[go: up one dir, main page]

WO2021096014A1 - Hybrid lead-free radiation shielding material, and radiation suit using same - Google Patents

Hybrid lead-free radiation shielding material, and radiation suit using same Download PDF

Info

Publication number
WO2021096014A1
WO2021096014A1 PCT/KR2020/007284 KR2020007284W WO2021096014A1 WO 2021096014 A1 WO2021096014 A1 WO 2021096014A1 KR 2020007284 W KR2020007284 W KR 2020007284W WO 2021096014 A1 WO2021096014 A1 WO 2021096014A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation shielding
shielding material
radiation
oxide
outer layer
Prior art date
Application number
PCT/KR2020/007284
Other languages
French (fr)
Korean (ko)
Inventor
신승호
신정훈
Original Assignee
(주)동원엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)동원엔텍 filed Critical (주)동원엔텍
Publication of WO2021096014A1 publication Critical patent/WO2021096014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/10Safety means specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/10Safety means specially adapted therefor
    • A61B6/107Protection against radiation, e.g. shielding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • G21F1/125Laminated shielding materials comprising metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • G21F3/02Clothing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation

Definitions

  • a radiation shielding material for shielding scattered X-rays and gamma rays, and a radiation shielding suit using the same.
  • Radiation is classified into naturally occurring radiation and artificially generated artificial radiation, and artificial radiation is widely used from X-ray imaging in the medical field to industrial sites.
  • Types of radiation include ionizing radiation and non-ionizing radiation, and ionizing radiation is radiation that can ionize particles by separating them from molecules.
  • Ionizing radiation includes alpha rays, beta rays, X-rays, and gamma rays, and alpha rays can be blocked with a material having a thickness of paper, and beta rays cannot penetrate aluminum, so there is no difficulty in shielding.
  • gamma rays it is generated from the collapse or transformation of the nucleus, and there is a possibility of emission of the nuclear power plant containment buildings, nuclear power plants dismantling, cancer patient wards, and accelerators handling medical gamma rays. Since gamma rays have higher energy than X-rays, they have very strong penetrating power. Such gamma rays can be blocked through concrete or a dense metal material such as iron or lead, but when metal materials are used, there is a problem that the weight of the shielding material increases due to their high density.
  • a radiation shielding material is required to protect humans and the environment from such a disadvantageous effect of radiation, and in many cases, a radiation shielding material is processed and used in the form of a radiation shielding suit to protect the body from radiation.
  • the most common radiation shielding material is lead, but it is not only toxic to the human body when contacted repeatedly for a long period of time, it is heavy to use as a radiation shielding clothing, and it is a burden on the human body when worn for a long time. In addition, it has the disadvantage of inferior processability and flexibility compared to polymer composite materials.
  • Disclosed is to provide a hybrid lead-free radiation shielding material and a radiation shielding suit that absorbs scattered X-rays and attenuates high-level gamma rays.
  • the content of this disclosure describes a radiation shielding material comprising an outer layer made of a scattered radiation absorbing composition and polyurethane and an inner layer made of a gamma ray shielding composition and polychloroprene, which is laminated on one surface of the outer layer.
  • an outer skin layer formed by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the laminate comprising the outer layer and the inner layer may be included.
  • the scattered radiation absorbing composition may include at least one selected from the group consisting of barium sulfate, a bismuth oxide compound, and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
  • the gamma ray shielding composition may include at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
  • the iron oxide, strontium carbonate, and graphene oxide may be sintered by high frequency induction heating.
  • the content of this disclosure describes a radiation shielding suit configured to cover a wearer's body using the radiation shielding material.
  • a cover for shielding around the thyroid gland may be further included.
  • the radiation shielding material described above and the radiation shielding clothing using the same can improve productivity by sintering by high-frequency induction heating, and have the effect of simultaneously shielding X-rays and gamma rays, and are light and deformable because they do not use lead. Excellent processability.
  • FIG. 1 is an exploded perspective view showing a radiation shielding material according to an embodiment disclosed.
  • FIG. 2 is an exploded perspective view showing a radiation shielding material according to another disclosed embodiment.
  • 3 is a fabric of a radiation shielding suit using the disclosed radiation shielding material.
  • FIG. 5 is a front view, a side view, and a rear view of the wearer wearing the disclosed radiation shielding suit.
  • FIG. 6 is a flowchart illustrating a method of manufacturing an outer layer of the disclosed radiation shielding material.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an inner layer of the disclosed radiation shielding material.
  • the disclosed radiation shielding material is laminated on one surface of the outer layer 10 and the outer layer formed by mixing and molding a scattering radiation absorbing composition and polyurethane, and a gamma ray shielding composition and polychloroprene (chloroprene).
  • a scattering radiation absorbing composition and polyurethane and a gamma ray shielding composition and polychloroprene (chloroprene).
  • chloroprene gamma ray shielding composition and polychloroprene
  • An outer skin layer 30 formed by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the laminate comprising the outer layer 10 and the inner layer 20 may be further formed.
  • the nonwoven fabric is preferably a polyethylene terephthalate (PET) nonwoven fabric.
  • PET polyethylene terephthalate
  • the total thickness of the outer layer 10 and the inner layer 20 is 2.0 mm or less, and preferably 1.5 mm or less. In addition, it is preferable that the outer layer is 0.5 mm or less.
  • the sum of the thicknesses of the outer layer 10 and the inner layer 20 exceeds 2.0 mm, the utilization of a molded article or device using a radioactive shielding material is degraded.
  • the scattered radiation absorbing composition of the outer layer 10 is at least one of barium sulfate, magnesium oxide, and bismuth oxide, iron oxide, strontium carbonate, and graphene oxide. (Graphene Oxide).
  • barium sulfate or/and 30 to 60 parts by weight of a bismuth oxide compound Preferably, 30 to 60 parts by weight of barium sulfate or/and 30 to 60 parts by weight of a bismuth oxide compound, and 3 to 25 parts by weight of strontium carbonate, 5 to 20 parts by weight of iron oxide, and 0.001 to 5 parts by weight of graphene oxide are included.
  • the strontium carbonate, iron oxide, and graphene oxide are preferably sintered by high-frequency induction heating.
  • the sintering time is 2 to 5 minutes, and the sintering time can be shortened compared to 5 to 16 hours of sintering in an existing electric furnace, thereby greatly improving productivity.
  • the manufacturing method of the outer layer 10 includes a first mixing and pulverizing step (S100) in which at least one of barium sulfate, magnesium oxide, and bismuth oxide is mixed and pulverized to adjust the particle size, and iron oxide, strontium carbonate, and graphene oxide are mixed and nanonized.
  • S100 first mixing and pulverizing step
  • a mixed molding step (S170) of mixing and molding the composition subjected to the sintering step and the polyurethane for the second mixing and pulverizing step (S130), the sintering step (S150) of sintering the composition subjected to the second mixing and crushing step at 1,000 to 1,600°C for 2 to 5 minutes, and the composition subjected to the first mixing
  • the particle size is preferably 1 to 3 ⁇ m, and in the case of the second mixing and pulverizing step (S130), the particle size is preferably 1 to 10 nm. If the particle size is reduced through the first and second mixing and pulverizing steps, since the dispersion amount is increased relative to the same weight, the radiation shielding effect can be increased. In addition, in the second mixing and pulverizing step, it is preferable to reduce the particle size as much as possible for nano-ization.
  • the sintering step (S150) may use an electric furnace, but if the sintering process by high frequency induction heating is used, the sintering process that takes 5 to 16 hours can be shortened to 2 to 5 minutes, so sintering by high frequency induction heating It is desirable to do.
  • the sintering atmosphere is preferably an inert gas atmosphere.
  • the absorption amount of gamma ray scattering can be improved, and the process time can be greatly shortened.
  • the weight ratio of the scattered radiation absorbing composition constituting the outer layer 10 and the polyurethane is 92:8 to 98:2. While considering processability and productivity aspects with the composition ratio, radiation shielding efficiency can be maximized.
  • the gamma ray shielding composition of the inner layer 20 includes at least one of bismuth oxide and tungsten, at least one of barium sulfate and magnesium oxide, strontium carbonate, iron oxide, and graphene oxide.
  • a bismuth oxide compound or/and 30 to 95 parts by weight of tungsten Preferably, 30 to 60 parts by weight of a bismuth oxide compound or/and 30 to 95 parts by weight of tungsten, 30 to 60 parts by weight of barium sulfate or/and 10 to 25 parts by weight of magnesium oxide, 3 to 25 parts by weight of strontium carbonate, 5 to 25 parts by weight of iron oxide 20 parts by weight and 0.001 to 3 parts by weight of graphene oxide are included.
  • the strontium carbonate, iron oxide, and graphene oxide are preferably sintered by high-frequency induction heating.
  • the sintering time is 2 to 5 minutes, and the sintering time can be shortened compared to 5 to 16 hours of sintering in an existing electric furnace, thereby greatly improving productivity.
  • the properties of the gamma ray shielding composition may be granular, film, sheet, fabric, etc. depending on the use of the shielding material, and can be used for various shielding purposes. For example, it can be used for protective aprons, medical aprons, shielding clothes, gowns, wallpaper, building materials, medical devices, and the like.
  • composition may be used alone or in combination with additives such as water or organic solvents, surfactants, resin binders, inorganic particles, and organic particles.
  • additives such as water or organic solvents, surfactants, resin binders, inorganic particles, and organic particles.
  • the manufacturing method of the inner layer 20 includes a first mixing and grinding step (S200) of mixing and grinding at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide to adjust the particle size, iron oxide, strontium carbonate, and oxidation.
  • S200 first mixing and grinding step of mixing and grinding at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide to adjust the particle size, iron oxide, strontium carbonate, and oxidation.
  • the second mixing and crushing step (S230) of pulverizing graphene for mixing and nano-ization the sintering step (S250) of sintering the composition subjected to the second mixing and pulverization step at 1,000 to 1,600°C for 2 to 5 minutes (S250), the first after the sintering step And a mixing and molding step (S270) of mixing and molding the composition subjected to the mixing and pulverizing step and the composition subjected to the sintering step with polychloroprene (chloroprene).
  • a ball mill or the like may be used, and a surfactant may be used for dispersing effect and equalization of particle size.
  • the particle size is preferably 1 to 3 ⁇ m, and in the case of the second mixing and pulverizing step (S230), the particle size is preferably 1 to 10 nm. If the particle size is reduced through the first and second mixing and pulverizing steps, since the dispersion amount is increased relative to the same weight, the radiation shielding effect can be increased. In addition, in the second mixing and pulverizing step, it is preferable to reduce the particle size as much as possible for nano-ization.
  • the sintering step (S250) may use an electric furnace, but if the sintering process by high frequency induction heating is used, the sintering process that takes 5 to 16 hours can be shortened to 2 to 5 minutes, so sintering by high frequency induction heating It is desirable to do.
  • the sintering atmosphere is preferably an inert gas atmosphere.
  • the sintering step (S250) facilitates the movement of electrons by a reaction between metals, thereby promoting an ionization absorption effect, thereby improving gamma ray shielding ability.
  • the weight ratio of the gamma-ray shielding composition constituting the inner layer 20 and the polychloroprene is 92:8 to 98:2. While considering processability and productivity aspects with the composition ratio, radiation shielding efficiency can be maximized.
  • the outer layer 10 is manufactured, and then the outer layer 10 is laminated in a mixed molding process during the manufacturing of the inner layer 20, and heat and pressure are applied to prepare the outer layer 10 by a crosslinking reaction.
  • the temperature during the crosslinking reaction is preferably 160 to 180°C.
  • a waterproof cloth or a nonwoven fabric is thermally bonded using a calendar roll.
  • the weight ratio of the outer layer 10 and the inner layer 20 is preferably 40:60 to 50:50.
  • the outer layer 10 of the prepared radiation shielding material absorbs scattered radiation, and the inner layer 20 shields gamma rays.
  • gamma rays come into contact with a material, scattered radiation is generated by photoelectric effect and Compton scattering.
  • the disclosed radiation shielding material can effectively absorb scattered radiation generated when gamma rays are shielded by the inner layer by the outer layer 10.
  • it is excellent in blocking and absorbing gigahertz (Giga HZs) electromagnetic wave ion rays by physically reacting iron and strontium components with graphene oxide having a honeywell structure in a high-temperature amorphous region.
  • Giga HZs gigahertz
  • the radiation shielding material as a radiation shielding suit for radiation shielding in a radiation area.
  • the radiation shielding suit may further include a cover for radiation shielding around the thyroid gland, and it is preferable to easily wear it in the shape of a pediatric bib around the thyroid gland and lymph nodes.
  • it in order to soften the fit of the neck, it can be configured by bundling a thin radiation shielding material in two or three layers.
  • the radiation shielding suit using the disclosed radiation shielding material may be used as a fabric of a radiation shielding suit in a form in which only one of the outer layer 10 or the inner layer 20 is used as needed or combined with the outer layer.
  • Example 2 After the thickness of the outer layer of Example 1 was prepared to be 1 mm, and laminated with the inner layer prepared in Example 2, a radiation shielding material of 2 mm was prepared.
  • the thickness of the outer layer of Example 1 was prepared to be 1.5 mm, and the thickness of the inner layer of Example 2 was prepared to be 1.5 mm, and then laminated to prepare a radiation shielding material of 3 mm.
  • Examples 1 to 4 were irradiated with gamma rays by requesting the Atomic Energy Research Institute/Research Institute of Standards and Science to measure the shielding rate. Comparative Examples 1 to 3 are the shielding rates when lead is used. The results are shown in [Table 1].
  • the shielding rate is considerably superior to that of lead.
  • the gamma ray shielding material is lighter and softer than the specific gravity of lead (11.34), so that it has excellent deformability and workability, and can be used in various uses or forms.
  • the disclosed content can be used in the field of radiation shielding materials and radiation shielding clothing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

