[go: up one dir, main page]

WO2021100883A1 - Tguser-adaptive wearable suit - Google Patents

Tguser-adaptive wearable suit Download PDF

Info

Publication number
WO2021100883A1
WO2021100883A1 PCT/KR2019/015724 KR2019015724W WO2021100883A1 WO 2021100883 A1 WO2021100883 A1 WO 2021100883A1 KR 2019015724 W KR2019015724 W KR 2019015724W WO 2021100883 A1 WO2021100883 A1 WO 2021100883A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
fall
gravity
center
determination unit
Prior art date
Application number
PCT/KR2019/015724
Other languages
French (fr)
Korean (ko)
Inventor
서갑호
한종부
이종일
양견모
신훈섭
이석재
손동섭
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Priority to PCT/KR2019/015724 priority Critical patent/WO2021100883A1/en
Publication of WO2021100883A1 publication Critical patent/WO2021100883A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/015Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with shock-absorbing means
    • A41D13/018Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with shock-absorbing means inflatable automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a wearable suit, and more particularly, to a user-adaptive wearable suit that personalizes the wearable suit by adapting to the movement of the user worn by the wearable suit supporting the movement of the user.
  • walking assistance devices that enable the elderly or patients with joint discomfort to walk smoothly is increasing.
  • walking aids are being developed for strengthening the muscle strength of the human body for purposes such as military use.
  • the walking assist device includes a body frame mounted on the user's torso, a pelvic frame coupled to the lower side of the body frame to surround the user's pelvis, a femoral frame mounted on the user's thigh and calf, and the foot, and a calf frame.
  • a foot frame Consisting of a foot frame.
  • the pelvic frame and the femur frame are rotatably connected by the hip joint
  • the frame and the calf frame are rotatably connected by the knee joint
  • the calf frame and the foot frame are rotatably connected by the ankle joint.
  • the present invention is to solve the above problems, and it is an object of the present invention to provide a wearable suit capable of assisting according to the user's behavior by analyzing the movement of a user wearing a wearable suit.
  • a measurement unit including a plurality of sensors attached to a user's body and measuring a signal for the user's movement to collect a measurement value, and a movement of the user
  • a determination unit configured to determine whether the user is in a walking state or a falling state by matching the measured value to the behavior pattern in real time, and the determination unit determines whether the user is in a walking state or a falling state.
  • Personalized information may be generated by storing and adding the behavior pattern to the behavior pattern.
  • the determination unit may store information on which the center of gravity of the user is moved in the personalized information.
  • the determination unit may divide the fall state into a first fall at which the fall starts and a second fall in contact with the impact target.
  • the determination unit may determine a position where the center of gravity of the user is moved.
  • the determination unit may determine a direction in which the center of gravity of the user is moved.
  • the determination unit may store information on the walking period of the user in the personalized information.
  • the determination unit may store the speed at which the user's right leg and left leg advance in the personalized information.
  • the measurement unit may be provided with a plurality of sensors to be interlocked with each other to form a virtual center of gravity region for the movement of the center of gravity of the user.
  • it may include a driving unit to assist the movement of the user through the personalization information of the determination unit.
  • the user adaptive wearable suit of the present invention there is an effect that it is possible to assist walking in response to a movement of a user who uses the wearable or to quickly react to a point in time when a fall starts.
  • FIG. 1 is a conceptual diagram showing the overall driving of a user adaptive wearable suit according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing an algorithm for personalizing a user adaptive wearable suit according to an embodiment of the present invention
  • FIG. 3 Is a diagram showing a state in which a soft sensor is attached in a user adaptive wearable suit according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating a state in which an IMU sensor is attached in a user adaptive wearable suit according to an embodiment of the present invention.
  • 5 is a view showing a region of a center of gravity for walking and falls in a user adaptive wearable suit according to an embodiment of the present invention
  • FIG. 6 is a user adaptive wearable according to an embodiment of the present invention. It is a drawing showing the area of the center of gravity changed according to personalization in the suit,
  • FIG. 7 is a diagram illustrating a process of determining and learning a measurement value in a user adaptive wearable suit according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing that personalized information is generated by adding data to a behavior pattern in a user adaptive wearable suit according to an embodiment of the present invention
  • FIG. 9 is a user adaptive wearable according to a second embodiment of the present invention. This is a diagram showing the contents added to personalization information in the suit.
  • FIG. 1 is a conceptual diagram showing the overall operation of a user (H) adaptive wearable suit according to an embodiment of the present invention
  • FIG. 2 is a personalization algorithm for a user (H) adaptive wearable suit according to an embodiment of the present invention
  • 3 is a view showing a state in which the soft sensor 120 is attached in the user (H) adaptive wearable suit according to an embodiment of the present invention
  • FIG. 4 is a user according to an embodiment of the present invention.
  • (H) is a diagram showing a state in which the IMU sensor 140 is attached in the adaptive wearable suit
  • FIG. 5 is a diagram showing data to the behavior pattern 220 in the user (H) adaptive wearable suit according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing the area of the center of gravity for walking and falls in the user (H) adaptive wearable suit according to an embodiment of the present invention.
  • 7 is a diagram showing a region of a center of gravity changed according to personalization in the user (H) adaptive wearable suit according to an embodiment of the present invention.
  • the user (H) adaptive wearable suit may be provided in a form that the user (H) can wear, and may be in a form capable of measuring necessary data on the movement of the user (H).
  • the wearable suit is provided with a number of sensors to measure the center of gravity of the user H and the movement of muscles or joints.
  • the wearable suit may have a previously learned behavior pattern 220 programmed.
  • the behavior pattern 220 is created by storing data while measuring the movement of the center of gravity in the movements of various users wearing a wearable suit, and the area where the center of gravity moves while walking, and the center of gravity when a fall starts. This refers to data that stores the measurement values of the center of gravity for the area and the area where the center of gravity is located in the event of an irreversible fall.
  • This behavior pattern 220 is mounted on the wearable suit of the present invention and can match the moving speed and moving position of the center of gravity according to the user's movement, and thus whether the user is in a walking state, a fall start state, or a fall state. It can be a criterion by which you can judge.
  • the user (H) adaptive wearable suit may largely include a measurement unit 100 and a determination unit 200.
  • the measurement unit 100 includes a plurality of sensors attached to the user's body and measures a signal for the user's movement to collect measurement values.
  • the determination unit 200 matches the behavior pattern 220 in which the walking area and the fall area are divided according to the user's center of gravity and the measured value of the measurement unit 100, so that the user can match either the walking state or the falling state. Includes a determination unit 200 to determine whether it is applicable, but the determination unit 200 is the behavior obtained by learning the walking area and the fall area based on the previously stored measurement value or the measurement value continuously collected by the measurement unit 100
  • the pattern 220 is defined as the personalized information 240
  • the behavior pattern 220 defined as the personalized information 240 is matched with the measured value newly collected by the measurement unit 100 to respond to the user's movement and make a judgment
  • the unit 200 determines that the user has a movement in either a walking state or a fall state, and stores the measured value collected by the measurement unit 100 in the determination unit 200 to generate the personalized information 240.
  • the measurement unit 100 includes a plurality of sensors attached to the body of the user H and measures a signal for movement of the user H and collects the measured value.
  • the determination unit 200 includes a behavior pattern 220 capable of determining the movement of the user H, and matches the measured value in real time in the behavior pattern 220 to determine the walking state or a fall of the user H. It is possible to determine which one of the states corresponds to.
  • the determination unit 200 may generate personalized information 240 by storing and adding to the behavior pattern 220 through the measured value.
  • the behavior pattern 220 obtained by learning the gait and fall areas may be simple patterns, but it includes all of the formulas (functions), types, areas, etc. that indicate the boundary of a specific area in which the measured values are grouped together. Is.
  • the meaning of learning may also be defined as a simple collection of measured values, but is not limited thereto, and includes all a series of processes for finding the above-described behavior pattern 220 (formula (function), type, area) from measured values. It can be defined as, and thus, it is natural that the scope of the present invention is not limited.
  • the measurement unit 100 may be provided in a plurality of wearable suits of the present invention to collect data generated while the user H moves and acts.
  • the determination unit 200 may index the measured value in the behavior pattern 220 based on the behavior pattern 220 to determine what movement the user H is currently performing and in what state.
  • information of the user H may be stored in the behavior pattern 220.
  • things stored in the behavior pattern 220 may basically include information of the user H in addition to the measured values measured through a plurality of sensors.
  • the information of the user H refers to a target wearing a wearable suit, and may be a disease, age, habit, etc. that the user H has.
  • the reason for storing the user (H) information in the wearable suit is that the wearable suit of the present invention can assist the user H to walk and respond to a fall. Assistance suitable for the user (H) can be performed.
  • the forward speed of the left foot and the right foot may be different. Therefore, it is possible to store information on the lameness of the right foot in the behavior pattern 220.
  • the wearable suit can be controlled with the user (H) information and measurement values stored in the behavior pattern 220.
  • the wearable suit may include a driving unit 300.
  • the driving unit 300 assists the movement of the user H through the personalized information 240 of the determination unit 200, and is provided to assist muscle strength when the user H walks and to prevent falls when a fall occurs. I can.
  • the driving unit 300 may be provided in the form of a module accommodating an actuator or a fluid to assist joint or muscle strength.
  • the user (H) adaptive wearable suit may be provided to be wearable by the user (H) to support the joint and to assist muscle strength, and a fluid is injected behind the knee so that the knee joint This extension can be assisted, and the impact can be buffered from the impact target in the situation where the user H falls.
  • the user (H) adaptive wearable suit may include an IMU sensor 140 and a soft sensor 120 to measure the movement of the user (H) wearing the wearable suit.
  • the IMU sensor 140 measures the position, speed, and direction in which the center of gravity of the user H is moved, and the soft sensor 120 measures the movement of a muscle or joint.
  • the wearable suit When the user H wears the wearable suit, it operates (S01), and first, the IMU sensor 140 and the soft sensor 120 operate (S02, S03).
  • the IMU sensor 140 measures the movement of the user H and the determination unit 200 indexes it in the behavior pattern 220 to predict whether the user H is walking or falling (S05).
  • a control signal may be transmitted to the driving unit 300 to assist the user H (S06).
  • the measured value of the IMU sensor 140 is received in real time, the state of the user H is predicted through the behavior pattern 220, and the IMU measured value is continuously received and learned in the behavior pattern 220.
  • Personalized information 240 that can be appropriately driven by a user H wearing a wearable suit is generated.
  • the soft sensor 120 grasps the gait pattern of the user H, and at this time, it is measured by the IMU sensor 140.
  • a measurement value determined to be walking in the behavior pattern 220 may also be included (S08).
  • the walking period is calculated based on the walking data received from the soft sensor 120 (S09), and the walking period is transmitted to the driving unit 300 (S10) to learn walking information from the behavior pattern 220. can do.
  • the measured value of the soft sensor 120 for gait is reflected in the behavior pattern 220 in real time to learn, and it is possible to control the driving unit 300 so as to properly assist the user H wearing the suit.
  • FIG. 3 is a location of the soft sensor 120
  • FIG. 4 is a location of the IMU sensor 140.
  • the soft sensor 120 may use a signal generated as the pelvis and thigh muscles are stretched or contracted as a measurement value.
  • the IMU sensor 140 may be provided on both sides of the waist, the thigh, and both sides of the calf.
  • the reason why the IMU sensor 140 is provided as above is to measure the center of gravity of the user H at the same time as each of the IMU sensors 140 is interlocked with each other, and to determine to which position the entire center of gravity is moved.
  • the behavior pattern 220 categorizes the fall situation into two types.
  • the user H includes a first fall that is determined to have started and a second fall that is in contact with the impact target.
  • 5 and 6 are virtual user (H) center of gravity regions formed through the IMU sensor 140.
  • a virtual center of gravity sphere may be formed through the action pattern 220 with respect to the center of gravity of the user (H).
  • walking, a first fall, and a second fall are classified in the behavior pattern 220.
  • a virtual walking area, a virtual first fall area, and a virtual second fall area may be set to fit the user H wearing the wearable suit.
  • the values measured through the IMU sensor 140 and the soft sensor 120 are stored in the behavior pattern 220 in real time.
  • the boundary of the center of gravity of the behavior pattern 220 may be changed.
  • the center of gravity may be a walking area in 1 to 4, and the center of gravity may be a first fall area in 5 and so on.
  • the virtual area may be changed as shown in FIGS. 5 to 6.
  • the determination unit 200 generates personalized information by adding a measurement value measured by a user's movement from the wearable suit W to a behavior pattern.
  • the measurement values (S2-1.S2-2, S2-3, S2-4, S2-5) measured by five IMU sensors create a region of the center of gravity in which the measurement values are distributed over time. do.
  • the measured values of 1 by the user are distributed as measured values corresponding to areas of the gait, the first fall, and the second fall, so that a virtual boundary may be naturally formed by the gait, the first fall, and the second fall.
  • the determination unit 200 may store the measured value in real time to generate an area of only the user 1 for the user's gait, the first fall, and the second fall.
  • the user's behavior is determined based on the values measured from L+1 to M as the gait, first and second falls created from the first to the L times, and then walk again, the first fall and the second fall. Learning is performed by storing the measured values corresponding to.
  • the user (H) personalization by adding measured values for the walking speed and center of gravity through the user's walking, the first fall (fall prevention), and the second fall (fall) in real time.
  • Information 240 may be generated.
  • a situation in which the user H walks according to the weather may be reflected in the personalized information 240.
  • the pace of walking may be, on average, slower than on a clear day.
  • the center of gravity of walking and falling may be changed. This can be received by GPS or the like whether the user H's location is located in a mountain.
  • Personalized information 240 of the user H may be classified according to the situation by reflecting such personal user (H) information in the personalized information 240.
  • the personalization information 240 may provide the personalization information 240 of typeA to the driving unit 300.
  • typeB may be provided to the driving unit 300 from the user (H) personalized information 240.
  • the user (H) wears a wearable suit and reflects the measured value in real time to the previously learned behavior pattern 220, and reflects the information of the user (H) to assist walking and weight set according to the situation. It is possible to grasp the state of the user H as the center.
  • the present invention provides a user-adaptive wearable suit that personalizes the wearable suit by adapting to the user's movement worn by the wearable suit assisting the user's movement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Textile Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to a wearable suit control method and a module-controllable wearable suit using same, the method comprising: indexing movements of a user in previously trained action data in order to classify same by the stages of walking, starting to fall, and falling; and in order that the wearable suit can assist in walking, prevent a fall, or reduce an impact in accordance with each stage, controlling the pressure at which a fluid is injected into a corresponding module.

