[go: up one dir, main page]

WO2021114754A1 - 双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法 - Google Patents

双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法 Download PDF

Info

Publication number
WO2021114754A1
WO2021114754A1 PCT/CN2020/113269 CN2020113269W WO2021114754A1 WO 2021114754 A1 WO2021114754 A1 WO 2021114754A1 CN 2020113269 W CN2020113269 W CN 2020113269W WO 2021114754 A1 WO2021114754 A1 WO 2021114754A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
parts
layer
double
smoke halogen
Prior art date
Application number
PCT/CN2020/113269
Other languages
English (en)
French (fr)
Inventor
王文君
何腾飞
张刚
Original Assignee
上海凯波特种电缆料厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯波特种电缆料厂有限公司 filed Critical 上海凯波特种电缆料厂有限公司
Publication of WO2021114754A1 publication Critical patent/WO2021114754A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0853Ethene vinyl acetate copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/141Insulating conductors or cables by extrusion of two or more insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/148Selection of the insulating material therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Definitions

  • the invention relates to the field of radiation cross-linked double-layer co-extruded cable materials, and more specifically to a double-layer co-extrusion insulated LED ultraviolet light cross-linked colored low-smoke halogen-free flame-retardant cable material and a preparation method thereof.
  • the safety of house construction wires is related to the life safety of everyone. With the rapid development of urban housing construction, it is a major development trend to synchronize the use of construction wires and the service life of buildings. Compared with the 70-year housing property rights, wires Only 25 years of life is clearly far from reaching the standard. Due to the thermal effect of the wire insulation layer in the normal operation, the insulation material will undergo thermal oxidation and cracking, which will eventually age and cause safety accidents such as leakage and fire. Due to the high price of the cable, the midway cable replacement will cause damage to the building structure. There are not a few cases where power cables under roads are overused, and it is imminent to realize the long life of the cables.
  • the present invention provides a double-layer co-extrusion insulated LED ultraviolet light cross-linked color low-smoke halogen-free flame-retardant cable material and a preparation method thereof.
  • the double-layer insulation material is extruded through an extruder and subjected to LED irradiation.
  • the equipment can not only produce color double insulated wires at high speed, but also meet the mechanical properties, electrical properties, combustion performance, 70-year thermal life, 200°C thermal extension, light transmittance in smoke, halogen-free and other indicators in the JG/T 441-2014 standard. .
  • a double-layer co-extrusion insulated LED ultraviolet light cross-linked color low-smoke halogen-free flame-retardant cable material is composed of an inner layer insulating material and an outer layer insulating material;
  • the inner insulating material is composed of the following parts by weight of raw materials: maleic anhydride grafted ethylene-octene copolymer (POE-g-MAH) 2-10 parts, polyethylene (PE) 5-30 parts, ethylene -Octene copolymer (POE) 5-20 parts, flame retardant 15-35 parts, flame retardant synergist 3-10 parts, antioxidant 0.5-2 parts, metal deactivator 0.1-0.5 parts, lubricant 1-5 parts, photoinitiator 1-3 parts, multifunctional crosslinking agent 0.5-3 parts and color masterbatch 0.5-1.0 parts;
  • the outer insulating material is composed of the following parts by weight of raw materials: maleic anhydride grafted polyethylene (PE-g-MAH) 2-10 parts, ethylene-vinyl acetate copolymer (EVA) 5-20 parts, syndiotactic 1, 2-polybutadiene (PB) 5-20 parts, flame retardant 50-70 parts, flame retardant synergist 5-15 parts, antioxidant 0.5-2 parts, lubricant 1-5 parts, photoinitiator 0.7-2.6 parts, 1.0-2.5 parts of multifunctional crosslinking agent and 0.5-1.0 parts of color masterbatch.
  • PE-g-MAH polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • PB syndiotactic 1, 2-polybutadiene
  • PB syndiotactic 1, 2-polybutadiene
  • PB syndiotactic 1, 2-polybutadiene
  • PB syndiotactic 1, 2-polybutadiene
  • the grafting rate of the maleic anhydride grafted ethylene-octene copolymer is 0.5-1.8%
  • the octene content in the ethylene-octene copolymer used is 20-40%, and the melt index is 2-8g/10min under the conditions of 190°C and 2.16kg.
  • the maleic anhydride grafted ethylene-octene copolymer has good powder filling properties
  • the above graft rate can enhance the compatibility between the resin and the powder
  • the above melt index is suitable for the material Extrusion. If it is too large, the output will be unstable, and if it is too small, it will be difficult to extrude.
  • the polyethylene is one of bimodal linear polyethylene and high-density polyethylene Or a combination of the two; the polyethylene has a melt index of 1-5 g/10 min under the conditions of 190° C. and 2.16 kg.
  • the suitable melt index of polyethylene is suitable for the extrusion of the material, if it is too large, it will cause unstable discharge, and if it is too small, it will be difficult to extrude.
  • the grafting rate of the maleic anhydride grafted polyethylene (PE) is 0.4-2.0%,
  • the melt index is 1-4g/10min under the conditions of 190°C and 2.16kg.
  • the beneficial effects of the above technical solution are: the above-mentioned suitable grafting rate can enhance the compatibility between the resin and the powder, and the suitable melt index is suitable for the extrusion of the material. If it is too large, the output will be unstable, and if it is too small, it will be squeezed. Out of trouble.
