[go: up one dir, main page]

WO2021109090A1 - 谐振器的制备方法和谐振器 - Google Patents

谐振器的制备方法和谐振器 Download PDF

Info

Publication number
WO2021109090A1
WO2021109090A1 PCT/CN2019/123412 CN2019123412W WO2021109090A1 WO 2021109090 A1 WO2021109090 A1 WO 2021109090A1 CN 2019123412 W CN2019123412 W CN 2019123412W WO 2021109090 A1 WO2021109090 A1 WO 2021109090A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom electrode
release
cavity
base material
resonator
Prior art date
Application number
PCT/CN2019/123412
Other languages
English (en)
French (fr)
Inventor
程诗阳
吴珂
李杨
王超
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/123412 priority Critical patent/WO2021109090A1/zh
Publication of WO2021109090A1 publication Critical patent/WO2021109090A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the invention relates to the field of resonators.
  • acoustic resonance technology includes surface acoustic wave technology SAW (Surface Acoustic Wave) and bulk acoustic wave technology BAW (Bulk Acoustic Wave). Because of the simple manufacturing process and low cost, the resonator using SAW technology occupies the mainstream market of low frequency (below 2GHz).
  • SAW Surface Acoustic Wave
  • BAW Bulk Acoustic Wave
  • the filter composed of this resonator has poor rectangular coefficient, high insertion loss, and large center frequency drift with temperature. What’s more fatal is that as the frequency increases, the distance between the SAW resonator finger electrodes decreases, and higher requirements are placed on the process, while the reliability of the device becomes worse. These shortcomings are hindering the application of SAW resonators to higher levels. Frequency band.
  • BAW resonators has improved the shortcomings of many SAW resonators, and mature semiconductor processes have good compatibility with their manufacture.
  • BAW resonators are also widely used in piezoelectric microphones, pressure sensors or other sensor fields due to their excellent performance.
  • BAW resonators are different from SAW resonators in that longitudinal waves are used to generate resonance in the piezoelectric film, and the propagation direction of the longitudinal waves is the thickness direction of the piezoelectric material.
  • the resonant frequency of the resonator can be easily adjusted.
  • acoustic mirrors that make wave energy reflect at the interface. Air or Bragg mirrors are the most commonly used mirror structures.
  • the Bragg reflector adopts multiple groups of low acoustic impedance materials and high acoustic impedance materials alternately laminated structure to realize the reflection of waves. Although this kind of mirror has high reflectivity, it still cannot avoid energy leakage along the mirror. Compared with the Bragg reflector, air has a better reflection effect on waves and blocks the way of energy leakage, so resonators with higher quality factors can often be manufactured.
  • the existing technology is to make a cavity structure in or on the substrate before depositing the electrode layer and the piezoelectric layer.
  • Fill the cavity with a sacrificial material to make the surface flat then deposit an electrode layer and a piezoelectric layer on the cavity and the substrate, and finally contact the sacrificial material with an etching solution or atmosphere that can corrode the sacrificial material through the release channel set aside in advance , Release the cavity to form an air mirror structure.
  • a release channel needs to extend outward from the edge of the cavity so that the release hole can communicate with the cavity through the release channel.
  • the release channel is also filled with the sacrificial material.
  • the material in the release channel needs to be eroded and released.
  • the release channel formed with the cavity has the same depth as the cavity, its typical value is, for example, 2 microns. In this way, the required release volume is increased, the release efficiency is reduced, the release process time is prolonged, and the release is long-term It will also cause certain damage to the resonator structure.
  • One of the objectives of the present invention is to provide a method for manufacturing a resonator, which can effectively improve the release efficiency of the sacrificial layer in the cavity.
  • a method for manufacturing a resonator including:
  • the cavity forming step includes providing a base material, opening a cavity from the top surface of the base material, and depositing a first sacrificial layer in the cavity;
  • a first bottom electrode corresponding to the cavity is formed by etching on the top surface of the base material, and a relief groove on the first bottom electrode is formed at the same time, and the projection of the relief groove is at least partially located Depositing a second sacrificial layer in the relief groove on the cavity;
  • a piezoelectric layer is formed on the base layer material and the first bottom electrode, a release hole penetrating the piezoelectric layer is opened, and the projection of the release hole is at least partially located in the release groove on;
  • the first sacrificial layer is released by etching through the release hole so that the release hole and the release groove form the release channel, and the second sacrificial layer is etched through the release channel to obtain a ⁇ Resonator.
  • the base layer material includes a substrate at the bottom and a support layer at the top of the substrate, the first bottom electrode is located on the top surface of the support layer, and the cavity is formed on the support layer .
  • the base layer material includes a substrate at the bottom and a second bottom electrode at the top of the substrate, the first bottom electrode is formed on the top surface of the second bottom electrode, and the cavity is formed in On the second bottom electrode.
  • the base layer material includes a substrate at the bottom and a second bottom electrode at the top of the substrate, the first bottom electrode is formed on the top surface of the second bottom electrode, and the cavity is formed in The substrate and the second bottom electrode.
