[go: up one dir, main page]

WO2021098761A1 - 一种电池、电池模组、电池包和电动车 - Google Patents

一种电池、电池模组、电池包和电动车 Download PDF

Info

Publication number
WO2021098761A1
WO2021098761A1 PCT/CN2020/130025 CN2020130025W WO2021098761A1 WO 2021098761 A1 WO2021098761 A1 WO 2021098761A1 CN 2020130025 W CN2020130025 W CN 2020130025W WO 2021098761 A1 WO2021098761 A1 WO 2021098761A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
housing
cover plate
partition
accommodating cavity
Prior art date
Application number
PCT/CN2020/130025
Other languages
English (en)
French (fr)
Inventor
孙华军
鲁志佩
朱燕
胡世超
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP20890373.2A priority Critical patent/EP4050689A4/en
Priority to US17/778,987 priority patent/US20220416357A1/en
Priority to KR1020227021330A priority patent/KR20220104232A/ko
Priority to JP2022529461A priority patent/JP7450718B2/ja
Publication of WO2021098761A1 publication Critical patent/WO2021098761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, in particular to a battery, a battery module, a battery pack and an electric vehicle.
  • the present application provides a battery, including: a casing; a plurality of accommodating cavities located in the casing; a separator, two adjacent accommodating cavities are separated by the separator; a pole core set, the pole core set Housed in the accommodating cavity, the pole core set contains at least one pole core, and a plurality of the pole core sets are sequentially arranged along a first direction and connected in series; a plurality of sampling lines, a plurality of the sampling lines corresponding to The plurality of pole core groups are electrically connected; and a wiring harness channel, and the sampling line is accommodated in the wiring harness channel.
  • the application also provides a battery module, including the aforementioned battery.
  • the application also provides a battery pack, including the battery or the battery module.
  • the application also provides an electric vehicle, including the battery module or the battery pack.
  • multiple pole core groups are connected in series in the casing of the battery, which can increase the capacity of the battery, improve the stability of the connection between the pole core groups, and reduce the manufacturing process and cost; in addition, the present application passes The wiring harness channel fixes all the sampling lines in an orderly manner, which improves the sampling accuracy of the entire battery and the safety of the sampling wiring harness.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a battery provided by an embodiment of the present application.
  • Fig. 2 is an exploded view of a battery provided by an embodiment of the present application.
  • Fig. 3 is a front view of a battery provided by an embodiment of the present application.
  • Fig. 4 is a cross-sectional view along the A-A direction in Fig. 3.
  • FIG. 5 is a schematic diagram of a three-dimensional structure of a battery provided by another embodiment of the present application.
  • FIG. 6 is a cross-sectional view in FIG. 5, and the direction of the cross-sectional view is approximately the same as that of FIG. 4.
  • FIG. 6 is a cross-sectional view in FIG. 5, and the direction of the cross-sectional view is approximately the same as that of FIG. 4.
  • Fig. 7 is an exploded view of a battery provided by another embodiment of the present application.
  • FIG. 8 is a cross-sectional view in FIG. 7, and the direction of the cross-sectional view is substantially the same as that in FIG. 4.
  • Fig. 9 is an exploded view of a battery provided by another embodiment of the present application.
  • Fig. 10 is an exploded view of a battery provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a battery separator provided with a liquid injection channel according to an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a liquid injection channel provided on a separator of a battery provided by another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a battery separator provided with a liquid guide hole according to an embodiment of the present application.
  • Fig. 14 is a partial enlarged view of B in Fig. 4.
  • 15 is a schematic diagram of the structure of the separator, the pole core connector, and the collection line of the battery provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a separator, a pole core connector, and a collection line of a battery provided by another embodiment of the present application.
  • FIG. 17 is a schematic diagram of the structure of the sampling line, connector, and circuit board of the battery provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of a sampling line, a connector, and a circuit board of a battery provided by another embodiment of the present application.
  • 19 is a schematic cross-sectional structure diagram of a sampling channel of a battery provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of the three-dimensional structure of the sampling channel of the battery provided in FIG. 19.
  • FIG. 21 is a schematic cross-sectional structure diagram of a sampling channel of a battery provided by another embodiment of the present application.
  • FIG. 22 is a schematic diagram of the three-dimensional structure of the sampling channel of the battery provided in FIG. 21.
  • FIG. 23 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of the structure of a battery module according to an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a battery pack according to an embodiment of the present application, and the battery pack includes a battery module.
  • FIG. 26 is a schematic diagram of the structure of an electric vehicle according to an embodiment of the present application.
  • Fig. 27 is a schematic structural diagram of an electric vehicle according to another embodiment of the present application.
  • the first embodiment of the present application provides a battery 100
  • the battery 100 includes a casing 10, a separator 20, a pole assembly 30, a sampling line 50 and a harness channel 54
  • a plurality of accommodating cavities 60 are formed in the housing 10, and two adjacent accommodating cavities 60 are separated by the partition plate 20
  • the pole core assembly 30 is accommodated in the accommodating cavity 60
  • the pole core set 30 includes at least one pole core; a plurality of the pole core sets 30 are arranged in sequence along a first direction; the plurality of sampling lines 50 are correspondingly electrically connected to the plurality of pole core sets 30, and the sampling line 50 is accommodated in the wiring harness channel 54.
  • a plurality of electrode core groups 30 are connected in series in the casing 10 of the battery 100, which can increase the capacity of the battery 100, improve the stability of the connection between the electrode core groups 30, and reduce the manufacturing process and Cost:
  • all sampling lines are fixed in an orderly manner through the wiring harness channel, which improves the sampling accuracy of the entire battery and the safety of the sampling wiring harness.
  • the first direction may be the long direction of the battery 100, for example, the first direction is the X direction shown in FIG. 4; FIG. 6, FIG. 8, FIG. 19, FIG. 21, etc. are also similar to FIG. 4 Similarly, that is, the horizontal direction of the paper is the first direction, which will not be described and labeled one by one in the following.
  • the pole core mentioned is the pole core commonly used in the field of power battery 100, and the pole core and pole core group 30 are internal components of the casing 10 of the battery 100, and cannot be understood as the battery 100 itself;
  • the core can be a pole core formed by winding, or a pole core made by lamination; in general, the pole core includes at least a positive electrode sheet, a separator, a negative electrode sheet, and electrolyte; a pole core generally refers to an incomplete seal s component.
  • the pole core set 30 may be composed of a single pole core, or may include at least two pole cores, and at least two pole cores are connected in parallel to form the pole core set 30; for example, two pole cores.
  • a pole core group 30 is formed, or four pole cores are connected in parallel to form a pole core group 30, and so on. Therefore, the battery 100 mentioned in this application cannot be simply understood as a battery module or a battery pack because it contains multiple pole cores.
  • the number of pole core groups 30 connected in series in a battery 100 can be determined according to the output voltage of each pole core group 30, the width of the battery pack, and the overall voltage requirements of the battery pack.
  • the output voltage of the battery 100 system is 300V
  • the voltage of a traditional iron-lithium battery 100 is 3.2V
  • 100 batteries 100 need to be connected in series in the battery pack to meet the demand;
  • a battery 100 is connected in series with two electrode core groups 30, only 50 batteries 100 need to be arranged; and so on, if 10 electrode groups 30 are connected in series, only 10 batteries 100 need to be connected in series .
  • using the battery 100 of the present application can reduce the number of batteries 100 in the entire battery pack, thereby effectively using the space of the battery pack and improving the space utilization rate of the battery pack.
  • the series connection between the pole core groups 30 may be a plurality of pole core sets 30 serially connected in sequence, or a plurality of pole core sets 30 may be connected in series at intervals.
  • the first pole core set 30 may be the first one.
  • the pole core set 30 and the third pole core set 30 are connected in series to form a first string pole core set 30, and the second pole core set 30 and the fourth pole core set 30 are connected in series to form a second string pole core set 30. It is connected in series.
  • the electrolyte in different pole core sets 30 is connected, and there is an internal short circuit problem; and there is a higher potential difference between different pole core sets 30 (to Take the lithium iron phosphate battery 100 as an example, the potential difference is about 4.0-7.6V), the electrolyte located therein will decompose due to the large potential difference, which will affect the performance of the battery 100;
  • a partition 20 is provided between.
  • the partition 20 itself can be made of insulating material, that is, the partition 20 is an insulating partition 20. In this way, no other operations are required, and two adjacent pole core groups 30 can be directly separated by the separator 20 and the insulation between the two can be maintained.
  • the partition 20 divides the accommodating space into a plurality of accommodating cavities 60, each of the accommodating cavities 60 accommodates the pole core set 30, that is, two adjacent accommodating cavities 60 share One partition 20.
  • each accommodating cavity 60 can accommodate one pole core set 30, or multiple pole core sets 30, such as 2 or 3; in some preferred embodiments, each accommodating cavity 60 contains a pole core group 30.
  • the battery 100 further includes cover plates 70 formed at both ends of the battery 100 along the first direction;
  • the housing 10 may be an integrated structure extending along the first direction, or It includes a plurality of sub-housings 11 arranged along the first direction.
  • the housing 10 is an integrated structure extending along the first direction, and the cover plate 70 is provided on the housing 10.
  • the two ends along the first direction are used to close the inner space of the housing 10; the plurality of partitions 20 are arranged in the housing 10 at intervals, and the side circumferences of the partitions 20 are connected to the
  • the side wall of the casing 10 cooperates to partition the inside of the casing 10 into a plurality of accommodating cavities 60; wherein, the accommodating cavity 60 at the end of the battery 100 along the first direction is an end accommodating cavity, The accommodating cavity 60 at the middle position of the battery 100 is an intermediate accommodating cavity; the cavity wall of the end accommodating cavity includes the cover plate 70, the partition plate 20, and the cover plate 70 and the partition plate 20.
  • the cover plate 70 at one end of the housing 10 can be integrally formed with the housing 10, and the cover plate 70 at the other end of the housing 10 and the housing 10 can be connected directly or indirectly. Sealed connection, for example, the cover plate 70 and the housing 10 are sealedly connected by welding or gluing, or the cover plate 70 can also be fixed and sealingly connected with the housing 10 through a connector or the like to close the housing
  • the internal space of 10; the housing 10 can also be sealed and connected to a cover plate 70 at both ends by direct or indirect connection, such as sealing connection by welding or gluing, or fixing and sealing by connectors, etc. connection.
  • the side circumference of the partition 20 refers to the circumferential surface of the partition 20 facing the housing 10.
  • the matching of the side circumference of the partition 20 and the side wall of the housing 10 is not specifically limited, for example, by interference fit or glue. Adhesive fit method.
  • the housing 10 includes a plurality of sub-housings 11 arranged along the first direction, and two adjacent sub-housings 11
  • the housing 11 is connected to one of the partitions 20, and the entire end of the housing 10 along the first direction is formed with a housing opening.
  • the housing opening is the outermost sub-shell 11 at the end facing away from the separator, the shell opening formed by this end is matched with the cover plate 70, and the cover plate 70 is connected to the shell and closes the shell opening;
  • the accommodating cavity 60 at the end of the first direction is an end accommodating cavity
  • the accommodating cavity 60 at the middle position of the battery 100 is an intermediate accommodating cavity
  • the cavity wall of the end accommodating cavity includes the cover 70, the The partition plate 20 and the sub-housing 11 located between the cover plate 70 and the partition plate 20.
  • the cavity wall of the intermediate accommodating cavity includes two adjacent partition plates 20 and two adjacent partition plates 20.
  • the casing 10 is made of a corrosive material, such as an aluminum casing
  • a plurality of pole core groups 30 when a plurality of pole core groups 30 are connected in series, the voltage between different pole core groups 30 will cause lithium ions to be embedded in the casing 10 , Forming a lithium aluminum alloy and corroding the aluminum shell;
  • an isolation film 80 may be provided between the housing 10 and the pole core assembly 30 to isolate the contact between the electrolyte and the housing 10.
  • the housing 10 is an integrated structure extending along the first direction; an isolation film 80 is provided in the housing 10
  • the isolation membrane 80 includes a plurality of sub-isolation membranes 81 arranged along the first direction. Two adjacent sub-isolation membranes 81 are connected to a partition 20 in a hermetically sealed manner. An isolation membrane opening is formed at the end of the first direction.
  • the isolation membrane opening is the end of the outermost sub-isolation membrane facing away from the partition, and the isolation membrane opening formed by this end is matched with the cover 70
  • the cover plate 70 is connected to the isolation film 80 and closes the isolation film opening; wherein, the accommodating cavity 60 at the end of the battery 100 along the first direction is an end accommodating cavity, and the battery 100
  • the accommodating cavity 60 in the middle position is an intermediate accommodating cavity, and the cavity wall of the end accommodating cavity includes the cover plate 70, the partition plate 20, and all located between the cover plate 70 and the partition plate 20.
  • the sub-isolation membrane 81, the cavity wall of the intermediate containing cavity includes two adjacent partitions 20 and the sub-isolation membrane 81 located between the two adjacent partitions 20.
