[go: up one dir, main page]

WO2021097915A1 - 条状件及制作方法、梁及制作方法、叶片及风电机组 - Google Patents

条状件及制作方法、梁及制作方法、叶片及风电机组 Download PDF

Info

Publication number
WO2021097915A1
WO2021097915A1 PCT/CN2019/122721 CN2019122721W WO2021097915A1 WO 2021097915 A1 WO2021097915 A1 WO 2021097915A1 CN 2019122721 W CN2019122721 W CN 2019122721W WO 2021097915 A1 WO2021097915 A1 WO 2021097915A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
groove
strips
adjacent
present application
Prior art date
Application number
PCT/CN2019/122721
Other languages
English (en)
French (fr)
Inventor
苏成功
杨敬东
宋秋香
曾鸿铭
冯俐
Original Assignee
中材科技风电叶片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材科技风电叶片股份有限公司 filed Critical 中材科技风电叶片股份有限公司
Priority to JP2021505991A priority Critical patent/JP7071774B2/ja
Priority to BR112021003768-3A priority patent/BR112021003768B1/pt
Publication of WO2021097915A1 publication Critical patent/WO2021097915A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of wind power generation, in particular to a strip and a manufacturing method, a beam and a manufacturing method, a blade and a wind turbine.
  • Wind turbine blades usually consist of two upper and lower shells to form the outer contour, and the beam-web structure is used to carry the load inside.
  • the beam is the main bearing component.
  • the load borne by the beam is also increasing, and the requirements for the load-bearing capacity of the beam are getting higher and higher.
  • plates have the advantages of excellent mechanical properties and simple processing methods. Using plates as strips and stacking to form reinforced structural parts is an important technical idea for blade design in the field of wind power.
  • the strips and beam members formed by stacking in the prior art usually have the problems of poor stacking stability of the strips and difficulty in positioning during stacking, as well as the problems of unreasonable gaps between the strips.
  • the present application provides a strip and a manufacturing method, a beam and a manufacturing method, a blade and a wind turbine.
  • a fitting structure can be formed, which increases the overall stability and strength of the stacked structure, and improves the load bearing capacity of the overall structure.
  • an embodiment of the present application provides a strip for blades.
  • the strip has a prismatic structure and includes: a first side surface and a second side surface, which are arranged opposite to each other and define the thickness of the strip;
  • a groove is recessed in the thickness direction from the first side surface and extends along the length direction of the first side surface.
  • the width of the groove bottom surface of the first groove is greater than or equal to the width of the second side surface.
  • the groove bottom surface and the second side surface of the first groove are rough surfaces.
  • the strip-shaped member further includes a third side surface and a fourth side surface, which together with the first side surface and the second side surface define a strip-shaped member with a trapezoidal cross-section.
  • the strip member further includes: a first edge groove, which is recessed from the third side surface into the strip member and extends along the length direction of the third side surface, and the groove bottom surface of the first edge groove Connected with the second side surface; the second edge groove is recessed from the fourth side surface into the strip and extends along the length direction of the fourth side surface; the bottom surface of the second edge groove is connected with the second side surface.
  • the first side surface and/or the second side surface are curved surfaces.
  • At least part of the bottom surface of the first groove is covered with a first peeling layer.
  • At least part of the groove bottom surface of the first edge groove, the groove bottom surface of the second edge groove, and the second side surface are covered with a second peeling layer.
  • the second side surface is covered with a second peeling layer.
  • an embodiment of the present application provides a beam for a blade, comprising a plurality of strips according to any one of the above embodiments, the plurality of strips are stacked in a predetermined manner, and the strips adjacent to each other in the thickness direction The second side surface between the shaped members is attached to the groove bottom surface of the adjacent first groove.
  • the orientation of the second side surface of the horizontally adjacent strips is the same, or the orientation of the second side surface of the horizontally adjacent strips is opposite.
  • the strip-shaped members are arranged in a plane or curved surface in the transverse direction.
  • the flow guiding interlayer is a fiber cloth.
  • an embodiment of the present application provides a method for manufacturing a strip, including: pulling a resin-coated fiber bundle and a peeling layer through a pultrusion die, the cross section of the pultrusion die corresponds to that according to any of the above embodiments Cross section of the strip.
  • the method further includes removing material from the edge protrusions of the first groove to reduce the depth of the first groove.
  • an embodiment of the present application provides a method for manufacturing a beam, including: providing a plurality of strips according to any one of the above embodiments; stacking and arranging the plurality of strips in a predetermined manner, and making the thickness direction adjacent The second side surface between the strips is attached to the bottom surface of the groove of the adjacent first groove; the resin is supplied between the adjacent strips; the resin is cured to bond the strips together.
  • an embodiment of the present application provides a blade including the beam according to any one of the foregoing embodiments.
  • an embodiment of the present application provides a wind turbine including the blade according to any one of the foregoing embodiments.
  • the first side surface has a first groove in the thickness direction, and the width of the second side surface is less than or equal to the width of the groove bottom surface of the first groove.
  • Mosaic structure On the one hand, the stability and strength of the stacked structure of the strips are enhanced, and the overall load bearing capacity is improved. On the other hand, it is convenient to locate and limit the strips during the stacking process of the strips. On the other hand, a gap for flowing and filling of the adhesive is left near the groove wall of the first groove, so that the adhesive is fully infiltrated between the strips.
  • the groove bottom surface and the second side surface of the first groove are rough surfaces, and a gap for the adhesive glue to flow can be formed between the rough surfaces, which facilitates the adhesion of the adhesive glue between the contacting rough surfaces. Pass and distribute and form a bonding surface.
  • the strips adjacent in the thickness direction are fitted with each other through the first groove.
  • the stability and strength of the beam are enhanced, and the load bearing capacity is improved.
  • Fig. 1 shows a three-dimensional schematic diagram of a strip according to an embodiment of the present application
  • Fig. 2 shows a schematic cross-sectional structure diagram of a strip according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a cross-sectional structure of a strip including a peeling layer according to an embodiment of the present application
  • 4a and 4b show schematic cross-sectional structure diagrams of different embodiments of a strip according to another embodiment of the present application.
  • 5a and 5b show schematic cross-sectional structure diagrams of different embodiments of a strip according to another embodiment of the present application including a peeling layer;
  • 6a and 6b show schematic cross-sectional structure diagrams of different embodiments of beams according to embodiments of the present application
  • FIG. 7 shows a schematic diagram of a partial cross-sectional structure of a beam according to an embodiment of the present application.
  • Fig. 8 shows a flow chart of a method for manufacturing a beam according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of a blade according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the structure of area A in FIG. 9;
  • Fig. 11 shows a schematic diagram of a wind turbine according to an embodiment of the present application.
  • FIG. 1 shows a three-dimensional schematic diagram of a strip according to an embodiment of the present application
  • FIG. 2 shows a schematic cross-sectional structure of a strip according to an embodiment of the present application.