  • the vinyl acetate content in the ethylene-vinyl acetate copolymer is 14-33%, and the temperature is 190°C and The melt index is 0.5-7g/10min under the condition of 2.16kg.
  • the content of vinyl acetate in a suitable ethylene-vinyl acetate copolymer can enhance the powder filling property of the material, enhance the flame retardant effect of the material, and a suitable melt index is suitable for the extrusion of the material.
  • the output is unstable, and if it is too small, it will be difficult to extrude.
  • the molecular weight of the syndiotactic 1,2-polybutadiene (PB) is 100,000 to 200,000, The crystallinity is 13%-32%.
  • the beneficial effect of the above technical solution is that the above-mentioned molecular weight and crystallinity of syndiotactic 1,2-polybutadiene (PB) are suitable for the cross-linking effect of the material, and the cross-linking effect is not good if the molecular weight is too large or too small.
  • PB syndiotactic 1,2-polybutadiene
  • the flame retardant is a hydrated metal oxide
  • the hydrated metal oxide is aluminum hydroxide and At least one of magnesium hydroxide
  • the flame retardant has an average particle size D50 of 1.0-2.0 ⁇ m.
  • the beneficial effects of the above technical solution are: the above-defined flame retardant particle size is beneficial to the filling of the powder and the extrusion performance of the material, too small a particle size is not conducive to extrusion, and too large a particle size has poor filling effect.
  • the flame-retardant synergist is zinc borate, nano-montmorillonite, silicate, polyphosphoric acid Any one or a mixture of several ammonium.
  • the beneficial effect of the above technical solution is that the above flame retardant synergist has good flame retardant synergistic performance.
  • the metal passivation agent is a hindered phenol copper anti-copper agent.
  • the beneficial effect of the above technical solution is: using the above metal passivator, the material has better copper aging resistance.
  • the antioxidant is hindered phenol antioxidant, phosphite antioxidant, sulfur Any one or a mixture of ester replacement antioxidants and metal ion passivators.
  • the beneficial effect of the above technical solution is that the material has better oxidation resistance by using the above antioxidant.
  • the lubricant is any one of silicone masterbatch, polyethylene wax, and microcrystalline wax Or a mixture of several.
  • the beneficial effects of the above technical solution are: using the above lubricant, the material has good oxidation resistance, and the silicone masterbatch can also effectively reduce and improve the situation of die deposit during extrusion.
  • the photoinitiator is a special photoinitiator for LED, which is benzophenone and its derivatives, Any one or a mixture of oxime esters, coumarin ketones, benzil and its derivatives, acyl phosphine oxides, camphorquinone, and thioxanthone photoinitiators.
  • the beneficial effect of the above technical solution is: using the above photoinitiator, the material has an excellent initiating effect and provides an effective guarantee for the crosslinkability of the material.
  • the multi-functional cross-linking agent is triallyl isocyanurate, ethoxylated Trimethylolpropane triacrylate, trimethylolpropane triacrylate, triallyl cyanurate, trimethylolpropane trimethacrylate, trimethylolpropane trimethylol, ditrimethylol Any one or a mixture of several propane tetraacrylates.
  • the beneficial effect of the above technical solution is: using the above crosslinking agent, the material has an excellent crosslinking effect, and the crosslinking speed is faster.
  • the color masterbatch is four color masterbatches of red, yellow, blue and green.
  • the beneficial effect of the above technical solution is: using the above-mentioned self-made red, yellow, blue and green masterbatch for ultraviolet light crosslinking material, the material has an excellent crosslinking effect, and the crosslinking speed is faster.
  • the present invention also provides a preparation method of the double-layer co-extruded insulated LED ultraviolet light cross-linked colored low-smoke halogen-free flame-retardant cable material, which includes the following steps:
  • pellets are obtained by twin-screw, single-screw extrusion, hot cutting, and air cooling in sequence;
  • the invention adopts a twin-screw extrusion method and then a single-screw extrusion method. Compared with a single extrusion method, the plasticizing effect of the product is enhanced, and the uniformity of the material is better.
  • the twin-screw extruder is divided into eight zones, The working temperature of each zone is: 120-130°C in the first zone, 130-140°C in the second zone, 130-140°C in the third zone, 140-145°C in the fourth zone, 140-145°C in the fifth zone, and 150°C in the sixth zone -155°C, 160-165°C in the seventh zone, 170-175°C in the eighth zone;
  • the single-screw extruder is divided into four zones, the working temperature of each zone is: 140-150°C in the first zone, 150-160°C in the second zone, 160-170°C in the third zone, 170-175°C in the fourth zone .
  • the twin-screw extruder is divided into eight zones, The working temperature of each zone is: 100-110°C in the first zone, 110-120°C in the second zone, 120-125°C in the third zone, 125-130°C in the fourth zone, 130-135°C in the fifth zone, and 140 in the sixth zone -145°C, 150-155°C in the seventh zone, 160-165°C in the eighth zone;
  • the single-screw extruder is divided into four zones, the working temperature of each zone is: 120-130°C in the first zone, 130-140°C in the second zone, 140-150°C in the third zone, and 150-155°C in the fourth zone .
  • the extruder used for the inner insulating material is divided into six The operating temperature of each zone is: 140-150°C in the first zone, 150-155°C in the second zone, 155-160°C in the third zone, 165-170°C in the fourth zone, 180-185°C in the fifth zone, Six districts 190-195°C;