  • the number of the first bottom electrodes is at least two, the cavities correspond to the first bottom electrodes one-to-one, and the step of forming the relief groove specifically includes:
  • At least two of the first bottom electrodes are formed by etching on the top surface of the base material to form at least one relief groove between adjacent first bottom electrodes, and the projection of each relief groove is at least partially located On the two cavities, a second sacrificial layer is deposited in the relief groove.
  • the first sacrificial layer and the base layer material are planarized.
  • the step of forming the first bottom electrode specifically includes:
  • the bottom electrode material is deposited on the top surface of the base material, the photoresist is set to cover part of the bottom electrode material, the sacrificial layer other than the photoresist is removed by etching, the photoresist is removed, and the area covered by the photoresist is formed The first bottom electrode.
  • the step of forming the release hole specifically includes:
  • the present invention also provides a resonator, including:
  • a base material, a cavity is opened inwardly from the top surface of the base material
  • the first bottom electrode is formed on the top surface of the base material
  • a piezoelectric layer is formed on the base material and the first bottom electrode, the piezoelectric layer and the first bottom electrode are enclosed to form a relief groove, the relief groove is in communication with the cavity, and A release hole penetrating the piezoelectric layer is opened, and the release hole is in communication with the release groove.
  • the number of the first bottom electrodes is at least two, the cavities correspond to the first bottom electrodes one-to-one, and the piezoelectric layer and the at least two first bottom electrodes are enclosed to form one Relief grooves, one of the relief grooves is in communication with at least two of the cavities.
  • the beneficial effect of the present invention is that a release groove is provided under the release hole above the base material, and the release groove and the release hole constitute a release channel, so that the release groove does not need to extend outward from the edge of the cavity, and the required release volume is reduced, thereby effectively Improved release efficiency.
  • FIG. 1 is a method flowchart of a method for manufacturing a resonator provided by an embodiment of the present invention
  • FIG. 2 is a top view of a resonator structure provided by an embodiment of the present invention.
  • Fig. 3 is a cross-sectional view of the resonator in Fig. 2 along the line A-A in an embodiment
  • Fig. 4 is a cross-sectional view of the resonator in Fig. 2 along the line A-A in another embodiment
  • Fig. 5 is a cross-sectional view of the resonator in Fig. 2 along the line A-A in another embodiment
  • Fig. 6 is a cross-sectional view of the resonator in Fig. 2 along the line A-A in another embodiment
  • FIG. 7 is a schematic structural diagram of a resonator provided by another embodiment of the present invention.
  • Fig. 8 is a top view of the resonator in Fig. 7;
  • FIGS. 9 and 10 are schematic diagrams of various steps in the manufacturing method of the resonator in the cross-sectional view of the resonator assembly provided by the present invention along the line B-B;
  • 11 and 12 are schematic diagrams of the various steps in the manufacturing method of the resonator in the cross-sectional view of the resonator assembly provided by the present invention along the line C-C.
  • Resonator 1. Base material; 10. Cavity; 11. First sacrificial layer; 21. First bottom electrode; 3. Second sacrificial layer; 4. Piezoelectric layer; 40. Release hole; 30. Release Groove; 5. top electrode; 6, passivation layer; 12, substrate; 13, support layer; 22, second bottom electrode.
  • the present invention provides a method S10 for manufacturing a resonator, including:
  • step S11 of forming the cavity 10 a base material 1 is provided, a cavity 10 is opened from the top surface of the base material 1, and a first sacrificial layer 11 is deposited in the cavity 10;
  • the relief groove 30 is formed in step S12, a first bottom electrode 21 corresponding to the cavity 10 is deposited on the top surface of the base material 1, and a relief groove 30 on the first bottom electrode 21 is formed at the same time.
  • the projection of the relief groove 30 is at least partially located on the cavity 10, and the second sacrificial layer 3 is deposited in the relief groove 30;
  • the release hole 40 is formed in step S13.
  • the piezoelectric layer 4 is formed on the base material 1 and the first bottom electrode 21, and a release hole 40 penetrating the piezoelectric layer 4 is opened.
  • the projection is at least partially located on the relief groove 30;
  • Release channel etching step S14 the first sacrificial layer 11 is etched and released through the release hole 40 so that the release hole 40 and the release groove 30 form a release channel, and the second sacrificial layer 3 is etched through the release channel to make the resonator 100 .
  • the release groove 30 is provided above the cavity 10 and below the release hole 40, at least a part of the projection of the release groove 30 on the base material 1 must coincide with the area of the cavity 10, and the cavity 10 can be released through the release groove 30, thereby There is no need to extend the cavity 10 outward to form the release groove 30, which reduces the required release volume and improves the release efficiency.
  • the release groove 30 forms an air gap at the edge of the first bottom electrode 21, which can optimize the resonator Frequency response of 100.
  • the cavity 10 may have any shape, including a circle, an ellipse, a regular polygon or an apodized polygon, etc.; the shape and height of the relief groove 30 can be adjusted according to the size and layout of the resonator 100.
  • the material of the first sacrificial layer 11 and the material of the second sacrificial layer 3 may be the same or different.