  • the strip 100 provided by the embodiment of the present application is a prismatic structure with a longitudinal direction extending axially.
  • the strip 100 may be a preform, for example, a preform formed by techniques such as pultrusion, infusion, and pre-curing.
  • the strip 100 may preferably be a pultruded member.
  • the strip 100 may be a high-strength fiber structure.
  • the strip 100 may be a long-shaped plate, and FIG. 1 only schematically shows a section of the strip 100 along the length direction.
  • the width of the strip 100 may be between 50 mm and 250 mm, and the thickness may be between 2 mm and 15 mm.
  • the strip 100 includes a first side surface 110 and a second side surface 120 opposite to each other, and the first side surface 110 and the second side surface 120 define the thickness of the strip 100 between each other.
  • the thickness of the strip 100 is approximately uniform.
  • the first side surface 110 and the second side surface 120 both extend along the length direction of the strip 100 and serve as two side surfaces of the prismatic structure.
  • the first side surface 110 and the second side surface 120 have a width direction perpendicular to the length direction. In one embodiment, the widths of the first side 110 and the second side 120 are uniform along the length direction.
  • the strip 100 further includes a first groove 111 provided on the first side surface 110.
  • the first groove 111 is recessed from the first side surface 110 along the thickness direction, and the depth of the recess is generally uniform.
  • the first groove 111 extends along the length direction of the first side surface 110.
  • the center line of the bottom surface of the first groove 111 is parallel to the center line of the first side surface 110.
  • the depth of the first groove 111 may be between 50 ⁇ m and 500 ⁇ m.
  • the wall of the first groove 111 may be perpendicular to the groove bottom surface, or may intersect with the groove bottom surface at an obtuse angle, so that the first groove 111 has an opening with a width not less than the groove bottom.
  • the groove width of the first groove 111 is uniform along the length direction, that is, the groove bottom surface width of the first groove 111 is uniform along the length direction.
  • the width of the bottom surface of the first groove 111 is greater than or equal to the width of the second side surface 120.
  • the first side surface 110 has the first groove 111 in the thickness direction, and the width of the second side surface 120 is less than or equal to the groove bottom surface width of the first groove 111, so that a plurality of strips
  • a mating structure can be formed between adjacent strips 100 in the thickness direction, that is, the corresponding end of the second side surface 120 of one strip 100 is embedded in the first groove 111 of the other strip 100 .
  • the interlocking structure enhances the stability and strength of the stacked strip 100 structure, and improves the load bearing capacity of the overall structure.
  • Fig. 3 shows a schematic cross-sectional structure diagram of a strip including a peeling layer according to an embodiment of the present application.
  • the first peeling layer 112 has a strip-shaped sheet structure and has two opposite surfaces, one of which is attached to the bottom surface of the first groove 111, and the other surface is flush with the first side surface 110.
  • the first peeling layer 112 may be a release cloth, or other additional layers that can make the surface rough, that is, the first peeling layer 112 is releasably formed on the first strip 100 during the pultrusion molding process of the strip 100.
  • the formation position of the first peeling layer 112 corresponds to the first groove 111, and the strip 100 exposing the first groove 111 is obtained after the first peeling layer 112 is peeled off.
  • the edge protrusions on one or both sides of the first groove 111 may be removed to reduce the first groove 111.
  • the depth of the groove 111 In some optional embodiments, the depth of the first groove 111 can be reduced to the micrometer level or millimeter level, or even zero.
  • the material removal operation can be carried out by means of grinding, cutting, and erosion.
  • the groove bottom surface of the first groove 111 and the second side surface 120 are rough surfaces.
  • the rough surface can provide a gap for the adhesive to flow after forming a contact surface on the surface, which is beneficial for the adhesive to flow between the contact surfaces. Pass and distribute in between and form a uniformly distributed bonding surface.
  • a rough groove bottom surface of the first groove 111 can be formed. It is understandable that the rough surface can also be achieved by means such as grinding, cutting, and erosion.
  • the strip 100 further includes a third side 130 and a fourth side 140.
  • the third side 130 and the fourth side 140 are sandwiched between the first side 110 and the second side 120. between.
  • the third side 130 and the fourth side 140 together with the first side 110 and the second side 120 define a strip 100 having a trapezoidal cross section.
  • the inclination angle of the third side 130 and the fourth side 140 is 5° to 89.9°, preferably 85° to 89°.
  • the cross-section in this context particularly refers to the cross-section perpendicular to the axial direction of the strip 100.
  • the cross section of the strip 100 is an isosceles trapezoid.
  • the strip 100 further includes a first edge groove 131.
  • the first edge groove 131 is recessed from the third side 130 toward the strip 100, and the depth of the recess is generally For uniform.
  • the first edge groove 131 extends along the length direction of the third side surface 130, and the groove width of the first edge groove 131 is uniform along the length direction, that is, the groove bottom surface width of the first edge groove 131 is uniform along the length direction.
  • the bottom surface of the first edge groove 131 is connected to the second side surface 120.
  • the strip 100 further includes a second edge groove 141.
  • the second edge groove 141 is recessed from the fourth side surface 140 into the strip 100, and the depth of the recess Generally uniform.
  • the second edge groove 141 extends along the length direction of the fourth side surface 140, and the groove width of the second edge groove 141 is uniform along the length direction, that is, the groove bottom surface width of the second edge groove 141 is uniform along the length direction.
  • the bottom surface of the second edge groove 141 is connected to the second side surface 120.
  • FIG. 4a and 4b show different arrangements of the first edge groove 131 and the second edge groove 141 in the strip 100.
  • the groove bottom surfaces of the first edge groove 131 and the second edge groove 141 respectively intersect the second side surface 120 at an obtuse angle
  • the groove bottom surfaces of the first edge groove 131 and the second edge groove 141 are arranged It is substantially parallel to the third side 130 and the fourth side 140 respectively.
  • the groove bottom surfaces of the first edge groove 131 and the second edge groove 141 respectively intersect the second side surface 120 at an obtuse angle
  • the groove walls of the first edge groove 131 and the second edge groove 141 are arranged It is substantially parallel to the second side surface 120.
  • Figs. 5a and 5b show schematic cross-sectional structure diagrams of different embodiments of a strip according to another embodiment of the present application including a peeling layer.
  • the groove bottom surface of the first edge groove 131, the groove bottom surface of the second edge groove 141 and the second side surface 120 are at least partially covered with the second peeling layer 122.
  • the second peeling layer 122 is elongated, and one surface is attached to the bottom surface of the first edge groove 131, the bottom surface of the second edge groove 141 and the second side surface 120.
  • the second release layer 122 may be a release cloth, that is, the second release layer 122 is releasably formed on the second side 120 of the strip 100 during the pultrusion molding process of the strip 100 and extends from the second side 120 to the first side 120. At some positions of the three side surfaces 130 and the fourth side surface 140, the first edge groove 131, the second edge groove 141, and the second side surface 120 are exposed after the second peeling layer 122 is peeled off.
  • the groove bottom surface of the first edge groove 131 and the groove bottom surface of the second edge groove 141 may be rough surfaces.
  • the second side 120 is covered with a second peeling layer 122.
