WO2021117360A1 - Method for producing alkaline earth aluminoborosilicate glass - Google Patents
Method for producing alkaline earth aluminoborosilicate glass Download PDFInfo
- Publication number
- WO2021117360A1 WO2021117360A1 PCT/JP2020/040047 JP2020040047W WO2021117360A1 WO 2021117360 A1 WO2021117360 A1 WO 2021117360A1 JP 2020040047 W JP2020040047 W JP 2020040047W WO 2021117360 A1 WO2021117360 A1 WO 2021117360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- alkaline earth
- raw material
- content
- aluminum borosilicate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000005407 aluminoborosilicate glass Substances 0.000 title claims abstract description 17
- 239000011521 glass Substances 0.000 claims abstract description 79
- 229910021538 borax Inorganic materials 0.000 claims abstract description 30
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 30
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 23
- 239000006066 glass batch Substances 0.000 claims abstract description 16
- 239000006060 molten glass Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims abstract description 13
- 238000000465 moulding Methods 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims description 64
- 229910052782 aluminium Inorganic materials 0.000 claims description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 30
- 239000005388 borosilicate glass Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000004973 liquid crystal related substance Substances 0.000 claims description 6
- 238000007500 overflow downdraw method Methods 0.000 claims description 4
- 238000010309 melting process Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 9
- 229910052796 boron Inorganic materials 0.000 abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007858 starting material Substances 0.000 abstract 4
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 15
- 238000000926 separation method Methods 0.000 description 15
- 239000011734 sodium Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 7
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 7
- 239000004327 boric acid Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004031 devitrification Methods 0.000 description 5
- 229910018068 Li 2 O Inorganic materials 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000006063 cullet Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000005359 alkaline earth aluminosilicate glass Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052917 strontium silicate Inorganic materials 0.000 description 1
- QSQXISIULMTHLV-UHFFFAOYSA-N strontium;dioxido(oxo)silane Chemical compound [Sr+2].[O-][Si]([O-])=O QSQXISIULMTHLV-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B1/00—Preparing the batches
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
Definitions
- the present invention relates to a method for producing alkaline earth aluminum borosilicate glass, and more particularly to a method for producing alkaline earth aluminum borosilicate glass used for a substrate of a liquid crystal display or an organic EL display.
- a non-alkali glass plate that is, a non-alkali alkaline earth aluminum borosilicate glass plate has been used for a substrate such as a liquid crystal display.
- liquid crystal displays or organic EL display substrates have been required to have the property of being resistant to heat shrinkage due to heat treatment in the display manufacturing process. In order to reduce the amount of heat shrinkage, it is effective to increase the strain point of the glass plate.
- Patent Document 1 discloses that by reducing the content of B 2 O 3 in the glass composition, the strain point of the glass plate is increased and heat shrinkage is made difficult.
- non-alkali glass with a high strain point is easy to melt and separate when the glass raw material is melted, so stable production is difficult.
- the present invention has been made in view of the above circumstances, and the technical problem thereof is that the alkaline earth aluminum borosilicate which is hard to be melt-separated when the glass raw material is melted and which is hard to be heat-shrinked by the heat treatment in the display manufacturing process. It is to devise a method for producing acid glass.
- the present inventor has found that the above technical problems can be solved by using borax as a boron-introducing raw material for alkaline earth aluminoborosilicate glass, and proposes it as the present invention. That is, the method for producing alkaline earth aluminum borosilicate glass of the present invention is a boron-introduced raw material so that alkaline earth aluminum borosilicate glass having an alkali metal oxide content of 0.01 to 1% by mass can be obtained.
- boric acid H 3 BO 3
- anhydrous boric acid B 2 O 3
- boric acid H 3 BO 3
- B 2 O 3 anhydrous boric acid
- the amount of water in the glass is reduced to increase the strain point of the glass plate
- anhydrous boric acid is used, but in that case, the batch cost increases.
- anhydrous borax Na 2 O ⁇ 2B 2 O 3
- the amount of water in the glass can be reduced at low cost, but Na 2 O is introduced into the glass at the same time.
- Anhydrous borax Na 2 O ⁇ 2B 2 O 3
- alkaline earth elements Mg, Ca, Sr, Ba
- Alkaline earth oxide melt has high density and low viscosity, so melt separation occurs.
- boric acid raw material boric acid raw material
- borax raw material borax raw material
- the borax raw material contains an alkaline component (Na 2 O) that deteriorates the characteristics of the display.
- Na 2 O alkaline component
- the content of B 2 O 3 in the alkaline earth aluminum borosilicate glass is preferably 0.1 to 5% by mass.
- the SO 3 content in the alkaline earth aluminum borosilicate glass is preferably 0.01% by mass or less.
- the method for producing alkaline earth aluminum borosilicate glass of the present invention it is preferable to mold the molten glass into a plate shape by an overflow down draw method.
- molten glass is formed into a plate shape to obtain a glass plate of alkaline earth aluminum borosilicate glass, and then the glass plate is displayed on a liquid crystal display or organic. It is preferably used as a substrate for an EL display.
- the data shows that the initial melt of sodium borate has a lower viscosity than the initial melt of borate in the temperature range of about 800 ° C. where the initial melt is formed, and the source of the data is J. . Am. Ceram. Soc. Vol.36 (1953) p.319.
- Sample No. in the column of Examples. It is XRF data which showed the content ( ⁇ RO) of alkaline earth metal oxide of each cross section of glass about 1 and 2.
- Sample No. in the column of Examples. It is the XRF data which showed the content ( ⁇ RO) of the alkaline earth metal oxide of each cross section of the glass about 3-5.
- Sample No. in the column of Examples. About 3-5 is data XRF indicated the content of SO 3 of each cross section of the glass.
- Sample No. in the column of Examples. It is the data which showed the ratio of the total amount of MgO and CaO of each cross section of the glass about 3-5.
- Sample No. in the column of Examples. It is the data which showed the ratio of the total amount of SrO and BaO of each cross section of the glass about 3-5.
- the method for producing an alkaline earth aluminum borosilicate glass of the present invention contains a boron-introduced raw material so that an alkaline earth aluminum borosilicate glass having an alkali metal oxide content of 0.01 to 1% by mass can be obtained.
- the method for producing the alkaline earth aluminum borosilicate glass of the present invention will be described in detail.
- a borax material to all or part of the boron introduced raw material, preferably a majority of the content of B 2 O 3 in the glass composition is introduced by borax material More preferably, 80% or more of the content of B 2 O 3 in the glass composition is introduced as a borax raw material.
- the borax raw material is used, an initial melt of sodium borate is formed when the glass raw material is melted. Since the initial melt of sodium borate has a high contact frequency with the alkaline earth element, it is easy to take in the alkaline earth element, and the formation of the melt of the alkaline earth oxide is suppressed. As a result, melt separation can be effectively suppressed.
- the raw materials for introducing alkaline earth oxides are oxides of alkaline earth elements, carbonates, nitrates, hydroxides, sulfates, halides or double salts thereof.
- the raw material for introducing the alkaline earth oxide is an easily meltable component in a glass batch of alkaline earth aluminosilicate glass, and the alkaline earth oxide melt has a density higher than that of the molten glass and a low viscosity. Therefore, the alkaline earth oxide melt is likely to sink when the glass raw material is dissolved, and the SrO melt and the BaO melt are particularly likely to sink.
- the glass composition is SiO 2 50 to 70%, Al 2 O 3 10 to 25%, B 2 O 30 in terms of the following oxide-equivalent mass%.
- the glass raw materials are mixed and mixed so as to contain 1 to 15%, Li 2 O + Na 2 O + K 2 O 0.01 to 1%, MgO 0 to 8%, CaO 3 to 10%, and SrO + BaO 0.1 to 20%. Then, it is preferable to prepare a glass batch.
