼板9Bでは、カシメ部15の数を少なくすることにより、圧縮応力の集中を生じにくくし、鉄損の増加を抑えている。 In other words, in each of the first steel plates 9A of the first core portion 10A, the fastening strength is increased by increasing the number of caulking portions 15. On the other hand, in each of the second steel plates 9B of the second core portion 10B, by reducing the number of the crimped portions 15, it is difficult to concentrate the compressive stress and the increase in iron loss is suppressed.
 このように、ステータコア10が、シェル40に当接しない第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少ないため、鉄損の増加を抑制して電動機効率を向上し、且つ、ステータコア10をシェル40に強固に固定することができる。 As described above, the stator core 10 has a first core portion 10A that does not abut on the shell 40 and a second core portion 10B that abuts on the shell 40, and is a caulked portion per sheet of the second steel plate 9B. Since the number of 15 is smaller than the number of caulked portions 15 per sheet of the first steel plate 9A, an increase in iron loss is suppressed to improve motor efficiency, and the stator core 10 is firmly fixed to the shell 40. can do.
 また、第2の鋼板9Bのカシメ部15は、当該カシメ部15と同数の第1の鋼板9Aのカシメ部15と軸方向に重なり合うように配置されている。そのため、第1の鋼板9Aのカシメ部15と第2の鋼板9Bのカシメ部15との係合により、第1のコア部10Aと第2のコア部10Bとを固定することができる。 Further, the crimped portion 15 of the second steel plate 9B is arranged so as to overlap with the crimped portion 15 of the first steel plate 9A in the same number as the crimped portion 15 in the axial direction. Therefore, the first core portion 10A and the second core portion 10B can be fixed by engaging the caulking portion 15 of the first steel plate 9A and the caulking portion 15 of the second steel plate 9B.
 特に、第1の鋼板9Aのカシメ部15の軸方向に直交する面内における面積および形状が、第2の鋼板9Bのカシメ部15と同じであれば、第1のコア部10Aと第2のコア部10Bとをより強固に固定することができる。 In particular, if the area and shape of the crimped portion 15 of the first steel plate 9A in the plane orthogonal to the axial direction are the same as the crimped portion 15 of the second steel plate 9B, the first core portion 10A and the second core portion 10A and the second The core portion 10B can be fixed more firmly.
 また、ヨーク部11とティース12とを比較すると、ティース12にはロータ5からの磁束がより多く流れる。そのため、図7(B)に示すように、鉄損の低減効果を高めるためには、カシメ部15は、ティース12よりもヨーク部11に配置した方が望ましい。 Comparing the yoke portion 11 and the teeth 12, more magnetic flux from the rotor 5 flows through the teeth 12. Therefore, as shown in FIG. 7B, it is desirable that the caulking portion 15 is arranged in the yoke portion 11 rather than the teeth 12 in order to enhance the effect of reducing iron loss.
 ここでは、第2の鋼板9Bのカシメ部15の数が18(1つの分割コア8につき2つ)であり、第1の鋼板9Aのカシメ部15の数が27(1つの分割コア8につき3つ)であるが、これらの数に限定されるものではない。第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少なければよい。 Here, the number of caulked portions 15 of the second steel plate 9B is 18 (two per divided core 8), and the number of caulked portions 15 of the first steel plate 9A is 27 (3 per divided core 8). However, the number is not limited to these. The number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
 また、ここでは、第2のコア部10Bの全ての第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1の鋼板9Aの全ての第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少ない。しかしながら、第2のコア部10Bの少なくとも1枚の第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少なければよい。 Further, here, the number of caulking portions 15 per sheet of all the second steel plates 9B of the second core portion 10B is the number of caulking portions per sheet of all the first steel plates 9A of the first steel plate 9A. Less than the number of parts 15. However, the number of caulked portions 15 per at least one second steel plate 9B of the second core portion 10B is per one of at least one first steel plate 9A of the first core portion 10A. It may be less than the number of caulking portions 15.
 また、ステータコア10は、複数の分割コア8を周方向に連結したもの(図2)に限らず、環状に打ち抜かれた電磁鋼板を軸方向に積層したものであってもよい。 Further, the stator core 10 is not limited to one in which a plurality of divided cores 8 are connected in the circumferential direction (FIG. 2), and may be one in which annularly punched electromagnetic steel sheets are laminated in the axial direction.
<実施の形態の効果>
 以上説明したように、実施の形態1では、ステータコア10が、シェル40に間隔をあけて対向する第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、第2のコア部10Bの少なくとも1枚の第2の鋼板9Bの1枚当たりのカシメ部15の数が、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少ない。そのため、ステータコア10における鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。
<Effect of embodiment>
As described above, in the first embodiment, the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40. The number of caulking portions 15 per sheet of at least one second steel plate 9B of the core portion 10B of 2 is the number of caulking portions per sheet of at least one first steel plate 9A of the first core portion 10A. Less than the number of 15. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
 また、第2のコア部10Bが第1のコア部10Aの軸方向両側に位置するため、ステータコア10の軸方向両端がシェル40に嵌合する。これにより、ステータコア10をシェル40に安定した状態で固定することができる。 Further, since the second core portion 10B is located on both sides of the first core portion 10A in the axial direction, both ends of the stator core 10 in the axial direction are fitted to the shell 40. As a result, the stator core 10 can be fixed to the shell 40 in a stable state.
 また、第2の鋼板9Bの少なくとも1つのカシメ部15が、第1の鋼板9Aの少なくとも1つのカシメ部15と軸方向に重なり合う位置に配置されているため、これらのカシメ部15の係合により、第1のコア部10Aと第2のコア部10Bとを固定することができる。 Further, since at least one caulking portion 15 of the second steel plate 9B is arranged at a position where it overlaps with at least one caulking portion 15 of the first steel plate 9A in the axial direction, the caulking portions 15 are engaged with each other. , The first core portion 10A and the second core portion 10B can be fixed.
 また、第1の鋼板9Aのカシメ部15および第2の鋼板9Bのカシメ部15が、いずれも、軸方向に直交する面内で長方形形状を有するため、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 Further, since the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B both have a rectangular shape in a plane orthogonal to the axial direction, the first core portion 10A and the second core portion 10A and the second The core portion 10B can be firmly fixed.
第1の変形例.
 次に、実施の形態1の第1の変形例について説明する。図8(A)は、第1の変形例の第1のコア部10Aの第1の鋼板9Aを示す平面図である。図8(B)は、第1の変形例の第2のコア部10Bの第2の鋼板9Bを示す平面図である。
First modification.
Next, a first modification of the first embodiment will be described. FIG. 8A is a plan view showing a first steel plate 9A of the first core portion 10A of the first modification. FIG. 8B is a plan view showing a second steel plate 9B of the second core portion 10B of the first modification.
 実施の形態1の第1の鋼板9Aのカシメ部15(図7(A),(B))は、軸方向に直交する面内で長方形形状を有していたが、図8(A)に示すように、第1の変形例の第1の鋼板9Aのカシメ部16は、軸方向に直交する面内で円形状を有する。このようなカシメ部を、丸カシメ部とも称する。同様に、図8(B)に示すように、第1の変形例の第2の鋼板9Bのカシメ部16は、軸方向に直交する面内で円形状を有する。 The caulked portion 15 (FIGS. 7 (A) and 7 (B)) of the first steel plate 9A of the first embodiment had a rectangular shape in a plane orthogonal to the axial direction. As shown, the crimped portion 16 of the first steel plate 9A of the first modification has a circular shape in a plane orthogonal to the axial direction. Such a caulking portion is also referred to as a round caulking portion. Similarly, as shown in FIG. 8B, the crimped portion 16 of the second steel plate 9B of the first modification has a circular shape in a plane orthogonal to the axial direction.
 第1の変形例のステータコア10は、カシメ部16を除き、実施の形態1のステータコア10と同様に構成されている。 The stator core 10 of the first modification is configured in the same manner as the stator core 10 of the first embodiment except for the caulking portion 16.
 ここでは、第1の鋼板9Aの1枚当たりのカシメ部16の数が1つの分割コア8につき3つであり、第2の鋼板9Bの1枚当たりのカシメ部16の数が1つの分割コア8につき2つであるが、これらの数に限定されるものではない。第2の鋼板9Bの1枚当たりのカシメ部16の数が、第1の鋼板9Aの1枚当たりのカシメ部16の数よりも少なければよい。 Here, the number of crimped portions 16 per sheet of the first steel plate 9A is three for each divided core 8, and the number of caulked portions 16 per sheet of the second steel plate 9B is one divided core. The number is two per eight, but is not limited to these numbers. The number of crimped portions 16 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 16 per sheet of the first steel plate 9A.
 軸方向に直交する面内で円形状のカシメ部(丸カシメ部)16は、側面部の周長が、同一面積の長方形のカシメ部(Vカシメ部)15よりも長い。そのため、円形状のカシメ部16を用いることにより、長方形形状のカシメ部15を用いた場合よりも高い締結硬度が得られる。 The circular caulking portion (round caulking portion) 16 in the plane orthogonal to the axial direction has a longer peripheral length of the side surface portion than the rectangular caulking portion (V caulking portion) 15 having the same area. Therefore, by using the circular caulking portion 16, higher fastening hardness can be obtained as compared with the case where the rectangular caulking portion 15 is used.
 なお、図7(A),(B)に示した長方形のカシメ部15と、図8(A),(B)に示した円形のカシメ部16とを組み合わせて用いてもよい。 Note that the rectangular caulking portion 15 shown in FIGS. 7A and 7B and the circular caulking portion 16 shown in FIGS. 8A and 8B may be used in combination.
第2の変形例.
 次に、実施の形態1の第2の変形例について説明する。図9(A)は、第2の変形例の第1のコア部10Aの第1の鋼板9Aを示す平面図である。図9(B)は、第2の変形例の第2のコア部10Bの第2の鋼板9Bを示す平面図である。
Second modification.
Next, a second modification of the first embodiment will be described. FIG. 9A is a plan view showing a first steel plate 9A of the first core portion 10A of the second modification. FIG. 9B is a plan view showing a second steel plate 9B of the second core portion 10B of the second modification.
 図9(A)および(B)に示すように、第2の変形例では、第1のコア部10Aの第1の鋼板9Aはカシメ部15を有するが、第2のコア部10Bの第2の鋼板9Bはカシメ部15を有さない。 As shown in FIGS. 9A and 9B, in the second modification, the first steel plate 9A of the first core portion 10A has the caulking portion 15, but the second core portion 10B is the second. The steel plate 9B of the above does not have a caulking portion 15.
 上記の通り、第2のコア部10Bはシェル40に固定されるため、第2のコア部10Bの第2の鋼板9Bの締結強度は、比較的低くてもよい。そこで、第2の変形例では、第2の鋼板9Bにカシメ部15を設けず、例えば接着剤により第2の鋼板9Bを互いに固定している。 As described above, since the second core portion 10B is fixed to the shell 40, the fastening strength of the second steel plate 9B of the second core portion 10B may be relatively low. Therefore, in the second modification, the caulking portion 15 is not provided on the second steel plate 9B, and the second steel plates 9B are fixed to each other by, for example, an adhesive.
 図9(A)では、第1の鋼板9Aの1枚当たりのカシメ部15の数は、1つの分割コア8につき2つである。しかしながら、第2の鋼板9Bの1枚当たりのカシメ部15の数は、1つ以上であればよい。また、図9(A)には、軸方向に直交する面内で長方形形状のカシメ部15を示したが、図8(A)に示したように、軸方向に直交する面内で円形状のカシメ部16を用いてもよい。 In FIG. 9A, the number of caulked portions 15 per sheet of the first steel plate 9A is two for each divided core 8. However, the number of caulked portions 15 per sheet of the second steel plate 9B may be one or more. Further, FIG. 9A shows a rectangular caulking portion 15 in a plane orthogonal to the axial direction, but as shown in FIG. 8A, a circular shape is shown in a plane orthogonal to the axial direction. The caulking portion 16 of the above may be used.