Disclosed are: a hybrid lead-free radiation shielding material for absorbing scattered X-rays and attenuating high-dose gamma ray; and a radiation suit. The radiation shielding material comprises: an outer layer made of a scattered radiation-absorbing composition and polyurethane; and an inner layer layered on one surface of the outer layer and made of a gamma ray-shielding composition and polychloroprene, and can block both X-rays and gamma rays.

Description

하이브리드 무연 방사선 차폐재 및 이를 이용한 방사선 차폐복Hybrid lead-free radiation shielding material and radiation shielding clothing using it
개시된 내용은 산란 엑스선 및 감마선을 차폐하는 방사선 차폐재 및 이를 이용한 방사선 차폐복에 관한 것이다.Disclosed is a radiation shielding material for shielding scattered X-rays and gamma rays, and a radiation shielding suit using the same.
방사선은 자연적으로 존재하는 방사선과 인위적으로 생성한 인공방사선이 있는데, 인공방사선에는 의료분야의 엑스-선(X-ray) 촬영부터 산업현장에까지 광범하게 활용되고 있다.Radiation is classified into naturally occurring radiation and artificially generated artificial radiation, and artificial radiation is widely used from X-ray imaging in the medical field to industrial sites.
방사선의 종류로는 전리 방사선과 비전리 방사선이 있으며, 전리 방사선은 분자에서 입자를 분리시켜 이온화시킬 수 있는 방사선이다.Types of radiation include ionizing radiation and non-ionizing radiation, and ionizing radiation is radiation that can ionize particles by separating them from molecules.
전리 방사선에는 알파선, 베타선, 엑스선, 감마선 등이 있으며, 알파선은 종이 정도의 두께를 가진 물질로도 막을 수 있고, 베타선은 알루미늄을 투과 할 수 없어 차폐에 어려움이 없다.Ionizing radiation includes alpha rays, beta rays, X-rays, and gamma rays, and alpha rays can be blocked with a material having a thickness of paper, and beta rays cannot penetrate aluminum, so there is no difficulty in shielding.
반면, 엑스선과 감마선은 파장이 짧아 물질을 투과하기 쉽고 피폭시 인체에 위해한 영향을 끼치므로 이를 최소화하기 위한 조치가 필요하다.On the other hand, since X-rays and gamma rays have short wavelengths, they are easy to penetrate substances and have a harmful effect on the human body when exposed, so measures to minimize them are required.
엑스선의 경우 최근 영상 의학의 급격한 발전으로 부품이나 용접부위에 엑스선을 촬영하여 무결성을 검사하거나, 인체 내부의 이상을 알아보기 위해 엑스선 촬영을 하는 등 점점 보편화되어 실시되고 있다. 이와 같은 엑스선 촬영 시에는 직간접적으로 당사자에게 피폭이 이루어지므로 이를 최소화하기 위한 엑스선 차폐제가 필요하다.In the case of X-rays, due to the recent rapid development of imaging medicine, X-rays are photographed on parts or welds to check integrity, or X-rays are taken to identify abnormalities inside the human body. In such X-ray imaging, since exposure is directly or indirectly to the person concerned, an X-ray shielding agent is required to minimize this.
한편, 감마선의 경우 핵의 붕괴나 변환으로부터 발생되고, 원자력 발전소 격납 건물, 원자력 발전소 해체, 의료용 감마선을 취급하는 암환자병동, 가속기 등에 방출 가능성이 상존한다. 감마선은 엑스선 보다 높은 에너지를 갖고 있어 투과력이 매우 강한 특징이 있다. 이러한 감마선은 콘크리트, 또는 철, 납과 같은 밀도가 높은 금속 물질을 통해서 차단할 수 있으나 금속물질을 사용하는 경우, 이들의 고밀도로 인하여 차폐재의 중량이 커지는 문제가 있다.On the other hand, in the case of gamma rays, it is generated from the collapse or transformation of the nucleus, and there is a possibility of emission of the nuclear power plant containment buildings, nuclear power plants dismantling, cancer patient wards, and accelerators handling medical gamma rays. Since gamma rays have higher energy than X-rays, they have very strong penetrating power. Such gamma rays can be blocked through concrete or a dense metal material such as iron or lead, but when metal materials are used, there is a problem that the weight of the shielding material increases due to their high density.
이러한 방사선의 불이익한 영향에서 인간과 환경을 보호하기 위해 방사선 차폐재가 필요하고, 방사선 차폐재는 많은 경우 방사선으로부터 신체를 보호하기 위해 방사선 차폐복의 형태로 가공되어 사용된다.A radiation shielding material is required to protect humans and the environment from such a disadvantageous effect of radiation, and in many cases, a radiation shielding material is processed and used in the form of a radiation shielding suit to protect the body from radiation.
현재까지 사용되는 방사선 차폐재 중에서 가장 보편적인 방사선 차폐 물질은 납(lead)이지만 장기간 반복적으로 접촉하는 경우 인체에 대하여 독성을 나타낼 뿐만 아니라 방사선 차폐복으로 이용하기에는 무게가 무겁고 장시간 착용시 인체에 부담이 되며 또한, 고분자복합재료에 비해 가공성과 유연성이 떨어진다는 단점을 지닌다.Among the radiation shielding materials used so far, the most common radiation shielding material is lead, but it is not only toxic to the human body when contacted repeatedly for a long period of time, it is heavy to use as a radiation shielding clothing, and it is a burden on the human body when worn for a long time. In addition, it has the disadvantage of inferior processability and flexibility compared to polymer composite materials.
개시된 내용은 산란 엑스선 흡수 및 고준위 감마선을 감쇠하는 하이브리드 무연 방사선 차폐재 및 방사선 차폐복을 제공하고자 하는 것이다. Disclosed is to provide a hybrid lead-free radiation shielding material and a radiation shielding suit that absorbs scattered X-rays and attenuates high-level gamma rays.
하나의 일 실시예로서 이 개시의 내용은 산란 방사선 흡수 조성물 및 폴리우레탄으로 이루어지는 외층과 상기 외층의 일면에 적층되며, 감마선 차폐 조성물 및 폴리클로로프렌으로 이루어지는 내층을 포함하는 방사선 차폐재에 대해 기술하고 있다.As an embodiment, the content of this disclosure describes a radiation shielding material comprising an outer layer made of a scattered radiation absorbing composition and polyurethane and an inner layer made of a gamma ray shielding composition and polychloroprene, which is laminated on one surface of the outer layer.
바람직하기로는, 상기 외층과 상기 내층으로 이루어진 적층체의 상부면과 하부면 중 적어도 일면에 방수천 또는 부직포가 열 접착하여 형성된 외피층이 포함될 수 있다.Preferably, an outer skin layer formed by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the laminate comprising the outer layer and the inner layer may be included.
더 바람직하기로는, 상기 산란 방사선 흡수 조성물은 황산바륨, 산화비스무트 화합물 및 산화마그네슘으로 이루어지는 군에서 선택되는 적어도 하나, 산화철, 탄산스트론튬 및 산화그래핀을 포함할 수 있다.More preferably, the scattered radiation absorbing composition may include at least one selected from the group consisting of barium sulfate, a bismuth oxide compound, and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
더욱 바람직하기로는, 상기 감마선 차폐 조성물은 산화비스무트 화합물 및 텅스텐 중 적어도 하나, 황산바륨 및 산화마그네슘 중 적어도 하나, 산화철, 탄산스트론튬 및 산화그래핀을 포함할 수 있다.More preferably, the gamma ray shielding composition may include at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