Description

사용자 적응형 웨어러블 슈트User-adaptive wearable suit
본 발명은 웨어러블 슈트에 관한 것으로서, 보다 상세하게는, 사용자의 움직임을 보조하는 웨어러블 슈트가 착용한 사용자의 움직임에 적응하여 웨어러블 슈트를 개인화하는 사용자 적응형 웨어러블 슈트에 관한 것이다. The present invention relates to a wearable suit, and more particularly, to a user-adaptive wearable suit that personalizes the wearable suit by adapting to the movement of the user worn by the wearable suit supporting the movement of the user.
최근 고령화 사회가 심화됨에 따라서 관절에 문제가 있어서 이에 대한 고통과 불편을 호소하는 사람들이 증가하고 있으며, 관절이 불편한 노인이나 환자들이 보행을 원활하게 할 수 있는 보행 보조 장치에 대한 관심이 높아지고 있다. 또한, 군사용 등의 목적으로 인체의 근력을 강화시키기 위한 보행 보조 장치들이 개발되고 있다.As the aging society intensifies in recent years, the number of people complaining of pain and discomfort due to joint problems is increasing, and interest in walking assistance devices that enable the elderly or patients with joint discomfort to walk smoothly is increasing. In addition, walking aids are being developed for strengthening the muscle strength of the human body for purposes such as military use.
예를 들어, 보행 보조 장치는, 사용자의 몸통에 장착되는 몸체프레임과, 몸체프레임의 하측에 결합되어 사용자의 골반을 감싸는 골반 프레임과, 사용자의 대퇴부 및 종아리, 발부위에 장착되는 대퇴부 프레임, 종아리 프레임, 발 프레임으로 구성된다. 골반프레임과 대퇴부 프레임은 고관절부에 의해 회전 가능하도록 연결되고, 프레임과 종아리 프레임은 무릎 관절부에 의해 회전 가능하도록 연결되며, 종아리 프레임과 발 프레임은 발목관절에 의해 회전 가능하도록 연결된다.For example, the walking assist device includes a body frame mounted on the user's torso, a pelvic frame coupled to the lower side of the body frame to surround the user's pelvis, a femoral frame mounted on the user's thigh and calf, and the foot, and a calf frame. , Consisting of a foot frame. The pelvic frame and the femur frame are rotatably connected by the hip joint, the frame and the calf frame are rotatably connected by the knee joint, and the calf frame and the foot frame are rotatably connected by the ankle joint.
최근에는, 보행 보조 장치의 사용성을 향상시키기 위한 연구가 계속되고 있으며, 외골격 슈트 및 웨어러블 슈트를 다양한 형상으로 사용자의 근력 보조 및 보행을 보조하는 장치들이 개발되고 있다.In recent years, research to improve the usability of the walking assistance device is being continued, and devices for assisting the user's muscle strength and walking in various shapes of an exoskeleton suit and a wearable suit have been developed.
하지만 이러한 슈트들은 사용자 개개인을 고려한 것이 아니라, 기본적으로 세팅 되어 있는 대로 움직이는 것이 일반적이며, 따라서 보조 장치를 착용한 사람들에게 어색할 수 있다는 문제점이 있다.However, these suits do not take individual users into account, but generally move as they are set by default, and thus, there is a problem that they may be awkward for people wearing assistive devices.
이러한 경우 오히려 사용자에게 관절이나 근육에 해롭게 될 수 있으며 사고가 발생될 수 있다는 문제점이 있다.In this case, there is a problem that it may be harmful to the user's joints or muscles, and an accident may occur.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 웨어러블 슈트를 착용한 사용자의 움직임을 분석하여 사용자 행동에 따라 보조를 할 수 있는 웨어러블 슈트를 제공하는 것이 과제이다.The present invention is to solve the above problems, and it is an object of the present invention to provide a wearable suit capable of assisting according to the user's behavior by analyzing the movement of a user wearing a wearable suit.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 과제를 해결하기 위하여, 본 발명의 일 형태에 따르면, 사용자 신체에 부착되는 다수의 센서를 포함하고 상기 사용자의 움직임에 대한 신호를 계측하여 계측 값을 수집하는 측정부 및 상기 사용자의 움직임을 판단할 수 있는 행동 패턴을 포함하고, 상기 계측 값을 상기 행동 패턴에 실시간으로 매칭하여 상기 사용자가 보행상태 또는 낙상상태 중 어느 하나에 해당되는지 판단하는 판단부를 포함하고, 상기 판단부는 상기 계측 값을 상기 행동 패턴에 저장 및 상기 행동 패턴을 추가하여 개인화 정보를 생성할 수 있다.In order to solve the above problem, according to an aspect of the present invention, a measurement unit including a plurality of sensors attached to a user's body and measuring a signal for the user's movement to collect a measurement value, and a movement of the user And a determination unit configured to determine whether the user is in a walking state or a falling state by matching the measured value to the behavior pattern in real time, and the determination unit determines whether the user is in a walking state or a falling state. Personalized information may be generated by storing and adding the behavior pattern to the behavior pattern.
또한 상기 판단부는 상기 사용자가 상기 낙상상태일 경우, 상기 사용자의 무게중심이 이동되는 정보를 상기 개인화 정보에 저장할 수 있다.In addition, when the user is in the fall state, the determination unit may store information on which the center of gravity of the user is moved in the personalized information.
또한 상기 판단부는 상기 낙상상태를 낙상이 시작되는 제1낙상 및 충격대상과 접촉되는 제2낙상으로 구분할 수 있다.In addition, the determination unit may divide the fall state into a first fall at which the fall starts and a second fall in contact with the impact target.
또한 상기 판단부는 상기 사용자의 무게 중심이 이동되는 위치를 판단할 수 있다.In addition, the determination unit may determine a position where the center of gravity of the user is moved.
또한 상기 판단부는 상기 사용자의 무게 중심이 이동되는 방향을 판단할 수 있다.In addition, the determination unit may determine a direction in which the center of gravity of the user is moved.
또한 상기 판단부는 상기 사용자가 상기 보행상태일 경우 상기 사용자의 보행주기에 대한 정보를 상기 개인화 정보에 저장할 수 있다.In addition, when the user is in the walking state, the determination unit may store information on the walking period of the user in the personalized information.
또한 상기 판단부는 상기 사용자의 오른쪽 다리 및 왼쪽 다리가 전진하는 속도를 상기 개인화 정보에 저장할 수 있다.In addition, the determination unit may store the speed at which the user's right leg and left leg advance in the personalized information.
또한 상기 측정부는 다수의 센서가 서로 연동 가능하게 구비되어 상기 사용자의 무게중심 이동에 대한 가상의 무게중심영역을 형성할 수 있다.In addition, the measurement unit may be provided with a plurality of sensors to be interlocked with each other to form a virtual center of gravity region for the movement of the center of gravity of the user.
또한 상기 판단부의 개인화 정보를 통해 사용자의 움직임을 보조하는 구동부를 포함할 수 있다.In addition, it may include a driving unit to assist the movement of the user through the personalization information of the determination unit.
본 발명의 사용자 적응형 웨어러블 슈트에 따르면, 웨어러블 사용하는 사용자의 움직임에 대응하여 보행을 보조하거나, 낙상이 시작되는 시점에 빠르게 반응할 수 있다는 효과가 있다.According to the user adaptive wearable suit of the present invention, there is an effect that it is possible to assist walking in response to a movement of a user who uses the wearable or to quickly react to a point in time when a fall starts.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
아래에서 설명하는 본 출원의 바람직한 실시예의 상세한 설명뿐만 아니라 위에서 설명한 요약은 첨부된 도면과 관련해서 읽을 때에 더 잘 이해될 수 있을 것이다. 본 발명을 예시하기 위한 목적으로 도면에는 바람직한 실시예들이 도시되어 있다. 그러나, 본 출원은 도시된 정확한 배치와 수단에 한정되는 것이 아님을 이해해야 한다.The summary described above, as well as the detailed description of the preferred embodiments of the present application described below, may be better understood when read in connection with the accompanying drawings. For the purpose of illustrating the invention, preferred embodiments are shown in the drawings. However, it should be understood that this application is not limited to the precise arrangements and means shown.