- the reasons for limiting the glass composition as described above are shown below. In the description of the content range of each component, the% indication indicates mass%.
- SiO 2 is a component that forms the skeleton of glass.
- the content of SiO 2 is preferably 50 to 70%, 54 to 68%, 56 to 66%, and particularly 58 to 64%. If the content of SiO 2 is too small, the density becomes too high and the acid resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the high-temperature viscosity tends to increase and the meltability tends to decrease, and devitrified crystals such as cristobalite tend to precipitate, so that the liquidus temperature tends to rise. Become.
- B 2 O 3 is a component that enhances meltability and devitrification resistance.
- the content of B 2 O 3 is preferably 0 to 15%, 0.1 to 6%, 0.3 to 3%, and particularly 0.5 to 2.3%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and strain point tend to decrease.
- Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are essential components for using borax raw materials, and are components that lower the melting temperature and molding temperature. However, if the content of the alkali metal oxide is too high, the performance of the display will be adversely affected. Therefore, the content of Li 2 O + Na 2 O + K 2 O (the total amount of Li 2 O, Na 2 O and K 2 O) is preferably 0.01 to 1%, 0.02 to 0.2%, 0. It is 03 to 0.1%, especially 0.04 to 0.09%. In particular, the content of Na 2 O is preferably 0.01 to 1%, 0.02 to 0.2%, 0.03 to 0.1%, and particularly 0.04 to 0.09%.
- the alkali metal oxide is mainly introduced from the borax raw material, but the alkali metal oxide may be introduced from a glass raw material other than the borax raw material.
- an alkali metal oxide may be introduced from a glass raw material such as a lithium salt, a sodium salt, or a potassium salt.
- MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that significantly increases Young's modulus among alkaline earth metal oxides.
- the content of MgO is preferably 0 to 8%, 0 to 7%, 0 to 6%, 0 to 3%, and particularly 0 to 2%. If the content of MgO is too small, the meltability and Young's modulus tend to decrease. On the other hand, if the content of MgO is too large, the devitrification resistance tends to decrease and the strain point tends to decrease.
- CaO is a component that lowers high-temperature viscosity and remarkably enhances meltability without lowering the strain point. Further, among alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that reduces the raw material cost.
- the CaO content is preferably 3 to 10%, 4 to 10%, and particularly 5 to 9%. If the CaO content is too low, it becomes difficult to enjoy the above effects. On the other hand, if the CaO content is too high, the glass tends to be devitrified and the coefficient of thermal expansion tends to be high.
- SrO and BaO are components that enhance devitrification resistance, but are components that promote melt separation. Further, it is a component that lowers the high-temperature viscosity without lowering the strain point, enhances the meltability, and suppresses the rise in the liquidus temperature.
- the content of SrO + BaO (the total amount of SrO and BaO) is preferably 0.1 to 25%, 1 to 22%, 2 to 20%, and particularly 5 to 18%. In particular, the content of SrO is preferably 0 to 8%, 0.1 to 7%, and particularly 0.5 to 6%.
- the content of BaO is preferably 0 to 20%, 0.1 to 18%, 1 to 17%, 3 to 16%, and particularly 5 to 15%.
- SnO 2 is a component that acts as a fining agent, and its content is preferably 0 to 1%, 0.1 to 0.5%, and particularly 0.2 to 0.4%. If the content of SnO 2 is too large, devitrified crystals are likely to precipitate, and the liquidus temperature is likely to rise.
- SO 3 is a component that causes foam defects due to riboyl of SO 2 gas.
- the content of SO 3 is preferably 0.01% or less, preferably 0.005% or less. If the content of SO 3 is too large, foam defects due to riboyl of SO 2 gas are likely to occur.
- the content of the components other than the above components is preferably 10% or less, particularly 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
- the strain point is preferably 700 ° C. or higher, 720 ° C. or higher, and particularly preferably 740 to 850 ° C. If the strain point is too low, the glass plate tends to shrink due to heat treatment in the display manufacturing process. On the other hand, if the strain point is too high, the manufacturing cost of the glass plate tends to rise.
- the temperature at 10 2.5 dPa ⁇ s is preferably 1530 to 1680 ° C, more preferably 1550 to 1650 ° C, and particularly preferably 1580 to 1630 ° C. If the temperature at 10 2.5 dPa ⁇ s is too low, the glass plate tends to shrink due to heat treatment in the display manufacturing process. On the other hand, if the temperature at 10 2.5 dPa ⁇ s is too high, the meltability is lowered and the manufacturing cost of the glass plate is likely to rise.
- the "temperatur at 10 2.5 dPa ⁇ s" can be measured by a well-known platinum ball pulling method.
- the obtained glass batch is put into a melting furnace.
- the glass batch is usually continuously charged into the melting furnace by a raw material feeder such as a screw charger, but may be intermittently charged.
- the glass batch put into the melting furnace is heated by the combustion atmosphere of a burner or the like or the electrodes installed inside the melting furnace to become molten glass.
- the melting temperature of the glass raw material is about 1530 to 1680 ° C.
- the obtained molten glass is subjected to a clarification step, a stirring step, and a supply step, and then gradually cooled for charging into a molding apparatus.
- the molten glass is supplied to a molding apparatus, formed into a plate shape having a predetermined wall thickness and surface quality, and then cut into a predetermined size to become a glass product (glass plate).
- a molding method an overflow down draw method, a float method, or the like can be adopted.
- the overflow down draw method is preferable because it can produce an unpolished and smooth-surfaced glass plate.
- the glass plate thus produced is suitably used as a substrate for, for example, a liquid crystal display, an organic EL display, or the like.
- Each sample was prepared as follows. Glass raw materials were mixed so as to have the glass composition shown in the table, and a glass batch corresponding to 100 g of glass was prepared. The glass raw materials in the table were used as the raw materials for introducing Na 2 O and B 2 O 3. Other glass raw materials are sample No. The same thing was used in 1-5.
- the obtained glass batch was put into a triangular crucible (conical platinum alloy crucible), melted at 1600 ° C. for 2 hours, and then rapidly cooled. Then, the glass was peeled off from the triangular crucible, and the glass composition of the cross section of the glass 5 mm, 15 mm, and 21 mm from the top was analyzed by XRF. The results are shown in FIGS. 2-9.
- FIG. 2-9 The results are shown in FIGS. 2-9.
- FIG. 2 shows the sample No. It is XRF data which showed the content ( ⁇ RO) of alkaline earth metal oxide of each cross section of glass about 1 and 2.
- FIG. 3 shows the sample No. For 1,2, a data of XRF indicated the content of SO 3 of each cross section of the glass.
- FIG. 4 shows the sample No. It is the XRF data which showed the content ( ⁇ RO) of the alkaline earth metal oxide of each cross section of the glass about 3-5.
- FIG. 5 shows the sample No. About 3-5 is data XRF indicated the content of SO 3 of each cross section of the glass.
- FIG. 6 shows the sample No. For 1 and 2, it is the data which showed the ratio of the total amount of MgO and CaO of each cross section of glass.
- FIG. 7 shows the sample No.
- FIG. 8 shows the sample No. It is the data which showed the ratio of the total amount of MgO and CaO of each cross section of glass about 3-5.
- FIG. 9 shows the sample No. It is the data which showed the ratio of the total amount of SrO and BaO of each cross section of the glass about 3-5.
- the vertical axis of FIGS. 6 and 8 shows the ratio of the total amount of MgO and CaO when the total amount of MgO and CaO in the cross section of the glass 5 mm from the top is 1.
- the vertical axis of FIGS. 7 and 9 shows the ratio of the total amount of SrO and BaO when the total amount of SrO and BaO in the cross section of the glass 5 mm from the top is 1.