더욱 더 바람직하기로는, 상기 산화철, 탄산스트론튬 및 산화그래핀은 고주파유도 가열에 의해 소결된 것일 수 있다.Even more preferably, the iron oxide, strontium carbonate, and graphene oxide may be sintered by high frequency induction heating.
다른 실시예로서 이 개시의 내용은 상기 방사선 차폐재를 이용하여 착용자의 신체를 가리도록 구성된 방사선 차폐복에 대해 기술하고 있다.As another embodiment, the content of this disclosure describes a radiation shielding suit configured to cover a wearer's body using the radiation shielding material.
바람직하기로는, 갑상선 주위 차폐를 위한 덮개가 더 포함되는 것일 수 있다.Preferably, a cover for shielding around the thyroid gland may be further included.
이상에서와 같은 방사선 차폐재 및 이를 이용한 방사선 차폐복은 고주파유도 가열에 의한 소결로 생산성을 향상시킬 수 있고, 엑스선 및 감마선을 동시에 차폐할 수 있는 효과를 가지면서도, 납을 사용하지 않아 가볍고, 변형성과 가공성이 우수하다. The radiation shielding material described above and the radiation shielding clothing using the same can improve productivity by sintering by high-frequency induction heating, and have the effect of simultaneously shielding X-rays and gamma rays, and are light and deformable because they do not use lead. Excellent processability.
도 1은 개시된 일 실시예에 따른 방사선 차폐재를 나타낸 분해사시도이다.1 is an exploded perspective view showing a radiation shielding material according to an embodiment disclosed.
도 2는 개시된 다른 실시예에 따른 방사선 차폐재를 나타낸 분해사시도이다.2 is an exploded perspective view showing a radiation shielding material according to another disclosed embodiment.
도 3은 개시된 방사선 차폐재를 이용한 방사선 차폐복의 원단이다.3 is a fabric of a radiation shielding suit using the disclosed radiation shielding material.
도 4는 개시된 또 다른 실시예에 따른 방사선 차폐복이다.4 is a radiation shielding suit according to another disclosed embodiment.
도 5는 개시된 방사선 차폐복을 착용자가 착용한 상태의 정면도, 측면도, 후면도이다.5 is a front view, a side view, and a rear view of the wearer wearing the disclosed radiation shielding suit.
도 6은 개시된 방사선 차폐재 중 외층의 제조 방법 공정도이다.6 is a flowchart illustrating a method of manufacturing an outer layer of the disclosed radiation shielding material.
도 7은 개시된 방사선 차폐재 중 내층의 제조 방법 공정도이다.7 is a flowchart illustrating a method of manufacturing an inner layer of the disclosed radiation shielding material.
도 8은 개시된 방사선 차폐재의 시험분석표이다.8 is a test analysis table of the disclosed radiation shielding material.
도 9는 개시된 방사선 차폐재의 외층의 시험분석표이다.9 is a test analysis table of the outer layer of the disclosed radiation shielding material.
도 10은 개시된 방사선 차폐재의 물리적, 화학적 내환경성 실험결과표이다.10 is a table of physical and chemical environmental resistance test results of the disclosed radiation shielding material.
이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is for explaining in detail enough that one of ordinary skill in the art can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention are limited.
도 1 또는 도2를 참조하면, 개시된 방사선 차폐재는 산란 방사선 흡수 조성물과 폴리우레탄을 혼합, 성형하여 이루어지는 외층(10)과 상기 외층의 일면에 적층되며, 감마선 차폐 조성물과 폴리클로로프렌(polychloroprene(chloroprene))으로 이루어지는 내층(20)을 포함한다.1 or 2, the disclosed radiation shielding material is laminated on one surface of the outer layer 10 and the outer layer formed by mixing and molding a scattering radiation absorbing composition and polyurethane, and a gamma ray shielding composition and polychloroprene (chloroprene). Includes an inner layer 20 made of ).
상기 외층(10)과 상기 내층(20)으로 이루어진 적층체의 상부면과 하부면 중 적어도 일면에 방수천 또는 부직포가 열 접착하여 형성된 외피층(30)이 더 형성될 수 있다.An outer skin layer 30 formed by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the laminate comprising the outer layer 10 and the inner layer 20 may be further formed.
이때 상기 부직포는 폴리에틸렌테레프탈레이트(polyethylene terephthalate,PET) 부직포인 것이 바람직하다.At this time, the nonwoven fabric is preferably a polyethylene terephthalate (PET) nonwoven fabric.
상기 외층(10) 및 내층(20)의 두께는 합하여 2.0mm 이하이며, 바람직하게는 1.5mm 이하이다. 또한 상기 외피층은 0.5mm 이하인 것이 바람직하다.The total thickness of the outer layer 10 and the inner layer 20 is 2.0 mm or less, and preferably 1.5 mm or less. In addition, it is preferable that the outer layer is 0.5 mm or less.
상기 외층(10) 및 내층(20)의 두께 합이 2.0mm를 초과하면 방사성 차폐재를 이용한 성형품 또는 디바이스의 활용도가 떨어진다.If the sum of the thicknesses of the outer layer 10 and the inner layer 20 exceeds 2.0 mm, the utilization of a molded article or device using a radioactive shielding material is degraded.
상기 외층(10)의 산란 방사선 흡수 조성물은 황산바륨(Barium sulfate), 산화마그네슘(Magnesium oxide) 및 산화비스무트(Bismuth oxide) 중 적어도 하나, 산화철(Iron oxide), 탄산스트론튬(Strontianite) 및 산화그래핀(Graphene Oxide)을 포함한다.The scattered radiation absorbing composition of the outer layer 10 is at least one of barium sulfate, magnesium oxide, and bismuth oxide, iron oxide, strontium carbonate, and graphene oxide. (Graphene Oxide).
바람직하게는 황산바륨 30 내지 60 중량부 또는/및 산화비스무트 화합물 30 내지 60 중량부, 그리고 탄산스트론튬 3 내지 25 중량부, 산화철 5 내지 20 중량부 및 산화그래핀 0.001 내지 5 중량부를 포함한다.Preferably, 30 to 60 parts by weight of barium sulfate or/and 30 to 60 parts by weight of a bismuth oxide compound, and 3 to 25 parts by weight of strontium carbonate, 5 to 20 parts by weight of iron oxide, and 0.001 to 5 parts by weight of graphene oxide are included.
특히 바람직하게는 황산바륨 35 내지 45 중량부 또는/및 산화비스무트 화합물 30 내지 50 중량부, 그리고 탄산스트론튬 3 내지 25 중량부, 산화철 10 내지 15 중량부 및 산화그래핀 0.015 내지 1 중량부를 포함한다.Particularly preferably, 35 to 45 parts by weight of barium sulfate or/and 30 to 50 parts by weight of a bismuth oxide compound, and 3 to 25 parts by weight of strontium carbonate, 10 to 15 parts by weight of iron oxide, and 0.015 to 1 parts by weight of graphene oxide are included.
상기 조성비를 가지는 경우 친환경적이고, 비중이 4.0으로 납(Lead)을 고무등과 하이브리드화하여 제조한 경우의 비중 5.0보다 가벼우며, 부드러워 변형성과 가공성이 우수하다.When it has the above composition ratio, it is eco-friendly, its specific gravity is 4.0, and it is lighter than the specific gravity of 5.0 when it is manufactured by hybridizing lead with rubber, etc., and it is soft and has excellent deformability and workability.