도 1은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트의 전반적인 구동을 나타낸 개념도이고, 도 2는 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트를 개인화 알고리즘을 나타낸 순서도 이고, 도 3은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 소프트센서가 부착된 모습을 나타낸 도면이고, 도 4는 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 IMU센서가부착된 모습을 나타낸 도면이고, 도 5은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 보행과 낙상에 대한 무게 중심의 영역을 나타낸 도면이고, 도 6은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 개인화에 따라 변경된 무게 중심의 영역을 나타낸 도면이고,FIG. 1 is a conceptual diagram showing the overall driving of a user adaptive wearable suit according to an embodiment of the present invention, and FIG. 2 is a flow chart showing an algorithm for personalizing a user adaptive wearable suit according to an embodiment of the present invention, and FIG. 3 Is a diagram showing a state in which a soft sensor is attached in a user adaptive wearable suit according to an embodiment of the present invention, and FIG. 4 is a diagram illustrating a state in which an IMU sensor is attached in a user adaptive wearable suit according to an embodiment of the present invention. 5 is a view showing a region of a center of gravity for walking and falls in a user adaptive wearable suit according to an embodiment of the present invention, and FIG. 6 is a user adaptive wearable according to an embodiment of the present invention. It is a drawing showing the area of the center of gravity changed according to personalization in the suit,
도 7은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 계측 값을 판단하고 학습하는 과정을 나타낸 도면이고,7 is a diagram illustrating a process of determining and learning a measurement value in a user adaptive wearable suit according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 사용자 적응형 웨어러블 슈트에서 행동 패턴에 데이터를 추가하여 개인화 정보가 생성되는 것을 나타낸 도면이고, 도 9는 본 발명의 제2 실시예에 따른 사용자 적응형 웨어러블 슈트에서 개인화 정보에 추가되는 내용을 나타낸 도면이다.FIG. 8 is a diagram showing that personalized information is generated by adding data to a behavior pattern in a user adaptive wearable suit according to an embodiment of the present invention, and FIG. 9 is a user adaptive wearable according to a second embodiment of the present invention. This is a diagram showing the contents added to personalization information in the suit.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.Hereinafter, preferred embodiments of the present invention in which the object of the present invention can be realized in detail will be described with reference to the accompanying drawings. In the description of the present embodiment, the same name and the same reference numeral are used for the same configuration, and additional description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트의 전반적인 구동을 나타낸 개념도이고, 도 2는 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트를 개인화 알고리즘을 나타낸 순서도 이고, 도 3은 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트에서 소프트 센서(120)가 부착된 모습을 나타낸 도면이고, 도 4는 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트에서 IMU센서(140)가 부착된 모습을 나타낸 도면이고, 도 5는 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트에서 행동 패턴(220)에 데이터를 추가하여 개인화 정보(240)가 생성되는 것을 나타낸 도면이고, 도 6은 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트에서 보행과 낙상에 대한 무게 중심의 영역을 나타낸 도면이고, 도 7은 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트에서 개인화에 따라 변경된 무게 중심의 영역을 나타낸 도면이다.1 is a conceptual diagram showing the overall operation of a user (H) adaptive wearable suit according to an embodiment of the present invention, and FIG. 2 is a personalization algorithm for a user (H) adaptive wearable suit according to an embodiment of the present invention. 3 is a view showing a state in which the soft sensor 120 is attached in the user (H) adaptive wearable suit according to an embodiment of the present invention, and FIG. 4 is a user according to an embodiment of the present invention. (H) is a diagram showing a state in which the IMU sensor 140 is attached in the adaptive wearable suit, and FIG. 5 is a diagram showing data to the behavior pattern 220 in the user (H) adaptive wearable suit according to an embodiment of the present invention. In addition, it is a diagram showing that the personalized information 240 is generated, and FIG. 6 is a diagram showing the area of the center of gravity for walking and falls in the user (H) adaptive wearable suit according to an embodiment of the present invention. 7 is a diagram showing a region of a center of gravity changed according to personalization in the user (H) adaptive wearable suit according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트는 사용자(H)가 입을 수 있는 형태로 구비되어 사용자(H)의 움직임에 대한 필요한 데이터를 계측할 수 있는 형태일 수 있다.The user (H) adaptive wearable suit according to an embodiment of the present invention may be provided in a form that the user (H) can wear, and may be in a form capable of measuring necessary data on the movement of the user (H).
따라서 웨어러블 슈트에는 다수의 센서가 구비되어 사용자(H)의 무게중심과 근육 또는 관절의 움직임을 측정할 수 있다.Therefore, the wearable suit is provided with a number of sensors to measure the center of gravity of the user H and the movement of muscles or joints.
또한 웨어러블 슈트는 기 학습된 행동 패턴(220)이 프로그래밍 되어 있을 수 있다. In addition, the wearable suit may have a previously learned behavior pattern 220 programmed.
행동 패턴(220)는 웨어러블 슈트를 착용한 다양한 사용자의 움직임에서 무게중심의 이동을 계측하면서 데이터를 저장하여 만들어진 것으로, 보행을 하면서 무게중심이 이동되는 영역과, 낙상이 시작되는 경우에 무게중심의 영역과, 돌이킬 수 없는 낙상의 상황에서 무게중심의 위치한 영역에 대한 무게중심 계측 값들이 저장된 데이터를 말한다.The behavior pattern 220 is created by storing data while measuring the movement of the center of gravity in the movements of various users wearing a wearable suit, and the area where the center of gravity moves while walking, and the center of gravity when a fall starts. This refers to data that stores the measurement values of the center of gravity for the area and the area where the center of gravity is located in the event of an irreversible fall.
이러한 행동 패턴(220)은 본 발명의 웨어러블 슈트에 탑재되어 사용자의 움직임에 따른 무게중심의 이동속도 및 이동위치 등을 매칭할 수 있으며, 따라서 사용자가 보행상태인지, 낙상시작상태인지, 낙상상태인지를 판단할 수 있는 기준이 될 수 있다.This behavior pattern 220 is mounted on the wearable suit of the present invention and can match the moving speed and moving position of the center of gravity according to the user's movement, and thus whether the user is in a walking state, a fall start state, or a fall state. It can be a criterion by which you can judge.
한편, 본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트는 크게 측정부(100) 및 판단부(200)를 포함할 수 있다.Meanwhile, the user (H) adaptive wearable suit according to an embodiment of the present invention may largely include a measurement unit 100 and a determination unit 200.