 第2の変形例のステータコア10は、第1の鋼板9Aおよび第2の鋼板9Bにおけるカシメ部15の数を除き、実施の形態1のステータコア10と同様に構成されている。 The stator core 10 of the second modification is configured in the same manner as the stator core 10 of the first embodiment except for the number of caulked portions 15 in the first steel plate 9A and the second steel plate 9B.
 この第2の変形例では、第2の鋼板9Bがカシメ部を有さないため、鉄損の低減効果をさらに高めることができる。 In this second modification, since the second steel plate 9B does not have a crimped portion, the effect of reducing iron loss can be further enhanced.
実施の形態2.
 次に、実施の形態2について説明する。図10(A)は、実施の形態2のステータコア10における、第1のコア部10Aの第1の鋼板9Aを示す平面図である。図10(B)は、第2のコア部10Bの第2の鋼板9Bを示す平面図である。なお、図10(A)および(B)では、第1の鋼板9Aおよび第2の鋼板9Bの1つの分割コア8(図2)に含まれる部分を示している。後述する図11(A)および(B)も同様である。
Embodiment 2.
Next, the second embodiment will be described. FIG. 10A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the second embodiment. FIG. 10B is a plan view showing a second steel plate 9B of the second core portion 10B. Note that FIGS. 10A and 10B show a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A and the second steel plate 9B. The same applies to FIGS. 11A and 11B described later.
 図10(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。第1の鋼板9Aのカシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 10A, two caulking portions 15 are formed on one first steel plate 9A for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The crimped portion 15 of the first steel plate 9A has a rectangular shape in a plane orthogonal to the axial direction.
 図10(B)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。第2の鋼板9Bのカシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 10B, two caulking portions 15 are formed on one second steel plate 9B for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The crimped portion 15 of the second steel plate 9B has a rectangular shape in a plane orthogonal to the axial direction.
 第1の鋼板9Aの1枚当たりのカシメ部15の数は、第2の鋼板9Bの1枚当たりのカシメ部15の数と同数である。 The number of crimped portions 15 per sheet of the first steel plate 9A is the same as the number of caulked portions 15 per sheet of the second steel plate 9B.
 この実施の形態2では、第2の鋼板9Bの各カシメ部15の面積が、第1の鋼板9Aの各カシメ部15の面積よりも小さい。この点について、以下に説明する。 In the second embodiment, the area of each crimped portion 15 of the second steel plate 9B is smaller than the area of each crimped portion 15 of the first steel plate 9A. This point will be described below.
 図10(C)は、カシメ部15の面積を説明するための模式図である。電磁鋼板9(第1の鋼板9Aまたは第2の鋼板9B)において、カシメ用金具で力を加えた側の面を表面101とし、その反対側の面を裏面102とする。 FIG. 10C is a schematic diagram for explaining the area of the caulked portion 15. In the electromagnetic steel plate 9 (first steel plate 9A or second steel plate 9B), the surface on the side to which the force is applied by the caulking metal fitting is the front surface 101, and the surface on the opposite side is the back surface 102.
 カシメ部15は、表面101側では凹部であり、裏面102側では凸部である。カシメ部15の凹部は、軸方向に直交する平面である底面15aと、その周囲の側面15b,15cとを有する。底面15aは長方形である。側面15bは底面15aの短辺に沿って延在し、側面15cは底面15aの長辺に沿って延在する。 The crimped portion 15 is a concave portion on the front surface 101 side and a convex portion on the back surface 102 side. The recess of the caulking portion 15 has a bottom surface 15a which is a plane orthogonal to the axial direction, and side surfaces 15b and 15c around the bottom surface 15a. The bottom surface 15a is rectangular. The side surface 15b extends along the short side of the bottom surface 15a, and the side surface 15c extends along the long side of the bottom surface 15a.
 カシメ部15の底面15aの長辺の長さをLxとし、短辺の長さをLyとすると、底面15aの面積Sは、Lx×Lyで表される。ここでは、カシメ部15がヨーク部11に設けられているため、底面15aの長辺はティース中心線Mに直交する。なお、カシメ部15がティース12に設けられている場合は、底面15aの長辺はティース中心線Mと平行である。 Assuming that the length of the long side of the bottom surface 15a of the caulking portion 15 is Lx and the length of the short side is Ly, the area S of the bottom surface 15a is represented by Lx × Ly. Here, since the caulking portion 15 is provided on the yoke portion 11, the long side of the bottom surface 15a is orthogonal to the tooth center line M. When the caulking portion 15 is provided on the teeth 12, the long side of the bottom surface 15a is parallel to the teeth center line M.
 第1の鋼板9Aの1枚当たりのカシメ部15の総面積は、各カシメ部15の面積S1に、第1の鋼板9Aの1枚当たりのカシメ部15の数を乗算したものである。同様に、第2の鋼板9Bの1枚当たりのカシメ部15の総面積は、各カシメ部15の面積S2に、第2の鋼板9Bの1枚当たりのカシメ部15の数を乗算したものである。 The total area of the caulked portions 15 per sheet of the first steel plate 9A is the area S1 of each caulked portion 15 multiplied by the number of caulked portions 15 per sheet of the first steel plate 9A. Similarly, the total area of the caulked portions 15 per sheet of the second steel plate 9B is obtained by multiplying the area S2 of each caulked portion 15 by the number of caulked portions 15 per sheet of the second steel plate 9B. is there.
 第2の鋼板9Bの各カシメ部15の面積S2が、第1の鋼板9Aの各カシメ部15の面積S1よりも小さく、第1の鋼板9Aと第2の鋼板9Bとで1枚当たりのカシメ部15の数が同数であるため、第2の鋼板9Bの1枚当たりのカシメ部15の総面積は、第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも小さくなる。 The area S2 of each crimped portion 15 of the second steel plate 9B is smaller than the area S1 of each crimped portion 15 of the first steel plate 9A, and the first steel plate 9A and the second steel plate 9B are crimped per sheet. Since the number of portions 15 is the same, the total area of the crimped portions 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portions 15 per sheet of the first steel plate 9A.
 カシメ部15の総面積が大きいほど、カシメ部15の側面15b,15cで鋼板同士が接触する面積が増加し、締結強度が高くなる。実施の形態1でも説明したように、シェル40に当接しない第1のコア部10Aでは、第1の鋼板9Aの締結強度を高める必要があるが、シェル40に固定される第2のコア部10Bでは、第2の鋼板9Bの締結強度は比較的小さくてよい。 The larger the total area of the crimped portion 15, the larger the area where the steel plates come into contact with each other on the side surfaces 15b and 15c of the crimped portion 15, and the higher the fastening strength. As described in the first embodiment, in the first core portion 10A that does not abut on the shell 40, it is necessary to increase the fastening strength of the first steel plate 9A, but the second core portion fixed to the shell 40. At 10B, the fastening strength of the second steel plate 9B may be relatively small.
 この実施の形態2では、第2の鋼板9Bの1枚当たりのカシメ部15の総面積が、第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも小さいため、第2のコア部10Bでの鉄損を低減し、且つ第1のコア部10Aの第1の鋼板9Aを強固に固定することができる。 In the second embodiment, since the total area of the crimped portion 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 15 per sheet of the first steel plate 9A, the second core It is possible to reduce the iron loss in the portion 10B and firmly fix the first steel plate 9A of the first core portion 10A.
 ここでは、第2のコア部10Bの全ての第2の鋼板9Bの1枚当たりのカシメ部15の総面積が、第1のコア部10Aの第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも小さい。しかしながら、第2のコア部10Bの少なくとも1枚の第2の鋼板9Bの総面積が、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも少なければよい。 Here, the total area of the caulked portions 15 per sheet of all the second steel plates 9B of the second core portion 10B is the caulked portion 15 per sheet of the first steel plate 9A of the first core portion 10A. Is smaller than the total area of. However, the total area of at least one second steel plate 9B of the second core portion 10B is the total area of the caulked portion 15 per one of at least one first steel plate 9A of the first core portion 10A. It should be less than.
 また、ここでは、第1の鋼板9Aの1枚当たりのカシメ部15の数と、第2の鋼板9Bの1枚当たりのカシメ部15の数とを同数としたが、必ずしも同数である必要はない。第2の鋼板9Bの1枚当たりのカシメ部15の総面積が第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも小さければ、カシメ部の数は異なってもよい。例えば、実施の形態1と同様に、第2の鋼板9Bの1枚当たりのカシメ部15の数を、第1の鋼板9Aの1枚当たりのカシメ部15の数よりも少なくしてもよい。 Further, here, the number of caulked portions 15 per sheet of the first steel plate 9A and the number of caulked portions 15 per sheet of the second steel plate 9B are set to be the same, but the numbers do not necessarily have to be the same. Absent. The number of crimped portions may be different as long as the total area of the crimped portions 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portions 15 per sheet of the first steel plate 9A. For example, as in the first embodiment, the number of crimped portions 15 per sheet of the second steel plate 9B may be smaller than the number of crimped portions 15 per sheet of the first steel plate 9A.
 また、図10(A)および(B)では、カシメ部15がヨーク部11に設けられているが、ティース12に設けてもよい。 Further, in FIGS. 10A and 10B, the caulking portion 15 is provided on the yoke portion 11, but the teeth 12 may be provided.
 第1の鋼板9Aのカシメ部15と、第2の鋼板9Bのカシメ部15とは、軸方向に重なり合う位置に配置されていることが望ましい。これにより、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 It is desirable that the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
 以上の点を除き、実施の形態2の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the above points, the motor of the second embodiment is configured in the same manner as the motor 100 of the first embodiment.
 以上説明したように、実施の形態2では、ステータコア10が、シェル40に間隔をあけて対向する第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、少なくとも1枚の第2の鋼板9Bの1枚当たりのカシメ部15の総面積が、少なくとも1枚の第1の鋼板9Aの1枚当たりのカシメ部15の総面積よりも小さい。そのため、ステータコア10における鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。 As described above, in the second embodiment, the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least. The total area of the crimped portion 15 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 15 per sheet of the first steel plate 9A at least. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
変形例.
 次に、実施の形態2の変形例について説明する。図11(A)は、変形例のステータコア10における、第1のコア部10Aの第1の鋼板9Aを示す平面図である。図11(B)は、第2のコア部10Bの第2の鋼板9Bを示す平面図である。
Modification example.
Next, a modified example of the second embodiment will be described. FIG. 11A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the modified example. FIG. 11B is a plan view showing a second steel plate 9B of the second core portion 10B.
 図11(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、2つのカシメ部16が形成されている。当該2つのカシメ部16は、ヨーク部11に形成されている。第1の鋼板9Aのカシメ部16は、軸方向に直交する面内で円形状を有する。 As shown in FIG. 11A, two caulking portions 16 are formed on one first steel plate 9A for each divided core 8. The two caulking portions 16 are formed in the yoke portion 11. The crimped portion 16 of the first steel plate 9A has a circular shape in a plane orthogonal to the axial direction.
 図11(B)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部16が形成されている。当該2つのカシメ部16は、ヨーク部11に形成されている。第2の鋼板9Bのカシメ部16は、軸方向に直交する面内で円形状を有する。 As shown in FIG. 11B, two caulking portions 16 are formed on one second steel plate 9B for each divided core 8. The two caulking portions 16 are formed in the yoke portion 11. The crimped portion 16 of the second steel plate 9B has a circular shape in a plane orthogonal to the axial direction.
 図11(C)は、カシメ部16の面積を説明するための模式図である。カシメ部16は、鋼板9の表面101側では凹部であり、裏面102側では凸部である。カシメ部16の凹部は、軸方向に直交する平面である底面16aと、その周囲の側面16bとを有する。底面16aは円形であり、側面16bは円周状に延在している。 FIG. 11C is a schematic diagram for explaining the area of the caulked portion 16. The caulked portion 16 is a concave portion on the front surface 101 side of the steel plate 9, and a convex portion on the back surface 102 side. The recess of the caulking portion 16 has a bottom surface 16a which is a plane orthogonal to the axial direction and a side surface 16b around the bottom surface 16a. The bottom surface 16a is circular, and the side surface 16b extends in a circumferential shape.