  • the base material 1 includes a substrate 11 at the bottom and a support layer 12 at the top of the substrate 11, the first bottom electrode 21 is located on the top surface of the support layer 12, and the cavity 10 is formed in On the supporting layer 12, please refer to FIG. 4 for details.
  • the base material 1 includes a substrate 11 at the bottom and a second bottom electrode 22 at the top of the substrate 11.
  • the first bottom electrode 21 is formed on the top surface of the second bottom electrode 22, the
  • the cavity 10 is formed on the second bottom electrode 22. Please refer to FIG. 5 for details.
  • the base material 1 includes a substrate 11 at the bottom and a second bottom electrode 22 at the top of the substrate 11.
  • the first bottom electrode 21 is formed on the top surface of the second bottom electrode 22, the The cavity 10 is formed on the substrate 11 and the second bottom electrode 22.
  • the first bottom electrode 21 and the second bottom electrode 22 are integrally formed.
  • the relief groove 30 can be arranged at the edge of a single resonator 100 (refer to FIGS. 2 to 6 for details), or between multiple adjacent resonators 100 (for details, refer to FIGS. 7 to 12), please refer to FIG. 7- 12.
  • the number of the first bottom electrodes 21 is at least two
  • the cavities 10 correspond to the first bottom electrodes 21 one-to-one
  • the step of forming the relief groove 30 specifically includes:
  • At least two first bottom electrodes 21 are etched on the top surface of the base material 1 to form at least one relief groove 30 between adjacent first bottom electrodes 21, and the projection of each relief groove 30 is at least Partly located on the two cavities 10, the second sacrificial layer 3 is deposited in the relief groove 30.
  • the quantitative relationship between the relief grooves 30 and the cavities 10 can be that one relief groove 30 corresponds to one cavity 10, one relief groove 30 corresponds to multiple cavities 10, and multiple relief grooves 30 correspond to one cavity 10 or multiple cavities.
  • the relief grooves 30 correspond to a plurality of cavities 10 respectively.
  • the release groove 30 is formed between at least two first bottom electrodes 21. Since each first bottom electrode 21 corresponds to one resonator 100, the two resonators 100 share one release groove 30, which improves the release of the cavity 10. effectiveness.
  • the first sacrificial layer 11 and the base material 1 are planarized before the step of forming the relief groove 30, the first sacrificial layer 11 and the base material 1 are planarized.
  • the first sacrificial layer 11 and the base material 1 are planarized by a chemical mechanical polishing method. After the planarization process is performed, the top surfaces of the first sacrificial layer 11 and the base material 1 are flat, which facilitates the later processing of the first bottom electrode 21.
  • the steps of forming the first bottom electrode 21 specifically include:
  • the raw material of the first bottom electrode 21 is a conventional metal such as tungsten, titanium, gold, aluminum, and molybdenum.
  • the raw material of the piezoelectric layer 4 is aluminum nitride, zinc oxide, PZT, lithium niobate, etc., or these materials are formed by doping.
  • the steps of forming the release hole 40 specifically include:
  • the piezoelectric layer 4 is covered with photoresist, the piezoelectric layer 4 is etched, and the photoresist is removed.
  • the release hole 40 is formed in the area not covered by the photoresist.
  • the manufacturing method of the resonator further includes:
  • the passivation layer 6 is processed on the top surface of the top electrode 5.
  • the top electrode 5 and the passivation layer 6 are processed by a method of photolithography and then etching.
  • the present invention also provides a resonator 100, including:
  • the first bottom electrode 21 is formed on the top surface of the base material 1;
  • the piezoelectric layer 4 is formed on the base material 1 and the first bottom electrode 21, the piezoelectric layer 4 and the first bottom electrode 21 are enclosed to form a release groove 30, and the release groove 30 is connected to the first bottom electrode 21.
  • the cavity 10 is in communication, the piezoelectric layer 4 is provided with a release hole 40 penetrating the cavity 10, and the release hole 40 is in communication with the release groove 30.
  • the relief groove 30 is provided above the cavity 10 and at least a part of the projection of the relief groove 30 on the base material 1 has to coincide with the area of the cavity 10, the cavity 10 can be released through the relief groove 30, so that the cavity 10 is not required to be removed. Extending outwards to form the release groove 30 reduces the required release volume and improves the release efficiency. In addition, the release groove 30 forms an air gap at the edge of the first bottom electrode 21, which can optimize the frequency response of the resonator 100.
  • the relief groove 30 may be arranged between adjacent multiple resonators 100, or may be arranged on the edge of a single resonator 100.
  • the quantitative relationship between the relief groove 30 and the cavity 10 may be that one relief groove 30 corresponds to one cavity 10.
  • One relief groove 30 corresponds to multiple cavities 10, multiple relief grooves 30 correspond to one cavity 10, or multiple relief grooves 30 correspond to multiple cavities 10, respectively.
  • the number of the first bottom electrodes 21 is at least two, the cavities 10 correspond to the first bottom electrodes 21 one-to-one, and the piezoelectric layer 4 is surrounded by at least two of the first bottom electrodes 21. Together, a relief groove 30 is formed, and one relief groove 30 is in communication with at least two of the cavities 10.
  • the release groove 30 is formed between at least two first bottom electrodes 21. Since each first bottom electrode 21 corresponds to one resonator 100, the two resonators 100 share one release groove 30, which improves the release of the cavity 10. effectiveness.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