측정부(100)는, 사용자 신체에 부착되는 다수의 센서를 포함하고 상기 사용자의 움직임에 대한 신호를 계측하여 계측 값을 수집하는 한다.The measurement unit 100 includes a plurality of sensors attached to the user's body and measures a signal for the user's movement to collect measurement values.
그리고 판단부(200)는 사용자의 무게중심에 따라 보행 영역 및 낙상 영역이 구분되는 행동 패턴(220)과 측정부(100)의 계측 값을 매칭함으로써, 사용자가 보행 상태 또는 낙상 상태 중 어느 하나에 해당되는지를 판단하는 판단부(200) 포함하되, 판단부(200)는 기 저장된 계측 값 또는 측정부(100)에서 지속적으로 수집한 계측 값을 기준으로 보행 영역 및 낙상 영역을 학습함으로써 얻은 상기 행동 패턴(220)을 개인화 정보(240)로 정의하고, 개인화 정보(240)로 정의된 행동 패턴(220)을 측정부(100)에서 새롭게 수집한 계측 값과 매칭하여 사용자의 움직임에 대응하고, 판단부(200)는 사용자가 보행상태, 낙상상태 중 어느 하나의 움직임을 가지는 것을 판단하고 측정부(100)에서 수집된 계측 값을 판단부(200)에 저장하여 개인화 정보(240)를 생성한다.In addition, the determination unit 200 matches the behavior pattern 220 in which the walking area and the fall area are divided according to the user's center of gravity and the measured value of the measurement unit 100, so that the user can match either the walking state or the falling state. Includes a determination unit 200 to determine whether it is applicable, but the determination unit 200 is the behavior obtained by learning the walking area and the fall area based on the previously stored measurement value or the measurement value continuously collected by the measurement unit 100 The pattern 220 is defined as the personalized information 240, and the behavior pattern 220 defined as the personalized information 240 is matched with the measured value newly collected by the measurement unit 100 to respond to the user's movement and make a judgment The unit 200 determines that the user has a movement in either a walking state or a fall state, and stores the measured value collected by the measurement unit 100 in the determination unit 200 to generate the personalized information 240.
측정부(100)는 사용자(H) 신체에 부착되는 다수의 센서를 포함하고 사용자(H)의 움직임에 대한 신호를 계측하여 계측된 값을 수집한다.The measurement unit 100 includes a plurality of sensors attached to the body of the user H and measures a signal for movement of the user H and collects the measured value.
그리고 판단부(200)는 사용자(H)의 움직임을 판단할 수 있는 행동 패턴(220)를 포함하고 상기 계측된 값을 행동 패턴(220)에서 실시간으로 매칭하여 사용자(H)의 보행상태 또는 낙상상태 중 어느 하나에 해당하는지를 판단할 수 있다.In addition, the determination unit 200 includes a behavior pattern 220 capable of determining the movement of the user H, and matches the measured value in real time in the behavior pattern 220 to determine the walking state or a fall of the user H. It is possible to determine which one of the states corresponds to.
그리고 판단부(200)는 상기 계측 값을 통해 행동 패턴(220)에 저장 및 추가하여 개인화 정보(240)를 생성할 수 있다.In addition, the determination unit 200 may generate personalized information 240 by storing and adding to the behavior pattern 220 through the measured value.
여기서 보행 및 낙상의 영역을 학습함으로써 얻은 상기 행동 패턴(220)은 단순한 패턴일 수 있지만, 계측 값들이 집단으로 모여 있는 특정 영역의 경계를 나타내는 수식(함수), 유형, 영역 등을 모두 포함하는 포괄적인 것이다.Here, the behavior pattern 220 obtained by learning the gait and fall areas may be simple patterns, but it includes all of the formulas (functions), types, areas, etc. that indicate the boundary of a specific area in which the measured values are grouped together. Is.
또한, 학습의 의미 역시 단순한 계측 값의 수집으로 정의될 수도 있겠지만, 이에 한정되지 않고, 계측 값들로부터 전술한 행동 패턴(220)(수식(함수), 유형, 영역)을 찾는 일련의 과정을 모두 포함하는 것으로 정의될 수 있으며, 이로 인해 본 발명의 권리범위가 제한되지 않음은 당연하다.In addition, the meaning of learning may also be defined as a simple collection of measured values, but is not limited thereto, and includes all a series of processes for finding the above-described behavior pattern 220 (formula (function), type, area) from measured values. It can be defined as, and thus, it is natural that the scope of the present invention is not limited.
도 1을 통해 구체적으로 설명하도록 한다.It will be described in detail with reference to FIG. 1.
도 1에 도시된 바와 같이 측정부(100)는 본 발명의 웨어러블 슈트에 다수로 구비되어 사용자(H)가 움직이고 행동하면서 발생되는 데이터들을 수집할 수 있다.As shown in FIG. 1, the measurement unit 100 may be provided in a plurality of wearable suits of the present invention to collect data generated while the user H moves and acts.
그리고 판단부(200)에서는 행동 패턴(220)를 기본으로 하여 상기 계측 값을 행동 패턴(220)에서 인덱싱하여 사용자(H)가 현재 어떠한 움직임을 하는지, 그리고 어떠한 상태인지를 판단할 수 있다.In addition, the determination unit 200 may index the measured value in the behavior pattern 220 based on the behavior pattern 220 to determine what movement the user H is currently performing and in what state.
또한 사용자(H)의 정보를 행동 패턴(220)에 저장할 수 있다.In addition, information of the user H may be stored in the behavior pattern 220.
이때 행동 패턴(220)에 저장되는 것들은, 다수의 센서를 통해 계측된 상기 계측 값 이외에도 기본적으로 사용자(H)의 정보가 포함될 수 있다.At this time, things stored in the behavior pattern 220 may basically include information of the user H in addition to the measured values measured through a plurality of sensors.
여기서 사용자(H)의 정보란, 웨어러블 슈트를 착용하는 대상을 말하며 사용자(H)가 가지고 있는 질병, 나이, 습관 등이 될 수 있다.Here, the information of the user H refers to a target wearing a wearable suit, and may be a disease, age, habit, etc. that the user H has.
상기 사용자(H) 정보를 웨어러블 슈트에 저장하는 이유는, 본 발명의 웨어러블 슈트가 사용자(H)의 보행을 보조하고, 낙상에 대응하도록 도움을 줄 수 있기 때문에, 상기 사용자(H) 정보를 통해 사용자(H)에게 적합한 보조를 수행할 수 있다.The reason for storing the user (H) information in the wearable suit is that the wearable suit of the present invention can assist the user H to walk and respond to a fall. Assistance suitable for the user (H) can be performed.
예를 들어, 사용자(H)가 우측 다리에 장애가 있어서 우족 절름발이 일 경우, 좌족과 우족의 전진 속도가 다르게 될 수 있다. 따라서 우족 절름발이에 대한 정보를 행동 패턴(220)에 저장할 수 있게 된다.For example, when the user H is lame on the right foot due to a disorder in the right leg, the forward speed of the left foot and the right foot may be different. Therefore, it is possible to store information on the lameness of the right foot in the behavior pattern 220.
그리고 행동 패턴(220)에 저장된 사용자(H) 정보 및 계측 값으로 웨어러블 슈트를 제어할 수 있게 된다.In addition, the wearable suit can be controlled with the user (H) information and measurement values stored in the behavior pattern 220.
본 발명의 일 실시예에 따른 웨어러블 슈트는 구동부(300)를 포함할 수 있다.The wearable suit according to an embodiment of the present invention may include a driving unit 300.
구동부(300)는 판단부(200)의 개인화 정보(240)를 통해 사용자(H)의 움직임을 보조하는 것으로, 사용자(H) 보행시에는 근력을 보조하고 낙상시에는 낙상되는 것을 방지하도록 구비될 수 있다.The driving unit 300 assists the movement of the user H through the personalized information 240 of the determination unit 200, and is provided to assist muscle strength when the user H walks and to prevent falls when a fall occurs. I can.
구동부(300)는 액추에이터 또는 유체가 수용되는 모듈 형태로 구비되어 관절 또는 근력을 보조할 수 있다.The driving unit 300 may be provided in the form of a module accommodating an actuator or a fluid to assist joint or muscle strength.