  • the width of the second peeling layer 122 is equal to the width of the second side surface 120.
  • the second peeling layer 122 is releasably formed on the second side 120 of the strip 100 during the pultrusion molding process of the strip 100. After the second peeling layer 122 is peeled off, the rough second surface is exposed. Side 120.
  • first side 110 and the second side 120 are substantially flat. In other embodiments, the first side surface 110 and the second side surface 120 are curved surfaces, which can better conform to the curved contour of the blade.
  • the embodiment of the present application provides a beam 13 which can be used for blades, especially for blades of a wind power generating set.
  • Figures 6a, 6b and 7, Figures 6a and 6b show schematic cross-sectional structure diagrams of different embodiments of beams according to embodiments of the present application;
  • Figure 7 shows a schematic partial cross-sectional structure diagram of beams according to embodiments of the present application.
  • the beam 13 provided in the embodiment of the present application includes a plurality of strips 100 according to any one of the above embodiments, wherein the plurality of strips 100 are stacked and arranged in a predetermined manner.
  • Figures 6a and 6b schematically show strips 100 arranged in three rows and four columns.
  • the strips 100 in the beam 13 are not limited to the arrangement shown in the figures. Specifically, the plurality of strips 100 are arranged coaxially, that is, the axes of the plurality of strips 100 are substantially parallel.
  • the second side surface 120 between the adjacent strips 100 in the thickness direction of the plurality of strips 100 is attached to the groove bottom surface of the adjacent first groove 111.
  • the strips 100 are fitted with each other through the first groove 111 in the thickness direction. That is, the corresponding end of the second side 120 of one strip 100 is embedded in the first groove 111 of another adjacent strip 100.
  • the second side surface 120 between the strips 100 adjacent in the thickness direction of the plurality of strips 100 is attached to the groove bottom surface of the adjacent first groove 111, so that the beam 13 A fitting structure can be formed between the strips 100 arranged in the thickness direction.
  • the interlocking structure enhances the structural stability and strength of the beam 13 and improves the ability of the beam 13 to bear loads.
  • the orientations of the second side surfaces 120 of the transversely adjacent strips 100 are the same.
  • a V-shaped gap is formed between the adjacent strips in the transverse direction, which can provide enough space for the adhesive to flow, and facilitate the distribution of the adhesive between the strips 100.
  • the orientation of the second side surface 120 of the horizontally adjacent strips 100 is opposite. That is, the horizontally adjacent strips 100 are arranged staggered and reversed, so that the cross-sectional shapes of the horizontally adjacent strips 100 match and fit and form an inclined gap between them. The strips 100 are closely arranged and increase the horizontally adjacent strips. Gluing area between pieces 100.
  • the strips 100 are arranged in a planar or curved manner along the transverse direction.
  • the strips 100 are arranged along the transverse direction to adapt to the contour of the blade.
  • the angle between the adjacent strips 100 in the lateral direction can be coordinated through the V-shaped gap, and the arrangement of the strips 100 will not be caused by the curved surface.
  • a closed space is formed at the gap to avoid poor resin infusion caused by the closed space.
  • a diversion interlayer is provided between adjacent strips 100 and filled with resin.
  • the flow guide interlayer is beneficial for the resin to infiltrate between the strips 100 uniformly and well, and reduces the risk of the strips 100 not being penetrated by the resin.
  • the guide interlayer can be a woven sheet.
  • the diversion interlayer is a fiber cloth, such as a two-dimensional woven fiber cloth, the surface weight of the diversion interlayer is 100-1200kg/m2, and the weaving mode of the diversion interlayer can be 0°/90° interlace or ⁇ 45° interlace.
  • the embodiment of the application provides a method for manufacturing a strip, including the steps of: pulling the resin-coated fiber bundle and the peeling layer through a pultrusion die, the cross section of the pultrusion die corresponds to the strip described in any of the above embodiments.
  • the cross section of the shaped member 100 is
  • the manufacturing method of the strip-shaped member further includes the step of removing material from the edge protrusions of the first groove 111 to reduce the depth of the first groove 111.
  • the depth of the first groove 111 can be reduced to the micrometer level or millimeter level, or even zero.
  • the material removal operation can be carried out by means of grinding, cutting, and erosion.
  • FIG. 8 shows a flowchart of a method for manufacturing a beam according to an embodiment of the present application.
  • the embodiment of the present application provides a method for manufacturing a beam, which includes the steps:
  • the strip-shaped member may be the strip-shaped member 100 according to any of the above-mentioned embodiments.
  • S120 A plurality of strips 100 are stacked and arranged in a predetermined manner, and the second side surface 120 between the strips 100 adjacent in the thickness direction is attached to the groove bottom surface of the adjacent first groove 111.
  • S130 Supply resin between adjacent strips 100.
  • the strip 100 is stacked between the airtight cover and the mold to form a pouring space surrounding the strip 100, and one or more pouring ports and pumps are arranged on the airtight cover.
  • Vacuum port a pump used for vacuuming vacuums the filling space through the vacuum port.
  • the resin enters the infusion space in a vacuum state through the infusion port, while keeping the pump continuing to work, so that the resin is filled between the strips 100. After that, the resin may be cured by heating the mold to bond the strips 100 together.
  • the second side surface 120 between the strips 100 adjacent in the thickness direction of the plurality of strips 100 is attached to the groove bottom surface of the adjacent first groove 111,
  • a fitting structure can be formed between the strips 100 arranged in the thickness direction.
  • the resulting beam 13 has high structural stability and strength, and has a better load bearing capacity.
  • FIG. 9 shows a schematic diagram of a blade according to an embodiment of the present application
  • FIG. 10 shows a schematic structural diagram of the area A in FIG.
  • the blade 10 provided by the embodiment of the present application includes a shell 11 and a web 12.
  • the web 12 is arranged in the shell 11 and connected to the shell 11.
  • the blade 10 also includes a beam 13 according to any of the above-mentioned embodiments.
  • the beams 13 are located at the two ends where the web 12 is connected to the shell 11, and the beams 13 extend along the length direction of the blade 10.
  • the blade 10 provided by the embodiment of the present application includes the beam 13 according to any of the above embodiments, so that the blade 10 has high structural stability and strength, and has a stronger load bearing capacity.
  • FIG. 11 shows a schematic diagram of a wind turbine generator according to an embodiment of the present application.
  • the wind generator set provided by the embodiment of the present application mainly includes a tower 4, a nacelle 3, a generator 2 and an impeller 1.
  • the nacelle 3 is arranged at the top of the tower 4, and the generator 2 is arranged in the nacelle 3, which may be located inside the nacelle 3. Of course, it can also be located outside the nacelle 3.
  • the impeller 1 includes a hub 20, and the generator 2 is connected to the hub 20 and fixed on the base of the nacelle 3.
  • the wind turbine generator provided by the embodiment of the present application includes the blade 10 according to any of the above-mentioned embodiments.
  • the wind turbine generator set provided by the embodiment of the present application includes the blade 10 according to any one of the above embodiments.
  • the blade 10 has high structural stability and high strength, so that the wind turbine generator can operate continuously more stably and reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种条状件及制作方法、梁及制作方法、叶片及风电机组。该条状件为棱柱状结构且包括:第一侧面和第二侧面,相对设置且彼此间限定条状件的厚度;第一凹槽,自第一侧面沿厚度方向凹入设置且沿第一侧面的长度方向延伸,第一凹槽的槽底表面宽度大于等于第二侧面的宽度。该条状件堆叠时能够形成嵌合结构,增加堆叠结构的整体稳定性和强度,提高整体结构承受载荷能力。