  • both ends of the housing 10 along the first direction can be connected to the corresponding cover plate 70 in a direct or indirect manner, for example, welding or gluing is used for sealing. Connected or fixed and sealed by connecting pieces.
  • the plurality of sub-isolation membranes 81 are a plurality of independent parts separated from each other, that is, the isolation membrane 80 is a split-type isolation membrane body, and each of the sub-isolation membranes 81 is a cylindrical structure with open ends.
  • the pole core group 30 is located inside the cylindrical sub-isolation film 81, and the partition 20 or the cover plate 10 is sealed with the opening of the corresponding isolation film 80 to form a containing cavity.
  • the isolation film 80 and the partition 20 or the cover plate 70 there are no special restrictions on the manner and specific structure of the isolation film 80 and the partition 20 or the cover plate 70.
  • the material of the partition plate 20 or the cover plate 70 is It is made of plastic material.
  • the isolation film 80 and the partition 20 or the cover 70 can be sealed by heat fusion.
  • the housing 10 is an integrated structure extending along the first direction; the housing 10 is provided with an isolation film 80, so The isolation membrane 80 is also an integral structure extending along the first direction.
  • the end of the isolation membrane 80 along the first direction is formed with an isolation membrane opening; the side circumference of the partition 20 is separated from the isolation membrane.
  • the side wall of the membrane 80 cooperates to partition the interior of the isolation membrane 80 into a plurality of the accommodating cavities 60; the cover plate 70 is connected to the isolation membrane 80 and closes the opening of the isolation membrane; wherein, the edge of the battery 100
  • the accommodating cavity 60 at the end of the first direction is an end accommodating cavity
  • the accommodating cavity 60 at the middle position of the battery 100 is an intermediate accommodating cavity
  • the cavity wall of the end accommodating cavity includes the The cover plate 70, the partition plate 20, and a part of the isolation membrane 80 located between the cover plate 70 and the partition plate 20
  • the cavity wall of the intermediate accommodating cavity includes two adjacent partition plates 20 and The part of the isolation membrane 80 located between the two adjacent partitions 20.
  • both ends of the housing 10 along the first direction can be connected to the corresponding cover plate 70 in a direct or indirect manner, for example, welding or gluing is used for sealing. Connected or fixed and sealed by connecting pieces.
  • the side circumference of the partition 20 and the sidewall of the isolation membrane 80 are not specifically limited.
  • the isolation membrane 80 and the partition 20 can be melted by heat. Way to seal the connection.
  • an isolation film 80 is provided in the housing 10, and the isolation film 80 includes a plurality of sub-isolation films 81 arranged along the first direction.
  • the two adjacent sub-isolation films 81 are in sealed connection with a partition 20,
  • the housing 10 includes a plurality of sub-housings 11 arranged along the first direction, and a plurality of the sub-isolation films 81 Correspondingly housed in one of the sub-shells 11;
  • the isolation film 80 as a whole is formed with an isolation film opening along the end of the first direction;
  • the cover plate 70 is connected to the isolation film 80 and closes the isolation film Opening; wherein, the accommodating cavity 60 at the end of the battery 100 along the first direction is an end accommodating cavity, the accommodating cavity 60 at the middle position of the battery 100 is an intermediate accommodating cavity, and the end accommodating cavity
  • the cavity wall includes the cover plate 70, the partition plate 20, and the sub-isolation membrane 81 located between the cover plate 70 and the partition plate 20, and the
  • the material of the isolation film 80 is not particularly limited, as long as it has a certain degree of insulation and corrosion resistance to the electrolyte, can be insulated and does not react with the electrolyte.
  • the material of the isolation film 80 may include polypropylene (PP), polyethylene (PE), or a multilayer composite film.
  • the multilayer composite film may include, for example, an inner layer, an outer layer, and an intermediate layer located between the inner layer and the outer layer; the inner layer may include a plastic material, for example, it can be used to have a higher value than the electrolyte in the isolation film 80.
  • the intermediate layer may include metal materials, which can prevent water vapor from permeating outside the battery 100 and at the same time prevent leakage of internal electrolyte.
  • Metal materials are preferred Use aluminum foil, stainless steel foil, copper foil, etc., considering formability, light weight and cost, aluminum foil is preferred, and as the material of aluminum foil, pure aluminum-based or aluminum-iron-based alloy materials are preferentially used; the outer layer is a protective layer, which can be used The polyester or nylon material with high melting point has strong mechanical properties, prevents damage to the battery 100 by external forces, and protects the battery 100.
  • the inner film is a multilayer composite film, one of the embodiments is that the inner film is an aluminum-plastic composite film.
  • the isolation film 80 has a certain degree of flexibility, which facilitates the molding and processing of the battery 100 and prevents punctures.
  • the thickness of the isolation membrane 80 is preferably 80um-200um, of course, it can also be adjusted according to actual conditions.
  • the electrolyte is the core component of the battery 100.
  • the battery 100 of the present application also needs to inject the electrolyte into the accommodating cavity 60. Therefore, the battery 100 of the present application is also provided with an electrolyte channel, and the electrolyte channel is connected to the cell.
  • the accommodating cavity 60 can inject electrolyte into the accommodating cavity 60 via the electrolyte channel; wherein, the electrolyte channel can be provided in the separator 20, the housing 10, and the cover 70 , The isolation film 80 and other components.
  • the electrolyte channel includes a liquid injection channel 91, which is opened on the separator 20 and is used to inject the electrolyte from the outside of the battery 100.
  • the liquid injection channel 91 communicates with the accommodating cavity 60 on at least one side of the partition plate 20; the liquid injection channel 91 is in a closed state after the liquid injection is completed to isolate the accommodating cavity 60 is connected to the outside of the battery 100.
  • a plugging portion 92 may be provided in the liquid injection channel 91, and the plugging portion 92 seals the liquid injection channel 91.
  • the liquid injection channel 91 may also communicate with the accommodating cavities 60 on both sides of the partition plate 20.
  • the sampling line 50 may be staggered from the liquid injection channel 91 (the sampling line 50 in the figure is represented by a dashed line).
  • the housing 10 may also be provided with a through hole at a position corresponding to the liquid injection channel 91 on the separator 20, and the through hole is used to make the liquid injection channel 91 communicate with the outside of the battery 100; when the battery When the structure of 100 corresponds to the embodiment of FIG. 5 and FIG. 6, at least part of the peripheral side of the separator 20 is exposed to the outside of the battery 100, and the liquid injection channel 91 may also be directly exposed from the peripheral side of the separator 20. It is connected to the outside of the battery 100. Wherein, after the casing 10 of the battery 100 is assembled, the electrolyte can be injected through the through hole and the liquid injection channel 91.
  • the liquid injection channel 91 may also be opened on the isolation membrane 80.
  • the liquid injection channel 91 is used to Electrolyte is injected into the containing cavity 60 from the outside of the battery 100, and each of the liquid injection channels 91 communicates with the corresponding containing cavity 60; the liquid injection channel 91 is in a closed state after the liquid injection is completed to isolate the containing cavity 60 The cavity 60 communicates with the outside of the battery 100.
  • the isolation film 80 when the isolation film 80 is made of plastic, hot-melt sealing is adopted to meet the sealing requirements of the liquid injection hole, and the sealing is more convenient; for example, in some specific embodiments, the isolation film 80 includes the isolation film 80 body and The protruding part that protrudes from the main body of the isolation membrane 80. At this time, an opening can be provided on the protruding part as a liquid injection channel 91. After the liquid injection is completed, the hot-melt seal can be tightened to open the opening protruding part. .
  • the battery 100 when the battery 100 further includes an isolating film 80, since the isolating film 80 and the separator 20, etc. form the containing cavity 60, the aforementioned liquid injection channel 91 is either provided on the separator 20 or the isolating film Above 80, the battery 100 can be injected with liquid first, and then the casing 10 can be installed; in this way, the casing 10 has a secondary sealing effect on the liquid injection channel 91, and the sealing performance of the entire battery 100 is obtained. Significant improvement.
  • electrolyte leakage occurs in one of the accommodating chambers 60, it is protected by the housing 10, so that safety problems caused by electrolyte leakage will not occur; and, if the housing 10 is opened for liquid injection, seal and ensure the housing 10 strength is a difficult problem to solve, and in this embodiment, no holes are made on the casing 10, and the liquid injection channel 91 is easier to seal, and there is no need to consider the overall strength of the battery 100 too much.
  • the electrolyte channel may also include a liquid guide hole 93, and at least one of the separators 20 is provided with a liquid guide hole 93 for passing the electrolyte.
  • the liquid guiding hole 93 is used to communicate with two adjacent accommodating cavities 60 on both sides of the partition plate 20; the battery 100 may also include a blocking mechanism 94, which is located in the housing 10, and the blocking mechanism 94 can The liquid guiding hole 93 is placed in a setting state, and the setting state includes an open state and a closed state.
  • the blocking mechanism 94 when the blocking mechanism 94 is in the first situation, the liquid guiding hole 93 is in an open state, and when the blocking mechanism 94 is in the second situation, the liquid guiding hole 93 is in a closed state, and the blocking mechanism 94 can be switched between the first situation and the second situation; for example, before or during the filling of the battery 100, the blocking mechanism 94 is in the first situation, the liquid guide hole 93 is in the open state, and the The liquid guiding hole 93 communicates with two adjacent accommodating cavities 60 on both sides of the partition plate 20. After liquid injection, the blocking mechanism 94 switches from the first situation to the second situation, and the blocking mechanism 94 closes the liquid guiding hole 93.
  • the blocking mechanism 94 is in the first state, the liquid guiding hole 93 is in an open state, and the liquid guiding hole 93 is connected to the two adjacent accommodating cavities 60 on both sides of the partition plate 20.
  • the blocking mechanism 94 is switched from the first situation to the second situation, and the blocking mechanism 94 closes the liquid guiding hole 93, Make the liquid guiding hole 93 in a closed state; for another example, when the battery 100 is overcharged or short-circuited, the blocking mechanism 94 is switched from the second situation to the first situation, and the blocking mechanism 94 makes the liquid guiding hole 93 is in an open state, and the liquid guiding hole 93 communicates with two adjacent accommodating chambers 60 on both sides of the partition plate 20.
  • the blocking mechanism 94 may be accommodated in a blocking mechanism placement space 941, and the blocking mechanism placement space 941 may be disposed across the liquid guiding hole 93.
  • the blocking mechanism 302 is a metal ball with a rubber sleeve; in this solution, the metal ball ensures the strength of the seal, and the rubber sleeve improves the tightness of the seal.
  • the sampling line 50 may be staggered from the liquid guiding hole 93 (the sampling line 50 in the figure is represented by a dashed line).
  • the electrolyte channel may further include a liquid injection hole; the liquid injection hole may be provided on the cover plate 70, so that only the liquid is injected from the liquid injection hole of the end cover plate 70 of the battery 100, and the liquid passes through the liquid injection hole.
  • the liquid guide hole 93 on the partition plate 20 is introduced into each accommodating cavity 60.
  • the electrolyte can be injected into each accommodating cavity 60 at one time by setting the injection hole, and there is no need to open multiple openings for multiple injections.
  • the liquid injection hole may also be provided on the housing 10, the partition 20 or the isolation membrane 80, and the liquid injection principle is similar to that of opening the liquid injection hole on the cover plate 70.
  • Each of the pole core groups 30 includes a first electrode lead-out part 32 and a second electrode lead-out part 33 for drawing current, at least one of the first electrode lead-out part 32 and the second electrode lead-out member 33 are separately arranged on opposite sides of the electrode core assembly 30 along the first direction; all the electrode core assemblies 30 in the battery 100 are arranged along the first direction, and the first direction is the battery
  • the length direction of the battery 100 that is, the battery 100 adopts the "head-to-head" arrangement of the electrode core groups 30.
  • This arrangement can conveniently realize the two-by-two series connection between the electrode core groups 30 in the battery 100, and the connection structure is simple ; In addition, this arrangement makes it easier to manufacture batteries 100 with a longer length.
  • the first electrode lead-out component 32 and the second electrode lead-out component 33 may be the positive and negative ears of the pole core or the negative or positive ears respectively; if When a plurality of pole cores are included, the first electrode lead-out member 32 and the second electrode lead-out member 33 may be electrode leads. It should be noted that the "first" and “second" of the first electrode lead-out component 32 and the second electrode lead-out component 33 are only used to distinguish between names and are not used to limit the number. For example, the first electrode lead-out component 32 may contain one It can also contain more than one.
  • two adjacent pole core sets 30 are connected in series through pole core connecting pieces 40; the pole core connecting pieces 40 penetrate all of the two adjacent pole core sets 30.
  • the separator 20; one end of the pole core connector 40 is electrically connected to the first electrode lead-out component 32 and the second electrode lead-out component of the pole core group 30 on both sides of the separator 20 along the first direction, that is, the pole core
  • the first electrode lead-out component 32 of one electrode core group 30 of the group 30 and the second electrode lead-out component 33 of the adjacent electrode core group 30 are electrically connected by the electrode core connector 40.
  • the electrode lead-out component is directly welded to the pole core connector 40 in the separator 20.
  • two adjacent pole core groups 30 are connected by a pole core connector 40.
  • Two adjacent pole core groups 30 are connected by a pole core connector 40 penetrating through the separator 20, which reduces the gap between the two pole core groups 30.