본 발명의 일 실시예에 따른 사용자(H) 적응형 웨어러블 슈트는 사용자(H)가 착용 가능하게 구비되어 관절을 지지하고 근력을 보조하는 형태로 구비될 수 있으며, 무릎 뒤에 유체가 주입되어 무릎 관절이 신전되는 것을 보조할 수 있고, 사용자(H)가 넘어지는 상황에서 충격대상으로부터 충격을 완충할 수 있다.The user (H) adaptive wearable suit according to an embodiment of the present invention may be provided to be wearable by the user (H) to support the joint and to assist muscle strength, and a fluid is injected behind the knee so that the knee joint This extension can be assisted, and the impact can be buffered from the impact target in the situation where the user H falls.
다음 도 2을 통해 전체적인 알고리즘에 대해 설명하도록 한다.Next, the overall algorithm will be described with reference to FIG. 2.
본 발명에 따른 사용자(H) 적응형 웨어러블 슈트는 상기 웨어러블 슈트를 착용한 사용자(H)의 움직임을 계측할 수 있도록 IMU센서(140) 및 소프트 센서(120)를 포함할 수 있다.The user (H) adaptive wearable suit according to the present invention may include an IMU sensor 140 and a soft sensor 120 to measure the movement of the user (H) wearing the wearable suit.
IMU센서(140)는 사용자(H)의 무게중심이 이동되는 위치, 속도 및 방향을 계측하며, 소프트 센서(120)는 근육 또는 관절의 움직임을 계측한다.The IMU sensor 140 measures the position, speed, and direction in which the center of gravity of the user H is moved, and the soft sensor 120 measures the movement of a muscle or joint.
사용자(H)가 웨어러블 슈트를 착용하면 동작하게 되는데(S01), 먼저 IMU센서(140) 및 소프트 센서(120)가 각각 동작하게 된다(S02, S03).When the user H wears the wearable suit, it operates (S01), and first, the IMU sensor 140 and the soft sensor 120 operate (S02, S03).
IMU센서(140)가 사용자(H)의 움직임을 계측하고 판단부(200)가 행동 패턴(220)에서 인덱싱하여 사용자(H)가 보행인지 또는 낙상인지를 예측할 수 있다(S05). 계측 값을 행동 패턴(220)에서 인덱싱하여 사용자(H)가 기립 및 낙상이라고 판단되는 경우 구동부(300)로 제어신호를 송신하여 사용자(H)를 보조할 수 있다(S06).The IMU sensor 140 measures the movement of the user H and the determination unit 200 indexes it in the behavior pattern 220 to predict whether the user H is walking or falling (S05). When the measured value is indexed in the behavior pattern 220 and it is determined that the user H is standing or falling, a control signal may be transmitted to the driving unit 300 to assist the user H (S06).
그리고 수신된 IMU센서(140)의 계측 값을 행동 패턴(220)에 저장하여 사용자(H)의 기립 및 낙상에 대한 움직임을 학습할 수 있다(S07).In addition, by storing the measured value of the received IMU sensor 140 in the behavior pattern 220, it is possible to learn the movement of the user H for standing and falling (S07).
위와 같은 과정으로 IMU센서(140)의 계측 값을 실시간으로 수신하여 행동 패턴(220)를 통해 사용자(H)의 상태를 예측하고, 행동 패턴(220)에 IMU계측 값을 계속해서 수신하고 학습하여 웨어러블 슈트를 착용한 사용자(H)에게 적합하게 구동될 수 있는 개인화 정보(240)를 생성한다.Through the above process, the measured value of the IMU sensor 140 is received in real time, the state of the user H is predicted through the behavior pattern 220, and the IMU measured value is continuously received and learned in the behavior pattern 220. Personalized information 240 that can be appropriately driven by a user H wearing a wearable suit is generated.
계속해서 사용자(H) 보행에 대해서는, 사용자(H)의 상태가 보행이라고 판단되는 경우에 소프트 센서(120)가 사용자(H)의 보행패턴을 파악하게 되는데, 이때 IMU센서(140)에서 계측되어 행동 패턴(220)에서 보행이라고 판단된 계측 값도 포함될 수 있다(S08).As for the user (H) walking continuously, when it is determined that the state of the user (H) is walking, the soft sensor 120 grasps the gait pattern of the user H, and at this time, it is measured by the IMU sensor 140. A measurement value determined to be walking in the behavior pattern 220 may also be included (S08).
그리고 소프트 센서(120)에서 수신된 보행에 대한 데이터를 통해 보행 주기를 계산하고(S09), 상기 보행 주기를 구동부(300)로 송신하여(S10) 행동 패턴(220)에서 보행에 대한 정보를 학습할 수 있다.Then, the walking period is calculated based on the walking data received from the soft sensor 120 (S09), and the walking period is transmitted to the driving unit 300 (S10) to learn walking information from the behavior pattern 220. can do.
보행에 대한 소프트 센서(120)의 계측 값은 실시간으로 행동 패턴(220)에 반영되어 학습하게 되며 슈트를 입은 사용자(H)에게 적합하게 보조할 수 있도록 구동부(300)를 제어할 수 있게 된다.The measured value of the soft sensor 120 for gait is reflected in the behavior pattern 220 in real time to learn, and it is possible to control the driving unit 300 so as to properly assist the user H wearing the suit.
결론적으로 IMU센서(140) 및 소프트 센서(120)를 통해 무게중심에 대한 정보 및 보행에 대한 정보를 실시간으로 수신하고 행동 패턴(220)에서 현재 사용자(H)의 상태를 보행 또는 낙상으로 판단한 후 기존 행동 패턴(220)의 기본값을 계측된 값을 추가적으로 학습하여 사용자(H)에게 꼭 맞은 웨어러블 슈트가 될 수 있다.In conclusion, after receiving information on the center of gravity and information on walking through the IMU sensor 140 and the soft sensor 120 in real time, and determining the current state of the user H in the behavior pattern 220 as walking or falling The default value of the existing behavior pattern 220 may be additionally learned to become a wearable suit suitable for the user H.
다음 도 3 및 도 4에서 각 센서들의 부착 위치를 나타내었다.Next, the attachment positions of each of the sensors are shown in FIGS. 3 and 4.
도 3은 소프트 센서(120)의 위치, 도 4는 IMU센서(140)의 위치이다.3 is a location of the soft sensor 120, FIG. 4 is a location of the IMU sensor 140.
도시된 바와 같이 소프트 센서(120)는 골반과 허벅지 근육이 신장 또는 수축되면서 발생하는 신호를 계측 값으로 할 수 있다.As illustrated, the soft sensor 120 may use a signal generated as the pelvis and thigh muscles are stretched or contracted as a measurement value.
양다리에 각각 구비되어 있어서 각 다리의 전진 및 후진 속도와 시간을 계측할 수 있고, 사용자(H)가 보행하면서 서로 교차하는 시간 및 속도까지 저장할 수 있다.It is provided on both legs, so it is possible to measure the forward and backward speed and time of each leg, and store the time and speed at which the user H crosses each other while walking.
한편 IMU센서(140)는 허리, 허벅지 양측 및 종아리 양측에 구비될 수 있다.Meanwhile, the IMU sensor 140 may be provided on both sides of the waist, the thigh, and both sides of the calf.
IMU센서(140)가 위와 같이 구비되는 이유는 각각의 IMU센서(140)가 서로 연동되어 동시에 사용자(H)의 무게중심 계측을 하고 전체 무게중심이 어느 위치로 이동되는지 파악하기 위함이다.The reason why the IMU sensor 140 is provided as above is to measure the center of gravity of the user H at the same time as each of the IMU sensors 140 is interlocked with each other, and to determine to which position the entire center of gravity is moved.
본 실시예에서 행동 패턴(220)는 낙상의 상황을 2가지로 분류하고 있다.In this embodiment, the behavior pattern 220 categorizes the fall situation into two types.
사용자(H)가 낙상이 시작되었다고 판단되는 제1낙상 및 충격 대상과 접촉되는 제2낙상을 포함한다.The user H includes a first fall that is determined to have started and a second fall that is in contact with the impact target.
이를 통해 보행과 낙상에 대한 경계를 형성할 수 있다This can form a boundary between walking and falling.
도 5 및 6은 IMU센서(140)를 통해 형성된 가상의 사용자(H) 무게중심 영역이다.5 and 6 are virtual user (H) center of gravity regions formed through the IMU sensor 140.
도시된 바와 같이 사용자(H) 무게 중심에 대해서 행동 패턴(220)를 통해 가상의 무게중심구가 형성될 수 있다. As shown, a virtual center of gravity sphere may be formed through the action pattern 220 with respect to the center of gravity of the user (H).
본 발명의 일 실시예에 따라 행동 패턴(220)에서 보행, 제1낙상 및 제2낙상이 구분되어 있다.According to an embodiment of the present invention, walking, a first fall, and a second fall are classified in the behavior pattern 220.
그리고 웨어러블 슈트를 착용한 사용자(H)에 맞도록 가상의 보행영역과 가상의 제1낙상영역과 가상의 제2낙상의 영역 설정될 수 있다.In addition, a virtual walking area, a virtual first fall area, and a virtual second fall area may be set to fit the user H wearing the wearable suit.