Description

条状件及制作方法、梁及制作方法、叶片及风电机组
相关申请的交叉引用
本申请要求享有于2019年11月22日提交的名称为“条状件及制作方法、梁及制作方法、叶片及风电机组”的中国专利申请201911159124.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风力发电领域,具体涉及一种条状件及制作方法、梁及制作方法、叶片及风电机组。
背景技术
随着风电技术的不断发展,提供运行稳定的更大功率的风力发电机组已经是行业中发展趋势,高功率的风力发电机组一方面会使得叶片越来越长。叶片长度的增加对叶片结构设计提出了新的要求。
风电叶片通常由上下两个壳体构成外部轮廓,内部使用梁-腹板结构进行承载,梁是主要承载部件。随着叶片长度的增加,梁承受的载荷也不断增大,对梁的承载能力要求也越来越高。板材作为梁结构具有力学性能优异、加工方法简单的优点,使用板材作为条状件及堆叠形成增强结构件是风电领域叶片设计的重要技术思路。
然而,现有技术中的条状件及堆叠形成的梁构件,通常存在条状件堆叠稳定性较差和堆叠时不易定位的问题,以及条状件之间间隙设置不合理的问题。
发明内容
本申请提供一种条状件及制作方法、梁及制作方法、叶片及风电机组,条状件堆叠时能够形成嵌合结构,增加堆叠结构的整体稳定性和强 度,提高整体结构承受载荷能力。
第一方面,本申请实施例提供一种条状件,用于叶片,条状件为棱柱状结构且包括:第一侧面和第二侧面,相对设置且彼此间限定条状件的厚度;第一凹槽,自第一侧面沿厚度方向凹入设置且沿第一侧面的长度方向延伸,第一凹槽的槽底表面宽度大于等于第二侧面的宽度。
根据本申请实施例的一个方面,第一凹槽的槽底表面和第二侧面为粗糙面。
根据本申请实施例的一个方面,条状件还包括第三侧面和第四侧面,与第一侧面和第二侧面共同限定横截面为梯形的条状件。
根据本申请实施例的一个方面,条状件还包括:第一边缘槽,自第三侧面向条状件内凹入设置且沿第三侧面的长度方向延伸,第一边缘槽的槽底表面与第二侧面相连接;第二边缘槽,自第四侧面向条状件内凹入设置且沿第四侧面的长度方向延伸,第二边缘槽的槽底表面与第二侧面相连接。
根据本申请实施例的一个方面,第一侧面和/或第二侧面为曲面。
根据本申请实施例的一个方面,第一凹槽的槽底表面的至少部分覆盖有第一剥离层。
根据本申请实施例的一个方面,第一边缘槽的槽底表面、第二边缘槽的槽底表面和第二侧面的至少部分覆盖有第二剥离层。
根据本申请实施例的一个方面,第二侧面覆盖有第二剥离层。
第二方面,本申请实施例提供一种梁,用于叶片,包括多个根据上述任一实施方式的条状件,多个条状件以预定方式堆叠排布,且厚度方向相邻的条状件之间第二侧面贴合至相邻第一凹槽的槽底表面。
根据本申请实施例的一个方面,横向相邻的条状件中第二侧面的朝向相同,或者横向相邻的条状件中第二侧面的朝向相反。
根据本申请实施例的一个方面,条状件沿横向以平面或曲面方式排布。
根据本申请实施例的一个方面,横向相邻的条状件之间具有间隙,多个条状件中相邻条状件之间填充有树脂或者相邻条状件之间设置导流夹层 并填充有树脂。
根据本申请实施例的一个方面,导流夹层为纤维布。
第三方面,本申请实施例提供一种条状件的制作方法,包括:牵拉覆有树脂的纤维束和剥离层通过拉挤模具,拉挤模具的横截面对应于根据上述任一实施方式的条状件的横截面。
根据本申请实施例的一个方面,还包括对第一凹槽的边缘凸起进行去材处理,以减小第一凹槽的深度。
第四方面,本申请实施例提供一种梁的制作方法,包括:提供多个根据上述任一实施方式的条状件;以预定方式堆叠排布多个条状件,并使厚度方向相邻的条状件之间第二侧面贴合至相邻第一凹槽的槽底表面;供给树脂至相邻条状件之间;固化树脂以将条状件结合在一起。
第五方面,本申请实施例提供一种叶片,包括根据上述任一实施方式的梁。
第六方面,本申请实施例提供一种风电机组,包括根据上述任一实施方式的叶片。
根据本申请实施例的条状件,厚度方向上第一侧面具有第一凹槽且第二侧面的宽度小于等于第一凹槽的槽底表面宽度,厚度方向相邻的条状件之间形成嵌合结构。一方面,增强条状件堆叠结构的稳定性和强度,提高整体承受载荷能力。另一方面,在条状件堆叠过程中便于对条状件的定位和限位。再一方面,第一凹槽的槽壁附近留有粘接剂流动和填充的空隙,使得条状件之间充分浸润粘接剂。
在一些可选的实施例中,第一凹槽的槽底表面和第二侧面为粗糙面,粗糙面之间能够形成供粘接胶流动的间隙,利于粘接胶在接触的粗糙面之间通过和分布并形成粘接面。
根据本申请实施例的梁,厚度方向相邻的条状件通过第一凹槽彼此嵌合,一方面,增强梁的稳定性和强度,提高承受载荷能力。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术 效果。
图1示出根据本申请一个实施方式的条状件的立体示意图;
图2示出根据本申请一个实施方式的条状件的截面结构示意图;
图3示出根据本申请一个实施方式的条状件包括剥离层的截面结构示意图;
图4a和图4b示出根据本申请另一个实施方式的条状件的不同实施例的截面结构示意图;
图5a和图5b示出根据本申请另一个实施方式的条状件的不同实施例包括剥离层的截面结构示意图;
图6a和图6b示出根据本申请实施方式的梁的不同实施例的截面结构示意图;
图7示出根据本申请实施方式的梁的局部截面结构示意图;
图8示出根据本申请实施例的梁的制作方法的流程图;
图9示出根据本申请实施方式的叶片的示意图;
图10示出图9中区域A的结构示意图;
图11示出根据本申请实施方式的风电机组的示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1-叶轮;2-发电机;3-机舱;4-塔筒;