또한 상기 탄산스트론튬, 산화철 및 산화그래핀은 고주파유도 가열에 의하여 소결하는 것이 좋다. 고주파유도 가열에 의하여 소결하는 경우 소결 시간이 2 내지 5분으로, 기존 전기로에서 소결하는 5 내지 16시간에 비하여 소결 시간은 줄일 수 있어 생산성이 매우 향상된다.In addition, the strontium carbonate, iron oxide, and graphene oxide are preferably sintered by high-frequency induction heating. In the case of sintering by high frequency induction heating, the sintering time is 2 to 5 minutes, and the sintering time can be shortened compared to 5 to 16 hours of sintering in an existing electric furnace, thereby greatly improving productivity.
상기 외층(10)의 제조방법은 황산바륨, 산화마그네슘 및 산화비스무트 중 적어도 하나를 혼합 및 분쇄하여 입도를 조절하는 제1혼합분쇄단계(S100), 산화철, 탄산스트론튬 및 산화그래핀을 혼합 및 나노화를 위해 분쇄하는 제2혼합분쇄단계(S130), 제2혼합분쇄단계를 거친 조성물을 1,000 내지 1,600℃로 2 내지 5 분 소결하는 소결단계(S150), 소결단계 후 제1혼합분쇄단계를 거친 조성물과 소결단계를 거친 조성물을 폴리우레탄과 혼합 및 성형하는 혼합성형단계(S170)를 포함한다.The manufacturing method of the outer layer 10 includes a first mixing and pulverizing step (S100) in which at least one of barium sulfate, magnesium oxide, and bismuth oxide is mixed and pulverized to adjust the particle size, and iron oxide, strontium carbonate, and graphene oxide are mixed and nanonized. For the second mixing and pulverizing step (S130), the sintering step (S150) of sintering the composition subjected to the second mixing and crushing step at 1,000 to 1,600°C for 2 to 5 minutes, and the composition subjected to the first mixing and pulverizing step after the sintering step And a mixed molding step (S170) of mixing and molding the composition subjected to the sintering step and the polyurethane.
상기 제1 및 제2혼합분쇄단계(S100, S130)는 볼밀(ball mill)등의 분쇄기를 이용할 수 있고, 분산효과와 입도의 균등을 위하여 계면활성제를 사용할 수도 있다. 제1혼합분쇄단계(S100)의 경우 입도 크기는 1 내지 3 ㎛가 바람직하고, 제2혼합분쇄단계(S130)의 경우 입도 크기는 1 내지 10 nm로 하는 것이 바람직하다. 상기 제1 및 제2혼합분쇄단계를 통하여 입도 크기를 줄이면 동일한 무게 대비 분산량이 증가하므로 방사선 차폐효과를 증대 시킬 수 있다. 또한 제2혼합분쇄단계는 나노화를 위하여 최대한 입도크기를 줄이는 것이 바람직하다.In the first and second mixing and pulverizing steps S100 and S130, a grinder such as a ball mill may be used, and a surfactant may be used for dispersing effect and equalization of particle size. In the case of the first mixing and pulverizing step (S100), the particle size is preferably 1 to 3 μm, and in the case of the second mixing and pulverizing step (S130), the particle size is preferably 1 to 10 nm. If the particle size is reduced through the first and second mixing and pulverizing steps, since the dispersion amount is increased relative to the same weight, the radiation shielding effect can be increased. In addition, in the second mixing and pulverizing step, it is preferable to reduce the particle size as much as possible for nano-ization.
상기 소결단계(S150)는 전기로 등을 이용할 수 있으나, 고주파유도 가열에 의한 소결 공정을 이용하는 경우 기존 5 내지 16시간 소요되는 소결공정을 2 내지 5분으로 단축할 수 있으므로 고주파유도 가열에 의한 소결을 하는 것이 바람직하다. 또한, 소결 분위기는 불활성 가스 분위기가 좋다.The sintering step (S150) may use an electric furnace, but if the sintering process by high frequency induction heating is used, the sintering process that takes 5 to 16 hours can be shortened to 2 to 5 minutes, so sintering by high frequency induction heating It is desirable to do. In addition, the sintering atmosphere is preferably an inert gas atmosphere.
상기 소결단계를 통하여 감마선 산란 흡수량을 향상 시킬 수 있으며 공정 시간을 매우 단축할 수 있다.Through the sintering step, the absorption amount of gamma ray scattering can be improved, and the process time can be greatly shortened.
상기 외층(10)을 구성하는 산란 방사선 흡수 조성물과 폴리우레탄의 중량비는 92:8 내지 98: 2인 것이 바람직하다. 상기 조성비로 가공성 및 생산성 측면을 고려하면서도, 방사선 차폐 효율을 극대화할 수 있다.It is preferable that the weight ratio of the scattered radiation absorbing composition constituting the outer layer 10 and the polyurethane is 92:8 to 98:2. While considering processability and productivity aspects with the composition ratio, radiation shielding efficiency can be maximized.
상기 내층(20)의 감마선 차폐 조성물은 산화비스무트 및 텅스텐(Tungsten) 중 적어도 하나, 황산바륨 및 산화마그네슘 중 적어도 하나, 탄산스트론튬, 산화철 및 산화그래핀을 포함한다.The gamma ray shielding composition of the inner layer 20 includes at least one of bismuth oxide and tungsten, at least one of barium sulfate and magnesium oxide, strontium carbonate, iron oxide, and graphene oxide.
바람직하게는 산화비스무트 화합물 30 내지 60 중량부 또는/및 텅스텐 30 내지 95 중량부, 황산바륨 30 내지 60 중량부 또는/및 산화마그네슘 10 내지 25 중량부, 탄산스트론튬 3 내지 25 중량부, 산화철 5 내지 20 중량부 및 산화그래핀 0.001 내지 3 중량부를 포함한다.Preferably, 30 to 60 parts by weight of a bismuth oxide compound or/and 30 to 95 parts by weight of tungsten, 30 to 60 parts by weight of barium sulfate or/and 10 to 25 parts by weight of magnesium oxide, 3 to 25 parts by weight of strontium carbonate, 5 to 25 parts by weight of iron oxide 20 parts by weight and 0.001 to 3 parts by weight of graphene oxide are included.
특히 바람직하게는 산화비스무트 화합물 30 내지 50 중량부 또는/및 텅스텐 40 내지 90 중량부, 황산바륨 35 내지 50 중량부 또는/및 산화마그네슘 15 내지 25 중량부, 탄산스트론튬 3 내지 10 중량부, 산화철 10 내지 15 중량부 및 산화그래핀 0.015 내지 1 중량부를 포함한다.Particularly preferably, 30 to 50 parts by weight of a bismuth oxide compound or/and 40 to 90 parts by weight of tungsten, 35 to 50 parts by weight of barium sulfate or/and 15 to 25 parts by weight of magnesium oxide, 3 to 10 parts by weight of strontium carbonate, 10 parts by weight of iron oxide To 15 parts by weight and 0.015 to 1 part by weight of graphene oxide.
또한, 상기 탄산스트론튬, 산화철 및 산화그래핀은 고주파유도 가열에 의하여 소결하는 것이 좋다. 고주파유도 가열에 의하여 소결하는 경우 소결 시간이 2 내지 5분으로, 기존 전기로에서 소결하는 5 내지 16시간에 비하여 소결 시간은 줄일 수 있어 생산성이 매우 향상된다.In addition, the strontium carbonate, iron oxide, and graphene oxide are preferably sintered by high-frequency induction heating. In the case of sintering by high frequency induction heating, the sintering time is 2 to 5 minutes, and the sintering time can be shortened compared to 5 to 16 hours of sintering in an existing electric furnace, thereby greatly improving productivity.
상기 조성비를 가지는 경우 가공성이 우수하며, 감마선을 양호하게 차폐할 수 있으며, 비중이 가벼워 성형품 및 디바이스로서 활용성이 우수하다.When it has the above composition ratio, it is excellent in processability, it can shield gamma rays well, and its specific gravity is light, so it is excellent in usability as molded products and devices.