  • the extruder used for the outer insulating material is divided into six zones.
  • the working temperature of each zone is: 120-130°C in the first zone, 130-135°C in the second zone, 135-140°C in the third zone, and 145 in the fourth zone.
  • the present disclosure provides a double-layer co-extrusion insulated LED ultraviolet light cross-linked color low-smoke halogen-free flame-retardant cable material, wherein the inner insulating material is preferably a special resin and A small amount of high-efficiency flame retardant is combined to ensure that it has excellent and stable electrical properties and is not affected by moisture, and has a certain flame retardant performance;
  • the outer layer material is optimized with flame retardant and synergist compounding technology to ensure its high flame retardant performance.
  • the service life of the wire is up to 70 years;
  • the inner and outer layers are respectively designed to match the LED-specific composite photoinitiator system and cross-linking system, which solves the problem that LED ultraviolet light cross-linking, low-smoke and halogen-free can not be used in double-layer color cross-linking.
  • the technical problems in smoke-free halogen-free wires and cables have realized the rapid industrial production of LED ultraviolet light, low-smoke, halogen-free colored double-insulated wires.
  • Hindered phenolic antioxidants 0.6 0.8 0.8 Hindered phenolic anti-copper agent 0.3 0.2 0.3 Polyethylene wax 1 2 2.5 Benzophenone photoinitiator 0.6 1.0 1.2 Lucanthone photoinitiator 0.8 0.7 1.0 Triallyl isocyanurate 0.7 1.0 1.6 Trimethylolpropane triacrylate 0.8 1.2 0.8 EVA color masterbatch 0.4 0.6 0.8
  • the preparation method of the inner insulating material is as follows:
  • step (1.2) the twin-screw extruder is divided into eight zones, and the working temperature of each zone is: 120-130°C in the first zone, 130-140°C in the second zone, 130-140°C in the third zone, and 130-140°C in the fourth zone. 140-145°C, the fifth zone is 140-145°C, the sixth zone is 150-155°C, the seventh zone is 160-165°C, and the eighth zone is 170-175°C; the single screw extruder is divided into four zones, each zone The working temperature is: 140-150°C in the first zone, 150-160°C in the second zone, 160-170°C in the third zone, 170-175°C in the fourth zone;
  • the preparation method of the outer insulating material is as follows:
  • step (2.2) the twin-screw extruder is divided into eight zones, the working temperature of each zone is: the first zone 100-110°C, the second zone 110-120°C, the third zone 120-125°C, and the fourth zone 125-130°C, the fifth zone is 130-135°C, the sixth zone is 140-145°C, the seventh zone is 150-155°C, and the eighth zone is 160-165°C; the single screw extruder is divided into four zones, each zone The working temperature is: 120-130°C in the first zone, 130-140°C in the second zone, 140-150°C in the third zone, and 150-155°C in the fourth zone.
  • the performance of the inner layer insulating material and the outer layer insulating material of the above-mentioned double-layer co-extrusion insulated LED ultraviolet light cross-linked color low-smoke halogen-free flame-retardant cable material was also tested, and the results are shown in Table 3 and Table 4. .
  • Examples 1-6 of the present invention Through the inner and outer layer insulating materials prepared in Examples 1-6 of the present invention, after double-layer co-extrusion, they are cross-linked online by LED ultraviolet light irradiation equipment.
  • the cross-linking speed can reach 200 m/min, which greatly improves the industrialization. Production efficiency saves a lot of manpower and material resources, and each performance meets the requirements of the JG/T 441-2014 standard.
  • the service life of the wire is as long as 70 years, realizing the same life of the wire and the building.
  • the 70-year-life double insulated wire of the present invention adopts a double-layer insulation structure design.
  • the insulation layer is designed as a double layer, and the total insulation thickness is not increased.
  • the inner layer insulation design focuses on ensuring the insulation resistance, and is not affected by external moisture, and has excellent electrical performance.
  • Outer insulation focuses on low-smoke halogen-free flame retardant properties; the outer layer is made of high flame-retardant materials, which can protect the inner insulation from external stress.
  • Double-layer co-extrusion technology is adopted in the extrusion process, the inner and outer layers are seamlessly bonded to avoid impurities between the double-layer insulation, which further enhances the electrical performance and waterproof performance of the cable; the double insulation adopts the radiation cross-linking process, and the cable
  • the temperature resistance level can be raised up to 125°C.
  • the service life of the cable is synchronized with the building property rights of 70 years; the 70-year long service life ensures the safety of the cable, and effectively prevents the damage to the building structure caused by the replacement of the cable in the middle and shortens the life of the building. It is lower than the traditional PVC cloth wire and the new single layer. Compared with smoke-free halogen-free cloth wires, double-layer co-extruded insulation materials can not only guarantee a long life of the cable for 70 years, but also have stable and excellent electrical properties, good flame retardancy, and high comprehensive economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,由内层绝缘材料和外层绝缘材料组成,内层绝缘材料由马来酸酐接枝乙烯-辛烯共聚物、聚乙烯、乙烯-辛烯共聚物、阻燃剂、阻燃增效剂、抗氧剂、金属钝化剂、润滑剂、光引发剂、多官能团交联剂和色母组成;外层绝缘材料由马来酸酐接枝聚乙烯、乙烯-醋酸乙烯共聚物、间规1,2-聚丁二烯、阻燃剂、阻燃增效剂、抗氧剂、润滑剂、光引发剂、多官能团交联剂和色母组成。该双层共挤内层绝缘料和外层绝缘料挤出后通过LED辐照设备,在线交联速度快,电线各项性能均能符合JG/T 441-2014,电线力学性能和电气性能优异,阻燃性能好,并且其使用寿命能长达70年以上。