10-叶片;11-外壳;12-腹板;13-梁;20-轮毂;
100-条状件;
110-第一侧面;111-第一凹槽;112-第一剥离层;
120-第二侧面;122-第二剥离层;
130-第三侧面;131-第一边缘槽;
140-第四侧面;141-第二边缘槽。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下 实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的条状件及制作方法、梁及制作方法、叶片及风电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图11对根据本申请实施例的条状件及制作方法、梁及制作方法、叶片及风电机组进行详细描述。
本申请实施例提供一种条状件,其可用于叶片,尤其可用于风力发电机组的叶片。参阅图1和图2,图1示出根据本申请一个实施方式的条状件的立体示意图;图2示出根据本申请一个实施方式的条状件的截面结构示意图。本申请实施例提供的条状件100为棱柱状结构,具有轴向延伸的长度方向。条状件100可以为预成型件,例如通过拉挤、灌注、预固化等技术成型的预成型件。条状件100可以优选为拉挤件。条状件100可以为高强度纤维结构体。条状件100可以为长条形状的板材,图1仅示意地示出条状件沿100长度方向上的一段。条状件100的宽度可以在50mm至250mm之间,厚度可以在2mm至15mm之间。条状件100包括相对设置的第一侧面110和第二侧面120,且第一侧面110和第二侧面120彼此间限定条状件100的厚度。条状件100的厚度大致为均匀的。第一侧面110和第 二侧面120均沿条状件100的长度方向延伸且作为棱柱状结构的两个侧面。第一侧面110和第二侧面120具有垂直于长度方向的宽度方向。在一个实施例中,第一侧面110和第二侧面120的宽度沿长度方向是均匀的。
继续参阅图1和图2,条状件100还包括设置于第一侧面110的第一凹槽111。第一凹槽111自第一侧面110沿厚度方向凹入设置,凹入的深度大体为均匀的。第一凹槽111沿第一侧面110的长度方向延伸。在一个实施例中,第一凹槽111的槽底表面的中心线与第一侧面110的中心线平行。第一凹槽111的深度可以在50μm至500μm之间。第一凹槽111的壁可以垂直于槽底表面,也可以与槽底表面之间呈钝角相交,使得第一凹槽111具有宽度不小于槽底的开口。在一个实施例中,第一凹槽111的槽宽沿长度方向是均匀的,即第一凹槽111的槽底表面宽度沿长度方向是均匀的。第一凹槽111的槽底表面宽度大于等于第二侧面120的宽度。
根据本申请实施例的条状件100,厚度方向上第一侧面110具有第一凹槽111且第二侧面120的宽度小于等于第一凹槽111的槽底表面宽度,这样使得多个条状件100堆叠设置时厚度方向相邻的条状件100之间能够形成嵌合结构,即一个条状件100的第二侧面120对应端嵌入至另一个条状件100的第一凹槽111中。一方面,嵌合结构增强了堆叠后的条状件100结构的稳定性和强度,提高整体结构承受载荷的能力。另一方面,在条状件100堆叠过程中便于对条状件的定位和限位。再一方面,第一凹槽111的槽壁附近留有粘接剂流动和填充的空隙,使得条状件100之间充分且均匀浸润粘接剂。
参阅图3,在一些实施例中,第一凹槽111的槽底表面的至少部分覆盖有第一剥离层112。图3示出根据本申请一个实施方式的条状件包括剥离层的截面结构示意图。第一剥离层112为条形片状结构且具有相对的两个表面,其中一个表面贴附至第一凹槽111的槽底表面,另一个表面与第一侧面110平齐。第一剥离层112可以是脱模布,或者是可使表面粗糙的其他附加层,即第一剥离层112在条状件100拉挤成型过程中可剥离地形成在条状件100的第一侧面110处,第一剥离层112的形成位置对应为第一凹槽111,在剥离第一剥离层112后得到露出第一凹槽111的条状件 100。在一些可选的实施例中,得到露出第一凹槽111的条状件100之后还可以对第一凹槽111的一侧或两侧边缘凸起进行去材处理,以减小第一凹槽111的深度。在一些可选的实施例中,第一凹槽111的深度可以减小到微米级或毫米级,甚至可以为零。例如可以通过打磨、切削、侵蚀等手段来进行去材操作。
在一个实施例中,第一凹槽111的槽底表面和第二侧面120为粗糙面,粗糙面能够在该面形成接触面后提供粘接剂流动的间隙,利于粘接剂在接触面之间通过和分布并形成分布均匀的粘接面。具体地,剥离第一剥离层112后可形成粗糙的第一凹槽111的槽底表面。可以理解的是,粗糙表面还可以通过打磨、切削、侵蚀等手段来实现。
在一些实施例中,参阅图1和图2,条状件100还包括第三侧面130和第四侧面140,第三侧面130和第四侧面140夹设在第一侧面110和第二侧面120之间。第三侧面130和第四侧面140与第一侧面110和第二侧面120共同限定横截面为梯形的条状件100。第三侧面130和第四侧面140的倾角为5°至89.9°,优选为85°至89°。本文中的横截面尤其指垂直于条状件100的轴向的横截面。在一个优选实施例中,条状件100的横截面为等腰梯形。
图4a和图4b示出根据本申请另一个实施方式的条状件的不同实施例的截面结构示意图。在一些实施例中,参阅图4a和图4b,条状件100还包括第一边缘槽131,第一边缘槽131自第三侧面130向条状件100内凹入设置,凹入的深度大体为均匀的。第一边缘槽131沿第三侧面130的长度方向延伸,第一边缘槽131的槽宽沿长度方向是均匀的,即第一边缘槽131的槽底表面宽度沿长度方向是均匀的。第一边缘槽131的槽底表面与第二侧面120相连接。