 カシメ部16の底面16aの直径をDとすると、底面16aの面積Sは、(D/2)×πで表される。 Assuming that the diameter of the bottom surface 16a of the crimped portion 16 is D, the area S of the bottom surface 16a is represented by (D / 2) 2 × π.
 第2の鋼板9Bの各カシメ部16の面積S2は、第1の鋼板9Aの各カシメ部16の面積S1よりも小さい。また、第1の鋼板9Aの1枚当たりのカシメ部16の数と、第2の鋼板9Bの1枚当たりのカシメ部16の数とは、同数である。そのため、第2の鋼板9Bの1枚当たりのカシメ部16の総面積は、第1の鋼板9Aの1枚当たりのカシメ部16の総面積よりも小さい。 The area S2 of each crimped portion 16 of the second steel plate 9B is smaller than the area S1 of each crimped portion 16 of the first steel plate 9A. Further, the number of caulked portions 16 per sheet of the first steel plate 9A and the number of caulked portions 16 per sheet of the second steel plate 9B are the same. Therefore, the total area of the crimped portion 16 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 16 per sheet of the first steel plate 9A.
 そのため、第2のコア部10Bでの鉄損を低減し、且つ第1のコア部10Aの第1の鋼板9Aを強固に固定することができる。軸方向に直交する面内で円形状を有するカシメ部16は、側面部の周長が、同一面積の長方形のカシメ部15よりも長いため、さらに高い締結硬度が得られる。 Therefore, the iron loss in the second core portion 10B can be reduced, and the first steel plate 9A in the first core portion 10A can be firmly fixed. Since the crimped portion 16 having a circular shape in the plane orthogonal to the axial direction has a longer peripheral length of the side surface portion than the rectangular crimped portion 15 having the same area, a higher fastening hardness can be obtained.
 なお、第2の鋼板9Bの1枚当たりのカシメ部16の総面積が第1の鋼板9Aの1枚当たりのカシメ部16の総面積よりも小さければ、各鋼板9A,9Bの1枚当たりのカシメ部16の数は任意である。 If the total area of the crimped portion 16 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 16 per sheet of the first steel plate 9A, then each of the steel plates 9A and 9B The number of caulking portions 16 is arbitrary.
 第1の鋼板9Aのカシメ部16と、第2の鋼板9Bのカシメ部16とは、軸方向に重なり合う位置に配置されていることが望ましい。これにより、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 It is desirable that the crimped portion 16 of the first steel plate 9A and the crimped portion 16 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
 この変形例のステータコア10は、カシメ部16を除き、実施の形態2のステータコア10と同様に構成されている。 The stator core 10 of this modified example has the same configuration as the stator core 10 of the second embodiment except for the caulking portion 16.
 この変形例においても、第2の鋼板9Bの1枚当たりのカシメ部16の総面積が、第1の鋼板9Aの1枚当たりのカシメ部16の総面積よりも小さいため、鉄損の増加を抑制し、ステータコア10をシェル40に強固に固定することができる。 Also in this modification, the total area of the crimped portion 16 per sheet of the second steel plate 9B is smaller than the total area of the crimped portion 16 per sheet of the first steel plate 9A, so that the iron loss increases. It can be suppressed and the stator core 10 can be firmly fixed to the shell 40.
 また、図10(A),(B)に示した長方形のカシメ部15と、図11(A),(B)に示した円形のカシメ部16とを組み合わせて用いてもよい。 Further, the rectangular caulking portion 15 shown in FIGS. 10A and 10B and the circular caulking portion 16 shown in FIGS. 11A and 11B may be used in combination.
実施の形態3.
 次に、実施の形態3について説明する。図12(A)は、実施の形態3のステータコア10における、第1のコア部10Aの第1の鋼板9Aを示す平面図である。なお、図12(A)は、第1の鋼板9Aの1つの分割コア8(図2)に含まれる部分を示している。
Embodiment 3.
Next, the third embodiment will be described. FIG. 12A is a plan view showing the first steel plate 9A of the first core portion 10A in the stator core 10 of the third embodiment. Note that FIG. 12A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
 図12(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 12A, two caulking portions 15 are formed on one first steel plate 9A for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 図12(B)は、図12(A)に示した線分12B-12Bにおける断面図であり、カシメ部15の長辺に沿った面における断面図である。図12(C)は、図12(A)に示した線分12C-12Cにおける断面図であり、カシメ部15の短辺に沿った面における断面図である。 FIG. 12B is a cross-sectional view of the line segment 12B-12B shown in FIG. 12A, and is a cross-sectional view of the surface along the long side of the caulked portion 15. 12 (C) is a cross-sectional view of the line segment 12C-12C shown in FIG. 12 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
 図12(B)および(C)に示すように、カシメ部15は、第1の鋼板9Aの裏面102から突出している。カシメ部15の最も突出した突出面15dは、軸方向に直交する平面である。第1の鋼板9Aの裏面102からカシメ部15の突出面15dまでの距離を、深さD1と称する。 As shown in FIGS. 12B and 12C, the caulked portion 15 protrudes from the back surface 102 of the first steel plate 9A. The most protruding protruding surface 15d of the caulked portion 15 is a plane orthogonal to the axial direction. The distance from the back surface 102 of the first steel plate 9A to the protruding surface 15d of the caulked portion 15 is referred to as a depth D1.
 図13(A)は、実施の形態3のステータコア10における、第2のコア部10Bの第2の鋼板9Bを示す平面図である。なお、図13(A)は、第2の鋼板9Bの1つの分割コア8(図2)に含まれる部分を示している。 FIG. 13A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the third embodiment. Note that FIG. 13A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
 図13(A)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 13A, two caulking portions 15 are formed on one second steel plate 9B for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 図13(B)は、図13(A)に示した線分13B-13Bにおける断面図であり、カシメ部15の長辺に沿った面における断面図である。図13(C)は、図13(A)に示した線分13C-13Cにおける断面図であり、カシメ部15の短辺に沿った面における断面図である。 FIG. 13 (B) is a cross-sectional view of the line segment 13B-13B shown in FIG. 13 (A), and is a cross-sectional view of the surface along the long side of the caulked portion 15. 13 (C) is a cross-sectional view of the line segment 13C-13C shown in FIG. 13 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
 図13(B)および(C)に示すように、カシメ部15は、第2の鋼板9Bの裏面102から突出している。カシメ部15の最も突出した突出面15dは、軸方向に直交する平面である。第2の鋼板9Bの裏面102からカシメ部15の突出面15dまでの距離を、深さD2と称する。 As shown in FIGS. 13B and 13C, the caulked portion 15 protrudes from the back surface 102 of the second steel plate 9B. The most protruding protruding surface 15d of the caulked portion 15 is a plane orthogonal to the axial direction. The distance from the back surface 102 of the second steel plate 9B to the protruding surface 15d of the caulked portion 15 is referred to as a depth D2.
 第2の鋼板9Bのカシメ部15の深さD2は、第1の鋼板9Aのカシメ部15の深さD1よりも浅い。 The depth D2 of the crimped portion 15 of the second steel plate 9B is shallower than the depth D1 of the crimped portion 15 of the first steel plate 9A.
 カシメ部15の深さ(カシメ深さとも称する)が大きいほど、カシメ部15の側面15b,15cで鋼板同士が接触する面積が増加し、締結強度が高くなる。実施の形態1でも説明したように、シェル40に当接しない第1のコア部10Aでは、第1の鋼板9Aの締結強度を高める必要があるが、シェル40に固定される第2のコア部10Bでは、第2の鋼板9Bの締結強度は比較的小さくてよい。 The greater the depth of the caulking portion 15 (also referred to as the caulking depth), the greater the area in which the steel plates come into contact with each other on the side surfaces 15b and 15c of the caulking portion 15, and the higher the fastening strength. As described in the first embodiment, in the first core portion 10A that does not abut on the shell 40, it is necessary to increase the fastening strength of the first steel plate 9A, but the second core portion fixed to the shell 40. At 10B, the fastening strength of the second steel plate 9B may be relatively small.
 この実施の形態3では、第2の鋼板9Bのカシメ部15の深さD2が、第1の鋼板9Aのカシメ部15の深さD1よりも浅いため(D2<D1)、第2のコア部10Bでの鉄損を低減し、且つ第1のコア部10Aの第1の鋼板9Aを強固に固定することができる。 In the third embodiment, since the depth D2 of the crimped portion 15 of the second steel plate 9B is shallower than the depth D1 of the crimped portion 15 of the first steel plate 9A (D2 <D1), the second core portion The iron loss at 10B can be reduced, and the first steel plate 9A of the first core portion 10A can be firmly fixed.
 ここでは、第2のコア部10Bの全ての第2の鋼板9Bのカシメ部15の深さD2が、第1のコア部10Aの全ての第1の鋼板9Aのカシメ部15のD1よりも浅い。しかしながら、第2のコア部10Bの少なくとも1枚の第2の鋼板9Bのカシメ部15の深さD2が、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aの深さD1よりも浅ければよい。 Here, the depth D2 of the crimped portions 15 of all the second steel plates 9B of the second core portion 10B is shallower than the D1 of the crimped portions 15 of all the first steel plates 9A of the first core portion 10A. .. However, the depth D2 of the crimped portion 15 of at least one second steel plate 9B of the second core portion 10B is larger than the depth D1 of the at least one first steel plate 9A of the first core portion 10A. It should be shallow.
 また、第1の鋼板9Aのカシメ部15および第2の鋼板9Bのカシメ部15は、軸方向に直交する面内で長方形形状を有しているが、図11(A)~(C)に示したカシメ部16のように、円形状を有していてもよい。 Further, the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B have a rectangular shape in a plane orthogonal to the axial direction, as shown in FIGS. 11A to 11C. Like the crimped portion 16 shown, it may have a circular shape.
 ここでは、第1の鋼板9Aの1枚当たりのカシメ部15の数と、第2の鋼板9Bの1枚当たりのカシメ部15の数とは互いに同数であるが、互いに異なっていてもよい。また、図12(A)および図13(A)では、カシメ部15がヨーク部11に設けられているが、ティース12に設けてもよい。 Here, the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 12A and 13A, the caulking portion 15 is provided on the yoke portion 11, but it may be provided on the teeth 12.
 第1の鋼板9Aのカシメ部15と、第2の鋼板9Bのカシメ部15とは、軸方向に重なり合う位置に配置されていることが望ましい。また、第1の鋼板9Aの各カシメ部15の面積は、第2の鋼板9Bの各カシメ部15の面積と同じであることが望ましい。これにより、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 It is desirable that the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
 以上の点を除き、実施の形態3の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the above points, the motor of the third embodiment is configured in the same manner as the motor 100 of the first embodiment.
 以上説明したように、実施の形態3では、ステータコア10が、シェル40に間隔をあけて対向する第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、少なくとも1枚の第2の鋼板9Bのカシメ部15の深さD2が、少なくとも1枚の第1の鋼板9Aのカシメ部15の深さD1よりも浅い。そのため、ステータコア10における鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。 As described above, in the third embodiment, the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least. The depth D2 of the crimped portion 15 of one second steel plate 9B is shallower than the depth D1 of the crimped portion 15 of at least one first steel plate 9A. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
実施の形態4.
 次に、実施の形態4について説明する。図14(A)は、実施の形態4のステータコア10における、第1のコア部10Aの第1の鋼板9Aを示す平面図である。なお、図14(A)は、第1の鋼板9Aの1つの分割コア8(図2)に含まれる部分を示している。
Embodiment 4.
Next, the fourth embodiment will be described. FIG. 14A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the fourth embodiment. Note that FIG. 14A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
 図14(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 14A, two caulking portions 15 are formed on one first steel plate 9A for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 図14(B)は、図14(A)に示した線分14B-14Bにおける断面図であり、カシメ部15の長辺に沿った面における断面図である。図14(C)は、図14(A)に示した線分14C-14Cにおける断面図であり、カシメ部15の短辺に沿った面における断面図である。 FIG. 14 (B) is a cross-sectional view of the line segment 14B-14B shown in FIG. 14 (A), and is a cross-sectional view of the surface along the long side of the caulked portion 15. 14 (C) is a cross-sectional view of the line segment 14C-14C shown in FIG. 14 (A), and is a cross-sectional view of the surface of the caulked portion 15 along the short side.