상기 감마선 차폐 조성물의 성상은 차폐재의 용도에 따라 입상, 필름, 시트, 원단등이 될 수 있으며, 여러 차폐 용도에 사용이 가능하다. 예를 들면, 방호 에이프런, 의료용 에이프런, 차폐복, 가운, 벽지, 건축 자재, 의료기기 등에 사용할 수 있다.The properties of the gamma ray shielding composition may be granular, film, sheet, fabric, etc. depending on the use of the shielding material, and can be used for various shielding purposes. For example, it can be used for protective aprons, medical aprons, shielding clothes, gowns, wallpaper, building materials, medical devices, and the like.
또한, 조성물 단독으로 사용하거나 물 또는 유기 용제, 계면활성제, 수지 바인더, 무기 입자, 유기 입자 등의 첨가제와 함께 사용할 수 있다.In addition, the composition may be used alone or in combination with additives such as water or organic solvents, surfactants, resin binders, inorganic particles, and organic particles.
상기 내층(20)의 제조방법은 산화비스무트 화합물 및 텅스텐 중 적어도 하나, 황산바륨 및 산화마그네슘의 적어도 하나를 혼합 및 분쇄하여 입도를 조절하는 제1혼합분쇄단계(S200), 산화철, 탄산스트론튬 및 산화그래핀을 혼합 및 나노화를 위해 분쇄하는 제2혼합분쇄단계(S230), 제2혼합분쇄단계를 거친 조성물을 1,000 내지 1,600℃로 2 내지 5 분 소결하는 소결단계(S250), 소결단계 후 제1혼합분쇄단계를 거친 조성물과 소결단계를 거친 조성물을 폴리클로로프렌(polychloroprene(chloroprene))과 혼합 및 성형하는 혼합성형단계(S270)를 포함한다.The manufacturing method of the inner layer 20 includes a first mixing and grinding step (S200) of mixing and grinding at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide to adjust the particle size, iron oxide, strontium carbonate, and oxidation. The second mixing and crushing step (S230) of pulverizing graphene for mixing and nano-ization, the sintering step (S250) of sintering the composition subjected to the second mixing and pulverization step at 1,000 to 1,600°C for 2 to 5 minutes (S250), the first after the sintering step And a mixing and molding step (S270) of mixing and molding the composition subjected to the mixing and pulverizing step and the composition subjected to the sintering step with polychloroprene (chloroprene).
상기 제1 및 제2혼합분쇄단계(S200,S230)는 볼밀(ball mill)등을 이용할 수 있고, 분산효과와 입도의 균등을 위하여 계면활성제를 사용할 수도 있다. In the first and second mixing and pulverizing steps S200 and S230, a ball mill or the like may be used, and a surfactant may be used for dispersing effect and equalization of particle size.
이때, 제1혼합분쇄단계(S200)의 경우 입도 크기는 1 내지 3 ㎛가 바람직하고, 제2혼합분쇄단계(S230)의 경우 입도 크기는 1 내지 10 nm로 하는 것이 바람직하다. 상기 제1 및 제2혼합분쇄단계를 통하여 입도 크기를 줄이면 동일한 무게 대비 분산량이 증가하므로 방사선 차폐효과를 증대 시킬 수 있다. 또한 제2혼합분쇄단계는 나노화를 위하여 최대한 입도크기를 줄이는 것이 바람직하다.At this time, in the case of the first mixing and pulverizing step (S200), the particle size is preferably 1 to 3 μm, and in the case of the second mixing and pulverizing step (S230), the particle size is preferably 1 to 10 nm. If the particle size is reduced through the first and second mixing and pulverizing steps, since the dispersion amount is increased relative to the same weight, the radiation shielding effect can be increased. In addition, in the second mixing and pulverizing step, it is preferable to reduce the particle size as much as possible for nano-ization.
상기 소결단계(S250)는 전기로 등을 이용할 수 있으나, 고주파유도 가열에 의한 소결 공정을 이용하는 경우 기존 5 내지 16시간 소요되는 소결공정을 2 내지 5분으로 단축할 수 있으므로 고주파유도 가열에 의한 소결을 하는 것이 바람직하다. 또한, 소결 분위기는 불활성 가스 분위기가 좋다.The sintering step (S250) may use an electric furnace, but if the sintering process by high frequency induction heating is used, the sintering process that takes 5 to 16 hours can be shortened to 2 to 5 minutes, so sintering by high frequency induction heating It is desirable to do. In addition, the sintering atmosphere is preferably an inert gas atmosphere.
상기 소결단계(S250)는 금속 간 반응에 의하여 전자 이동이 용이하여 전리 흡수 작용을 촉진하므로 감마선 차폐 능력을 향상 시킬 수 있다.The sintering step (S250) facilitates the movement of electrons by a reaction between metals, thereby promoting an ionization absorption effect, thereby improving gamma ray shielding ability.
내층(20)을 구성하는 감마선 차폐 조성물과 폴리클로로프렌의 중량비는 92:8 내지 98:2인 것이 바람직하다. 상기 조성비로 가공성 및 생산성 측면을 고려하면서도, 방사선 차폐 효율을 극대화할 수 있다.It is preferable that the weight ratio of the gamma-ray shielding composition constituting the inner layer 20 and the polychloroprene is 92:8 to 98:2. While considering processability and productivity aspects with the composition ratio, radiation shielding efficiency can be maximized.
방사선 차폐재의 제조방법은 먼저 상기 외층(10)을 제조한 후, 내층(20) 제조 시 혼합성형공정에서 외층(10)을 적층하고 열과 압력을 가하여 가교 반응에 의하여 제조한다. 가교 반응시 온도는 160 내지 180 ℃가 바람직하다. 이때, 외피층(30)을 더 포함하는 경우 방수천 또는 부직포를 카렌다 롤을 이용하여 열 접착한다.In the method of manufacturing the radiation shielding material, first, the outer layer 10 is manufactured, and then the outer layer 10 is laminated in a mixed molding process during the manufacturing of the inner layer 20, and heat and pressure are applied to prepare the outer layer 10 by a crosslinking reaction. The temperature during the crosslinking reaction is preferably 160 to 180°C. In this case, when the outer skin layer 30 is further included, a waterproof cloth or a nonwoven fabric is thermally bonded using a calendar roll.
이때, 상기 외층(10)과 내층(20)의 중량비는 40:60 내지 50:50인 것이 바람직하다.In this case, the weight ratio of the outer layer 10 and the inner layer 20 is preferably 40:60 to 50:50.
제조된 방사선 차폐재의 외층(10)은 산란 방사선을 흡수하고, 내층(20)은 감마선을 차폐한다. 감마선이 물질에 접촉하면 광전 효과 및 컴프턴 산란(Compton scattering)으로 산란 방사선을 발생시키는데 개시된 방사선 차폐재는 내층에 의하여 감마선을 차폐시 생기는 산란 방사선을 외층(10)에 의하여 효과적으로 흡수할 수 있다. 특히, 철 성분과 스트론튬 성분을 하니웰 구조를 가지는 산화그래핀과 고온 아몰퍼스(amorphous) 영역에서 물리적 반응을 시켜 기가 헤르츠(giga HZs)대 전자파 전리선을 차단 및 흡수하는 효과가 우수하다.The outer layer 10 of the prepared radiation shielding material absorbs scattered radiation, and the inner layer 20 shields gamma rays. When gamma rays come into contact with a material, scattered radiation is generated by photoelectric effect and Compton scattering.The disclosed radiation shielding material can effectively absorb scattered radiation generated when gamma rays are shielded by the inner layer by the outer layer 10. In particular, it is excellent in blocking and absorbing gigahertz (Giga HZs) electromagnetic wave ion rays by physically reacting iron and strontium components with graphene oxide having a honeywell structure in a high-temperature amorphous region.