在一些实施例中,继续参阅图4a和图4b,条状件100还包括第二边缘槽141,第二边缘槽141自第四侧面140向条状件100内凹入设置,凹入的深度大体为均匀的。第二边缘槽141沿第四侧面140的长度方向延伸,第二边缘槽141的槽宽沿长度方向是均匀的,即第二边缘槽141的槽底表面宽度沿长度方向是均匀的。第二边缘槽141的槽底表面与第二侧面 120相连接。
图4a和图4b示出了条状件100中第一边缘槽131和第二边缘槽141的不同设置形式。图4a所示的实施例中,第一边缘槽131和第二边缘槽141的槽底表面分别与第二侧面120相交成钝角,第一边缘槽131和第二边缘槽141的槽底表面设置为分别与第三侧面130和第四侧面140大体平行。图4a所示的实施例中,第一边缘槽131和第二边缘槽141的槽底表面分别与第二侧面120大体相交成钝角,第一边缘槽131和第二边缘槽141的槽壁设置为大体平行于第二侧面120。
参阅图5a和图5b,图5a和图5b示出根据本申请另一个实施方式的条状件的不同实施例包括剥离层的截面结构示意图。在一些实施例中,如图5a所示,第一边缘槽131的槽底表面、第二边缘槽141的槽底表面和第二侧面120的至少部分覆盖有第二剥离层122。第二剥离层122为长条形,且一个表面贴附至第一边缘槽131的槽底表面、第二边缘槽141的槽底表面和第二侧面120。第二剥离层122可以是脱模布,即第二剥离层122在条状件100拉挤成型过程中可剥离地形成在条状件100的第二侧面120以及从第二侧面120延伸至第三侧面130和第四侧面140的部分位置处,在剥离第二剥离层122后暴露出第一边缘槽131、第二边缘槽141和第二侧面120。第一边缘槽131的槽底表面和第二边缘槽141的槽底表面可以是粗糙面。在另一些实施例中,如图5b所示,第二侧面120覆盖有第二剥离层122。优选地,第二剥离层122的宽度与第二侧面120的宽度相等。在该实施例中,第二剥离层122在条状件100拉挤成型过程中可剥离地形成在条状件100的第二侧面120,在剥离第二剥离层122后暴露出粗糙的第二侧面120。
在一些实施例中,第一侧面110和第二侧面120大致为平面。在另一些实施例中,第一侧面110和第二侧面120为曲面,可以更好地顺应叶片的曲面轮廓。
本申请实施例提供一种梁13,其可用于叶片,尤其可用于风力发电机组的叶片。参阅图6a、图6b和图7,图6a和图6b示出根据本申请实施方式的梁的不同实施例的截面结构示意图;图7示出根据本申请实施方式 的梁的局部截面结构示意图。本申请实施例提供的梁13包括多个根据上述任一实施例的条状件100,其中多个条状件100以预定方式堆叠排布。图6a和图6b中示意性地示出三行四列排布的条状件100,可以理解的是梁13中的条状件100不限于图中所示的排布方式。具体地,多个条状件100同轴向设置,即多个条状件100的轴线之间大致平行。多个条状件100中厚度方向相邻的条状件100之间第二侧面120贴合至相邻第一凹槽111的槽底表面。条状件100在厚度方向上通过第一凹槽111彼此嵌合。即一个条状件100的第二侧面120对应端嵌入至相邻的另一个条状件100的第一凹槽111中。横向相邻的条状件100之间具有间隙,多个条状件100中相邻条状件100之间填充有树脂。
根据本申请实施例的梁13,多个条状件100中厚度方向相邻的条状件100之间第二侧面120贴合至相邻第一凹槽111的槽底表面,这样使得梁13的沿厚度方向设置的条状件100之间能够形成嵌合结构。嵌合结构增强了梁13的结构稳定性和强度,提高了梁13承受载荷的能力。
在一些实施例中,如图6a所示,横向相邻的条状件100中第二侧面120的朝向相同。横向相邻条状件之间形成V型间隙,能够提供足够的粘接剂流动的空间,利于粘接剂在条状件100之间的分布。
在另一些实施例中,如图6b所示,横向相邻的条状件100中第二侧面120的朝向相反。即横向相邻的条状件100交错颠倒设置,使得横向相邻的条状件100的截面形状匹配契合并且之间形成倾斜间隙,条状件100之间排列紧密并增大横向相邻条状件100之间的胶合面积。
在一些实施例中,条状件100沿横向以平面或曲面方式排布。条状件100沿横向适应叶片的轮廓进行排布。在形成V型间隙的实施例中,条状件100沿横向以曲面方式排布时,能够通过V型间隙协调横向相邻的条状件100之间的夹角,不会因为曲面方式排布而在间隙处形成闭合空间,避免了闭合空间导致的树脂灌注不良。
在一些实施例中,相邻条状件100之间设置导流夹层并填充有树脂。导流夹层有利于树脂在条状件100之间均匀良好浸润,减少条状件100之间不被树脂灌透的风险。导流夹层可以为编织片状体。具体地,导流夹层 为纤维布,例如二维编织纤维布,导流夹层的面重为100-1200kg/m2,导流夹层的编织方式可为0°/90°交织或±45°交织。
本申请实施例提供一种条状件的制作方法,包括步骤:牵拉覆有树脂的纤维束和剥离层通过拉挤模具,拉挤模具的横截面对应于上述任一实施例所述的条状件100的横截面。
进一步地,条状件的制作方法还包括步骤:对第一凹槽111的边缘凸起进行去材处理,以减小第一凹槽111的深度。在一些可选的实施例中,第一凹槽111的深度可以减小到微米级或毫米级,甚至可以为零。例如可以通过打磨、切削、侵蚀等手段来进行去材操作。
请参阅图8,图8示出根据本申请实施例的梁的制作方法的流程图。
本申请实施例提供一种梁的制作方法,包括步骤:
S110:提供多个条状件。其中,条状件可以是根据上述任一实施例的条状件100。
S120:以预定方式堆叠排布多个条状件100,并使厚度方向相邻的条状件100之间第二侧面120贴合至相邻第一凹槽111的槽底表面。
S130:供给树脂至相邻条状件100之间。
S140:固化树脂以将条状件100结合在一起。