 図14(B)および(C)に示すように、第1の鋼板9Aのカシメ部15は、長方形の底面15aと、底面15aの短辺に沿って延在する側面15bと、底面15aの長辺に沿って延在する側面15cとを有する。図14(B)および(C)において、軸方向を直線Nで示す。 As shown in FIGS. 14B and 14C, the caulked portion 15 of the first steel plate 9A has a rectangular bottom surface 15a, a side surface 15b extending along the short side of the bottom surface 15a, and the length of the bottom surface 15a. It has a side surface 15c extending along the side. In FIGS. 14B and 14C, the axial direction is indicated by a straight line N.
 第1の鋼板9Aのカシメ部15の長辺方向に対向する2つの側面15bのなす角度(すなわち開き角度)は、30~150度である。カシメ部15の短辺方向に対向する2つの側面15cのなす角度(すなわち開き角度)も、30~150度である。但し、2つの側面15b(図14(B))のなす角度は、2つの側面15cのなす角度よりも大きい。 The angle (that is, the opening angle) formed by the two side surfaces 15b facing the long side direction of the crimped portion 15 of the first steel plate 9A is 30 to 150 degrees. The angle (that is, opening angle) formed by the two side surfaces 15c facing each other in the short side direction of the caulked portion 15 is also 30 to 150 degrees. However, the angle formed by the two side surfaces 15b (FIG. 14B) is larger than the angle formed by the two side surfaces 15c.
 側面15bと軸方向とのなす角度R1(開き角度の1/2)は、15~75度である。側面15cと軸方向とのなす角度r1も、15~75度である。但し、側面15bと軸方向とのなす角度R1は、側面15cと軸方向とのなす角度r1よりも大きい。 The angle R1 (1/2 of the opening angle) formed by the side surface 15b and the axial direction is 15 to 75 degrees. The angle r1 formed by the side surface 15c and the axial direction is also 15 to 75 degrees. However, the angle R1 formed by the side surface 15b and the axial direction is larger than the angle r1 formed by the side surface 15c and the axial direction.
 カシメ部15の側面が軸方向と平行に近づくほど、鋼板の締結強度は高くなる。逆に、カシメ部15の側面と軸方向とのなす角度が大きいほど、鋼板間の摩擦力の積層方向成分が小さくなるため、鋼板の締結強度は低くなる。 The closer the side surface of the crimped portion 15 is parallel to the axial direction, the higher the fastening strength of the steel plate. On the contrary, the larger the angle formed by the side surface of the crimped portion 15 and the axial direction, the smaller the stacking direction component of the frictional force between the steel plates, and therefore the lower the fastening strength of the steel plates.
 第1の鋼板9Aのカシメ部15では、側面15bと軸方向とのなす角度R1が、側面15cと軸方向とのなす角度r1よりも大きいため、長辺方向の断面(図14(B))における締結強度が、短辺方向の断面(図14(C))における締結強度よりも低い。 In the crimped portion 15 of the first steel plate 9A, the angle R1 formed by the side surface 15b and the axial direction is larger than the angle r1 formed by the side surface 15c and the axial direction, so that the cross section in the long side direction (FIG. 14 (B)). The fastening strength in the above is lower than the fastening strength in the cross section in the short side direction (FIG. 14 (C)).
 図15(A)は、実施の形態4のステータコア10における、第2のコア部10Bの第2の鋼板9Bを示す平面図である。なお、図15(A)は、第2の鋼板9Bの1つの分割コア8(図2)に含まれる部分を示している。 FIG. 15A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the fourth embodiment. Note that FIG. 15A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
 図15(A)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 15A, two caulking portions 15 are formed on one second steel plate 9B for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 図15(B)は、図15(A)に示した線分15B-15Bにおける断面図であり、カシメ部15の長辺に沿った面における断面図である。図15(C)は、図15(A)に示した線分15C-15Cにおける断面図であり、カシメ部15の短辺に沿った面における断面図である。 FIG. 15B is a cross-sectional view of the line segment 15B-15B shown in FIG. 15A, and is a cross-sectional view of the surface along the long side of the caulked portion 15. 15 (C) is a cross-sectional view of the line segment 15C-15C shown in FIG. 15 (A), and is a cross-sectional view of the plane along the short side of the caulked portion 15.
 図15(B)および(C)に示すように、第2の鋼板9Bのカシメ部15は、長方形の底面15aと、底面15aの短辺に沿って延在する側面15bと、底面15aの長辺に沿って延在する側面15cとを有する。 As shown in FIGS. 15B and 15C, the caulked portion 15 of the second steel plate 9B has a rectangular bottom surface 15a, a side surface 15b extending along the short side of the bottom surface 15a, and the length of the bottom surface 15a. It has a side surface 15c extending along the side.
 第2の鋼板9Bのカシメ部15の長辺方向に対向する2つの側面15bのなす角度(すなわち開き角度)は、30~150度である。カシメ部15の短辺方向に対向する2つの側面15cのなす角度も、30~150度である。但し、2つの側面15bのなす角度は、2つの側面15cのなす角度よりも大きい。 The angle (that is, the opening angle) formed by the two side surfaces 15b facing the long side direction of the crimped portion 15 of the second steel plate 9B is 30 to 150 degrees. The angle formed by the two side surfaces 15c facing each other in the short side direction of the crimped portion 15 is also 30 to 150 degrees. However, the angle formed by the two side surfaces 15b is larger than the angle formed by the two side surfaces 15c.
 側面15bと軸方向とのなす角度R2(開き角度の1/2)は、15~75度である。側面15cと軸方向とのなす角度r2も、15~75度である。但し、側面15bと軸方向とのなす角度R2は、側面15cと軸方向とのなす角度r2よりも大きい。そのため、長辺方向の断面(図15(B))における締結強度が、短辺方向の断面(図15(C))における締結強度よりも低い。 The angle R2 (1/2 of the opening angle) formed by the side surface 15b and the axial direction is 15 to 75 degrees. The angle r2 formed by the side surface 15c and the axial direction is also 15 to 75 degrees. However, the angle R2 formed by the side surface 15b and the axial direction is larger than the angle r2 formed by the side surface 15c and the axial direction. Therefore, the fastening strength in the cross section in the long side direction (FIG. 15 (B)) is lower than the fastening strength in the cross section in the short side direction (FIG. 15 (C)).
 この実施の形態4では、第2の鋼板9Bのカシメ部15の側面15b,15cと軸方向とのなす最大角度(すなわち角度R2)は、第1の鋼板9Aのカシメ部15の側面15b,15cと軸方向とのなす最大角度(すなわち角度R1)よりも大きい。 In the fourth embodiment, the maximum angle (that is, the angle R2) formed by the side surfaces 15b and 15c of the crimped portion 15 of the second steel plate 9B and the axial direction is the side surfaces 15b and 15c of the crimped portion 15 of the first steel plate 9A. It is larger than the maximum angle (that is, the angle R1) formed by the axial direction.
 そのため、第2の鋼板9Bのカシメ部15の長辺方向における締結強度が、第1の鋼板9Aの長辺方向の締結強度よりも低くなる。実施の形態1でも説明したように、シェル40に当接しない第1のコア部10Aでは、第1の鋼板9Aの締結強度を高める必要があるが、シェル40に固定される第2のコア部10Bでは、第2の鋼板9Bの締結強度は比較的小さくてよい。 Therefore, the fastening strength of the crimped portion 15 of the second steel plate 9B in the long side direction is lower than the fastening strength of the first steel plate 9A in the long side direction. As described in the first embodiment, in the first core portion 10A that does not abut on the shell 40, it is necessary to increase the fastening strength of the first steel plate 9A, but the second core portion fixed to the shell 40. At 10B, the fastening strength of the second steel plate 9B may be relatively small.
 第2の鋼板9Bのカシメ部15の側面と軸方向とのなす最大角度(角度R2)が、第1の鋼板9Aのカシメ部15の側面と軸方向とのなす最大角度(角度R1)よりも大きいため、第2のコア部10Bでの鉄損を低減し、且つ第1のコア部10Aの第1の鋼板9Aを強固に固定することができる。 The maximum angle (angle R2) formed by the side surface of the crimped portion 15 of the second steel plate 9B and the axial direction is larger than the maximum angle (angle R1) formed by the side surface of the crimped portion 15 of the first steel plate 9A and the axial direction. Since it is large, the iron loss in the second core portion 10B can be reduced, and the first steel plate 9A in the first core portion 10A can be firmly fixed.
 なお、第2の鋼板9Bでは、特にカシメ部15の長手方向における締結強度が低いため、当該方向の第2の鋼板9Bの位置ずれの抑制が課題となる。カシメ部15の長手方向をステータコア10の周方向と一致させれば、第2の鋼板9Bにはカシメ部15の長手方向に圧縮応力が加わりにくいため、第2の鋼板9Bの位置ずれを防止することができる。 Since the fastening strength of the second steel plate 9B is particularly low in the longitudinal direction of the crimped portion 15, it is an issue to suppress the misalignment of the second steel plate 9B in that direction. If the longitudinal direction of the crimped portion 15 coincides with the circumferential direction of the stator core 10, compressive stress is unlikely to be applied to the second steel plate 9B in the longitudinal direction of the crimped portion 15, so that the misalignment of the second steel plate 9B is prevented. be able to.
 ここでは、第2のコア部10Bの全ての第2の鋼板9Bのカシメ部15の側面15b,15cと軸方向とのなす最大角度が、第1のコア部10Aの全ての第1の鋼板9Aのカシメ部15の側面15b,15cと軸方向とのなす最大角度よりも大きい。しかしながら、2のコア部10Bの少なくとも1枚の第2の鋼板9Bのカシメ部15の側面15b,15cと軸方向とのなす最大角度が、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aのカシメ部15の側面15b,15cと軸方向とのなす最大角度よりも大きければよい。 Here, the maximum angle formed by the side surfaces 15b, 15c of the crimped portion 15 of all the second steel plates 9B of the second core portion 10B and the axial direction is the maximum angle formed by all the first steel plates 9A of the first core portion 10A. It is larger than the maximum angle formed by the side surfaces 15b and 15c of the caulked portion 15 and the axial direction. However, the maximum angle formed by the side surfaces 15b, 15c of the crimped portion 15 of the second steel plate 9B of the second core portion 10B and the axial direction is the first one of at least one of the first core portions 10A. It may be larger than the maximum angle formed by the side surfaces 15b and 15c of the crimped portion 15 of the steel plate 9A and the axial direction.
 第1の鋼板9Aのカシメ部15および第2の鋼板9Bのカシメ部15は、いずれも、軸方向に直交する面内で長方形形状を有しているが、図11(A)~(C)に示したカシメ部16のように、円形状を有していてもよい。 Both the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B have a rectangular shape in a plane orthogonal to the axial direction, but FIGS. 11A to 11C have a rectangular shape. It may have a circular shape like the crimped portion 16 shown in 1.
 ここでは、第1の鋼板9Aの1枚当たりのカシメ部15の数と、第2の鋼板9Bの1枚当たりのカシメ部15の数とは互いに同数であるが、互いに異なっていてもよい。また、図14(A)および図15(A)では、カシメ部15がヨーク部11に設けられているが、ティース12に設けてもよい。 Here, the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 14 (A) and 15 (A), the caulking portion 15 is provided on the yoke portion 11, but the teeth 12 may be provided.
 第1の鋼板9Aのカシメ部15と、第2の鋼板9Bのカシメ部15とは、軸方向に重なり合う位置に配置されていることが望ましい。また、第1の鋼板9Aの各カシメ部15の面積は、第2の鋼板9Bの各カシメ部15の面積と同じであることが望ましい。これにより、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 It is desirable that the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
 以上の点を除き、実施の形態4の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the above points, the motor of the fourth embodiment is configured in the same manner as the motor 100 of the first embodiment.