- alkaline earth aluminoborosilicate glass having a B 2 O 3 content of 0.8% by mass tends to undergo melt separation, but when a borax raw material is used, the degree of melt separation occurs. Is improved, and the uneven distribution of SO 3 is also improved.
- the alkaline earth aluminoborosilicate glass which is the content of B 2 O 3 is 6.5 wt%, hardly occurs melt separation hardly unevenly distributed SO 3, borax The need to use raw materials is not high.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
A method for producing alkaline earth aluminoborosilicate glass according to the present invention is characterized by comprising: a blending step wherein a glass batch is prepared by blending and mixing glass starting materials, which include a boron introduction starting material, so as to obtain alkaline earth aluminoborosilicate glass that has an alkali metal oxide content of from 0.01% by mass to 1% by mass; a melting step wherein the glass batch is fed into a melting furnace, thereby obtaining molten glass; and a molding step wherein the molten glass is molded into a plate, thereby obtaining alkaline earth aluminoborosilicate glass. This method for producing alkaline earth aluminoborosilicate glass is also characterized in that a borax starting material is used as some or the entirety of the boron introduction starting material.
Description
本発明は、アルカリ土類アルミノホウケイ酸ガラスの製造方法に関し、特に液晶ディスプレイ又は有機ELディスプレイの基板に用いるアルカリ土類アルミノホウケイ酸ガラスの製造方法に関する。
The present invention relates to a method for producing alkaline earth aluminum borosilicate glass, and more particularly to a method for producing alkaline earth aluminum borosilicate glass used for a substrate of a liquid crystal display or an organic EL display.
液晶ディスプレイ等の基板には、従来から、無アルカリガラス板、つまり無アルカリのアルカリ土類アルミノホウケイ酸ガラス板が使用されている。
Conventionally, a non-alkali glass plate, that is, a non-alkali alkaline earth aluminum borosilicate glass plate has been used for a substrate such as a liquid crystal display.
近年、液晶ディスプレイ又は有機ELディスプレイの基板に対して、ディスプレイの製造工程の熱処理で熱収縮し難いという特性が要求されている。熱収縮量を低減するためには、ガラス板の高歪点化が有効である。
In recent years, liquid crystal displays or organic EL display substrates have been required to have the property of being resistant to heat shrinkage due to heat treatment in the display manufacturing process. In order to reduce the amount of heat shrinkage, it is effective to increase the strain point of the glass plate.
例えば、特許文献1には、ガラス組成中のB2O3の含有量を低減することにより、ガラス板の歪点を高めて、熱収縮し難くすることが開示されている。
For example, Patent Document 1 discloses that by reducing the content of B 2 O 3 in the glass composition, the strain point of the glass plate is increased and heat shrinkage is made difficult.
しかし、高歪点の無アルカリガラスは、ガラス原料の溶解時に溶融分離し易いため、安定生産が困難である。
However, non-alkali glass with a high strain point is easy to melt and separate when the glass raw material is melted, so stable production is difficult.
そこで、本発明は上記事情に鑑み成されたものであり、その技術的課題は、ガラス原料の溶解時に溶融分離が生じ難く、且つディスプレイの製造工程の熱処理で熱収縮し難いアルカリ土類アルミノホウケイ酸ガラスの製造方法を創案することである。
Therefore, the present invention has been made in view of the above circumstances, and the technical problem thereof is that the alkaline earth aluminum borosilicate which is hard to be melt-separated when the glass raw material is melted and which is hard to be heat-shrinked by the heat treatment in the display manufacturing process. It is to devise a method for producing acid glass.
本発明者は、鋭意検討の結果、アルカリ土類アルミノホウケイ酸ガラスのホウ素導入原料に硼砂を用いることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法は、アルカリ金属酸化物の含有量が0.01~1質量%となるアルカリ土類アルミノホウケイ酸ガラスが得られるように、ホウ素導入原料を含むガラス原料を調合、混合して、ガラスバッチを作製する調合工程と、ガラスバッチを溶融炉に投入し、溶融ガラスを得る溶融工程と、溶融ガラスを板状に成形して、アルカリ土類アルミノホウケイ酸ガラスを得る成形工程と、を備え、ホウ素導入原料の全部又は一部に硼砂原料を用いることを特徴とする。
As a result of diligent studies, the present inventor has found that the above technical problems can be solved by using borax as a boron-introducing raw material for alkaline earth aluminoborosilicate glass, and proposes it as the present invention. That is, the method for producing alkaline earth aluminum borosilicate glass of the present invention is a boron-introduced raw material so that alkaline earth aluminum borosilicate glass having an alkali metal oxide content of 0.01 to 1% by mass can be obtained. A blending step of blending and mixing glass raw materials containing borosilicate glass to prepare a glass batch, a melting step of putting the glass batch into a melting furnace to obtain molten glass, and molding the molten glass into a plate shape to form alkaline earth. It comprises a molding step for obtaining aluminoborosilicate glass, and is characterized in that a borosand raw material is used for all or a part of the boron-introduced raw material.
ディスプレイの基板に用いるアルカリ土類アルミノホウケイ酸ガラスのホウ素導入原料には、従来まで、アルカリ金属酸化物を殆ど含まない硼酸(H3BO3)と無水硼酸(B2O3)が使用されている。特にガラス中の水分量を低減して、ガラス板を高歪点化する場合、無水硼酸が使用されるが、その場合、バッチコストが上昇してしまう。一方、ホウ素導入原料として、無水硼砂(Na2O・2B2O3)を用いると、ガラス中の水分量を安価に低減し得るが、ガラス中にNa2Oが同時に導入される、よって、無水硼砂(Na2O・2B2O3)は、ディスプレイの基板用途で使用実績がない。
Conventionally, boric acid (H 3 BO 3 ) and anhydrous boric acid (B 2 O 3 ), which contain almost no alkali metal oxide, have been used as boron-introducing raw materials for alkaline earth aluminoborosilicate glass used for display substrates. There is. In particular, when the amount of water in the glass is reduced to increase the strain point of the glass plate, anhydrous boric acid is used, but in that case, the batch cost increases. On the other hand, when anhydrous borax (Na 2 O ・ 2B 2 O 3 ) is used as the raw material for introducing boron, the amount of water in the glass can be reduced at low cost, but Na 2 O is introduced into the glass at the same time. Anhydrous borax (Na 2 O ・ 2B 2 O 3 ) has not been used in display substrate applications.
しかし、本発明では、ホウ素導入原料として、硼砂原料を用い、ガラス原料の溶解時の溶融分離を抑制することを特徴とする。硼砂原料を用いる理由を以下に詳述する。
However, the present invention is characterized in that a borax raw material is used as the boron-introduced raw material, and melt separation during melting of the glass raw material is suppressed. The reason for using the borax raw material will be described in detail below.