具体地,将条状件100堆叠条状件100在气密性覆盖体和模具之间以形成环绕条状件100的灌注空间,在气密性覆盖体上布置一个或多个灌注口和抽真空口,用于抽真空的泵通过抽真空口对灌注空间抽真空。树脂通过灌注口进入真空状态的灌注空间,同时保持泵继续工作,使树脂填充至条状件100之间。之后,可以通过加热模具来固化树脂,以将条状件100结合在一起。
根据本申请实施例的梁的制作方法,通过使多个条状件100中厚度方向相邻的条状件100之间第二侧面120贴合至相邻第一凹槽111的槽底表面,这样得到的梁13中沿厚度方向设置的条状件100之间能够形成嵌合结构。使得到的梁13结构稳定性高和强度强,承受载荷的能力更好。
本申请实施例提供一种叶片10,参阅图9和图10,图9示出根据本申请实施方式的叶片的示意图;图10示出图9中区域A的结构示意图。 本申请实施例提供的叶片10包括外壳11以及腹板12。腹板12设置于外壳11内并连接于外壳11。叶片10还包括根据上述任一实施例的梁13。梁13位于腹板12连接于壳体11的两端处,并且梁13沿着叶片10的长度方向延伸。本申请实施例提供的叶片10包括根据上述任一实施例的梁13,使得叶片10的结构稳定性高和强度高,承受载荷的能力更强。
本申请实施例提供一种风电机组,参阅图11,图11示出根据本申请实施方式的风电机组的示意图。本申请实施例提供的风力发电机组主要包括塔筒4、机舱3、发电机2以及叶轮1,机舱3设置于塔筒4的顶端,发电机2设置于机舱3,可以位于机舱3的内部,当然,也可以位于机舱3的外部。叶轮1包括轮毂20,发电机2与轮毂20连接并固定于机舱3的底座上。本申请实施例提供的风电机组包括根据上述任一实施例的叶片10。两个以上叶片10分别与轮毂20连接,叶片10在风载的作用下带动轮毂20转动,进而实现发电机2的发电。本申请实施例提供的风力发电机组包括根据上述任一实施例的叶片10,叶片10的结构稳定性高和强度高,使得风力发电机组能够更稳定、可靠地连续运行。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种条状件,用于叶片,其中,所述条状件为棱柱状结构且包括:
    第一侧面和第二侧面,相对设置且彼此间限定所述条状件的厚度;
    第一凹槽,自所述第一侧面沿所述厚度方向凹入设置且沿所述第一侧面的长度方向延伸,
    所述第一凹槽的槽底表面宽度大于等于所述第二侧面的宽度。
  2. 根据权利要求1所述的条状件,其中,所述第一凹槽的槽底表面和所述第二侧面为粗糙面。
  3. 根据权利要求1所述的条状件,其中,所述条状件还包括第三侧面和第四侧面,与所述第一侧面和所述第二侧面共同限定横截面为梯形的所述条状件。
  4. 根据权利要求3所述的条状件,其中,所述条状件还包括:
    第一边缘槽,自所述第三侧面向所述条状件内凹入设置且沿所述第三侧面的长度方向延伸,所述第一边缘槽的槽底表面与所述第二侧面相连接;
    第二边缘槽,自所述第四侧面向所述条状件内凹入设置且沿所述第四侧面的长度方向延伸,所述第二边缘槽的槽底表面与所述第二侧面相连接。
  5. 根据权利要求1所述的条状件,其中,所述第一侧面和/或所述第二侧面为曲面。
  6. 根据权利要求1至5任一项所述的条状件,其中,所述第一凹槽的槽底表面的至少部分覆盖有第一剥离层。
  7. 根据权利要求4所述的条状件,其中,所述第一边缘槽的槽底表面、所述第二边缘槽的槽底表面和所述第二侧面的至少部分覆盖有第二剥离层;或者所述第二侧面覆盖有第二剥离层。
  8. 一种梁,用于叶片,其中,包括多个如权利要求1至5任一项所述的条状件,多个所述条状件以预定方式堆叠排布,且厚度方向相邻的所 述条状件之间所述第二侧面贴合至相邻所述第一凹槽的槽底表面。
  9. 根据权利要求8所述的梁,其中,横向相邻的所述条状件中所述第二侧面的朝向相同,或者横向相邻的所述条状件中所述第二侧面的朝向相反。
  10. 根据权利要求8或9所述的梁,其中,所述条状件沿横向以平面或曲面方式排布。
  11. 根据权利要求8或9所述的梁,其中,横向相邻的所述条状件之间具有间隙,多个所述条状件中相邻所述条状件之间填充有树脂,或者相邻所述条状件之间设置导流夹层并填充有树脂。
  12. 根据权利要求11所述的梁,其中,所述导流夹层为纤维布。
  13. 一种条状件的制作方法,其中,包括:
    牵拉覆有树脂的纤维束和剥离层通过拉挤模具,所述拉挤模具的横截面对应于如权利要求1至7任一项所述的条状件的横截面。
  14. 根据权利要求13所述的条状件的制作方法,其中,还包括对所述第一凹槽的边缘凸起进行去材处理,以减小所述第一凹槽的深度。
  15. 一种梁的制作方法,其中,包括:
    提供多个如权利要求1至5任一项所述的条状件;
    以预定方式堆叠排布多个所述条状件,并使厚度方向相邻的所述条状件之间所述第二侧面贴合至相邻所述第一凹槽的槽底表面;
    供给树脂至相邻所述条状件之间;
    固化所述树脂以将所述条状件结合在一起。
  16. 一种叶片,其中,包括如权利要求8至12任一项所述的梁。
  17. 一种风电机组,其中,包括如权利要求16所述的叶片。
PCT/CN2019/122721 2019-11-22 2019-12-03 条状件及制作方法、梁及制作方法、叶片及风电机组 WO2021097915A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505991A JP7071774B2 (ja) 2019-11-22 2019-12-03 棒状体及び製造方法、梁及び製造方法、ブレード並び風力発電ユニット
BR112021003768-3A BR112021003768B1 (pt) 2019-11-22 2019-12-03 Tira e longarina para uma pá e pá