谐振器的制备方法和谐振器,谐振器(100)的制备方法(S10)包括:空腔(10)形成步骤(S11),提供基层材料(1),自所述基层材料(1)的顶面开设空腔(10),并在空腔(10)内沉积第一牺牲层(11);释放槽(30)形成步骤(S12),在基层材料(1)的顶面沉积形成与空腔(10)对应的第一底电极(21),同时形成位于第一底电极(21)上的释放槽(30),释放槽(30)的投影至少部分位于空腔(10)上,在释放槽(30)内沉积第二牺牲层(3);释放孔(40)形成步骤(S13),在基层材料(1)和第一底电极(21)上成型压电层(4),在压电层(4)上开设贯穿其的释放孔(40),释放孔(40)的投影至少部分位于释放槽(30)上;通过释放孔(40)蚀刻释放第一牺牲层(11)和第二牺牲层(3),制得谐振器(100)。在制造谐振器(100)时,不用在空腔(10)的边缘向外延伸释放槽(30),减小了空腔(10)需要释放的体积,从而有效提升了牺牲层的释放效率。

Description

谐振器的制备方法和谐振器 技术领域
本发明涉及谐振器领域。
背景技术
随着智能设备的日益增多,以及物联网和5G技术的不断普及,对高性能滤波器和多功器的需求越来越大。声学谐振器作为滤波器和多功器的重要组成部分,一直是近年来研究的重点对象。目前主流的声学谐振技术包括表面声波技术SAW(Surface Acoustic Wave)和体声波技术BAW(Bulk Acoustic Wave)。采用SAW技术的谐振器由于制造工艺简单,成本低,占据着中低频(2GHz以下)的主流市场。SAW谐振器的缺点是品质因子值低,材料的温漂差且与半导体工艺兼容性不佳。这种谐振器组成的滤波器矩形系数差,插入损耗高,中心频率随温度漂移大。更致命的是随着频率的升高,SAW谐振器插指电极之间的间距减小,对工艺提出更高要求的同时器件的可靠性变差,这些缺点正在阻碍SAW谐振器应用于更高的频段。BAW谐振器的出现改善了许多SAW谐振器的缺点,并且成熟的半导体工艺对其制造的兼容性良好,但是由于BAW谐振器本身的工艺复杂,制造难度高,导致成本居高不下,使其在中高频段很难完全取代SAW谐振器, 在低频甚至毫无竞争力。除了在通信领域的发展,由于其优异的性能,BAW谐振器也广泛应用于压电麦克风,压力传感器或其他传感器领域。
BAW谐振器区别于SAW谐振器,是利用纵波在压电薄膜中产生谐振,纵波的传播方向即为压电材料的厚度方向。通过调节压电材料以及电极材料的厚度,可以方便的调节谐振器的谐振频率。为了产生谐振,除了压电材料和对立布置于其上下用来产生电激励的电极层外,通常还有使波能在界面产生反射的声学反射镜。空气或者布拉格(Bragg)反射镜是最常用的反射镜结构。布拉格反射镜采用多组低声阻抗材料和高声阻抗材料交替的叠层结构实现对波的反射。这种反射镜虽然反射率高,但是仍然无法避免能量沿着反射镜泄漏。相比于布拉格反射镜,空气对波的反射效果更好,且阻断了能量泄漏的途径,所以往往能制造出质量因子更高的谐振器。
为了在谐振结构中引入空气作为反射镜,现有的技术是在沉积电极层和压电层之前先在衬底中或者衬底上制作出空腔结构,以在衬底中形成空腔为例,在空腔中填充牺牲材料使表面平整,接着在空腔和衬底上方沉积电极层和压电层,最后用能腐蚀牺牲材料的腐蚀液或者气氛通过预先留出的释放通道与牺牲材料接触,释放出空腔,形成空气反射镜结构。现有技术中,需要在空腔边缘向外延伸出释放通道,以便让释放孔通过释放通道连通空腔。这样,在空腔中填充牺牲材料时,释放通道也被牺牲材料填满,后续通过释放孔对空腔中的牺牲材料进行化学腐蚀和释放时,也需要将释放通道中的材料腐蚀释放掉。因为和空腔一同形成的释放通道与空腔具有相同的深度,其典型值为,例如2微米,如此,增加了需要的释放的体积,降低释放效率,延长释放工艺的时间,长时间的释放对谐振器结构也会产生一定破坏。
技术问题
本发明的目的之一在于提供一种谐振器的制备方法,其可以有效提升空腔内牺牲层的释放效率。
技术解决方案
本发明的目的之一采用如下技术方案实现:
提供一种谐振器的制备方法,包括:
空腔形成步骤,提供基层材料,自所述基层材料的顶面开设空腔,并在所述空腔内沉积第一牺牲层;
释放槽形成步骤,在所述基层材料的顶面蚀刻形成与所述空腔对应的第一底电极,同时形成位于所述第一底电极上的释放槽,所述释放槽的投影至少部分位于所述空腔上,在所述释放槽内沉积第二牺牲层;
释放孔形成步骤,在所述基层材料和所述第一底电极上成型压电层,在所述压电层上开设贯穿其的释放孔,所述释放孔的投影至少部分位于所述释放槽上;