本発明者の調査によると、ガラス原料の溶解時に形成される初期融液にアルカリ土類元素(Mg、Ca、Sr、Ba)が取り込まれ難く、アルカリ土類酸化物融液が形成されると、アルカリ土類酸化物融液が高密度、低粘度であるため、溶融分離が生じる。ホウ素導入原料として、従来の硼酸又は無水硼酸(以下、硼酸原料)を用いる場合、ボレートの融液が最初に形成される。一方、硼砂又は無水硼砂(以下、硼砂原料)を用いた場合、ナトリウムボレートの融液が最初に形成される。ボレートの初期融液とナトリウムボレートの初期融液は、何れもアルカリ土類元素を取り込み、アルカリ土類酸化物による溶融分離を低減する効果があるが、図1に示すように、初期融液が形成される800℃程度の温度域では、ボレートの初期融液よりもナトリウムボレートの初期融液の方が低粘度である。このため、ナトリウムボレートの初期融液は、アルカリ土類元素との接触頻度が高くなるため、アルカリ土類元素を取り込み易く、アルカリ土類酸化物の融液の形成が抑制される。結果として、溶融分離を有効に抑制することができる。
According to the investigation by the present inventor, it is difficult for alkaline earth elements (Mg, Ca, Sr, Ba) to be incorporated into the initial melt formed when the glass raw material is melted, and an alkaline earth oxide melt is formed. , Alkaline earth oxide melt has high density and low viscosity, so melt separation occurs. When conventional boric acid or anhydrous boric acid (hereinafter, boric acid raw material) is used as the boron-introducing raw material, a borate melt is formed first. On the other hand, when borax or anhydrous borax (hereinafter referred to as borax raw material) is used, a sodium borate melt is formed first. Both the initial melt of borate and the initial melt of sodium borate have the effect of incorporating alkaline earth elements and reducing melt separation due to alkaline earth oxides, but as shown in FIG. 1, the initial melt has the effect of reducing melt separation. In the formed temperature range of about 800 ° C., the initial melt of sodium borate has a lower viscosity than the initial melt of borate. Therefore, since the initial melt of sodium borate has a high contact frequency with the alkaline earth element, it is easy to take in the alkaline earth element, and the formation of the melt of the alkaline earth oxide is suppressed. As a result, melt separation can be effectively suppressed.
上記の通り、硼砂原料には、ディスプレイの特性を劣化させるアルカリ成分(Na2O)を含んでいる。例えば、硼砂原料からガラス組成中にB2O3を0.7質量%導入する場合、同時にNa2Oが0.3質量%導入される。ホウ素導入原料として、硼砂原料のみを用いる場合、Na2Oの許容限界量の関係から、B2O3の上限含有量は2.3質量%程度になる。硼砂原料と硼酸原料を併用すると、Na2Oの含有量を1質量%以下に規制しつつ、B2O3の含有量を増やすことができる。
As described above, the borax raw material contains an alkaline component (Na 2 O) that deteriorates the characteristics of the display. For example, when 0.7% by mass of B 2 O 3 is introduced into the glass composition from a borax raw material, 0.3% by mass of Na 2 O is introduced at the same time. When only the borax raw material is used as the boron-introduced raw material, the upper limit content of B 2 O 3 is about 2.3% by mass due to the allowable limit amount of Na 2 O. When the borax raw material and the boric acid raw material are used in combination, the content of B 2 O 3 can be increased while limiting the content of Na 2 O to 1% by mass or less.
本発明者の調査によると、アルカリ土類アルミノホウケイ酸ガラス中のアルカリ金属酸化物の含有量が1質量%以下であれば、ディスプレイの特性をそれほど劣化させないため、許容可能である。例えば、特許文献2には、溶融ガラス中の硫黄をアルカリ硫酸塩として存在させることにより、SO2ガスによるリボイルを抑制することが開示されている。また、特許文献3には、泡品位を改善するために、アルカリ金属酸化物を添加することが開示されており、アルカリ金属酸化物の中でもNa2Oが泡品位を高める上で特に有効であることが開示されている。
According to the investigation by the present inventor, if the content of the alkali metal oxide in the alkaline earth aluminoborosilicate glass is 1% by mass or less, the characteristics of the display are not significantly deteriorated, which is acceptable. For example, Patent Document 2 discloses that riboyl due to SO 2 gas is suppressed by allowing sulfur in molten glass to exist as an alkaline sulfate. Further, Patent Document 3 discloses that an alkali metal oxide is added in order to improve the foam quality, and among the alkali metal oxides, Na 2 O is particularly effective in improving the foam quality. Is disclosed.
また、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法では、アルカリ土類アルミノホウケイ酸ガラス中のB2O3の含有量が0.1~5質量%であることが好ましい。
Further, in the method for producing alkaline earth aluminum borosilicate glass of the present invention, the content of B 2 O 3 in the alkaline earth aluminum borosilicate glass is preferably 0.1 to 5% by mass.
また、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法では、アルカリ土類アルミノホウケイ酸ガラス中に、SrOとBaOの内、少なくとも一方を0.1質量%以上含むことが好ましい。
Further, in the method for producing alkaline earth aluminum borosilicate glass of the present invention, it is preferable that at least one of SrO and BaO is contained in 0.1% by mass or more in the alkaline earth aluminum borosilicate glass.
また、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法では、アルカリ土類アルミノホウケイ酸ガラス中のSO3の含有量が0.01質量%以下であることが好ましい。
Further, in the method for producing alkaline earth aluminum borosilicate glass of the present invention, the SO 3 content in the alkaline earth aluminum borosilicate glass is preferably 0.01% by mass or less.
また、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法では、溶融ガラスを板状にオーバーフローダウンドロー法で成形することが好ましい。
Further, in the method for producing alkaline earth aluminum borosilicate glass of the present invention, it is preferable to mold the molten glass into a plate shape by an overflow down draw method.
また、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法では、溶融ガラスを板状に成形して、アルカリ土類アルミノホウケイ酸ガラスのガラス板を得た後、該ガラス板を液晶ディスプレイ又は有機ELディスプレイの基板に用いることが好ましい。
Further, in the method for producing alkaline earth aluminum borosilicate glass of the present invention, molten glass is formed into a plate shape to obtain a glass plate of alkaline earth aluminum borosilicate glass, and then the glass plate is displayed on a liquid crystal display or organic. It is preferably used as a substrate for an EL display.
本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法は、アルカリ金属酸化物の含有量が0.01~1質量%となるアルカリ土類アルミノホウケイ酸ガラスが得られるように、ホウ素導入原料を含むガラス原料を調合、混合して、ガラスバッチを作製する調合工程と、ガラスバッチを溶融炉に投入し、溶融ガラスを得る溶融工程と、溶融ガラスを成形して、アルカリ土類アルミノホウケイ酸ガラスを得る成形工程と、を備え、ホウ素導入原料の全部又は一部に硼砂原料を用いることを特徴とする。以下、本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法を詳述する。
The method for producing an alkaline earth aluminum borosilicate glass of the present invention contains a boron-introduced raw material so that an alkaline earth aluminum borosilicate glass having an alkali metal oxide content of 0.01 to 1% by mass can be obtained. A blending process in which glass raw materials are blended and mixed to prepare a glass batch, a melting step in which the glass batch is put into a melting furnace to obtain molten glass, and a molten glass is molded to produce alkaline earth aluminoborosilicate glass. It is characterized by comprising a forming step of obtaining, and using a borosand raw material for all or a part of the boron-introduced raw material. Hereinafter, the method for producing the alkaline earth aluminum borosilicate glass of the present invention will be described in detail.
まず、所望のガラス組成、ガラス特性になるように、各成分の導入源となるガラス原料を調合、混合してガラスバッチを作製する。必要に応じて、ガラス原料として、ガラスカレットを用いてもよい。なお、ガラスカレットとは、ガラス製造工程等で排出されるガラス屑である。
First, a glass batch is prepared by mixing and mixing the glass raw materials that are the introduction sources of each component so as to obtain the desired glass composition and glass characteristics. If necessary, glass cullet may be used as the glass raw material. The glass cullet is glass scrap discharged in the glass manufacturing process or the like.