 以上説明したように、実施の形態4では、ステータコア10が、シェル40に間隔をあけて対向する第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、少なくとも1枚の第2の鋼板9Bのカシメ部15の側面と軸方向とのなす最大角度(角度R2)が、少なくとも1枚の第1の鋼板9Aのカシメ部15の側面と軸方向とのなす最大角度(角度R1)よりも大きい。そのため、ステータコア10における鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。 As described above, in the fourth embodiment, the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least. The maximum angle (angle R2) formed by the side surface of the crimped portion 15 of the second steel plate 9B and the axial direction is the maximum formed by the side surface of the crimped portion 15 of the first steel plate 9A and the axial direction. It is larger than the angle (angle R1). Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
実施の形態5.
 次に、実施の形態5について説明する。図16(A)は、実施の形態5のステータコア10における、第1のコア部10Aの第1の鋼板9Aを示す平面図である。なお、図16(A)は、第1の鋼板9Aの1つの分割コア8(図2)に含まれる部分を示している。
Embodiment 5.
Next, the fifth embodiment will be described. FIG. 16A is a plan view showing a first steel plate 9A of the first core portion 10A in the stator core 10 of the fifth embodiment. Note that FIG. 16A shows a portion included in one divided core 8 (FIG. 2) of the first steel plate 9A.
 図16(A)に示すように、1枚の第1の鋼板9Aには、1つの分割コア8につき、2つのカシメ部16が形成されている。当該2つのカシメ部16は、ヨーク部11に形成されている。カシメ部16は、軸方向に直交する面内で円形状を有する。 As shown in FIG. 16A, two caulking portions 16 are formed on one first steel plate 9A for each divided core 8. The two caulking portions 16 are formed in the yoke portion 11. The caulking portion 16 has a circular shape in a plane orthogonal to the axial direction.
 図16(B)は、図16(A)に示した線分16B-16Bにおける断面図である。図16(C)は、図16(A)に示した線分16C-16Cにおける断面図である。円形のカシメ部16の場合には、側面16bの開き角は0~30度であり、側面16bと軸方向とのなす角度R1は0~15度である。 FIG. 16B is a cross-sectional view of the line segment 16B-16B shown in FIG. 16A. 16 (C) is a cross-sectional view of the line segment 16C-16C shown in FIG. 16 (A). In the case of the circular caulking portion 16, the opening angle of the side surface 16b is 0 to 30 degrees, and the angle R1 formed by the side surface 16b and the axial direction is 0 to 15 degrees.
 図17(A)は、実施の形態5のステータコア10における、第2のコア部10Bの第2の鋼板9Bを示す平面図である。なお、図15(A)は、第2の鋼板9Bの1つの分割コア8(図2)に含まれる部分を示している。 FIG. 17A is a plan view showing a second steel plate 9B of the second core portion 10B in the stator core 10 of the fifth embodiment. Note that FIG. 15A shows a portion included in one divided core 8 (FIG. 2) of the second steel plate 9B.
 図17(A)に示すように、1枚の第2の鋼板9Bには、1つの分割コア8につき、2つのカシメ部15が形成されている。当該2つのカシメ部15は、ヨーク部11に形成されている。カシメ部15は、軸方向に直交する面内で長方形形状を有する。 As shown in FIG. 17A, two caulking portions 15 are formed on one second steel plate 9B for each divided core 8. The two caulking portions 15 are formed in the yoke portion 11. The caulking portion 15 has a rectangular shape in a plane orthogonal to the axial direction.
 図17(B)は、図17(A)に示した線分17B-17Bにおける断面図であり、カシメ部15の長辺に沿った面における断面図である。図17(C)は、図17(A)に示した線分17C-17Cにおける断面図であり、カシメ部15の短辺に沿った面における断面図である。実施の形態4で説明した通り、側面15bと軸方向とのなす角度R2は15~75度であり、側面15cと軸方向とのなす角度r2も15~75度である。但し、側面15bと軸方向とのなす角度R2は、側面15cと軸方向とのなす角度r2よりも大きい。 FIG. 17B is a cross-sectional view of the line segment 17B-17B shown in FIG. 17A, and is a cross-sectional view of the surface along the long side of the caulked portion 15. FIG. 17C is a cross-sectional view of the line segment 17C-17C shown in FIG. 17A, and is a cross-sectional view of the surface of the caulked portion 15 along the short side. As described in the fourth embodiment, the angle R2 formed by the side surface 15b and the axial direction is 15 to 75 degrees, and the angle r2 formed by the side surface 15c and the axial direction is also 15 to 75 degrees. However, the angle R2 formed by the side surface 15b and the axial direction is larger than the angle r2 formed by the side surface 15c and the axial direction.
 軸方向に直交する面内で円形状のカシメ部16(丸カシメ部)は、軸方向に直交する面内で長方形形状のカシメ部15(Vカシメ部)と比較して、側面15bの軸方向からの傾きが小さいため、締結強度が高い。 The circular caulking portion 16 (round caulking portion) in the plane orthogonal to the axial direction is the axial direction of the side surface 15b as compared with the rectangular caulking portion 15 (V caulking portion) in the plane orthogonal to the axial direction. Since the inclination from is small, the fastening strength is high.
 この実施の形態5では、第2のコア部10Bの第2の鋼板9Bに、軸方向に直交する面内で長方形形状のカシメ部15を用い、第1のコア部10Aの第1の鋼板9Aに、軸方向に直交する面内で円形状のカシメ部16を用いることで、第2のコア部10Bでの鉄損を低減し、且つ第1のコア部10Aの第1の鋼板9Aを強固に固定することができる。 In the fifth embodiment, a rectangular caulking portion 15 is used for the second steel plate 9B of the second core portion 10B in a plane orthogonal to the axial direction, and the first steel plate 9A of the first core portion 10A is used. In addition, by using the circular caulking portion 16 in the plane orthogonal to the axial direction, the iron loss in the second core portion 10B is reduced, and the first steel plate 9A of the first core portion 10A is strengthened. Can be fixed to.
 ここでは、第2のコア部10Bの全ての第2の鋼板9Bのカシメ部16が長方形形状を有し、第1のコア部10Aの全ての第1の鋼板9Aのカシメ部15が円形状を有している。しかしながら、第2のコア部10Bの少なくとも1枚の第2の鋼板9Bのカシメ部16が長方形形状を有し、第1のコア部10Aの少なくとも1枚の第1の鋼板9Aのカシメ部15が円形状を有していればよい。 Here, the crimped portions 16 of all the second steel plates 9B of the second core portion 10B have a rectangular shape, and the crimped portions 15 of all the first steel plates 9A of the first core portion 10A have a circular shape. Have. However, the caulking portion 16 of at least one second steel plate 9B of the second core portion 10B has a rectangular shape, and the caulking portion 15 of at least one first steel plate 9A of the first core portion 10A has a rectangular shape. It suffices to have a circular shape.
 ここでは、第1の鋼板9Aの1枚当たりのカシメ部15の数と、第2の鋼板9Bの1枚当たりのカシメ部15の数とは互いに同数であるが、互いに異なっていてもよい。また、図16(A)および図17(A)では、カシメ部15,16がヨーク部11に設けられているが、ティース12に設けてもよい。 Here, the number of caulking portions 15 per sheet of the first steel plate 9A and the number of caulking portions 15 per sheet of the second steel plate 9B are the same as each other, but may be different from each other. Further, in FIGS. 16A and 17A, the caulking portions 15 and 16 are provided on the yoke portion 11, but may be provided on the teeth 12.
 第1の鋼板9Aのカシメ部15と、第2の鋼板9Bのカシメ部15とは、軸方向に重なり合う位置に配置されていることが望ましい。また、第1の鋼板9Aの各カシメ部15の面積は、第2の鋼板9Bの各カシメ部15の面積と同じであることが望ましい。これにより、第1のコア部10Aと第2のコア部10Bとを強固に固定することができる。 It is desirable that the crimped portion 15 of the first steel plate 9A and the crimped portion 15 of the second steel plate 9B are arranged at positions where they overlap in the axial direction. Further, it is desirable that the area of each crimped portion 15 of the first steel plate 9A is the same as the area of each crimped portion 15 of the second steel plate 9B. As a result, the first core portion 10A and the second core portion 10B can be firmly fixed.
 以上の点を除き、実施の形態5の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the above points, the motor of the fifth embodiment is configured in the same manner as the motor 100 of the first embodiment.
 以上説明したように、実施の形態5では、ステータコア10が、シェル40に間隔をあけて対向する第1のコア部10Aと、シェル40に当接する第2のコア部10Bとを有し、少なくとも1枚の第2の鋼板9Bのカシメ部15が軸方向に直交する面内で長方形形状を有し、少なくとも1枚の第1の鋼板9Aのカシメ部15が軸方向に直交する面内で円形状を有する。そのため、ステータコア10における鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。 As described above, in the fifth embodiment, the stator core 10 has a first core portion 10A facing the shell 40 at intervals and a second core portion 10B abutting on the shell 40, and at least. The crimped portion 15 of one second steel plate 9B has a rectangular shape in a plane orthogonal to the axial direction, and the crimped portion 15 of at least one first steel plate 9A is a circle in a plane orthogonal to the axial direction. Has a shape. Therefore, the increase in iron loss in the stator core 10 can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
<鋼板の剥離強度>
 次に、第1のコア部10Aおよび第2のコア部10Bの剥離強度について説明する。図18(A)は、ステータコア10の第1のコア部10Aの剥離強度の測定方法を示す模式図である。図18(B)は、ステータコア10の第2のコア部10Bの剥離強度の測定方法を示す模式図である。
<Peeling strength of steel plate>
Next, the peel strength of the first core portion 10A and the second core portion 10B will be described. FIG. 18A is a schematic view showing a method of measuring the peel strength of the first core portion 10A of the stator core 10. FIG. 18B is a schematic view showing a method of measuring the peel strength of the second core portion 10B of the stator core 10.
 剥離強度は、第1のコア部10Aと第2のコア部10Bとで別々に測定する。そのため、第1のコア部10Aおよび第2のコア部10Bは、シェル40に組み込まれておらず、コイル3も巻き付けられていない。 The peel strength is measured separately for the first core portion 10A and the second core portion 10B. Therefore, the first core portion 10A and the second core portion 10B are not incorporated in the shell 40, and the coil 3 is not wound.
 図18(A)に示すように、第1のコア部10Aの軸方向両端を一対の把持部61で把持し、第1のコア部10Aに軸方向の引っ張り力を加える。第1のコア部10Aにおいて第1の鋼板9Aの剥離が生じたときの荷重をF1とする。 As shown in FIG. 18A, both ends of the first core portion 10A in the axial direction are gripped by a pair of grip portions 61, and an axial tensile force is applied to the first core portion 10A. Let F1 be the load when the first steel plate 9A is peeled off in the first core portion 10A.
 同様に、図18(B)に示すように、第2のコア部10Bの軸方向両端を一対の把持部61で把持し、第2のコア部10Bに軸方向の引っ張り力を加える。第2のコア部10Bにおいて第2の鋼板9Bの剥離が生じたときの荷重をF2とする。 Similarly, as shown in FIG. 18B, both ends of the second core portion 10B in the axial direction are gripped by a pair of grip portions 61, and an axial tensile force is applied to the second core portion 10B. Let F2 be the load when the second steel plate 9B is peeled off in the second core portion 10B.
 なお、荷重F1,F2の比較においては、第1のコア部10Aと第2のコア部10Bとで鋼板の積層枚数が異なっていてもよい。 In the comparison of the loads F1 and F2, the number of laminated steel plates may be different between the first core portion 10A and the second core portion 10B.
 第1のコア部10Aおよび第2のコア部10Bは、実施の形態1~5で説明したいずれの構成を有していてもよい。いずれの場合も、第2のコア部10Bの第2の鋼板9Bの締結強度が、第1のコア部10Aの第1の鋼板9Aの締結強度よりも低いため、第2の鋼板9Bを剥離させるために必要な荷重は、第1の鋼板9Aを剥離させるために必要な荷重よりも小さい。 The first core portion 10A and the second core portion 10B may have any of the configurations described in the first to fifth embodiments. In either case, since the fastening strength of the second steel plate 9B of the second core portion 10B is lower than the fastening strength of the first steel plate 9A of the first core portion 10A, the second steel plate 9B is peeled off. The load required for this is smaller than the load required for peeling the first steel sheet 9A.