앞서 설명한 바와 같이 IMU센서(140) 및 소프트 센서(120)를 통해 계측된 값을 실시간으로 행동 패턴(220)에 저장된다. 그리고 사용자(H)가 움직일수록 행동 패턴(220)의 무게 중심의 경계가 변경될 수 있다.As described above, the values measured through the IMU sensor 140 and the soft sensor 120 are stored in the behavior pattern 220 in real time. In addition, as the user H moves, the boundary of the center of gravity of the behavior pattern 220 may be changed.
이는 사람마다 무게중심의 위치 및 기울기가 다르기 때문이다. This is because the position and inclination of the center of gravity are different for each person.
예를 들어, 행동 패턴(220)에서 상기 가상의 보행영역과, 상기 가상의 제1낙상영역의 경계가 5라고 가정하자.For example, assume that the boundary between the virtual walking area and the virtual first fall area is 5 in the behavior pattern 220.
행동 패턴(220)에서는 무게중심이 1 내지 4에서는 보행영역이고, 무게 중심이 5부터는 제1낙상영역이 될 수 있다.In the behavior pattern 220, the center of gravity may be a walking area in 1 to 4, and the center of gravity may be a first fall area in 5 and so on.
하지만 사용자(H)가 웨어러블 슈트를 입고 여러가지 동작을 취하면서 무게 중심의 영역이 변경된다. However, as the user (H) wears a wearable suit and performs various actions, the area of the center of gravity changes.
사용자(H)는 1 내지 3에서 보행을 하고, 4 내지 8에서 제1낙상을 하며, 9 내지 10에서 제2낙상이 된다면, 가상의 영역이 도 5에서 도 6과 같이 변경될 수 있다.If the user H walks in 1 to 3, makes a first fall in 4 to 8, and a second fall in 9 to 10, the virtual area may be changed as shown in FIGS. 5 to 6.
이는 행동 패턴(220)에서 사용자(H)가 웨어러블 슈트를 착용하고 움직이면서 각 센서로부터 계측된 값들을 행동 패턴(220)에 추가하기 때문이다.This is because, in the behavior pattern 220, while the user H wears a wearable suit and moves, values measured from each sensor are added to the behavior pattern 220.
앞서 설명한 바와 같이 본 발명에 따른 판단부(200)는 웨어러블 슈트(W)로부터 사용자 움직임이 계측된 계측 값을 행동 패턴에 추가하여 개인화 정보를 생성한다.As described above, the determination unit 200 according to the present invention generates personalized information by adding a measurement value measured by a user's movement from the wearable suit W to a behavior pattern.
구체적으로 5개의 IMU센서로 계측된 계측 값(S2-1. S2-2, S2-3, S2-4, S2-5)이 시간의 흐름에 따라 계측 값들이 분포되어 있는 무게중심의 영역이 생기게 된다.Specifically, the measurement values (S2-1.S2-2, S2-3, S2-4, S2-5) measured by five IMU sensors create a region of the center of gravity in which the measurement values are distributed over time. do.
상기 무게중심의 영역은 사용자1에 대한 것이라고 가정하자.Assume that the area of the center of gravity is for user 1.
사용자가 1의 계측 값들은 보행, 제1낙상 및 제2낙상의 영역에 해당되는 계측 값들이 분포되면서 자연스럽게 보행, 제1낙상 및 제2낙상으로 가상의 경계가 형성될 수 있다.The measured values of 1 by the user are distributed as measured values corresponding to areas of the gait, the first fall, and the second fall, so that a virtual boundary may be naturally formed by the gait, the first fall, and the second fall.
이와 같이 판단부(200)은 계측 값을 실시간으로 저장하여 사용자의 보행, 제1낙상 및 제2낙상에 대한 사용자1 만의 영역을 생성할 수 있다. 이를 통해 1회차부터 L회차까지 생성된 보행, 제1낙상 및 제2낙상의 영역으로 L+1에서 M까지 계측된 값을 통해 사용자의 행동을 판단하고, 다시 보행, 제1낙상 및 제2낙상에 해당되는 계측 값들을 저장하며 학습을 하게 된다.In this way, the determination unit 200 may store the measured value in real time to generate an area of only the user 1 for the user's gait, the first fall, and the second fall. Through this, the user's behavior is determined based on the values measured from L+1 to M as the gait, first and second falls created from the first to the L times, and then walk again, the first fall and the second fall. Learning is performed by storing the measured values corresponding to.
따라서 사용자가 웨어러블 슈트(W)를 착용한 시간일 길수록 더욱 사용자에 맞게 구동될 수 있는 개인화 정보를 구축할 수 있게 된다.Therefore, the longer the user wears the wearable suit W, the more personalized information that can be driven to the user can be built.
도 8에 도시된 바와 같이 사용자(H)의 보행, 제1낙상(낙상예방), 제2낙상(낙상)을 통해 보행 속도, 무게 중심에 대한 계측 값을 실시간으로 추가하여 사용자(H)만의 개인화 정보(240)를 생성할 수 있다.As shown in Figure 8, the user (H) personalization by adding measured values for the walking speed and center of gravity through the user's walking, the first fall (fall prevention), and the second fall (fall) in real time. Information 240 may be generated.
그리고 추가적으로 사용자(H)가 날씨에 따라 보행이 바뀌는 상황을 개인화 정보(240)에 반영할 수 있다.In addition, a situation in which the user H walks according to the weather may be reflected in the personalized information 240.
예를 들어, 비가 오는 날에는 보행의 속도가 맑은 날의 보행 속도보다 평균적으로 느릴 수 있다.For example, on a rainy day, the pace of walking may be, on average, slower than on a clear day.
그리고 우산을 쓰기 때문에 무게중심이 변경될 수 있다.And because of the use of an umbrella, the center of gravity may change.
또한 사용자(H)가 산행을 하게 되면 보행과 낙상의 무게중심이 변경될 수 있다. 이는 사용자(H)의 위치가 산에 위치하는지 GPS등으로 수신할 수 있다.In addition, when the user H is hiking, the center of gravity of walking and falling may be changed. This can be received by GPS or the like whether the user H's location is located in a mountain.
이러한 개인적인 사용자(H) 정보를 개인화 정보(240)에 반영하여 사용자(H)의 개인화 정보(240)를 상황에 맞게 분류할 수도 있다. Personalized information 240 of the user H may be classified according to the situation by reflecting such personal user (H) information in the personalized information 240.
도 9에 도시된 바와 같이 날씨가 맑고 오전에 위치가 산이라고 하면 개인화 정보(240)에서 typeA의 개인화 정보(240)를 구동부(300)에 제공할 수 있다.As shown in FIG. 9, if the weather is sunny and the location is a mountain in the morning, the personalization information 240 may provide the personalization information 240 of typeA to the driving unit 300.
또는 날씨가 비가 오고 오후에 도심에 위치한다면 사용자(H) 개인화 정보(240)에서 typeB를 구동부(300)에 제공할 수 있다.Alternatively, if the weather is rainy and the user (H) is located in the city center in the afternoon, typeB may be provided to the driving unit 300 from the user (H) personalized information 240.
이와 같이, 기 학습된 행동 패턴(220)에 사용자(H)가 웨어러블 슈트를 착용하고 움직이면서 계측된 값을 실시간으로 반영하고, 사용자(H)의 정보를 반영하여 보행을 보조하고 상황에 맞게 설정된 무게 중심으로 사용자(H)의 상태를 파악할 수 있다.In this way, the user (H) wears a wearable suit and reflects the measured value in real time to the previously learned behavior pattern 220, and reflects the information of the user (H) to assist walking and weight set according to the situation. It is possible to grasp the state of the user H as the center.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, preferred embodiments according to the present invention have been examined, and the fact that the present invention can be embodied in other specific forms without departing from its spirit or scope in addition to the above-described embodiments is known to those skilled in the art. It is self-evident to them. Therefore, the above-described embodiments are to be regarded as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.
본 발명은 사용자의 움직임을 보조하는 웨어러블 슈트가 착용한 사용자의 움직임에 적응하여 웨어러블 슈트를 개인화하는 사용자 적응형 웨어러블 슈트를 제공한다.The present invention provides a user-adaptive wearable suit that personalizes the wearable suit by adapting to the user's movement worn by the wearable suit assisting the user's movement.