Description

一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料及其制备方法 技术领域
本发明涉及辐照交联双层共挤电缆料领域,更具体是涉及一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料及其制备方法。
背景技术
随着时代的进步与发展,家用电器的功率和品种不断增加,电线超负荷运行常态化,传统的PVC布电线由于受限于当时的技术、工艺、材料等因素,其耐温等级低、使用寿命短仅25年,而新型的单层低烟无卤绝缘材料使用的无卤阻燃剂极易吸潮,导致其绝缘电阻下降。
房屋建筑电线的安全性关系到每个人的生命安全,随着城市房屋建筑高层化发展速度较快,建筑用布电线和建筑物使用寿命同步是发展大趋势,相对于70年的房屋产权,电线只有25年寿命显然远远不达标。由于电线绝缘层在正常运行中会发生热作用,导致绝缘材料发生热氧化裂解,最终老化并引发漏电、火灾等安全事故,由于电缆价格较高,中途换线对建筑结构会造成损坏,房屋和道路下的供电线缆被过度使用的情况不在少数,实现电线的 长寿命已经迫在眉睫。
因此,如何提供一种使用寿命长并且性能优异的双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料及其制备方法,该双层绝缘材料通过挤出机挤出电线,经过LED辐照设备,不仅可以高速生产彩色双绝缘电线,而且符合JG/T 441-2014标准中力学性能、电气性能、燃烧性能、70年热寿命、200℃热延伸、烟中透光率、无卤等指标。
为了达到上述目的,本发明采用如下技术方案:
一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,所述电缆料由内层绝缘材料和外层绝缘材料组成;
其中,所述内层绝缘材料由以下重量份的原料组成:马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)2-10份、聚乙烯(PE)5-30份、乙烯-辛烯共聚物(POE)5-20份、阻燃剂15-35份、阻燃增效剂3-10份、抗氧剂0.5-2份、金属钝化剂0.1-0.5份、润滑剂1-5份、光引发剂1-3份、多官能团交联剂0.5-3份和色母0.5-1.0份;
所述外层绝缘材料以下重量份的原料组成:马来酸酐接枝聚乙烯(PE-g-MAH)2-10份、乙烯-醋酸乙烯共聚物(EVA)5-20份、间规1,2-聚丁二烯(PB)5-20份、阻燃剂50-70份、阻燃增效剂5-15份、抗氧剂0.5-2份、润滑剂1-5份、光引发剂0.7-2.6份、多官能团交联剂1.0-2.5份和色母0.5-1.0份。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述马来酸酐接枝乙烯-辛烯共聚物的接枝率为0.5-1.8%,所用乙烯-辛烯共聚物中辛烯含量为20-40%,在190℃和2.16kg的条件下熔融指数为2-8g/10min。
上述技术方案的有益效果是:马来酸酐接枝乙烯-辛烯共聚物具有良好的粉体填充性,上述接枝率能增强树脂及粉体间的相容性,上述熔融指数适合于材料的挤出,若太大会导致出料不稳,太小则挤出困难。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述聚乙烯(PE)为双峰线性聚乙烯和高密度聚乙烯中的一种或者两种的组合;所述聚乙烯在190℃和2.16kg的条件下熔融指数为1-5g/10min。
上述技术方案的有益效果是:聚乙烯合适的熔融指数适合于材料的挤出,若太大会导致出料不稳,太小则挤出困难。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电 缆料中,所述马来酸酐接枝聚乙烯(PE)的接枝率为0.4-2.0%,在190℃和2.16kg的条件下熔融指数为1-4g/10min。
上述技术方案的有益效果是:上述合适的接枝率能增强树脂及粉体间的相容性,合适的熔融指数适合于材料的挤出,若太大会导致出料不稳,太小则挤出困难。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述乙烯-醋酸乙烯共聚物中醋酸乙烯含量为14-33%,在190℃和2.16kg的条件下熔融指数为0.5-7g/10min。
上述技术方案的有益效果是:合适的乙烯-醋酸乙烯共聚物中醋酸乙烯含量能增强材料的粉体填充性,增强材料的阻燃效果,合适的熔融指数适合于材料的挤出,若太大会导致出料不稳,太小则挤出困难。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述间规1,2-聚丁二烯(PB)的分子量为100000-200000,结晶度为13%-32%。
上述技术方案的有益效果是:间规1,2-聚丁二烯(PB)的上述分子量及结晶度适合于材料的交联效果,分子量太大或太小交联效果不好。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述阻燃剂为水合金属氧化物,所述水合金属氧化物为氢氧化铝和氢氧化镁中的至少一种,并且所述阻燃剂的平均粒径D50为1.0-2.0μm。
上述技术方案的有益效果是:上述限定的阻燃剂粒径有利于粉体的填充性及材料的挤出性能,粒径太小不利于挤出,粒径太大粉体填充效果差。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述阻燃增效剂为硼酸锌、纳米蒙脱土、硅酸盐、聚磷酸铵中的任意一种或者几种的混合物。
上述技术方案的有益效果是:以上阻燃增效剂具有较好的阻燃协效性能。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述金属钝化剂为受阻酚类抗铜剂。
上述技术方案的有益效果是:使用以上金属钝化剂,材料具有较好的抗铜老化性能。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述抗氧剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂、硫代酯类抗氧剂、金属离子钝化剂中的任意一种或者几种的混合物。
上述技术方案的有益效果是:使用以上抗氧剂,材料具有较好的抗氧化性能。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述润滑剂为硅酮母粒、聚乙烯蜡、微晶石蜡中的任意一种或者几种的混合物。
上述技术方案的有益效果是:使用以上润滑剂,材料具有较好的抗氧化 性能,硅酮母粒还能有效减少并改善挤出时模口积料的情况。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述光引发剂为LED专用光引发剂,为二苯甲酮及其衍生物、肟酯类、香豆素酮、苯偶酰及其衍生物、酰基膦氧化物、樟脑醌、硫杂蒽酮类光引发剂中的任意一种或者几种的混合物。
上述技术方案的有益效果是:使用以上光引发剂,材料具有优异的引发效果,为材料交联性提供有效的保障。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述多官能团交联剂为三烯丙基异氰脲酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三甲基丙烯酸酯、三丙烯酸丙烷三甲醇酯、双三羟甲基丙烷四丙烯酸酯中的任意一种或者几种的混合物。