따라서, 상기 방사선 차폐재를 이용하여 방사선 구역에서 방사선 차폐를 위한 방사선 차폐복으로 활용이 가능하다. 이때, 방사선 차폐재를 방사선 차폐복으로 활용하기 위해서는 양호한 부착성을 위하여 네오디움 자석(neodymium magnet)을 방사선 차폐재의 외층(10)과 내층(20) 사이에 삽입하는 것이 바람직하다.Therefore, it is possible to use the radiation shielding material as a radiation shielding suit for radiation shielding in a radiation area. At this time, in order to use the radiation shielding material as a radiation shielding suit, it is preferable to insert a neodymium magnet between the outer layer 10 and the inner layer 20 of the radiation shielding material for good adhesion.
또한, 상기 방사선 차폐복을 갑상선 주위의 방사선 차폐를 위하여 덮개를 더 포함할 수 있으며, 갑상선과 임파선 주위에 소아 턱 받이용 띠 모양으로 착용이 용이하게 하는 것이 바람직하다. 또한, 목 부분의 착용감을 부드럽게 하기 위하여 얇은 방사선 차폐재를 2 또는 3겹으로 묶어서 구성할 수 있다.In addition, the radiation shielding suit may further include a cover for radiation shielding around the thyroid gland, and it is preferable to easily wear it in the shape of a pediatric bib around the thyroid gland and lymph nodes. In addition, in order to soften the fit of the neck, it can be configured by bundling a thin radiation shielding material in two or three layers.
개시된 방사선 차폐재를 이용한 방사선 차폐복은 필요에 따라 외층(10) 또는 내층(20) 중 하나의 층만을 사용하여 단독 또는 외피층과 결합한 형태로 방사선 차폐복의 원단으로 사용할 수 있다.The radiation shielding suit using the disclosed radiation shielding material may be used as a fabric of a radiation shielding suit in a form in which only one of the outer layer 10 or the inner layer 20 is used as needed or combined with the outer layer.
<실시예 1> 외층의 제조<Example 1> Preparation of outer layer
산화마그네슘 2.58 중량부, 삼산화비스무트 44.85 중량부, 황산바륨 37.20 중량부를 볼밀에 넣어 1시간 혼합 했다.2.58 parts by weight of magnesium oxide, 44.85 parts by weight of bismuth trioxide, and 37.20 parts by weight of barium sulfate were placed in a ball mill and mixed for 1 hour.
탄산스트론튬 10.22 중량부, 산화철 5.0 중량부 및 산화그래핀 0.15 중량부를 볼밀에 넣어 1시간 혼합 한 후. 고주파유도 가열 소결기에 넣어 질소 분위기로, 1600℃에서 5분 소결하였다. 소결 후, 상온에서 냉각하고 볼밀 혼합기에서 입자 크기 평균 값이 9nm 내지 10nm를 갖도록 분쇄 한 후, 조성물 전부를 폴리우레탄과 혼합하여 0.6mm의 외층을 제조하였다.After 10.22 parts by weight of strontium carbonate, 5.0 parts by weight of iron oxide, and 0.15 parts by weight of graphene oxide were put into a ball mill and mixed for 1 hour. It was put into a high-frequency induction heating sintering machine and sintered at 1600°C for 5 minutes in a nitrogen atmosphere. After sintering, cooling at room temperature and grinding in a ball mill mixer to have an average particle size of 9 nm to 10 nm, the entire composition was mixed with polyurethane to prepare an outer layer of 0.6 mm.
<실시예 2> 내층의 제조<Example 2> Preparation of inner layer
비스무트 32.58 중량부, 텅스텐 53.85 중량부 및 황산바륨 42.12 중량부를 볼밀에 넣어 1시간 혼합하였다. 탄산스트론튬 8.42 중량부, 산화철 5.0 중량부 및 산화그래핀 0,15 중량부를 볼밀에 넣어 1시간 혼합하였다. 혼합 후 고주파유도 가열 소결기를 이용하여 1600℃에서 약 5분 소결하고, 조성물 전부를 폴리클로로프렌과 혼합하여 1mm 내층을 제조하였다.32.58 parts by weight of bismuth, 53.85 parts by weight of tungsten, and 42.12 parts by weight of barium sulfate were put into a ball mill and mixed for 1 hour. 8.42 parts by weight of strontium carbonate, 5.0 parts by weight of iron oxide, and 0,15 parts by weight of graphene oxide were put into a ball mill and mixed for 1 hour. After mixing, sintering was performed at 1600° C. for about 5 minutes using a high frequency induction heating sintering machine, and the entire composition was mixed with polychloroprene to prepare a 1 mm inner layer.
<실시예 3><Example 3>
상기 실시예 1 외층의 두께를 1 mm로 제조한 후, 실시예 2에서 제조된 내층과 적층하여 2 mm의 방사선 차폐재를 제조하였다.After the thickness of the outer layer of Example 1 was prepared to be 1 mm, and laminated with the inner layer prepared in Example 2, a radiation shielding material of 2 mm was prepared.
<실시예 4><Example 4>
상기 실시예 1 외층의 두께를 1.5 mm로 제조하고, 실시예 2 내층의 두께를 1.5 mm로 제조한 후 적층하여 3 mm의 방사선 차폐재를 제조하였다.The thickness of the outer layer of Example 1 was prepared to be 1.5 mm, and the thickness of the inner layer of Example 2 was prepared to be 1.5 mm, and then laminated to prepare a radiation shielding material of 3 mm.
<시험예 1><Test Example 1>
원자력연구원/표준과학 연구원에 의뢰하여 실시예 1 내지 4의 시료에 감마선을 조사해, 차폐율을 측정했다. 비교예 1 내지 3은 납을 사용했을 때 차폐율이다. 결과는 [표 1]에 나타내었다.The samples of Examples 1 to 4 were irradiated with gamma rays by requesting the Atomic Energy Research Institute/Research Institute of Standards and Science to measure the shielding rate. Comparative Examples 1 to 3 are the shielding rates when lead is used. The results are shown in [Table 1].
구분(세슘137)Classification (cesium 137) 시료 두께(mm)Sample thickness (mm) 차폐율(%)Shielding rate (%)
실시예1Example 1 0.6mm0.6mm 99
실시예2Example 2 1mm1mm 1616
실시예3Example 3 2mm 2mm 2525
실시예4Example 4 3mm3mm 3333
비교예1Comparative Example 1 1mm 1mm 55
비교예2Comparative Example 2 2mm 2mm 1010
비교예3Comparative Example 3 3mm3mm 1515
[표 1]에 나타난 바와 같이, 차폐율이 납에 비하여 상당히 우수한 것을 알 수 있다. 상기 감마선 차폐재는 비중이 납의 비중(11.34)보다도 가볍고, 부드러워 변형성과 가공성이 우수하며, 다양한 용도나 형태로 사용 가능하다.As shown in [Table 1], it can be seen that the shielding rate is considerably superior to that of lead. The gamma ray shielding material is lighter and softer than the specific gravity of lead (11.34), so that it has excellent deformability and workability, and can be used in various uses or forms.
※ 부호의 설명※ Explanation of code
10 ; 외층10; Outer layer
20 ; 내층20; Inner layer
30 ; 외피층30; Outer layer
S100 ; 제1혼합분쇄단계(외층)S100; 1st mixing and grinding step (outer layer)
S130 ; 제2혼합분쇄단계(외층)S130; 2nd mixing and grinding step (outer layer)
S150 ; 소결단계(외층)S150; Sintering step (outer layer)
S170 ; 혼합성형단계(외층)S170; Mixed molding step (outer layer)
S200 ; 제1혼합분쇄단계(내층)S200; 1st mixing and grinding step (inner layer)
S230 ; 제2혼합분쇄단계(내층)S230; 2nd mixing and grinding step (inner layer)
S250 ; 소결단계(내층)S250; Sintering step (inner layer)
S270 ; 혼합성형단계(내층)S270; Mixed molding step (inner layer)
개시된 내용은 방사선 차폐재 및 방사선 차폐복 분야에 사용가능하다.The disclosed content can be used in the field of radiation shielding materials and radiation shielding clothing.