 このように、第2の鋼板9Bを剥離させるために必要な荷重が、第1の鋼板9Aを剥離させるために必要な荷重よりも小さいことにより、実施の形態1~5で説明したように、鉄損の増加を抑制して電動機効率を向上し、また、ステータコア10をシェル40に強固に固定することができる。 As described above, since the load required for peeling the second steel plate 9B is smaller than the load required for peeling the first steel plate 9A, as described in the first to fifth embodiments, The increase in iron loss can be suppressed to improve the efficiency of the motor, and the stator core 10 can be firmly fixed to the shell 40.
<第1のコア部と第2のコア部との境界部分>
 次に、第1のコア部10Aと第2のコア部10Bとの境界部分について説明する。ステータコア10では、第1のコア部10Aの軸方向両側に第2のコア部10Bが配置されているため、コア部10A,10Bの境界部分が2箇所存在する。
<Boundary part between the first core part and the second core part>
Next, the boundary portion between the first core portion 10A and the second core portion 10B will be described. In the stator core 10, since the second core portions 10B are arranged on both sides of the first core portion 10A in the axial direction, there are two boundary portions between the core portions 10A and 10B.
 上述した実施の形態1において、第1のコア部10Aと、その上方の第2のコア部10Bとの境界部分では、第2の鋼板9Bのヨーク部11のカシメ部15(図7(B))の凸部が、第1の鋼板9Aのヨーク部11のカシメ部15(図7(A))の凹部に係合する。 In the first embodiment described above, at the boundary portion between the first core portion 10A and the second core portion 10B above the first core portion 10A, the caulking portion 15 of the yoke portion 11 of the second steel plate 9B (FIG. 7 (B)). ) Engage with the concave portion of the caulked portion 15 (FIG. 7 (A)) of the yoke portion 11 of the first steel plate 9A.
 一方、第1のコア部10Aと、その下方の第2のコア部10Bとの境界部分では、第1のコア部10Aのティース12のカシメ部15(図7(A))の凸部に、第2のコア部10Bのティース12の平坦面が対向するため、凸部と凹部との係合状態が得られない。 On the other hand, at the boundary portion between the first core portion 10A and the second core portion 10B below the first core portion 10A, the convex portion of the crimped portion 15 (FIG. 7 (A)) of the teeth 12 of the first core portion 10A is formed. Since the flat surfaces of the teeth 12 of the second core portion 10B face each other, the engagement state between the convex portion and the concave portion cannot be obtained.
 しかしながら、図19に示すように、第1のコア部10Aの端部の第1の鋼板9Aと、第2のコア部10Bの端部の第2の鋼板9Bとの間には、接着剤の層(接着層)7が設けられており、カシメ部15の凸部が接着層7の内部に収まる。そのため、第1のコア部10Aと第2のコア部10Bとを確実に固定することができる。 However, as shown in FIG. 19, there is an adhesive between the first steel plate 9A at the end of the first core portion 10A and the second steel plate 9B at the end of the second core portion 10B. A layer (adhesive layer) 7 is provided, and the convex portion of the crimped portion 15 fits inside the adhesive layer 7. Therefore, the first core portion 10A and the second core portion 10B can be reliably fixed.
 また、上述した実施の形態2において、第1のコア部10Aと、その上方の第2のコア部10Bとの境界部分では、面積の小さいカシメ部15(図10(B))の凸部が、面積の大きいカシメ部15(図10(A))の凹部に係合する。 Further, in the second embodiment described above, at the boundary portion between the first core portion 10A and the second core portion 10B above the first core portion 10A, a convex portion of the caulking portion 15 (FIG. 10 (B)) having a small area is formed. , Engage with the recess of the caulked portion 15 (FIG. 10 (A)) having a large area.
 一方、第1のコア部10Aと、その下方の第2のコア部10Bとの境界部分では、面積の大きいカシメ部15(図10(A))の凸部が、面積の小さいカシメ部15(図10(B))の凹部に対向するため、凸部と凹部との係合状態が得られない。 On the other hand, at the boundary between the first core portion 10A and the second core portion 10B below the first core portion 10A, the convex portion of the caulking portion 15 (FIG. 10 (A)) having a large area is the caulking portion 15 having a small area (FIG. 10 (A)). Since it faces the concave portion of FIG. 10 (B), the engagement state between the convex portion and the concave portion cannot be obtained.
 この場合も、図19に示すように、第1のコア部10Aの端部の第1の鋼板9Aと、第2のコア部10Bの端部の第2の鋼板9Bとの間に接着層7が設けられ、カシメ部15の凸部が接着層7の内部に収まる。そのため、第1のコア部10Aと第2のコア部10Bとを確実に固定することができる。また、第1のコア部10Aと第2のコア部10Bとの積層時に、面積の小さいカシメ部15(図10(B))の凹部が変形し、面積の大きいカシメ部15(図10(A))の凸部に係合する場合もある。 Also in this case, as shown in FIG. 19, the adhesive layer 7 is between the first steel plate 9A at the end of the first core portion 10A and the second steel plate 9B at the end of the second core portion 10B. Is provided, and the convex portion of the crimped portion 15 fits inside the adhesive layer 7. Therefore, the first core portion 10A and the second core portion 10B can be reliably fixed. Further, when the first core portion 10A and the second core portion 10B are laminated, the recess of the caulking portion 15 (FIG. 10 (B)) having a small area is deformed, and the caulking portion 15 (FIG. 10 (A)) having a large area is deformed. )) May engage with the convex part.
 また、図20に示すように、ステータコア10の第1のコア部10Aおよび第2のコア部10Bを軸方向に貫通する貫通穴105を形成し、この貫通穴105に金属製の固定ピン81を嵌合させて、第1のコア部10Aおよび第2のコア部10Bを強固に固定してもよい。 Further, as shown in FIG. 20, a through hole 105 is formed through the first core portion 10A and the second core portion 10B of the stator core 10 in the axial direction, and a metal fixing pin 81 is formed in the through hole 105. The first core portion 10A and the second core portion 10B may be firmly fixed by fitting.
<分割コアの構成>
 図21(A)および(B)は、実施の形態1~5のステータコア10を構成する分割コア8を説明するための模式図である。
<Structure of split core>
21 (A) and 21 (B) are schematic views for explaining the divided core 8 constituting the stator core 10 of the first to fifth embodiments.
 図21(A)に示すステータコア10では、複数の分割コア8が、ヨーク部11の外周側に形成された薄肉連結部17で連結され、帯状に延在している。薄肉連結部17は、ヨーク部11において分割面14の外周側に形成された薄肉部である。薄肉連結部17を塑性変形させることにより、ステータコア10を図2に示したように環状に組み立てることができる。 In the stator core 10 shown in FIG. 21 (A), a plurality of divided cores 8 are connected by a thin-walled connecting portion 17 formed on the outer peripheral side of the yoke portion 11 and extend in a strip shape. The thin-walled connecting portion 17 is a thin-walled portion formed on the outer peripheral side of the dividing surface 14 in the yoke portion 11. By plastically deforming the thin-walled connecting portion 17, the stator core 10 can be assembled in an annular shape as shown in FIG.
 図21(B)に示すステータコア10では、複数の分割コア8が独立して構成されている。分割コア8を分割面14で互いに溶接することにより、図2に示した環状のステータコア10が得られる。 In the stator core 10 shown in FIG. 21 (B), a plurality of divided cores 8 are independently configured. By welding the split cores 8 to each other on the split surface 14, the annular stator core 10 shown in FIG. 2 is obtained.
 図21(A)および(B)に示したステータコア10は、複数の分割コア8が連結されているため、環状に打ち抜き加工された電磁鋼板を積層したステータコアと比較すると、真円度を向上しにくい。上述した各実施の形態では、ステータコア10の第2のコア部10Bにシェル40からの圧縮応力が集中し、ステータコア10が強く締め付けられるため、真円度を向上することができる。 Since the stator core 10 shown in FIGS. 21A and 21B has a plurality of divided cores 8 connected to each other, the roundness is improved as compared with the stator core in which the electromagnetic steel sheets punched in an annular shape are laminated. Hateful. In each of the above-described embodiments, the compressive stress from the shell 40 is concentrated on the second core portion 10B of the stator core 10, and the stator core 10 is strongly tightened, so that the roundness can be improved.
 また、図21(A)に示した薄肉連結部17の代わりに、図22に示すジョイントラップを設けてもよい。ジョイントラップは、隣り合う分割コア8の鋼板9に形成したカシメ部19を交互に組み合わせることで、分割コア8を帯状から環状に変形させるときの支軸Zとするものである。 Further, instead of the thin-walled connecting portion 17 shown in FIG. 21 (A), the joint wrap shown in FIG. 22 may be provided. The joint wrap is a support shaft Z for deforming the split core 8 from a strip shape to an annular shape by alternately combining the caulking portions 19 formed on the steel plates 9 of the adjacent split cores 8.
 なお、ステータコアは、複数の分割コア8(図2)を組み合わせて構成されたものに限らず、環状に打ち抜き加工された電磁鋼板を積層したものであってもよい。 Note that the stator core is not limited to the one configured by combining a plurality of divided cores 8 (FIG. 2), and may be a laminated electric steel sheet punched in an annular shape.
<他の構成例>
 図23は、電動機100の他の構成例を示す縦断面図である。実施の形態1では、ステータコア10の軸方向両端に第2のコア部10Bが配置され、軸方向中央に第1のコア部10Aが配置されていた(図4参照)。
<Other configuration examples>
FIG. 23 is a vertical cross-sectional view showing another configuration example of the motor 100. In the first embodiment, the second core portions 10B are arranged at both ends in the axial direction of the stator core 10, and the first core portion 10A is arranged at the center in the axial direction (see FIG. 4).
 これに対し、図23に示した構成例では、ステータコア10の軸方向中央と軸方向両端の合計3か所に第2のコア部10Bが配置されている。また、第1のコア部10Aは、軸方向中央の第2のコア部10Bの両側の2か所に配置されている。 On the other hand, in the configuration example shown in FIG. 23, the second core portions 10B are arranged at a total of three locations, the center in the axial direction and both ends in the axial direction of the stator core 10. Further, the first core portion 10A is arranged at two locations on both sides of the second core portion 10B at the center in the axial direction.
 このような構成においても、第2のコア部10Bがシェル40に当接することにより、ステータコア10を強固に保持することができ、第1のコア部10Aがシェル40に当接しないことにより、圧縮応力に起因する鉄損を低減することができる。 Even in such a configuration, the stator core 10 can be firmly held by the second core portion 10B coming into contact with the shell 40, and the first core portion 10A does not come into contact with the shell 40, so that the compression is performed. Iron loss due to stress can be reduced.
 また、第1のコア部10Aおよび第2のコア部10Bの配置は、図4および図23に示した配置には限定されない。第1のコア部10Aと第2のコア部10Bとが軸方向に配置され、第1のコア部10Aがシェル40に間隔をあけて対向し、第2のコア部10Bがシェル40に当接していればよい。 Further, the arrangement of the first core portion 10A and the second core portion 10B is not limited to the arrangement shown in FIGS. 4 and 23. The first core portion 10A and the second core portion 10B are arranged in the axial direction, the first core portion 10A faces the shell 40 at intervals, and the second core portion 10B abuts on the shell 40. I just need to be there.
 図24は、カシメ部15の長辺方向の断面形状を示す模式図である。図24は、ステータコア10を軸方向と平行な面で切断し、切断面を顕微鏡で観察した拡大画像を元に作成した図である。図24から、カシメ部15の底面15aは軸方向に直交する平坦面であり、側面15bは軸方向に対して傾斜した面であることが分かる。 FIG. 24 is a schematic view showing the cross-sectional shape of the crimped portion 15 in the long side direction. FIG. 24 is a diagram created based on an enlarged image obtained by cutting the stator core 10 in a plane parallel to the axial direction and observing the cut plane with a microscope. From FIG. 24, it can be seen that the bottom surface 15a of the crimped portion 15 is a flat surface orthogonal to the axial direction, and the side surface 15b is a surface inclined with respect to the axial direction.
