WO2021117834A1 - Polyurethane, polishing layer, polishing pad, and polishing method - Google Patents
Polyurethane, polishing layer, polishing pad, and polishing method Download PDFInfo
- Publication number
- WO2021117834A1 WO2021117834A1 PCT/JP2020/046159 JP2020046159W WO2021117834A1 WO 2021117834 A1 WO2021117834 A1 WO 2021117834A1 JP 2020046159 W JP2020046159 W JP 2020046159W WO 2021117834 A1 WO2021117834 A1 WO 2021117834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- polyurethane
- polishing layer
- polished
- carboxy group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the present invention relates to a novel polyurethane, a polishing layer using the same, a polishing pad, and a polishing method.
- polishing method for flattening the surface of the semiconductor wafer examples include CMP (Chemical Mechanical Polishing).
- CMP is a method of polishing an object to be polished with high accuracy with a polishing pad while supplying a slurry containing abrasive grains and a reaction solution to the surface of the object to be polished.
- the material constituting the polishing layer of the polishing pad used in this method include polyurethane having a closed cell structure.
- Polyurethane having a closed cell structure is generally produced by casting foam curing using a two-component curable polyurethane (for example, Patent Documents 1 to 4).
- a two-component curable polyurethane for example, Patent Documents 1 to 4.
- the reaction and foaming uniform it is difficult to make the reaction and foaming uniform, and there is a limit to increasing the hardness of the obtained polyurethane, so that the polishing characteristics such as the flatness of the surface to be polished and the flattening efficiency are likely to fluctuate.
- the foamed structure has independent holes, polishing slurry and polishing debris used in the polishing process easily invade the voids and become clogged, resulting in problems such as a decrease in polishing speed and a shortened pad life. ..
- examples of the polyurethane constituting the polishing layer include those in which a non-woven fabric is impregnated with a polyurethane resin and solidified (for example, Patent Documents 5 to 7). Since such a non-woven fabric type polishing pad has an uneven structure, voids, and a communication hole structure due to the structure of the non-woven fabric, it is easy to improve the polishing rate because the slurry has a good liquid pooling property at the time of polishing, and it is flexible. Since it is high, it has a feature of good contact with a wafer.
- Japanese Unexamined Patent Publication No. 2000-178374 Japanese Unexamined Patent Publication No. 2000-248034 Japanese Unexamined Patent Publication No. 2001-89548 Japanese Unexamined Patent Publication No. 11-322878 Japanese Unexamined Patent Publication No. 11-99479 Japanese Unexamined Patent Publication No. 2005-212055 Japanese Unexamined Patent Publication No. 3-234475
- the liquid accumulation property of the slurry is good due to the uneven structure of the non-woven fabric, etc., while the hardness and elastic modulus of the polyurethane change due to the clogging of the abrasive grains in the unevenness, etc.
- the wafer is easily scratched.
- the stability of polishing is lowered due to a change in hardness or the like due to clogging, and the life of the polishing pad is shortened.
- the present invention has been made in view of the above-mentioned conventional problems, and constitutes a polishing layer capable of stably polishing with a long life while suppressing the occurrence of scratches by suppressing clogging of the polishing layer. It is an object of the present invention to provide a polyurethane to be used, a polishing layer using the same, a polishing pad, and a polishing method.
- the gist of the present invention is the following [1] to [10].
- [1] Polyurethane having at least one structural unit derived from a compound having a carboxy group.
- the above [1] contains at least a structural unit derived from the compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and a structural unit derived from an organic diisocyanate. Described polyurethane.
- [4] A polishing layer using the polyurethane according to any one of the above [1] to [3].
- [5] The polishing layer according to the above [4], wherein the polishing layer is obtained by impregnating a non-woven fabric with the polyurethane and further solidifying the non-woven fabric.
- [6] The polishing layer according to the above [4] or [5], wherein the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is -10.0 mV or less.
- [7] The polishing layer according to any one of [4] to [6] above, wherein the polyurethane is a non-foaming material.
- the polyurethane has a storage elastic modulus of 50 to 1,200 MPa and a contact angle with water of 80 degrees or less measured at 50 ° C. after being saturated and swollen with water at 50 ° C. 4]
- the polishing layer according to any one of [7].
- polyurethane constituting a polishing layer capable of stably polishing with a long life while suppressing the occurrence of scratches by suppressing clogging of the polishing layer, a polishing layer using the same, and polishing. Pads, as well as polishing methods, can be provided.
- FIG. 1 is a schematic diagram for explaining the carboxy group present in the molecular structure of polyurethane with respect to the polyurethane of the present invention having a structural unit derived from dimethylolpropionic acid.
- FIG. 2 is a schematic diagram for explaining a state in which the carboxy group is dissociated in FIG.
- FIG. 3 is a schematic view for explaining the polishing method of the present invention.
- FIG. 4 is a photograph showing the types of scratches (evaluation criteria) of the object to be polished in Examples and Comparative Examples.
- the polyurethane of the present invention has at least one structural unit derived from a compound having a carboxy group. According to the present invention, since it has at least one structural unit derived from a compound having a carboxy group, the carboxy group is present in the molecular structure of polyurethane. When this is used as a material for the polishing layer of the polishing pad, the concavo-convex portion of the polishing layer is clogged with abrasive grains due to the repulsive force between the negative potential generated by the dissociation of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur. Therefore, it is possible to suppress scratches caused by clogging and to stably polish with a long life. In the present invention, by adjusting the amount of carboxy groups present in the molecular structure of polyurethane, it is possible to impart not only the negative potential of the polyurethane surface but also properties such as hydrophilicity.
- the polyurethane of the present invention can be produced, for example, by using a compound having a carboxy group in addition to the raw materials used for producing general polyurethane.
- a compound having a carboxy group include dimethylolpropionic acid and the like, and by reacting this with a raw material such as a polymer diol or isocyanate, the molecular structure shown in the schematic diagram of FIG. 1 is shown.
- a polyurethane having a carboxy group inside can be obtained. As described above, this carboxy group can improve the hydrophilicity of the surface of polyurethane and improve the wettability on the surface of polyurethane.
- FIG. 2 is a diagram for explaining a state in which the carboxy group of polyurethane is dissociated in FIG.
- the carboxy group dissociates into ⁇ COO ⁇ and H + as shown in FIG. 2, so that the surface of the polyurethane is negative due to ⁇ COO ⁇ .
- the potential of can be imparted. Therefore, when the polyurethane of the present invention is used as the polishing layer, the carboxy group is dissociated when an alkaline slurry is used, and the zeta potential of the polishing layer becomes negative due to ⁇ COO ⁇ .
- the abrasive grains in the alkaline slurry and the polyurethane are repelled by the repulsive force, so that the abrasive grains are less likely to be clogged in the uneven portion of the polishing layer, and as a result, the polishing efficiency is improved.
- the polyurethane of the present invention is not particularly limited as long as it has at least one structural unit derived from a compound having a carboxy group, and may be a thermoplastic polyurethane or a thermosetting polyurethane.
- Thermoplastic polyurethane is preferable because it can be continuously produced by melt polymerization and can be easily processed into a sheet when used as a polishing layer of a polishing pad.
- the polyurethane of the present invention can be suitably used not only for the polishing layer of a polishing pad, but also for imparting hydrophilicity to the surface of polyurethane and for applications requiring modification of electrical properties and the like.
- thermoplastic polyurethane will be described in detail as an example of the polyurethane of the present invention.
- the thermoplastic polyurethane according to the present invention is, for example, from the viewpoint of ease of production, a structural unit derived from a compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and an organic diisocyanate. It is preferable that the structural unit derived from the above is contained at least.
- Compound having a carboxy group examples include a diol having a carboxy group, a diamine having a carboxy group, a polymer diol having a carboxy group, and derivatives thereof. Specific examples thereof include compounds represented by the following general formulas (1) to (3).
- R 1 to R 6 each independently represent a hydroxyl group or an amino group, and R may each independently have a substituent and has 1 to 10 carbon atoms. Indicates a trivalent or aromatic hydrocarbon group of, and R'independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms. L, m and n are integers of 1 to 10. Show.
- Examples of such a compound having a carboxy group include dimethylolpropionic acid, dimethylolbutanoic acid, tartaric acid, 2-hydroxypropionic acid, malic acid, and 4-hydroxymethylbenzoic acid from the viewpoints of excellent reactivity and availability.
- Examples include acid.
- the compound represented by the formula (1) is preferable, and among the compounds represented by the formula (1), a compound in which R is a trivalent hydrocarbon group having 1 to 6 carbon atoms is more preferable, and the rigidity of the polishing layer is improved. From the viewpoint of expressing the characteristics of the zeta potential while ensuring it, dimethylol propionic acid and dimethylol butanoic acid are more preferable.
- chain extender examples include compounds usually used in the production of polyurethane (excluding the compounds having a carboxy group). Specific examples thereof include low molecular weight compounds having two or more active hydrogen atoms capable of reacting with isocyanate groups and having a molecular weight of 300 or less and which do not contain dienophile or diene.
- chain extender examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3.
- diols such as 1,4-butanediol and 1,5-pentanediol and diamines such as hydrazine are preferable from the viewpoint of improving the rigidity of the polishing layer.
- the ratio (mol%) of the compound having a carboxy group to the total amount of the compound having a carboxy group and the chain extender is appropriately selected depending on the intended purpose, but is preferably 5 to 5 to, for example. It is 90 mol%, more preferably 10 to 70 mol%, still more preferably 15 to 60 mol%.
- the content ratio of the compound having a carboxy group is within the above range, a negative potential that sufficiently repels the negative potential of the abrasive grains can be imparted to the polyurethane.
- polymer diol Specific examples of the polymer diol include polyether diols, polyester diols, polycarbonate diols, and the like. These may be used alone or in combination of two or more. Among these, a polyether diol and a polycarbonate diol are preferable, and a polyether diol is more preferable, from the viewpoint of excellent availability and reactivity.
- the number average molecular weight of the polymer diol is preferably 450 to 3,000, more preferably 500 to 2,700, and even more preferably 550 to 2,400. When the number average molecular weight of the polymer diol is within the above range, it is easy to obtain a polishing layer that maintains the required characteristics such as rigidity, hardness, and hydrophilicity.
- the number average molecular weight of the polymer diol means the number average molecular weight calculated based on the hydroxyl value measured in accordance with JIS K 1557-1: 2007.
- polyether diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), glycerin-based polyalkylene ether glycol, and the like. These may be used alone or in combination of two or more. Among these, polyethylene glycol and polytetramethylene glycol are preferable.
- polyester diol in the present invention, polyester diol can be used.
- the polyester diol can be obtained, for example, by directly subjecting an ester-forming derivative such as a dicarboxylic acid or an ester thereof or an anhydride to a low molecular weight diol by a transesterification reaction or a transesterification reaction.
- dicarboxylic acid, its ester, and its anhydride for producing a polyesterdiol include, for example, oxalic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, and the like.
- An aliphatic dicarboxylic acid having 2 to 12 carbon atoms such as a diacid; a dimerated aliphatic dicarboxylic acid having 14 to 48 carbon atoms (dimeric acid) obtained by dimerizing an unsaturated fatty acid obtained by distilling a triglyceride, and hydrogenation thereof.
- Examples thereof include aliphatic dicarboxylic acids such as substances (hydrogenated dimer acid); alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and orthophthalic acid.
- Specific examples of the dimer acid and the hydrogenated dimer acid include, for example, the trade names "Pripole 1004", “Pripole 1006", “Pripole 1009", and “Pripole 1013" manufactured by Unichema. These may be used alone or in combination of two or more.
- the low molecular weight diol for producing the polyester diol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1, and so on.
- Alipid diols such as methyl-1,8-octanediol, 1,9-nonanediol and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol can be mentioned. These may be used alone or in combination of two or more. Among these, a diol having 6 to 12 carbon atoms is preferable, and a diol having 8 to 10 carbon atoms is more preferable.
- polycarbonate diol examples include those obtained by reacting a low molecular weight diol with a carbonate compound such as a dialkyl carbonate, an alkylene carbonate, or a diaryl carbonate.
- a carbonate compound such as a dialkyl carbonate, an alkylene carbonate, or a diaryl carbonate.
- the low molecular weight diol for producing the polycarbonate diol include the low molecular weight diols exemplified above.
- the dialkyl carbonate include dimethyl carbonate and diethyl carbonate.
- examples of the alkylene carbonate include ethylene carbonate.
- diaryl carbonate examples include diphenyl carbonate and the like.
- Organic diisocyanate is not particularly limited as long as it is an organic diisocyanate usually used for producing polyurethane.
- alicyclic diisocyanate and aromatic diisocyanate are preferable from the viewpoint of improving the abrasion resistance of the obtained polishing layer, and 4,4'-dicyclohexylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, and 2,4 are preferable.
- -Toluene diisocyanate and 2,6-toluene diisocyanate are more preferable, and 4,4'-diphenylmethane diisocyanate is further preferable from the viewpoint of improving the rigidity of the polishing layer.
- the polyurethane of the present invention can be used as a cross-linking agent, a filler, a cross-linking accelerator, a cross-linking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion-imparting agent, and an inorganic filling.
- Agents, organic fillers, crystal nucleating agents, heat-resistant stabilizers, weather-resistant stabilizers, antistatic agents, colorants, lubricants, flame retardants, flame retardants (antimonium oxide, etc.), blooming inhibitors, mold release agents, thickeners , Antioxidants, conductive agents and the like may be contained.
- the content ratio of the additive in the polyurethane is not particularly limited, but is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
- the blending ratio of each component can be appropriately adjusted according to the desired characteristics.
- the amount of the structural unit derived from the compound having a carboxy group in all the structural units constituting the polyurethane is preferably 3 to 30 mol%, more preferably 4 to 20 mol%, and further. It is preferably 6 to 15 mol%, and even more preferably 6 to 12 mol%.
- the amount of the structural unit of the compound having a carboxy group is at least the above lower limit value, the effect derived from the carboxy group can be sufficiently imparted to the obtained polyurethane.
- a negative potential derived from the carboxy group can be sufficiently applied to the polyurethane, by using this in the polishing layer, it is possible to repel the abrasive grains having a negative potential and suppress clogging of the polishing layer. .. Further, when the amount of the structural unit derived from the compound having a carboxy group is not more than the upper limit value, it becomes easy to adjust the physical properties such as the hardness of polyurethane within the range described later.
- the amount of the isocyanate group contained in the organic diisocyanate with respect to 1 mol of the active hydroxyl group contained in the compound having a carboxy group, the polymer diol, and the chain extender is preferably 0.80 to 1.3 mol, more preferably 0. .90-1.2 mol.
- the ratio of the isocyanate group to 1 mol of the active hydroxyl group is at least the above lower limit value, the mechanical strength and abrasion resistance of the thermoplastic polyurethane tend to be improved, and the life of the polishing layer tends to be long.
- the ratio of the isocyanate group to 1 mol of the active hydrogen atom is not more than the above upper limit value, the productivity and storage stability of the thermoplastic polyurethane are improved, and the polishing layer tends to be easily produced.
- thermoplastic polyurethane is obtained by polymerizing the above-mentioned raw materials by a urethanization reaction using a known prepolymer method or one-shot method. More specifically, a method of blending each of the above-mentioned components in a predetermined ratio in the absence of a solvent and performing melt polymerization while melt-mixing using a single-screw or multi-screw screw extruder. Alternatively, a method of producing by polymerization by a prepolymer method in the presence of a solvent can be mentioned. The melt polymerization may be carried out continuously.
- the concentration of the reaction solution is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 20 to 50% by mass from the viewpoint of operability due to reactivity and viscosity.
- thermoplastic polyurethane is pelletized and then molded into a sheet-shaped molded product by various molding methods such as an extrusion molding method, an injection molding method, a blow molding method, and a calendar molding method.
- various molding methods such as an extrusion molding method, an injection molding method, a blow molding method, and a calendar molding method.
- extrusion molding using a T-die a sheet-shaped molded product having a uniform thickness can be obtained.
- the polishing layer of the present invention uses the polyurethane of the present invention.
- the polyurethane of the present invention has a carboxy group in its molecular structure, and by using this in the polishing layer, the abrasive grains are clogged due to the repulsive force between the negative potential of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur, so it is possible to perform stable polishing with a long life while suppressing scratches.
- the slurry used in CMP includes an alkaline slurry, and the abrasive grains contained in the alkaline slurry usually have a negative zeta potential.
- the polishing layer of the present invention uses polyurethane having a carboxy group, the carboxy group on the surface dissociates into ⁇ COO ⁇ when it comes into contact with an alkaline slurry, so that the zeta on the surface of the polishing layer
- the potential becomes low, for example, to about -10 mV or less.
- the abrasive grains showing a negative zeta potential in alkalinity and the polishing layer show electrostatic repulsion, and as a result, the adhesion of the abrasive grains to the polishing layer is prevented, and clogging is suppressed especially in the non-woven fabric-based polishing layer. It is presumed that the occurrence of scratches and defects can be reduced.
- the polishing layer may be either a polyurethane foam or a polyurethane non-foam, but is preferably a non-foam.
- the polishing layer is a non-foamed polyurethane, the polishing characteristics are less likely to fluctuate and stable polishing can be realized.
- the polishing layer of the present invention may be formed by molding polyurethane into a sheet shape, or may be a non-woven fabric impregnated with the polyurethane of the present invention and further solidified.
- polyurethane By using polyurethane, abrasive grains are less likely to enter the unevenness caused by the non-woven fabric, and stable polishing is possible with a long life. Therefore, the non-woven fabric is impregnated with the polyurethane of the present invention and further solidified.
- a polished layer is preferred.
- an organic solution such as an N, N-dimethylformamide solution (DMF solution) having a polyurethane concentration of preferably 10 to 50% by mass, more preferably 20 to 40% by mass is prepared. To do. Next, this is preferably heated to about 27 to 40 ° C., and the non-woven fabric is allowed to stand on this for preferably about 5 to 20 minutes to allow the organic solvent to permeate. Then, the non-woven fabric is subsided in an organic solution of polyurethane for preferably 2 to 15 minutes, and then the excessively adhered organic solution is removed from the removed non-woven fabric.
- DMF solution N, N-dimethylformamide solution
- the polyurethane is solidified by immersing the non-woven fabric in an aqueous solution having an organic solvent concentration of 5 to 30% by mass and about 27 to 40 ° C. Then, if necessary, the non-woven fabric is washed with an organic solvent, water, or the like and dried to obtain a non-woven fabric impregnated with polyurethane.
- the polyurethane solution impregnated in the non-woven fabric in the present invention include water-based polyurethane and solvent-based polyurethane.
- the water-based polyurethane means a polyurethane that can be used by being dispersed in water or an aqueous solution
- the solvent-based polyurethane means a polyurethane that can be used by being dissolved in an organic solvent.
- solvent-based polyurethane is more preferable from the viewpoint of improving the degree of freedom in selecting a chain extender that contributes to the development of the zeta potential.
- the non-woven fabric that can be used in the present invention is not particularly limited, and examples thereof include non-woven fabrics made of fibers mainly composed of polyester resins such as nylon, polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
- polyester resins such as nylon, polybutylene terephthalate (PBT) and polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the storage elastic modulus is unlikely to fluctuate and the polishing efficiency is stable.
- the storage elastic modulus fluctuates due to the high water absorption rate during polishing, the polishing pad is easily deformed, and the polishing efficiency is likely to decrease. ..
- polyester fiber When polyester fiber is used, its average single fiber fineness is preferably 0.01 to 5.0 dtex, more preferably 0.03 to 1.0 dtex. If the average single fiber fineness is at least the above lower limit value, the fibers are less likely to break during dressing, so that scratches due to falling off can be prevented. On the other hand, when the average single fiber fineness is not more than the upper limit value, the load on the object to be polished does not become too large, so that scratching can be prevented.
- the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is preferably -10.0 mV or less, more preferably -50. It is .0 to -12.0 mV, more preferably -40.0 to -15.0 mV, even more preferably -30.0 to -17.0 mV, and even more preferably -27.0 to -17.0 mV. It is -20.0 mV.
- the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is equal to or less than the upper limit value, the polishing layer and the abrasive grains are electrically repelled, so that the effect of suppressing clogging is improved.
- the zeta potential at pH 7.0 is at least the above lower limit value, the slurry held on the polishing surface does not become too small, and a good polishing rate can be maintained.
- the zeta potential refers to the potential generated on the surface (sliding surface) of the electric double layer by counterions according to the surface charge of the substance when the substance comes into contact with the liquid.
- a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 7.0 with an aqueous NaCl solution using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.) Can be measured using.
- ELS-Z electrophoretic light scattering device
- the zeta potential of the polyurethane forming the polishing layer at pH 5.0 is preferably ⁇ 5.0 mV or less, more preferably -40.0 to -12.0 mV, and further preferably from the same viewpoint as described above. Is -35.0 to -15.0 mV, and even more preferably -30.0 to -17.0 mV.
- the zeta potential of the polyurethane forming the polishing layer at pH 8.0 is preferably -15.0 mV or less, more preferably -60.0 to -20.0 mV, still more preferably, from the same viewpoint as described above. Is -50.0 to -25.0 mV, and even more preferably -40.0 to -30.0 mV.
- the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1,100 MPa, and further. It is preferably 200 to 1,000 MPa, and even more preferably 400 to 1,000 MPa.
- the storage elastic modulus at 50 ° C. is at least the lower limit value, the polishing layer has appropriate softness, so that the polishing rate becomes good.
- the storage elastic modulus is not more than the upper limit value, the scratches on the surface to be polished of the object to be polished tend to be reduced.
- the storage elastic modulus can be measured by the method described in Examples.
- the polyurethane satisfying the storage elastic modulus can be obtained, for example, by adjusting the content of nitrogen atoms derived from the isocyanate group in the polyurethane.
- the content of nitrogen atoms derived from isocyanate groups in polyurethane is preferably 4.5 to 7.6% by mass, more preferably 5.0 to 7.4% by mass, and even more preferably. It is 5.2 to 7.3% by mass.
- the contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferably 60 degrees or less, still more preferably 49 degrees or less.
- the contact angle of polyurethane with water can be measured according to the method described in Examples.
- the polyurethane constituting the polishing layer of the present invention preferably has the storage elastic modulus within the above range and the contact angle with water within the above range.
- the polyurethane constituting the polishing layer is saturated and swollen with water at 50 ° C., and then the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1, It is 100 MPa, more preferably 200 to 1,000 MPa, and the contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferable. Is 60 degrees or less, and more preferably 50 degrees or less. When both the storage elastic modulus and the contact angle with water are within the above ranges, polishing uniformity and polishing stability are further improved.
- the non-woven fabric may be impregnated with polyurethane and solidified, or may be made of a molded sheet of polyurethane, but the density of polyurethane when made of a molded sheet is preferably 1.0 g. It is / cm 3 or more, more preferably 1.1 g / cm 3 or more, and further preferably 1.2 g / cm 3 or more.
- the density of the molded product of the thermoplastic polyurethane is at least the above lower limit value, the polishing layer has appropriate flexibility.
- non-foamed thermoplastic polyurethane is particularly preferable because it is excellent in polishing stability due to its high rigidity and material homogeneity.
- the shape of the polishing layer of the present invention can be appropriately adjusted by cutting, slicing, punching, or the like, for example, a sheet-shaped molded body of thermoplastic polyurethane.
- the thickness of the polishing layer is not particularly limited, but is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm, and even more preferably 1.2 to 2.0 mm. When the thickness of the polishing layer is within the above range, productivity and handleability are improved, and stability of polishing performance is also improved.
- the hardness of the polishing layer is preferably 60 or more, more preferably 65 or more, and preferably 95 or less, more preferably 90 or less, as measured by JIS K 6253-3: 2012.
- the hardness is at least the above lower limit value, the followability of the polishing pad to the surface to be polished becomes low, and the flatness is improved.
- the hardness is not more than the upper limit value, scratches are less likely to occur, which is preferable.
- the polished surface of the polishing layer is formed with recesses such as grooves and holes in a predetermined concentric, lattice-like, spiral-like, and radial patterns by grinding or laser processing.
- recesses are useful for uniformly and sufficiently supplying the slurry to the polished surface, discharging polishing debris that causes scratches, and preventing wafer damage due to adsorption of the polishing layer.
- the distance between the grooves is preferably 1.0 to 50 mm, more preferably 1.5 to 30 mm, and further preferably 2.0 to 15 mm.
- the width of the groove is preferably 0.1 to 3.0 mm, more preferably 0.2 to 2.0 mm.
- the depth of the groove is less than the thickness of the polishing layer, preferably 0.2 to 1.8 mm, and more preferably 0.4 to 1.5 mm.
- a shape such as a rectangle, a trapezoid, a triangle, or a semicircle is appropriately selected according to an object.
- the polishing pad of the present invention uses the polishing layer of the present invention.
- the polishing pad of the present invention may be composed of only the polishing layer of the present invention, or may be a laminated body in which a cushion layer is laminated on a surface of the polishing layer that is not the polishing surface.
- the cushion layer is preferably a layer having a hardness lower than the hardness of the polishing layer.
- the hard polishing layer follows the local unevenness of the surface to be polished, and the cushion layer responds to the warp and waviness of the entire substrate to be polished. In order to follow, it is possible to perform polishing with an excellent balance between global flatness (a state in which irregularities with a large period of the wafer substrate are reduced) and local flatness (a state in which local irregularities are reduced).