释放通道蚀刻步骤,通过所述释放孔蚀刻释放所述第一牺牲层使得所述释放孔与所述释放槽形成所述释放通道,通过所述释放通道蚀刻所述第二牺牲层,制得所述谐振器。
进一步地,所述基层材料包括位于底部的衬底和位于所述衬底顶部的支撑层,所述第一底电极位于所述支撑层的顶面,所述空腔形成于所述支撑层上。
进一步地,所述基层材料包括位于底部的衬底和位于所述衬底顶部的第二底电极,所述第一底电极形成于所述第二底电极的顶面,所述空腔形成于所述第二底电极上。
进一步地,所述基层材料包括位于底部的衬底和位于所述衬底顶部的第二底电极,所述第一底电极形成于所述第二底电极的顶面,所述空腔形成于所述衬底和第二底电极上。
进一步地,所述第一底电极的数量为至少两个,所述空腔与所述第一底电极一一对应,所述释放槽形成步骤具体为:
在所述基层材料的顶面蚀刻形成至少两个所述第一底电极,以形成位于相邻所述第一底电极之间的至少一个释放槽,每个所述释放槽的投影至少部分位于两个空腔上,在所述释放槽内沉积第二牺牲层。
进一步地,在所述释放槽形成步骤之前,对所述第一牺牲层和所述基层材料进行平坦化处理。
进一步地,所述第一底电极的形成步骤具体为:
在所述基层材料的顶面上沉积底电极材料,设置光刻胶覆盖部分底电极材料,通过蚀刻除去光刻胶之外的牺牲层,去除光刻胶,光刻胶覆盖的区域即形成所述第一底电极。
进一步地,所述释放孔的形成步骤具体为:
在所述压电层上方覆盖光刻胶,蚀刻所述压电层,去除光刻胶,光刻胶没有覆盖的区域的形成所述释放孔。
本发明还提供一种谐振器,包括:
基层材料,自所述基层材料的顶面向内开设有空腔;
第一底电极,形成于所述基层材料的顶面;
压电层,形成于所述基层材料和所述第一底电极上,所述压电层与所述第一底电极围合形成释放槽,所述释放槽与所述空腔连通,所述压电层上开设贯穿其的释放孔,所述释放孔与所述释放槽连通。
进一步地,所述第一底电极的数量为至少两个,所述空腔与所述第一底电极一一对应,所述压电层与至少两个所述第一底电极围合形成一个释放槽,一个所述释放槽与至少两个所述空腔均连通。
有益效果
本发明的有益效果在于:在基层材料上方释放孔下方设置释放槽,释放槽与释放孔构成释放通道,从而不用在空腔的边缘向外延伸释放槽,减小了需要的释放体积,从而有效提升了释放效率。
附图说明
图1为本发明实施例提供的谐振器的制备方法的方法流程图;
图2为本发明实施例提供的一种谐振器结构的俯视图;
图3图2中的谐振器在一实施例中沿A-A线的剖面图;
图4图2中的谐振器在另一实施例中沿A-A线的剖面图;
图5图2中的谐振器在另一实施例中沿A-A线的剖面图;
图6图2中的谐振器在另一实施例中沿A-A线的剖面图;
图7为本发明又一实施例提供的谐振器的结构示意图;
图8为图7中谐振器的俯视图;
图9和图10为本发明提供的谐振器组件沿B-B线的剖面图在谐振器的制备方法中各步骤的示意;
图11和图12为本发明提供的谐振器组件沿C-C线的剖面图在谐振器的制备方法中各步骤的示意。
图中:
100、谐振器;1、基层材料;10、空腔;11、第一牺牲层;21、第一底电极;3、第二牺牲层;4、压电层;40、释放孔;30、释放槽;5、顶电极;6、钝化层;12、衬底;13、支撑层;22、第二底电极。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参照图1-图12,本发明提供一种谐振器的制备方法S10,包括:
空腔10形成步骤S11,提供基层材料1,自所述基层材料1的顶面开设空腔10,并在所述空腔10内沉积第一牺牲层11;
释放槽30形成步骤S12,在所述基层材料1的顶面沉积形成与所述空腔10对应的第一底电极21,同时形成位于所述第一底电极21上的释放槽30,所述释放槽30的投影至少部分位于所述空腔10上,在所述释放槽30内沉积第二牺牲层3;
释放孔40形成步骤S13,在所述基层材料1和所述第一底电极21上成型压电层4,在所述压电层4上开设贯穿其的释放孔40,所述释放孔40的投影至少部分位于所述释放槽30上;
释放通道蚀刻步骤S14,通过所述释放孔40蚀刻释放所述第一牺牲层11使得释放孔40与释放槽30形成释放通道,通过释放通道蚀刻第二牺牲层3,制得所述谐振器100。
由于释放槽30设于空腔10上方、释放孔40下方,释放槽30在基层材料1上的投影至少有一部分要与空腔10的区域重合,可以通过该释放槽30释放空腔10,从而无需将空腔10向外延伸去形成释放槽30,减小了需要的释放体积,提高了释放效率,除此之外,释放槽30在第一底电极21边缘形成空气隙,可以优化谐振器100的频率响应。
空腔10可以是任何形状,包括圆形,椭圆形,正多边形或者变迹多边形等;释放槽30的形状和高度可根据谐振器100的尺寸和布局进行调整。
第一牺牲层11的材料和第二牺牲层3的材料可以相同,也可以不同。
优选所述基层材料1包括位于底部的衬底11和位于所述衬底11顶部的支撑层12,所述第一底电极21位于所述支撑层12的顶面,所述空腔10形成于所述支撑层12上,具体请参照图4。
优选所述基层材料1包括位于底部的衬底11和位于所述衬底11顶部的第二底电极22,所述第一底电极21形成于所述第二底电极22的顶面,所述空腔10形成于所述第二底电极22上,具体请参照图5。
优选所述基层材料1包括位于底部的衬底11和位于所述衬底11顶部的第二底电极22,所述第一底电极21形成于所述第二底电极22的顶面,所述空腔10形成于所述衬底11和第二底电极22上,具体请参照图6,优选第一底电极21和第二底电极22一体成型。
释放槽30可以设置在单个谐振器100边缘(具体参照图2-图6),也可以设置在相邻的多个谐振器100之间(具体参照图7-图12),请参照图7-12,优选所述第一底电极21的数量为至少两个,所述空腔10与所述第一底电极21一一对应,所述释放槽30形成步骤具体为:
在所述基层材料1的顶面蚀刻至少两个第一底电极21,以形成位于相邻所述第一底电极21之间的至少一个释放槽30,每个所述释放槽30的投影至少部分位于两个空腔10上,在所述释放槽30内沉积第二牺牲层3。
释放槽30和空腔10之间的数量关系可以是一个释放槽30对应一个空腔10,一个释放槽30对应多个空腔10,多个释放槽30对应一个空腔10亦或是多个释放槽30分别对应多个空腔10。
释放槽30形成于至少两个第一底电极21之间,由于每个第一底电极21对应一个谐振器100,所以即两个谐振器100共用一个释放槽30,提高了空腔10的释放效率。
优选在所述释放槽30形成步骤之前,对所述第一牺牲层11和所述基层材料1进行平坦化处理。优选通过化学机械抛光方法对第一牺牲层11和基层材料1进行平坦化处理。进行平坦化处理后,第一牺牲层11和基层材料1的顶面平坦,便于后期加工第一底电极21。
优选所述第一底电极21的形成步骤具体为:
在所述基层材料1的顶面上沉积底电极材料,设置光刻胶覆盖部分底电极材料,通过蚀刻除去光刻胶之外的牺牲层,去除光刻胶,光刻胶覆盖的区域即形成所述第一底电极21。
优选第一底电极21的原料为常规金属如钨、钛、金、铝、钼等。
优选压电层4的原料为氮化铝、氧化锌、PZT、铌酸锂等,亦或是这些材料通过掺杂形成的材料。
优选所述释放孔40的形成步骤具体为:
在所述压电层4上方覆盖光刻胶,蚀刻所述压电层4,去除光刻胶,光刻胶没有覆盖的区域的形成所述释放孔40。
优选释放槽30形成步骤之后、释放孔40形成步骤之前,谐振器的制备方法还包括:
在所述压电层4的顶面加工图案化的顶电极5;
在顶电极5的顶面加工钝化层6。
优选通过先光刻再蚀刻的方法加工顶电极5和钝化层6。
本发明还提供一种谐振器100,包括:
基层材料1,自所述基层材料1的顶面向内开设空腔10;
第一底电极21,形成于所述基层材料1的顶面;
压电层4,形成于所述基层材料1和所述第一底电极21上,所述压电层4与所述第一底电极21围合形成释放槽30,所述释放槽30与所述空腔10连通,所述压电层4上开设贯穿其的释放孔40,所述释放孔40与所述释放槽30连通。
由于释放槽30设于空腔10上方且释放槽30在基层材料1上的投影至少有一部分要与空腔10的区域重合,可以通过该释放槽30释放空腔10,从而无需将空腔10向外延伸去形成释放槽30,减小了需要的释放体积,提高了释放效率,除此之外,释放槽30在第一底电极21边缘形成空气隙,可以优化谐振器100的频率响应。
释放槽30可以设置在相邻的多个谐振器100之间,也可以设置在单个谐振器100边缘,释放槽30和空腔10之间的数量关系可以是一个释放槽30对应一个空腔10,一个释放槽30对应多个空腔10,多个释放槽30对应一个空腔10亦或是多个释放槽30分别对应多个空腔10。
优选所述第一底电极21的数量为至少两个,所述空腔10与所述第一底电极21一一对应,所述压电层4与至少两个所述第一底电极21围合形成一个释放槽30,一个所述释放槽30与至少两个所述空腔10均连通。
释放槽30形成于至少两个第一底电极21之间,由于每个第一底电极21对应一个谐振器100,所以即两个谐振器100共用一个释放槽30,提高了空腔10的释放效率。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种谐振器的制备方法,其特征在于,包括:
    空腔形成步骤,提供基层材料,自所述基层材料的顶面开设空腔,并在所述空腔内沉积第一牺牲层;
    释放槽形成步骤,在所述基层材料的顶面沉积形成与所述空腔对应的第一底电极,同时形成位于所述第一底电极上的释放槽,所述释放槽的投影至少部分位于所述空腔上,在所述释放槽内沉积第二牺牲层;
    释放孔形成步骤,在所述基层材料和所述第一底电极上成型压电层,在所述压电层上开设贯穿其的释放孔,所述释放孔的投影至少部分位于所述释放槽上;
    释放通道蚀刻步骤,通过所述释放孔蚀刻释放所述第一牺牲层使得所述释放孔与所述释放槽形成所述释放通道,通过所述释放通道蚀刻所述第二牺牲层,制得所述谐振器。
  2. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述基层材料包括位于底部的衬底和位于所述衬底顶部的支撑层,所述第一底电极位于所述支撑层的顶面,所述空腔形成于所述支撑层上。
  3. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述基层材料包括位于底部的衬底和位于所述衬底顶部的第二底电极,所述第一底电极形成于所述第二底电极的顶面,所述空腔形成于所述第二底电极上。
  4. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述基层材料包括位于底部的衬底和位于所述衬底顶部的第二底电极,所述第一底电极形成于所述第二底电极的顶面,所述空腔形成于所述衬底和第二底电极上。
  5. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述第一底电极的数量为至少两个,所述空腔与所述第一底电极一一对应,所述释放槽形成步骤具体为:
    在所述基层材料的顶面蚀刻形成至少两个所述第一底电极,以形成位于相邻所述第一底电极之间的至少一个释放槽,每个所述释放槽的投影至少部分位于两个空腔上,在所述释放槽内沉积第二牺牲层。
  6. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:在所述释放槽形成步骤之前,对所述第一牺牲层和所述基层材料进行平坦化处理。
  7. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述第一底电极的形成步骤具体为:
    在所述基层材料的顶面上沉积底电极材料,设置光刻胶覆盖部分底电极材料,通过蚀刻除去光刻胶之外的牺牲层,去除光刻胶,光刻胶覆盖的区域即形成所述第一底电极。
  8. 根据权利要求1所述的一种谐振器的制备方法,其特征在于:所述释放孔的形成步骤具体为:
    在所述压电层上方覆盖光刻胶,蚀刻所述压电层,去除光刻胶,光刻胶没有覆盖的区域的形成所述释放孔。
  9. 一种谐振器,其特征在于,包括:
    基层材料,自所述基层材料的顶面向内开设有空腔;
    第一底电极,形成于所述基层材料的顶面;
    压电层,形成于所述基层材料和所述第一底电极上,所述压电层与所述第一底电极围合形成释放槽,所述释放槽与所述空腔连通,所述压电层上开设贯穿其的释放孔,所述释放孔与所述释放槽连通。
  10. 根据权利要求9所述的谐振器,其特征在于,所述第一底电极的数量为至少两个,所述空腔与所述第一底电极一一对应,所述压电层与至少两个所述第一底电极围合形成一个释放槽,一个所述释放槽与至少两个所述空腔均连通。
PCT/CN2019/123412 2019-12-05 2019-12-05 谐振器的制备方法和谐振器 WO2021109090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123412 WO2021109090A1 (zh) 2019-12-05 2019-12-05 谐振器的制备方法和谐振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123412 WO2021109090A1 (zh) 2019-12-05 2019-12-05 谐振器的制备方法和谐振器