<圧縮機の構成>
 次に、各実施の形態の電動機が適用可能な圧縮機500について説明する。図25は、圧縮機500を示す縦断面図である。圧縮機500は、ロータリ圧縮機であり、例えば空気調和装置400(図26)に用いられる。圧縮機500は、圧縮機構部501と、圧縮機構部501を駆動する電動機100と、圧縮機構部501と電動機100とを連結するシャフト60と、これらを収容する密閉容器507とを備える。ここでは、シャフト60の軸方向は鉛直方向であり、電動機100は圧縮機構部501に対して上方に配置されている。
<Compressor configuration>
Next, the compressor 500 to which the motor of each embodiment can be applied will be described. FIG. 25 is a vertical cross-sectional view showing the compressor 500. The compressor 500 is a rotary compressor and is used, for example, in an air conditioner 400 (FIG. 26). The compressor 500 includes a compression mechanism unit 501, an electric motor 100 for driving the compression mechanism unit 501, a shaft 60 for connecting the compression mechanism unit 501 and the electric motor 100, and a closed container 507 for accommodating these. Here, the axial direction of the shaft 60 is the vertical direction, and the electric motor 100 is arranged above the compression mechanism portion 501.
 密閉容器507は、鋼板で形成された容器であり、円筒状のシェル40と、シェル40の上側を覆う容器上部と、シェル40の下側を覆う容器底部とを有する。電動機100のステータ1は、焼き嵌め、圧入または溶接等により、密閉容器507のシェル40の内側に組み込まれている。 The closed container 507 is a container made of a steel plate, and has a cylindrical shell 40, a container upper portion that covers the upper side of the shell 40, and a container bottom that covers the lower side of the shell 40. The stator 1 of the electric motor 100 is incorporated inside the shell 40 of the closed container 507 by shrink fitting, press fitting, welding, or the like.
 密閉容器507の容器上部には、冷媒を外部に吐出する吐出管512と、電動機100に電力を供給するための端子511とが設けられている。また、密閉容器507の外部には、冷媒ガスを貯蔵するアキュムレータ510が取り付けられている。密閉容器507の容器底部には、圧縮機構部501の軸受部を潤滑する冷凍機油が貯留されている。 At the upper part of the closed container 507, a discharge pipe 512 for discharging the refrigerant to the outside and a terminal 511 for supplying electric power to the motor 100 are provided. Further, an accumulator 510 for storing the refrigerant gas is attached to the outside of the closed container 507. Refrigerating machine oil that lubricates the bearing portion of the compression mechanism portion 501 is stored in the bottom of the closed container 507.
 圧縮機構部501は、シリンダ室503を有するシリンダ502と、シャフト60に固定されたローリングピストン504と、シリンダ室503の内部を吸入側と圧縮側に分けるベーンと、シリンダ室503の軸方向両端部を閉鎖する上部フレーム505および下部フレーム506とを有する。 The compression mechanism unit 501 includes a cylinder 502 having a cylinder chamber 503, a rolling piston 504 fixed to a shaft 60, a vane that divides the inside of the cylinder chamber 503 into a suction side and a compression side, and both ends in the axial direction of the cylinder chamber 503. It has an upper frame 505 and a lower frame 506 that close the frame.
 上部フレーム505および下部フレーム506は、いずれも、シャフト60を回転可能に支持する軸受部を有する。上部フレーム505および下部フレーム506には、上部吐出マフラ508および下部吐出マフラ509がそれぞれ取り付けられている。 Both the upper frame 505 and the lower frame 506 have a bearing portion that rotatably supports the shaft 60. An upper discharge muffler 508 and a lower discharge muffler 509 are attached to the upper frame 505 and the lower frame 506, respectively.
 シリンダ502には、軸線C1を中心とする円筒状のシリンダ室503が設けられている。シリンダ室503の内部には、シャフト60の偏心軸部60aが位置している。偏心軸部60aは、軸線C1に対して偏心した中心を有する。偏心軸部60aの外周には、ローリングピストン504が嵌合している。電動機100が回転すると、偏心軸部60aおよびローリングピストン504がシリンダ室503内で偏心回転する。 The cylinder 502 is provided with a cylindrical cylinder chamber 503 centered on the axis C1. An eccentric shaft portion 60a of the shaft 60 is located inside the cylinder chamber 503. The eccentric shaft portion 60a has a center eccentric with respect to the axis C1. A rolling piston 504 is fitted on the outer circumference of the eccentric shaft portion 60a. When the electric motor 100 rotates, the eccentric shaft portion 60a and the rolling piston 504 rotate eccentrically in the cylinder chamber 503.
 シリンダ502には、シリンダ室503内に冷媒ガスを吸入する吸入口515が形成されている。密閉容器507には、吸入口515に連通する吸入管513が取り付けられ、この吸入管513を介してアキュムレータ510からシリンダ室503に冷媒ガスが供給される。 The cylinder 502 is formed with a suction port 515 for sucking the refrigerant gas in the cylinder chamber 503. A suction pipe 513 communicating with the suction port 515 is attached to the closed container 507, and refrigerant gas is supplied from the accumulator 510 to the cylinder chamber 503 via the suction pipe 513.
 圧縮機500には、空気調和装置400(図26)の冷媒回路から低圧の冷媒ガスと液冷媒とが混在して供給されるが、液冷媒が圧縮機構部501に流入して圧縮されると、圧縮機構部501の故障の原因となる。そのため、アキュムレータ510で液冷媒と冷媒ガスとを分離し、冷媒ガスのみを圧縮機構部501に供給する。 Low-pressure refrigerant gas and liquid refrigerant are mixedly supplied to the compressor 500 from the refrigerant circuit of the air conditioner 400 (FIG. 26), but when the liquid refrigerant flows into the compression mechanism section 501 and is compressed. , It causes a failure of the compression mechanism unit 501. Therefore, the accumulator 510 separates the liquid refrigerant and the refrigerant gas, and supplies only the refrigerant gas to the compression mechanism unit 501.
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、GWP(地球温暖化係数)の低い冷媒を用いることが望ましい。 As the refrigerant, for example, R410A, R407C, R22, etc. may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant having a low GWP (global warming potential).
 圧縮機500の動作は、以下の通りである。端子511からステータ1のコイル3に電流が供給されると、電流によって生じる回転磁界とロータ5の永久磁石55の磁界とにより、ステータ1とロータ5との間に吸引力および反発力が発生し、ロータ5が回転する。これに伴い、ロータ5に固定されたシャフト60も回転する。 The operation of the compressor 500 is as follows. When an electric current is supplied from the terminal 511 to the coil 3 of the stator 1, an attractive force and a repulsive force are generated between the stator 1 and the rotor 5 due to the rotating magnetic field generated by the electric current and the magnetic field of the permanent magnet 55 of the rotor 5. , The rotor 5 rotates. Along with this, the shaft 60 fixed to the rotor 5 also rotates.
 圧縮機構部501のシリンダ室503には、吸入口515を介してアキュムレータ510から低圧の冷媒ガスが吸入される。シリンダ室503内では、シャフト60の偏心軸部60aとこれに取り付けられたローリングピストン504が偏心回転し、シリンダ室503内で冷媒を圧縮する。 Low-pressure refrigerant gas is sucked into the cylinder chamber 503 of the compression mechanism unit 501 from the accumulator 510 via the suction port 515. In the cylinder chamber 503, the eccentric shaft portion 60a of the shaft 60 and the rolling piston 504 attached to the shaft portion 60a rotate eccentrically to compress the refrigerant in the cylinder chamber 503.
 シリンダ室503で圧縮された冷媒は、図示しない吐出口および吐出マフラ508,509を通って密閉容器507内に吐出される。密閉容器507内に吐出された冷媒は、ロータコア50の穴部57,58(図1)等を通って密閉容器507内を上昇し、吐出管512から吐出され、空気調和装置400(図26)の冷媒回路に送り出される。 The refrigerant compressed in the cylinder chamber 503 is discharged into the closed container 507 through a discharge port and discharge mufflers 508 and 509 (not shown). The refrigerant discharged into the closed container 507 rises in the closed container 507 through the holes 57, 58 (FIG. 1) of the rotor core 50, is discharged from the discharge pipe 512, and is discharged from the discharge pipe 512, and is discharged from the air conditioner 400 (FIG. 26). It is sent to the refrigerant circuit of.
 圧縮機500は、実施の形態1~5および変形例で説明した電動機が適用可能であるため、圧縮機500の運転効率を向上することができる。 Since the motors described in the first to fifth embodiments and the modified examples can be applied to the compressor 500, the operating efficiency of the compressor 500 can be improved.
<空気調和装置>
 次に、図25に示した圧縮機500を備えた空気調和装置400について説明する。図26は、空気調和装置400を示す図である。空気調和装置400は、上記の圧縮機500と、切り替え弁としての四方弁401と、冷媒を凝縮する凝縮器402と、冷媒を減圧する減圧装置403と、冷媒を蒸発させる蒸発器404と、これらを結ぶ冷媒配管410とを備える。
<Air conditioner>
Next, the air conditioner 400 provided with the compressor 500 shown in FIG. 25 will be described. FIG. 26 is a diagram showing an air conditioner 400. The air conditioner 400 includes the compressor 500, a four-way valve 401 as a switching valve, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that depressurizes the refrigerant, and an evaporator 404 that evaporates the refrigerant. It is provided with a refrigerant pipe 410 for connecting the above.
 圧縮機500、四方弁401、凝縮器402、減圧装置403および蒸発器404は、冷媒配管410によって連結され、冷媒回路を構成している。また、圧縮機500は、凝縮器402に対向する室外送風機405と、蒸発器404に対向する室内送風機406とを備える。 The compressor 500, the four-way valve 401, the condenser 402, the decompression device 403, and the evaporator 404 are connected by a refrigerant pipe 410 to form a refrigerant circuit. Further, the compressor 500 includes an outdoor blower 405 facing the condenser 402 and an indoor blower 406 facing the evaporator 404.
 空気調和装置400の動作は、次の通りである。圧縮機500は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。四方弁401は、冷媒の流れ方向を切り替えるものであるが、冷房運転時には、図26に示すように、圧縮機500から送り出された冷媒を凝縮器402に流す。 The operation of the air conditioner 400 is as follows. The compressor 500 compresses the sucked refrigerant and sends it out as a high-temperature and high-pressure refrigerant gas. The four-way valve 401 switches the flow direction of the refrigerant, and during the cooling operation, as shown in FIG. 26, the refrigerant sent out from the compressor 500 flows to the condenser 402.
 凝縮器402は、圧縮機500から送り出された冷媒と、室外送風機405により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置403は、凝縮器402から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。 The condenser 402 exchanges heat between the refrigerant sent from the compressor 500 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant. The depressurizing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature low-pressure liquid refrigerant.
 蒸発器404は、減圧装置403から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発(気化)させ、冷媒ガスとして送り出す。蒸発器404で熱が奪われた空気は、室内送風機406により、空調対象空間である室内に供給される。 The evaporator 404 exchanges heat between the low-temperature low-pressure liquid refrigerant sent from the decompression device 403 and the indoor air, evaporates (vaporizes) the refrigerant, and sends it out as a refrigerant gas. The air whose heat has been taken away by the evaporator 404 is supplied to the room, which is the air-conditioned space, by the indoor blower 406.
 なお、暖房運転時には、四方弁401が、圧縮機500から送り出された冷媒を蒸発器404に送り出す。この場合、蒸発器404が凝縮器として機能し、凝縮器402が蒸発器として機能する。 During the heating operation, the four-way valve 401 sends the refrigerant sent from the compressor 500 to the evaporator 404. In this case, the evaporator 404 functions as a condenser, and the condenser 402 functions as an evaporator.
 圧縮機500は、上記の通り高い運転効率を有するため、空気調和装置400の運転効率を高めることができる。 Since the compressor 500 has high operating efficiency as described above, the operating efficiency of the air conditioner 400 can be improved.