上述技术方案的有益效果是:使用以上交联剂,材料具有优异的交联效果,使交联速度更快。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料中,所述色母为红黄蓝绿四种色母。
上述技术方案的有益效果是:使用以上自制的紫外光交联材料用红黄蓝绿色母,材料具有优异的交联效果,使交联速度更快。
本发明还提供了一种所述双层共挤绝缘LED紫外光交联彩色低烟无卤阻 燃电缆料的制备方法,包括以下步骤:
(1)制备内层绝缘材料
(1.1)称量各组分加入高速搅拌机搅拌均匀;
(1.2)拌匀后依次通过双螺杆、单螺杆挤出、热切、风冷,得到粒料;
(2)制备外层绝缘材料
(2.1)称量各组分加入高速搅拌机搅拌均匀;
(2.2)拌匀后加入密炼机密炼至150-180℃,然后依次通过双螺杆、单螺杆挤出、热切、风冷,得到粒料。
(3)将粒子通过两台挤出机双层共挤挤出线材。
本发明采用先通过双螺杆挤出后通过单螺杆挤出的方式,相较单一的某一种挤出方式,增强了产品的塑化效果,使得材料的均一性更好。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法中,步骤(1.2)中,所述双螺杆挤出机分为八个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区130-140℃,第四区140-145℃,第五区140-145℃,第六区150-155℃,第七区160-165℃,第八区170-175℃;
所述单螺杆挤出机分为四个区,各区的工作温度为:第一区140-150℃,第二区150-160℃,第三区160-170℃,第四区170-175℃。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电 缆料的制备方法中,步骤(2.2)中,所述双螺杆挤出机分为八个区,各区的工作温度为:第一区100-110℃,第二区110-120℃,第三区120-125℃,第四区125-130℃,第五区130-135℃,第六区140-145℃,第七区150-155℃,第八区160-165℃;
所述单螺杆挤出机分为四个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区140-150℃,第四区150-155℃。
优选的,在上述一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法中,步骤(3)中,用于内层绝缘料的挤出机分为六个区,各区的工作温度为:第一区140-150℃,第二区150-155℃,第三区155-160℃,第四区165-170℃,第五区180-185℃,第六区190-195℃;
用于外层绝缘料的挤出机分为六个区,各区的工作温度为:第一区120-130℃,第二区130-135℃,第三区135-140℃,第四区145-150℃,第五区150-155℃,第六区160-165℃。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其中内层绝缘材料优选特殊树脂与少量高效阻燃剂配合,保证其具有优异、稳定的电气性能且不受潮气的影响,并具有一定的阻燃性能;
外层材料优选阻燃剂与协效剂复配技术,保证其高阻燃性能,通过优选特种树脂配合相应抗氧剂体系,实现了电线使用寿命长达70年;
此外,通过有效利用颜色的光学窗口,内外层分别设计与之相匹配的LED专用复合光引发体系和交联体系,解决了LED紫外光交联低烟无卤不能应用在双层彩色交联低烟无卤电线电缆中的技术难题,实现了LED紫外光低烟无卤彩色双绝缘电线的快速工业化生产。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合具体实施例对本发明的技术方案作进一步具体的说明,但是本发明不限于这些实施例。
(1)双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料内层绝缘材料各组分重量份数参见表1:
表1 内层绝缘材料原料组成
材料名称 实施例1 实施例2 实施例3
POE-g-MAH 5 8 10
PE 25 25 20
POE 10 7 10
氢氧化镁 20 25 30
纳米蒙脱土 3 5 8
受阻酚类抗氧剂 0.6 0.8 0.8
受阻酚类抗铜剂 0.3 0.2 0.3
聚乙烯蜡 1 2 2.5
二苯甲酮光引发剂 0.6 1.0 1.2
硫杂蒽酮类光引发剂 0.8 0.7 1.0
三烯丙基异氰脲酸酯 0.7 1.0 1.6
三羟甲基丙烷三丙烯酸酯 0.8 1.2 0.8
EVA类色母 0.4 0.6 0.8
内层绝缘材料的制备方法如下:
(1.1)称量各组分加入高速搅拌机搅拌均匀;
(1.2)拌匀后通过双螺杆、单螺杆挤出、热切、风冷,得到粒料;
步骤(1.2)中,双螺杆挤出机分为八个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区130-140℃,第四区140-145℃,第五区140-145℃,第六区150-155℃,第七区160-165℃,第八区170-175℃;单螺杆挤出机分为四个区,各区的工作温度为:第一区140-150℃,第二区150-160℃,第三区160-170℃,第四区170-175℃;
(2)双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料外层绝缘材料各组分重量份数参见表2:
表2
Figure PCTCN2020113269-appb-000001
Figure PCTCN2020113269-appb-000002
外层绝缘材料的制备方法如下:
(2.1)称量各组分加入高速搅拌机搅拌均匀;
(2.2)拌匀后加入密炼机,密炼至150-180℃,然后通过双螺杆、单螺杆挤出、热切、风冷,得到粒料;
步骤(2.2)中,双螺杆挤出机分为八个区,各区的工作温度为:第一区100-110℃,第二区110-120℃,第三区120-125℃,第四区125-130℃,第五区130-135℃,第六区140-145℃,第七区150-155℃,第八区160-165℃;单螺杆挤出机分为四个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区140-150℃,第四区150-155℃。
本发明实施例还对上述双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的内层绝缘材料和外层绝缘材料的性能分别进行了检测,结果参见表3和表4。
表3 内层绝缘材料的性能检测结果
Figure PCTCN2020113269-appb-000003
表4 外层绝缘材料的性能检测结果
Figure PCTCN2020113269-appb-000004
Figure PCTCN2020113269-appb-000005
通过对本发明实施例1-6制得的内外层绝缘料,双层共挤挤出后通过LED紫外光辐照设备在线交联,交联速度可达200米/分钟,极大的提高了工业化生产效率,节省了大量人力和物力,且各项性能均符合JG/T 441-2014标准要求,电线使用寿命长达70年,实现了电线与建筑物同寿命。
本发明70年寿命双绝缘电线采用双层绝缘的结构设计,绝缘层设计成双层,绝缘总厚度没有增加,内层绝缘设计上重点保证绝缘电阻,且不受外部潮气影响,电气性能优异,外层绝缘则重点考虑低烟无卤阻燃性能;外层为高阻燃材料,并可保护内层绝缘免受外部应力影响。