本発明では、ホウ素導入原料を含むガラス原料を調合し、ホウ素導入原料の全部又は一部に硼砂原料を用い、好ましくはガラス組成中のB2O3の含有量の過半数が硼砂原料で導入されており、より好ましくはガラス組成中のB2O3の含有量の80%以上が硼砂原料で導入されている。硼砂原料を用いると、ガラス原料の溶解時にナトリウムボレートの初期融液が形成される。ナトリウムボレートの初期融液は、アルカリ土類元素との接触頻度が高いため、アルカリ土類元素を取り込み易く、アルカリ土類酸化物の融液の形成が抑制される。結果として、溶融分離を有効に抑制することができる。
In the present invention, to prepare a glass raw material containing boron introduced raw material, using a borax material to all or part of the boron introduced raw material, preferably a majority of the content of B 2 O 3 in the glass composition is introduced by borax material More preferably, 80% or more of the content of B 2 O 3 in the glass composition is introduced as a borax raw material. When the borax raw material is used, an initial melt of sodium borate is formed when the glass raw material is melted. Since the initial melt of sodium borate has a high contact frequency with the alkaline earth element, it is easy to take in the alkaline earth element, and the formation of the melt of the alkaline earth oxide is suppressed. As a result, melt separation can be effectively suppressed.
ガラス原料の内、アルカリ土類酸化物の導入原料は、アルカリ土類元素の酸化物、炭酸塩、硝酸塩、水酸化物、硫酸塩、ハロゲン化物或いはそれらの複塩である。アルカリ土類酸化物の導入原料は、アルカリ土類アルミノシリケートガラスのガラスバッチにおいて易溶融成分であり、またアルカリ土類酸化物融液は、溶融ガラスの密度より高く、低粘度である。そのため、アルカリ土類酸化物融液は、ガラス原料の溶解時に沈み込み易く、特にSrO融液とBaO融液は沈み込み易い。しかし、ホウ素導入原料として硼砂原料を用いると、ガラス原料の溶解時にアルカリボレートの初期融液が形成されて、その初期融液にSrO、BaOが取り込まれる。結果として、溶融分離し易いSrO融液やBaO融液の形成を抑制することができる。
Among the glass raw materials, the raw materials for introducing alkaline earth oxides are oxides of alkaline earth elements, carbonates, nitrates, hydroxides, sulfates, halides or double salts thereof. The raw material for introducing the alkaline earth oxide is an easily meltable component in a glass batch of alkaline earth aluminosilicate glass, and the alkaline earth oxide melt has a density higher than that of the molten glass and a low viscosity. Therefore, the alkaline earth oxide melt is likely to sink when the glass raw material is dissolved, and the SrO melt and the BaO melt are particularly likely to sink. However, when a borax raw material is used as the boron-introducing raw material, an initial melt of alkali borate is formed when the glass raw material is melted, and SrO and BaO are incorporated into the initial melt. As a result, the formation of SrO melt and BaO melt, which are easily melt-separated, can be suppressed.
本発明のアルカリ土類アルミノホウケイ酸ガラスの製造方法において、ガラス組成として、下記酸化物換算の質量%で、SiO2 50~70%、Al2O3 10~25%、B2O3 0.1~15%、Li2O+Na2O+K2O 0.01~1%、MgO 0~8%、CaO 3~10%、SrO+BaO 0.1~20%を含有するように、ガラス原料を調合、混合して、ガラスバッチを作製することが好ましい。上記のようにガラス組成を限定した理由を以下に示す。なお、各成分の含有範囲の説明において、%表示は、質量%を指す。
In the method for producing alkaline earth aluminium borosilicate glass of the present invention, the glass composition is SiO 2 50 to 70%, Al 2 O 3 10 to 25%, B 2 O 30 in terms of the following oxide-equivalent mass%. The glass raw materials are mixed and mixed so as to contain 1 to 15%, Li 2 O + Na 2 O + K 2 O 0.01 to 1%, MgO 0 to 8%, CaO 3 to 10%, and SrO + BaO 0.1 to 20%. Then, it is preferable to prepare a glass batch. The reasons for limiting the glass composition as described above are shown below. In the description of the content range of each component, the% indication indicates mass%.
SiO2は、ガラスの骨格を形成する成分である。SiO2の含有量は、好ましくは50~70%、54~68%、56~66%、特に58~64%である。SiO2の含有量が少な過ぎると、密度が高くなり過ぎると共に、耐酸性が低下し易くなる。一方、SiO2の含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
SiO 2 is a component that forms the skeleton of glass. The content of SiO 2 is preferably 50 to 70%, 54 to 68%, 56 to 66%, and particularly 58 to 64%. If the content of SiO 2 is too small, the density becomes too high and the acid resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the high-temperature viscosity tends to increase and the meltability tends to decrease, and devitrified crystals such as cristobalite tend to precipitate, so that the liquidus temperature tends to rise. Become.
Al2O3は、ガラスの骨格を形成する成分であり、また歪点やヤング率を高める成分であり、更に分相を抑制する成分である。Al2O3の含有量は、好ましくは10~25%、特に15~22%である。Al2O3の含有量が少な過ぎると、歪点、ヤング率が低下し易くなり、またガラスが分相し易くなる。一方、Al2O3の含有量が多過ぎると、ムライト、アノーサイト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
Al 2 O 3 is a component that forms the skeleton of glass, a component that increases the strain point and Young's modulus, and a component that further suppresses phase separation. The content of Al 2 O 3 is preferably 10 to 25%, particularly 15 to 22%. If the content of Al 2 O 3 is too small, the strain point and Young's modulus are likely to decrease, and the glass is likely to be phase-separated. On the other hand, if the content of Al 2 O 3 is too large, devitrified crystals such as mullite and anorthite are likely to precipitate, and the liquidus temperature is likely to rise.
B2O3は、溶融性を高めると共に、耐失透性を高める成分である。B2O3の含有量は、好ましくは0~15%、0.1~6%、0.3~3%、特に0.5~2.3%である。B2O3の含有量が少な過ぎると、溶融性や耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、B2O3の含有量が多過ぎると、ヤング率や歪点が低下し易くなる。
B 2 O 3 is a component that enhances meltability and devitrification resistance. The content of B 2 O 3 is preferably 0 to 15%, 0.1 to 6%, 0.3 to 3%, and particularly 0.5 to 2.3%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and strain point tend to decrease.
アルカリ金属酸化物(Li2O、Na2O、K2O)は、硼砂原料を用いるために必須の成分であり、溶融温度や成形温度を低下させる成分である。しかし、アルカリ金属酸化物の含有量が多過ぎると、ディスプレイの性能に悪影響が生じる。よって、Li2O+Na2O+K2Oの含有量(Li2O、Na2O及びK2Oの合量)は、好ましくは0.01~1%、0.02~0.2%、0.03~0.1%、特に0.04~0.09%である。特にNa2Oの含有量は、好ましくは0.01~1%、0.02~0.2%、0.03~0.1%、特に0.04~0.09%である。なお、本発明では、アルカリ金属酸化物は主に硼砂原料により導入されるが、硼砂原料以外のガラス原料によりアルカリ金属酸化物を導入してもよい。例えば、リチウム塩、ナトリウム塩、カリウム塩等のガラス原料によりアルカリ金属酸化物を導入してもよい。
Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are essential components for using borax raw materials, and are components that lower the melting temperature and molding temperature. However, if the content of the alkali metal oxide is too high, the performance of the display will be adversely affected. Therefore, the content of Li 2 O + Na 2 O + K 2 O (the total amount of Li 2 O, Na 2 O and K 2 O) is preferably 0.01 to 1%, 0.02 to 0.2%, 0. It is 03 to 0.1%, especially 0.04 to 0.09%. In particular, the content of Na 2 O is preferably 0.01 to 1%, 0.02 to 0.2%, 0.03 to 0.1%, and particularly 0.04 to 0.09%. In the present invention, the alkali metal oxide is mainly introduced from the borax raw material, but the alkali metal oxide may be introduced from a glass raw material other than the borax raw material. For example, an alkali metal oxide may be introduced from a glass raw material such as a lithium salt, a sodium salt, or a potassium salt.
MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0~8%、0~7%、0~6%、0~3%、特に0~2%である。MgOの含有量が少な過ぎると、溶融性やヤング率が低下し易くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなると共に、歪点が低下し易くなる。
MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that significantly increases Young's modulus among alkaline earth metal oxides. The content of MgO is preferably 0 to 8%, 0 to 7%, 0 to 6%, 0 to 3%, and particularly 0 to 2%. If the content of MgO is too small, the meltability and Young's modulus tend to decrease. On the other hand, if the content of MgO is too large, the devitrification resistance tends to decrease and the strain point tends to decrease.
CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。また、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは3~10%、4~10%、特に5~9%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、ガラスが失透し易くなると共に、熱膨張係数が高くなり易い。
CaO is a component that lowers high-temperature viscosity and remarkably enhances meltability without lowering the strain point. Further, among alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that reduces the raw material cost. The CaO content is preferably 3 to 10%, 4 to 10%, and particularly 5 to 9%. If the CaO content is too low, it becomes difficult to enjoy the above effects. On the other hand, if the CaO content is too high, the glass tends to be devitrified and the coefficient of thermal expansion tends to be high.
SrOとBaOは、耐失透性を高める成分であるが、溶融分離を助長する成分である。更に歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であると共に、液相温度の上昇を抑制する成分である。SrO+BaOの含有量(SrOとBaOの合量)は、好ましくは0.1~25%、1~22%、2~20%、特に5~18%である。特にSrOの含有量は、好ましくは0~8%、0.1~7%、特に0.5~6%である。BaOの含有量は、好ましくは0~20%、0.1~18%、1~17%、3~16%、特に5~15%である。SrOの含有量が多過ぎると、ストロンチウムシリケート系の失透結晶が析出し易くなって、耐失透性が低下し易くなる。BaOの含有量が多過ぎると、密度が高くなり過ぎると共に、溶融性が低下し易くなる。またBaOを含む失透結晶が析出し易くなって、液相温度が上昇し易くなる。
SrO and BaO are components that enhance devitrification resistance, but are components that promote melt separation. Further, it is a component that lowers the high-temperature viscosity without lowering the strain point, enhances the meltability, and suppresses the rise in the liquidus temperature. The content of SrO + BaO (the total amount of SrO and BaO) is preferably 0.1 to 25%, 1 to 22%, 2 to 20%, and particularly 5 to 18%. In particular, the content of SrO is preferably 0 to 8%, 0.1 to 7%, and particularly 0.5 to 6%. The content of BaO is preferably 0 to 20%, 0.1 to 18%, 1 to 17%, 3 to 16%, and particularly 5 to 15%. If the content of SrO is too large, strontium silicate-based devitrified crystals are likely to precipitate, and the devitrification resistance is likely to decrease. If the BaO content is too high, the density becomes too high and the meltability tends to decrease. In addition, devitrified crystals containing BaO are likely to precipitate, and the liquidus temperature is likely to rise.
SnO2は、清澄剤として作用する成分であり、その含有量は、好ましくは0~1%、0.1~0.5%、特に0.2~0.4%である。SnO2の含有量が多過ぎると、失透結晶が析出し易くなって、液相温度が上昇し易くなる。
SnO 2 is a component that acts as a fining agent, and its content is preferably 0 to 1%, 0.1 to 0.5%, and particularly 0.2 to 0.4%. If the content of SnO 2 is too large, devitrified crystals are likely to precipitate, and the liquidus temperature is likely to rise.
SO3は、SO2ガスのリボイルによる泡不良を発生させる成分である。SO3の含有量は、好ましくは0.01%以下、好ましくは0.005%以下である。SO3の含有量が多過ぎると、SO2ガスのリボイルによる泡不良が発生し易くなる。
SO 3 is a component that causes foam defects due to riboyl of SO 2 gas. The content of SO 3 is preferably 0.01% or less, preferably 0.005% or less. If the content of SO 3 is too large, foam defects due to riboyl of SO 2 gas are likely to occur.
上記成分以外にも、他の成分、例えばZrO2、ZnO、P2O5、F、Cl、Mo等の成分を添加してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。
In addition to the above components, other components such as ZrO 2 , ZnO, P 2 O 5 , F, Cl, and Mo may be added. The content of the components other than the above components is preferably 10% or less, particularly 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
本発明に係るアルカリ土類アルミノホウケイ酸ガラスにおいて、歪点は、好ましくは700℃以上、720℃以上、特に740~850℃が好ましい。歪点が低過ぎると、ディスプレイの製造工程における熱処理でガラス板が熱収縮し易くなる。一方、歪点が高過ぎると、ガラス板の製造コストが高騰し易くなる。
In the alkaline earth aluminum borosilicate glass according to the present invention, the strain point is preferably 700 ° C. or higher, 720 ° C. or higher, and particularly preferably 740 to 850 ° C. If the strain point is too low, the glass plate tends to shrink due to heat treatment in the display manufacturing process. On the other hand, if the strain point is too high, the manufacturing cost of the glass plate tends to rise.
本発明に係るアルカリ土類アルミノホウケイ酸ガラスにおいて、102.5dPa・sにおける温度は、好ましくは1530~1680℃、より好ましくは1550~1650℃、特に好ましくは1580~1630℃である。102.5dPa・sにおける温度が低過ぎると、ディスプレイの製造工程における熱処理でガラス板が熱収縮し易くなる。一方、102.5dPa・sにおける温度が高過ぎると、溶融性が低下して、ガラス板の製造コストが高騰し易くなる。なお、「102.5dPa・sにおける温度」は、周知の白金球引き上げ法で測定可能である。
In the alkaline earth aluminum borosilicate glass according to the present invention, the temperature at 10 2.5 dPa · s is preferably 1530 to 1680 ° C, more preferably 1550 to 1650 ° C, and particularly preferably 1580 to 1630 ° C. If the temperature at 10 2.5 dPa · s is too low, the glass plate tends to shrink due to heat treatment in the display manufacturing process. On the other hand, if the temperature at 10 2.5 dPa · s is too high, the meltability is lowered and the manufacturing cost of the glass plate is likely to rise. The " temperature at 10 2.5 dPa · s" can be measured by a well-known platinum ball pulling method.
次いで、調合工程後に、得られたガラスバッチを溶融炉に投入する。溶融炉へのガラスバッチの投入は、通常、スクリューチャージャー等の原料フィーダーにより連続的に行われるが、断続的に行ってもよい。
Next, after the compounding process, the obtained glass batch is put into a melting furnace. The glass batch is usually continuously charged into the melting furnace by a raw material feeder such as a screw charger, but may be intermittently charged.
溶融炉内へ投入されたガラスバッチは、バーナー等の燃焼雰囲気や溶融炉の内部に設置された電極等により加熱されて、溶融ガラスになる。ガラス原料の溶融温度は、1530~1680℃程度である。
The glass batch put into the melting furnace is heated by the combustion atmosphere of a burner or the like or the electrodes installed inside the melting furnace to become molten glass. The melting temperature of the glass raw material is about 1530 to 1680 ° C.
続いて、得られた溶融ガラスは、清澄工程、攪拌工程、供給工程を経た後、成形装置に投入するために徐々に冷却される。
Subsequently, the obtained molten glass is subjected to a clarification step, a stirring step, and a supply step, and then gradually cooled for charging into a molding apparatus.
その後、溶融ガラスは、成形装置に供給されて、所定の肉厚、表面品位を有するように板状に成形された後、所定サイズに切断されて、ガラス製品(ガラス板)になる。成形方法として、オーバーフローダウンドロー法、フロート法等を採用することができる。特に、オーバーフローダウンドロー法は、未研磨で表面平滑なガラス板を作製し得るため、好ましい。
After that, the molten glass is supplied to a molding apparatus, formed into a plate shape having a predetermined wall thickness and surface quality, and then cut into a predetermined size to become a glass product (glass plate). As a molding method, an overflow down draw method, a float method, or the like can be adopted. In particular, the overflow down draw method is preferable because it can produce an unpolished and smooth-surfaced glass plate.