  • the spacing can give the battery 100 more design space, can also save the internal aperture of the battery 100, increase the flow area between two adjacent electrode core groups 30, and reduce the internal resistance of the battery 100.
  • the pole core connector 40 includes a copper connection portion 41 and an aluminum connection portion 42.
  • the copper connection portion 41 and the aluminum connection portion 42 are electrically connected, and the electrical connection position is located at the partition.
  • the interior of the board 20 the copper connecting portion 41 is connected to the copper lead-out end of the pole core set 30 on one side of the separator 20, and the aluminum connecting portion 42 is connected to the aluminum lead-out end of the pole core set 30 on the other side of the separator 20.
  • connection and positional relationship between the pole core connector 40 and the separator 20 is shown in FIG. 15.
  • the separator 20 is provided with a connection through hole 21, and the pole core connector 40 penetrates The connecting through hole 21 passes through from one side of the connecting through hole 21 to the other side; that is, the pole core connecting piece 40 passes through the connecting through hole 21.
  • the pole core connecting piece 40 passes through the connecting through hole 21.
  • One end of the pole core connecting piece 40 is connected to The pole core group 30 on one side of the end plate is connected, and the other end of the pole core connector 40 is connected to the pole core group 30 on the other side of the separator 20.
  • the encapsulation structure 22 is provided in the connection through hole 21.
  • the encapsulation structure 22 encapsulates the pole core connector 40 in the connection through hole 21.
  • the encapsulation structure 22 can close the connection through hole 21 to isolate the two sides of the partition 20 Adjacent pole core accommodating cavity 60; in the present application, the packaging structure 22 only needs to have sealing performance and resistance to electrolyte corrosion and insulation. For example, it may be a rubber plug.
  • connection and positional relationship between the pole core connector 40 and the separator 20 are shown in FIG. 16, and the pole core connector 40 and the separator 20 are integrally injection molded.
  • the pole core connecting piece 40 is manufactured first, and then the separator 20 is injection molded on the outside of the pole core connecting piece 40.
  • the copper connecting portion 41 and the aluminum connecting portion 42 are firstly compositely connected to form a composite connecting portion; then, the separator 20 is formed by injection molding outside the composite connecting portion.
  • the contact position of the copper connection part 41 and the aluminum connection part 42 (composite connection part) is sealed inside the separator 20 to prevent it from being exposed to the internal space of the battery 100, especially to prevent it from contacting the electrolyte, and to avoid the copper-aluminum connection The location is corroded.
  • the separator 20 and the pole core connector 40 are integrally formed, there is no need to assemble the separator 20 and the pole core connector 40, and only the pole core assembly 30 and the separator 20 need to be directly assembled.
  • the upper pole core connector 40 can be connected, which simplifies the process; in addition, no connection through hole 21 is formed on the partition plate 20, and no packaging structure 22 is required to encapsulate the connection through hole 21, which reduces the risk.
  • Safety and stability is an extremely important part of the power battery 100; among them, traditional battery modules and batteries use independent lithium-ion batteries in series/parallel to form battery modules or battery packs, so that they can be paired outside each lithium-ion battery.
  • Each lithium ion battery is sampled, and if multiple electrode core groups 30 are connected in series and the electrode lead parts are housed in the casing 10 of the battery 100, it is not convenient to use traditional methods for sampling outside the battery 100; in this application
  • the sampling line 50 is arranged to be electrically connected to the pole core connector 40 and is led out from the partition 20 via the harness channel 54 so as to sample each pole core group 30 inside the housing 100 to The state of each electrode core group 30 is monitored to ensure the safety and stability of the battery 100; the setting of the sampling line 50 of the present application can solve the sampling problem of the electrode core group 30 connected in series inside the battery 100.
  • the sampling line 50 is welded to the aluminum connecting portion 42 so as to be electrically connected to the pole core assembly 30.
  • a lead hole 23 is formed in the partition 20, and the sampling line 50 is inserted into the lead hole 23 and led out from the partition 20, wherein A sealing material 24 can be arranged between the lead hole 23 and the sampling line 50 to fill the gap.
  • the separator 20 may be integrally injection molded with the sampling line 50 and the pole core connector 40.
  • the sampling line 50 and the The partition plate 20 is tightly coupled, that is, it is not necessary to open the lead hole 23 and the sealing material 24 in advance.
  • the battery 100 is provided with a sampling hole, the sampling line 50 is led out from the harness channel 54 to the sampling hole, and the sampling hole is used to realize the extraction of the sampling signal;
  • the sampling hole 51 may be provided on the housing 10, as shown in FIG. 14; the sampling hole 51 may also be provided on the cover 70 (see FIG. 20).
  • the plurality of sampling lines 50 corresponding to the plurality of partitions 20 can be collected to the sampling hole 51 of the housing 10 via the harness channel 54 ,
  • the plurality of sampling lines 50 corresponding to the plurality of partitions 20 can also be collected to the corresponding positions of the housing 10 via the harness channel 54 respectively, that is, each partition can be corresponding to each partition on the housing 10
  • the sampling hole 51 is arranged at the position 20; it is also possible to set one sampling hole 51 or a few sampling holes on the battery 100, so that multiple sampling lines 50 are collected to the same sampling hole through the harness channel 54.
  • an elastic filler may be formed between the sampling line 30 and the sampling hole 51, and the elastic filler may also be used to fix the battery. ⁇ sample line 30.
  • the harness channel may be a groove recessed on the inner surface of the housing 10, or a pipe provided on the inner or outer surface of the housing 10, or may be provided at other locations in the battery 100 Pipeline.
  • all the sampling lines are fixed in order through the wiring harness channel, which improves the sampling accuracy of the entire battery and the safety of the sampling wiring harness.
  • the harness channel 54 is a wire slot provided inside the housing 10, and each sampling line 50 is drawn from the partition 20. It is accommodated in the wire slot; in this embodiment, the wire slot extends along the first direction. Wherein, the sampling line 50 drawn from the wire slot is drawn through the sampling hole 51 on the cover plate 70.
  • the sampling line 50 is led out from the harness channel 54 and connected to a circuit board, a connector, and the like.
  • the harness channel 54 is a pipe provided on the outer surface of the housing 10, and each sampling line 50 is led out from the partition 20 and is accommodated in In the pipeline; in this embodiment, the pipeline extends along the first direction.
  • the sampling line 50 drawn from the wire trough is drawn through the sampling hole 51 on the pipe.
  • the pipe can be fixed on the housing 10 and just seal the sampling line 50.
  • the hole formed on the shell 10 penetrates the shell 10 to prevent the shell 10 from communicating with the outside through the hole formed on the shell 10 through the sampling line 50 through the shell 10.
  • the harness channel 54 may include a plurality of sub-slots arranged at intervals, and the plurality of sampling lines 50 are respectively received and fixed in the corresponding sub-slots after being led out from the partition 20, so that more The sampling lines 50 are arranged at intervals, which can prevent contact and short circuit between the adjacent sampling lines 50, and can also prevent abrasion between the sampling lines 50.
  • the battery 100 may also be provided with a connector, and the sampling line 50 is led out from the separator 20 and then collected to the connector, and the connector may be matched with a connector for external sampling.
  • the connector can be arranged on the housing 10 or on the cover 70.
  • the connector may be a multi-probe type connector, a USB type connector, or other connectors as appropriate.
  • the connector includes a ceramic sleeve and a plurality of contact pins contained in the ceramic sleeve, and each of the contact pins is electrically connected to one sampling line.
  • the circuit board can be integrated with a detection chip, and the circuit board is used for sampling according to the The information collected by the line 50 generates a sampling signal; the circuit board can be arranged on the side circumference of the casing 10 or the side circumference of the partition 20, and the circuit board can also be arranged on the cover 70; The circuit board can also be electrically connected to the connector, and the connector can be used to output the sampling signal generated by the circuit board.
  • the detection chip can be integrated with components such as odor sensors and temperature sensors; of course, the components such as odor sensors, temperature sensors can also be directly mounted on the circuit board and electrically connected with the detection chip to The detection data is transmitted to the detection chip for processing.
  • the sampling line 50 can also be connected to a circuit board, the connector, etc. after being led out from the harness channel 54.
  • the connector 52 is inserted through the housing 10, and the circuit board 53 is fixed to the housing 10 corresponding to the connector 52, so The circuit board 53 is electrically connected to the connector 52, the sampling line 50 is electrically connected to the circuit board 53 after being led out from the partition 20, and the information collected by the sampling line 50 can pass through the circuit board 53.
  • the sampling signal is formed by processing and output to the connector 52 so that the sampling signal can be obtained from the connector 52 on the housing 10.
  • a sealing ring 521 is further formed between the connector 52 and the housing 10, and the sealing ring 521 is used to isolate the space inside and outside the battery 100, and is also used to fix the connector 52. .
  • the connector 52 passes through the cover plate 70, and the circuit board 53 is disposed corresponding to the connector 52 and is located on the cover plate 70 ,
  • the circuit board 53 is electrically connected to the connector 52
  • the sampling line 50 is electrically connected to the circuit board 53 after being led out from the partition 20, and the information collected by the sampling line 50 can be passed through the circuit
  • the board 53 processes and forms a sampling signal and outputs it to the connector 52 so that the sampling signal can be obtained from the connector 52 on the housing 10.
  • a sealing ring 521 is further formed between the connector 52 and the housing 10. The sealing ring is used to isolate the space inside and outside the battery 100 and is also used to fix the connector 52.
  • the battery 100 is further provided with an insulating member 71 at a position adjacent to the cover plate 70.
  • the circuit board 53 is fixed on the insulating member 71, and the insulating member 71 connects the pole core assembly
  • the electrolyte in the battery 30 and the battery 100 is insulated and isolated from the circuit board 53, and the insulating member 71 can also prevent the circuit board 53 from shaking.
  • the insulating member 71 may be fixed on the housing 10 or the cover plate 70.
  • the insulating member 71 may be made of plastic material.
  • the sampling line 50 may be a wire coated with an insulating layer after being led out from the partition 20, which can also prevent contact and short circuit between adjacent sampling lines 50.
  • the sampling line 50 may be a bare metal line when in the partition plate 20.
  • the sampling line 50 led out from the partition 20 can be electrically connected to the bare metal linear sampling line 50 in the partition 20 by welding or plug-in parts.
  • the battery 100 further includes a detection unit, which is directly sealed inside the casing 10 of the battery 100 to facilitate detection of the state of the electrode core assembly 30 inside the casing 10 of the battery 100 at any time. And to ensure the accuracy and timeliness of sampling information.
  • the shape of the battery 100 can be various, and can be a regular geometric shape or an irregular geometric shape, such as a square, a circle, a polygon, a triangle, or any shape, such as a special shape. Battery 100. It is understandable that the shape of the battery 100 is not limited in this application.
  • the battery 100 is substantially a rectangular parallelepiped, the battery 100 has a length L, a width H, and a thickness D, the length L of the battery 100 is greater than the width H, and the width H of the battery 100 is greater than the thickness D, wherein , The length of the battery 100 is 400-2500 mm.
  • the substantially rectangular parallelepiped can be understood to mean that the battery 100 may be in the shape of a rectangular parallelepiped, a cube, or a part of a special shape, but is roughly a rectangular parallelepiped, a cube shape; or a part of the battery 100 may have gaps, protrusions, chamfers, arcs, etc. It is curved, but the overall shape is similar to a rectangular parallelepiped or a cube.
  • the thickness of the battery 100 of the present application can be extended to a large range.
  • the battery 100 larger than 10mm can be freely compatible.
  • the traditional soft pack battery 100 uses an aluminum-plastic composite film.
  • the internal cavity is realized by stretching and molding, so the internal thickness of the battery 100 is limited by the stretching performance of the aluminum-plastic composite film, and the production of the battery 100 with a large thickness cannot be realized.
  • the battery 100 in the present technology can realize the production of the battery 100 with a thickness of 10 mm or more.
  • the casing 10 is used to improve the strength of the battery 100 and ensure the safe use of the battery 100. It can be a plastic casing 10 or a metal casing 10. When it is a metal casing 10, the heat dissipation performance is better.
  • the housing 10 has a high strength and can play a supporting role by itself.
  • the battery 100 may be a lithium ion battery 100.
  • the other structures of the battery 100 are the same as the conventional settings in the prior art, such as explosion-proof valves, current interrupting devices, etc., which are not described here.
  • a battery module 400 including the battery 100 of any of the foregoing embodiments.
  • the assembly process is small and the cost is low.
  • the present application provides a battery pack 200, which includes the battery 100 of any of the above embodiments or the battery module 400 provided above.
  • the assembly process is small, the cost of the battery 100 is lower, and the energy density of the battery pack 200 is higher.
  • an electric vehicle 1000 includes the above-mentioned battery pack 200 or battery module 400. Using the electric vehicle 1000 provided in this application has high endurance and low cost.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the application. In one embodiment or example.
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电池,包括:壳体(10);位于所述壳体内的多个容纳腔(60);隔板(20),相邻的两个容纳腔(60)由所述隔板(20)隔开;极芯组(30),所述极芯组(30)收容于所述容纳腔(60)内,所述极芯组(30)含有至少一个极芯,多个所述极芯组(30)沿一第一方向依次排布且串联连接;多条采样线,多条所述采样线对应电连接所述多个极芯组(30);及线束通道,所述采样线收容于所述线束通道内。还提供一种电池模组、电池包及电动车。