Claims (15)

  1. 산란 방사선 흡수 조성물 및 폴리우레탄으로 이루어지는 외층; 및An outer layer made of a scattered radiation absorbing composition and polyurethane; And
    상기 외층의 일면에 형성되며, 감마선 차폐 조성물 및 폴리클로로프렌으로 이루어지는 내층;을 포함하는 방사선 차폐재.Radiation shielding material comprising; an inner layer formed on one surface of the outer layer and made of a gamma ray shielding composition and polychloroprene.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 외층과 상기 내층으로 이루어진 적층체의 상부면과 하부면 중 적어도 일면에 방수천 또는 부직포가 열 접착하여 형성된 외피층이 포함된 것을 특징으로 하는 방사선 차폐재.A radiation shielding material comprising an outer skin layer formed by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the laminate comprising the outer layer and the inner layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 산란 방사선 흡수 조성물은 황산바륨, 산화비스무트 및 산화마그네슘으로 이루어지는 군에서 선택되는 적어도 하나, 산화철, 탄산스트론튬 및 산화그래핀을 포함하는 것을 특징으로 하는 방사선 차폐재.The scattered radiation absorbing composition comprises at least one selected from the group consisting of barium sulfate, bismuth oxide, and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 감마선 차폐 조성물은 산화비스무트 화합물 및 텅스텐 중 적어도 하나, 황산바륨 및 산화마그네슘 중 적어도 하나, 산화철, 탄산스트론튬 및 산화그래핀을 포함하는 것을 특징으로 하는 방사선 차폐재.The gamma ray shielding composition comprises at least one of a bismuth oxide compound and tungsten, at least one of barium sulfate and magnesium oxide, iron oxide, strontium carbonate, and graphene oxide.
  5. 청구항 3 또는 4에 있어서,The method according to claim 3 or 4,
    상기 산화철, 탄산스트론튬 및 산화그래핀은 고주파유도 가열에 의해 소결된 것을 특징으로 하는 방사선 차폐재.The radiation shielding material, characterized in that the iron oxide, strontium carbonate, and graphene oxide are sintered by high frequency induction heating.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 외층의 산란 방사선 흡수 조성물과 폴리우레탄의 중량비는 92:8 내지 98:2인 것을 특징으로 하는 방사선 차폐재.Radiation shielding material, characterized in that the weight ratio of the scattered radiation absorbing composition of the outer layer and the polyurethane is 92:8 to 98:2.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 내층의 감마선 차폐 조성물과 폴리클로로프렌의 중량비는 92:8 내지 98:2인 것을 특징으로 하는 방사선 차폐재.Radiation shielding material, characterized in that the weight ratio of the gamma-ray shielding composition and polychloroprene of the inner layer is 92:8 to 98:2.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 외층과 내층의 중량비는 40:60 내지 50:50 인 것을 특징으로 하는 방사선 차폐재.Radiation shielding material, characterized in that the weight ratio of the outer layer and the inner layer is 40:60 to 50:50.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 외층과 내층 사이에 네오디움 자석이 삽입된 것을 특징으로 하는 방사선 차폐재.A radiation shielding material, characterized in that a neodymium magnet is inserted between the outer layer and the inner layer.
  10. 청구항 1 내지 9 중 어느 한 항의 방사선 차폐재를 이용하여 착용자의 신체를 가리도록 구성된 방사선 차폐복.A radiation shielding suit configured to cover the wearer's body by using the radiation shielding material of any one of claims 1 to 9.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 방사선 차폐복에 갑상선 주위 차폐를 위한 덮개가 더 포함되는 것을 특징으로 하는 방사선 차폐복.Radiation shielding suit, characterized in that it further comprises a cover for shielding around the thyroid gland in the radiation shielding suit.
  12. 하기 단계를 포함하는 방사선 차폐재의 제조방법:A method of manufacturing a radiation shielding material comprising the following steps:
    (A) 황산바륨, 산화마그네슘 및 산화비스무트 중 적어도 하나를 분쇄하는 단계;(A) grinding at least one of barium sulfate, magnesium oxide and bismuth oxide;
    (B) 산화철, 탄산스트론튬 및 산화그래핀을 포함하는 조성물을 혼합 및 분쇄한 후 소결하는 단계;(B) mixing and pulverizing a composition containing iron oxide, strontium carbonate, and graphene oxide, followed by sintering;
    (C) (A)단계를 거친 분쇄물과 (B)단계를 거친 소결물을 폴리우레탄과 혼합 및 성형하는 단계;(C) mixing and molding the pulverized product through step (A) and the sintered product through step (B) with polyurethane;
    (D) 산화비스무트 및 텅스텐(Tungsten) 중 적어도 하나, 황산바륨 및 산화마그네슘 중 적어도 하나를 혼합 및 분쇄하는 단계;(D) mixing and grinding at least one of bismuth oxide and tungsten, at least one of barium sulfate and magnesium oxide;
    (E) 산화철, 탄산스트론튬 및 산화그래핀을 포함하는 조성물을 혼합 및 분쇄한 후 소결하는 단계;(E) mixing and pulverizing a composition containing iron oxide, strontium carbonate, and graphene oxide, followed by sintering;
    (F) (D)단계를 거친 분쇄물, (E)단계를 거친 소결물 및 폴리클로로프렌을 (C) 단계를 거친 성형물 상에서 혼합 및 가교 반응시키는 단계;(F) mixing and crosslinking the pulverized product through step (D), the sintered product through step (E) and polychloroprene on the molded product through step (C);
  13. 청구항 12에 있어서,The method of claim 12,
    상기 (B) 또는 (E) 단계의 소결은 1,000 내지 1,600℃에서 2 내지 5 분 동안 고주파유도 가열에 의하여 이루어지는 것을 특징으로 하는 방사선 차폐재의 제조방법.The sintering of the step (B) or (E) is a method of manufacturing a radiation shielding material, characterized in that the sintering is performed by high frequency induction heating at 1,000 to 1,600° C. for 2 to 5 minutes.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 (F)단계를 거친 성형물의 상부면과 하부면 중 적어도 일면에 방수천 또는 부직포를 열 접착하여 외피층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 방사선 차폐재의 제조방법. The method of manufacturing a radiation shielding material, further comprising the step of forming an outer skin layer by thermally bonding a waterproof cloth or a nonwoven fabric to at least one of an upper surface and a lower surface of the molded product after step (F).
  15. 청구항 12 내지 14 중 어는 한 항의 방법으로 제조된 방사선 차폐재를 이용하여 착용자의 신체를 가리도록 구성된 방사선 차폐복.A radiation shielding suit configured to cover the wearer's body by using a radiation shielding material manufactured by the method of any one of claims 12 to 14.
PCT/KR2020/007284 2019-11-11 2020-06-04 Hybrid lead-free radiation shielding material, and radiation suit using same WO2021096014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0143591 2019-11-11
KR1020190143591A KR102318127B1 (en) 2019-11-11 2019-11-11 Hybrid lead-free radiation shielding material and radiation shielding suit using the same