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911159124.3A CN110836165B (zh) 2019-11-22 2019-11-22 条状件及制作方法、梁及制作方法、叶片及风电机组
CN201911159124.3 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021097915A1 true WO2021097915A1 (zh) 2021-05-27

Family

ID=69577121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122721 WO2021097915A1 (zh) 2019-11-22 2019-12-03 条状件及制作方法、梁及制作方法、叶片及风电机组

Country Status (4)

Country Link
JP (1) JP7071774B2 (zh)
CN (1) CN110836165B (zh)
BR (1) BR112021003768B1 (zh)
WO (1) WO2021097915A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464357B (zh) * 2021-03-22 2023-04-25 中材科技(萍乡)风电叶片有限公司 条状件、梁、叶片以及风电机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545728A (en) * 1983-08-30 1985-10-08 Cheney Jr Marvin C Wind turbine generator with improved operating subassemblies
CN101266965A (zh) * 2007-03-15 2008-09-17 卓恩民 半导体封装体堆叠结构及其制法
CN101596781A (zh) * 2009-06-19 2009-12-09 朱仕杰 软水器储水罐及制造模具、制作工艺
CN108661853A (zh) * 2018-02-01 2018-10-16 上海电气风电集团有限公司 一种风电叶片主梁结构及其制作方法
CN108869167A (zh) * 2018-06-07 2018-11-23 武汉理工大学 风机叶片大梁及其制备方法
CN208950768U (zh) * 2018-06-29 2019-06-07 中材科技(萍乡)风电叶片有限公司 风电叶片板材及风电叶片
CN110242511A (zh) * 2019-05-08 2019-09-17 上纬新材料科技股份有限公司 风轮机叶片制作用板材、风轮机叶片梁帽结构及制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890005310A (ko) * 1987-09-17 1989-05-13 나까하라 노부유끼 섬유강화 복합수지 인발성형품(引拔成形品) 및 그의 제조방법
US20040145079A1 (en) * 2003-01-27 2004-07-29 Yung-Kun Lin Composite material member having reinforcement ribs and method for making the same
JP4974490B2 (ja) * 2005-07-28 2012-07-11 バンドー化学株式会社 ブレード素材とその製造方法および製造装置
DK2358998T3 (en) * 2008-12-05 2017-10-30 Vestas Wind Sys As EFFICIENT WINDOWS, WINDOWS, AND ASSOCIATED SYSTEMS AND PROCEDURES FOR MANUFACTURING, INSTALLING AND USING
US7854594B2 (en) * 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
GB201016273D0 (en) * 2010-09-28 2010-11-10 Northstone Ni Ltd A liner
JP5427807B2 (ja) * 2011-02-25 2014-02-26 三菱重工業株式会社 強化プラスチック構造体、強化プラスチック構造体の製造方法、構造体、風車ブレードおよび風車
JP2013241753A (ja) * 2012-05-18 2013-12-05 Dic Corp 繊維強化プラスチック製矢板
US9470205B2 (en) * 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
DE102013215381A1 (de) * 2013-08-05 2015-02-26 Wobben Properties Gmbh Verfahren zur Herstellung eines Verbundbauteils, Verbundbauteil und Windenergieanlage
US9915036B2 (en) * 2014-09-23 2018-03-13 Quality Mat Company Stackable mat construction
US20160160837A1 (en) * 2014-12-04 2016-06-09 General Electric Company Pultruded rotor blade components having interlocking edges
GB201509155D0 (en) * 2015-05-28 2015-07-15 Blade Dynamics Ltd A wind turbine blade and method of assembling a wind turbine blade
EP3330529B1 (de) * 2016-12-05 2020-07-29 Nordex Energy GmbH Gurtbaugruppe für ein windenergieanlagenrotorblatt
JP2018145898A (ja) * 2017-03-07 2018-09-20 株式会社日立製作所 風力発電用ブレードまたは風力発電装置
DE102017113757A1 (de) * 2017-06-21 2018-12-27 Nordex Energy Gmbh Pultrudiertes Profil mit Abreißgewebe
DK3501810T3 (da) * 2017-12-22 2022-07-04 Siemens Gamesa Renewable Energy As Pultruderede fiberkompositstrimler med korrugerede profiler til spar caps til vindmøllevinger
EP3501809B1 (en) * 2017-12-22 2024-11-13 Siemens Gamesa Renewable Energy A/S Wind turbine blade with at least one spar cap and method of producing said spar cap
CN108661854A (zh) * 2018-02-01 2018-10-16 上海电气风电集团有限公司 一种风力机叶片及其叶片增强结构件
CN109732806B (zh) * 2019-02-14 2021-06-04 上海电气风电集团股份有限公司 用于风电叶片的拉挤件、风电叶片的灌注方法及风电叶片
CN109732951B (zh) * 2019-03-04 2024-04-16 上伟(江苏)碳纤复合材料有限公司 一种利于树脂流动的风电叶片拉挤增强板材及其制造方法
CN211737356U (zh) * 2019-11-22 2020-10-23 中材科技风电叶片股份有限公司 条状件、梁、叶片及风电机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545728A (en) * 1983-08-30 1985-10-08 Cheney Jr Marvin C Wind turbine generator with improved operating subassemblies
CN101266965A (zh) * 2007-03-15 2008-09-17 卓恩民 半导体封装体堆叠结构及其制法
CN101596781A (zh) * 2009-06-19 2009-12-09 朱仕杰 软水器储水罐及制造模具、制作工艺
CN108661853A (zh) * 2018-02-01 2018-10-16 上海电气风电集团有限公司 一种风电叶片主梁结构及其制作方法
CN108869167A (zh) * 2018-06-07 2018-11-23 武汉理工大学 风机叶片大梁及其制备方法
CN208950768U (zh) * 2018-06-29 2019-06-07 中材科技(萍乡)风电叶片有限公司 风电叶片板材及风电叶片
CN110242511A (zh) * 2019-05-08 2019-09-17 上纬新材料科技股份有限公司 风轮机叶片制作用板材、风轮机叶片梁帽结构及制备方法

Also Published As

Publication number Publication date
BR112021003768B1 (pt) 2022-11-08
JP2022511247A (ja) 2022-01-31
BR112021003768A2 (pt) 2021-07-20
CN110836165B (zh) 2023-11-17
JP7071774B2 (ja) 2022-05-19
CN110836165A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
US10105913B2 (en) Wind turbine blades and method of manufacturing the same
CN1915649B (zh) 可用于制造转子叶片圆柱盖的一种制造连续层压片的方法
CN109732951B (zh) 一种利于树脂流动的风电叶片拉挤增强板材及其制造方法
CN208431094U (zh) 一种风电叶片主梁结构
CN110500242B (zh) 风电叶片的主梁及其芯材和板材的铺设方法
TW201210798A (en) Process for the production of wind power installation rotor blades and a wind power installation rotor blade
WO2022007610A1 (zh) 一种带凹型结构的风电叶片用轻量化主梁及制作、主梁结构组合、风电叶片及其制作方法
CN110242511B (zh) 风轮机叶片制作用板材、风轮机叶片梁帽结构及制备方法
CN106903917A (zh) 风力发电叶片及其制作方法
WO2021097915A1 (zh) 条状件及制作方法、梁及制作方法、叶片及风电机组
CN211737357U (zh) 条状件、梁、叶片和风电机组
CN109822935A (zh) 一种制造用于风轮机叶片的梁帽的方法
CN211017165U (zh) 端板及电池模组
CA3063298A1 (en) Method for producing a wind turbine rotor blade
WO2021097913A1 (zh) 条状件、梁及其制作方法、叶片和风电机组
CN112537050A (zh) 一种风电叶片主梁的制造方法
CN210283315U (zh) 一种利于树脂流动的风电叶片拉挤增强板材
CN210106062U (zh) 一种风轮叶片
WO2025007614A1 (zh) 具有随形性的加筋结构、风电叶片及其加筋方法
CN216860795U (zh) 复合板材组件、风机叶片梁以及风力发电机组
CN215762052U (zh) 一种挤压片材及风轮叶片主梁
CN212642950U (zh) 风机叶片和风力发电机
CN117460885A (zh) 用于风力涡轮机叶片的翼梁帽的斜切条带和梁
CN113464357B (zh) 条状件、梁、叶片以及风电机组
TWI848456B (zh) 風力渦輪機葉片及用於製造風力渦輪機葉片的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021505991

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021003768

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112021003768

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210226

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953389

Country of ref document: EP

Kind code of ref document: A1