Description

一种电池、电池模组、电池包和电动车
相关申请的交叉引用
本申请要求“比亚迪股份有限公司”于2019年11月22日提交的、发明名称为“一种电池、电池模组、电池包和车辆”的、中国专利申请号“201911162027.X”的优先权。
技术领域
本申请涉及电池领域,具体涉及一种电池、电池模组、电池包和电动车。
背景技术
随着新能源车的不断普及,对新能源车中动力电池的使用要求变得越来越高,特别是用户对新能源车续时里程要求的不断提高,使得对新能源车的电池的总体容量需要不断的提高。一般地,在需要高电压(高容量)时,就把大量的极芯进行串联成极芯组,再将多个极芯组组装成动力电池;但是,相邻两个极芯之间需要通过外设的动力连接件进行动力连接,此会导致动力电池整体安装结构较多,不仅成本提高,整体重量也上升,并且,安装结构占用了较多的动力电池的内部空间,造成动力电池整体的空间利用率降低,极芯并排设置越多,空间浪费就越多。另外,当采用多个极芯组形成动力电池时,一般需要及时得到极芯组在电流、电压、温度等方面的信息,以更好的进行动力电池的管理;但是,由于各极芯组处于动力电池的内部,动力电池的壳体密封后,就不能实时采集动力电池内部的极芯组的电压、电流、温度等信号,所以,如何对电池内部的多个极芯组进行信号采集也是制作动力电池需要解决的一个难题。
发明内容
本申请提供一种电池,包括:壳体;位于所述壳体内的多个容纳腔;隔板,相邻的两个容纳腔由所述隔板隔开;极芯组,所述极芯组收容于所述容纳腔内,所述极芯组含有至少一个极芯,多个所述极芯组沿一第一方向依次排布且串联连接;多条采样线,多条所述采样线对应电连接所述多个极芯组;及线束通道,所述采样线收容于所述线束通道内。
本申请还提供了一种电池模组,包括前述的电池。
本申请还提供了一种电池包,包括所述的电池或者所述的电池模组。
本申请还提供了一种电动车,包括所述的电池模组或所述的电池包。
本申请实施例中,在所述电池的壳体内串联多个极芯组,可以提高电池的容量,提高了极芯组之间连接的稳定性,减小制造工艺和成本;另外,本申请通过线束通道将所有的采 样线有序固定,提高了整个电池采样准确性及采样线束的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电池的立体结构示意图。
图2是本申请实施例提供的电池的爆炸图。
图3是本申请实施例提供的电池的主视图。
图4是图3中沿A-A方向的剖视图。
图5是本申请另一实施例提供的电池的立体结构示意图。
图6是图5中的剖视图,其剖图方向与图4大致相同。
图7是本申请另一实施例提供的电池的爆炸图。
图8是图7中的剖视图,其剖图方向与图4大致相同。
图9是本申请另一实施例提供的电池的爆炸图。
图10是本申请另一实施例提供的电池的爆炸图。
图11是本申请一实施例提供的电池的隔板上设置注液通道的结构示意图。
图12是本申请另一实施例提供的电池的隔板上设置注液通道的结构示意图。
图13是本申请一实施例提供的电池的隔板上设置导液孔的结构示意图。
图14是图4中B处的局部放大图。
图15是本申请一实施例提供的电池的隔板、极芯连接件及采集线等的结构示意图。
图16是本申请另一实施例提供的电池的隔板、极芯连接件及采集线等的结构示意图。
图17是本申请一实施例提供的电池的采样线、连接器及电路板的结构示意图。
图18是本申请另一实施例提供的电池的采样线、连接器及电路板的结构示意图。
图19是本申请一实施例提供的电池的采样通道的剖视结构示意图。
图20是图19提供的电池的采样通道的立体结构示意图。
图21是本申请另一实施例提供的电池的采样通道的剖视结构示意图。
图22是图21提供的电池的采样通道的立体结构示意图。
图23是本申请实施例提供的电池包的结构示意图。
图24是本申请实施例的电池模组的结构示意图。
图25是本申请实施例的电池包的结构示意图,该电池包包含电池模组。
图26是本申请实施例的电动车的结构示意图。
图27是本申请另一实施例的电动车的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下面将结合附图,对本申请实施例中的技术方案进行描述。
请参照图1至图4及图14,本申请第一实施例的提供一种电池100,所述电池100包括壳体10、隔板20、极芯组30、采样线50及线束通道54;所述壳体10内形成有多个容纳腔60,相邻的两个所述容纳腔60由所述隔板20隔开;所述极芯组30收容于所述容纳腔60内,所述极芯组30含有至少一个极芯;多个所述极芯组30沿一第一方向依次排布;多条所述采样线50对应电连接所述多个极芯组30,所述采样线50收容于所述线束通道54内。
本申请提供的电池100,在所述电池100的壳体10内串联多个极芯组30,可以提高电池100的容量,提高了极芯组30之间连接的稳定性,减小制造工艺和成本;本申请通过线束通道将所有的采样线有序固定,提高了整个电池采样准确性及采样线束的安全性。
其中,所述第一方向可以为所述电池100的长方向,例如,所述第一方向为图4中所示的X方向;图6、图8、图19、图21等也与图4类似,即纸面横向为所述第一方向,以下不再一一赘述及标示。
在本申请中,所提到的极芯为动力电池100领域常用的极芯,极芯以及极芯组30为电池100的壳体10内部的组成部分,而不能被理解为电池100本身;极芯可以是卷绕形成的极芯,也可以是叠片的方式制成的极芯;一般情况下,极芯至少包括正极片、隔膜和负极 片以及电解液;极芯一般是指未完全密封的组件。在本申请中,极芯组30可以是由一个单独的极芯组成,也可以包括至少两个极芯,且至少两个极芯并联连接,构成所述极芯组30;例如,两个极芯并联后,形成极芯组30,或者四个极芯并联后,构成极芯组30,等等。因而,在本申请提到的电池100,不能因其包含多个极芯,而将其简单的理解为电池模组或电池组。
一般情况下,一个电池100中串联的极芯组30的个数可以根据每个极芯组30的输出电压、电池包的宽度以及电池包整体电压需求而定。比如,一种车型,需要电池100系统输出的电压为300V,一个传统铁锂电池100的电压为3.2V;现有技术中,电池包体内需要串联100个电池100才能满足需求;而本申请中,假设一个电池100内部串联2个极芯组30,则仅需要排布50个电池100即可;以此类推,若串联10个极芯组30,则只需要串接10个电池100即可。也就是说,利用本申请的电池100可以减少了整个电池包中电池100的数量,进而可以有效的利用电池包的空间,提高电池包的空间利用率。
所述极芯组30之间的串联,可以为多个极芯组30依次串联,也可以多个极芯组30间隔串联,例如,当极芯组30设有4个时,可以第一个极芯组30与第3个极芯组30串联形成第一串极芯组30,第2个极芯组30与第4个极芯组30串联形成第二串极芯组30,然后再将其串联起来。
当多个极芯组30件之间串联时,不同极芯组30内的电解液在连通的情形下,存在内部短路问题;且不同的极芯组30之间存在较高的电位差(以磷酸铁锂电池100为例,电位差大约为4.0~7.6V),位于其中的电解液会因电位差较大导致分解,影响电池100性能;本申请中,特在相邻的极芯组30之间设置隔板20。优选地,为了更好的起到绝缘隔离的作用,可以选择隔板20本身为绝缘材料制成,即隔板20为绝缘隔板20。如此,无需进行其他操作,可以直接通过隔板20隔离两个相邻的极芯组30且保持两者之间的绝缘。
本申请中,隔板20将容纳空间分隔成若干个容纳腔60,每个所述容纳腔60中容纳有所述极芯组30,也就是说,相邻的两个容纳腔60之间共用一个隔板20。
在本申请中,每个容纳腔60中可以容纳一个极芯组30,也可以容纳多个极芯组30,例如2个或3个;在一些优选的实施方式中,每个所述容纳腔60内容纳有一个极芯组30。
本申请中,所述电池100还包括形成于所述电池100沿所述第一方向的两端的盖板70;所述壳体10可以为沿所述第一方向延伸的一体式结构,也可以包括沿所述第一方向设置的多个子壳体11。
例如,在本申请的一实施例中,如图2及图4所示,所述壳体10为沿所述第一方向延伸的一体式结构,所述盖板70设于所述壳体10沿所述第一方向的两端,以封闭所述壳体10的内部空间;所述多个隔板20间隔设置于所述壳体10内,且所述隔板20的侧周与所述 壳体10的侧壁配合将所述壳体10内部分隔出多个所述容纳腔60;其中,所述电池100的沿所述第一方向的端部的容纳腔60为端部容纳腔,所述电池100的中间位置的容纳腔60为中间容纳腔;所述端部容纳腔的腔壁包括所述盖板70、所述隔板20以及位于所述盖板70和所述隔板20之间的部分所述壳体10,所述中间容纳腔的腔壁包括相邻的两个所述隔板20以及位于该相邻的两个所述隔板20之间的部分所述壳体10。其中,所述壳体10一端的所述盖板70可以与所述壳体10一体成型,所述壳体10另一端的所述盖板70与壳体10可采用直接或间接的连接方式进行密封连接,例如,盖板70与壳体10通过焊接或胶粘的方式进行密封连接,或者盖板70也可以通过连接件等与所述壳体10固定且密封连接,以封闭所述壳体10的内部空间;所述壳体10也可以两端均与一所述盖板70通过直接或间接的连接方式进行密封连接,例如采用焊接或胶粘进行密封连接或通过连接件等固定且密封连接。
需要说明的是,隔板20的侧周是指隔板20朝向壳体10的周向面,隔板20的侧周与壳体10的侧壁配合不作具体限定,例如通过过盈配合或者胶粘配合方式。
又例如,在本申请的另一实施例中,如图5及图6所示,所述壳体10包括沿所述第一方向设置的多个子壳体11,相邻的两个所述子壳体11与一个所述隔板20连接,所述壳体10整体沿所述第一方向的端部形成有壳体开口,这里需要说明的是,该壳体开口为最外侧的子壳体11的背离隔板的一端,该端所形成的壳体开口与盖板70配合,所述盖板70连接所述壳体并封闭所述壳体开口;其中,所述电池100的沿所述第一方向的端部的容纳腔60为端部容纳腔,所述电池100的中间位置的容纳腔60为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板70、所述隔板20以及位于所述盖板70和隔板20之间的所述子壳体11,所述中间容纳腔的腔壁包括相邻的两个所述隔板20以及位于该相邻的两个所述隔板20之间的所述子壳体11。其中,本实施例中,所述隔板20的部分侧周暴露于所述壳体10,部分侧周覆盖于所述壳体10内。
在本申请中,如果壳体10为易腐蚀材料,如为铝壳,当多个极芯组30之间串联,不同极芯组30之间由于电压不同,会导致锂离子嵌入壳体10内部,形成锂铝合金,腐蚀铝壳;本申请中,可以在壳体10与极芯组30之间设置隔离膜80,用于隔离电解液与壳体10的接触。
例如,在本申请的另一实施例中,如图7及图8所示,所述壳体10为沿所述第一方向延伸的一体式结构;所述壳体10内设置有隔离膜80,所述隔离膜80包括沿所述第一方向设置的多个子隔离膜81,相邻的两个所述子隔离膜81与一所述隔板20密封连接,所述隔离膜80整体沿所述第一方向的端部形成有隔离膜开口,这里需要说明的是,该隔离膜开口为最外侧的子隔离膜的背离隔板的一端,该端所形成的隔离膜开口与盖板70配合,所述盖 板70连接所述隔离膜80并封闭所述隔离膜开口;其中,所述电池100的沿所述第一方向的端部的容纳腔60为端部容纳腔,所述电池100的中间位置的容纳腔60为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板70、所述隔板20以及位于所述盖板70和所述隔板20之间的所述子隔离膜81,所述中间容纳腔的腔壁包括相邻的两个所述隔板20以及位于该相邻的两个所述隔板20之间的所述子隔离膜81。本实施例中,所述壳体10的沿所述第一方向的两端也均与对应的所述盖板70可通过直接或间接的连接方式进行密封连接,例如采用焊接或胶粘进行密封连接或通过连接件等固定且密封连接。