Publications (1)

Publication Number Publication Date
WO2021109090A1 true WO2021109090A1 (zh) 2021-06-10

Family

ID=76221063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123412 WO2021109090A1 (zh) 2019-12-05 2019-12-05 谐振器的制备方法和谐振器

Country Status (1)

Country Link
WO (1) WO2021109090A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119643A1 (ja) * 2006-03-31 2007-10-25 Ube Industries, Ltd. 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
US20120205754A1 (en) * 2009-10-30 2012-08-16 Murata Manufacturing Co., Ltd. Piezoelectric device and method for manufacturing piezoelectric device
CN107196618A (zh) * 2017-02-16 2017-09-22 杭州左蓝微电子技术有限公司 薄膜体声波谐振器及其制备方法
CN109560789A (zh) * 2017-09-25 2019-04-02 天津威盛电子有限公司 气隙式薄膜体声波谐振器及其制造方法
CN110011632A (zh) * 2019-03-13 2019-07-12 电子科技大学 单晶薄膜体声波谐振器的制备方法及体声波谐振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119643A1 (ja) * 2006-03-31 2007-10-25 Ube Industries, Ltd. 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
US20120205754A1 (en) * 2009-10-30 2012-08-16 Murata Manufacturing Co., Ltd. Piezoelectric device and method for manufacturing piezoelectric device
CN107196618A (zh) * 2017-02-16 2017-09-22 杭州左蓝微电子技术有限公司 薄膜体声波谐振器及其制备方法
CN109560789A (zh) * 2017-09-25 2019-04-02 天津威盛电子有限公司 气隙式薄膜体声波谐振器及其制造方法
CN110011632A (zh) * 2019-03-13 2019-07-12 电子科技大学 单晶薄膜体声波谐振器的制备方法及体声波谐振器

Similar Documents

Publication Publication Date Title
CN110995196B (zh) 谐振器的制备方法和谐振器
CN109660227B (zh) 薄膜体声波滤波器及其封装方法
JP4688070B2 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
WO2020125308A1 (zh) 一种体声波谐振器及其制备方法
CN110166018A (zh) 体声波谐振器
CN110611493A (zh) 声波谐振器、包括其的声波谐振器滤波器及其制造方法
CN113258899B (zh) 一种薄膜体声波谐振器及其制造方法
CN112803910A (zh) 一种单晶薄膜体声波谐振器的制备方法
CN101692602B (zh) 单层电极薄膜体声波谐振器结构及其制造方法
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
CN1716768A (zh) 压电薄膜谐振器和滤波器及其制造方法
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
JP2022507325A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
JP2022507318A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
JP2024533898A (ja) バルク音響共振器及びその製造方法、フィルタ、電子機器
CN218450068U (zh) 一种体声波谐振器及通信器件
WO2022000809A1 (zh) 谐振器及其制备方法
JP2024533900A (ja) バルク音響共振器、共振器ユニット、フィルタ及び電子機器
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN113541636A (zh) 一种声波谐振器及其制备方法
JP2005303573A (ja) 薄膜圧電共振器及びその製造方法
CN117544126A (zh) 一种利用键合倒装工艺优化薄膜体声波谐振器性能的方法
WO2021109090A1 (zh) 谐振器的制备方法和谐振器
CN112260659B (zh) 一种高q值薄膜体声波谐振器及其制备方法
CN113489470B (zh) 一种薄膜体声波谐振器的封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954930

Country of ref document: EP

Kind code of ref document: A1