- the material used as the cushion layer include a composite in which a non-woven fabric is impregnated with polyurethane (for example, "Suba400" (manufactured by Nitta Haas Co., Ltd.)); natural rubber, nitrile rubber, polybutadiene rubber, silicone rubber, etc. Rubber; thermoplastic elastomers such as polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and fluorine-based thermoplastic elastomers; foamed plastics; polyurethane and the like.
- polyurethane having a foamed structure is particularly preferable because it is easy to obtain preferable flexibility as a cushion layer.
- the thickness of the cushion layer is not particularly limited, but is preferably about 0.5 to 5 mm, for example. If the cushion layer is too thin, the effect of following the entire warp or waviness of the surface to be polished tends to decrease, and the global flatness tends to decrease. On the other hand, if the cushion layer is too thick, the entire polishing pad tends to be soft and stable polishing tends to be difficult. When the cushion layer is laminated on the polishing layer, the thickness of the polishing pad is preferably about 0.3 to 5 mm.
- the polishing method of the present invention uses the polishing layer of the present invention, and includes a step of fixing a polishing pad provided with the polishing layer on a surface plate of a polishing apparatus. A step of holding the object to be polished in the holder of the polishing apparatus so as to face the polished surface of the polishing layer, and A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished.
- It is a polishing method having.
- polishing method of the present invention when CMP is performed using an alkaline slurry, clogging of the abrasive grains can be suppressed by improving the repulsive force between the abrasive grains in the slurry and the polishing pad. This makes it possible to extend the life of the polishing pad.
- CMP An embodiment in the case where the polishing method of the present invention is performed by CMP will be described with reference to FIG.
- a CMP apparatus 10 including a circular rotary surface plate 2 shown in FIG. 3, a slurry supply nozzle 3, a holder 4, and a pad conditioner 6 is used.
- a polishing pad 1 having the above-mentioned polishing layer is attached to the surface of the rotary surface plate 2 with double-sided tape or the like. Further, the holder 4 supports the object to be polished 5.
- the rotary surface plate 2 is rotated in the direction indicated by the arrow by the motor shown in the figure. Further, the holder 4 is rotated in the plane of the rotary surface plate 2 by a motor (not shown) in the direction indicated by, for example, an arrow.
- the pad conditioner 6 is also rotated in the plane of the rotary surface plate 2 by a motor (not shown) in the direction indicated by an arrow, for example.
- a pad conditioner 6 for CMP in which diamond particles are fixed to the carrier surface by nickel electrodeposition or the like is pressed against it. Then, the polished surface of the polishing pad 1 is conditioned. Conditioning adjusts the polished surface to a surface roughness suitable for polishing the surface to be polished.
- the slurry 7 is supplied from the slurry supply nozzle 3 to the polished surface of the rotating polishing pad 1. Further, when performing CMP, if necessary, a lubricating oil, a coolant, or the like may be used in combination with the slurry.
- the slurry includes an acidic slurry, an alkaline slurry, and a slurry in the vicinity of neutrality.
- a liquid medium such as water or oil
- abrasive grains such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide.
- a slurry used for CMP containing a base, an acid, a surfactant, an oxidizing agent such as a hydrogen peroxide solution, a reducing agent, a chelating agent, etc. is preferably used.
- the CMP is adjusted to alkaline using a neutral or alkaline slurry, and CMP is preferably prepared using a slurry having a pH of 5.0 to 12.0, more preferably a pH of 6.0 to 10.0. This is preferable in that the repulsive force between the abrasive grains and the polishing layer is maintained.
- the rotating object 5 fixed to the holder 4 is pressed against the polishing pad 1 in which the slurry 7 is evenly distributed on the polishing surface of the polishing layer. Then, the polishing process is continued until a predetermined flatness is obtained. Finishing quality is affected by adjusting the pressing force applied during polishing and the speed of relative movement between the rotary surface plate 2 and the holder 4.
- the polishing conditions are not particularly limited, but in order to perform efficient polishing, it is preferable that the rotation speeds of the rotary surface plate and the holder are as low as 300 rpm or less, and the pressure applied to the object to be polished causes scratches after polishing. It is preferably 150 kPa or less so as not to prevent it.
- the amount of the slurry supplied is not particularly limited, but it is preferable to supply the slurry so that the polished surface is always covered with the slurry.
- the object to be polished after polishing is thoroughly washed with running water, and then water droplets adhering to the object to be polished are wiped off and dried using a spin dryer or the like.
- a spin dryer or the like By polishing the surface to be polished with the slurry in this way, a smooth surface can be obtained over the entire surface to be polished.
- the above-mentioned CMP can be suitably used for polishing various semiconductor materials such as silicon wafers.
- Example 1 Polytetramethylene glycol (PTG850) having a number average molecular weight of 850, dimethylolpropionic acid (DMP), which is a compound having a carboxy group, 1,4-butanediol (BD), and 4,4'-diphenylmethane diisocyanate (MDI).
- DMP dimethylolpropionic acid
- BD 1,4-butanediol
- MDI 4,4'-diphenylmethane diisocyanate
- Examples 2 to 10 and Comparative Examples 1 to 3 Polyurethanes of Examples 2 to 10 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1 except that the formulations shown in Table 1 were used. The obtained thermoplastic polyurethane was evaluated as described later. The results are shown in Table 1.
- thermoplastic polyurethane produced in Examples and Comparative Examples are sandwiched between Teflon (registered trademark) sheets and then pressed at 200 to 230 ° C. using a hot press to form the molded product.
- a molded sheet of thermoplastic polyurethane having a thickness of 0.3 to 0.5 mm was obtained.
- the obtained molded sheet was cut into a size of 30 mm ⁇ 60 mm, and the surface thereof was washed. Then, using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.), the sample was attached to the plate measurement cell.
- ELS-Z electrophoretic light scattering device
- the zeta potential was measured using a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 5.0, pH 7.0, and pH 8.0 with an aqueous NaOH solution.
- a monitor latex manufactured by Otsuka Electronics Co., Ltd.
- ⁇ Contact angle with water> For each thermoplastic polyurethane produced in Examples and Comparative Examples, a film having a thickness of 300 ⁇ m was prepared by a heat pressing method. Next, the obtained film was left to stand under the conditions of 20 ° C. and 65% RH for 3 days, and 15 minutes after dropping water on the surface, a contact angle with water using DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd. was used. Was measured.
- Polishing pads were manufactured and evaluated using the polyurethanes obtained in Examples and Comparative Examples.
- a strand of 25 islands of sea-island type composite fiber containing polyethylene terephthalate (PET) as an island component and water-soluble thermoplastic PVA as a sea component and having a mass ratio of sea component / island component of 25/75 is melted at 265 ° C.
- a sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing.
- the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
- an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried.
- the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber).
- a raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
- thermoplastic polyurethane of Examples and Comparative Examples The obtained raw fabric was cut out to a size of 380 mm ⁇ 380 mm. Next, the cut out raw fabric was impregnated with the thermoplastic polyurethanes obtained in Examples and Comparative Examples, respectively. The impregnation was applied as follows. A DMF solution having a concentration of 25% by mass of each thermoplastic polyurethane was heated to 30 ° C., and the raw fabric was allowed to stand on it for 10 minutes to allow the DMF solution to permeate. Next, the raw fabric was subsided in the DMF solution for 5 minutes, the raw fabric was taken out and placed on a glass plate, and the surface of the raw fabric was traced with a doctor knife to remove the adhered DMF solution. The same operation was performed on the back surface.
- thermoplastic polyurethanes of Examples and Comparative Examples were solidified by leaving this for 30 minutes, and then the raw fabric impregnated with the thermoplastic polyurethane was immersed in hot water at 70 to 95 ° C.
- the raw fabric impregnated with the thermoplastic polyurethane was sandwiched between metal rolls, water was squeezed out, and then the fabric was immersed in hot water again and washed with water. This operation was repeated until the DMF concentration of the squeezed water became 0.3% by mass or less.
- concentration of DMF was measured with an Abbe refractometer 1T (Atago Co., Ltd.).
- the raw fabric washed with water was placed in a hot air dryer (device name: Safety Oven SPH-202 / ESPEC CO., LTD.) And dried at 100 ° C. for 40 minutes. In this way, the original fabric of the polishing pad was obtained.
- the obtained polishing pad was polished according to the polishing method of the present invention. Specifically, the obtained polishing pad was attached to a polishing device "MAT-BC15" manufactured by MAT Co., Ltd. Then, using a diamond dresser (# 100-coverage 80%, diameter 19 cm, mass 1 kg) manufactured by A.L.M. Co., Ltd., while flowing distilled water at a speed of 150 mL / min, the dresser rotation speed is 140 rpm and the platen rotation speed is 100 rpm. The pad surface was conditioned under the condition of 15 minutes. Next, a slurry having a pH of 7.0 to 11 was prepared by diluting the slurry (colloidal silica, slurry concentration 1%) 20 times.
- a 4-inch silicon wafer was polished for 60 seconds.
- the polishing pad was conditioned for 30 seconds.
- another silicon wafer was polished again and further conditioned for 30 seconds. In this way, 10 silicon wafers were polished.
- the speed was calculated from the weight change before and after polishing the 10th silicon wafer, and the average value was taken as the polishing speed.
- FIG. 4 is a diagram showing each of a state with scratches, a state with scratches, and a state with stains and unpolished residue, and corresponds to "3" to "4" in the following evaluations.
- Example 11 Manufacture of raw fabric containing PET non-woven fabric and non-porous polyurethane
- a sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing.
- the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
- an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried.
- the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber).
- a raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
- thermoplastic polyurethane of Examples and Comparative Examples Next, the obtained non-woven fabric was impregnated with an aqueous dispersion of the crosslinked polyurethane elastic body A adjusted to have a solid content concentration of 25% by mass.
- the aqueous dispersion of the crosslinked polyurethane elastic body A contains 95% by mass of an amorphous polycarbonate-based polyol which is a copolymerized polyol of hexamethylene carbonate and pentamethylene carbonate, and 2,2-bis (hydroxymethyl) propionic acid 5.
- a polyol component consisting of mass% a chain extender composed of dimethylolpropionic acid (a diol having a carboxy group), 4,4'-dicyclohexylmethanediisocyanate, and an amine-based chain extension composed of hydrazine.
- This is obtained by adding 3 parts by mass of a carbodiimide-based cross-linking agent to 100 parts by mass of an aqueous dispersion of polyurethane obtained by blending and polymerizing the agent.
- the component ratio of the polyol component, the polyisocyanate component, and the chain extender forming the polyurethane was blended in the ratio
- the solid content of the aqueous dispersion was 15% by mass with respect to the mass of the non-woven fabric.
- the non-woven fabric impregnated with the aqueous dispersion was heat-treated at 90 ° C. in a 50% RH atmosphere to solidify the polyurethane.
- the crosslinked structure was formed by further heat-treating at 150 ° C.
- by further heat pressing at 150 ° C. the original fabric of the polishing pad was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Provided are: a polyurethane for forming a polishing layer in which clogging can be suppressed, and polishing can be performed stably and with long service life with suppressed occurrence of damage; a polishing layer and polishing pad which use the polyurethane; and a polishing method. A polyurethane having at least one structural unit derived from a compound having a carboxy group. A polishing layer and polishing pad which use the polyurethane, and a polishing method.
Description
本発明は、新規なポリウレタン、それを用いた研磨層、研磨パッド及び研磨方法に関する。
The present invention relates to a novel polyurethane, a polishing layer using the same, a polishing pad, and a polishing method.
近年、半導体ウェハや半導体デバイスは、高集積化や多層配線化が要求されていることから、それらの材料の基礎的な品質、例えば該表面の平坦性等の向上について要求が高まっている。
半導体ウェハの表面を平坦化するための研磨方法としては、CMP(化学的機械的研磨;Chemical Mechanical Polishing)が挙げられる。CMPは被研磨物の表面に対して、砥粒及び反応液を含むスラリーを供給しながら研磨パッドで被研磨物を高精度に研磨する方法である。この方法に用いられる研磨パッドの研磨層を構成する材料としては、例えば、独立気泡構造を有するポリウレタンが挙げられる。独立気泡構造を有するポリウレタンは、一般に2液硬化型ポリウレタンを用いて注型発泡硬化することによって製造される(例えば、特許文献1~4)。
しかしながら、この方法では反応及び発泡の均一化が困難であるうえ、得られるポリウレタンの高硬度化に限界があることから、被研磨面の平坦性や平坦化効率等の研磨特性が変動しやすい。また、発泡構造が独立孔であるため、研磨工程において使用される研磨スラリーや研磨屑がその空隙に侵入して目詰まりしやすく、研磨速度の低下やパッド寿命が短くなる等の問題があった。 In recent years, semiconductor wafers and semiconductor devices are required to have high integration and multi-layer wiring, and therefore, there is an increasing demand for improvement of basic quality of these materials, for example, flatness of the surface.
Examples of the polishing method for flattening the surface of the semiconductor wafer include CMP (Chemical Mechanical Polishing). CMP is a method of polishing an object to be polished with high accuracy with a polishing pad while supplying a slurry containing abrasive grains and a reaction solution to the surface of the object to be polished. Examples of the material constituting the polishing layer of the polishing pad used in this method include polyurethane having a closed cell structure. Polyurethane having a closed cell structure is generally produced by casting foam curing using a two-component curable polyurethane (for example, Patent Documents 1 to 4).
However, with this method, it is difficult to make the reaction and foaming uniform, and there is a limit to increasing the hardness of the obtained polyurethane, so that the polishing characteristics such as the flatness of the surface to be polished and the flattening efficiency are likely to fluctuate. In addition, since the foamed structure has independent holes, polishing slurry and polishing debris used in the polishing process easily invade the voids and become clogged, resulting in problems such as a decrease in polishing speed and a shortened pad life. ..
半導体ウェハの表面を平坦化するための研磨方法としては、CMP(化学的機械的研磨;Chemical Mechanical Polishing)が挙げられる。CMPは被研磨物の表面に対して、砥粒及び反応液を含むスラリーを供給しながら研磨パッドで被研磨物を高精度に研磨する方法である。この方法に用いられる研磨パッドの研磨層を構成する材料としては、例えば、独立気泡構造を有するポリウレタンが挙げられる。独立気泡構造を有するポリウレタンは、一般に2液硬化型ポリウレタンを用いて注型発泡硬化することによって製造される(例えば、特許文献1~4)。
しかしながら、この方法では反応及び発泡の均一化が困難であるうえ、得られるポリウレタンの高硬度化に限界があることから、被研磨面の平坦性や平坦化効率等の研磨特性が変動しやすい。また、発泡構造が独立孔であるため、研磨工程において使用される研磨スラリーや研磨屑がその空隙に侵入して目詰まりしやすく、研磨速度の低下やパッド寿命が短くなる等の問題があった。 In recent years, semiconductor wafers and semiconductor devices are required to have high integration and multi-layer wiring, and therefore, there is an increasing demand for improvement of basic quality of these materials, for example, flatness of the surface.
Examples of the polishing method for flattening the surface of the semiconductor wafer include CMP (Chemical Mechanical Polishing). CMP is a method of polishing an object to be polished with high accuracy with a polishing pad while supplying a slurry containing abrasive grains and a reaction solution to the surface of the object to be polished. Examples of the material constituting the polishing layer of the polishing pad used in this method include polyurethane having a closed cell structure. Polyurethane having a closed cell structure is generally produced by casting foam curing using a two-component curable polyurethane (for example, Patent Documents 1 to 4).
However, with this method, it is difficult to make the reaction and foaming uniform, and there is a limit to increasing the hardness of the obtained polyurethane, so that the polishing characteristics such as the flatness of the surface to be polished and the flattening efficiency are likely to fluctuate. In addition, since the foamed structure has independent holes, polishing slurry and polishing debris used in the polishing process easily invade the voids and become clogged, resulting in problems such as a decrease in polishing speed and a shortened pad life. ..
一方、研磨層を構成するポリウレタンとして、ポリウレタン樹脂を不織布に含浸、凝固させたものも挙げられる(例えば、特許文献5~7)。このような不織布タイプの研磨パッドは、不織布の構造に起因した凹凸構造、空隙、連通孔構造を有するため、研磨時にスラリーの液溜まり性がよいため研磨レートを向上させやすく、また、柔軟性が高いためウェハとの接触性が良好であるという特徴を有している。
On the other hand, examples of the polyurethane constituting the polishing layer include those in which a non-woven fabric is impregnated with a polyurethane resin and solidified (for example, Patent Documents 5 to 7). Since such a non-woven fabric type polishing pad has an uneven structure, voids, and a communication hole structure due to the structure of the non-woven fabric, it is easy to improve the polishing rate because the slurry has a good liquid pooling property at the time of polishing, and it is flexible. Since it is high, it has a feature of good contact with a wafer.
しかしながら、不織布タイプの研磨パッドは、不織布の凹凸構造等によりスラリーの液溜まり性が良好である一方で、該凹凸等に砥粒が目詰まりすることによりポリウレタンの硬度及び弾性率が変化し、その結果ウェハに傷が付きやすくなるという問題があった。また、目詰まりによる硬度等の変化により研磨の安定性が低下すると共に、研磨パッドの寿命が短くなるという問題があった。
However, in the non-woven fabric type polishing pad, the liquid accumulation property of the slurry is good due to the uneven structure of the non-woven fabric, etc., while the hardness and elastic modulus of the polyurethane change due to the clogging of the abrasive grains in the unevenness, etc. As a result, there is a problem that the wafer is easily scratched. Further, there is a problem that the stability of polishing is lowered due to a change in hardness or the like due to clogging, and the life of the polishing pad is shortened.
本発明は、前記従来の問題を鑑みてなされたものであって、研磨層の目詰まりを抑制することにより傷の発生を抑制しつつ安定して長寿命で研磨することができる研磨層を構成するポリウレタン、それを用いた研磨層、及び研磨パッド、並びに研磨方法を提供することを課題とする。
The present invention has been made in view of the above-mentioned conventional problems, and constitutes a polishing layer capable of stably polishing with a long life while suppressing the occurrence of scratches by suppressing clogging of the polishing layer. It is an object of the present invention to provide a polyurethane to be used, a polishing layer using the same, a polishing pad, and a polishing method.
前記課題を解決すべく本発明者らが検討を重ねたところ、分子構造内にカルボキシ基が存在するポリウレタンを研磨層に用いることにより、研磨時にカルボキシ基が解離して研磨層全体がマイナス電位に変化することがわかった。そして、その結果マイナス電位の研磨層とマイナス電位の砥粒との間の斥力により砥粒の目詰まりを防止することができ、傷付きを抑制しつつ安定的に長寿命で研磨できることを見出し、本発明を完成させた。
As a result of repeated studies by the present inventors in order to solve the above problems, by using polyurethane having a carboxy group in the molecular structure for the polishing layer, the carboxy group is dissociated during polishing and the entire polishing layer becomes a negative potential. It turned out to change. As a result, it was found that clogging of the abrasive grains can be prevented by the repulsive force between the negative potential polishing layer and the negative potential abrasive grains, and that the polishing can be stably performed over a long life while suppressing scratches. The present invention has been completed.
本発明は下記[1]~[10]を要旨とするものである。
[1]カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するポリウレタン。
[2]前記カルボキシ基を有する化合物に由来する構造単位、鎖延長剤に由来する構造単位、高分子ジオールに由来する構造単位、及び有機ジイソシアネートに由来する構造単位を少なくとも含む、前記[1]に記載のポリウレタン。
[3]前記ポリウレタンを構成する全構造単位中、前記カルボキシ基を有する化合物に由来する構造単位の量が3~30モル%である、前記[1]又は[2]に記載のポリウレタン。
[4]前記[1]~[3]のいずれかに記載のポリウレタンを用いた研磨層。
[5]前記研磨層が不織布に対して前記ポリウレタンを含浸させ、更に凝固させたものである、前記[4]に記載の研磨層。
[6]前記研磨層を構成する前記ポリウレタンのpH7.0におけるゼータ電位が-10.0mV以下である、前記[4]又は[5]に記載の研磨層。
[7]前記ポリウレタンが非発泡体である、前記[4]~[6]のいずれかに記載の研磨層。
[8]前記ポリウレタンについて、50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率が50~1,200MPaであり、且つ水との接触角が80度以下である、前記[4]~[7]のいずれかに記載の研磨層。
[9]前記[4]~[8]のいずれかに記載の研磨層を用いた研磨パッド。
[10]前記[4]~[8]のいずれかに記載の研磨層を用いる研磨方法であって、
前記研磨層を備える研磨パッドを研磨装置の定盤上に固定する工程と、
前記研磨層の研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
前記研磨面と前記被研磨物との間に中性又はアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、
を有する研磨方法。 The gist of the present invention is the following [1] to [10].
[1] Polyurethane having at least one structural unit derived from a compound having a carboxy group.
[2] The above [1] contains at least a structural unit derived from the compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and a structural unit derived from an organic diisocyanate. Described polyurethane.
[3] The polyurethane according to the above [1] or [2], wherein the amount of the structural unit derived from the compound having a carboxy group is 3 to 30 mol% in all the structural units constituting the polyurethane.
[4] A polishing layer using the polyurethane according to any one of the above [1] to [3].
[5] The polishing layer according to the above [4], wherein the polishing layer is obtained by impregnating a non-woven fabric with the polyurethane and further solidifying the non-woven fabric.
[6] The polishing layer according to the above [4] or [5], wherein the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is -10.0 mV or less.
[7] The polishing layer according to any one of [4] to [6] above, wherein the polyurethane is a non-foaming material.
[8] The polyurethane has a storage elastic modulus of 50 to 1,200 MPa and a contact angle with water of 80 degrees or less measured at 50 ° C. after being saturated and swollen with water at 50 ° C. 4] The polishing layer according to any one of [7].
[9] A polishing pad using the polishing layer according to any one of [4] to [8] above.
[10] A polishing method using the polishing layer according to any one of [4] to [8] above.
The process of fixing the polishing pad provided with the polishing layer on the surface plate of the polishing device, and
A step of holding the object to be polished in the holder of the polishing apparatus so as to face the polished surface of the polishing layer, and
A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished. When,
Polishing method with.
[1]カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するポリウレタン。
[2]前記カルボキシ基を有する化合物に由来する構造単位、鎖延長剤に由来する構造単位、高分子ジオールに由来する構造単位、及び有機ジイソシアネートに由来する構造単位を少なくとも含む、前記[1]に記載のポリウレタン。
[3]前記ポリウレタンを構成する全構造単位中、前記カルボキシ基を有する化合物に由来する構造単位の量が3~30モル%である、前記[1]又は[2]に記載のポリウレタン。
[4]前記[1]~[3]のいずれかに記載のポリウレタンを用いた研磨層。
[5]前記研磨層が不織布に対して前記ポリウレタンを含浸させ、更に凝固させたものである、前記[4]に記載の研磨層。
[6]前記研磨層を構成する前記ポリウレタンのpH7.0におけるゼータ電位が-10.0mV以下である、前記[4]又は[5]に記載の研磨層。
[7]前記ポリウレタンが非発泡体である、前記[4]~[6]のいずれかに記載の研磨層。
[8]前記ポリウレタンについて、50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率が50~1,200MPaであり、且つ水との接触角が80度以下である、前記[4]~[7]のいずれかに記載の研磨層。
[9]前記[4]~[8]のいずれかに記載の研磨層を用いた研磨パッド。
[10]前記[4]~[8]のいずれかに記載の研磨層を用いる研磨方法であって、
前記研磨層を備える研磨パッドを研磨装置の定盤上に固定する工程と、
前記研磨層の研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
前記研磨面と前記被研磨物との間に中性又はアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、
を有する研磨方法。 The gist of the present invention is the following [1] to [10].
[1] Polyurethane having at least one structural unit derived from a compound having a carboxy group.
[2] The above [1] contains at least a structural unit derived from the compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and a structural unit derived from an organic diisocyanate. Described polyurethane.
[3] The polyurethane according to the above [1] or [2], wherein the amount of the structural unit derived from the compound having a carboxy group is 3 to 30 mol% in all the structural units constituting the polyurethane.
[4] A polishing layer using the polyurethane according to any one of the above [1] to [3].
[5] The polishing layer according to the above [4], wherein the polishing layer is obtained by impregnating a non-woven fabric with the polyurethane and further solidifying the non-woven fabric.
[6] The polishing layer according to the above [4] or [5], wherein the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is -10.0 mV or less.
[7] The polishing layer according to any one of [4] to [6] above, wherein the polyurethane is a non-foaming material.
[8] The polyurethane has a storage elastic modulus of 50 to 1,200 MPa and a contact angle with water of 80 degrees or less measured at 50 ° C. after being saturated and swollen with water at 50 ° C. 4] The polishing layer according to any one of [7].
[9] A polishing pad using the polishing layer according to any one of [4] to [8] above.
[10] A polishing method using the polishing layer according to any one of [4] to [8] above.
The process of fixing the polishing pad provided with the polishing layer on the surface plate of the polishing device, and
A step of holding the object to be polished in the holder of the polishing apparatus so as to face the polished surface of the polishing layer, and
A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished. When,
Polishing method with.
本発明によれば、研磨層の目詰まりを抑制することにより傷の発生を抑制しつつ安定して長寿命で研磨することができる研磨層を構成するポリウレタン、それを用いた研磨層、及び研磨パッド、並びに研磨方法を提供することができる。
According to the present invention, polyurethane constituting a polishing layer capable of stably polishing with a long life while suppressing the occurrence of scratches by suppressing clogging of the polishing layer, a polishing layer using the same, and polishing. Pads, as well as polishing methods, can be provided.