Claims (10)

  1. 사용자 신체에 부착되는 다수의 센서를 포함하고 상기 사용자의 움직임에 대한 신호를 계측하여 계측 값을 수집하는 측정부; 및A measuring unit including a plurality of sensors attached to the user's body and measuring a signal for the user's movement to collect a measured value; And
    상기 사용자의 무게중심에 따라 보행 영역 및 낙상 영역이 구분되는 행동 패턴과 상기 계측 값을 매칭함으로써, 상기 사용자가 보행 상태 또는 낙상 상태 중 어느 하나에 해당되는지를 판단하는 판단부; 포함하되A determination unit that determines whether the user falls into a walking state or a fall state by matching the measured value with a behavior pattern in which a walking area and a fall area are divided according to the user's center of gravity; But include
    상기 판단부는 기 저장된 계측 값 또는 상기 측정부에서 지속적으로 수집한 상기 계측 값을 기준으로 보행 영역 및 낙상 영역을 학습함으로써 얻은 상기 행동 패턴을 개인화 정보로 정의하고,The determination unit defines the behavior pattern obtained by learning a walking area and a fall area based on a previously stored measurement value or the measurement value continuously collected by the measurement unit as personalized information,
    상기 개인화 정보로 정의된 상기 행동 패턴을 상기 측정부에서 새롭게 수집한 상기 계측 값과 매칭하여 상기 사용자의 움직임에 대응하는,Matching the behavior pattern defined as the personalized information with the measurement value newly collected by the measurement unit to correspond to the movement of the user,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  2. 제1항에 있어서,The method of claim 1,
    상기 판단부는,The determination unit,
    상기 사용자가 상기 낙상상태일 경우,If the user is in the fall state,
    상기 사용자의 무게중심이 이동되는 정보를 실시간으로 상기 개인화 정보에 저장하는 것을 특징으로 하는,Characterized in that the information on which the center of gravity of the user is moved is stored in the personalized information in real time,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  3. 제2항에 있어서,The method of claim 2,
    상기 개인화 정보는,The above personalization information,
    상기 보행 상태에서 상기 계측 값들이 집합된 상기 보행 영역과 상기 낙상 상태에서 상기 계측 값들이 집합된 상기 낙상 영역의 경계가 실시간으로 변화되는 것을 특징으로 하는,Characterized in that the boundary between the walking area in which the measurement values are collected in the walking state and the fall area in which the measurement values are collected in the falling state is changed in real time,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  4. 제2항에 있어서,The method of claim 2,
    상기 판단부는,The determination unit,
    상기 사용자의 무게중심이 이동되는 위치를 판단하여 상기 낙상상태를 낙상이 시작되는 제1낙상 및 충격대상과 접촉되는 제2낙상으로 구분하는 것을 특징으로 하는,Characterized in that by determining the position where the center of gravity of the user is moved, the fall state is divided into a first fall in which the fall starts and a second fall in contact with the impact target,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  5. 제3항에 있어서,The method of claim 3,
    상기 판단부는,The determination unit,
    상기 사용자의 무게 중심이 이동되는 방향을 판단하는 것을 특징으로 하는,Characterized in that to determine the direction in which the center of gravity of the user is moved,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  6. 제1항에 있어서,The method of claim 1,
    상기 판단부는,The determination unit,
    상기 사용자가 상기 보행상태일 경우,When the user is in the walking state,
    상기 사용자의 보행주기에 대한 정보를 상기 개인화 정보에 저장하는 것을 특징으로 하는,It characterized in that the information on the gait period of the user is stored in the personalized information,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  7. 제6항에 있어서,The method of claim 6,
    상기 판단부는,The determination unit,
    상기 사용자의 오른쪽 다리 및 왼쪽 다리가 전진하는 속도를 상기 개인화 정보에 저장하는 것을 특징으로 하는,It characterized in that storing the speed at which the user's right leg and left leg advance in the personalized information,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  8. 제1항에 있어서,The method of claim 1,
    상기 측정부는,The measuring unit,
    다수의 센서가 서로 연동 가능하게 구비되어 상기 사용자의 무게중심 이동에 대한 가상의 무게중심영역을 형성하는 것을 특징으로 하는,A plurality of sensors are provided to be interlocked with each other to form a virtual center of gravity region for the movement of the center of gravity of the user,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  9. 제1항에 있어서,The method of claim 1,
    상기 판단부의 개인화 정보를 통해 사용자의 움직임을 보조하는 구동부를 포함하는 것을 특징으로 하는,It characterized in that it comprises a driving unit that assists the movement of the user through the personalization information of the determination unit,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
  10. 사용자 신체에 부착되는 다수의 센서를 포함하여 상기 사용자의 움직임을 계측하여 계측 값을 생성하고, 상기 다수의 센서가 서로 연동 가능하게 구비되어 상기 사용자의 무게중심이동에 대한 가상의 무게중심영역을 형성하는 측정부; 및Including a plurality of sensors attached to the user's body, the user's movement is measured to generate a measurement value, and the plurality of sensors are interlocked with each other to form a virtual center of gravity region for the movement of the user's center of gravity. A measuring unit; And
    상기 사용자의 무게중심에 따라 보행 영역 및 낙상 영역이 구분되는 행동 패턴과 상기 계측 값을 매칭함으로써, 상기 사용자가 보행 상태 또는 낙상 상태 중 어느 하나에 해당되는지를 판단하는 판단부 포함하되 상기 판단부는 기 저장된 계측 값 또는 상기 측정부에서 지속적으로 수집한 상기 계측 값을 기준으로 보행 영역 및 낙상 영역을 학습함으로써 얻은 상기 행동 패턴을 개인화 정보로 정의하고, 상기 개인화 정보로 정의된 상기 행동 패턴을 상기 측정부에서 새롭게 수집한 상기 계측 값과 매칭하여 상기 사용자의 움직임에 대응하고, 상기 판단부는 상기 사용자가 보행상태, 낙상상태 중 어느 하나의 움직임을 가지는 것을 판단하고 상기 측정부에서 수집된 상기 계측 값을 상기 판단부에 저장하여 개인화 정보를 생성하며, 상기 사용자가 상기 보행상태일 경우 상기 사용자의 보행주기에 대한 정보를 상기 개인화 정보에 저장하고, 상기 사용자가의 오른쪽 다리 및 왼쪽 다리가 전진하는 속도를 상기 개인화 정보에 저장하며, 상기 사용자가 상기 낙상상태일 경우 상기 사용자의 무게중심이 이동되는 정보를 상기 개인화 정보에 저장하고, 상기 낙상상태를 낙상이 시작되는 제1낙상 및 충격대상과 접촉되는 제2낙상으로 구분하여 상기 사용자의 무게 중심이 이동되는 방향을 판단하고, 상기 사용자의 무게 중심이 이동되는 속도를 판단하는 것을 특징으로 하는,A determination unit that determines whether the user falls into a walking state or a fall state by matching the measured value with a behavior pattern in which the gait area and the fall area are classified according to the user's center of gravity, the determination unit The behavior pattern obtained by learning the walking area and the fall area based on the stored measurement value or the measurement value continuously collected by the measurement unit is defined as personalized information, and the behavior pattern defined as the personalization information is defined as the measurement unit. Corresponds to the movement of the user by matching the measured value newly collected at, and the determination unit determines that the user has a movement in either a walking state or a fall state, and the measured value collected by the measurement unit is the Personalized information is generated by storing in the determination unit, and when the user is in the walking state, information on the gait cycle of the user is stored in the personalization information, and the speed at which the user's right leg and left leg advance is said. It is stored in personalized information, and when the user is in the fall state, information on which the center of gravity of the user is moved is stored in the personalization information, and the fall state is stored in the first fall and the second contact with the impact target. It is characterized in that to determine the direction in which the center of gravity of the user is moved by dividing into a fall, and to determine the speed at which the center of gravity of the user is moved,
    사용자 적응형 웨어러블 슈트.User-adaptive wearable suit.
PCT/KR2019/015724 2019-11-18 2019-11-18 Tguser-adaptive wearable suit WO2021100883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/015724 WO2021100883A1 (en) 2019-11-18 2019-11-18 Tguser-adaptive wearable suit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/015724 WO2021100883A1 (en) 2019-11-18 2019-11-18 Tguser-adaptive wearable suit