在挤出工艺上采用双层共挤技术,内外层无缝粘结,避免双层绝缘间附有杂质,进一步增强了电缆的电气性能和防水性能;双绝缘采用辐照交联工艺,电缆的耐温等级最高可提至125℃。线缆使用寿命与建筑产权70年同步;70年高寿命确保了电缆的安全性,有效防止中途更换线缆对建筑结构造成损坏而缩短建筑物寿命,与传统的PVC布电线和新型单层低烟无卤布电线相比,双层共挤绝缘材料,不仅可保证线缆70年长寿命,而且其电气性能稳定且优异,阻燃性能好,综合经济效益高。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。 对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其特征在于,所述电缆料由内层绝缘材料和外层绝缘材料组成;
    其中,所述内层绝缘材料由以下重量份的原料组成:马来酸酐接枝乙烯-辛烯共聚物2-10份、聚乙烯5-30份、乙烯-辛烯共聚物5-20份、阻燃剂15-35份、阻燃增效剂3-10份、抗氧剂0.5-2份、金属钝化剂0.1-0.5份、润滑剂1-5份、光引发剂1-3份、多官能团交联剂0.5-3份和色母0.5-1.0份;
    所述外层绝缘材料以下重量份的原料组成:马来酸酐接枝聚乙烯2-10份、乙烯-醋酸乙烯共聚物5-20份、间规1,2-聚丁二烯5-20份、阻燃剂50-70份、阻燃增效剂5-15份、抗氧剂0.5-2份、润滑剂1-5份、光引发剂0.7-2.6份、多官能团交联剂1.0-2.5份和色母0.5-1.0份。
  2. 根据权利要求1所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其特征在于,所述马来酸酐接枝乙烯-辛烯共聚物的接枝率为0.5-1.8%,所用乙烯-辛烯共聚物中辛烯含量为20-40%,在190℃和2.16kg的条件下熔融指数为2-8g/10min。
  3. 根据权利要求1所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其特征在于,所述聚乙烯为双峰线性聚乙烯和高密度聚乙烯中的一种或者两种的组合;所述聚乙烯在190℃和2.16kg的条件下熔融指数为1-5g/10min。
  4. 根据权利要求1所述的一种双层共挤绝缘LED紫外光交联彩色低烟 无卤阻燃电缆料,其特征在于,所述马来酸酐接枝聚乙烯的接枝率为0.4-2.0%,在190℃和2.16kg的条件下熔融指数为1-4g/10min。
  5. 根据权利要求1所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其特征在于,所述乙烯-醋酸乙烯共聚物中醋酸乙烯含量为14-33%,在190℃和2.16kg的条件下熔融指数为0.5-7g/10min。
  6. 根据权利要求1所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料,其特征在于,所述间规1,2-聚丁二烯的分子量100000-200000,结晶度为13%-32%。
    所述阻燃剂为水合金属氧化物,所述水合金属氧化物为氢氧化铝和氢氧化镁中的至少一种,并且所述阻燃剂的平均粒径D50为1.0-2.0μm;
    所述阻燃增效剂为硼酸锌、纳米蒙脱土、硅酸盐、聚磷酸铵中的任意一种或者几种的混合物;
    所述金属钝化剂为受阻酚类抗铜剂;
    所述抗氧剂为受阻酚类抗氧剂、亚磷酸酯类抗氧剂、硫代酯类抗氧剂、金属离子钝化剂中的任意一种或者几种的混合物;
    所述润滑剂为硅酮母粒、聚乙烯蜡、微晶石蜡中的任意一种或者几种的混合物;
    所述光引发剂为LED专用光引发剂,为二苯甲酮及其衍生物、肟酯类、香豆素酮、苯偶酰及其衍生物、酰基膦氧化物、樟脑醌、硫杂蒽酮类光引发 剂中的任意一种或者几种的混合物;
    所述多官能团交联剂为三烯丙基异氰脲酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三甲基丙烯酸酯、三丙烯酸丙烷三甲醇酯、双三羟甲基丙烷四丙烯酸酯中的任意一种或者几种的混合物。
  7. 一种权利要求1-6任一项所述的双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法,其特征在于,包括以下步骤:
    (1)制备内层绝缘材料
    (1.1)称量各组分加入高速搅拌机搅拌均匀;
    (1.2)拌匀后通过双螺杆、单螺杆挤出、热切、风冷,得到粒料;
    (2)制备外层绝缘材料
    (2.1)称量各组分加入高速搅拌机搅拌均匀;
    (2.2)拌匀后加入密炼机密炼至150-180℃,然后通过双螺杆、单螺杆挤出、热切、风冷,得到粒料;
    (3)将粒子通过两台挤出机双层共挤挤出线材。
  8. 根据权利要求7所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法,其特征在于,步骤(1.2)中,所述双螺杆挤出机分为八个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区130-140℃,第四区140-145℃,第五区140-145℃,第六区150-155℃, 第七区160-165℃,第八区170-175℃;
    所述单螺杆挤出机分为四个区,各区的工作温度为:第一区140-150℃,第二区150-160℃,第三区160-170℃,第四区170-175℃。
  9. 根据权利要求7所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法,其特征在于,步骤(2.2)中,所述双螺杆挤出机分为八个区,各区的工作温度为:第一区100-110℃,第二区110-120℃,第三区120-125℃,第四区125-130℃,第五区130-135℃,第六区140-145℃,第七区150-155℃,第八区160-165℃;
    所述单螺杆挤出机分为四个区,各区的工作温度为:第一区120-130℃,第二区130-140℃,第三区140-150℃,第四区150-155℃。
  10. 根据权利要求7所述的一种双层共挤绝缘LED紫外光交联彩色低烟无卤阻燃电缆料的制备方法,其特征在于,步骤(3)中,用于内层绝缘料的挤出机分为六个区,各区的工作温度为:第一区140-150℃,第二区150-155℃,第三区155-160℃,第四区165-170℃,第五区180-185℃,第六区190-195℃;
    用于外层绝缘料的挤出机分为六个区,各区的工作温度为:第一区120-130℃,第二区130-135℃,第三区135-140℃,第四区145-150℃,第五区150-155℃,第六区160-165℃。
PCT/CN2020/113269 2019-12-11 2020-09-03 双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法 WO2021114754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911268221.6 2019-12-11
CN201911268221.6A CN110951141B (zh) 2019-12-11 2019-12-11 一种双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021114754A1 true WO2021114754A1 (zh) 2021-06-17