[ポリウレタン]
本発明のポリウレタンは、カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するものである。
本発明によれば、カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するため、ポリウレタンの分子構造内にはカルボキシ基が存在することになる。そして、これを研磨パッドの研磨層の材料として用いた場合、前記カルボキシ基が解離することにより生じるマイナス電位と、砥粒が有するマイナス電位との斥力により研磨層の凹凸部分に砥粒の目詰まりが生じにくくなる。したがって、目詰まりに起因する傷付きを抑制することができると共に、安定的に長寿命で研磨できる。
なお、本発明においては、ポリウレタンの分子構造内に存在するカルボキシ基の量を調整することにより、ポリウレタン表面のマイナス電位だけでなく親水性等の特性も付与することが可能である。 [Polyurethane]
The polyurethane of the present invention has at least one structural unit derived from a compound having a carboxy group.
According to the present invention, since it has at least one structural unit derived from a compound having a carboxy group, the carboxy group is present in the molecular structure of polyurethane. When this is used as a material for the polishing layer of the polishing pad, the concavo-convex portion of the polishing layer is clogged with abrasive grains due to the repulsive force between the negative potential generated by the dissociation of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur. Therefore, it is possible to suppress scratches caused by clogging and to stably polish with a long life.
In the present invention, by adjusting the amount of carboxy groups present in the molecular structure of polyurethane, it is possible to impart not only the negative potential of the polyurethane surface but also properties such as hydrophilicity.
本発明のポリウレタンは、カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するものである。
本発明によれば、カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するため、ポリウレタンの分子構造内にはカルボキシ基が存在することになる。そして、これを研磨パッドの研磨層の材料として用いた場合、前記カルボキシ基が解離することにより生じるマイナス電位と、砥粒が有するマイナス電位との斥力により研磨層の凹凸部分に砥粒の目詰まりが生じにくくなる。したがって、目詰まりに起因する傷付きを抑制することができると共に、安定的に長寿命で研磨できる。
なお、本発明においては、ポリウレタンの分子構造内に存在するカルボキシ基の量を調整することにより、ポリウレタン表面のマイナス電位だけでなく親水性等の特性も付与することが可能である。 [Polyurethane]
The polyurethane of the present invention has at least one structural unit derived from a compound having a carboxy group.
According to the present invention, since it has at least one structural unit derived from a compound having a carboxy group, the carboxy group is present in the molecular structure of polyurethane. When this is used as a material for the polishing layer of the polishing pad, the concavo-convex portion of the polishing layer is clogged with abrasive grains due to the repulsive force between the negative potential generated by the dissociation of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur. Therefore, it is possible to suppress scratches caused by clogging and to stably polish with a long life.
In the present invention, by adjusting the amount of carboxy groups present in the molecular structure of polyurethane, it is possible to impart not only the negative potential of the polyurethane surface but also properties such as hydrophilicity.
本発明のポリウレタンは、例えば、一般的なポリウレタンの製造に用いる原料の他に、カルボキシ基を有する化合物を用いることにより製造することができる。具体的に前記カルボキシ基を有する化合物としては、例えばジメチロールプロピオン酸等を挙げることができ、これとポリマージオールやイソシアネート等の原料とを反応させることにより、図1の模式図で示す、分子構造内にカルボキシ基を有するポリウレタンを得ることができる。このカルボキシ基は、前述のとおりポリウレタンの表面の親水性を向上させ、ポリウレタンの表面における濡れ性を向上させることができる。
The polyurethane of the present invention can be produced, for example, by using a compound having a carboxy group in addition to the raw materials used for producing general polyurethane. Specific examples of the compound having a carboxy group include dimethylolpropionic acid and the like, and by reacting this with a raw material such as a polymer diol or isocyanate, the molecular structure shown in the schematic diagram of FIG. 1 is shown. A polyurethane having a carboxy group inside can be obtained. As described above, this carboxy group can improve the hydrophilicity of the surface of polyurethane and improve the wettability on the surface of polyurethane.
図2は図1においてポリウレタンのカルボキシ基が解離した状態を説明するための図である。図1のポリウレタンについて、カルボキシ基がイオン化するpH条件とすることにより、図2に示すようにカルボキシ基が-COO-とH+とに解離するため、ポリウレタンの表面に-COO-に起因する負の電位を付与することができる。したがって、本発明のポリウレタンを研磨層として用いる場合において、アルカリ性のスラリーを用いるとカルボキシ基が解離し、-COO-に起因して研磨層のゼータ電位がマイナスになる。これにより、アルカリ性スラリー中の砥粒とポリウレタンとが斥力により反発するようになるため、研磨層の凹凸部分に砥粒が目詰まりしにくくなり、その結果、研磨効率が向上する。
FIG. 2 is a diagram for explaining a state in which the carboxy group of polyurethane is dissociated in FIG. With respect to the polyurethane of FIG. 1, by setting the pH condition at which the carboxy group is ionized, the carboxy group dissociates into −COO − and H + as shown in FIG. 2, so that the surface of the polyurethane is negative due to −COO −. The potential of can be imparted. Therefore, when the polyurethane of the present invention is used as the polishing layer, the carboxy group is dissociated when an alkaline slurry is used, and the zeta potential of the polishing layer becomes negative due to −COO −. As a result, the abrasive grains in the alkaline slurry and the polyurethane are repelled by the repulsive force, so that the abrasive grains are less likely to be clogged in the uneven portion of the polishing layer, and as a result, the polishing efficiency is improved.
本発明のポリウレタンは、カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するものであれば特に制限はなく、熱可塑性ポリウレタンであっても、熱硬化性ポリウレタンであってもよいが、溶融重合により連続的に生産可能であること、及び研磨パッドの研磨層として使用する場合にシート状に容易に加工できることから、熱可塑性ポリウレタンであることが好ましい。
なお、本発明のポリウレタンは研磨パッドの研磨層用途だけでなく、ポリウレタン表面に親水性を付与する用途や、電気的特性等の改質が求められる用途にも好適に用いることができる。 The polyurethane of the present invention is not particularly limited as long as it has at least one structural unit derived from a compound having a carboxy group, and may be a thermoplastic polyurethane or a thermosetting polyurethane. Thermoplastic polyurethane is preferable because it can be continuously produced by melt polymerization and can be easily processed into a sheet when used as a polishing layer of a polishing pad.
The polyurethane of the present invention can be suitably used not only for the polishing layer of a polishing pad, but also for imparting hydrophilicity to the surface of polyurethane and for applications requiring modification of electrical properties and the like.
なお、本発明のポリウレタンは研磨パッドの研磨層用途だけでなく、ポリウレタン表面に親水性を付与する用途や、電気的特性等の改質が求められる用途にも好適に用いることができる。 The polyurethane of the present invention is not particularly limited as long as it has at least one structural unit derived from a compound having a carboxy group, and may be a thermoplastic polyurethane or a thermosetting polyurethane. Thermoplastic polyurethane is preferable because it can be continuously produced by melt polymerization and can be easily processed into a sheet when used as a polishing layer of a polishing pad.
The polyurethane of the present invention can be suitably used not only for the polishing layer of a polishing pad, but also for imparting hydrophilicity to the surface of polyurethane and for applications requiring modification of electrical properties and the like.
以下、本発明のポリウレタンの一例として、熱可塑性ポリウレタンについて詳細に説明する。
本発明に係る熱可塑性ポリウレタンは、例えば、製造容易性の観点から、カルボキシ基を有する化合物に由来する構造単位、鎖延長剤に由来する構造単位、高分子ジオールに由来する構造単位、及び有機ジイソシアネートに由来する構造単位を少なくとも含むものが好ましい。 Hereinafter, the thermoplastic polyurethane will be described in detail as an example of the polyurethane of the present invention.
The thermoplastic polyurethane according to the present invention is, for example, from the viewpoint of ease of production, a structural unit derived from a compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and an organic diisocyanate. It is preferable that the structural unit derived from the above is contained at least.
本発明に係る熱可塑性ポリウレタンは、例えば、製造容易性の観点から、カルボキシ基を有する化合物に由来する構造単位、鎖延長剤に由来する構造単位、高分子ジオールに由来する構造単位、及び有機ジイソシアネートに由来する構造単位を少なくとも含むものが好ましい。 Hereinafter, the thermoplastic polyurethane will be described in detail as an example of the polyurethane of the present invention.
The thermoplastic polyurethane according to the present invention is, for example, from the viewpoint of ease of production, a structural unit derived from a compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and an organic diisocyanate. It is preferable that the structural unit derived from the above is contained at least.
〔カルボキシ基を有する化合物〕
カルボキシ基を有する化合物の具体例としては、例えば、カルボキシ基を有するジオール、カルボキシ基を有するジアミン、カルボキシ基を有する高分子ジオール、及びこれらの誘導体が挙げられる。具体的には、例えば、下記一般式(1)~(3)で示される化合物が挙げられる。 [Compound having a carboxy group]
Specific examples of the compound having a carboxy group include a diol having a carboxy group, a diamine having a carboxy group, a polymer diol having a carboxy group, and derivatives thereof. Specific examples thereof include compounds represented by the following general formulas (1) to (3).
カルボキシ基を有する化合物の具体例としては、例えば、カルボキシ基を有するジオール、カルボキシ基を有するジアミン、カルボキシ基を有する高分子ジオール、及びこれらの誘導体が挙げられる。具体的には、例えば、下記一般式(1)~(3)で示される化合物が挙げられる。 [Compound having a carboxy group]
Specific examples of the compound having a carboxy group include a diol having a carboxy group, a diamine having a carboxy group, a polymer diol having a carboxy group, and derivatives thereof. Specific examples thereof include compounds represented by the following general formulas (1) to (3).
(式(1)~(3)中、R1~R6はそれぞれ独立してヒドロキシル基又はアミノ基を示す。また、Rはそれぞれ独立して置換基を有してもよい炭素数1~10の3価の炭化水素基又は芳香族炭化水素基を示し、R'はそれぞれ独立して炭素数1~10の2価の炭化水素基を示す。l、m及びnは1~10の整数を示す。)
(In formulas (1) to (3), R 1 to R 6 each independently represent a hydroxyl group or an amino group, and R may each independently have a substituent and has 1 to 10 carbon atoms. Indicates a trivalent or aromatic hydrocarbon group of, and R'independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms. L, m and n are integers of 1 to 10. Show.)
このようなカルボキシ基を有する化合物としては、反応性に優れる観点、入手容易性の観点から、ジメチロールプロピオン酸、ジメチロールブタン酸、酒石酸、2-ヒドロキシプロピオン酸、リンゴ酸、4-ヒドロキシメチル安息香酸等が挙げられる。これらの中でも式(1)で示される化合物が好ましく、式(1)で示される化合物においてRが炭素数1~6の3価の炭化水素基である化合物がより好ましく、研磨層の剛直性を確保しつつゼータ電位の特性を発現させる観点から、ジメチロールプロピオン酸、ジメチロールブタン酸であることが更に好ましい。
Examples of such a compound having a carboxy group include dimethylolpropionic acid, dimethylolbutanoic acid, tartaric acid, 2-hydroxypropionic acid, malic acid, and 4-hydroxymethylbenzoic acid from the viewpoints of excellent reactivity and availability. Examples include acid. Among these, the compound represented by the formula (1) is preferable, and among the compounds represented by the formula (1), a compound in which R is a trivalent hydrocarbon group having 1 to 6 carbon atoms is more preferable, and the rigidity of the polishing layer is improved. From the viewpoint of expressing the characteristics of the zeta potential while ensuring it, dimethylol propionic acid and dimethylol butanoic acid are more preferable.
〔鎖延長剤〕
鎖延長剤として、ポリウレタンの製造に通常用いられている化合物(ただし、前記カルボキシ基を有する化合物を除く)が挙げられる。具体的には、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量300以下の化合物であって、ジエノフィル又はジエンを含有しない低分子化合物が挙げられる。
鎖延長剤としては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオール、シクロヘキサンジメタノール(1,4-シクロヘキサンジメタノール等)、ビス(β-ヒドロキシエチル)テレフタレート、1,9-ノナンジオール、m-キシリレングリコール、p-キシリレングリコール、ジエチレングリコール、トリエチレングリコール等のジオール類;エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ジアミノプロパン、ヒドラジン、キシリレンジアミン、イソホロンジアミン、ピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,4-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-メチレン-ビス(2-クロロアニリン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルフィド、2,6-ジアミノトルエン、2,4-ジアミノクロロベンゼン、1,2-ジアミノアントラキノン、1,4-ジアミノアントラキノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノビベンジル、2,2’-ジアミノ-1,1’-ビナフタレン、1,3-ビス(4-アミノフェノキシ)アルカン、1,4-ビス(4-アミノフェノキシ)アルカン、1,5-ビス(4-アミノフェノキシ)アルカン等の1,n-ビス(4-アミノフェノキシ)アルカン(nは3~10)、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノベンズアニリド等のジアミン類が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。
これらの中では、研磨層の剛直性を向上させる観点から、1,4-ブタンジオール、1,5-ペンタンジオール等のジオール類、ヒドラジン等のジアミン類が好ましい。 [Chain extender]
Examples of the chain extender include compounds usually used in the production of polyurethane (excluding the compounds having a carboxy group). Specific examples thereof include low molecular weight compounds having two or more active hydrogen atoms capable of reacting with isocyanate groups and having a molecular weight of 300 or less and which do not contain dienophile or diene.
Examples of the chain extender include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3. -Butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4 -Bis (β-hydroxyethoxy) benzene, 1,4-cyclohexanediamine, cyclohexanedimethylene (1,4-cyclohexanediamine, etc.), bis (β-hydroxyethyl) terephthalate, 1,9-nonandiol, m-ximethylene Hexamethylenediamine, p-xamethylenediamine, diethylene glycol, triethylene glycol and other diols; ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, un Decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine , 1,4-Cyclohexanediamine, 1,2-diaminopropane, hydrazine, ximethylenediamine, isophoronediamine, piperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, tolylenediamine, xylenediamine, adipic acid Dihydrazide, isophthalic acid dihydrazide, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether, 4,4 '-Diaminodiphenyl sulphon, 3,4-diaminodiphenyl sulphon, 3,3'-diaminodiphenyl sulphon, 4,4'-methylene-bis (2-chloroaniline), 3,3'-dimethyl-4,4'- Diaminobiphenyl, 4,4'-diaminodiphenylsul Fide, 2,6-diaminotoluene, 2,4-diaminochlorobenzene, 1,2-diaminoanthraquinone, 1,4-diaminoanthraquinone, 3,3'-diaminobenzophenone, 3,4-diaminobenzophenone, 4,4'- Diaminobenzophenone, 4,4'-diaminobibenzyl, 2,2'-diamino-1,1'-binaphthalene, 1,3-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) Alkanes, 1,5-bis (4-aminophenoxy) Alkanes and the like 1,n-bis (4-aminophenoxy) alkanes (n is 3 to 10), 1,2-bis [2- (4-aminophenoxy) Diamines such as ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene, and 4,4'-diaminobenzanilide can be mentioned. These may be used alone or in combination of two or more.
Among these, diols such as 1,4-butanediol and 1,5-pentanediol and diamines such as hydrazine are preferable from the viewpoint of improving the rigidity of the polishing layer.
鎖延長剤として、ポリウレタンの製造に通常用いられている化合物(ただし、前記カルボキシ基を有する化合物を除く)が挙げられる。具体的には、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量300以下の化合物であって、ジエノフィル又はジエンを含有しない低分子化合物が挙げられる。
鎖延長剤としては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオール、シクロヘキサンジメタノール(1,4-シクロヘキサンジメタノール等)、ビス(β-ヒドロキシエチル)テレフタレート、1,9-ノナンジオール、m-キシリレングリコール、p-キシリレングリコール、ジエチレングリコール、トリエチレングリコール等のジオール類;エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ジアミノプロパン、ヒドラジン、キシリレンジアミン、イソホロンジアミン、ピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,4-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-メチレン-ビス(2-クロロアニリン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルフィド、2,6-ジアミノトルエン、2,4-ジアミノクロロベンゼン、1,2-ジアミノアントラキノン、1,4-ジアミノアントラキノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノビベンジル、2,2’-ジアミノ-1,1’-ビナフタレン、1,3-ビス(4-アミノフェノキシ)アルカン、1,4-ビス(4-アミノフェノキシ)アルカン、1,5-ビス(4-アミノフェノキシ)アルカン等の1,n-ビス(4-アミノフェノキシ)アルカン(nは3~10)、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノベンズアニリド等のジアミン類が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。
これらの中では、研磨層の剛直性を向上させる観点から、1,4-ブタンジオール、1,5-ペンタンジオール等のジオール類、ヒドラジン等のジアミン類が好ましい。 [Chain extender]
Examples of the chain extender include compounds usually used in the production of polyurethane (excluding the compounds having a carboxy group). Specific examples thereof include low molecular weight compounds having two or more active hydrogen atoms capable of reacting with isocyanate groups and having a molecular weight of 300 or less and which do not contain dienophile or diene.
Examples of the chain extender include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3. -Butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4 -Bis (β-hydroxyethoxy) benzene, 1,4-cyclohexanediamine, cyclohexanedimethylene (1,4-cyclohexanediamine, etc.), bis (β-hydroxyethyl) terephthalate, 1,9-nonandiol, m-ximethylene Hexamethylenediamine, p-xamethylenediamine, diethylene glycol, triethylene glycol and other diols; ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, un Decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine , 1,4-Cyclohexanediamine, 1,2-diaminopropane, hydrazine, ximethylenediamine, isophoronediamine, piperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, tolylenediamine, xylenediamine, adipic acid Dihydrazide, isophthalic acid dihydrazide, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether, 4,4 '-Diaminodiphenyl sulphon, 3,4-diaminodiphenyl sulphon, 3,3'-diaminodiphenyl sulphon, 4,4'-methylene-bis (2-chloroaniline), 3,3'-dimethyl-4,4'- Diaminobiphenyl, 4,4'-diaminodiphenylsul Fide, 2,6-diaminotoluene, 2,4-diaminochlorobenzene, 1,2-diaminoanthraquinone, 1,4-diaminoanthraquinone, 3,3'-diaminobenzophenone, 3,4-diaminobenzophenone, 4,4'- Diaminobenzophenone, 4,4'-diaminobibenzyl, 2,2'-diamino-1,1'-binaphthalene, 1,3-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) Alkanes, 1,5-bis (4-aminophenoxy) Alkanes and the like 1,n-bis (4-aminophenoxy) alkanes (n is 3 to 10), 1,2-bis [2- (4-aminophenoxy) Diamines such as ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene, and 4,4'-diaminobenzanilide can be mentioned. These may be used alone or in combination of two or more.
Among these, diols such as 1,4-butanediol and 1,5-pentanediol and diamines such as hydrazine are preferable from the viewpoint of improving the rigidity of the polishing layer.
鎖延長剤を用いる場合、カルボキシ基を有する化合物と鎖延長剤との合計量に対するカルボキシ基を有する化合物の割合(モル%)は、目的に応じて適宜選択されるが、例えば、好ましくは5~90モル%であり、より好ましくは10~70モル%であり、更に好ましくは15~60モル%である。カルボキシ基を有する化合物の含有割合が前記範囲内であることにより、砥粒のマイナス電位と十分に反発するマイナス電位をポリウレタンに付与することができる。
When a chain extender is used, the ratio (mol%) of the compound having a carboxy group to the total amount of the compound having a carboxy group and the chain extender is appropriately selected depending on the intended purpose, but is preferably 5 to 5 to, for example. It is 90 mol%, more preferably 10 to 70 mol%, still more preferably 15 to 60 mol%. When the content ratio of the compound having a carboxy group is within the above range, a negative potential that sufficiently repels the negative potential of the abrasive grains can be imparted to the polyurethane.
〔高分子ジオール〕
高分子ジオールの具体例としては、例えば、ポリエーテルジオール、ポリエステルジオール、及びポリカーボネートジオール等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、入手容易性及び反応性に優れる観点から、ポリエーテルジオール、ポリカーボネートジオールが好ましく、ポリエーテルジオールがより好ましい。 [Polymer diol]
Specific examples of the polymer diol include polyether diols, polyester diols, polycarbonate diols, and the like. These may be used alone or in combination of two or more. Among these, a polyether diol and a polycarbonate diol are preferable, and a polyether diol is more preferable, from the viewpoint of excellent availability and reactivity.
高分子ジオールの具体例としては、例えば、ポリエーテルジオール、ポリエステルジオール、及びポリカーボネートジオール等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、入手容易性及び反応性に優れる観点から、ポリエーテルジオール、ポリカーボネートジオールが好ましく、ポリエーテルジオールがより好ましい。 [Polymer diol]
Specific examples of the polymer diol include polyether diols, polyester diols, polycarbonate diols, and the like. These may be used alone or in combination of two or more. Among these, a polyether diol and a polycarbonate diol are preferable, and a polyether diol is more preferable, from the viewpoint of excellent availability and reactivity.
高分子ジオールの数平均分子量は、好ましくは450~3,000であり、より好ましくは500~2,700であり、更に好ましくは550~2,400である。高分子ジオールの数平均分子量が前記範囲内であると、剛性、硬度及び親水性等の要求特性を維持した研磨層が得られやすい。なお、高分子ジオールの数平均分子量は、JIS K 1557-1:2007に準拠して測定した水酸基価に基づいて算出された数平均分子量を意味する。
The number average molecular weight of the polymer diol is preferably 450 to 3,000, more preferably 500 to 2,700, and even more preferably 550 to 2,400. When the number average molecular weight of the polymer diol is within the above range, it is easy to obtain a polishing layer that maintains the required characteristics such as rigidity, hardness, and hydrophilicity. The number average molecular weight of the polymer diol means the number average molecular weight calculated based on the hydroxyl value measured in accordance with JIS K 1557-1: 2007.
(ポリエーテルジオール)
ポリエーテルジオールの具体例としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)、グリセリンベースポリアルキレンエーテルグリコール等が挙げられる。これらは単独で用いても2種以上を組合せて用いてもよい。これらの中では、ポリエチレングリコール、ポリテトラメチレングリコールが好ましい。 (Polyesterdiol)
Specific examples of the polyether diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), glycerin-based polyalkylene ether glycol, and the like. These may be used alone or in combination of two or more. Among these, polyethylene glycol and polytetramethylene glycol are preferable.
ポリエーテルジオールの具体例としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)、グリセリンベースポリアルキレンエーテルグリコール等が挙げられる。これらは単独で用いても2種以上を組合せて用いてもよい。これらの中では、ポリエチレングリコール、ポリテトラメチレングリコールが好ましい。 (Polyesterdiol)
Specific examples of the polyether diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), glycerin-based polyalkylene ether glycol, and the like. These may be used alone or in combination of two or more. Among these, polyethylene glycol and polytetramethylene glycol are preferable.
(ポリエステルジオール)
本発明においては、ポリエステルジオールを使用することができる。ポリエステルジオールは、例えば、ジカルボン酸又はそのエステル、無水物等のエステル形成性誘導体と低分子ジオールとを直接エステル化反応又はエステル交換反応させることにより得られる。 (Polyester diol)
In the present invention, polyester diol can be used. The polyester diol can be obtained, for example, by directly subjecting an ester-forming derivative such as a dicarboxylic acid or an ester thereof or an anhydride to a low molecular weight diol by a transesterification reaction or a transesterification reaction.
本発明においては、ポリエステルジオールを使用することができる。ポリエステルジオールは、例えば、ジカルボン酸又はそのエステル、無水物等のエステル形成性誘導体と低分子ジオールとを直接エステル化反応又はエステル交換反応させることにより得られる。 (Polyester diol)
In the present invention, polyester diol can be used. The polyester diol can be obtained, for example, by directly subjecting an ester-forming derivative such as a dicarboxylic acid or an ester thereof or an anhydride to a low molecular weight diol by a transesterification reaction or a transesterification reaction.
ポリエステルジオールを製造するためのジカルボン酸、そのエステル、及びその無水物等の具体例としては、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタン二酸、2-メチルオクタン二酸、3,8-ジメチルデカン二酸、3,7-ジメチルデカン二酸等の炭素数2~12の脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸等の芳香族ジカルボン酸等が挙げられる。また、ダイマー酸及び水添ダイマー酸の具体例としては、例えば、ユニケマ社製商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」等が挙げられる。これらは単独で用いても2種以上を組合せて用いてもよい。
Specific examples of the dicarboxylic acid, its ester, and its anhydride for producing a polyesterdiol include, for example, oxalic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, and the like. Dodecanedicarboxylic acid, 2-methylsuccinic acid, 2-methyladiponic acid, 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecane An aliphatic dicarboxylic acid having 2 to 12 carbon atoms such as a diacid; a dimerated aliphatic dicarboxylic acid having 14 to 48 carbon atoms (dimeric acid) obtained by dimerizing an unsaturated fatty acid obtained by distilling a triglyceride, and hydrogenation thereof. Examples thereof include aliphatic dicarboxylic acids such as substances (hydrogenated dimer acid); alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and orthophthalic acid. Specific examples of the dimer acid and the hydrogenated dimer acid include, for example, the trade names "Pripole 1004", "Pripole 1006", "Pripole 1009", and "Pripole 1013" manufactured by Unichema. These may be used alone or in combination of two or more.