Publications (1)

Publication Number Publication Date
WO2021100883A1 true WO2021100883A1 (en) 2021-05-27

Family

ID=75981648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015724 WO2021100883A1 (en) 2019-11-18 2019-11-18 Tguser-adaptive wearable suit

Country Status (1)

Country Link
WO (1) WO2021100883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004387A (en) * 2001-03-06 2003-01-14 마이크로스톤 가부시키가이샤 Body motion detector
WO2009082249A2 (en) * 2007-12-26 2009-07-02 Richard Little Mobility aid
KR20110074170A (en) * 2009-12-24 2011-06-30 한국산재의료원 Wearable Robot Walking Suit
JP2018526060A (en) * 2015-06-30 2018-09-13 アイシュー, インコーポレイテッド Fall risk identification using machine learning algorithms
KR20190056132A (en) * 2017-11-16 2019-05-24 엘지전자 주식회사 Wearable device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004387A (en) * 2001-03-06 2003-01-14 마이크로스톤 가부시키가이샤 Body motion detector
WO2009082249A2 (en) * 2007-12-26 2009-07-02 Richard Little Mobility aid
KR20110074170A (en) * 2009-12-24 2011-06-30 한국산재의료원 Wearable Robot Walking Suit
JP2018526060A (en) * 2015-06-30 2018-09-13 アイシュー, インコーポレイテッド Fall risk identification using machine learning algorithms
KR20190056132A (en) * 2017-11-16 2019-05-24 엘지전자 주식회사 Wearable device

Similar Documents

Publication Publication Date Title
Tan et al. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review
WO2015099292A1 (en) System and method for controlling joint angle of knee-joint type walking training robot
CN110522457B (en) Real-time gait analysis method based on motor current and sensor feedback
Liu et al. Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses
WO2012165880A9 (en) Apparatus for rehabilitation exercise, method and device for controlling proactive assistance control in apparatus for rehabilitation exercise, and mobile-linked glove apparatus for inputting data
Rueterbories et al. Methods for gait event detection and analysis in ambulatory systems
WO2019240354A1 (en) Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information
WO2012138203A2 (en) Active robotic gait-training system and method
WO2014081154A1 (en) Shoe insole, shoes including same, and gait correction system
Godiyal et al. A force myography-based system for gait event detection in overground and ramp walking
WO2018105862A1 (en) Swimming aid
Maqbool et al. Heuristic real-time detection of temporal gait events for lower limb amputees
WO2012020859A1 (en) Apparatus for guiding exercise and method for guiding exercise
WO2016099016A1 (en) System and method for estimating center of gravity of walking rehabilitation robot
WO2020262839A1 (en) Health care service method and system
WO2013002452A1 (en) Apparatus for aiding walking and method for controlling operation of same
Liu et al. Joint kinematics, kinetics and muscle synergy patterns during transitions between locomotion modes
Duong et al. Ecological validation of machine learning models for spatiotemporal gait analysis in free-living environments using instrumented insoles
Zhang et al. A real-time gait phase recognition method based on multi-information fusion
WO2021100883A1 (en) Tguser-adaptive wearable suit
KR102309199B1 (en) User adaptable wearable suit
WO2022260361A1 (en) Method and device for adjusting value of control parameter of wearable device
WO2022234974A1 (en) Apparatus and method for evaluating meridian muscle activity
WO2024063321A1 (en) Smart insole-based method for providing partial body weight-bearing walking guide, and system therefor
WO2023121376A1 (en) Method and device for providing clinical evaluation information by using image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953022

Country of ref document: EP

Kind code of ref document: A1