このようにして作製されたガラス板は、例えば、液晶ディスプレイ、有機ELディスプレイ等の基板として好適に使用される。
The glass plate thus produced is suitably used as a substrate for, for example, a liquid crystal display, an organic EL display, or the like.
以下、実施例に基づいて本発明を説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。
Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.
表1は、試料No.1~5を示している。
Table 1 shows the sample No. 1 to 5 are shown.
次にようにして、各試料を作製した。表中のガラス組成になるように、ガラス原料を調合して、ガラス100gに相当するガラスバッチを作製した。なお、Na2OとB2O3の導入原料には、表中のガラス原料を用いた。それ以外のガラス原料は、試料No.1~5で同じものを用いた。得られたガラスバッチを三角るつぼ(円錐形状の白金合金るつぼ)に投入し、1600℃で2時間溶融した後、急冷した。その後、ガラスを三角るつぼから剥離し、上部から5mm、15mm、21mmのガラスの断面のガラス組成をXRFで分析した。その結果を図2~9に示す。図2は、試料No.1、2について、ガラスの各断面のアルカリ土類金属酸化物の含有量(ΣRO)を示したXRFのデータである。図3は、試料No.1、2について、ガラスの各断面のSO3の含有量を示したXRFのデータである。図4は、試料No.3~5について、ガラスの各断面のアルカリ土類金属酸化物の含有量(ΣRO)を示したXRFのデータである。図5は、試料No.3~5について、ガラスの各断面のSO3の含有量を示したXRFのデータである。図6は、試料No.1、2について、ガラスの各断面のMgOとCaOの合量の比を示したデータである。図7は、試料No.1、2について、ガラスの各断面のSrOとBaOの合量の比を示したデータである。図8は、試料No.3~5について、ガラスの各断面のMgOとCaOの合量の比を示したデータである。図9は、試料No.3~5について、ガラスの各断面のSrOとBaOの合量の比を示したデータである。なお、図6、8の縦軸は、上部から5mmのガラスの断面でのMgOとCaOの合量を1とした場合におけるMgOとCaOの合量の比を示している。図7、9の縦軸は、上部から5mmのガラスの断面でのSrOとBaOの合量を1とした場合におけるSrOとBaOの合量の比を示している。
Each sample was prepared as follows. Glass raw materials were mixed so as to have the glass composition shown in the table, and a glass batch corresponding to 100 g of glass was prepared. The glass raw materials in the table were used as the raw materials for introducing Na 2 O and B 2 O 3. Other glass raw materials are sample No. The same thing was used in 1-5. The obtained glass batch was put into a triangular crucible (conical platinum alloy crucible), melted at 1600 ° C. for 2 hours, and then rapidly cooled. Then, the glass was peeled off from the triangular crucible, and the glass composition of the cross section of the glass 5 mm, 15 mm, and 21 mm from the top was analyzed by XRF. The results are shown in FIGS. 2-9. FIG. 2 shows the sample No. It is XRF data which showed the content (ΣRO) of alkaline earth metal oxide of each cross section of glass about 1 and 2. FIG. 3 shows the sample No. For 1,2, a data of XRF indicated the content of SO 3 of each cross section of the glass. FIG. 4 shows the sample No. It is the XRF data which showed the content (ΣRO) of the alkaline earth metal oxide of each cross section of the glass about 3-5. FIG. 5 shows the sample No. About 3-5 is data XRF indicated the content of SO 3 of each cross section of the glass. FIG. 6 shows the sample No. For 1 and 2, it is the data which showed the ratio of the total amount of MgO and CaO of each cross section of glass. FIG. 7 shows the sample No. For 1 and 2, it is the data which showed the ratio of the total amount of SrO and BaO of each cross section of glass. FIG. 8 shows the sample No. It is the data which showed the ratio of the total amount of MgO and CaO of each cross section of glass about 3-5. FIG. 9 shows the sample No. It is the data which showed the ratio of the total amount of SrO and BaO of each cross section of the glass about 3-5. The vertical axis of FIGS. 6 and 8 shows the ratio of the total amount of MgO and CaO when the total amount of MgO and CaO in the cross section of the glass 5 mm from the top is 1. The vertical axis of FIGS. 7 and 9 shows the ratio of the total amount of SrO and BaO when the total amount of SrO and BaO in the cross section of the glass 5 mm from the top is 1.
図2、3から分かるように、B2O3の含有量が0.8質量%であるアルカリ土類アルミノホウケイ酸ガラスでは、溶融分離が生じ易いが、硼砂原料を用いると、溶融分離の程度が改善されると共に、SO3の偏在も改善される。一方、図4、5から分かるように、B2O3の含有量が6.5質量%であるアルカリ土類アルミノホウケイ酸ガラスでは、溶融分離が生じ難く、SO3が偏在し難いため、硼砂原料を用いる必要性は高くない。
As can be seen from FIGS. 2 and 3 , alkaline earth aluminoborosilicate glass having a B 2 O 3 content of 0.8% by mass tends to undergo melt separation, but when a borax raw material is used, the degree of melt separation occurs. Is improved, and the uneven distribution of SO 3 is also improved. On the other hand, as it can be seen from FIGS. 4 and 5, since the alkaline earth aluminoborosilicate glass which is the content of B 2 O 3 is 6.5 wt%, hardly occurs melt separation hardly unevenly distributed SO 3, borax The need to use raw materials is not high.
図6、7から分かるように、B2O3の含有量が0.8質量%であるアルカリ土類アルミノホウケイ酸ガラスでは、MgOとCaOの溶融分離は生じ難く、SrOとBaOの溶融分離は生じ易いが、硼砂原料を用いると、その溶融分離の程度が改善される。一方、図8、9から分かるように、B2O3の含有量が6.5質量%であるアルカリ土類アルミノホウケイ酸ガラスでは、MgOとCaOの溶融分離は生じ難く、SrOとBaOの溶融分離も生じ難いため、硼砂原料を用いる必要性は高くない。
As can be seen from FIGS. 6 and 7 , in alkaline earth aluminoborosilicate glass having a B 2 O 3 content of 0.8% by mass, melt separation of MgO and CaO is unlikely to occur, and melt separation of SrO and BaO is difficult. Although it is likely to occur, the degree of melt separation is improved by using a borax raw material. On the other hand, as can be seen from FIGS. 8 and 9 , in the alkaline earth aluminoborosilicate glass having a B 2 O 3 content of 6.5% by mass, melt separation of MgO and CaO is unlikely to occur, and melting of SrO and BaO occurs. Since separation is unlikely to occur, it is not highly necessary to use a borax raw material.
Claims (6)
- アルカリ金属酸化物の含有量が0.01~1質量%となるアルカリ土類アルミノホウケイ酸ガラスが得られるように、ホウ素導入原料を含むガラス原料を調合、混合して、ガラスバッチを作製する調合工程と、
ガラスバッチを溶融炉に投入し、溶融ガラスを得る溶融工程と、
溶融ガラスを板状に成形して、アルカリ土類アルミノホウケイ酸ガラスを得る成形工程と、を備え、
ホウ素導入原料の全部又は一部に硼砂原料を用いることを特徴とするアルカリ土類アルミノホウケイ酸ガラスの製造方法。 A glass raw material containing a boron-introduced raw material is mixed and mixed to prepare a glass batch so that an alkaline earth aluminoborosilicate glass having an alkali metal oxide content of 0.01 to 1% by mass can be obtained. Process and
A melting process in which a glass batch is put into a melting furnace to obtain molten glass,
It is equipped with a molding process of molding molten glass into a plate shape to obtain alkaline earth aluminoborosilicate glass.
A method for producing alkaline earth aluminoborosilicate glass, which comprises using a borax raw material for all or part of a boron-introduced raw material. - アルカリ土類アルミノホウケイ酸ガラス中のB2O3の含有量が0.1~5質量%であることを特徴とする請求項1に記載のアルカリ土類アルミノホウケイ酸ガラスの製造方法。 The method for producing alkaline earth aluminum borosilicate glass according to claim 1, wherein the content of B 2 O 3 in the alkaline earth aluminum borosilicate glass is 0.1 to 5% by mass.
- アルカリ土類アルミノホウケイ酸ガラス中に、SrOとBaOの内、少なくとも一方を0.1質量%以上含むことを特徴とする請求項1又は2に記載のアルカリ土類アルミノホウケイ酸ガラスの製造方法。 The method for producing alkaline earth aluminum borosilicate glass according to claim 1 or 2, wherein the alkaline earth aluminum borosilicate glass contains at least one of SrO and BaO in an amount of 0.1% by mass or more.
- アルカリ土類アルミノホウケイ酸ガラス中のSO3の含有量が0.01質量%以下であることを特徴とする請求項1~3の何れか一項に記載のアルカリ土類アルミノホウケイ酸ガラスの製造方法。 Production of the alkaline earth aluminum borosilicate glass according to any one of claims 1 to 3, wherein the content of SO 3 in the alkaline earth aluminum borosilicate glass is 0.01% by mass or less. Method.
- 溶融ガラスをオーバーフローダウンドロー法で板状に成形することを特徴とする請求項1~4の何れか一項に記載のアルカリ土類アルミノホウケイ酸ガラスの製造方法。 The method for producing alkaline earth aluminum borosilicate glass according to any one of claims 1 to 4, wherein the molten glass is formed into a plate shape by an overflow down draw method.
- アルカリ土類アルミノホウケイ酸ガラスを液晶ディスプレイ又は有機ELディスプレイの基板に用いることを特徴とする請求項1~5の何れか一項に記載のアルカリ土類アルミノホウケイ酸ガラスの製造方法。 The method for producing alkaline earth aluminum borosilicate glass according to any one of claims 1 to 5, wherein the alkaline earth aluminum borosilicate glass is used as a substrate for a liquid crystal display or an organic EL display.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-222778 | 2019-12-10 | ||
JP2019222778A JP2021091571A (en) | 2019-12-10 | 2019-12-10 | Manufacturing method of alkaline earth aluminoborosilicate glass |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117360A1 true WO2021117360A1 (en) | 2021-06-17 |
Family
ID=76311705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040047 WO2021117360A1 (en) | 2019-12-10 | 2020-10-26 | Method for producing alkaline earth aluminoborosilicate glass |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021091571A (en) |
TW (1) | TW202122359A (en) |
WO (1) | WO2021117360A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114685044A (en) * | 2022-03-18 | 2022-07-01 | 安徽汉柔光电科技有限公司 | Fusible alkali-aluminosilicate glass with high chemical stability |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117923794A (en) * | 2024-01-10 | 2024-04-26 | 彩虹集团(邵阳)特种玻璃有限公司 | Alkali borosilicate glass and its preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5398318A (en) * | 1977-02-02 | 1978-08-28 | Owens Corning Fiberglass Corp | Production of glass |
JPH0333025A (en) * | 1989-06-29 | 1991-02-13 | Nippon Electric Glass Co Ltd | Raw material composition for low-alkali glass |
JP2005537211A (en) * | 2002-08-29 | 2005-12-08 | コーニング インコーポレイテッド | Production of glass using gas generating frit |
JP2009280425A (en) * | 2008-05-21 | 2009-12-03 | Sharp Corp | Recycling method for non-alkali glass, and glass material obtained thereby |
JP2009295593A (en) * | 2003-08-08 | 2009-12-17 | Nippon Electric Glass Co Ltd | Vessel for external electrode fluorescent lamp |
JP2014519464A (en) * | 2011-04-29 | 2014-08-14 | ユーロケラ ソシエテ オン ノーム コレクティフ | Electromagnetic cooker |
JP2019119615A (en) * | 2017-12-28 | 2019-07-22 | 日本電気硝子株式会社 | Manufacturing method of glass |
-
2019
- 2019-12-10 JP JP2019222778A patent/JP2021091571A/en active Pending
-
2020
- 2020-10-26 WO PCT/JP2020/040047 patent/WO2021117360A1/en active Application Filing
- 2020-11-02 TW TW109138007A patent/TW202122359A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5398318A (en) * | 1977-02-02 | 1978-08-28 | Owens Corning Fiberglass Corp | Production of glass |
JPH0333025A (en) * | 1989-06-29 | 1991-02-13 | Nippon Electric Glass Co Ltd | Raw material composition for low-alkali glass |
JP2005537211A (en) * | 2002-08-29 | 2005-12-08 | コーニング インコーポレイテッド | Production of glass using gas generating frit |
JP2009295593A (en) * | 2003-08-08 | 2009-12-17 | Nippon Electric Glass Co Ltd | Vessel for external electrode fluorescent lamp |
JP2009280425A (en) * | 2008-05-21 | 2009-12-03 | Sharp Corp | Recycling method for non-alkali glass, and glass material obtained thereby |
JP2014519464A (en) * | 2011-04-29 | 2014-08-14 | ユーロケラ ソシエテ オン ノーム コレクティフ | Electromagnetic cooker |
JP2019119615A (en) * | 2017-12-28 | 2019-07-22 | 日本電気硝子株式会社 | Manufacturing method of glass |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114685044A (en) * | 2022-03-18 | 2022-07-01 | 安徽汉柔光电科技有限公司 | Fusible alkali-aluminosilicate glass with high chemical stability |
Also Published As
Publication number | Publication date |
---|---|
JP2021091571A (en) | 2021-06-17 |
TW202122359A (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5233998B2 (en) | Glass plate, method for producing the same, and method for producing TFT panel | |
CN102471134B (en) | Alkali-free glass and method for producing same | |
JP5751439B2 (en) | Alkali-free glass | |
JP7585259B2 (en) | Glass | |
TW201323367A (en) | Glass substrate for flat panel display and manufacturing method thereof | |
JP7182871B2 (en) | glass | |
TWI417265B (en) | Photovoltaic low iron flat glass batches containing alkali-free alumino-borosilicate display glass cullet | |
TW201305083A (en) | Glass substrate for flat panel display and manufacturing method thereof | |
JP7676343B2 (en) | Glass | |
WO2020080163A1 (en) | Alkali-free glass plate | |
WO2021117360A1 (en) | Method for producing alkaline earth aluminoborosilicate glass | |
WO2016159345A1 (en) | Glass | |
JP4613635B2 (en) | Glass and manufacturing method thereof | |
JP2014240332A (en) | Production method of glass substrate | |
JP2020172423A (en) | Alkali-free glass plate | |
JP2013107801A (en) | Method for producing glass substrate | |
TWI647188B (en) | Method for producing bismuth silicate glass and silicate glass | |
JP2012201524A (en) | Method for manufacturing glass substrate | |
KR20160023698A (en) | Alkali-free glass | |
JP7610176B2 (en) | Method for producing alkaline earth aluminosilicate glass | |
KR20160023699A (en) | Alkali-free glass | |
JP2012206861A (en) | Method for manufacturing glass substrate | |
KR20160023700A (en) | Alkali-free glass | |
JP6332612B2 (en) | Method for producing alkali-free glass | |
CN117326800A (en) | Composition for glass, alkali-free glass, and preparation method and application of alkali-free glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900354 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900354 Country of ref document: EP Kind code of ref document: A1 |