Family

ID=69981047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113269 WO2021114754A1 (zh) 2019-12-11 2020-09-03 双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法

Country Status (2)

Country Link
CN (1) CN110951141B (zh)
WO (1) WO2021114754A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881180A (zh) * 2021-10-08 2022-01-04 广州敬信高聚物科技有限公司 一种绝缘聚丙烯材料及其制备方法和应用
CN114213742A (zh) * 2021-12-29 2022-03-22 江苏达胜高聚物股份有限公司 一种高阻燃低烟无卤电缆材料及其制备方法和应用
CN114213743A (zh) * 2022-01-05 2022-03-22 四川安费尔高分子材料科技有限公司 一种低烟无卤阻燃电缆料的生产工艺
CN114805999A (zh) * 2022-05-13 2022-07-29 欧宝聚合物江苏有限公司 一种可浸没于氟化冷却液中电缆料及其制备方法
CN114889226A (zh) * 2022-03-07 2022-08-12 上海先锋辐照制品厂有限公司 电动汽车用高阻燃耐高温复合热缩管
CN118155930A (zh) * 2024-05-11 2024-06-07 华远高科电缆有限公司 一种新能源光伏系统用铜合金光伏线

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951141B (zh) * 2019-12-11 2021-07-02 上海凯波电缆特材股份有限公司 一种双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法
CN111540525A (zh) * 2020-05-26 2020-08-14 安徽太平洋电缆股份有限公司 一种隔温瓶式b1级轻型防火电缆
CN112574518B (zh) * 2020-12-14 2022-08-05 上海凯波电缆特材股份有限公司 一种紫外光辐照交联氯化聚乙烯电缆料及其制备方法
CN112898710A (zh) * 2021-01-23 2021-06-04 山东宏建高分子材料科技有限公司 一种海工平台用电缆护套料及其制备方法
CN113583462A (zh) * 2021-07-14 2021-11-02 中广核高新核材科技(苏州)有限公司 一种光伏线缆用辐照交联料,其制备方法及光伏线缆
CN114792577B (zh) * 2021-09-24 2023-05-30 特变电工山东鲁能泰山电缆有限公司 一种绝缘结构及高压直流电缆
CN113990560B (zh) * 2021-10-27 2024-06-21 特变电工(德阳)电缆股份有限公司 一种环保节能型电力电缆及其制造方法
CN113980301A (zh) * 2021-11-12 2022-01-28 上海凯波电缆特材股份有限公司 一种电动汽车用紫外光辐照交联高电性能充电桩绝缘电缆料及其制备方法
CN114286463B (zh) * 2021-12-20 2024-10-18 杭州电缆股份有限公司 一种中压石油管道用加温电缆及其制备工艺
CN114316420B (zh) * 2021-12-23 2024-04-16 苏州赛伍应用技术股份有限公司 一种交联型连续纤维束增强复合材料及其制备方法和应用
CN114957848B (zh) * 2022-07-12 2023-05-05 广东聚石化学股份有限公司 一种高效的紫外光交联黑色低烟无卤电缆料及其制备方法和应用
CN116355306A (zh) * 2022-12-02 2023-06-30 中广核拓普(湖北)新材料有限公司 低烟无卤阻燃聚烯烃电缆料及制备方法
CN117887163A (zh) * 2023-11-30 2024-04-16 苏州华盟塑化有限公司 一种阻燃电缆护套基料及其制备方法
CN119132709B (zh) * 2024-07-31 2025-02-28 广东日昭电工有限公司 一种双层防护防水母线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311619A (ja) * 1993-04-16 1994-11-04 Hitachi Cable Ltd 電線・ケーブル延焼防止被覆の剥離方法
CN1969007A (zh) * 2004-06-15 2007-05-23 Lg电线有限公司 耐热变形和耐切断的树脂组合物和使用其的绝缘材料与电缆
CN105237865A (zh) * 2015-10-21 2016-01-13 上海至正道化高分子材料股份有限公司 一种紫外光交联彩色低烟无卤阻燃电缆料、电缆制品及其制备方法
CN107216539A (zh) * 2017-06-16 2017-09-29 上海至正道化高分子材料股份有限公司 一种核电站电缆用辐照交联耐磨耐扭矩低烟无卤阻燃电缆护套料及其制备方法和电缆制品
WO2019027882A1 (en) * 2017-08-01 2019-02-07 Corning Incorporated FIRE RETARDANT ADDITIVE FORMED OF A POLYOXOMETALLATE-CYCLODEXTRIN ION LIQUID INCLUSION COMPLEX FOR MANUFACTURING HALOGEN-FREE COMPOUND WITH LOW SMOKE CLEARANCE
CN110951141A (zh) * 2019-12-11 2020-04-03 上海凯波特种电缆料厂有限公司 一种双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080080578A (ko) * 2005-12-09 2008-09-04 제이에스알 가부시끼가이샤 자외선 경화성 중합체 조성물, 수지 성형품 및 그의 제조방법
CN102153802B (zh) * 2011-03-07 2013-03-27 沭阳优唯新材料有限公司 紫外光深度交联无卤阻燃聚烯烃电缆料及其绝缘或护套层的制备方法
CN109705426A (zh) * 2018-11-02 2019-05-03 常州八益电缆股份有限公司 核岛内电缆无卤内绝缘材料、电缆内绝缘层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311619A (ja) * 1993-04-16 1994-11-04 Hitachi Cable Ltd 電線・ケーブル延焼防止被覆の剥離方法
CN1969007A (zh) * 2004-06-15 2007-05-23 Lg电线有限公司 耐热变形和耐切断的树脂组合物和使用其的绝缘材料与电缆
CN105237865A (zh) * 2015-10-21 2016-01-13 上海至正道化高分子材料股份有限公司 一种紫外光交联彩色低烟无卤阻燃电缆料、电缆制品及其制备方法
CN107216539A (zh) * 2017-06-16 2017-09-29 上海至正道化高分子材料股份有限公司 一种核电站电缆用辐照交联耐磨耐扭矩低烟无卤阻燃电缆护套料及其制备方法和电缆制品
WO2019027882A1 (en) * 2017-08-01 2019-02-07 Corning Incorporated FIRE RETARDANT ADDITIVE FORMED OF A POLYOXOMETALLATE-CYCLODEXTRIN ION LIQUID INCLUSION COMPLEX FOR MANUFACTURING HALOGEN-FREE COMPOUND WITH LOW SMOKE CLEARANCE
CN110951141A (zh) * 2019-12-11 2020-04-03 上海凯波特种电缆料厂有限公司 一种双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881180A (zh) * 2021-10-08 2022-01-04 广州敬信高聚物科技有限公司 一种绝缘聚丙烯材料及其制备方法和应用
CN114213742A (zh) * 2021-12-29 2022-03-22 江苏达胜高聚物股份有限公司 一种高阻燃低烟无卤电缆材料及其制备方法和应用
CN114213743A (zh) * 2022-01-05 2022-03-22 四川安费尔高分子材料科技有限公司 一种低烟无卤阻燃电缆料的生产工艺
CN114889226A (zh) * 2022-03-07 2022-08-12 上海先锋辐照制品厂有限公司 电动汽车用高阻燃耐高温复合热缩管
CN114805999A (zh) * 2022-05-13 2022-07-29 欧宝聚合物江苏有限公司 一种可浸没于氟化冷却液中电缆料及其制备方法
CN114805999B (zh) * 2022-05-13 2023-09-19 欧宝聚合物江苏有限公司 一种可浸没于氟化冷却液中电缆料及其制备方法
CN118155930A (zh) * 2024-05-11 2024-06-07 华远高科电缆有限公司 一种新能源光伏系统用铜合金光伏线