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。 Although the preferred embodiments of the present invention have been specifically described above, the present invention is not limited to the above embodiments, and various improvements or modifications are made without departing from the gist of the present invention. be able to.
 1 ステータ、 3 コイル、 5 ロータ、 7 接着層、 8 分割コア、 9 鋼板、 9A 第1の鋼板、 9B 第2の鋼板、 10 ステータコア、 10A 第1のコア部、 10B 第2のコア部、 11 ヨーク部、 12 ティース、 13 スロット、 14 分割面、 15,16 カシメ部、 15a,16a 底面、 15b,15c,16a 側面、 15c 側面、 15d 突出面、 17 薄肉連結部、 18 凹部、 19 カシメ部、 20 インシュレータ、 25 絶縁フィルム、 40 シェル、 41 内周、 50 ロータコア、 51 磁石挿入孔、 55 永久磁石、 60 シャフト、 81 固定ピン、 100 電動機、 101 表面、 102 裏面、 105 貫通穴、 110 外周111 外周112 内周、 400 空気調和装置、 402 凝縮器、 403 減圧装置、 404 蒸発器、 405 室外送風機、 406 室内送風機、 410 冷媒配管、 500 圧縮機、 501 圧縮機構部、 507 密閉容器。
 

 
1 stator, 3 coils, 5 rotors, 7 adhesive layers, 8 split cores, 9 steel plates, 9A first steel plates, 9B second steel plates, 10 stator cores, 10A first core parts, 10B second core parts, 11 Yoke part, 12 teeth, 13 slots, 14 division surface, 15, 16 caulking part, 15a, 16a bottom surface, 15b, 15c, 16a side surface, 15c side surface, 15d protruding surface, 17 thin-walled connecting part, 18 recess, 19 caulking part, 20 Insulator, 25 Insulation film, 40 Shell, 41 Inner circumference, 50 Rotor core, 51 Magnet insertion hole, 55 Permanent magnet, 60 Shaft, 81 Fixing pin, 100 Motor, 101 Front surface, 102 Back surface, 105 Through hole, 110 Outer circumference 111 Outer circumference 112 Inner circumference, 400 Air conditioner, 402 Condenser, 403 Decompressor, 404 Evaporator, 405 Outdoor blower, 406 Indoor blower, 410 Refrigerant piping, 500 Compressor, 501 Compressor mechanism, 507 Closed container.


Claims (14)

  1.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     少なくとも1枚の前記第2の鋼板の1枚当たりの前記カシメ部の数は、少なくとも1枚の前記第1の鋼板の1枚当たりの前記カシメ部の数よりも少ない
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The number of the caulked portions per one of the at least one second steel plate is smaller than the number of the caulked portions per one of the at least one first steel plate.
  2.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     少なくとも1枚の前記第2の鋼板の1枚当たりの前記カシメ部の総面積は、少なくとも1枚の前記第1の鋼板の1枚当たりの前記カシメ部の総面積よりも小さい
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The total area of the crimped portion per at least one of the second steel plates is smaller than the total area of the crimped portion of each of the at least one first steel plate.
  3.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     少なくとも1枚の前記第2の鋼板の前記カシメ部の深さは、少なくとも1枚の前記第1の鋼板の前記カシメ部の深さよりも浅い
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    A stator in which the depth of the crimped portion of at least one of the second steel plates is shallower than the depth of the crimped portion of at least one of the first steel plates.
  4.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     少なくとも1枚の前記第2の鋼板の前記カシメ部の側面と前記軸線とのなす角度が、少なくとも1枚の前記第1の鋼板の前記カシメ部の側面と前記軸線とのなす角度よりも大きい
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The angle formed by the side surface of the crimped portion of at least one of the second steel plates and the axis is larger than the angle formed by the side surface of the crimped portion of at least one of the first steel plates and the axis. ..
  5.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     少なくとも1枚の前記第2の鋼板の前記カシメ部は、前記軸線の方向に直交する面において長方形形状を有し、
     少なくとも1枚の前記第1の鋼板の前記カシメ部は、前記軸線の方向に直交する面において円形状を有する
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The crimped portion of at least one of the second steel plates has a rectangular shape in a plane orthogonal to the direction of the axis.
    The crimped portion of at least one of the first steel plates is a stator having a circular shape in a plane orthogonal to the direction of the axis.
  6.  シェルに組み込まれる電動機のステータであって、
     軸線の方向に、第1のコア部と第2のコア部とを有するステータコアを有し、
     前記第1のコア部は前記シェルに間隔をあけて対向し、前記第2のコア部は前記シェルに当接し、
     前記第1のコア部は、前記軸線の方向に積層されてカシメ部で固定された第1の鋼板を有し、
     前記第2のコア部は、前記軸線の方向に積層されてカシメ部で固定された第2の鋼板を有し、
     前記第2の鋼板を剥離させるために必要な荷重は、前記第1の鋼板を剥離させるために必要な荷重よりも小さい
     ステータ。
    The stator of the motor built into the shell
    Having a stator core having a first core portion and a second core portion in the direction of the axis,
    The first core portion faces the shell at intervals, and the second core portion abuts on the shell.
    The first core portion has a first steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The second core portion has a second steel plate laminated in the direction of the axis and fixed by a caulking portion.
    The load required to peel off the second steel plate is smaller than the load required to peel off the first steel plate.
  7.  前記第2のコア部は、前記ステータコアの前記軸線の方向において、前記第1のコア部の両側に位置する
     請求項1から6までの何れか1項に記載のステータ。
    The stator according to any one of claims 1 to 6, wherein the second core portion is located on both sides of the first core portion in the direction of the axis of the stator core.
  8.  前記第2のコア部において前記第1のコア部に最も近い前記第2の鋼板の少なくとも1つの前記カシメ部が、前記第1のコア部において前記第2のコア部に最も近い前記第1の鋼板の少なくとも1つの前記カシメ部と、前記軸線の方向に重なり合う
     請求項1から7までの何れか1項に記載のステータ。
    At least one of the caulked portions of the second steel plate closest to the first core portion in the second core portion is the first one closest to the second core portion in the first core portion. The stator according to any one of claims 1 to 7, which overlaps with at least one of the crimped portions of the steel sheet in the direction of the axis.
  9.  前記第1のコア部の端部に位置する前記第1の鋼板と、前記第2のコア部の端部に位置する前記第2の鋼板とが、接着層を介して互いに固定され、
     前記第1の鋼板または前記第2の鋼板の前記カシメ部が、前記接着層の内部に位置する
     請求項1から8までの何れか1項に記載のステータ。
    The first steel plate located at the end of the first core portion and the second steel plate located at the end of the second core portion are fixed to each other via an adhesive layer.
    The stator according to any one of claims 1 to 8, wherein the caulked portion of the first steel plate or the second steel plate is located inside the adhesive layer.
  10.  前記ステータコアを前記軸線の方向に貫通する固定ピンを有する
     請求項1から9までの何れか1項に記載のステータ。
    The stator according to any one of claims 1 to 9, which has a fixing pin that penetrates the stator core in the direction of the axis.
  11.  前記ステータコアは、前記軸線を中心とする周方向に連結された複数の分割コアを有する
     請求項1から10までの何れか1項に記載のステータ。
    The stator according to any one of claims 1 to 10, wherein the stator core has a plurality of divided cores connected in the circumferential direction about the axis.
  12.  請求項1から11までの何れか1項に記載のステータと、
     前記軸線を中心とする径方向において前記ステータの内側に設けられたロータと
     を備えた電動機。
    The stator according to any one of claims 1 to 11,
    An electric motor including a rotor provided inside the stator in the radial direction centered on the axis.
  13.  請求項12に記載の電動機と、
     前記電動機によって駆動される圧縮機構と、
     前記圧縮機構を収容し、前記シェルを有する密閉容器と
     を備えた圧縮機。
    The motor according to claim 12 and
    A compression mechanism driven by the motor and
    A compressor that houses the compression mechanism and includes a closed container having the shell.
  14.  請求項13に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた
     空気調和装置。
    An air conditioner including the compressor, a condenser, a decompression device, and an evaporator according to claim 13.
PCT/JP2019/049750 2019-12-19 2019-12-19 Stator, motor, compressor, and air conditioning device WO2021124501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/049750 WO2021124501A1 (en) 2019-12-19 2019-12-19 Stator, motor, compressor, and air conditioning device
JP2021565251A JP7285961B2 (en) 2019-12-19 2019-12-19 Stators, electric motors, compressors and air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049750 WO2021124501A1 (en) 2019-12-19 2019-12-19 Stator, motor, compressor, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2021124501A1 true WO2021124501A1 (en) 2021-06-24

Family

ID=76478591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049750 WO2021124501A1 (en) 2019-12-19 2019-12-19 Stator, motor, compressor, and air conditioning device

Country Status (2)

Country Link
JP (1) JP7285961B2 (en)
WO (1) WO2021124501A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079068A (en) * 2012-10-10 2014-05-01 Daikin Ind Ltd Rotor core and method for manufacturing the same
WO2019008722A1 (en) * 2017-07-06 2019-01-10 三菱電機株式会社 Stator, motor, drive device, compressor, air conditioner, and method for producing stator
WO2019189217A1 (en) * 2018-03-29 2019-10-03 日本電産株式会社 Rotor core, rotor, and motor
WO2019215865A1 (en) * 2018-05-10 2019-11-14 三菱電機株式会社 Rotor, motor, compressor, and air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279777B2 (en) 2010-08-28 2013-09-04 三菱電機株式会社 Synchronous motor rotor
JP6377128B2 (en) 2014-02-20 2018-08-22 三菱電機株式会社 Manufacturing method of rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079068A (en) * 2012-10-10 2014-05-01 Daikin Ind Ltd Rotor core and method for manufacturing the same
WO2019008722A1 (en) * 2017-07-06 2019-01-10 三菱電機株式会社 Stator, motor, drive device, compressor, air conditioner, and method for producing stator
WO2019189217A1 (en) * 2018-03-29 2019-10-03 日本電産株式会社 Rotor core, rotor, and motor
WO2019215865A1 (en) * 2018-05-10 2019-11-14 三菱電機株式会社 Rotor, motor, compressor, and air conditioning device

Also Published As

Publication number Publication date
JPWO2021124501A1 (en) 2021-06-24
JP7285961B2 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
JP7003267B2 (en) Motors, compressors and air conditioners
JP6858845B2 (en) Rotors, electric motors, compressors and air conditioners
JP2019013145A (en) Permanent magnet embedded motor, compressor, and refrigeration air conditioning apparatus
JP7038827B2 (en) Stator, motor, compressor and air conditioner
JPWO2018138864A1 (en) Stator, motor, compressor, and refrigeration air conditioner
JP2010068600A (en) Permanent magnet motor and hermetic compressor
WO2014128938A1 (en) Permanent magnet embedded motor, compressor, and refrigeration air conditioner
JP2012060799A (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
JP7023408B2 (en) Motors, compressors and air conditioners
CN107431394A (en) Compressor permanent magnetic baried type motor, compressor and refrigerating circulatory device
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
US11831204B2 (en) Rotor, motor, compressor, and air conditioner
WO2018029818A1 (en) Electric motor, compressor, refrigeration and air conditioning device, and method for manufacturing electric motor
WO2018138866A1 (en) Stator, electric motor, compressor, and refrigerating/air conditioning device
JP7154373B2 (en) Electric motors, compressors, and air conditioners
WO2022208740A1 (en) Motor, compressor, and refrigeration cycle device
JP7433419B2 (en) Rotor, motor, compressor, air conditioner, and rotor manufacturing method
JP6961106B2 (en) How to manufacture rotors, motors, compressors, air conditioners and rotors
WO2021124501A1 (en) Stator, motor, compressor, and air conditioning device
JP7612041B2 (en) Electric motor, compressor and refrigeration cycle device
JPWO2020170418A1 (en) Motors, compressors and air conditioners
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
WO2025013297A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2024166151A1 (en) Rotor, electric motor, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956542

Country of ref document: EP

Kind code of ref document: A1