其中,所述多个子隔离膜81为相互分离的多个独立部分,即,所述隔离膜80为分体式隔离膜体,每个所述子隔离膜81为两端开口的筒状结构,所述极芯组30位于筒状的子隔离膜81内部,所述隔板20或所述盖板10与对应的隔离膜80的开口封接以形成容纳腔。
在本申请中,对于所述隔离膜80与所述隔板20或所述盖板70封接的方式及具体结构不作特殊限制,例如,当所述隔板20或所述盖板70的材质为塑料材质,所述隔离膜80由塑料制成时,所述隔离膜80与所述隔板20或所述盖板70之间可采用热熔封接。
又例如,在本申请的另一实施例中,如图9所示,所述壳体10为沿所述第一方向延伸的一体式结构;所述壳体10内设置有隔离膜80,所述隔离膜80也为沿所述第一方向延伸的一体式结构,所述隔离膜80沿所述第一方向的端部形成有隔离膜开口;所述隔板20的侧周与所述隔离膜80的侧壁配合将所述隔离膜80内部分隔出多个所述容纳腔60;所述盖板70连接所述隔离膜80并封闭所述隔离膜开口;其中,所述电池100的沿所述第一方向的端部的所述容纳腔60为端部容纳腔,所述电池100的中间位置的所述容纳腔60为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板70、所述隔板20以及位于所述盖板70和隔板20之间的部分所述隔离膜80,所述中间容纳腔的腔壁包括相邻的两个所述隔板20以及位于该相邻的两个所述隔板20之间的部分所述隔离膜80。本实施例中,所述壳体10的沿所述第一方向的两端也均与对应的所述盖板70可通过直接或间接的连接方式进行密封连接,例如采用焊接或胶粘进行密封连接或通过连接件等固定且密封连接。
其中,隔板20的侧周与隔离膜80的侧壁配合不作具体限定,例如,当隔板20和隔离膜80由塑料制成时,隔离膜80与隔板20之间可通过热熔的方式密封连接。
再例如,在本申请的另一实施例中,如图10所示,所述壳体10内设置有隔离膜80,所述隔离膜80包括沿所述第一方向设置的多个子隔离膜81,相邻的两个所述子隔离膜81与一所述隔板20密封连接,所述壳体10包括沿所述第一方向设置的多个子壳体11,多个所述子隔离膜81对应收容于一个所述子壳体11内;所述隔离膜80整体沿所述第一方向的端部形成有隔离膜开口;所述盖板70连接所述隔离膜80并封闭所述隔离膜开口;其中,所述电池100的沿所述第一方向的端部的容纳腔60为端部容纳腔,所述电池100的中间位 置的容纳腔60为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板70、所述隔板20以及位于所述盖板70和所述隔板20之间的所述子隔离膜81,所述中间容纳腔的腔壁包括相邻的两个所述隔板20以及位于该相邻的两个所述隔板20之间的所述子隔离膜81。本实施例中,所述壳体10整体沿所述第一方向的两端也均与对应的所述盖板70可通过直接或间接的连接方式进行密封连接,例如采用焊接或胶粘进行密封连接或通过连接件等固定且密封连接。
所述隔离膜80的材料不作特殊限制,只要具有一定的绝缘性以及耐电解液腐蚀性,能够绝缘以及不与电解液反应即可。在一些实施例中,隔离膜80的材料可以包括聚丙烯(PP)、聚乙烯(PE)或者多层复合膜。在一些实施例中,多层复合膜例如可以包括内层、外层和位于内层外层之间的中间层;内层可以包括塑料材料,例如可以使用与隔离膜80内的电解液具有较少反应性并且具有绝缘性质的材料制成;例如,包含PP或PE材料;中间层可以包括金属材料,金属材料能够防止电池100外部的水汽渗透,同时防止内部电解液的渗出,金属材料优选使用铝箔、不锈钢箔、铜箔等,考虑到成型性能、重量轻和成本,优选为铝箔,而作为铝箔的材料,优先使用纯铝基或铝铁基合金材料;外层为保护层,可以采用高熔点的聚酯或尼龙材料,以有较强的机械性能,防止外力对电池100的损伤,起到保护电池100的作用。关于内膜为多层复合膜时,其中一个实施例方式为,内膜为铝塑复合膜。
在一些实施方式中,隔离膜80具有一定的柔韧性,便于电池100的成型加工以及防止被刺破等。隔离膜80的厚度优选为80um-200um,当然,也可以根据实际情况进行调整。
电解液是电池100的核心组成,本申请的电池100中也需要向所述容纳腔60内注入电解液,故,本申请的电池100上还设置有电解液通道,所述电解液通道连通所述容纳腔60,可以经由所述电解液通道向所述容纳腔60内注入电解液;其中,所述电解液通道可以设置于所述隔板20、所述壳体10、所述盖板70、所述隔离膜80等等元件上。
例如,在一实施例中,如图11所示,所述电解液通道包括注液通道91,所述注液通道91开设于所述隔板20上,用于将电解液从电池100外部注入到所述容纳腔60内,所述注液通道91与所述隔板20至少一侧的容纳腔60连通;所述注液通道91在注液完成后呈封闭状态,以隔绝所述容纳腔60与电池100外部的连通。所述注液通道91内可以设有封堵部92,所述封堵部92密封所述注液通道91。
在一实施方式中,如图12所示,所述注液通道91还可以与所述隔板20两侧的容纳腔60均连通。
在一些实施例中,如图11及图12所示,所述采样线50可以与所述注液通道91错开设置(图中采样线50用虚线表示)。
所述壳体10在对应所述隔板20上的注液通道91的位置还可以设有通孔,所述通孔用 于使所述注液通道91与电池100外部连通;当所述电池100的结构对应前述图5及图6的实施例时,所述隔板20的至少部分周侧暴露于电池100外部,所述注液通道91还可以直接自所述隔板20暴露的周侧与电池100外部连通。其中,可以在所述电池100的壳体10组装完成后,再通过所述通孔及所述注液通道91进行电解液的注入。
又例如,在一实施例中,当所述电池100还包括隔离膜80时,所述注液通道91也可以开设于所述隔离膜80上,参前述,所述注液通道91用于将电解液从电池100外部注入到所述容纳腔60内,各所述注液通道91与对应的容纳腔60连通;所述注液通道91在注液完成后呈封闭状态,以隔绝所述容纳腔60与电池100外部的连通。本申请中,当隔离膜80为塑料时,采用热熔密封,即可满足注液孔的密封要求,封口较为方便;例如,在一些具体的实施方式中,隔离膜80包括隔离膜80本体以及自隔离膜80本体向外凸出的凸出部,此时,可在凸出部上设置开口,当做注液通道91,注液完成后,热熔密封加紧开设有开口的凸出部即可。
其中,也即所述电池100还包括隔离膜80时,因隔离膜80与隔板20等组成了所述容纳腔60,故,前述的注液通道91无论设置在隔板20上还是隔离膜80上,都可以先对电池100进行注液,之后在安装所述壳体10;此种方式下,壳体10对注液通道91起到二次密封的效果,整个电池100的密封性能得到显著提高,一旦其中一个容纳腔60发生电解液泄漏,有壳体10的保护,从而不会发生因电解液泄露导致安全问题;并且,如果在壳体10开孔注液,密封及保证壳体10强度都是很难解决的问题,而在此实施例下,不在壳体10上开孔,注液通道91的密封较为容易,也不用过多考虑电池100的整体强度问题。
再例如,在一实施例中,如图13所示,所述电解液通道也可以包括导液孔93,至少一个所述隔板20上设置有用于通过电解液的导液孔93,所述导液孔93用于连通此隔板20两侧相邻的两个容纳腔60;所述电池100还可以包括阻挡机构94,所述阻挡机构94位于壳体10内,所述阻挡机构94能够使导液孔93处于设定状态,所述设定状态包括开启状态和关闭状态。其中,可以设置所述阻挡机构94在第一情形时,所述导液孔93处于开启状态,所述阻挡机构94在第二情形时,所述导液孔93处于关闭状态,所述阻挡机构94可在第一情形和第二情形之间切换;例如,所述电池100注液前或注液时,所述阻挡机构94处于第一情形,所述导液孔93处于开启状态,所述导液孔93连通此隔板20两侧相邻的两个容纳腔60,注液后,所述阻挡机构94由第一情形切换至第二情形,所述阻挡机构94关闭所述导液孔93,使所述导液孔93处于关闭状态;又例如,所述电池100注液后化成时,所阻挡机构94处于第一情形,所述导液孔93处于开启状态,所述导液孔93连通此隔板20两侧相邻的两个容纳腔60,注液化成后,所述阻挡机构94由第一情形切换至第二情形,所述阻挡机构94关闭所述导液孔93,使所述导液孔93处于关闭状态;再例如,所述电池100过 充或短路时,所述阻挡机构94由第二情形切换至第一情形,所述阻挡机构94使所述导液孔93处于开启状态,所述导液孔93连通所述隔板20两侧相邻的两个容纳腔60。
其中,如图13所示,所述阻挡机构94可以收容于一阻挡机构放置空间941内,所述阻挡机构放置空间941可以与所述导液孔93交叉设置。在一些实施例中,如图13所示,阻挡机构302为一个带有橡胶套的金属球;该方案中,金属球保证了密封的强度,而橡胶套则提高了密封的紧密性。
在一些实施例中,如图13所示,所述采样线50可以与所述导液孔93错开设置(图中采样线50用虚线表示)。
所述电解液通道还可以包括注液孔;所述注液孔可以设置在所述盖板70上,从而仅从电池100的端部盖板70的注液孔注液,将液体通过所述隔板20上的所述导液孔93导入至各个容纳腔60内。设置注液孔可以一次就将电解液注入到各个容纳腔60内,而无需进行多次开口多次注液。当然,所述注液孔也可以设置于壳体10、隔板20或者隔离膜80上,其注液原理与在盖板70上开设注液孔类似。
在本申请中,请一并参阅图14,每个所述极芯组30均包括用于引出电流的第一电极引出部件32和第二电极引出部件33,至少一个所述第一电极引出部件32和第二电极引出部件33沿第一方向分设于该极芯组30相对的两侧;所述电池100内的所有极芯组30沿所述第一方向排布,第一方向为为电池100的长度方向;即所述电池100采用极芯组30“头对头”的排布方式,此排布方式可以较为方便地实现电池100中极芯组30之间的两两串联,连接结构简单;另外该种排布方式可以较为方便的制造长度较长的电池100。其中,如果极芯组30仅含有一个极芯的情况下,第一电极引出部件32和第二电极引出部件33可以分别为极芯的正极耳和负极耳或者分别为负极耳或正极耳;如果含有多个极芯的情况下,第一电极引出部件32和第二电极引出部件33可以为电极引线。需要说明的是,第一电极引出部件32和第二电极引出部件33的“第一”和“第二”仅用于名称区分,并不用于限定数量,例如第一电极引出部件32可以含有一个也可以含有多个。
在本申请中,如图14所示,相邻两个所述极芯组30通过极芯连接件40串联;所述极芯连接件40贯穿相邻的两个极芯组30之间的所述隔板20;所述极芯连接件40的一端与隔板20沿第一方向的两侧的极芯组30的第一电极引出部件32和第二电极出部件电连接,也即极芯组30的一个极芯组30的第一电极引出部件32与相邻的极芯组30的第二电极引出部件33通过所述极芯连接件40电连接。在一实施例中,所述电极引出部件直接与隔板20中的极芯连接件40焊接。其中,相邻两个极芯组30通过极芯连接件40连接相邻两个极芯组30通过贯穿隔板20的极芯连接件40连接,减小了两个极芯组30之间的间距,能够给予电池100更大的设计空间,还能够节省电池100内部的孔径,并且增大相邻两个极芯组 30之间的过流面积,减小电池100内阻。