また、ポリエステルジオールを製造するための低分子ジオールの具体例としては、例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の脂肪族ジオール;シクロヘキサンジメタノール、シクロヘキサンジオール等の脂環式ジオール等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。
これらの中でも、炭素数6~12のジオールが好ましく、炭素数8~10のジオールがより好ましい。 Specific examples of the low molecular weight diol for producing the polyester diol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1, and so on. 4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2- Alipid diols such as methyl-1,8-octanediol, 1,9-nonanediol and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol can be mentioned. These may be used alone or in combination of two or more.
Among these, a diol having 6 to 12 carbon atoms is preferable, and a diol having 8 to 10 carbon atoms is more preferable.
これらの中でも、炭素数6~12のジオールが好ましく、炭素数8~10のジオールがより好ましい。 Specific examples of the low molecular weight diol for producing the polyester diol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1, and so on. 4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2- Alipid diols such as methyl-1,8-octanediol, 1,9-nonanediol and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol can be mentioned. These may be used alone or in combination of two or more.
Among these, a diol having 6 to 12 carbon atoms is preferable, and a diol having 8 to 10 carbon atoms is more preferable.
(ポリカーボネートジオール)
ポリカーボネートジオールとしては、低分子ジオールと、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等のカーボネート化合物との反応により得られるものが挙げられる。ポリカーボネートジオールを製造するための低分子ジオールとしては先に例示した低分子ジオールが挙げられる。また、ジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート等が挙げられる。また、アルキレンカーボネートとしてはエチレンカーボネート等が挙げられる。ジアリールカーボネートとしてはジフェニルカーボネート等が挙げられる。 (Polycarbonate diol)
Examples of the polycarbonate diol include those obtained by reacting a low molecular weight diol with a carbonate compound such as a dialkyl carbonate, an alkylene carbonate, or a diaryl carbonate. Examples of the low molecular weight diol for producing the polycarbonate diol include the low molecular weight diols exemplified above. Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate. Further, examples of the alkylene carbonate include ethylene carbonate. Examples of the diaryl carbonate include diphenyl carbonate and the like.
ポリカーボネートジオールとしては、低分子ジオールと、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等のカーボネート化合物との反応により得られるものが挙げられる。ポリカーボネートジオールを製造するための低分子ジオールとしては先に例示した低分子ジオールが挙げられる。また、ジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート等が挙げられる。また、アルキレンカーボネートとしてはエチレンカーボネート等が挙げられる。ジアリールカーボネートとしてはジフェニルカーボネート等が挙げられる。 (Polycarbonate diol)
Examples of the polycarbonate diol include those obtained by reacting a low molecular weight diol with a carbonate compound such as a dialkyl carbonate, an alkylene carbonate, or a diaryl carbonate. Examples of the low molecular weight diol for producing the polycarbonate diol include the low molecular weight diols exemplified above. Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate. Further, examples of the alkylene carbonate include ethylene carbonate. Examples of the diaryl carbonate include diphenyl carbonate and the like.
〔有機ジイソシアネート〕
有機ジイソシアネートとしては、通常ポリウレタンの製造に用いられる有機ジイソシアネートであれば特に制限はない。例えば、エチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、シクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロへキセン等の脂肪族又は脂環式ジイソシアネート;2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、クロロフェニレン-2,4-ジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネートを挙げることができる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、得られる研磨層の耐摩耗性を向上させる観点から、脂環式ジイソシアネート及び芳香族ジイソシアネートが好ましく、4,4’-ジシクロヘキシルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートがより好ましく、研磨層の剛直性を向上させる観点から、4,4’-ジフェニルメタンジイソシアネートが更に好ましい。 [Organic diisocyanate]
The organic diisocyanate is not particularly limited as long as it is an organic diisocyanate usually used for producing polyurethane. For example, ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, isopropyridenebis ( 4-cyclohexylisocyanate), cyclohexylmethanediisocyanate, methylcyclohexanediisocyanate, 4,4'-dicyclohexylmethanediisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2) -Isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene and other fats Group or alicyclic diisocyanate; 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylenedi isocyanate, p-phenylenedi isocyanate, m -Xylylene diisocyanate, p-xylylene diisocyanate, 1,5-naphthylene diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3' Examples thereof include aromatic diisocyanates such as -dimethyl-4,4'-diisocyanatodiphenylmethane, chlorophenylene-2,4-diisocyanate, and tetramethylxylylene diisocyanate. These may be used alone or in combination of two or more. Among these, alicyclic diisocyanate and aromatic diisocyanate are preferable from the viewpoint of improving the abrasion resistance of the obtained polishing layer, and 4,4'-dicyclohexylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, and 2,4 are preferable. -Toluene diisocyanate and 2,6-toluene diisocyanate are more preferable, and 4,4'-diphenylmethane diisocyanate is further preferable from the viewpoint of improving the rigidity of the polishing layer.
有機ジイソシアネートとしては、通常ポリウレタンの製造に用いられる有機ジイソシアネートであれば特に制限はない。例えば、エチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、シクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロへキセン等の脂肪族又は脂環式ジイソシアネート;2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、クロロフェニレン-2,4-ジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネートを挙げることができる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、得られる研磨層の耐摩耗性を向上させる観点から、脂環式ジイソシアネート及び芳香族ジイソシアネートが好ましく、4,4’-ジシクロヘキシルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートがより好ましく、研磨層の剛直性を向上させる観点から、4,4’-ジフェニルメタンジイソシアネートが更に好ましい。 [Organic diisocyanate]
The organic diisocyanate is not particularly limited as long as it is an organic diisocyanate usually used for producing polyurethane. For example, ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, isopropyridenebis ( 4-cyclohexylisocyanate), cyclohexylmethanediisocyanate, methylcyclohexanediisocyanate, 4,4'-dicyclohexylmethanediisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2) -Isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene and other fats Group or alicyclic diisocyanate; 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylenedi isocyanate, p-phenylenedi isocyanate, m -Xylylene diisocyanate, p-xylylene diisocyanate, 1,5-naphthylene diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3' Examples thereof include aromatic diisocyanates such as -dimethyl-4,4'-diisocyanatodiphenylmethane, chlorophenylene-2,4-diisocyanate, and tetramethylxylylene diisocyanate. These may be used alone or in combination of two or more. Among these, alicyclic diisocyanate and aromatic diisocyanate are preferable from the viewpoint of improving the abrasion resistance of the obtained polishing layer, and 4,4'-dicyclohexylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, and 2,4 are preferable. -Toluene diisocyanate and 2,6-toluene diisocyanate are more preferable, and 4,4'-diphenylmethane diisocyanate is further preferable from the viewpoint of improving the rigidity of the polishing layer.
〔添加剤〕
本発明のポリウレタンは、必要に応じて、架橋剤、充填剤、架橋促進剤、架橋助剤、軟化剤、粘着付与剤、老化防止剤、発泡剤、加工助剤、密着性付与剤、無機充填剤、有機フィラー、結晶核剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、難燃剤、難燃助剤(酸化アンチモン等)、ブルーミング防止剤、離型剤、増粘剤、酸化防止剤、導電剤等の添加剤を含有してもよい。
ポリウレタン中の添加剤の含有割合は特に限定されないが、好ましくは50質量%以下であり、より好ましくは20質量%以下であり、更に好ましくは5質量%以下である。 〔Additive〕
The polyurethane of the present invention can be used as a cross-linking agent, a filler, a cross-linking accelerator, a cross-linking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion-imparting agent, and an inorganic filling. Agents, organic fillers, crystal nucleating agents, heat-resistant stabilizers, weather-resistant stabilizers, antistatic agents, colorants, lubricants, flame retardants, flame retardants (antimonium oxide, etc.), blooming inhibitors, mold release agents, thickeners , Antioxidants, conductive agents and the like may be contained.
The content ratio of the additive in the polyurethane is not particularly limited, but is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
本発明のポリウレタンは、必要に応じて、架橋剤、充填剤、架橋促進剤、架橋助剤、軟化剤、粘着付与剤、老化防止剤、発泡剤、加工助剤、密着性付与剤、無機充填剤、有機フィラー、結晶核剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、難燃剤、難燃助剤(酸化アンチモン等)、ブルーミング防止剤、離型剤、増粘剤、酸化防止剤、導電剤等の添加剤を含有してもよい。
ポリウレタン中の添加剤の含有割合は特に限定されないが、好ましくは50質量%以下であり、より好ましくは20質量%以下であり、更に好ましくは5質量%以下である。 〔Additive〕
The polyurethane of the present invention can be used as a cross-linking agent, a filler, a cross-linking accelerator, a cross-linking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion-imparting agent, and an inorganic filling. Agents, organic fillers, crystal nucleating agents, heat-resistant stabilizers, weather-resistant stabilizers, antistatic agents, colorants, lubricants, flame retardants, flame retardants (antimonium oxide, etc.), blooming inhibitors, mold release agents, thickeners , Antioxidants, conductive agents and the like may be contained.
The content ratio of the additive in the polyurethane is not particularly limited, but is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
〔配合割合〕
各成分の配合割合は目的とする特性に応じて適宜調整することができる。本発明においては、ポリウレタンを構成する全構造単位中のカルボキシ基を有する化合物に由来する構造単位の量が、好ましくは3~30モル%であり、より好ましくは4~20モル%であり、更に好ましくは6~15モル%であり、より更に好ましくは6~12モル%である。カルボキシ基を有する化合物の構造単位の量が前記下限値以上であると、得られるポリウレタンに対してカルボキシ基に由来する効果を十分に付与することができる。すなわち、カルボキシ基に由来するマイナス電位を十分にポリウレタンに付与することができるため、これを研磨層に用いることにより、マイナス電位の砥粒と反発し、研磨層の目詰まりを抑制することができる。また、カルボキシ基を有する化合物に由来する構造単位の量が前記上限値以下であるとポリウレタンの硬度等の物性を後述の範囲に調整しやすくなる。 [Mixing ratio]
The blending ratio of each component can be appropriately adjusted according to the desired characteristics. In the present invention, the amount of the structural unit derived from the compound having a carboxy group in all the structural units constituting the polyurethane is preferably 3 to 30 mol%, more preferably 4 to 20 mol%, and further. It is preferably 6 to 15 mol%, and even more preferably 6 to 12 mol%. When the amount of the structural unit of the compound having a carboxy group is at least the above lower limit value, the effect derived from the carboxy group can be sufficiently imparted to the obtained polyurethane. That is, since a negative potential derived from the carboxy group can be sufficiently applied to the polyurethane, by using this in the polishing layer, it is possible to repel the abrasive grains having a negative potential and suppress clogging of the polishing layer. .. Further, when the amount of the structural unit derived from the compound having a carboxy group is not more than the upper limit value, it becomes easy to adjust the physical properties such as the hardness of polyurethane within the range described later.
各成分の配合割合は目的とする特性に応じて適宜調整することができる。本発明においては、ポリウレタンを構成する全構造単位中のカルボキシ基を有する化合物に由来する構造単位の量が、好ましくは3~30モル%であり、より好ましくは4~20モル%であり、更に好ましくは6~15モル%であり、より更に好ましくは6~12モル%である。カルボキシ基を有する化合物の構造単位の量が前記下限値以上であると、得られるポリウレタンに対してカルボキシ基に由来する効果を十分に付与することができる。すなわち、カルボキシ基に由来するマイナス電位を十分にポリウレタンに付与することができるため、これを研磨層に用いることにより、マイナス電位の砥粒と反発し、研磨層の目詰まりを抑制することができる。また、カルボキシ基を有する化合物に由来する構造単位の量が前記上限値以下であるとポリウレタンの硬度等の物性を後述の範囲に調整しやすくなる。 [Mixing ratio]
The blending ratio of each component can be appropriately adjusted according to the desired characteristics. In the present invention, the amount of the structural unit derived from the compound having a carboxy group in all the structural units constituting the polyurethane is preferably 3 to 30 mol%, more preferably 4 to 20 mol%, and further. It is preferably 6 to 15 mol%, and even more preferably 6 to 12 mol%. When the amount of the structural unit of the compound having a carboxy group is at least the above lower limit value, the effect derived from the carboxy group can be sufficiently imparted to the obtained polyurethane. That is, since a negative potential derived from the carboxy group can be sufficiently applied to the polyurethane, by using this in the polishing layer, it is possible to repel the abrasive grains having a negative potential and suppress clogging of the polishing layer. .. Further, when the amount of the structural unit derived from the compound having a carboxy group is not more than the upper limit value, it becomes easy to adjust the physical properties such as the hardness of polyurethane within the range described later.
カルボキシ基を有する化合物、高分子ジオール、及び鎖延長剤に含まれる活性水酸基1モルに対する有機ジイソシアネートに含まれるイソシアネート基の量は、好ましくは0.80~1.3モルであり、より好ましくは0.90~1.2モルである。
活性水酸基1モルに対するイソシアネート基の割合が前記下限値以上であると、熱可塑性ポリウレタンの機械的強度及び耐摩耗性が向上すると共に、研磨層の寿命も長くなる傾向がある。一方、活性水素原子1モルに対するイソシアネート基の割合が前記上限値以下であると、熱可塑性ポリウレタンの生産性及び保存安定性が向上し、研磨層が製造しやすくなる傾向がある。 The amount of the isocyanate group contained in the organic diisocyanate with respect to 1 mol of the active hydroxyl group contained in the compound having a carboxy group, the polymer diol, and the chain extender is preferably 0.80 to 1.3 mol, more preferably 0. .90-1.2 mol.
When the ratio of the isocyanate group to 1 mol of the active hydroxyl group is at least the above lower limit value, the mechanical strength and abrasion resistance of the thermoplastic polyurethane tend to be improved, and the life of the polishing layer tends to be long. On the other hand, when the ratio of the isocyanate group to 1 mol of the active hydrogen atom is not more than the above upper limit value, the productivity and storage stability of the thermoplastic polyurethane are improved, and the polishing layer tends to be easily produced.
活性水酸基1モルに対するイソシアネート基の割合が前記下限値以上であると、熱可塑性ポリウレタンの機械的強度及び耐摩耗性が向上すると共に、研磨層の寿命も長くなる傾向がある。一方、活性水素原子1モルに対するイソシアネート基の割合が前記上限値以下であると、熱可塑性ポリウレタンの生産性及び保存安定性が向上し、研磨層が製造しやすくなる傾向がある。 The amount of the isocyanate group contained in the organic diisocyanate with respect to 1 mol of the active hydroxyl group contained in the compound having a carboxy group, the polymer diol, and the chain extender is preferably 0.80 to 1.3 mol, more preferably 0. .90-1.2 mol.
When the ratio of the isocyanate group to 1 mol of the active hydroxyl group is at least the above lower limit value, the mechanical strength and abrasion resistance of the thermoplastic polyurethane tend to be improved, and the life of the polishing layer tends to be long. On the other hand, when the ratio of the isocyanate group to 1 mol of the active hydrogen atom is not more than the above upper limit value, the productivity and storage stability of the thermoplastic polyurethane are improved, and the polishing layer tends to be easily produced.
<熱可塑性ポリウレタンの製造方法>
熱可塑性ポリウレタンは、前述の原料を用いて公知のプレポリマー法又はワンショット法を用いたウレタン化反応によって重合することにより得られる。より具体的には、実質的に溶剤の不存在下で、上述した各成分を所定の比率で配合して単軸又は多軸スクリュー型押出機を用いて溶融混合しながら溶融重合により製造する方法や、溶剤存在下でプレポリマー法により重合にて製造する方法等が挙げられる。なお、溶融重合は連続的に行ってもよい。
本発明においては、本発明のポリウレタンの製造を安定的に行う観点から、溶液重合を用いることが好ましい。反応溶液濃度は、反応性、粘性による操作性の観点から10~70質量%であることが好ましく、20~60質量%であることがより好ましく、20~50質量%であることが更に好ましい。 <Manufacturing method of thermoplastic polyurethane>
The thermoplastic polyurethane is obtained by polymerizing the above-mentioned raw materials by a urethanization reaction using a known prepolymer method or one-shot method. More specifically, a method of blending each of the above-mentioned components in a predetermined ratio in the absence of a solvent and performing melt polymerization while melt-mixing using a single-screw or multi-screw screw extruder. Alternatively, a method of producing by polymerization by a prepolymer method in the presence of a solvent can be mentioned. The melt polymerization may be carried out continuously.
In the present invention, it is preferable to use solution polymerization from the viewpoint of stably producing the polyurethane of the present invention. The concentration of the reaction solution is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 20 to 50% by mass from the viewpoint of operability due to reactivity and viscosity.
熱可塑性ポリウレタンは、前述の原料を用いて公知のプレポリマー法又はワンショット法を用いたウレタン化反応によって重合することにより得られる。より具体的には、実質的に溶剤の不存在下で、上述した各成分を所定の比率で配合して単軸又は多軸スクリュー型押出機を用いて溶融混合しながら溶融重合により製造する方法や、溶剤存在下でプレポリマー法により重合にて製造する方法等が挙げられる。なお、溶融重合は連続的に行ってもよい。
本発明においては、本発明のポリウレタンの製造を安定的に行う観点から、溶液重合を用いることが好ましい。反応溶液濃度は、反応性、粘性による操作性の観点から10~70質量%であることが好ましく、20~60質量%であることがより好ましく、20~50質量%であることが更に好ましい。 <Manufacturing method of thermoplastic polyurethane>
The thermoplastic polyurethane is obtained by polymerizing the above-mentioned raw materials by a urethanization reaction using a known prepolymer method or one-shot method. More specifically, a method of blending each of the above-mentioned components in a predetermined ratio in the absence of a solvent and performing melt polymerization while melt-mixing using a single-screw or multi-screw screw extruder. Alternatively, a method of producing by polymerization by a prepolymer method in the presence of a solvent can be mentioned. The melt polymerization may be carried out continuously.
In the present invention, it is preferable to use solution polymerization from the viewpoint of stably producing the polyurethane of the present invention. The concentration of the reaction solution is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 20 to 50% by mass from the viewpoint of operability due to reactivity and viscosity.
得られた熱可塑性ポリウレタンは、例えば、ペレット化した後、押出成形法、射出成形法、ブロー成形法、カレンダー成形法等の各種の成形法によりシート状の成形体に成形される。特には、Tダイを用いた押出成形によれば均一な厚さのシート状成形体が得られる。
The obtained thermoplastic polyurethane is pelletized and then molded into a sheet-shaped molded product by various molding methods such as an extrusion molding method, an injection molding method, a blow molding method, and a calendar molding method. In particular, by extrusion molding using a T-die, a sheet-shaped molded product having a uniform thickness can be obtained.
[研磨層]
本発明の研磨層は、本発明のポリウレタンを用いたものである。本発明のポリウレタンは前記のとおり、分子構造内にカルボキシ基を有しており、これを研磨層に用いることにより、カルボキシ基のマイナス電位と砥粒のマイナス電位との斥力により砥粒の目詰まりが生じにくくなるため、傷付きを抑制しつつ安定的に長寿命で研磨できる。より具体的には、CMPで使用するスラリーにはアルカリ性のスラリーがあり、アルカリ性のスラリーに含まれる砥粒は、通常、負のゼータ電位を有する。これに対して、本発明の研磨層はカルボキシ基を有するポリウレタンを用いているため、アルカリ性のスラリーと接したときに表面のカルボキシ基が-COO-に解離することにより、研磨層の表面のゼータ電位が例えば-10mV以下程度に低くなる。この場合、アルカリ性において負のゼータ電位を示す砥粒と研磨層とが静電的反発を示し、その結果、研磨層に対する砥粒の付着を防ぎ、特に不織布系の研磨層においては目詰まりの抑制を実現することができ、スクラッチやディフェクトの発生が低減すると推察される。
なお、研磨層はポリウレタンの発泡体及びポリウレタンの非発泡体のいずれであってもよいが、非発泡体であることが好ましい。研磨層がポリウレタンの非発泡体であると研磨特性が変動しにくく安定した研磨が実現できる。 [Abrasive layer]
The polishing layer of the present invention uses the polyurethane of the present invention. As described above, the polyurethane of the present invention has a carboxy group in its molecular structure, and by using this in the polishing layer, the abrasive grains are clogged due to the repulsive force between the negative potential of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur, so it is possible to perform stable polishing with a long life while suppressing scratches. More specifically, the slurry used in CMP includes an alkaline slurry, and the abrasive grains contained in the alkaline slurry usually have a negative zeta potential. On the other hand, since the polishing layer of the present invention uses polyurethane having a carboxy group, the carboxy group on the surface dissociates into −COO − when it comes into contact with an alkaline slurry, so that the zeta on the surface of the polishing layer The potential becomes low, for example, to about -10 mV or less. In this case, the abrasive grains showing a negative zeta potential in alkalinity and the polishing layer show electrostatic repulsion, and as a result, the adhesion of the abrasive grains to the polishing layer is prevented, and clogging is suppressed especially in the non-woven fabric-based polishing layer. It is presumed that the occurrence of scratches and defects can be reduced.
The polishing layer may be either a polyurethane foam or a polyurethane non-foam, but is preferably a non-foam. When the polishing layer is a non-foamed polyurethane, the polishing characteristics are less likely to fluctuate and stable polishing can be realized.
本発明の研磨層は、本発明のポリウレタンを用いたものである。本発明のポリウレタンは前記のとおり、分子構造内にカルボキシ基を有しており、これを研磨層に用いることにより、カルボキシ基のマイナス電位と砥粒のマイナス電位との斥力により砥粒の目詰まりが生じにくくなるため、傷付きを抑制しつつ安定的に長寿命で研磨できる。より具体的には、CMPで使用するスラリーにはアルカリ性のスラリーがあり、アルカリ性のスラリーに含まれる砥粒は、通常、負のゼータ電位を有する。これに対して、本発明の研磨層はカルボキシ基を有するポリウレタンを用いているため、アルカリ性のスラリーと接したときに表面のカルボキシ基が-COO-に解離することにより、研磨層の表面のゼータ電位が例えば-10mV以下程度に低くなる。この場合、アルカリ性において負のゼータ電位を示す砥粒と研磨層とが静電的反発を示し、その結果、研磨層に対する砥粒の付着を防ぎ、特に不織布系の研磨層においては目詰まりの抑制を実現することができ、スクラッチやディフェクトの発生が低減すると推察される。
なお、研磨層はポリウレタンの発泡体及びポリウレタンの非発泡体のいずれであってもよいが、非発泡体であることが好ましい。研磨層がポリウレタンの非発泡体であると研磨特性が変動しにくく安定した研磨が実現できる。 [Abrasive layer]
The polishing layer of the present invention uses the polyurethane of the present invention. As described above, the polyurethane of the present invention has a carboxy group in its molecular structure, and by using this in the polishing layer, the abrasive grains are clogged due to the repulsive force between the negative potential of the carboxy group and the negative potential of the abrasive grains. Is less likely to occur, so it is possible to perform stable polishing with a long life while suppressing scratches. More specifically, the slurry used in CMP includes an alkaline slurry, and the abrasive grains contained in the alkaline slurry usually have a negative zeta potential. On the other hand, since the polishing layer of the present invention uses polyurethane having a carboxy group, the carboxy group on the surface dissociates into −COO − when it comes into contact with an alkaline slurry, so that the zeta on the surface of the polishing layer The potential becomes low, for example, to about -10 mV or less. In this case, the abrasive grains showing a negative zeta potential in alkalinity and the polishing layer show electrostatic repulsion, and as a result, the adhesion of the abrasive grains to the polishing layer is prevented, and clogging is suppressed especially in the non-woven fabric-based polishing layer. It is presumed that the occurrence of scratches and defects can be reduced.
The polishing layer may be either a polyurethane foam or a polyurethane non-foam, but is preferably a non-foam. When the polishing layer is a non-foamed polyurethane, the polishing characteristics are less likely to fluctuate and stable polishing can be realized.
<研磨層の構成>
本発明の研磨層は、ポリウレタンをシート状に成形したものであってもよく、また、不織布に対して本発明のポリウレタンを含浸させ、更に凝固させたものであってもよいが、本発明のポリウレタンを用いることにより不織布に起因する凹凸に砥粒が入り込みにくくなり、長寿命で安定的に研磨することが可能になることから、不織布に対して本発明のポリウレタンを含浸させ、更に凝固させた研磨層が好ましい。 <Structure of polishing layer>
The polishing layer of the present invention may be formed by molding polyurethane into a sheet shape, or may be a non-woven fabric impregnated with the polyurethane of the present invention and further solidified. By using polyurethane, abrasive grains are less likely to enter the unevenness caused by the non-woven fabric, and stable polishing is possible with a long life. Therefore, the non-woven fabric is impregnated with the polyurethane of the present invention and further solidified. A polished layer is preferred.
本発明の研磨層は、ポリウレタンをシート状に成形したものであってもよく、また、不織布に対して本発明のポリウレタンを含浸させ、更に凝固させたものであってもよいが、本発明のポリウレタンを用いることにより不織布に起因する凹凸に砥粒が入り込みにくくなり、長寿命で安定的に研磨することが可能になることから、不織布に対して本発明のポリウレタンを含浸させ、更に凝固させた研磨層が好ましい。 <Structure of polishing layer>
The polishing layer of the present invention may be formed by molding polyurethane into a sheet shape, or may be a non-woven fabric impregnated with the polyurethane of the present invention and further solidified. By using polyurethane, abrasive grains are less likely to enter the unevenness caused by the non-woven fabric, and stable polishing is possible with a long life. Therefore, the non-woven fabric is impregnated with the polyurethane of the present invention and further solidified. A polished layer is preferred.
不織布にポリウレタンを含浸させる方法としては、まず、ポリウレタンの濃度が好ましくは10~50質量%、より好ましくは20~40質量%のN,N-ジメチルホルムアミド溶液(DMF溶液)等の有機溶液を用意する。次いで、これを好ましくは27~40℃程度に加温し、この上に不織布を好ましくは5~20分程度静置して有機溶媒を浸透させる。そして、不織布をポリウレタンの有機溶液に好ましくは2~15分沈下した後、取り出した不織布から過剰に付着した有機溶液を取り除く。その後、有機溶媒の濃度が5~30質量%であって、27~40℃程度である水溶液に不織布を浸漬させることによりポリウレタンを凝固させる。次いで、必要に応じて、有機溶媒、水等で不織布を洗浄し、乾燥させることによりポリウレタンを含浸させた不織布を得ることができる。
なお、本発明において不織布へ含浸させるポリウレタン溶液としては、水系ポリウレタン、及び溶剤系ポリウレタンが挙げられる。ここで水系ポリウレタンとは水又は水溶液に分散させて使用することが可能なポリウレタンを意味し、溶剤系ポリウレタンとは有機溶剤へ溶解させて使用することが可能なポリウレタンを意味する。これらの中ではゼータ電位の発現に寄与する鎖伸長剤選択の自由度を向上させる点から、溶剤系ポリウレタンがより好ましい。 As a method for impregnating the non-woven fabric with polyurethane, first, an organic solution such as an N, N-dimethylformamide solution (DMF solution) having a polyurethane concentration of preferably 10 to 50% by mass, more preferably 20 to 40% by mass is prepared. To do. Next, this is preferably heated to about 27 to 40 ° C., and the non-woven fabric is allowed to stand on this for preferably about 5 to 20 minutes to allow the organic solvent to permeate. Then, the non-woven fabric is subsided in an organic solution of polyurethane for preferably 2 to 15 minutes, and then the excessively adhered organic solution is removed from the removed non-woven fabric. Then, the polyurethane is solidified by immersing the non-woven fabric in an aqueous solution having an organic solvent concentration of 5 to 30% by mass and about 27 to 40 ° C. Then, if necessary, the non-woven fabric is washed with an organic solvent, water, or the like and dried to obtain a non-woven fabric impregnated with polyurethane.
Examples of the polyurethane solution impregnated in the non-woven fabric in the present invention include water-based polyurethane and solvent-based polyurethane. Here, the water-based polyurethane means a polyurethane that can be used by being dispersed in water or an aqueous solution, and the solvent-based polyurethane means a polyurethane that can be used by being dissolved in an organic solvent. Among these, solvent-based polyurethane is more preferable from the viewpoint of improving the degree of freedom in selecting a chain extender that contributes to the development of the zeta potential.
なお、本発明において不織布へ含浸させるポリウレタン溶液としては、水系ポリウレタン、及び溶剤系ポリウレタンが挙げられる。ここで水系ポリウレタンとは水又は水溶液に分散させて使用することが可能なポリウレタンを意味し、溶剤系ポリウレタンとは有機溶剤へ溶解させて使用することが可能なポリウレタンを意味する。これらの中ではゼータ電位の発現に寄与する鎖伸長剤選択の自由度を向上させる点から、溶剤系ポリウレタンがより好ましい。 As a method for impregnating the non-woven fabric with polyurethane, first, an organic solution such as an N, N-dimethylformamide solution (DMF solution) having a polyurethane concentration of preferably 10 to 50% by mass, more preferably 20 to 40% by mass is prepared. To do. Next, this is preferably heated to about 27 to 40 ° C., and the non-woven fabric is allowed to stand on this for preferably about 5 to 20 minutes to allow the organic solvent to permeate. Then, the non-woven fabric is subsided in an organic solution of polyurethane for preferably 2 to 15 minutes, and then the excessively adhered organic solution is removed from the removed non-woven fabric. Then, the polyurethane is solidified by immersing the non-woven fabric in an aqueous solution having an organic solvent concentration of 5 to 30% by mass and about 27 to 40 ° C. Then, if necessary, the non-woven fabric is washed with an organic solvent, water, or the like and dried to obtain a non-woven fabric impregnated with polyurethane.
Examples of the polyurethane solution impregnated in the non-woven fabric in the present invention include water-based polyurethane and solvent-based polyurethane. Here, the water-based polyurethane means a polyurethane that can be used by being dispersed in water or an aqueous solution, and the solvent-based polyurethane means a polyurethane that can be used by being dissolved in an organic solvent. Among these, solvent-based polyurethane is more preferable from the viewpoint of improving the degree of freedom in selecting a chain extender that contributes to the development of the zeta potential.
<不織布>
本発明に用いることができる不織布に特に制限はなく、ナイロン、ポリブチレンテレフタレート(PBT)やポリエチレンテレフタレート(PET)のようなポリエステル系樹脂を主成分とする繊維の不織布が挙げられる。これらの中でも、ポリエステル系繊維の場合には、研磨中に吸水しにくいために貯蔵弾性率が変動しにくく研磨効率が安定する。例えば、ナイロン繊維のような吸水性の高い繊維の場合には、研磨中に吸水率が高くなることにより、貯蔵弾性率が変動し、研磨パッドが変形しやすくなって研磨効率が低下しやすくなる。 <Non-woven fabric>
The non-woven fabric that can be used in the present invention is not particularly limited, and examples thereof include non-woven fabrics made of fibers mainly composed of polyester resins such as nylon, polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). Among these, in the case of polyester fiber, since it is difficult to absorb water during polishing, the storage elastic modulus is unlikely to fluctuate and the polishing efficiency is stable. For example, in the case of a fiber having high water absorption such as nylon fiber, the storage elastic modulus fluctuates due to the high water absorption rate during polishing, the polishing pad is easily deformed, and the polishing efficiency is likely to decrease. ..
本発明に用いることができる不織布に特に制限はなく、ナイロン、ポリブチレンテレフタレート(PBT)やポリエチレンテレフタレート(PET)のようなポリエステル系樹脂を主成分とする繊維の不織布が挙げられる。これらの中でも、ポリエステル系繊維の場合には、研磨中に吸水しにくいために貯蔵弾性率が変動しにくく研磨効率が安定する。例えば、ナイロン繊維のような吸水性の高い繊維の場合には、研磨中に吸水率が高くなることにより、貯蔵弾性率が変動し、研磨パッドが変形しやすくなって研磨効率が低下しやすくなる。 <Non-woven fabric>
The non-woven fabric that can be used in the present invention is not particularly limited, and examples thereof include non-woven fabrics made of fibers mainly composed of polyester resins such as nylon, polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). Among these, in the case of polyester fiber, since it is difficult to absorb water during polishing, the storage elastic modulus is unlikely to fluctuate and the polishing efficiency is stable. For example, in the case of a fiber having high water absorption such as nylon fiber, the storage elastic modulus fluctuates due to the high water absorption rate during polishing, the polishing pad is easily deformed, and the polishing efficiency is likely to decrease. ..
ポリエステル繊維を用いる場合、その平均単繊維繊度は、好ましくは0.01~5.0dtexであり、より好ましくは0.03~1.0dtexである。平均単繊維繊度が前記下限値以上であるとドレス時に繊維が切れにくくなるため、脱落によるスクラッチを防止することができる。一方、平均単繊維繊度が前記上限値以下であると研磨対象物への負荷が大きくなりすぎないため、スクラッチを防止することができる。
When polyester fiber is used, its average single fiber fineness is preferably 0.01 to 5.0 dtex, more preferably 0.03 to 1.0 dtex. If the average single fiber fineness is at least the above lower limit value, the fibers are less likely to break during dressing, so that scratches due to falling off can be prevented. On the other hand, when the average single fiber fineness is not more than the upper limit value, the load on the object to be polished does not become too large, so that scratching can be prevented.
<ゼータ電位>
研磨層の目詰まりを抑制し、傷付きを効果的に抑制する観点から、研磨層を構成するポリウレタンのpH7.0におけるゼータ電位は、好ましくは-10.0mV以下であり、より好ましくは-50.0~-12.0mVであり、更に好ましくは-40.0~-15.0mVであり、より更に好ましくは-30.0~-17.0mVであり、より更に好ましくは-27.0~-20.0mVである。研磨層を構成するポリウレタンのpH7.0におけるゼータ電位が前記上限値以下であることにより、研磨層と砥粒とが電気的に反発するため目詰まり抑制効果が向上する。一方、pH7.0におけるゼータ電位が前記下限値以上であることにより、研磨面に保持されるスラリーが少なくなりすぎず、良好な研磨速度を維持することができる。
なお、本明細書においてゼータ電位とは、物質が液体と接したときに、物質の表面電荷に応じて対イオンによって電気二重層表面(滑り面)に生じる電位を指す。具体的には、電気泳動光散乱装置(ELS-Z、大塚電子株式会社製)を使用し、NaCl水溶液でpH7.0に調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子株式会社製)を用いて測定することができる。 <Zeta potential>
From the viewpoint of suppressing clogging of the polishing layer and effectively suppressing scratches, the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is preferably -10.0 mV or less, more preferably -50. It is .0 to -12.0 mV, more preferably -40.0 to -15.0 mV, even more preferably -30.0 to -17.0 mV, and even more preferably -27.0 to -17.0 mV. It is -20.0 mV. When the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is equal to or less than the upper limit value, the polishing layer and the abrasive grains are electrically repelled, so that the effect of suppressing clogging is improved. On the other hand, when the zeta potential at pH 7.0 is at least the above lower limit value, the slurry held on the polishing surface does not become too small, and a good polishing rate can be maintained.
In the present specification, the zeta potential refers to the potential generated on the surface (sliding surface) of the electric double layer by counterions according to the surface charge of the substance when the substance comes into contact with the liquid. Specifically, a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 7.0 with an aqueous NaCl solution using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.) Can be measured using.
研磨層の目詰まりを抑制し、傷付きを効果的に抑制する観点から、研磨層を構成するポリウレタンのpH7.0におけるゼータ電位は、好ましくは-10.0mV以下であり、より好ましくは-50.0~-12.0mVであり、更に好ましくは-40.0~-15.0mVであり、より更に好ましくは-30.0~-17.0mVであり、より更に好ましくは-27.0~-20.0mVである。研磨層を構成するポリウレタンのpH7.0におけるゼータ電位が前記上限値以下であることにより、研磨層と砥粒とが電気的に反発するため目詰まり抑制効果が向上する。一方、pH7.0におけるゼータ電位が前記下限値以上であることにより、研磨面に保持されるスラリーが少なくなりすぎず、良好な研磨速度を維持することができる。
なお、本明細書においてゼータ電位とは、物質が液体と接したときに、物質の表面電荷に応じて対イオンによって電気二重層表面(滑り面)に生じる電位を指す。具体的には、電気泳動光散乱装置(ELS-Z、大塚電子株式会社製)を使用し、NaCl水溶液でpH7.0に調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子株式会社製)を用いて測定することができる。 <Zeta potential>
From the viewpoint of suppressing clogging of the polishing layer and effectively suppressing scratches, the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is preferably -10.0 mV or less, more preferably -50. It is .0 to -12.0 mV, more preferably -40.0 to -15.0 mV, even more preferably -30.0 to -17.0 mV, and even more preferably -27.0 to -17.0 mV. It is -20.0 mV. When the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is equal to or less than the upper limit value, the polishing layer and the abrasive grains are electrically repelled, so that the effect of suppressing clogging is improved. On the other hand, when the zeta potential at pH 7.0 is at least the above lower limit value, the slurry held on the polishing surface does not become too small, and a good polishing rate can be maintained.
In the present specification, the zeta potential refers to the potential generated on the surface (sliding surface) of the electric double layer by counterions according to the surface charge of the substance when the substance comes into contact with the liquid. Specifically, a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 7.0 with an aqueous NaCl solution using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.) Can be measured using.
また研磨層を形成するポリウレタンのpH5.0におけるゼータ電位は、前記と同様の観点から、好ましくは-5.0mV以下であり、より好ましくは-40.0~-12.0mVであり、更に好ましくは-35.0~-15.0mVであり、より更に好ましくは-30.0~-17.0mVである。
更に研磨層を形成するポリウレタンのpH8.0におけるゼータ電位は、前記と同様の観点から、好ましくは-15.0mV以下であり、より好ましくは-60.0~-20.0mVであり、更に好ましくは-50.0~-25.0mVであり、より更に好ましくは-40.0~-30.0mVである。 Further, the zeta potential of the polyurethane forming the polishing layer at pH 5.0 is preferably −5.0 mV or less, more preferably -40.0 to -12.0 mV, and further preferably from the same viewpoint as described above. Is -35.0 to -15.0 mV, and even more preferably -30.0 to -17.0 mV.
Further, the zeta potential of the polyurethane forming the polishing layer at pH 8.0 is preferably -15.0 mV or less, more preferably -60.0 to -20.0 mV, still more preferably, from the same viewpoint as described above. Is -50.0 to -25.0 mV, and even more preferably -40.0 to -30.0 mV.
更に研磨層を形成するポリウレタンのpH8.0におけるゼータ電位は、前記と同様の観点から、好ましくは-15.0mV以下であり、より好ましくは-60.0~-20.0mVであり、更に好ましくは-50.0~-25.0mVであり、より更に好ましくは-40.0~-30.0mVである。 Further, the zeta potential of the polyurethane forming the polishing layer at pH 5.0 is preferably −5.0 mV or less, more preferably -40.0 to -12.0 mV, and further preferably from the same viewpoint as described above. Is -35.0 to -15.0 mV, and even more preferably -30.0 to -17.0 mV.
Further, the zeta potential of the polyurethane forming the polishing layer at pH 8.0 is preferably -15.0 mV or less, more preferably -60.0 to -20.0 mV, still more preferably, from the same viewpoint as described above. Is -50.0 to -25.0 mV, and even more preferably -40.0 to -30.0 mV.
<貯蔵弾性率>
研磨層を構成するポリウレタンを50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率は、好ましくは50~1,200MPaであり、より好ましくは100~1,100MPaであり、更に好ましくは200~1,000MPaであり、より更に好ましくは400~1,000MPaである。前記50℃における貯蔵弾性率が前記下限値以上であると研磨層が適度な柔らかさを有するため研磨速度が良好になる。一方、貯蔵弾性率が前記上限値以下であると被研磨物の被研磨面の傷付きが減少する傾向がある。
なお、貯蔵弾性率は実施例に記載の方法により測定することができる。
前記貯蔵弾性率を満たすポリウレタンは、例えば、ポリウレタン中のイソシアネート基に由来する窒素原子の含有率を調整することにより得ることができる。具体的にポリウレタン中のイソシアネート基に由来する窒素原子の含有率は、好ましくは4.5~7.6質量%であり、より好ましくは5.0~7.4質量%であり、更に好ましくは5.2~7.3質量%である。 <Storage modulus>
After the polyurethane constituting the polishing layer is saturated and swollen with water at 50 ° C., the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1,100 MPa, and further. It is preferably 200 to 1,000 MPa, and even more preferably 400 to 1,000 MPa. When the storage elastic modulus at 50 ° C. is at least the lower limit value, the polishing layer has appropriate softness, so that the polishing rate becomes good. On the other hand, when the storage elastic modulus is not more than the upper limit value, the scratches on the surface to be polished of the object to be polished tend to be reduced.
The storage elastic modulus can be measured by the method described in Examples.
The polyurethane satisfying the storage elastic modulus can be obtained, for example, by adjusting the content of nitrogen atoms derived from the isocyanate group in the polyurethane. Specifically, the content of nitrogen atoms derived from isocyanate groups in polyurethane is preferably 4.5 to 7.6% by mass, more preferably 5.0 to 7.4% by mass, and even more preferably. It is 5.2 to 7.3% by mass.
研磨層を構成するポリウレタンを50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率は、好ましくは50~1,200MPaであり、より好ましくは100~1,100MPaであり、更に好ましくは200~1,000MPaであり、より更に好ましくは400~1,000MPaである。前記50℃における貯蔵弾性率が前記下限値以上であると研磨層が適度な柔らかさを有するため研磨速度が良好になる。一方、貯蔵弾性率が前記上限値以下であると被研磨物の被研磨面の傷付きが減少する傾向がある。
なお、貯蔵弾性率は実施例に記載の方法により測定することができる。
前記貯蔵弾性率を満たすポリウレタンは、例えば、ポリウレタン中のイソシアネート基に由来する窒素原子の含有率を調整することにより得ることができる。具体的にポリウレタン中のイソシアネート基に由来する窒素原子の含有率は、好ましくは4.5~7.6質量%であり、より好ましくは5.0~7.4質量%であり、更に好ましくは5.2~7.3質量%である。 <Storage modulus>
After the polyurethane constituting the polishing layer is saturated and swollen with water at 50 ° C., the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1,100 MPa, and further. It is preferably 200 to 1,000 MPa, and even more preferably 400 to 1,000 MPa. When the storage elastic modulus at 50 ° C. is at least the lower limit value, the polishing layer has appropriate softness, so that the polishing rate becomes good. On the other hand, when the storage elastic modulus is not more than the upper limit value, the scratches on the surface to be polished of the object to be polished tend to be reduced.
The storage elastic modulus can be measured by the method described in Examples.
The polyurethane satisfying the storage elastic modulus can be obtained, for example, by adjusting the content of nitrogen atoms derived from the isocyanate group in the polyurethane. Specifically, the content of nitrogen atoms derived from isocyanate groups in polyurethane is preferably 4.5 to 7.6% by mass, more preferably 5.0 to 7.4% by mass, and even more preferably. It is 5.2 to 7.3% by mass.
<水との接触角>
研磨層を構成するポリウレタンの水との接触角は、好ましくは80度以下であり、より好ましくは70度以下であり、更に好ましくは60度以下であり、より更に好ましくは49度以下である。ポリウレタンの水との接触角が前記上限値以下であると、研磨面の親水性が向上するため研磨時のスクラッチを低減することができる。
なお、ポリウレタンの水との接触角は実施例に記載の方法にしたがって測定することができる。 <Contact angle with water>
The contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferably 60 degrees or less, still more preferably 49 degrees or less. When the contact angle of polyurethane with water is not more than the above upper limit value, the hydrophilicity of the polished surface is improved, so that scratches during polishing can be reduced.
The contact angle of polyurethane with water can be measured according to the method described in Examples.
研磨層を構成するポリウレタンの水との接触角は、好ましくは80度以下であり、より好ましくは70度以下であり、更に好ましくは60度以下であり、より更に好ましくは49度以下である。ポリウレタンの水との接触角が前記上限値以下であると、研磨面の親水性が向上するため研磨時のスクラッチを低減することができる。
なお、ポリウレタンの水との接触角は実施例に記載の方法にしたがって測定することができる。 <Contact angle with water>
The contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferably 60 degrees or less, still more preferably 49 degrees or less. When the contact angle of polyurethane with water is not more than the above upper limit value, the hydrophilicity of the polished surface is improved, so that scratches during polishing can be reduced.
The contact angle of polyurethane with water can be measured according to the method described in Examples.
本発明の研磨層を構成するポリウレタンは、前記貯蔵弾性率が前記範囲内であり、且つ前記水との接触角が前記範囲内であることが好ましい。具体的には、研磨層を構成するポリウレタンを50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率が、好ましくは50~1,200MPaであり、より好ましくは100~1,100MPaであり、更に好ましくは200~1,000MPaであり、且つ、研磨層を構成するポリウレタンの水との接触角が、好ましくは80度以下であり、より好ましくは70度以下であり、更に好ましくは60度以下であり、より更に好ましくは50度以下である。
前記貯蔵弾性率と、前記水との接触角とのいずれもが前記範囲内であると、研磨均一性及び研磨安定性がより一層向上する。 The polyurethane constituting the polishing layer of the present invention preferably has the storage elastic modulus within the above range and the contact angle with water within the above range. Specifically, the polyurethane constituting the polishing layer is saturated and swollen with water at 50 ° C., and then the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1, It is 100 MPa, more preferably 200 to 1,000 MPa, and the contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferable. Is 60 degrees or less, and more preferably 50 degrees or less.
When both the storage elastic modulus and the contact angle with water are within the above ranges, polishing uniformity and polishing stability are further improved.
前記貯蔵弾性率と、前記水との接触角とのいずれもが前記範囲内であると、研磨均一性及び研磨安定性がより一層向上する。 The polyurethane constituting the polishing layer of the present invention preferably has the storage elastic modulus within the above range and the contact angle with water within the above range. Specifically, the polyurethane constituting the polishing layer is saturated and swollen with water at 50 ° C., and then the storage elastic modulus measured at 50 ° C. is preferably 50 to 1,200 MPa, more preferably 100 to 1, It is 100 MPa, more preferably 200 to 1,000 MPa, and the contact angle of the polyurethane constituting the polishing layer with water is preferably 80 degrees or less, more preferably 70 degrees or less, still more preferable. Is 60 degrees or less, and more preferably 50 degrees or less.
When both the storage elastic modulus and the contact angle with water are within the above ranges, polishing uniformity and polishing stability are further improved.
<密度>
本発明においては、不織布にポリウレタンを含浸、凝固させたものでもよく、また、ポリウレタンの成形シートからなるものであってもよいが、成形シートからなる場合のポリウレタンの密度は、好ましくは1.0g/cm3以上であり、より好ましくは1.1g/cm3以上であり、更に好ましくは1.2g/cm3以上である。熱可塑性ポリウレタンの成形体の密度が前記下限値以上であると研磨層として適度な柔軟性を有するようになる。また、熱可塑性ポリウレタンとしては非発泡の熱可塑性ポリウレタンが高い剛性と材料の均質さにより研磨安定性に優れる点から特に好ましい。 <Density>
In the present invention, the non-woven fabric may be impregnated with polyurethane and solidified, or may be made of a molded sheet of polyurethane, but the density of polyurethane when made of a molded sheet is preferably 1.0 g. It is / cm 3 or more, more preferably 1.1 g / cm 3 or more, and further preferably 1.2 g / cm 3 or more. When the density of the molded product of the thermoplastic polyurethane is at least the above lower limit value, the polishing layer has appropriate flexibility. Further, as the thermoplastic polyurethane, non-foamed thermoplastic polyurethane is particularly preferable because it is excellent in polishing stability due to its high rigidity and material homogeneity.
本発明においては、不織布にポリウレタンを含浸、凝固させたものでもよく、また、ポリウレタンの成形シートからなるものであってもよいが、成形シートからなる場合のポリウレタンの密度は、好ましくは1.0g/cm3以上であり、より好ましくは1.1g/cm3以上であり、更に好ましくは1.2g/cm3以上である。熱可塑性ポリウレタンの成形体の密度が前記下限値以上であると研磨層として適度な柔軟性を有するようになる。また、熱可塑性ポリウレタンとしては非発泡の熱可塑性ポリウレタンが高い剛性と材料の均質さにより研磨安定性に優れる点から特に好ましい。 <Density>
In the present invention, the non-woven fabric may be impregnated with polyurethane and solidified, or may be made of a molded sheet of polyurethane, but the density of polyurethane when made of a molded sheet is preferably 1.0 g. It is / cm 3 or more, more preferably 1.1 g / cm 3 or more, and further preferably 1.2 g / cm 3 or more. When the density of the molded product of the thermoplastic polyurethane is at least the above lower limit value, the polishing layer has appropriate flexibility. Further, as the thermoplastic polyurethane, non-foamed thermoplastic polyurethane is particularly preferable because it is excellent in polishing stability due to its high rigidity and material homogeneity.
<研磨層の厚さ>
本発明の研磨層の形状は、例えば、熱可塑性ポリウレタンのシート状の成形体を切削、スライス、打ち抜き加工等により適宜調整することができる。研磨層の厚さは特に限定されないが、好ましくは0.5~5.0mmであり、より好ましくは1.0~3.0mmであり、更に好ましくは1.2~2.0mmである。研磨層の厚さが前記範囲内であると生産性や取り扱い性が向上すると共に、研磨性能の安定性も向上する。 <Thickness of polishing layer>
The shape of the polishing layer of the present invention can be appropriately adjusted by cutting, slicing, punching, or the like, for example, a sheet-shaped molded body of thermoplastic polyurethane. The thickness of the polishing layer is not particularly limited, but is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm, and even more preferably 1.2 to 2.0 mm. When the thickness of the polishing layer is within the above range, productivity and handleability are improved, and stability of polishing performance is also improved.
本発明の研磨層の形状は、例えば、熱可塑性ポリウレタンのシート状の成形体を切削、スライス、打ち抜き加工等により適宜調整することができる。研磨層の厚さは特に限定されないが、好ましくは0.5~5.0mmであり、より好ましくは1.0~3.0mmであり、更に好ましくは1.2~2.0mmである。研磨層の厚さが前記範囲内であると生産性や取り扱い性が向上すると共に、研磨性能の安定性も向上する。 <Thickness of polishing layer>
The shape of the polishing layer of the present invention can be appropriately adjusted by cutting, slicing, punching, or the like, for example, a sheet-shaped molded body of thermoplastic polyurethane. The thickness of the polishing layer is not particularly limited, but is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm, and even more preferably 1.2 to 2.0 mm. When the thickness of the polishing layer is within the above range, productivity and handleability are improved, and stability of polishing performance is also improved.
<研磨層の硬度>
研磨層の硬度は、JIS K 6253-3:2012により測定した値が好ましくは60以上であり、より好ましくは65以上であり、そして、好ましくは95以下であり、より好ましくは90以下である。硬度が前記下限値以上であると、被研磨面への研磨パッドの追従性が低くなり、平坦性が向上する。一方、硬度が前記上限値以下であると傷付きが発生しにくくなるため好ましい。 <Hardness of polishing layer>
The hardness of the polishing layer is preferably 60 or more, more preferably 65 or more, and preferably 95 or less, more preferably 90 or less, as measured by JIS K 6253-3: 2012. When the hardness is at least the above lower limit value, the followability of the polishing pad to the surface to be polished becomes low, and the flatness is improved. On the other hand, when the hardness is not more than the upper limit value, scratches are less likely to occur, which is preferable.
研磨層の硬度は、JIS K 6253-3:2012により測定した値が好ましくは60以上であり、より好ましくは65以上であり、そして、好ましくは95以下であり、より好ましくは90以下である。硬度が前記下限値以上であると、被研磨面への研磨パッドの追従性が低くなり、平坦性が向上する。一方、硬度が前記上限値以下であると傷付きが発生しにくくなるため好ましい。 <Hardness of polishing layer>
The hardness of the polishing layer is preferably 60 or more, more preferably 65 or more, and preferably 95 or less, more preferably 90 or less, as measured by JIS K 6253-3: 2012. When the hardness is at least the above lower limit value, the followability of the polishing pad to the surface to be polished becomes low, and the flatness is improved. On the other hand, when the hardness is not more than the upper limit value, scratches are less likely to occur, which is preferable.
<研磨層の形状>
研磨層の研磨面には、研削加工やレーザー加工により、同心円状、格子状、螺旋状、放射状の所定のパターンで溝や穴のような凹部が形成されることが好ましい。このような凹部は、研磨面にスラリーを均一かつ充分に供給するとともに、スクラッチ発生の原因となる研磨屑の排出や、研磨層の吸着によるウェハ破損の防止に役立つ。例えば同心円状に溝を形成する場合、溝間の間隔は、好ましくは1.0~50mmであり、より好ましくは1.5~30mmであり、更に好ましくは2.0~15mmである。また、溝の幅は、好ましくは0.1~3.0mmであり、より好ましくは0.2~2.0mmである。また、溝の深さは研磨層の厚さ未満であって、好ましくは0.2~1.8mmであり、より好ましくは0.4~1.5mmである。また、溝の断面形状としては、例えば、長方形、台形、三角形、半円形等の形状が目的に応じて適宜選択される。 <Shape of polishing layer>
It is preferable that the polished surface of the polishing layer is formed with recesses such as grooves and holes in a predetermined concentric, lattice-like, spiral-like, and radial patterns by grinding or laser processing. Such recesses are useful for uniformly and sufficiently supplying the slurry to the polished surface, discharging polishing debris that causes scratches, and preventing wafer damage due to adsorption of the polishing layer. For example, when the grooves are formed concentrically, the distance between the grooves is preferably 1.0 to 50 mm, more preferably 1.5 to 30 mm, and further preferably 2.0 to 15 mm. The width of the groove is preferably 0.1 to 3.0 mm, more preferably 0.2 to 2.0 mm. The depth of the groove is less than the thickness of the polishing layer, preferably 0.2 to 1.8 mm, and more preferably 0.4 to 1.5 mm. Further, as the cross-sectional shape of the groove, for example, a shape such as a rectangle, a trapezoid, a triangle, or a semicircle is appropriately selected according to an object.
研磨層の研磨面には、研削加工やレーザー加工により、同心円状、格子状、螺旋状、放射状の所定のパターンで溝や穴のような凹部が形成されることが好ましい。このような凹部は、研磨面にスラリーを均一かつ充分に供給するとともに、スクラッチ発生の原因となる研磨屑の排出や、研磨層の吸着によるウェハ破損の防止に役立つ。例えば同心円状に溝を形成する場合、溝間の間隔は、好ましくは1.0~50mmであり、より好ましくは1.5~30mmであり、更に好ましくは2.0~15mmである。また、溝の幅は、好ましくは0.1~3.0mmであり、より好ましくは0.2~2.0mmである。また、溝の深さは研磨層の厚さ未満であって、好ましくは0.2~1.8mmであり、より好ましくは0.4~1.5mmである。また、溝の断面形状としては、例えば、長方形、台形、三角形、半円形等の形状が目的に応じて適宜選択される。 <Shape of polishing layer>
It is preferable that the polished surface of the polishing layer is formed with recesses such as grooves and holes in a predetermined concentric, lattice-like, spiral-like, and radial patterns by grinding or laser processing. Such recesses are useful for uniformly and sufficiently supplying the slurry to the polished surface, discharging polishing debris that causes scratches, and preventing wafer damage due to adsorption of the polishing layer. For example, when the grooves are formed concentrically, the distance between the grooves is preferably 1.0 to 50 mm, more preferably 1.5 to 30 mm, and further preferably 2.0 to 15 mm. The width of the groove is preferably 0.1 to 3.0 mm, more preferably 0.2 to 2.0 mm. The depth of the groove is less than the thickness of the polishing layer, preferably 0.2 to 1.8 mm, and more preferably 0.4 to 1.5 mm. Further, as the cross-sectional shape of the groove, for example, a shape such as a rectangle, a trapezoid, a triangle, or a semicircle is appropriately selected according to an object.
[研磨パッド]
本発明の研磨パッドは、本発明の研磨層を用いたものである。本発明の研磨パッドは本発明の研磨層のみからなるものであってもよく、また、研磨層の研磨面ではない側の面にクッション層を積層した積層体であってもよい。
クッション層としては、研磨層の硬度より低い硬度を有する層であることが好ましい。クッション層の硬度が研磨層の硬度よりも低い場合には、被研磨面の局所的な凹凸には硬質の研磨層が追従し、被研磨基材全体の反りやうねりに対してはクッション層が追従するためにグローバル平坦性(ウエハ基板の大きな周期の凹凸が低減している状態)とローカル平坦性(局所的な凹凸が低減している状態)とのバランスに優れた研磨が可能になる。 [Polishing pad]
The polishing pad of the present invention uses the polishing layer of the present invention. The polishing pad of the present invention may be composed of only the polishing layer of the present invention, or may be a laminated body in which a cushion layer is laminated on a surface of the polishing layer that is not the polishing surface.
The cushion layer is preferably a layer having a hardness lower than the hardness of the polishing layer. When the hardness of the cushion layer is lower than the hardness of the polishing layer, the hard polishing layer follows the local unevenness of the surface to be polished, and the cushion layer responds to the warp and waviness of the entire substrate to be polished. In order to follow, it is possible to perform polishing with an excellent balance between global flatness (a state in which irregularities with a large period of the wafer substrate are reduced) and local flatness (a state in which local irregularities are reduced).
本発明の研磨パッドは、本発明の研磨層を用いたものである。本発明の研磨パッドは本発明の研磨層のみからなるものであってもよく、また、研磨層の研磨面ではない側の面にクッション層を積層した積層体であってもよい。
クッション層としては、研磨層の硬度より低い硬度を有する層であることが好ましい。クッション層の硬度が研磨層の硬度よりも低い場合には、被研磨面の局所的な凹凸には硬質の研磨層が追従し、被研磨基材全体の反りやうねりに対してはクッション層が追従するためにグローバル平坦性(ウエハ基板の大きな周期の凹凸が低減している状態)とローカル平坦性(局所的な凹凸が低減している状態)とのバランスに優れた研磨が可能になる。 [Polishing pad]
The polishing pad of the present invention uses the polishing layer of the present invention. The polishing pad of the present invention may be composed of only the polishing layer of the present invention, or may be a laminated body in which a cushion layer is laminated on a surface of the polishing layer that is not the polishing surface.
The cushion layer is preferably a layer having a hardness lower than the hardness of the polishing layer. When the hardness of the cushion layer is lower than the hardness of the polishing layer, the hard polishing layer follows the local unevenness of the surface to be polished, and the cushion layer responds to the warp and waviness of the entire substrate to be polished. In order to follow, it is possible to perform polishing with an excellent balance between global flatness (a state in which irregularities with a large period of the wafer substrate are reduced) and local flatness (a state in which local irregularities are reduced).
クッション層として用いられる素材の具体例としては、不織布にポリウレタンを含浸させた複合体(例えば、「Suba400」(ニッタ・ハース株式会社製));天然ゴム、ニトリルゴム、ポリブタジエンゴム、シリコーンゴム等のゴム;ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;発泡プラスチック;ポリウレタン等が挙げられる。これらの中では、クッション層として好ましい柔軟性が得られやすい点から、発泡構造を有するポリウレタンが特に好ましい。
Specific examples of the material used as the cushion layer include a composite in which a non-woven fabric is impregnated with polyurethane (for example, "Suba400" (manufactured by Nitta Haas Co., Ltd.)); natural rubber, nitrile rubber, polybutadiene rubber, silicone rubber, etc. Rubber; thermoplastic elastomers such as polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and fluorine-based thermoplastic elastomers; foamed plastics; polyurethane and the like. Among these, polyurethane having a foamed structure is particularly preferable because it is easy to obtain preferable flexibility as a cushion layer.
クッション層の厚さは特に限定されないが、例えば0.5~5mm程度であることが好ましい。クッション層が薄すぎる場合には、被研磨面の全体の反りやうねりに対する追従効果が低下してグローバル平坦性が低下する傾向がある。一方、クッション層が厚すぎる場合には、研磨パッド全体が柔らかくなって安定した研磨が難しくなる傾向がある。研磨層にクッション層を積層する場合には、研磨パッドの厚みが0.3~5mm程度であることが好ましい。
The thickness of the cushion layer is not particularly limited, but is preferably about 0.5 to 5 mm, for example. If the cushion layer is too thin, the effect of following the entire warp or waviness of the surface to be polished tends to decrease, and the global flatness tends to decrease. On the other hand, if the cushion layer is too thick, the entire polishing pad tends to be soft and stable polishing tends to be difficult. When the cushion layer is laminated on the polishing layer, the thickness of the polishing pad is preferably about 0.3 to 5 mm.
[研磨方法]
本発明の研磨方法は、前記本発明の研磨層を用いるものであって、該研磨層を備える研磨パッドを研磨装置の定盤上に固定する工程と、
前記研磨層の研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
前記研磨面と前記被研磨物との間に中性又はアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、
を有する研磨方法である。
本発明の研磨方法によれば、アルカリ性のスラリーを用いてCMPを行う場合において、スラリー中の砥粒と研磨パッドとの斥力を向上させることにより、砥粒が目詰まりすることを抑制することができ、研磨パッドの長寿命化を図ることができる。 [Polishing method]
The polishing method of the present invention uses the polishing layer of the present invention, and includes a step of fixing a polishing pad provided with the polishing layer on a surface plate of a polishing apparatus.
A step of holding the object to be polished in the holder of the polishing apparatus so as to face the polished surface of the polishing layer, and
A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished. When,
It is a polishing method having.
According to the polishing method of the present invention, when CMP is performed using an alkaline slurry, clogging of the abrasive grains can be suppressed by improving the repulsive force between the abrasive grains in the slurry and the polishing pad. This makes it possible to extend the life of the polishing pad.
本発明の研磨方法は、前記本発明の研磨層を用いるものであって、該研磨層を備える研磨パッドを研磨装置の定盤上に固定する工程と、
前記研磨層の研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
前記研磨面と前記被研磨物との間に中性又はアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、
を有する研磨方法である。
本発明の研磨方法によれば、アルカリ性のスラリーを用いてCMPを行う場合において、スラリー中の砥粒と研磨パッドとの斥力を向上させることにより、砥粒が目詰まりすることを抑制することができ、研磨パッドの長寿命化を図ることができる。 [Polishing method]
The polishing method of the present invention uses the polishing layer of the present invention, and includes a step of fixing a polishing pad provided with the polishing layer on a surface plate of a polishing apparatus.
A step of holding the object to be polished in the holder of the polishing apparatus so as to face the polished surface of the polishing layer, and
A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished. When,
It is a polishing method having.
According to the polishing method of the present invention, when CMP is performed using an alkaline slurry, clogging of the abrasive grains can be suppressed by improving the repulsive force between the abrasive grains in the slurry and the polishing pad. This makes it possible to extend the life of the polishing pad.
本発明の研磨方法をCMPにより行う場合の実施の形態について図3を用いて説明する。
CMPにおいては、図3に示す円形の回転定盤2と、スラリー供給ノズル3と、ホルダ4と、パッドコンディショナー6とを備えたCMP装置10が用いられる。回転定盤2の表面に上述した研磨層を備えた研磨パッド1を両面テープ等により貼付ける。また、ホルダ4は被研磨物5を支持する。 An embodiment in the case where the polishing method of the present invention is performed by CMP will be described with reference to FIG.
In CMP, aCMP apparatus 10 including a circular rotary surface plate 2 shown in FIG. 3, a slurry supply nozzle 3, a holder 4, and a pad conditioner 6 is used. A polishing pad 1 having the above-mentioned polishing layer is attached to the surface of the rotary surface plate 2 with double-sided tape or the like. Further, the holder 4 supports the object to be polished 5.
CMPにおいては、図3に示す円形の回転定盤2と、スラリー供給ノズル3と、ホルダ4と、パッドコンディショナー6とを備えたCMP装置10が用いられる。回転定盤2の表面に上述した研磨層を備えた研磨パッド1を両面テープ等により貼付ける。また、ホルダ4は被研磨物5を支持する。 An embodiment in the case where the polishing method of the present invention is performed by CMP will be described with reference to FIG.
In CMP, a
CMP装置10においては、回転定盤2は図略のモータにより矢印に示す方向に回転する。また、ホルダ4は、回転定盤2の面内において、図略のモータにより例えば矢印に示す方向に回転する。パッドコンディショナー6も回転定盤2の面内において、図略のモータにより例えば矢印に示す方向に回転する。
In the CMP device 10, the rotary surface plate 2 is rotated in the direction indicated by the arrow by the motor shown in the figure. Further, the holder 4 is rotated in the plane of the rotary surface plate 2 by a motor (not shown) in the direction indicated by, for example, an arrow. The pad conditioner 6 is also rotated in the plane of the rotary surface plate 2 by a motor (not shown) in the direction indicated by an arrow, for example.
はじめに、回転定盤2に固定されて回転する研磨パッド1の研磨面に蒸留水を流しながらに、例えば、ダイアモンド粒子をニッケル電着等により担体表面に固定したCMP用のパッドコンディショナー6を押し当てて、研磨パッド1の研磨面のコンディショニングを行う。コンディショニングにより、研磨面を被研磨面の研磨に好適な表面粗さに調整する。次に、回転する研磨パッド1の研磨面にスラリー供給ノズル3からスラリー7が供給される。またCMPを行うに際し、必要に応じ、スラリーと共に、潤滑油、冷却剤等を併用してもよい。
First, while flowing distilled water on the polishing surface of the rotating polishing pad 1 fixed to the rotary surface plate 2, for example, a pad conditioner 6 for CMP in which diamond particles are fixed to the carrier surface by nickel electrodeposition or the like is pressed against it. Then, the polished surface of the polishing pad 1 is conditioned. Conditioning adjusts the polished surface to a surface roughness suitable for polishing the surface to be polished. Next, the slurry 7 is supplied from the slurry supply nozzle 3 to the polished surface of the rotating polishing pad 1. Further, when performing CMP, if necessary, a lubricating oil, a coolant, or the like may be used in combination with the slurry.
ここで、スラリーには、酸性のスラリー、アルカリ性のスラリー、中性近傍のスラリーがあるが、例えば、水やオイル等の液状媒体;シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、炭化ケイ素等の砥粒;塩基、酸、界面活性剤、過酸化水素水等の酸化剤、還元剤、キレート剤等を含有しているCMPに用いられるスラリーが好ましく用いられる。
本発明の研磨層を用いる場合、中性又はアルカリ性のスラリーを用いてアルカリに調整し、好ましくはpH5.0~12.0、より好ましくはpH6.0~10.0のスラリーを用いてCMPを行うことが、砥粒と研磨層との斥力を維持する点で好ましい。 Here, the slurry includes an acidic slurry, an alkaline slurry, and a slurry in the vicinity of neutrality. For example, a liquid medium such as water or oil; abrasive grains such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide. A slurry used for CMP containing a base, an acid, a surfactant, an oxidizing agent such as a hydrogen peroxide solution, a reducing agent, a chelating agent, etc. is preferably used.
When the polishing layer of the present invention is used, the CMP is adjusted to alkaline using a neutral or alkaline slurry, and CMP is preferably prepared using a slurry having a pH of 5.0 to 12.0, more preferably a pH of 6.0 to 10.0. This is preferable in that the repulsive force between the abrasive grains and the polishing layer is maintained.
本発明の研磨層を用いる場合、中性又はアルカリ性のスラリーを用いてアルカリに調整し、好ましくはpH5.0~12.0、より好ましくはpH6.0~10.0のスラリーを用いてCMPを行うことが、砥粒と研磨層との斥力を維持する点で好ましい。 Here, the slurry includes an acidic slurry, an alkaline slurry, and a slurry in the vicinity of neutrality. For example, a liquid medium such as water or oil; abrasive grains such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide. A slurry used for CMP containing a base, an acid, a surfactant, an oxidizing agent such as a hydrogen peroxide solution, a reducing agent, a chelating agent, etc. is preferably used.
When the polishing layer of the present invention is used, the CMP is adjusted to alkaline using a neutral or alkaline slurry, and CMP is preferably prepared using a slurry having a pH of 5.0 to 12.0, more preferably a pH of 6.0 to 10.0. This is preferable in that the repulsive force between the abrasive grains and the polishing layer is maintained.
そして、研磨層の研磨面にスラリー7が満遍なく行き渡った研磨パッド1に、ホルダ4に固定されて回転する被研磨物5を押し当てる。そして、所定の平坦度が得られるまで、研磨処理が続けられる。研磨時に作用させる押し付け力や回転定盤2とホルダ4との相対運動の速度を調整することにより、仕上がり品質が影響を受ける。
Then, the rotating object 5 fixed to the holder 4 is pressed against the polishing pad 1 in which the slurry 7 is evenly distributed on the polishing surface of the polishing layer. Then, the polishing process is continued until a predetermined flatness is obtained. Finishing quality is affected by adjusting the pressing force applied during polishing and the speed of relative movement between the rotary surface plate 2 and the holder 4.
研磨条件は特に限定されないが、効率的に研磨を行うためには、回転定盤とホルダのそれぞれの回転速度は300rpm以下の低回転が好ましく、被研磨物にかける圧力は、研磨後に傷が発生しないように150kPa以下とすることが好ましい。研磨している間、研磨面には、スラリーをポンプ等で連続的に供給することが好ましい。スラリーの供給量は特に限定されないが、研磨面が常にスラリーで覆われるように供給することが好ましい。
The polishing conditions are not particularly limited, but in order to perform efficient polishing, it is preferable that the rotation speeds of the rotary surface plate and the holder are as low as 300 rpm or less, and the pressure applied to the object to be polished causes scratches after polishing. It is preferably 150 kPa or less so as not to prevent it. During polishing, it is preferable to continuously supply the slurry to the polished surface by a pump or the like. The amount of the slurry supplied is not particularly limited, but it is preferable to supply the slurry so that the polished surface is always covered with the slurry.
そして、研磨終了後の被研磨物を流水でよく洗浄した後、スピンドライヤ等を用いて被研磨物に付着した水滴を払い落として乾燥させることが好ましい。このように、被研磨面をスラリーで研磨することによって、被研磨面全面にわたって平滑な面を得ることができる。なお、上述のCMPは、シリコンウェハ等の各種半導体材料等の研磨に好適に用いることができる。
Then, it is preferable that the object to be polished after polishing is thoroughly washed with running water, and then water droplets adhering to the object to be polished are wiped off and dried using a spin dryer or the like. By polishing the surface to be polished with the slurry in this way, a smooth surface can be obtained over the entire surface to be polished. The above-mentioned CMP can be suitably used for polishing various semiconductor materials such as silicon wafers.
以下に本発明の一例を実施例により説明する。なお、本発明の範囲は以下の実施例により限定されるものではない。
An example of the present invention will be described below by way of examples. The scope of the present invention is not limited to the following examples.
[実施例1]
数平均分子量850のポリテトラメチレングリコール(PTG850)、カルボキシ基を有する化合物であるジメチロールプロピオン酸(DMP)、1,4-ブタンジオール(BD)、及び4,4'-ジフェニルメタンジイソシアネート(MDI)を、PTG850:DMP:BD:MDIの質量比が19.9:6.0:16.0:58.1(DMPとBDのモル比が20/80)となる割合で用いて溶液重合を行うことにより、カルボキシ基を有する熱可塑性ポリウレタンを製造した。製造した熱可塑性ポリウレタンの溶液をキャストフィルム化した後、80℃で20時間除湿乾燥することにより、熱可塑性ポリウレタンを得た。
得られた熱可塑性ポリウレタンについて後述する評価を行った。結果を表1に示す。 [Example 1]
Polytetramethylene glycol (PTG850) having a number average molecular weight of 850, dimethylolpropionic acid (DMP), which is a compound having a carboxy group, 1,4-butanediol (BD), and 4,4'-diphenylmethane diisocyanate (MDI). , PTG850: DMP: BD: MDI mass ratio of 19.9: 6.0: 16.0: 58.1 (molar ratio of DMP to BD is 20/80) for solution polymerization. To produce a thermoplastic polyurethane having a carboxy group. The produced thermoplastic polyurethane solution was made into a cast film and then dehumidified and dried at 80 ° C. for 20 hours to obtain a thermoplastic polyurethane.
The obtained thermoplastic polyurethane was evaluated as described later. The results are shown in Table 1.
数平均分子量850のポリテトラメチレングリコール(PTG850)、カルボキシ基を有する化合物であるジメチロールプロピオン酸(DMP)、1,4-ブタンジオール(BD)、及び4,4'-ジフェニルメタンジイソシアネート(MDI)を、PTG850:DMP:BD:MDIの質量比が19.9:6.0:16.0:58.1(DMPとBDのモル比が20/80)となる割合で用いて溶液重合を行うことにより、カルボキシ基を有する熱可塑性ポリウレタンを製造した。製造した熱可塑性ポリウレタンの溶液をキャストフィルム化した後、80℃で20時間除湿乾燥することにより、熱可塑性ポリウレタンを得た。
得られた熱可塑性ポリウレタンについて後述する評価を行った。結果を表1に示す。 [Example 1]
Polytetramethylene glycol (PTG850) having a number average molecular weight of 850, dimethylolpropionic acid (DMP), which is a compound having a carboxy group, 1,4-butanediol (BD), and 4,4'-diphenylmethane diisocyanate (MDI). , PTG850: DMP: BD: MDI mass ratio of 19.9: 6.0: 16.0: 58.1 (molar ratio of DMP to BD is 20/80) for solution polymerization. To produce a thermoplastic polyurethane having a carboxy group. The produced thermoplastic polyurethane solution was made into a cast film and then dehumidified and dried at 80 ° C. for 20 hours to obtain a thermoplastic polyurethane.
The obtained thermoplastic polyurethane was evaluated as described later. The results are shown in Table 1.
[実施例2~10、比較例1~3]
表1の配合としたこと以外は、実施例1と同様に実施例2~10、比較例1~3のポリウレタンを製造した。得られた熱可塑性ポリウレタンについて後述する評価を行った。結果を表1に示す。 [Examples 2 to 10, Comparative Examples 1 to 3]
Polyurethanes of Examples 2 to 10 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1 except that the formulations shown in Table 1 were used. The obtained thermoplastic polyurethane was evaluated as described later. The results are shown in Table 1.
表1の配合としたこと以外は、実施例1と同様に実施例2~10、比較例1~3のポリウレタンを製造した。得られた熱可塑性ポリウレタンについて後述する評価を行った。結果を表1に示す。 [Examples 2 to 10, Comparative Examples 1 to 3]
Polyurethanes of Examples 2 to 10 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1 except that the formulations shown in Table 1 were used. The obtained thermoplastic polyurethane was evaluated as described later. The results are shown in Table 1.
なお、表1に記載の原料は以下のとおりである。
BD:1,4-ブタンジオール
PD:1,5-ペンタンジオール
DMP:ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)
DMB:ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)酪酸)
MPD:3-メチル-1,5-ペンタンジオール
PTG850:数平均分子量850のポリテトラメチレングリコール
PEG600:数平均分子量600のポリエチレングリコール
PD1000:数平均分子量1000のポリカーボネートジオール
MDI:4,4'-ジフェニルメタンジイソシアネート The raw materials listed in Table 1 are as follows.
BD: 1,4-butanediol PD: 1,5-pentanediol DMP: Dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid)
DMB: Dimethylolbutanoic acid (2,2-bis (hydroxymethyl) butyric acid)
MPD: 3-Methyl-1,5-pentanediol PTG850: Polytetramethylene glycol with a number average molecular weight of 850 PEG600: Polyethylene glycol with a number average molecular weight of 600 PD1000: Polycarbonate diol with a number average molecular weight of 1000 MDI: 4,4'-diphenylmethane diisocyanate
BD:1,4-ブタンジオール
PD:1,5-ペンタンジオール
DMP:ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)
DMB:ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)酪酸)
MPD:3-メチル-1,5-ペンタンジオール
PTG850:数平均分子量850のポリテトラメチレングリコール
PEG600:数平均分子量600のポリエチレングリコール
PD1000:数平均分子量1000のポリカーボネートジオール
MDI:4,4'-ジフェニルメタンジイソシアネート The raw materials listed in Table 1 are as follows.
BD: 1,4-butanediol PD: 1,5-pentanediol DMP: Dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid)
DMB: Dimethylolbutanoic acid (2,2-bis (hydroxymethyl) butyric acid)
MPD: 3-Methyl-1,5-pentanediol PTG850: Polytetramethylene glycol with a number average molecular weight of 850 PEG600: Polyethylene glycol with a number average molecular weight of 600 PD1000: Polycarbonate diol with a number average molecular weight of 1000 MDI: 4,4'-diphenylmethane diisocyanate
[評価方法]
実施例及び比較例で得られた熱可塑性ポリウレタンについて後述する方法にしたがって、各評価を行った。 [Evaluation method]
Each evaluation was performed on the thermoplastic polyurethanes obtained in Examples and Comparative Examples according to the method described later.
実施例及び比較例で得られた熱可塑性ポリウレタンについて後述する方法にしたがって、各評価を行った。 [Evaluation method]
Each evaluation was performed on the thermoplastic polyurethanes obtained in Examples and Comparative Examples according to the method described later.
<ゼータ電位の測定>
実施例及び比較例で製造した各熱可塑性ポリウレタンのペレット(5~14g)をテフロン(登録商標)シートに挟んだ後、熱プレス機を用いて200~230℃でプレスして成形することにより、厚さ0.3~0.5mmの熱可塑性ポリウレタンの成形シートを得た。
次に、得られた成形シートを30mm×60mmに切り出し、その表面を洗浄した。そして、電気泳動光散乱装置(ELS-Z、大塚電子株式会社製)を使用し、平板測定用セルにサンプルを取り付けた。次いで、NaOH水溶液でpH5.0、pH7.0、及びpH8.0にそれぞれ調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子株式会社製)を用い、ゼータ電位を測定した。 <Measurement of zeta potential>
Pellets (5 to 14 g) of each thermoplastic polyurethane produced in Examples and Comparative Examples are sandwiched between Teflon (registered trademark) sheets and then pressed at 200 to 230 ° C. using a hot press to form the molded product. A molded sheet of thermoplastic polyurethane having a thickness of 0.3 to 0.5 mm was obtained.
Next, the obtained molded sheet was cut into a size of 30 mm × 60 mm, and the surface thereof was washed. Then, using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.), the sample was attached to the plate measurement cell. Next, the zeta potential was measured using a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 5.0, pH 7.0, and pH 8.0 with an aqueous NaOH solution.
実施例及び比較例で製造した各熱可塑性ポリウレタンのペレット(5~14g)をテフロン(登録商標)シートに挟んだ後、熱プレス機を用いて200~230℃でプレスして成形することにより、厚さ0.3~0.5mmの熱可塑性ポリウレタンの成形シートを得た。
次に、得られた成形シートを30mm×60mmに切り出し、その表面を洗浄した。そして、電気泳動光散乱装置(ELS-Z、大塚電子株式会社製)を使用し、平板測定用セルにサンプルを取り付けた。次いで、NaOH水溶液でpH5.0、pH7.0、及びpH8.0にそれぞれ調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子株式会社製)を用い、ゼータ電位を測定した。 <Measurement of zeta potential>
Pellets (5 to 14 g) of each thermoplastic polyurethane produced in Examples and Comparative Examples are sandwiched between Teflon (registered trademark) sheets and then pressed at 200 to 230 ° C. using a hot press to form the molded product. A molded sheet of thermoplastic polyurethane having a thickness of 0.3 to 0.5 mm was obtained.
Next, the obtained molded sheet was cut into a size of 30 mm × 60 mm, and the surface thereof was washed. Then, using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.), the sample was attached to the plate measurement cell. Next, the zeta potential was measured using a monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in a 10 mM NaCl aqueous solution adjusted to pH 5.0, pH 7.0, and pH 8.0 with an aqueous NaOH solution.
<水に対する接触角>
実施例及び比較例で製造した各熱可塑性ポリウレタンについて、熱プレス法により厚さ300μmのフィルムを作製した。次いで、得られたフィルムを20℃、65%RHの条件下に3日間放置した後、表面に水を滴下してから15分経過後に、協和界面科学株式会社製DropMaster500を用いて水に対する接触角を測定した。 <Contact angle with water>
For each thermoplastic polyurethane produced in Examples and Comparative Examples, a film having a thickness of 300 μm was prepared by a heat pressing method. Next, the obtained film was left to stand under the conditions of 20 ° C. and 65% RH for 3 days, and 15 minutes after dropping water on the surface, a contact angle with water using DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd. was used. Was measured.
実施例及び比較例で製造した各熱可塑性ポリウレタンについて、熱プレス法により厚さ300μmのフィルムを作製した。次いで、得られたフィルムを20℃、65%RHの条件下に3日間放置した後、表面に水を滴下してから15分経過後に、協和界面科学株式会社製DropMaster500を用いて水に対する接触角を測定した。 <Contact angle with water>
For each thermoplastic polyurethane produced in Examples and Comparative Examples, a film having a thickness of 300 μm was prepared by a heat pressing method. Next, the obtained film was left to stand under the conditions of 20 ° C. and 65% RH for 3 days, and 15 minutes after dropping water on the surface, a contact angle with water using DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd. was used. Was measured.
<50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率>
実施例及び比較例で製造した各熱可塑性ポリウレタンについて、幅5mm、長さ30mm、厚さ2mmの射出成形シートを作製した。そして、射出成形シートを50℃の水に3日間浸漬した。次いで、水から取り出した射出成形シートの表面の水を拭いた後、動的粘弾性測定装置(「DVEレオスペクトラー」、株式会社レオロジー製)を使用して、50℃における動的粘弾性率を周波数11Hzで測定することにより、貯蔵弾性率を求めた。 <Storage modulus at 50 ° C after saturated swelling with water at 50 ° C>
For each thermoplastic polyurethane produced in Examples and Comparative Examples, injection-molded sheets having a width of 5 mm, a length of 30 mm, and a thickness of 2 mm were produced. Then, the injection molded sheet was immersed in water at 50 ° C. for 3 days. Next, after wiping the water on the surface of the injection-molded sheet taken out from the water, the dynamic viscoelasticity at 50 ° C. using a dynamic viscoelasticity measuring device (“DVE Leospectler”, manufactured by Rheology Co., Ltd.). Was measured at a frequency of 11 Hz to determine the storage elastic modulus.
実施例及び比較例で製造した各熱可塑性ポリウレタンについて、幅5mm、長さ30mm、厚さ2mmの射出成形シートを作製した。そして、射出成形シートを50℃の水に3日間浸漬した。次いで、水から取り出した射出成形シートの表面の水を拭いた後、動的粘弾性測定装置(「DVEレオスペクトラー」、株式会社レオロジー製)を使用して、50℃における動的粘弾性率を周波数11Hzで測定することにより、貯蔵弾性率を求めた。 <Storage modulus at 50 ° C after saturated swelling with water at 50 ° C>
For each thermoplastic polyurethane produced in Examples and Comparative Examples, injection-molded sheets having a width of 5 mm, a length of 30 mm, and a thickness of 2 mm were produced. Then, the injection molded sheet was immersed in water at 50 ° C. for 3 days. Next, after wiping the water on the surface of the injection-molded sheet taken out from the water, the dynamic viscoelasticity at 50 ° C. using a dynamic viscoelasticity measuring device (“DVE Leospectler”, manufactured by Rheology Co., Ltd.). Was measured at a frequency of 11 Hz to determine the storage elastic modulus.
<研磨パッドの評価>
実施例及び比較例で得られたポリウレタンを用いて研磨パッドを製造し、評価を行った。 <Evaluation of polishing pad>
Polishing pads were manufactured and evaluated using the polyurethanes obtained in Examples and Comparative Examples.
実施例及び比較例で得られたポリウレタンを用いて研磨パッドを製造し、評価を行った。 <Evaluation of polishing pad>
Polishing pads were manufactured and evaluated using the polyurethanes obtained in Examples and Comparative Examples.
〔PET不織布と無孔質ポリウレタンとを含む原反の製造〕
島成分としてポリエチレンテレフタレート(PET)、海成分として水溶性熱可塑性PVAを含み、海成分/島成分の質量比が25/75である島数25島の海島型複合繊維のストランドを265℃で溶融複合紡糸用口金から吐出し、延伸して細化しながら冷却することにより海島型複合繊維を紡糸した。そして、連続的に捕集してプレスすることにより長繊維ウェブを得た。次に長繊維ウェブを重ね合わせ、両面に交互にニードルパンチ処理を行い、長繊維ウェブ同士を絡合し三次元絡合体を得た。
次に、無孔質高分子弾性体として、原反用ポリウレタンの水系エマルジョンを三次元絡合体にディップニップすることで含浸し乾燥処理を行った。そして三次元絡合体を熱水中でディップニップすることにより海島型複合繊維から島成分の水溶性熱可塑性PVAを溶解除去させ、乾燥することにより25束の単繊維を有するPET繊維(平均単繊維繊度0.05dtex)の不織布(厚さ1.8mm)と無孔質ポリウレタンとを含む原反を得た。 [Manufacture of raw fabric containing PET non-woven fabric and non-porous polyurethane]
A strand of 25 islands of sea-island type composite fiber containing polyethylene terephthalate (PET) as an island component and water-soluble thermoplastic PVA as a sea component and having a mass ratio of sea component / island component of 25/75 is melted at 265 ° C. A sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing. Next, the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
Next, as a non-porous polymer elastic body, an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried. Then, the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber). A raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
島成分としてポリエチレンテレフタレート(PET)、海成分として水溶性熱可塑性PVAを含み、海成分/島成分の質量比が25/75である島数25島の海島型複合繊維のストランドを265℃で溶融複合紡糸用口金から吐出し、延伸して細化しながら冷却することにより海島型複合繊維を紡糸した。そして、連続的に捕集してプレスすることにより長繊維ウェブを得た。次に長繊維ウェブを重ね合わせ、両面に交互にニードルパンチ処理を行い、長繊維ウェブ同士を絡合し三次元絡合体を得た。
次に、無孔質高分子弾性体として、原反用ポリウレタンの水系エマルジョンを三次元絡合体にディップニップすることで含浸し乾燥処理を行った。そして三次元絡合体を熱水中でディップニップすることにより海島型複合繊維から島成分の水溶性熱可塑性PVAを溶解除去させ、乾燥することにより25束の単繊維を有するPET繊維(平均単繊維繊度0.05dtex)の不織布(厚さ1.8mm)と無孔質ポリウレタンとを含む原反を得た。 [Manufacture of raw fabric containing PET non-woven fabric and non-porous polyurethane]
A strand of 25 islands of sea-island type composite fiber containing polyethylene terephthalate (PET) as an island component and water-soluble thermoplastic PVA as a sea component and having a mass ratio of sea component / island component of 25/75 is melted at 265 ° C. A sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing. Next, the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
Next, as a non-porous polymer elastic body, an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried. Then, the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber). A raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
〔実施例及び比較例の熱可塑性ポリウレタンの含浸付与〕
得られた原反を380mm×380mmに切り出した。次いで、切り出した原反に、実施例及び比較例で得られた熱可塑性ポリウレタンをそれぞれ含浸付与した。
含浸付与は次のようにして行った。各熱可塑性ポリウレタンの濃度が25質量%であるDMF溶液を30℃に加温し、その上に原反を10分間静置してDMF溶液を浸透させた。次いで、原反をDMF溶液中に5分間沈下した後、原反を取り出してガラス板上に乗せ、原反表面をドクターナイフでなぞるようにして付着したDMF溶液を取り除いた。裏面についても同様の操作を行った。 [Impression of thermoplastic polyurethane of Examples and Comparative Examples]
The obtained raw fabric was cut out to a size of 380 mm × 380 mm. Next, the cut out raw fabric was impregnated with the thermoplastic polyurethanes obtained in Examples and Comparative Examples, respectively.
The impregnation was applied as follows. A DMF solution having a concentration of 25% by mass of each thermoplastic polyurethane was heated to 30 ° C., and the raw fabric was allowed to stand on it for 10 minutes to allow the DMF solution to permeate. Next, the raw fabric was subsided in the DMF solution for 5 minutes, the raw fabric was taken out and placed on a glass plate, and the surface of the raw fabric was traced with a doctor knife to remove the adhered DMF solution. The same operation was performed on the back surface.
得られた原反を380mm×380mmに切り出した。次いで、切り出した原反に、実施例及び比較例で得られた熱可塑性ポリウレタンをそれぞれ含浸付与した。
含浸付与は次のようにして行った。各熱可塑性ポリウレタンの濃度が25質量%であるDMF溶液を30℃に加温し、その上に原反を10分間静置してDMF溶液を浸透させた。次いで、原反をDMF溶液中に5分間沈下した後、原反を取り出してガラス板上に乗せ、原反表面をドクターナイフでなぞるようにして付着したDMF溶液を取り除いた。裏面についても同様の操作を行った。 [Impression of thermoplastic polyurethane of Examples and Comparative Examples]
The obtained raw fabric was cut out to a size of 380 mm × 380 mm. Next, the cut out raw fabric was impregnated with the thermoplastic polyurethanes obtained in Examples and Comparative Examples, respectively.
The impregnation was applied as follows. A DMF solution having a concentration of 25% by mass of each thermoplastic polyurethane was heated to 30 ° C., and the raw fabric was allowed to stand on it for 10 minutes to allow the DMF solution to permeate. Next, the raw fabric was subsided in the DMF solution for 5 minutes, the raw fabric was taken out and placed on a glass plate, and the surface of the raw fabric was traced with a doctor knife to remove the adhered DMF solution. The same operation was performed on the back surface.
次に、DMF濃度が10質量%である水溶液を30℃に維持し、これに前記原反を浸漬させた。これを30分間放置することにより実施例及び比較例の熱可塑性ポリウレタンを凝固させた後、熱可塑性ポリウレタンを含浸付与した原反を70~95℃の熱水に浸漬した。次いで、熱可塑性ポリウレタンを含浸付与した原反を金属ロールで挟み、水を搾り出した後、再び熱水に浸漬させて水洗した。搾り出した水のDMF濃度が0.3質量%以下になるまでこの操作を繰り返した。なお、DMFの濃度測定はアッベ屈折計1T(株式会社アタゴ)で行った。
次いで、水洗した原反を熱風乾燥機(装置名:セーフティーオーブンSPH-202/エスペック株式会社)に入れ、100℃で40分間乾燥した。このようにして研磨パッドの原反を得た。 Next, an aqueous solution having a DMF concentration of 10% by mass was maintained at 30 ° C., and the raw fabric was immersed therein. The thermoplastic polyurethanes of Examples and Comparative Examples were solidified by leaving this for 30 minutes, and then the raw fabric impregnated with the thermoplastic polyurethane was immersed in hot water at 70 to 95 ° C. Next, the raw fabric impregnated with the thermoplastic polyurethane was sandwiched between metal rolls, water was squeezed out, and then the fabric was immersed in hot water again and washed with water. This operation was repeated until the DMF concentration of the squeezed water became 0.3% by mass or less. The concentration of DMF was measured with an Abbe refractometer 1T (Atago Co., Ltd.).
Next, the raw fabric washed with water was placed in a hot air dryer (device name: Safety Oven SPH-202 / ESPEC CO., LTD.) And dried at 100 ° C. for 40 minutes. In this way, the original fabric of the polishing pad was obtained.
次いで、水洗した原反を熱風乾燥機(装置名:セーフティーオーブンSPH-202/エスペック株式会社)に入れ、100℃で40分間乾燥した。このようにして研磨パッドの原反を得た。 Next, an aqueous solution having a DMF concentration of 10% by mass was maintained at 30 ° C., and the raw fabric was immersed therein. The thermoplastic polyurethanes of Examples and Comparative Examples were solidified by leaving this for 30 minutes, and then the raw fabric impregnated with the thermoplastic polyurethane was immersed in hot water at 70 to 95 ° C. Next, the raw fabric impregnated with the thermoplastic polyurethane was sandwiched between metal rolls, water was squeezed out, and then the fabric was immersed in hot water again and washed with water. This operation was repeated until the DMF concentration of the squeezed water became 0.3% by mass or less. The concentration of DMF was measured with an Abbe refractometer 1T (Atago Co., Ltd.).
Next, the raw fabric washed with water was placed in a hot air dryer (device name: Safety Oven SPH-202 / ESPEC CO., LTD.) And dried at 100 ° C. for 40 minutes. In this way, the original fabric of the polishing pad was obtained.
〔研磨パッドの原反の平坦化及び溝加工〕
研磨パッドの原反の表面をサンドペーパー(番手#180)でバフィングして厚み斑をなくして平坦に調整した後、平坦化溝加工機により研磨パッドの研磨面に溝幅2.0mm、溝深さ0.5mm、ピッチ15mmの格子溝を形成した。そして、格子溝を形成した研磨パッドを直径370mmの円形に切り出すことにより、厚さ1.5mmの溝付の研磨パッド(研磨層のみからなる研磨パッド)を得た。 [Flatration and grooving of the original fabric of the polishing pad]
After buffing the surface of the original fabric of the polishing pad with sandpaper (count # 180) to eliminate thickness unevenness and adjusting it to a flat surface, a flattening groove processing machine is used to make the polishing surface of the polishing pad a groove width of 2.0 mm and a groove depth. A lattice groove having a size of 0.5 mm and a pitch of 15 mm was formed. Then, the polishing pad having the lattice groove formed was cut out into a circle having a diameter of 370 mm to obtain a polishing pad with a groove having a thickness of 1.5 mm (a polishing pad composed of only a polishing layer).
研磨パッドの原反の表面をサンドペーパー(番手#180)でバフィングして厚み斑をなくして平坦に調整した後、平坦化溝加工機により研磨パッドの研磨面に溝幅2.0mm、溝深さ0.5mm、ピッチ15mmの格子溝を形成した。そして、格子溝を形成した研磨パッドを直径370mmの円形に切り出すことにより、厚さ1.5mmの溝付の研磨パッド(研磨層のみからなる研磨パッド)を得た。 [Flatration and grooving of the original fabric of the polishing pad]
After buffing the surface of the original fabric of the polishing pad with sandpaper (count # 180) to eliminate thickness unevenness and adjusting it to a flat surface, a flattening groove processing machine is used to make the polishing surface of the polishing pad a groove width of 2.0 mm and a groove depth. A lattice groove having a size of 0.5 mm and a pitch of 15 mm was formed. Then, the polishing pad having the lattice groove formed was cut out into a circle having a diameter of 370 mm to obtain a polishing pad with a groove having a thickness of 1.5 mm (a polishing pad composed of only a polishing layer).
次いで、得られた研磨パッドを本発明の研磨方法にしたがって研磨した。具体的には、得られた研磨パッドを株式会社エム・エー・ティ製の研磨装置「MAT-BC15」に装着した。そして、株式会社アライドマテリアル製のダイヤモンドドレッサー(#100-被覆率80%、直径19cm、質量1kg)を用い、蒸留水を150mL/分の速度で流しながら、ドレッサー回転数140rpm、プラテン回転数100rpm、15分間の条件でパッド表面のコンディショニングを行った。次に、スラリー(コロイダルシリカ、スラリー濃度1%)を20倍に希釈して調整したpH7.0~11のスラリーを準備した。そして、プラテン回転数100rpm、ヘッド回転数99rpm、研磨圧力55.1kPaの条件において、200mL/分の速度でスラリーを研磨パッドの研磨面に供給しながら膜厚1000nmの酸化ケイ素膜を表面に有する直径4インチのシリコンウェハを60秒間研磨した。そして、60秒間の研磨後、研磨パッドのコンディショニングを30秒間行った。そして、別のシリコンウェハを再度研磨し、さらに、30秒間コンディショニングを行った。このようにして10枚のシリコンウェハを研磨した。
そして、10枚目に研磨したシリコンウェハの研磨前及び研磨後の重量変化から速度を算出し、その平均値を研磨速度とした。 Then, the obtained polishing pad was polished according to the polishing method of the present invention. Specifically, the obtained polishing pad was attached to a polishing device "MAT-BC15" manufactured by MAT Co., Ltd. Then, using a diamond dresser (# 100-coverage 80%, diameter 19 cm, mass 1 kg) manufactured by A.L.M. Co., Ltd., while flowing distilled water at a speed of 150 mL / min, the dresser rotation speed is 140 rpm and the platen rotation speed is 100 rpm. The pad surface was conditioned under the condition of 15 minutes. Next, a slurry having a pH of 7.0 to 11 was prepared by diluting the slurry (colloidal silica, slurry concentration 1%) 20 times. Then, under the conditions of a platen rotation speed of 100 rpm, a head rotation speed of 99 rpm, and a polishing pressure of 55.1 kPa, a diameter having a silicon oxide film having a thickness of 1000 nm on the surface while supplying the slurry to the polishing surface of the polishing pad at a rate of 200 mL / min. A 4-inch silicon wafer was polished for 60 seconds. Then, after polishing for 60 seconds, the polishing pad was conditioned for 30 seconds. Then, another silicon wafer was polished again and further conditioned for 30 seconds. In this way, 10 silicon wafers were polished.
Then, the speed was calculated from the weight change before and after polishing the 10th silicon wafer, and the average value was taken as the polishing speed.
そして、10枚目に研磨したシリコンウェハの研磨前及び研磨後の重量変化から速度を算出し、その平均値を研磨速度とした。 Then, the obtained polishing pad was polished according to the polishing method of the present invention. Specifically, the obtained polishing pad was attached to a polishing device "MAT-BC15" manufactured by MAT Co., Ltd. Then, using a diamond dresser (# 100-coverage 80%, diameter 19 cm, mass 1 kg) manufactured by A.L.M. Co., Ltd., while flowing distilled water at a speed of 150 mL / min, the dresser rotation speed is 140 rpm and the platen rotation speed is 100 rpm. The pad surface was conditioned under the condition of 15 minutes. Next, a slurry having a pH of 7.0 to 11 was prepared by diluting the slurry (colloidal silica, slurry concentration 1%) 20 times. Then, under the conditions of a platen rotation speed of 100 rpm, a head rotation speed of 99 rpm, and a polishing pressure of 55.1 kPa, a diameter having a silicon oxide film having a thickness of 1000 nm on the surface while supplying the slurry to the polishing surface of the polishing pad at a rate of 200 mL / min. A 4-inch silicon wafer was polished for 60 seconds. Then, after polishing for 60 seconds, the polishing pad was conditioned for 30 seconds. Then, another silicon wafer was polished again and further conditioned for 30 seconds. In this way, 10 silicon wafers were polished.
Then, the speed was calculated from the weight change before and after polishing the 10th silicon wafer, and the average value was taken as the polishing speed.
<研磨速度変化量(nm/min)、研磨速度安定性(%)>
各研磨層を用いて6時間のロングラン試験を実施し、研磨速度が安定した時点(1時間研磨後)での研磨速度の値を基準として、研磨後期(5時間研磨後)における研磨速度の変化量を「研磨速度変化量(nm/min)」とした。また、1時間研磨後に対する5時間研磨後の変化割合を「研磨速度安定性(%)」とした。 <Amount of change in polishing rate (nm / min), stability of polishing rate (%)>
A 6-hour long-run test was carried out using each polishing layer, and the change in polishing rate in the latter stage of polishing (after polishing for 5 hours) was based on the value of the polishing rate when the polishing rate became stable (after polishing for 1 hour). The amount was defined as "amount of change in polishing rate (nm / min)". Further, the rate of change after polishing for 5 hours with respect to that after polishing for 1 hour was defined as "polishing rate stability (%)".
各研磨層を用いて6時間のロングラン試験を実施し、研磨速度が安定した時点(1時間研磨後)での研磨速度の値を基準として、研磨後期(5時間研磨後)における研磨速度の変化量を「研磨速度変化量(nm/min)」とした。また、1時間研磨後に対する5時間研磨後の変化割合を「研磨速度安定性(%)」とした。 <Amount of change in polishing rate (nm / min), stability of polishing rate (%)>
A 6-hour long-run test was carried out using each polishing layer, and the change in polishing rate in the latter stage of polishing (after polishing for 5 hours) was based on the value of the polishing rate when the polishing rate became stable (after polishing for 1 hour). The amount was defined as "amount of change in polishing rate (nm / min)". Further, the rate of change after polishing for 5 hours with respect to that after polishing for 1 hour was defined as "polishing rate stability (%)".
<外観試験(傷量)>
研磨後の被研磨物について、高照度ハロゲン照明装置を用いて外観を観察した。傷、スクラッチ、汚れ、磨き残しの有無及び数を下記評価基準にしたがって評価した。なお、図4は、傷がある状態、スクラッチがある状態、汚れ及び磨き残しがある状態のそれぞれを示す図であり、下記評価の「3」~「4」に相当する。
<評価基準>
〔1:非常に良い〕
評価シリコンウェハ中90%以上にて傷、スクラッチ、汚れ、磨き残しが存在しない
〔2:良い〕
評価シリコンウェハ中70%以上90%未満にて傷、スクラッチ、汚れ、磨き残しが存在しない
〔3:悪い〕
評価シリコンウェハ中50%以上70%未満にて傷、スクラッチ、汚れ、磨き残しが存在する
〔4:非常に悪い〕
評価シリコンウェハ中70%以上にて傷、スクラッチ、汚れ、磨き残しが存在する、又は大きなスクラッチが発生する <Appearance test (scratch amount)>
The appearance of the object to be polished after polishing was observed using a high-intensity halogen lighting device. The presence and number of scratches, scratches, stains, and unpolished parts were evaluated according to the following evaluation criteria. Note that FIG. 4 is a diagram showing each of a state with scratches, a state with scratches, and a state with stains and unpolished residue, and corresponds to "3" to "4" in the following evaluations.
<Evaluation criteria>
[1: Very good]
There are no scratches, scratches, stains, or unpolished residue on 90% or more of the evaluated silicon wafers [2: Good]
There are no scratches, scratches, stains, or unpolished residue on 70% or more and less than 90% of the evaluated silicon wafers [3: Bad]
There are scratches, scratches, stains, and unpolished residue on 50% or more and less than 70% of the evaluated silicon wafers [4: Very bad]
There are scratches, scratches, stains, unpolished residue, or large scratches on 70% or more of the evaluated silicon wafers.
研磨後の被研磨物について、高照度ハロゲン照明装置を用いて外観を観察した。傷、スクラッチ、汚れ、磨き残しの有無及び数を下記評価基準にしたがって評価した。なお、図4は、傷がある状態、スクラッチがある状態、汚れ及び磨き残しがある状態のそれぞれを示す図であり、下記評価の「3」~「4」に相当する。
<評価基準>
〔1:非常に良い〕
評価シリコンウェハ中90%以上にて傷、スクラッチ、汚れ、磨き残しが存在しない
〔2:良い〕
評価シリコンウェハ中70%以上90%未満にて傷、スクラッチ、汚れ、磨き残しが存在しない
〔3:悪い〕
評価シリコンウェハ中50%以上70%未満にて傷、スクラッチ、汚れ、磨き残しが存在する
〔4:非常に悪い〕
評価シリコンウェハ中70%以上にて傷、スクラッチ、汚れ、磨き残しが存在する、又は大きなスクラッチが発生する <Appearance test (scratch amount)>
The appearance of the object to be polished after polishing was observed using a high-intensity halogen lighting device. The presence and number of scratches, scratches, stains, and unpolished parts were evaluated according to the following evaluation criteria. Note that FIG. 4 is a diagram showing each of a state with scratches, a state with scratches, and a state with stains and unpolished residue, and corresponds to "3" to "4" in the following evaluations.
<Evaluation criteria>
[1: Very good]
There are no scratches, scratches, stains, or unpolished residue on 90% or more of the evaluated silicon wafers [2: Good]
There are no scratches, scratches, stains, or unpolished residue on 70% or more and less than 90% of the evaluated silicon wafers [3: Bad]
There are scratches, scratches, stains, and unpolished residue on 50% or more and less than 70% of the evaluated silicon wafers [4: Very bad]
There are scratches, scratches, stains, unpolished residue, or large scratches on 70% or more of the evaluated silicon wafers.
<目詰まり(%)>
6時間研磨後、研磨パッドの断面の写真を撮影し、茶色に着色されている砥粒が目詰まりしている部分の割合を目詰まり量とした。 <Clogged (%)>
After polishing for 6 hours, a photograph of a cross section of the polishing pad was taken, and the proportion of the portion where the brown-colored abrasive grains were clogged was defined as the amount of clogging.
6時間研磨後、研磨パッドの断面の写真を撮影し、茶色に着色されている砥粒が目詰まりしている部分の割合を目詰まり量とした。 <Clogged (%)>
After polishing for 6 hours, a photograph of a cross section of the polishing pad was taken, and the proportion of the portion where the brown-colored abrasive grains were clogged was defined as the amount of clogging.
表1の結果より明らかなとおり、本発明によれば目詰まりを抑制することができ、傷の発生を抑制しつつ安定して長寿命で研磨することができる研磨パッドを提供することができることが分かる。
また、表1の実施例1~9と実施例10との比較から明らかなように、安定性及び目詰まり抑制に優れる観点から、高分子ジオールとしてはポリエーテルジオールを用いることがより好ましい。 As is clear from the results in Table 1, according to the present invention, it is possible to provide a polishing pad capable of suppressing clogging, suppressing the occurrence of scratches, and stably polishing with a long life. I understand.
Further, as is clear from the comparison between Examples 1 to 9 and Example 10 in Table 1, it is more preferable to use a polyether diol as the polymer diol from the viewpoint of excellent stability and clogging suppression.
また、表1の実施例1~9と実施例10との比較から明らかなように、安定性及び目詰まり抑制に優れる観点から、高分子ジオールとしてはポリエーテルジオールを用いることがより好ましい。 As is clear from the results in Table 1, according to the present invention, it is possible to provide a polishing pad capable of suppressing clogging, suppressing the occurrence of scratches, and stably polishing with a long life. I understand.
Further, as is clear from the comparison between Examples 1 to 9 and Example 10 in Table 1, it is more preferable to use a polyether diol as the polymer diol from the viewpoint of excellent stability and clogging suppression.
[実施例11]
〔PET不織布と無孔質ポリウレタンとを含む原反の製造〕
島成分としてポリエチレンテレフタレート(PET)、海成分として水溶性熱可塑性PVAを含み、海成分/島成分の質量比が25/75である島数25島の海島型複合繊維のストランドを265℃で溶融複合紡糸用口金から吐出し、延伸して細化しながら冷却することにより海島型複合繊維を紡糸した。そして、連続的に捕集してプレスすることにより長繊維ウェブを得た。次に長繊維ウェブを重ね合わせ、両面に交互にニードルパンチ処理を行い、長繊維ウェブ同士を絡合し三次元絡合体を得た。
次に、無孔質高分子弾性体として、原反用ポリウレタンの水系エマルジョンを三次元絡合体にディップニップすることで含浸し乾燥処理を行った。そして三次元絡合体を熱水中でディップニップすることにより海島型複合繊維から島成分の水溶性熱可塑性PVAを溶解除去させ、乾燥することにより25束の単繊維を有するPET繊維(平均単繊維繊度0.05dtex)の不織布(厚さ1.8mm)と無孔質ポリウレタンとを含む原反を得た。 [Example 11]
[Manufacture of raw fabric containing PET non-woven fabric and non-porous polyurethane]
A strand of 25 islands of sea-island type composite fiber containing polyethylene terephthalate (PET) as an island component and water-soluble thermoplastic PVA as a sea component and having a mass ratio of sea component / island component of 25/75 is melted at 265 ° C. A sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing. Next, the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
Next, as a non-porous polymer elastic body, an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried. Then, the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber). A raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
〔PET不織布と無孔質ポリウレタンとを含む原反の製造〕
島成分としてポリエチレンテレフタレート(PET)、海成分として水溶性熱可塑性PVAを含み、海成分/島成分の質量比が25/75である島数25島の海島型複合繊維のストランドを265℃で溶融複合紡糸用口金から吐出し、延伸して細化しながら冷却することにより海島型複合繊維を紡糸した。そして、連続的に捕集してプレスすることにより長繊維ウェブを得た。次に長繊維ウェブを重ね合わせ、両面に交互にニードルパンチ処理を行い、長繊維ウェブ同士を絡合し三次元絡合体を得た。
次に、無孔質高分子弾性体として、原反用ポリウレタンの水系エマルジョンを三次元絡合体にディップニップすることで含浸し乾燥処理を行った。そして三次元絡合体を熱水中でディップニップすることにより海島型複合繊維から島成分の水溶性熱可塑性PVAを溶解除去させ、乾燥することにより25束の単繊維を有するPET繊維(平均単繊維繊度0.05dtex)の不織布(厚さ1.8mm)と無孔質ポリウレタンとを含む原反を得た。 [Example 11]
[Manufacture of raw fabric containing PET non-woven fabric and non-porous polyurethane]
A strand of 25 islands of sea-island type composite fiber containing polyethylene terephthalate (PET) as an island component and water-soluble thermoplastic PVA as a sea component and having a mass ratio of sea component / island component of 25/75 is melted at 265 ° C. A sea-island type composite fiber was spun by discharging from a mouthpiece for composite spinning and cooling while stretching and thinning. Then, a long fiber web was obtained by continuously collecting and pressing. Next, the long fiber webs were overlapped and needle punching treatment was performed alternately on both sides, and the long fiber webs were entangled with each other to obtain a three-dimensional entangled body.
Next, as a non-porous polymer elastic body, an aqueous emulsion of polyurethane for raw material was impregnated into a three-dimensional entangled body to impregnate it and dried. Then, the three-dimensional entangled fabric is dipped in hot water to dissolve and remove the water-soluble thermoplastic PVA of the island component from the sea-island type composite fiber, and dried to obtain PET fiber having 25 bundles of single fiber (average single fiber). A raw fabric containing a non-woven fabric (thickness 1.8 mm) having a fineness of 0.05 dtex) and non-porous polyurethane was obtained.
〔実施例及び比較例の熱可塑性ポリウレタンの含浸付与〕
次いで得られた不織布に、固形分濃度25質量%に調整された架橋ポリウレタン弾性体Aの水性分散液を含浸させた。
なお、架橋ポリウレタン弾性体Aの水性分散液は、ヘキサメチレンカーボネートとペンタメチレンカーボネートとの共重合ポリオールである非晶性ポリカーボネート系ポリオール95質量%と、2,2-ビス(ヒドロキシメチル)プロピオン酸5質量%とからなるポリオール成分と、ジメチロールプロピオン酸からなる鎖伸長剤(カルボキシ基を有するジオール)と、4,4’-ジシクロヘキシルメタンジイソシアネートとからなるポリイソシアネート化合物と、ヒドラジンからなるアミン系鎖伸長剤とを配合して重合させて得られたポリウレタン100質量部の水性分散液に対し、カルボジイミド系架橋剤3質量部を添加したものである。
ポリウレタンを形成するポリオール成分とポリイソシアネート成分と鎖伸長剤の成分比率は、ポリオール成分:ポリイソシアネート成分:鎖伸長剤=55:40:5で配合した。 [Impression of thermoplastic polyurethane of Examples and Comparative Examples]
Next, the obtained non-woven fabric was impregnated with an aqueous dispersion of the crosslinked polyurethane elastic body A adjusted to have a solid content concentration of 25% by mass.
The aqueous dispersion of the crosslinked polyurethane elastic body A contains 95% by mass of an amorphous polycarbonate-based polyol which is a copolymerized polyol of hexamethylene carbonate and pentamethylene carbonate, and 2,2-bis (hydroxymethyl)propionic acid 5. A polyisocyanate compound composed of a polyol component consisting of mass%, a chain extender composed of dimethylolpropionic acid (a diol having a carboxy group), 4,4'-dicyclohexylmethanediisocyanate, and an amine-based chain extension composed of hydrazine. This is obtained by adding 3 parts by mass of a carbodiimide-based cross-linking agent to 100 parts by mass of an aqueous dispersion of polyurethane obtained by blending and polymerizing the agent.
The component ratio of the polyol component, the polyisocyanate component, and the chain extender forming the polyurethane was blended in the ratio of polyol component: polyisocyanate component: chain extender = 55: 40: 5.
次いで得られた不織布に、固形分濃度25質量%に調整された架橋ポリウレタン弾性体Aの水性分散液を含浸させた。
なお、架橋ポリウレタン弾性体Aの水性分散液は、ヘキサメチレンカーボネートとペンタメチレンカーボネートとの共重合ポリオールである非晶性ポリカーボネート系ポリオール95質量%と、2,2-ビス(ヒドロキシメチル)プロピオン酸5質量%とからなるポリオール成分と、ジメチロールプロピオン酸からなる鎖伸長剤(カルボキシ基を有するジオール)と、4,4’-ジシクロヘキシルメタンジイソシアネートとからなるポリイソシアネート化合物と、ヒドラジンからなるアミン系鎖伸長剤とを配合して重合させて得られたポリウレタン100質量部の水性分散液に対し、カルボジイミド系架橋剤3質量部を添加したものである。
ポリウレタンを形成するポリオール成分とポリイソシアネート成分と鎖伸長剤の成分比率は、ポリオール成分:ポリイソシアネート成分:鎖伸長剤=55:40:5で配合した。 [Impression of thermoplastic polyurethane of Examples and Comparative Examples]
Next, the obtained non-woven fabric was impregnated with an aqueous dispersion of the crosslinked polyurethane elastic body A adjusted to have a solid content concentration of 25% by mass.
The aqueous dispersion of the crosslinked polyurethane elastic body A contains 95% by mass of an amorphous polycarbonate-based polyol which is a copolymerized polyol of hexamethylene carbonate and pentamethylene carbonate, and 2,2-bis (hydroxymethyl)
The component ratio of the polyol component, the polyisocyanate component, and the chain extender forming the polyurethane was blended in the ratio of polyol component: polyisocyanate component: chain extender = 55: 40: 5.
また、含浸においては、不織布の質量に対する水性分散液の固形分付着量は15質量%であった。そして、水性分散液が含浸された不織布を90℃、50%RH雰囲気下で熱処理することによりポリウレタンを凝固させた。その後、更に150℃で熱処理することにより架橋構造を形成させた。そして、更に150℃で熱プレスすることにより研磨パッドの原反が得られた。
In the impregnation, the solid content of the aqueous dispersion was 15% by mass with respect to the mass of the non-woven fabric. Then, the non-woven fabric impregnated with the aqueous dispersion was heat-treated at 90 ° C. in a 50% RH atmosphere to solidify the polyurethane. Then, the crosslinked structure was formed by further heat-treating at 150 ° C. Then, by further heat pressing at 150 ° C., the original fabric of the polishing pad was obtained.
〔研磨パッドの原反の平坦化及び溝加工〕
研磨パッドの原反の表面をサンドペーパー(番手#180)でバフィングして厚み斑をなくして平坦に調整した後、平坦化溝加工機により研磨パッドの研磨面に溝幅2.0mm、溝深さ0.5mm、ピッチ15mmの格子溝を形成した。そして、格子溝を形成した研磨パッドを直径370mmの円形に切り出すことにより、厚さ1.5mmの溝付の研磨パッド(研磨層のみからなる研磨パッド)を得た。
得られた研磨パッドについて実施例1~10と同様にして評価を実施した。結果を表2に示す。 [Flatration and grooving of the original fabric of the polishing pad]
After buffing the surface of the original fabric of the polishing pad with sandpaper (count # 180) to eliminate thickness unevenness and adjusting it to a flat surface, a flattening groove processing machine is used to make the polishing surface of the polishing pad a groove width of 2.0 mm and a groove depth. A lattice groove having a size of 0.5 mm and a pitch of 15 mm was formed. Then, the polishing pad having the lattice groove formed was cut out into a circle having a diameter of 370 mm to obtain a polishing pad with a groove having a thickness of 1.5 mm (a polishing pad composed of only a polishing layer).
The obtained polishing pads were evaluated in the same manner as in Examples 1 to 10. The results are shown in Table 2.
研磨パッドの原反の表面をサンドペーパー(番手#180)でバフィングして厚み斑をなくして平坦に調整した後、平坦化溝加工機により研磨パッドの研磨面に溝幅2.0mm、溝深さ0.5mm、ピッチ15mmの格子溝を形成した。そして、格子溝を形成した研磨パッドを直径370mmの円形に切り出すことにより、厚さ1.5mmの溝付の研磨パッド(研磨層のみからなる研磨パッド)を得た。
得られた研磨パッドについて実施例1~10と同様にして評価を実施した。結果を表2に示す。 [Flatration and grooving of the original fabric of the polishing pad]
After buffing the surface of the original fabric of the polishing pad with sandpaper (count # 180) to eliminate thickness unevenness and adjusting it to a flat surface, a flattening groove processing machine is used to make the polishing surface of the polishing pad a groove width of 2.0 mm and a groove depth. A lattice groove having a size of 0.5 mm and a pitch of 15 mm was formed. Then, the polishing pad having the lattice groove formed was cut out into a circle having a diameter of 370 mm to obtain a polishing pad with a groove having a thickness of 1.5 mm (a polishing pad composed of only a polishing layer).
The obtained polishing pads were evaluated in the same manner as in Examples 1 to 10. The results are shown in Table 2.
表2の結果より明らかなように、本発明によれば水系ポリウレタンであっても、溶剤系ポリウレタンと同様に、傷の発生を抑制しつつ安定して長寿命で研磨することができるポリウレタンが得られることが分かる。
As is clear from the results in Table 2, according to the present invention, even with water-based polyurethane, polyurethane that can be stably polished for a long life while suppressing the occurrence of scratches can be obtained as in the case of solvent-based polyurethane. It turns out that it can be done.
Claims (10)
- カルボキシ基を有する化合物に由来する構造単位を少なくとも1つ以上有するポリウレタン。 Polyurethane having at least one structural unit derived from a compound having a carboxy group.
- 前記カルボキシ基を有する化合物に由来する構造単位、鎖延長剤に由来する構造単位、高分子ジオールに由来する構造単位、及び有機ジイソシアネートに由来する構造単位を少なくとも含む、請求項1に記載のポリウレタン。 The polyurethane according to claim 1, further comprising at least a structural unit derived from the compound having a carboxy group, a structural unit derived from a chain extender, a structural unit derived from a polymer diol, and a structural unit derived from an organic diisocyanate.
- 前記ポリウレタンを構成する全構造単位中、前記カルボキシ基を有する化合物に由来する構造単位の量が3~30モル%である、請求項1又は2に記載のポリウレタン。 The polyurethane according to claim 1 or 2, wherein the amount of the structural unit derived from the compound having a carboxy group is 3 to 30 mol% in all the structural units constituting the polyurethane.
- 請求項1~3のいずれかに記載のポリウレタンを用いた研磨層。 A polishing layer using the polyurethane according to any one of claims 1 to 3.
- 前記研磨層が不織布に対して前記ポリウレタンを含浸させ、更に凝固させたものである、請求項4に記載の研磨層。 The polishing layer according to claim 4, wherein the polishing layer is a non-woven fabric impregnated with the polyurethane and further solidified.
- 前記研磨層を構成する前記ポリウレタンのpH7.0におけるゼータ電位が-10.0mV以下である、請求項4又は5に記載の研磨層。 The polishing layer according to claim 4 or 5, wherein the zeta potential of the polyurethane constituting the polishing layer at pH 7.0 is -10.0 mV or less.
- 前記ポリウレタンが非発泡体である、請求項4~6のいずれかに記載の研磨層。 The polishing layer according to any one of claims 4 to 6, wherein the polyurethane is a non-foaming material.
- 前記ポリウレタンについて、50℃の水で飽和膨潤させた後、50℃において測定した貯蔵弾性率が50~1,200MPaであり、且つ水との接触角が80度以下である、請求項4~7のいずれかに記載の研磨層。 Claims 4 to 7 wherein the polyurethane is saturated and swollen with water at 50 ° C., and then has a storage elastic modulus of 50 to 1,200 MPa and a contact angle with water of 80 degrees or less measured at 50 ° C. The polishing layer according to any one of.
- 請求項4~8のいずれかに記載の研磨層を用いた研磨パッド。 A polishing pad using the polishing layer according to any one of claims 4 to 8.
- 請求項4~8のいずれかに記載の研磨層を用いる研磨方法であって、
前記研磨層を備える研磨パッドを研磨装置の定盤上に固定する工程と、
前記研磨層の研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
前記研磨面と前記被研磨物との間に中性又はアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、
を有する研磨方法。 A polishing method using the polishing layer according to any one of claims 4 to 8.
The process of fixing the polishing pad provided with the polishing layer on the surface plate of the polishing device, and
A step of holding the object to be polished in the holder of the polishing device so as to face the polished surface of the polishing layer, and
A step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying a neutral or alkaline polishing slurry between the surface to be polished and the object to be polished. When,
Polishing method with.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080085452.8A CN114787225A (en) | 2019-12-13 | 2020-12-10 | Polyurethane, polishing layer, polishing pad and polishing method |
KR1020227019386A KR20220117220A (en) | 2019-12-13 | 2020-12-10 | Polyurethane, polishing layer, polishing pad and polishing method |
JP2021564044A JPWO2021117834A1 (en) | 2019-12-13 | 2020-12-10 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019225695 | 2019-12-13 | ||
JP2019-225695 | 2019-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117834A1 true WO2021117834A1 (en) | 2021-06-17 |
Family
ID=76329956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046159 WO2021117834A1 (en) | 2019-12-13 | 2020-12-10 | Polyurethane, polishing layer, polishing pad, and polishing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2021117834A1 (en) |
KR (1) | KR20220117220A (en) |
CN (1) | CN114787225A (en) |
TW (1) | TWI861308B (en) |
WO (1) | WO2021117834A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7462083B1 (en) | 2022-09-30 | 2024-04-04 | 世目特種防護用品科技(江蘇)有限公司 | Aqueous polyurethane emulsion and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287938A (en) * | 2006-04-17 | 2007-11-01 | Adeka Corp | Abrasive composition for metal chemical mechanical polishing |
JP2017141393A (en) * | 2016-02-12 | 2017-08-17 | ニッタ・ハース株式会社 | Polymer body, polishing pad, and method for producing polymer body |
KR20180024096A (en) * | 2016-08-26 | 2018-03-08 | 에스케이씨 주식회사 | Urethane-based prepolymer, polishing pad and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03234475A (en) | 1990-02-08 | 1991-10-18 | Kanebo Ltd | Abrasive cloth |
JPH1199479A (en) | 1997-09-30 | 1999-04-13 | Teijin Ltd | Polishing pad |
JPH11322878A (en) | 1998-05-13 | 1999-11-26 | Dainippon Ink & Chem Inc | Method for producing foam-containing polyurethane molded article, urethane resin composition for foam-containing molded article, and polishing pad using the same |
JP3516874B2 (en) | 1998-12-15 | 2004-04-05 | 東洋ゴム工業株式会社 | Method for producing polyurethane foam and polishing sheet |
JP2000248034A (en) | 1999-03-02 | 2000-09-12 | Mitsubishi Chemicals Corp | Polyurethane resin composition for abrasives and foams thereof |
JP3558273B2 (en) | 1999-09-22 | 2004-08-25 | 東洋ゴム工業株式会社 | Method for producing polyurethane foam and polishing sheet |
JP2005212055A (en) | 2004-01-30 | 2005-08-11 | Kanebo Ltd | Polishing cloth for nonwoven fabric base, and its fablication method |
JP4859110B2 (en) * | 2006-04-07 | 2012-01-25 | 東洋ゴム工業株式会社 | Polishing pad |
US20150375361A1 (en) * | 2014-06-25 | 2015-12-31 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Chemical mechanical polishing method |
EP3623402A4 (en) * | 2017-05-12 | 2021-06-23 | Kuraray Co., Ltd. | CHAIN EXTENSION, POLYURETHANE AND MODIFICATION PROCESS FOR IT, POLISHING LAYER, POLISHING PAD AND POLISHING PROCESS |
-
2020
- 2020-12-10 KR KR1020227019386A patent/KR20220117220A/en active Pending
- 2020-12-10 WO PCT/JP2020/046159 patent/WO2021117834A1/en active Application Filing
- 2020-12-10 CN CN202080085452.8A patent/CN114787225A/en active Pending
- 2020-12-10 JP JP2021564044A patent/JPWO2021117834A1/ja active Pending
- 2020-12-11 TW TW109143799A patent/TWI861308B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287938A (en) * | 2006-04-17 | 2007-11-01 | Adeka Corp | Abrasive composition for metal chemical mechanical polishing |
JP2017141393A (en) * | 2016-02-12 | 2017-08-17 | ニッタ・ハース株式会社 | Polymer body, polishing pad, and method for producing polymer body |
KR20180024096A (en) * | 2016-08-26 | 2018-03-08 | 에스케이씨 주식회사 | Urethane-based prepolymer, polishing pad and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7462083B1 (en) | 2022-09-30 | 2024-04-04 | 世目特種防護用品科技(江蘇)有限公司 | Aqueous polyurethane emulsion and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW202128807A (en) | 2021-08-01 |
JPWO2021117834A1 (en) | 2021-06-17 |
TWI861308B (en) | 2024-11-11 |
KR20220117220A (en) | 2022-08-23 |
CN114787225A (en) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6619100B2 (en) | Polishing pad and polishing method using the same | |
JP6518680B2 (en) | Nonporous molded article for polishing layer, polishing pad and polishing method | |
KR20090132607A (en) | Metal film polishing pad and method of polishing metal film using same | |
US20250236766A1 (en) | Polyurethane for use in polishing layer, polishing layer, polishing pad, and method for modifying polishing layer | |
WO2019216279A1 (en) | Method for modifying polyurethane, polyurethane, polishing pad, and method for modifying polishing pad | |
WO2021117834A1 (en) | Polyurethane, polishing layer, polishing pad, and polishing method | |
TWI838883B (en) | Grinding pad | |
JP7611411B2 (en) | Polishing Pad | |
KR20240087742A (en) | Thermoplastic polyurethane for polishing layer, polishing layer, and polishing pad | |
WO2023149434A1 (en) | Polishing layer, polishing pad, method for manufacturing polishing pad, and polishing method | |
HK40001109A (en) | Polishing pad and polishing method using same | |
HK40001109B (en) | Polishing pad and polishing method using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900383 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021564044 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900383 Country of ref document: EP Kind code of ref document: A1 |