Publications (1)

Publication Number Publication Date
WO2021096014A1 true WO2021096014A1 (en) 2021-05-20

Family

ID=75912143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007284 WO2021096014A1 (en) 2019-11-11 2020-06-04 Hybrid lead-free radiation shielding material, and radiation suit using same

Country Status (2)

Country Link
KR (1) KR102318127B1 (en)
WO (1) WO2021096014A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441713A (en) * 2021-06-15 2021-09-28 宁波职业技术学院 Light composite material for roof construction and preparation method thereof
CN116082826A (en) * 2023-02-02 2023-05-09 北京航空材料研究院股份有限公司 Radiation-proof polyurethane elastomer, film and composite glass and preparation method thereof
TWI870054B (en) * 2022-10-12 2025-01-11 國立大學法人筑波大學 Radiation shielding jig, method for manufacturing the same, and method for using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372528B1 (en) 2021-10-06 2022-03-10 (주)창림이엔지 Radiation shield clothing with injection moling structure
KR102735180B1 (en) * 2022-06-23 2024-11-26 오영훈 Full body radiation shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011055A (en) * 2007-07-25 2009-02-02 지상협 Radiation shielding fiber
US20140088338A1 (en) * 2012-09-26 2014-03-27 Alice Chang Clothing with magnets systems
KR20140040738A (en) * 2011-05-11 2014-04-03 스템레드 엘티디. Radiation protection device and method thereof
KR101527796B1 (en) * 2014-06-23 2015-06-19 주식회사 에스티에스네트웍스 Method for preparing textile composite for sheilding radiation
JP2015224967A (en) * 2014-05-28 2015-12-14 東レ・デュポン株式会社 Radiation shielding composite membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096240A (en) * 2001-09-27 2003-04-03 Maruyoshi:Kk Chlorine-containing rubber composition containing tungsten
KR100709140B1 (en) 2002-12-04 2007-04-18 김건보 Radiation shield and method for manufacturing the radiation shield
KR20170002683U (en) 2016-01-19 2017-07-27 주식회사바텍 Radiation shield clothes
EP3667679B1 (en) * 2017-08-09 2025-02-19 Sun-Nanotechnology Co., Ltd. Radiation-shielding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011055A (en) * 2007-07-25 2009-02-02 지상협 Radiation shielding fiber
KR20140040738A (en) * 2011-05-11 2014-04-03 스템레드 엘티디. Radiation protection device and method thereof
US20140088338A1 (en) * 2012-09-26 2014-03-27 Alice Chang Clothing with magnets systems
JP2015224967A (en) * 2014-05-28 2015-12-14 東レ・デュポン株式会社 Radiation shielding composite membrane
KR101527796B1 (en) * 2014-06-23 2015-06-19 주식회사 에스티에스네트웍스 Method for preparing textile composite for sheilding radiation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441713A (en) * 2021-06-15 2021-09-28 宁波职业技术学院 Light composite material for roof construction and preparation method thereof
CN113441713B (en) * 2021-06-15 2023-11-24 宁波职业技术学院 Light composite material for roof construction and preparation method thereof
TWI870054B (en) * 2022-10-12 2025-01-11 國立大學法人筑波大學 Radiation shielding jig, method for manufacturing the same, and method for using the same
CN116082826A (en) * 2023-02-02 2023-05-09 北京航空材料研究院股份有限公司 Radiation-proof polyurethane elastomer, film and composite glass and preparation method thereof
CN116082826B (en) * 2023-02-02 2024-02-09 北京航空材料研究院股份有限公司 Radiation-proof polyurethane elastomer, film and composite glass and preparation method thereof

Also Published As

Publication number Publication date
KR102318127B1 (en) 2021-10-28
KR20210056756A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2021096014A1 (en) Hybrid lead-free radiation shielding material, and radiation suit using same
AbuAlRoos et al. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review
WO2015199276A1 (en) Composition for radiation shielding and method for preparing same
US8754389B2 (en) Apparatuses and methods employing multiple layers for attenuating ionizing radiation
CN109903871B (en) High-performance nuclear radiation shielding device and technology based on graphene nano material
WO2022055233A1 (en) Anti-radiation shield comprising compressed multi-layer lattice-structured fabric made of tungsten wire, and method for producing same
WO2017086518A1 (en) Radiation detection apparatus and radiographic apparatus comprising same
CN111231441B (en) Multifunctional nuclear radiation protection double-layer fabric and preparation method thereof
WO2019147108A1 (en) Multi-layered high energy radiation shielding material using polymer/lead-free metal composite material and manufacturing method therefor
CN111228142A (en) Radiation protection material, preparation method thereof and skin care product
Chen et al. Electrospun multifunctional radiation shielding nanofibrous membrane for daily human protection
RU2601874C2 (en) Use of mixture comprising erbium and praseodymium as radiation attenuating composition, radiation attenuating material, and article providing protection against ionising radiation and comprising such composition
WO2019083076A1 (en) Radiation shielding sheet manufacturing method and radiation shielding sheet using same
Dhand et al. Tailored eutectic alloy coating for enhanced EMI and X-ray protection by basalt fiber CNT/epoxy composite
WO2022050744A1 (en) Radiation shielding pad made by compressing multiple layers of lattice-structured fiber manufactured using tungsten wires, and manufacturing method therefor
Bawazeer et al. Evaluation of X-ray radiation shielding performance of Bi2O3 and BaTiO3 embedded in PVP and PEG polymer nanocomposite
WO2022139258A1 (en) Method for manufacturing plastic-based radiation-shielding body, radiation-shielding body thereof, and radiation shielding apparatus using same
JP2002153457A (en) Medical equipment
Elsafi et al. Development of gloves and protective jackets from ionizing radiation made of silicone rubber using nano-bismuth and tin oxides
Sobczak et al. Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study
JP3477150B2 (en) Radioactive armor treatment method and system
RU2606233C2 (en) Sandwich type structure multilayer material for radiation protection
CN113012838B (en) Anti-radiation composite colloidal particle and preparation method and application thereof
KR20090011090A (en) Fabric from radioactive ray shield
CN217444082U (en) Flame-retardant nuclear radiation-proof neutron ray-proof biochemical-proof integrated protective clothing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886265

Country of ref document: EP

Kind code of ref document: A1