在一些实施例中,请一并参阅图14,极芯连接件40包括铜连接部41和铝连接部42,铜连接部41和铝连接部42电连接,其电连接的位置位于所述隔板20的内部。该实施例中,铜连接部41与隔板20一侧的极芯组30的铜引出端连接,铝连接部42与隔板20另一侧的极芯组30的铝引出端连接。
在本申请一个实施例中,极芯连接件40与隔板20的连接和位置关系如图15所示,具体地,隔板20上开有连接通孔21,极芯连接件40穿设在连接通孔21内,从连接通孔21的一侧穿至另一侧;即极芯连接件40穿过所述连接通孔21,请一并参图4,极芯连接件40的一端与端板一侧的极芯组30连接,极芯连接件40的另一端与隔板20另一侧的极芯组30连接。铜和铝对锂有电位差,因而在铜连接部41和铝连接部42的接触的位置电解液接触位置容易发生腐蚀,另一方方面,也为了隔离隔板20两侧的极芯容纳腔60,在连接通孔21内设置有封装结构22,该封装结构22将极芯连接件40封装在连接通孔21内,同时封装结构22能够封闭连接通孔21,以隔绝隔板20两侧的相邻极芯容纳腔60;在本申请中,封装结构22只要能起到密封性能且耐电解液腐蚀以及绝缘即可,例如可以为橡胶塞等。
本申请的另一个实施例中,极芯连接件40与隔板20的连接和位置关系如图16所示,极芯连接件40与隔板20一体注塑成型。具体的,先制作极芯连接件40,再在极芯连接件40外部注塑成型隔板20。更具体的,先将铜连接部41与铝连接部42进行复合连接,形成复合连接部;再在复合连接部外注塑并形成隔板20。如此,铜连接部41和铝连接部42接触的位置(复合连接部)被密封在隔板20内部,防止其暴露在电池100内部空间,特别是防止其与电解液接触,避免铜铝连接的位置被腐蚀。在本实施例的电池组装时,因隔板20与极芯连接件40一体成型,故,不需要再组装隔板20与极芯连接件40,只需要直接将极芯组30与隔板20上的极芯连接件40相连即可,简化了工艺;并且,没有在隔板20上形成连接通孔21,也不需要设置封装结构22对所述连接通孔21进行封装,降低了风险。
安全稳定是动力电池100极为重要的一环;其中,传统的电池模组及电池采用独立的锂离子电池串/并联形成电池模组或电池包,从而可以在每个锂离子电池的外部对对每个锂离子电池进行采样,而如果将多个极芯组30串联并使其电极引出部件收容于电池100的壳体10内,在电池100的外部并不方便采用传统方式采样;在本申请中,设置所述采样线50电连接所述极芯连接件40并自经由所述线束通道54自所述隔板20引出,从而对壳体100内部的每一个极芯组30进行采样,以监控到每一个极芯组30的状态进而确保电池100的安全稳定;本申请的采样线50设置可以解决串联于电池100内部的极芯组30的采样问题。
在一些实施例中,如图4、图15及图16所示,所述采样线50焊接于所述铝连接部42上从而与所述极芯组30电连接。
在一些实施例中,如图15所示,所述隔板20内形成有引线孔23,所述采样线50穿设于所述引线孔23内并自所述隔板20引出,其中,所述引线孔23与所述采样线50之间可以设置密封材料24填充缝隙。
在另一些实施例中,如图16所示,所述隔板20可以与所述采样线50及所述极芯连接件40一体注塑成型,此种情况下,所述采样线50与所述隔板20紧密结合,即不需要事先开设所述引线孔23及不需要设置所述密封材料24。
在一些实施例中,所述电池100上设置有采样孔,所述采样线50自所述线束通道54引出至所述采样孔,所述采样孔用于实现采样信号的引出;所述采样孔51可以设置于所述壳体10上,如图14所示;所述采样孔51也可以设置于所述盖板70上(参图20所示)。当所述采样孔51设置于所述壳体10上时,对应多个隔板20处的多条所述采样线50可以经由所述线束通道54汇集至壳体10的所述采样孔51处,对应多个隔板20处的多条所述采样线50也可以经由所述线束通道54分别汇集至各自对应的壳体10位置,也就是说,可以在壳体10上对应每个隔板20的位置设置所述采样孔51;也可以在所述电池100上设置一个采样孔51或较少几个采样孔,使多条采样线50经由所述线束通道54汇集至同一个采样孔。其中,为了使所述电池100内外相隔绝,如图14所示,所述采样线30与所述采样孔51之间还可以形成有弹性填充件,所述弹性填充件还可以用于固定所述采样线30。
所述线束通道可以为凹设于所述壳体10内表面的凹槽,也可以为设置于所述壳体10内表面或外表面的管道,还可以为设置于所述电池100内其他位置的管道。本申请通过线束通道将所有的采样线有序固定,提高了整个电池采样准确性及采样线束的安全性。
例如,在一实施例中,结合图19及图20所示,所述线束通道54为设置于所述壳体10内侧的线槽,各所述采样线50自所述隔板20引出后均收容于所述线槽内;本实施例中,所述线槽沿所述第一方向延伸。其中,自所述线槽引出的所述采样线50经由盖板70上的所述采样孔51引出。
在其他实施例中,所述采样线50自所述线束通道54引出后连接至一电路板及连接器等。
又例如,在一实施例中,如图22所示,所述线束通道54为设于所述壳体10外表面的管道,各所述采样线50自所述隔板20引出后均收容于所述管道内;本实施例中,所述管道沿所述第一方向延伸。其中,自所述线槽引出的所述采样线50经由所述管道上的采样孔51引出。另外,各所述采样线50自所述隔板20引出后可以贯穿所述壳体10后收容至所述管道,所述管道可以固定于所述壳体10上并正好密封所述采样线50贯穿所述壳体10在所述壳体10上形成的孔,以防所述壳体10与外界通过所述采样线50贯穿所述壳体10在所 述壳体10上形成的孔连通。
在一实施例中,所述线束通道54可以包括多条间隔设置的子线槽,多条所述采样线50自所述隔板20引出后分别收容固定于对应的子线槽内,从而多条采样线50之间间隔设置,此可以防止相邻的所述采样线50之间接触短路,并且还可以防止采样线50之间的摩损。
在其他实施例中,所述电池100上还可以设有连接器,所述采样线50自所述隔板20引出后汇集至所述连接器,所述连接器可以与外部采样的连接器匹配以实现采样信号的引出;所述连接器可以设置于所述壳体10上,也可以设置于所述盖板70上。所述连接器视情况可以为多探针型的连接器,也可以为USB型的连接器,也可以为其他连接器。例如,所述连接器包括陶瓷套及收容于所述陶瓷套内的多根接触针,每根所述接触针对应电连接一条所述采样线。
在一实施例中,多条所述采样线50自所述隔板20引出后还可以汇集至一电路板,所述电路板上可以集成有检测芯片,所述电路板用于根据所述采样线50采集的信息生成采样信号;所述电路板可以设置于所述壳体10的侧周或者所述隔板20的侧周,所述电路板还可以设置于所述盖板70上;所述电路板上还可以与所述连接器电连接,所述连接器即可用于将得到电路板生成的所述采样信号输出。所述检测芯片中可以集成有气味传感器、温度传感器等元器件;当然,所述气味传感器、温度传感器等元器件也可以直接贴装于所述电路板上并与所述检测芯片电连接,以将检测数据传输给所述检测芯片进行处理。
所述采样线50也可以自所述线束通道54引出后连接至一所述电路板及所述连接器等。
例如,在一实施例中,如图17所示,所述连接器52穿设于所述壳体10上,所述电路板53对应所述连接器52固定于所述壳体10上,所述电路板53与所述连接器52电连接,所述采样线50自所述隔板20引出后与所述电路板53电连接,所述采样线50采集的信息可以经所述电路板53处理形成采样信号并输出至所述连接器52,从而可以自所述壳体10上的所述连接器52获取所述采样信号。其中,本实施例中,所述连接器52与所述壳体10之间还形成有密封圈521,所述密封圈521用于隔绝电池100内外的空间,还用于固定所述连接器52。
又例如,在一实施例中,如图18所示,所述连接器52穿设于所述盖板70上,所述电路板53对应所述连接器52设置并位于所述盖板70上,所述电路板53与所述连接器52电连接,所述采样线50自所述隔板20引出后与所述电路板53电连接,所述采样线50采集的信息可以经所述电路板53处理形成采样信号并输出至所述连接器52,从而可以自所述壳体10上的所述连接器52获取所述采样信号。其中,本实施例中,所述连接器52与所述壳体10之间还形成有密封圈521,所述密封圈用于隔绝电池100内外的空间,还用于固定所述连接器52。本实施例中,所述电池100内邻近所述盖板70的位置还设置有绝缘件71, 所述电路板53固定于所述绝缘件71上,所述绝缘件71将所述极芯组30及电池100内的电解液与所述电路板53绝缘隔离,并且所述绝缘件71还可以防止所述电路板53晃动。所述绝缘件71可以固定于所述壳体10上或所述盖板70上。所述绝缘件71可以为塑料材质制成。
在一些实施例中,所述采样线50自所述隔板20引出后可以为包覆有绝缘层的导线,也可以防止相邻的所述采样线50之间接触短路。所述采样线50在所述隔板20内时可以为裸金属线。自所述隔板20引出后的采样线50可以通过焊接或插接件与隔板20内的裸金属线状的采样线50电连接。
在本申请的一个实施方式中,所述电池100还包括检测单元,将检测单元直接密封在电池100壳体10的内部,方便随时检测到电池100的壳体10内部极芯组30的状态,以及保证采样信息的准确性和及时性。
本申请中,电池100的形状可以为多种,可以为规则的几何形状,也可以为不规则的几何形状,例如可以为方形、圆形、多边形、三角形,也可以是任意的形状,如异形电池100。可以理解的是,本申请对电池100的形状不作限定。在一个实施方式中,电池100大体为长方体,所述电池100具有长度L、宽度H和和厚度D,所述电池100的长度L大于宽度H,所述电池100的宽度H大于厚度D,其中,所述电池100的长度400~2500mm。
需要说明的是,大体长方体可以理解为,所述电池100可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或部分存在缺口、凸起、倒角、弧度、弯曲但整体呈近似长方体形、正方体形。
本申请的电池100的厚度可拓展范围大,大于10mm以上的电池100都可自由兼容,不同于传统的软包电池100(小于15mm),传统的软包电池100是通过对铝塑复合膜的拉伸成型来实现内部空腔的,所以电池100的内部的厚度受限于铝塑复合膜的拉伸性能,无法实现大厚度电池100的生产。本技术中的电池100可以实现厚度10mm以上电池100的生产。
在本申请中,电池100的长度L与宽度H满足L/H=4~21。
本申请中,壳体10用于提高电池100的强度,保证电池100的安全使用,可以为塑料壳体10,也可以为金属壳体10,当为金属壳体10时,散热性能较好,壳体10的强度较高,可以自身起到支撑的作用。
在本申请中,电池100可以为锂离子电池100。
本申请中,电池100的其他结构与现有技术的常规设置相同,如防爆阀,电流中断装置等,在此不作赘述。
如图24所示,在本申请的另一个方面,提供了一种电池模组400包括上述任一实施例的电池100。采用本申请提供的电池模组400,组装工艺少,成本较低。
如图23和图25所示,本申请提供了一种电池包200,包括上述任一实施例的电池100或上述提供的电池模组400。采用本申请提供的电池包200,组装工艺少,电池100的成本较低,电池包200的能量密度较高。
如图26和图27一种电动车1000包括上述的电池包200或电池模组400。采用本申请提供的电动车1000,车的续航能力高,成本较低。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (29)