Also Published As

Publication number Publication date
CN110951141B (zh) 2021-07-02
CN110951141A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021114754A1 (zh) 双层共挤绝缘led紫外光交联彩色低烟无卤阻燃电缆料及其制备方法
CN105504480A (zh) 一种机车线缆用耐油辐照交联低烟无卤阻燃聚烯烃料
CN102731897B (zh) 一种高耐磨型低烟无卤辐照交联护套材料及其制备方法
CN104194167B (zh) 一种无卤阻燃导热电线绝缘层及电线
CN109957199A (zh) 一种光伏电缆用无卤低烟阻燃护套料及其制备方法和用途
CN112759820A (zh) 建筑物阻燃电缆用低烟无卤阻燃聚烯烃护套料及制备方法
CN102532755A (zh) 一种热收缩套管的配方及其加工工艺
CN102708974B (zh) 一种与阻燃护套料不相溶的线缆填充用阻燃型阻水油膏
CN113571240B (zh) 一种乙丙橡胶绝缘耐寒阻燃1级直流软电缆及制法
CN109957189B (zh) 一种高透光率低烟低卤高阻燃聚氯乙烯塑料及其制备方法
CN108164792A (zh) 一种小线径线缆用105℃辐照交联低烟无卤阻燃聚烯烃绝缘料及其制备方法
CN106633308A (zh) 一种计算机电缆专用保护套及其生产工艺
CN103450552A (zh) 辐照交联低烟无卤高阻燃聚烯烃电缆料及其制备方法
CN104212054A (zh) 一种105℃高阻燃辐照交联低烟无卤电缆料及其制备方法
CN106279933A (zh) 一种125℃无卤低烟阻燃交联聚烯烃绝缘料制备方法
CN108164798B (zh) 一种低发烟量的热塑性低烟无卤阻燃聚烯烃材料及其制备方法
CN106279932A (zh) 一种125℃无卤低烟阻燃交联聚烯烃护套料制备方法
CN103044751A (zh) 一种防霉菌阻燃聚乙烯电缆粒料的生产工艺
CN104231482A (zh) 电器设备电线电缆高强度耐寒改性护套料及其加工方法
CN103985461A (zh) 一种无烟阻燃耐高温电力电缆
CN103194024A (zh) 一种满足核电站ap1000设计要求的反应堆用阻燃电线/电缆
CN116554589A (zh) 一种光伏电缆用低烟无卤聚烯烃电缆料及其制备方法
CN115274185A (zh) 一种超长寿命无卤高阻燃聚烯烃电线电缆及制备方法
CN103474163B (zh) 舰船石化用5000到15000伏跨接电缆及其制造方法
CN106317580A (zh) 一种防鼠防蚁无卤低烟阻燃聚烯烃电缆料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900453

Country of ref document: EP

Kind code of ref document: A1