  1. 一种电池,其特征在于,包括:
    壳体;
    位于所述壳体内的多个容纳腔;
    隔板,相邻的两个所述容纳腔由所述隔板隔开;
    极芯组,所述极芯组收容于所述容纳腔内,多个所述极芯组沿一第一方向依次排布且串联连接;
    多条采样线,多条所述采样线对应电连接所述多个极芯组。
  2. 如权利要求1所述的电池,其特征在于,所述电池还包括盖板,所述壳体为沿所述第一方向延伸的一体式结构,所述盖板设于所述壳体沿所述第一方向的两端,以封闭所述壳体的内部空间;所述多个隔板间隔设置于所述壳体内,且所述隔板的侧周与所述壳体的侧壁配合以将所述壳体内部分隔出多个所述容纳腔;其中,所述电池的沿所述第一方向的端部的容纳腔为端部容纳腔,所述电池的中间位置的容纳腔为中间容纳腔;所述端部容纳腔的腔壁包括所述盖板、所述隔板以及位于所述盖板和所述隔板之间的部分所述壳体,所述中间容纳腔的腔壁包括相邻的两个所述隔板以及位于该相邻的两个所述隔板之间的部分所述壳体。
  3. 如权利要求1或2所述的电池,其特征在于,所述壳体为沿所述第一方向延伸的一体式结构;所述壳体内设置有隔离膜,所述隔离膜为沿所述第一方向延伸的一体式结构,所述隔离膜沿所述第一方向的端部形成有隔离膜开口;所述隔板的侧周与所述隔离膜的侧壁配合将所述隔离膜内部分隔出多个所述容纳腔;所述电池还包括盖板,所述盖板连接所述隔离膜并封闭所述隔离膜开口;其中,所述电池的沿所述第一方向的端部的所述容纳腔为端部容纳腔,所述电池的中间位置的所述容纳腔为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板、所述隔板以及位于所述盖板和隔板之间的部分所述隔离膜,所述中间容纳腔的腔壁包括相邻的两个所述隔板以及位于该相邻的两个所述隔板之间的部分所述隔离膜。
  4. 如权利要求1-3中任意一项所述的电池,其特征在于,所述壳体为沿所述第一方向延伸的一体式结构;所述壳体内设置有隔离膜,所述隔离膜沿所述第一方向的端部形成有隔离膜开口,所述隔离膜包括沿所述第一方向设置的多个子隔离膜,相邻的两个所述子隔离膜与同一个所述隔板密封连接;所述电池还包括盖板,所述盖板连接所述隔离膜并封闭 所述隔离膜开口;其中,所述电池的沿所述第一方向的端部的容纳腔为端部容纳腔,所述电池的中间位置的容纳腔为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板、所述隔板以及位于所述盖板和所述隔板之间的所述子隔离膜,所述中间容纳腔的腔壁包括相邻的两个所述隔板以及位于该相邻的两个所述隔板之间的所述子隔离膜。
  5. 如权利要求1-4中任意一项所述的电池,其特征在于,所述壳体沿所述第一方向的端部形成有壳体开口,所述壳体包括沿所述第一方向设置的多个子壳体,相邻的两个所述子壳体与同一个所述隔板连接;所述电池还包括盖板,所述盖板连接所述壳体并封闭所述壳体开口;其中,所述电池的沿所述第一方向的端部的容纳腔为端部容纳腔,所述电池的中间位置的容纳腔为中间容纳腔,所述端部容纳腔的腔壁包括所述盖板、所述隔板以及位于所述盖板和隔板之间的所述子壳体,所述中间容纳腔的腔壁包括相邻的两个所述隔板以及位于该相邻的两个所述隔板之间的所述子壳体。
  6. 如权利要求1-5任一项所述的电池,其特征在于,所述电池还包括线束通道,所述多条采样线收容于所述线束通道内。
  7. 如权利要求2-6中任一项所述的电池,其特征在于,所述多条采样线在同一个所述盖板处汇集。
  8. 如权利要求1-7中任一项所述的电池,其特征在于,所述线束通道为设置在所述壳体内表面上的凹槽,或,所述线束通道为设置在所述壳体外表面上的凹槽。
  9. 如权利要求1-7中任一项所述的电池,其特征在于,所述线束通道为形成于所述壳体内或外的中空绝缘管。
  10. 如权利要求2-9中任一项所述的电池,其特征在于,所述电池还包括连接器,所述连接器与多条采样线电连接,以将所述多条采样线汇集。
  11. 如权利要求2-9中任一项所述的电池,其特征在于,所述连接器固定于所述盖板上或所述壳体的侧周上。
  12. 如权利要求2-9中任一项所述的电池,其特征在于,所述电池还包括连接器,所述电池还包括位于所述壳体内的电路板,多条所述采样线汇集于所述电路板上,所述电路板用于根据所述采样线采集的信息生成采样信号,所述连接器设于所述盖板上并与所述电路板电连接,所述连接器用于输出所述采样信号。
  13. 如权利要求12所述的电池,其特征在于,其特征在于,所述连接器固定于所述盖板上,所述电池内邻近所述盖板的位置还设置有绝缘件,所述电路板固定于所述绝缘件上,所述绝缘件将所述极芯组与所述电路板绝缘隔离。
  14. 如权利要求10所述的电池,其特征在于,所述盖板或所述壳体上形成有采样孔, 所述连接器固定于所述盖板或所述壳体的外侧,所述多条采样线穿过所述采样孔汇集于所述连接器。
  15. 如权利要求10所述的电池,其特征在于,所述连接器穿设于所述盖板或所述壳体上,所述盖板或所述壳体与所述连接器之间形成有密封圈。
  16. 如权利要求10所述的电池,其特征在于,所述连接器包括陶瓷套及收容于所述陶瓷套内的多根接触针,每根所述接触针对应电连接一条所述采样线。
  17. 如权利要求1至16任一项所述的电池,其特征在于,所述采样线自所述隔板引出;所述采样线位于所述隔板内的部分与所述采样线位于所述隔板外的部分通过焊接或插接件电连接。
  18. 如权利要求1至17任一项所述的电池,其特征在于,所述采样线自所述隔板引出;所述采样线位于所述隔板内的部分为裸金属导线;所述采样线位于所述隔板外的部分为包覆有绝缘层的导电线。
  19. 如权利要求1-18任一项所述的电池,其特征在于,所述采样线自所述隔板引出后还自所述壳体的侧周引出,或者,所述采样线自所述隔板引出后还自同一个所述盖板引出。
  20. 如权利要求1至19任一项所述的电池,其特征在于,所述电池包括多个极芯连接件,相邻所述极芯组间通过所述极芯连接件串联连接。
  21. 如权利要求20所述的电池,其特征在于,所述隔板上形成有贯通的连接件收容孔,所述极芯连接件穿设于所述连接件收容孔内;所述极芯连接件与所述连接件收容孔之间形成有密封圈,所述密封圈用于阻止所述隔板两侧的容纳腔通过所述连接件收容孔连通。
  22. 如权利要求20或21所述的电池,其特征在于,所述隔板为注塑件,所述极芯连接件及所述采样线与所述隔板一体注塑成型。
  23. 如权利要求20-22中任意一项所述的电池,其特征在于,所述极芯连接件包括铜连接部及铝连接部,所述铜连接部和铝连接部连接的部位位于所述隔板内,所述采样线与所述铝连接部电连接。
  24. 如权利要求1至23任一项所述的电池,其特征在于,每个所述极芯组均包括用于引出电流的第一电极引出部件和第二电极引出部件,至少一个极芯组的所述第一电极引出部件和第二电极引出部件沿第一方向分设于该极芯组相对的两侧;所述第一电极引出部件 和第二电极引出部件均与所述极芯连接件电连接。
  25. 如权利要求1至24任一项所述的电池,其特征在于,所述电池大体为长方体,所述电池具有长度、宽度和厚度,长度大于宽度,宽度大于厚度,所述电池的长度为400mm~2500mm。
  26. 如权利要求1至25任一项所述的电池,其特征在于,所述电池还包括检测单元,所述检测单元与所述采样线电连接并用于检测所述极芯组的状态。
  27. 一种电池模组,其特征在于,包括权利要求1至26任意一项所述的电池。
  28. 一种电池包,其特征在于,包括权利要求1至26任意一项所述的电池或者包括权利要求22所述的电池模组。
  29. 一种电动车,其特征在于,包括权利要求27所述的电池模组或权利要求28所述的电池包。
PCT/CN2020/130025 2019-11-22 2020-11-19 一种电池、电池模组、电池包和电动车 WO2021098761A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20890373.2A EP4050689A4 (en) 2019-11-22 2020-11-19 BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRIC VEHICLE
US17/778,987 US20220416357A1 (en) 2019-11-22 2020-11-19 Battery, battery module, battery pack, and electric vehicle
KR1020227021330A KR20220104232A (ko) 2019-11-22 2020-11-19 배터리, 배터리 모듈, 배터리 팩, 및 전기 차량
JP2022529461A JP7450718B2 (ja) 2019-11-22 2020-11-19 電池、電池モジュール、電池パック及び電気自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911162027.X 2019-11-22
CN201911162027.XA CN112952244B (zh) 2019-11-22 2019-11-22 一种电池、电池模组、电池包和电动车

Publications (1)

Publication Number Publication Date
WO2021098761A1 true WO2021098761A1 (zh) 2021-05-27

Family

ID=75980393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130025 WO2021098761A1 (zh) 2019-11-22 2020-11-19 一种电池、电池模组、电池包和电动车

Country Status (6)

Country Link
US (1) US20220416357A1 (zh)
EP (1) EP4050689A4 (zh)
JP (1) JP7450718B2 (zh)
KR (1) KR20220104232A (zh)
CN (1) CN112952244B (zh)
WO (1) WO2021098761A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464961A (zh) * 2022-01-19 2022-05-10 蜻蜓实验室(深圳)有限公司 锂离子电池及锂离子电池组
WO2023147070A1 (en) * 2022-01-27 2023-08-03 Ambri Inc. Improved energy storage devices
EP4152512A4 (en) * 2021-07-30 2023-11-08 Contemporary Amperex Technology Co., Limited BATTERY, ELECTRICAL DEVICE AND METHOD FOR PRODUCING A BATTERY
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
US12142735B1 (en) 2013-11-01 2024-11-12 Ambri, Inc. Thermal management of liquid metal batteries
US12224447B2 (en) 2018-12-17 2025-02-11 Ambri Inc. High temperature energy storage systems and methods
US12347832B2 (en) 2013-09-18 2025-07-01 Ambri, LLC Electrochemical energy storage devices

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361630A (zh) * 2020-09-27 2022-04-15 比亚迪股份有限公司 一种电池、电池包和电动车
CN113991226B (zh) * 2021-11-19 2025-03-14 九环储能科技有限公司 组合式储能单体、储能簇及储能装置
CN118489186A (zh) * 2022-08-09 2024-08-13 宁德时代新能源科技股份有限公司 端盖组件、电池组件、电池及用电设备
EP4498485A4 (en) * 2022-09-16 2025-07-02 Contemporary Amperex Technology Co Ltd BATTERY AND ELECTRICAL DEVICE
CN115832552B (zh) * 2022-10-20 2024-10-01 宁德时代新能源科技股份有限公司 电池单体和具有其的电池及用电装置
CN116031112A (zh) * 2023-01-09 2023-04-28 上海正泰智能科技有限公司 智能量测断路器
CN119965427A (zh) * 2023-11-09 2025-05-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN118572296B (zh) * 2024-08-01 2024-10-22 惠州市瑞能德电子有限公司 一种锂离子电池储能模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201576715U (zh) * 2010-01-06 2010-09-08 李辉 一种温控锂电池组
CN102104167A (zh) * 2010-12-13 2011-06-22 湖南科力远新能源股份有限公司 具有内部串联式结构的电池组及其制作方法
CN102270754A (zh) * 2010-06-07 2011-12-07 Sb锂摩托有限公司 电池组

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395905B2 (ja) * 1999-02-23 2010-01-13 トヨタ自動車株式会社 集合電池およびその製造方法
JP2001057202A (ja) * 1999-06-07 2001-02-27 Matsushita Electric Ind Co Ltd 蓄電池
EP1769546A1 (en) * 2004-06-02 2007-04-04 Sylva Industries Limited Prismatic battery with novel intercell connection
CN100429805C (zh) * 2005-06-16 2008-10-29 比亚迪股份有限公司 一种电动车电池包
JP5206711B2 (ja) * 2010-03-05 2013-06-12 トヨタ自動車株式会社 蓄電モジュールと該モジュール用枠体
WO2012057323A1 (ja) * 2010-10-30 2012-05-03 三洋電機株式会社 組電池及びこれを備える車両
CN103430348A (zh) * 2011-03-16 2013-12-04 丰田自动车株式会社 蓄电装置
WO2013099499A1 (ja) * 2011-12-28 2013-07-04 三洋電機株式会社 電源装置、回路基板、及び電源装置を備える車両並びに蓄電装置
JP6315269B2 (ja) * 2014-08-22 2018-04-25 株式会社デンソー 密閉型電池モジュール及びその製造方法
CN206490120U (zh) * 2017-02-28 2017-09-12 宁德时代新能源科技股份有限公司 电池模组
CN207967118U (zh) * 2018-03-30 2018-10-12 宁德时代新能源科技股份有限公司 电池箱体以及电池箱
KR102220898B1 (ko) * 2018-10-17 2021-02-26 삼성에스디아이 주식회사 배터리 팩
US11228070B2 (en) * 2019-11-11 2022-01-18 Ford Global Technologies, Llc Efficient electric architectural layouts for electrified vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201576715U (zh) * 2010-01-06 2010-09-08 李辉 一种温控锂电池组
CN102270754A (zh) * 2010-06-07 2011-12-07 Sb锂摩托有限公司 电池组
CN102104167A (zh) * 2010-12-13 2011-06-22 湖南科力远新能源股份有限公司 具有内部串联式结构的电池组及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050689A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12347832B2 (en) 2013-09-18 2025-07-01 Ambri, LLC Electrochemical energy storage devices
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
US12142735B1 (en) 2013-11-01 2024-11-12 Ambri, Inc. Thermal management of liquid metal batteries
US12224447B2 (en) 2018-12-17 2025-02-11 Ambri Inc. High temperature energy storage systems and methods
EP4152512A4 (en) * 2021-07-30 2023-11-08 Contemporary Amperex Technology Co., Limited BATTERY, ELECTRICAL DEVICE AND METHOD FOR PRODUCING A BATTERY
US12308460B2 (en) 2021-07-30 2025-05-20 Contemporary Amperex Technology (Hong Kong) Limited Battery, powered device, and method of manufacturing battery
CN114464961A (zh) * 2022-01-19 2022-05-10 蜻蜓实验室(深圳)有限公司 锂离子电池及锂离子电池组
CN114464961B (zh) * 2022-01-19 2024-03-29 蜻蜓实验室(深圳)有限公司 锂离子电池及锂离子电池组
WO2023147070A1 (en) * 2022-01-27 2023-08-03 Ambri Inc. Improved energy storage devices

Also Published As

Publication number Publication date
EP4050689A1 (en) 2022-08-31
CN112952244A (zh) 2021-06-11
EP4050689A4 (en) 2024-03-20
KR20220104232A (ko) 2022-07-26
US20220416357A1 (en) 2022-12-29
CN112952244B (zh) 2022-10-18
JP2023502691A (ja) 2023-01-25
JP7450718B2 (ja) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2021098761A1 (zh) 一种电池、电池模组、电池包和电动车
CN211743203U (zh) 一种电池、电池模组、电池包和电动车
CN112701412B (zh) 一种电池、电池模组、电池包和电动车
CN211743281U (zh) 一种电池、电池模组、电池包和电动车
KR102734561B1 (ko) 배터리, 배터리 모듈, 배터리 팩, 및 전기 자동차
KR101923091B1 (ko) 전지
CN211907492U (zh) 顶盖组件及电池
CN112838324B (zh) 一种电池、电池模组、电池包及汽车
WO2021098760A1 (zh) 一种电池、电池模组、电池包及汽车
CN112838303B (zh) 一种电池、电池模组、电池包和电动车
CN102299294B (zh) 一种片段式电池及其制备方法
US20150140418A1 (en) Battery design and method of assembly
CN206271794U (zh) 电池模组壳体结构及电池模组
CN112271374A (zh) 一种多单格一体化锂电池及其制造工艺
CN214124038U (zh) 电池模组、电池包及车辆
CN212517324U (zh) 一种锂离子电池模组
CN112838326B (zh) 电池、电池模组、电池包及电动车
CN111133604A (zh) 电池组
US10573864B2 (en) Battery cells for battery packs in electric vehicles
CN214378644U (zh) 一种多单格一体化锂电池
CN116544626A (zh) 储能装置
CN114725483B (zh) 一种新型结构高电压电池
CN223066355U (zh) 电池组及电池系统
CN119725952A (zh) 电池及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529461

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020890373

Country of ref document: EP

Effective date: 20220525

ENP Entry into the national phase

Ref document number: 20227021330

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE