WO2021095516A1 - Optical film set and liquid crystal panel - Google Patents
Optical film set and liquid crystal panel Download PDFInfo
- Publication number
- WO2021095516A1 WO2021095516A1 PCT/JP2020/040301 JP2020040301W WO2021095516A1 WO 2021095516 A1 WO2021095516 A1 WO 2021095516A1 JP 2020040301 W JP2020040301 W JP 2020040301W WO 2021095516 A1 WO2021095516 A1 WO 2021095516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- optical film
- film
- thickness
- polarizing plate
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 148
- 239000012788 optical film Substances 0.000 title claims abstract description 100
- 239000010408 film Substances 0.000 claims abstract description 112
- 239000010410 layer Substances 0.000 claims abstract description 99
- 210000002858 crystal cell Anatomy 0.000 claims abstract description 50
- 239000011521 glass Substances 0.000 claims abstract description 50
- 239000012790 adhesive layer Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 58
- 230000010287 polarization Effects 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 description 40
- 239000011347 resin Substances 0.000 description 36
- 230000008859 change Effects 0.000 description 31
- 238000011156 evaluation Methods 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 31
- 239000004372 Polyvinyl alcohol Substances 0.000 description 28
- 229920002451 polyvinyl alcohol Polymers 0.000 description 28
- 239000000853 adhesive Substances 0.000 description 26
- 230000001070 adhesive effect Effects 0.000 description 26
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 24
- 230000001681 protective effect Effects 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 description 13
- 239000005020 polyethylene terephthalate Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 229920002284 Cellulose triacetate Polymers 0.000 description 11
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 11
- 229920000058 polyacrylate Polymers 0.000 description 11
- 229920006267 polyester film Polymers 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 10
- 229920000178 Acrylic resin Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052740 iodine Inorganic materials 0.000 description 7
- 239000011630 iodine Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- KNCYXPMJDCCGSJ-UHFFFAOYSA-N piperidine-2,6-dione Chemical group O=C1CCCC(=O)N1 KNCYXPMJDCCGSJ-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 229920006332 epoxy adhesive Polymers 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012461 cellulose resin Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- UUORTJUPDJJXST-UHFFFAOYSA-N n-(2-hydroxyethyl)prop-2-enamide Chemical compound OCCNC(=O)C=C UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- YEUIMZOJSJEGFM-UHFFFAOYSA-N 1-cyclohexyl-n,n-bis(oxiran-2-ylmethyl)methanamine Chemical compound C1OC1CN(CC1CCCCC1)CC1CO1 YEUIMZOJSJEGFM-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- FNYWFRSQRHGKJT-UHFFFAOYSA-N 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane Chemical compound C1OCC1(CC)COCC1(CC)COC1 FNYWFRSQRHGKJT-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 101000720524 Gordonia sp. (strain TY-5) Acetone monooxygenase (methyl acetate-forming) Proteins 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241001125046 Sardina pilchardus Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005650 polypropylene glycol diacrylate Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
Definitions
- the present invention relates to an optical film set and a liquid crystal panel.
- liquid crystal display elements and display elements using organic EL have been made lighter and thinner from the viewpoint of storage and design.
- a cover glass has been used as the outermost surface of a display element, and after the polarizing plate is attached to a liquid crystal cell or the like, the cover glass is provided on the polarizing plate via an interlayer filler.
- Patent Document 1 in a liquid crystal panel obtained from a polarizing film and a liquid crystal cell, a technique for suppressing warpage of the polarizing film integrated with the liquid crystal panel, particularly the liquid crystal panel due to the influence of shrinkage of the polarizing film in a high temperature environment, is provided. It is disclosed.
- Patent Document 2 discloses that a glass film laminate having excellent strength and flexibility against contact with a protrusion having high hardness such as a pen is used for the outermost layer of a display element or a lighting element.
- a glass film laminate used for a display element an optical film in which a glass film, an adhesive layer, a protective film, a polarizer, and an adhesive layer are laminated in this order has been proposed.
- the present inventors make a glass film laminate into a predetermined size by processing such as laser or cutting according to an application such as a notebook computer, and attach it to a liquid crystal cell to form a liquid crystal panel, which is durable in a heating environment.
- the test was conducted. As a result, when the liquid crystal panel was photographed and observed, it was found that the color of the edge portion of the liquid crystal panel was changed as compared with the central portion of the liquid crystal panel.
- the present inventors could confirm that the warp was suppressed in a high temperature environment, and the color of the edge of the liquid crystal panel was confirmed. It was also confirmed that no change had occurred.
- the present inventors have found that the change in the color of the edge of the liquid crystal panel occurs only in the liquid crystal panel satisfying a specific condition.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal panel in which color change is suppressed even in a heating environment.
- the liquid crystal panel includes a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a first optical film provided on the visible side of the liquid crystal cell via a first pressure-sensitive adhesive layer, and the liquid crystal cell.
- the first optical film has a second optical film provided on the back light side of the film via a second pressure-sensitive adhesive layer, and the total thickness of the two transparent substrates is 450 ⁇ m or less.
- the glass film has a glass film and a first polarizing plate, and the thickness of the glass film is 50 ⁇ m or more and 150 ⁇ m or less, and the first polarizing plate has a polarizer having a thickness of 15 ⁇ m or less.
- FIG. 1 is a cross-sectional view illustrating the optical film set according to the first embodiment.
- the optical film set 1 includes a first optical film 10 and a second optical film 20.
- the first optical film 10 includes a first glass film 11, a first adhesive layer 12, and a first polarizing plate 13 in this order.
- the pressure-sensitive adhesive layer means a layer that has adhesiveness at room temperature and adheres to an adherend with a light pressure. Therefore, even when the adherend attached to the pressure-sensitive adhesive layer is peeled off, the pressure-sensitive adhesive layer retains a practical adhesive force.
- the adhesive layer is a layer capable of binding substances by interposing between the substances. Therefore, when the adherend attached to the adhesive layer is peeled off, the adhesive layer does not have a practical adhesive force.
- the first polarizing plate 13 has a first polarizer 131 and a first protective film 132.
- the first protective film 132 is arranged on at least one side (one side) of the first polarizer 131.
- the first protective film 132 is preferably arranged at least on the side of the first adhesive layer 12 of the first polarizer 131, but if necessary, both sides of the first polarizer (one surface and the other). It may be arranged on the surface of).
- the first retardation layer may be arranged on the side of the first polarizing plate 13 opposite to the first adhesive layer 12.
- the first retardation layer can be laminated on the first polarizing plate 13 via any suitable adhesive layer or adhesive layer.
- the first pressure-sensitive adhesive layer may be arranged on the side of the first polarizer 131 of the first polarizing plate 13, or the first mold release may be provided via the first pressure-sensitive adhesive layer. The film may be placed.
- the second optical film 20 includes a second polarizing plate 23.
- the second polarizing plate 23 has a second polarizer 231.
- the second polarizing plate 23 may include a second protective film 232 arranged on one side or both sides of the second polarizer 231 as required.
- a second retardation layer may be arranged on the second polarizer 231 side of the second polarizing plate 23.
- the second retardation layer can be laminated on the second polarizing plate 23 via any suitable adhesive layer or adhesive layer.
- a second pressure-sensitive adhesive layer may be arranged on the second polarizer 231 side of the second polarizing plate 23, or a second mold release may be provided via the second pressure-sensitive adhesive layer.
- the film may be placed.
- an optical layer may be arranged on the second protective film 232 side of the second polarizing plate 23. The optical layer can be laminated to the second protective film 232 via any suitable adhesive layer or adhesive layer.
- the first glass film 11 is not particularly limited, and an appropriate one can be adopted depending on the intended purpose.
- the first glass film 11 includes, for example, soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass and the like.
- non-alkali glass and low-alkali glass can be mentioned.
- the content of the alkali metal component (for example, Na 2 O, K 2 O, Li 2 O) of the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
- the thickness of the first glass film 11 is preferably 50 ⁇ m to 150 ⁇ m, more preferably 60 ⁇ m to 140 ⁇ m, further preferably 70 ⁇ m to 130 ⁇ m, and particularly preferably 80 ⁇ m to 120 ⁇ m.
- the first optical film 10 which is excellent in flexibility, can be processed by a roll-to-roll process, and the glass film is not easily cracked and is excellent in productivity can be obtained.
- the light transmittance of the first glass film 11 at a wavelength of 550 nm is preferably 85% or more.
- the refractive index of the first glass film 11 at a wavelength of 550 nm is preferably 1.4 to 1.65.
- the density of the first glass film 11 is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . With the glass film in the above range, it is possible to provide an optical film set 1 that can contribute to weight reduction of image display.
- the molding method of the first glass film 11 is not particularly limited, and an appropriate one can be adopted according to the purpose.
- the first glass film 11 is a mixture containing a main raw material such as silica and alumina, a defoaming agent such as sardine glass and antimony oxide, and a reducing agent such as carbon at about 1400 ° C to 1600 ° C. It can be produced by melting at the above temperature, forming it into a thin plate, and then cooling it.
- Examples of the molding method of the first glass film 11 include a slot down draw method, a fusion method, and a float method.
- the glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve the smoothness.
- the first adhesive layer 12 is not particularly limited, and an appropriate adhesive can be adopted depending on the intended purpose.
- the adhesive include polyester adhesives, polyurethane adhesives, polyvinyl alcohol adhesives, and epoxy adhesives. Among these, an epoxy-based adhesive that can obtain particularly good adhesion is preferable.
- the first adhesive layer 12 When the first adhesive layer 12 is a thermosetting adhesive, it can exhibit peeling resistance by heating and curing (solidifying). Further, when the first adhesive layer 12 is a photocurable adhesive such as an ultraviolet curable type, the peeling resistance can be exhibited by irradiating the first adhesive layer 12 with light such as ultraviolet rays and curing the adhesive. Further, when the first adhesive layer 12 is a moisture-curable adhesive, it can be cured by reacting with moisture in the air or the like, so that it can be cured even if left unattended to exhibit peeling resistance.
- first adhesive layer 12 for example, a commercially available adhesive may be used, or various curable resins may be dissolved or dispersed in a solvent to prepare an adhesive solution (or dispersion liquid).
- the thickness of the first adhesive layer 12 is preferably 10 ⁇ m or less, more preferably 0.1 ⁇ m to 10 ⁇ m, still more preferably 0.5 ⁇ m to 8 ⁇ m, and particularly preferably 1 ⁇ m to 6 ⁇ m. Within such a range, the first optical film 10 having excellent flexibility and puncture resistance can be obtained.
- the elastic modulus of the first adhesive layer 12 is preferably 0.5 GPa to 15 GPa, more preferably 0.8 GPa to 10 GPa, and further preferably 1 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent flexibility and puncture resistance can be obtained. In the present specification, the elastic modulus can be measured under the following conditions using an autograph.
- the thickness of the first polarizing plate 13 is preferably 5 ⁇ m to 300 ⁇ m, more preferably 10 ⁇ m to 250 ⁇ m, still more preferably 25 ⁇ m to 200 ⁇ m, and particularly preferably 25 ⁇ m to 100 ⁇ m.
- the elastic modulus of the first polarizing plate 13 is preferably 1 GPa or more, more preferably 1 GPa to 10 GPa, further preferably 2 GPa to 7 GPa, and particularly preferably 2 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent puncture resistance can be obtained.
- the shape of the first polarizing plate 13 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned.
- the absorption axis direction of the first polarizing element 131 of the first polarizing plate 13 and the long side or the short side of the first polarizing plate 13 are substantially parallel to each other. Is preferable.
- substantially parallel is a concept including not only the case where it is strictly parallel but also the case where the angle formed by both lines is ⁇ 10 ° (preferably ⁇ 5 °).
- the thickness of the first polarizer 131 is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose.
- the thickness of the first polarizer 131 is typically about 1 ⁇ m to 80 ⁇ m.
- a thin polarizer may be used as the first polarizer 131.
- the thickness of the first polarizer 131 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
- the heating environment is formed when the first optical film 10 and the second optical film 20 are arranged on both sides of the liquid crystal cell to form a liquid crystal panel. Even below (for example, 80 ° C.), the change in color of the edge of the liquid crystal panel can be suppressed.
- the first polarizer 131 preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
- the simple substance transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more.
- the degree of polarization of the first polarizer 131 is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
- the first polarizer 131 is preferably an iodine-based polarizer. More specifically, the polarizer can be composed of a polyvinyl alcohol-based resin (hereinafter, referred to as "PVA-based resin") film containing iodine.
- PVA-based resin polyvinyl alcohol-based resin
- the PVA-based resin that forms the PVA-based resin film is not particularly limited, and an appropriate resin can be used depending on the intended purpose. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
- Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
- the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
- the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. Is.
- the degree of saponification is determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
- the average degree of polymerization of the PVA-based resin is not particularly limited and can be appropriately selected according to the purpose.
- the average degree of polymerization of the PVA-based resin is, for example, 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500.
- the average degree of polymerization is determined according to JIS K 6726-1994.
- Examples of the method for producing the first polarizer 131 include a method (I) of stretching and dyeing a single PVA-based resin film, and a method (i) of stretching and dyeing a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer. Method (II) and the like. Since the method (I) is a well-known and commonly used method in the art, detailed description thereof will be omitted.
- a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer formed on one side of the resin base material is stretched and dyed, and polarized light is applied onto the resin base material.
- the laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin base material. Further, the laminate (i) may be formed by transferring the polyvinyl alcohol-based resin layer onto the resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, and this publication can be incorporated herein by reference.
- the first protective film 132 is not particularly limited, and an appropriate resin film can be used depending on the intended purpose.
- the material for forming the first protective film 132 include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, polyethylene, and polypropylene.
- PET polyethylene terephthalate
- TAC triacetyl cellulose
- cycloolefin resins such as norbornene resins
- polyethylene and polypropylene.
- PET polyethylene terephthalate
- the "(meth) acrylic resin” refers to an acrylic resin and / or a methacrylic resin.
- the (meth) acrylic resin for example, a (meth) acrylic resin having a glutarimide structure is used.
- examples of the (meth) acrylic resin having a glutarimide structure include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements may be incorporated herein by reference.
- the first protective film 132 and the first polarizer 131 can be laminated via any suitable adhesive layer.
- the resin base material used in the production of the first polarizer 131 is peeled off before or after the first protective film 132 and the first polarizer 131 are laminated.
- the thickness of the first protective film 132 is preferably 4 ⁇ m to 250 ⁇ m, more preferably 5 ⁇ m to 150 ⁇ m, further preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m.
- the elastic modulus of the first protective film 132 is 1 GPa or more, preferably 1 GPa to 10 GPa, more preferably 1.8 GPa to 7 GPa, and further preferably 2 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent puncture resistance can be obtained.
- the first retardation layer is not an essential configuration and is provided as needed.
- the first retardation layer is not particularly limited and may have any suitable optical property and / or mechanical property depending on the purpose.
- the first retardation layer typically has a slow axis.
- the optical and / or mechanical properties of the first retardation layer can be appropriately selected depending on the orientation mode of the liquid crystal cell.
- the first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measurement light.
- the thickness of the first retardation layer is preferably 60 ⁇ m or less, more preferably 30 ⁇ m to 55 ⁇ m, and further preferably 30 ⁇ m or less.
- the first retardation layer can be made of any suitable resin film that can satisfy the above characteristics.
- suitable resins are cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, and acrylics. Examples thereof include based resins and polymer liquid crystal resins.
- the first pressure-sensitive adhesive layer is not an essential configuration and is provided as needed.
- the first pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive.
- a pressure-sensitive adhesive based on a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, or a rubber-based polymer is used.
- an acrylic pressure-sensitive adhesive is used. This is because the acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesiveness, and can be excellent in weather resistance, heat resistance, and the like.
- an acrylic pressure-sensitive adhesive made of an acrylic polymer having 4 to 12 carbon atoms is preferable.
- the first pressure-sensitive adhesive layer is formed from the pressure-sensitive adhesive.
- the thickness of the first pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 400 ⁇ m. Further, the thickness of the first pressure-sensitive adhesive layer can be appropriately set in a preferable range depending on the method for producing the (meth) acrylic polymer used for the pressure-sensitive adhesive. For example, when a (meth) acrylic polymer is produced by solution polymerization or the like, the thickness of the first pressure-sensitive adhesive layer is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, further preferably 2 to 40 ⁇ m, and 5 ⁇ 35 ⁇ m is particularly preferable. When a (meth) acrylic polymer is produced by radiation polymerization or the like, the thickness of the first pressure-sensitive adhesive layer is preferably 50 to 400 ⁇ m, more preferably 75 to 300 ⁇ m, and even more preferably 100 to 200 ⁇ m.
- Solution polymerization is suitable for producing an acrylic polymer with such a thickness.
- the first release film is not an essential configuration and is provided as needed.
- the first release film can be formed of, for example, a resin of polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the thickness of the first release film is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and even more preferably 30 ⁇ m to 50 ⁇ m.
- the first release film is peeled off at the interface with the first pressure-sensitive adhesive layer before the first optical film 10 is attached to an optical element such as a liquid crystal cell.
- the dimensional change of the second optical film 20 is preferably 0.5% or less, more preferably 0% to 0.2%.
- the optical film set 1 is a combination of a first optical film 10 including a first glass film 11 and a second optical film 20 exhibiting a dimensional change as described above. Therefore, by arranging the first optical film 10 and the second optical film 20 on both sides of the liquid crystal cell, a liquid crystal panel with less warpage (first optical film / liquid crystal cell / second optical film) can be obtained. Be done.
- the dimensional change is the dimensional change when a rectangular sample having a length of X 0 (for example, 20 cm) in the absorption axis direction of the second polarizer 231 is allowed to stand in an environment at a temperature of 80 ° C. for 150 hours.
- the dimensional change can be measured by a plane biaxial length measuring machine, for example, Quick Vision (manufactured by Mitutoyo).
- the thickness of the second polarizing plate 23 is preferably 5 ⁇ m to 250 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m, further preferably 25 ⁇ m to 200 ⁇ m, and particularly preferably 25 ⁇ m to 100 ⁇ m.
- the shape of the second polarizing plate 23 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned. When the second polarizing plate 23 has a rectangular shape, the absorption axis direction of the second polarizing element 231 of the second polarizing plate 23 and the long side or the short side of the second polarizing plate 23 are substantially parallel to each other. Is preferable.
- the relationship between the second polarizing plate 23 and the first polarizing plate 13 is such that the absorption axis direction of the first polarizing element 131 and the short side of the first polarizing plate 13 are substantially parallel to each other.
- the absorption axis of the second polarizer 231 and the long side of the second polarizing plate 23 are substantially parallel to each other.
- the absorption axis direction of the first polarizing element 131 and the long side of the first polarizing plate 13 are substantially parallel.
- the absorption axis of the second polarizer 231 and the short side of the second polarizing plate 23 are substantially parallel to each other.
- the thickness of the second polarizer 231 is preferably 1 ⁇ m or more and 10 ⁇ m or less.
- the second optical film 20 with little dimensional change can be obtained.
- the thickness of the second polarizer 231 is 10 ⁇ m or less, the liquid crystal panel is formed when the first optical film 10 and the second optical film 20 are arranged on both sides of the liquid crystal cell to form the liquid crystal panel. Warp can be suppressed.
- the same description as that of the above-mentioned first polarizer 131 can be exemplified.
- the second protective film 232 for example, a protective film similar to the above-mentioned first protective film 132 is used.
- the second retardation layer is not an essential configuration and is provided as needed.
- the second retardation layer for example, a retardation layer similar to the first retardation layer described above is used.
- the optical layer is not an essential configuration and is provided as needed.
- the optical layer include a reflective polarizer and the like.
- the thickness of the optical layer is, for example, 1 ⁇ m to 200 ⁇ m.
- the reflective polarizer for example, those described in JP-A-9-507308 can be used.
- a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of commercially available products include the product name DBEF manufactured by 3M and the product name APF building manufactured by 3M.
- the second pressure-sensitive adhesive layer is not an essential configuration and is provided as needed.
- the second pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive.
- the pressure-sensitive adhesive may be the same except for the thickness of the first pressure-sensitive adhesive layer.
- the thickness of the second pressure-sensitive adhesive layer is 50 ⁇ m or more and 200 ⁇ m or less.
- the resistance to cracking of the first glass film 11 can be improved when the liquid crystal panel 2 described later is configured.
- the thickness of the first glass film 11 is 50 ⁇ m or more and 150 ⁇ m or less, the first glass film 11 is thin and easily broken. Therefore, it is significant to set the thickness of the second pressure-sensitive adhesive layer to 50 ⁇ m or more and 200 ⁇ m or less to improve the resistance of the first glass film 11 to cracking.
- Radiation polymerization is suitable for producing an acrylic polymer with such a thickness.
- the second release film is not an essential configuration and is provided as needed.
- the second release film can be formed of, for example, a resin of polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the thickness of the second release film is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and even more preferably 30 ⁇ m to 50 ⁇ m.
- the second release film is peeled off at the interface with the second pressure-sensitive adhesive layer before the second optical film 20 is attached to an optical element such as a liquid crystal cell.
- the optical film set 1 can be used for, for example, a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates and having a total thickness of 450 ⁇ m or less of the two transparent substrates.
- the first optical film 10 is provided, for example, on the visible side of the liquid crystal cell via the first adhesive layer, and functions as a front plate of the liquid crystal panel.
- the second optical film 20 is provided, for example, on the back surface side of the liquid crystal cell via the second pressure-sensitive adhesive layer.
- the visual side means a side facing the side to be visually recognized when the predetermined member is applied to the image display device.
- the back side is the side opposite to the visual recognition side (backlight side).
- the second embodiment shows an example of a liquid crystal panel having an optical film set according to the first embodiment.
- the description of the same components as those in the above-described embodiment may be omitted.
- FIG. 2 is a cross-sectional view illustrating the liquid crystal panel according to the second embodiment.
- the liquid crystal panel 2 includes a first optical film 10, a liquid crystal cell 30, and a second optical film 20 in this order from the viewing side.
- the first optical film 10 is laminated on the visible side of the liquid crystal cell 30 via the first adhesive layer 14, and the second optical film 20 is opposite to the visible side of the liquid crystal cell 30. It is laminated on the side (backlight side) via the second pressure-sensitive adhesive layer 24.
- the liquid crystal panel 2 for example, the first glass film 11, the first adhesive layer 12, the first polarizing plate 13, the first pressure-sensitive adhesive layer 14, the liquid crystal cell 30, the second pressure-sensitive adhesive layer 24, and
- the second polarizing plate 23 can be arranged in this order from the viewing side.
- the liquid crystal panel 2 may have a first retardation layer, a second retardation layer, an optical layer, and the like, if necessary.
- the liquid crystal cell 30 has a liquid crystal layer 31 sandwiched between two transparent substrates 32 and 33. That is, the transparent substrates 32 and 33 sandwich the liquid crystal layer 31, which is a display medium, from both sides.
- the liquid crystal layer 31 contains, for example, liquid crystal molecules homogenically oriented in the absence of an electric field.
- an IPS type liquid crystal layer is preferably used, but a TN type, STN type, ⁇ type, VA type or the like liquid crystal layer may be used.
- the thickness of the liquid crystal layer 31 is, for example, about 1.5 ⁇ m to 4 ⁇ m.
- the total thickness of the two transparent substrates 32 and 33 is 450 ⁇ m or less.
- the transparent substrates 32 and 33 have, for example, the same thickness.
- the transparent substrates 32 and 33 are made of, for example, glass.
- the liquid crystal cell 30 is, for example, an in-cell type.
- the liquid crystal cell 30 is an in-cell type, for example, a touch sensing electrode portion having a touch sensor or a touch drive function is provided between the transparent substrate 32 and the transparent substrate 33.
- the liquid crystal cell 30 may have a color filter or the like.
- the liquid crystal panel 2 is subjected to a durability test. It has been found that the color of the edge portion may change as compared with the central portion of the liquid crystal panel 2. The change in color of the edge of the liquid crystal panel 2 in a heating environment depends on the thickness of the first polarizing element 131 constituting the first polarizing plate 13, and the thickness of the first polarizing element 131 is 15 ⁇ m or less. Then, it was found that the change in color of the edge of the liquid crystal panel 2 was suppressed even in a heating environment.
- the first polarizing plate 13 has the first polarizing element 131 having a thickness of 15 ⁇ m or less, the color change of the edge portion of the liquid crystal panel 2 is suppressed even in a heating environment.
- the inventors have stated that the warp of the liquid crystal panel 2 depends on the thickness of the second polarizing element 231 constituting the second polarizing plate 23, and that the thickness of the second polarizer 231 is 10 ⁇ m or less. It was found that the warp of the panel 2 was suppressed.
- the warp of the liquid crystal panel 2 is suppressed by having the second polarizing plate 231 having a thickness of 10 ⁇ m or less in the second polarizing plate 23.
- the liquid crystal panel 2 is configured such that the absorption axis of the first polarizer 131 and the absorption axis of the second polarizer 231 are substantially orthogonal to each other. With such a configuration, a liquid crystal panel 2 that is less likely to warp can be obtained.
- substantially orthogonal is a concept that includes not only the case of being strictly orthogonal but also the case where the angle formed by both lines is 90 ° ⁇ 10 ° (preferably 90 ° ⁇ 5 °).
- a polarizer having a thickness of 15 ⁇ m.
- a saponified 25 ⁇ m-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 20 ⁇ m-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 60 ⁇ m) was obtained.
- the PVA molecules in the PVA layer formed on the amorphous PET substrate by such two-step stretching are highly oriented, and the iodine adsorbed by dyeing is highly oriented in one direction as a polyiodine ion complex. It was possible to generate an optical film laminate containing a PVA layer having a thickness of 5 ⁇ m, which constitutes a high-performance polarizer.
- a methacrylic resin pellet having a glutarimide ring unit was dried at 100.5 kPa at 100 ° C. for 12 hours, and extruded from a T-die at a die temperature of 270 ° C. using a single-screw extruder to form a film.
- This film was stretched in the transport direction (MD direction) in an atmosphere 10 ° C. higher than the Tg of the resin, and then stretched in the direction orthogonal to the film transport direction (TD direction) in an atmosphere 7 ° C. higher than the Tg of the resin.
- Acrylic films having thicknesses of 20 ⁇ m, 30 ⁇ m, and 40 ⁇ m were obtained, respectively.
- the PET film was peeled off from the laminate in which the acrylic film, the polarizer, and the PET film were laminated to obtain a laminate of the acrylic film (protective film) and the polarizer (polarizing plate B having a thickness of 45 ⁇ m). ..
- a polarizer having a thickness of 28 ⁇ m.
- a saponified 40 ⁇ m-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 ⁇ m-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 98 ⁇ m) was obtained.
- a saponified 40 ⁇ m-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 ⁇ m-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 93 ⁇ m) was obtained.
- TAC triacetyl cellulose film
- a polarizer having a thickness of 18 ⁇ m.
- a saponified 40 ⁇ m-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 ⁇ m-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 88 ⁇ m) was obtained.
- Dibenzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.2 parts by weight as a peroxide in 100 parts by weight of the solid content of the acrylic polymer solution, and diglycidylaminomethylcyclohexane (Mitsubishi) as an epoxy-based cross-linking agent.
- 0.05 parts by weight of Tetrad C) manufactured by Gas Chemicals 0.1 parts by weight of trimethylolpropane / tolylene diisocyanate adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as an isocyanate-based crosslinker, and a silane coupling agent.
- KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd. 0.075 parts by weight were uniformly mixed and stirred to prepare an acrylic pressure-sensitive adhesive (solid content 10.9% by weight).
- Example 1 (Preparation of the first optical film A) An adhesive layer composed of a glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name "OA-10G", thickness: 100 ⁇ m) and a polarizing plate A produced in Production Example 1 and an adhesive prepared in Production Example 7. It was pasted together via. At this time, the polarizing plate A was arranged so that the triacetyl cellulose film was on the glass film side. Next, the adhesive layer was irradiated with ultraviolet rays (500 mJ / cm 2 ) with a high-pressure mercury lamp to cure the adhesive layer, and a first optical film A was obtained. The adhesive layer had a thickness of 5 ⁇ m and an elastic modulus of 1.8 GPa.
- OA-10G thickness: 100 ⁇ m
- a pressure-sensitive adhesive layer (manufactured by 3M, trade name "APF V3", thickness: 30 ⁇ m) and a polarizing plate B produced in Production Example 2 composed of a pressure-sensitive adhesive prepared in Production Example 6 (manufactured by 3M). They were bonded together via a thickness of 12 ⁇ m). At this time, the polarizing plate B was arranged so that the acrylic film was on the reflective polarizer side.
- This adhesive layer is formed on the peeled surface of a polyester film (trade name: Diafoil MRF, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, which is a monomer component prepared in Production Example 6 and one side of which is peeled with silicone. A coating layer was formed by coating so that the final thickness was 12 ⁇ m.
- a polyester film (trade name: Diafoil MRE, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, one side of which was peeled off with silicone, was applied to the surface of the coated monomer component, and the peeled surface of the film was on the coated layer side. It was coated so as to be.
- the coating layer of the monomer component was shielded from oxygen.
- the sheet having the coating layer thus obtained is subjected to ultraviolet rays having an illuminance of 5 mW / cm 2 (measured by Topcon UVR-T1 having the maximum sensitivity at about 350 nm) using a chemical light lamp (manufactured by Toshiba Corporation).
- the coating layer was irradiated for 360 seconds to cure the pressure-sensitive adhesive layer to form a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet was prepared.
- the polyester film coated on both sides of the pressure-sensitive adhesive layer functions as a release film.
- the polyester film on one side was peeled off and laminated on the acrylic film side of the second optical film B, and then the other polyester film was peeled off and laminated on the reflective polarizer.
- a liquid crystal cell having a liquid crystal layer as a display medium and two transparent substrates sandwiching the liquid crystal layer from both sides was prepared.
- the liquid crystal cell is 13.3 inches, 298 mm ⁇ 170 mm, and the total thickness of the two transparent substrates is 450 ⁇ m.
- the first optical film A was cut into a size of 296 mm ⁇ 168 mm so that the absorption axis direction of the polarizer and the short side were parallel to each other.
- the second optical film B was cut into a size of 296 mm ⁇ 168 mm so that the absorption axis direction of the polarizer and the long side were parallel to each other.
- the first optical film A is placed on one surface of the liquid crystal cell (the surface of one transparent substrate) so that the short sides of the liquid crystal cell and the first optical film A are parallel to each other, and the polarizing plate A is used.
- the layers were laminated so that the (polarizer) was on the liquid crystal cell side.
- the second optical film B is placed on the other surface of the liquid crystal cell (the surface of the other transparent substrate) so that the short sides of the liquid crystal cell and the second optical film A are parallel to each other, and the polarizer is formed.
- the layers were laminated so as to be on the liquid crystal cell side.
- the first optical film A was laminated on the liquid crystal cell via a pressure-sensitive adhesive layer (thickness: 30 ⁇ m) composed of the pressure-sensitive adhesive prepared in Production Example 6.
- the pressure-sensitive adhesive layer was formed as follows. (I) A silicone-treated polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 ⁇ m) was applied and heated at 155 ° C. for 1 minute to form an adhesive layer having a thickness of 20 ⁇ m after drying. ii) The pressure-sensitive adhesive layer was transferred from a polyethylene terephthalate film to a polarizing plate A to form a pressure-sensitive adhesive layer.
- the second optical film B was laminated on the liquid crystal cell via a pressure-sensitive adhesive layer (thickness: 20 ⁇ m) composed of the pressure-sensitive adhesive prepared in Production Example 6.
- This adhesive layer is formed on the peeled surface of a polyester film (trade name: Diafoil MRF, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, which is a monomer component prepared in Production Example 6 and one side of which is peeled with silicone.
- a coating layer was formed by coating so that the final thickness was 100 ⁇ m.
- a polyester film (trade name: Diafoil MRE, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m, one side of which was peeled off with silicone, was applied to the surface of the coated monomer component, and the peeled surface of the film was on the coated layer side. It was coated so as to be. As a result, the coating layer of the monomer component was shielded from oxygen.
- the sheet having the coating layer thus obtained is subjected to ultraviolet rays having an illuminance of 5 mW / cm 2 (measured by Topcon UVR-T1 having the maximum sensitivity at about 350 nm) using a chemical light lamp (manufactured by Toshiba Corporation).
- the coating layer was irradiated for 360 seconds to cure the pressure-sensitive adhesive layer to form a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet was prepared.
- the polyester film coated on both sides of the pressure-sensitive adhesive layer functions as a release film.
- the polyester film on one side was peeled off and laminated on the optical film B, and then the other polyester film was peeled off and laminated on the liquid crystal cell.
- the evaluation liquid crystal panel A was produced as described above.
- Example 2 The evaluation liquid crystal panel B was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate B produced in Production Example 2 instead of the polarizing plate A produced in Production Example 1. Made.
- Example 1 The evaluation liquid crystal panel C was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1. Made.
- Example 2 The evaluation liquid crystal panel D was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate D produced in Production Example 4 instead of the polarizing plate A produced in Production Example 1. Made.
- Example 3 The evaluation liquid crystal panel E was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate E produced in Production Example 5 instead of the polarizing plate A produced in Production Example 1. Made.
- the evaluation liquid crystal panels A to F after the heating environment test were placed on the backlight so that each of the second optical films B was on the lower side. Then, in the undisplayed state (substantially black display), the color change at the edge of each of the visual side surface of the evaluation liquid crystal panels A to F was visually evaluated.
- the liquid crystal layer of each of the evaluation liquid crystal panels A to F is in the transmission mode.
- the de facto black display means that the light transmitted through the polarizing plate on the backlight side passes through the liquid crystal layer as it is, so that the light is completely absorbed by the polarizing plate on the viewing side, resulting in a black display.
- the evaluation criteria for color change is x (failure) when the color of the edge of the visible side surface of the evaluation liquid crystal panel is clearly changed compared to the center, and the color of the edge is the center.
- x nailure
- the case where the color is slightly changed compared to the part but is acceptable when commercialized is evaluated as ⁇ (pass), and the case where the color of the edge is hardly changed compared to the central part is evaluated as ⁇ (pass). ..
- Table 1 shows the evaluation results of the color change along with the configuration of each evaluation liquid crystal panel.
- the evaluation result of the color tint change of the evaluation liquid crystal panels C to E according to Comparative Examples 1 to 3 in which the thickness of the polarizer of the first optical film A was larger than 15 ⁇ m was x.
- the thickness of the polarizer of the first optical film A in the evaluation liquid crystal panel after the heating environment test, the color of the edge portion of the visible side surface changes as compared with the central portion. It can be said that this can be suppressed.
- the thickness of the polarizer of the first optical film A is 15 ⁇ m or less, the change in color of the liquid crystal panel can be suppressed. This is because by reducing the thickness of the polarizer of the first optical film A, the heat shrinkage rate of the polarizer after the heating environment test is reduced, and the shrinkage stress applied to the edge of the liquid crystal panel is relaxed. it is conceivable that.
- the color of the edge is compared with that of the center even though the thickness of the polarizer is 28 ⁇ m. And there was almost no change.
- the first optical film A does not include a glass film, regardless of whether the thickness of the polarizer is 15 ⁇ m or less (the thickness of the polarizer is determined). (Independently), it was found that the color change at the edge of the liquid crystal panel did not occur.
- the color change at the edge of the liquid crystal panel occurs only in the liquid crystal panel in which the first optical film A includes the glass film, but the thickness of the polarizer of the first optical film A is 15 ⁇ m or less. By doing so, it was found that the change in color of the liquid crystal panel can be suppressed.
- the thickness of the polarizer of the first optical film A is set to 15 ⁇ m or less.
- the thickness of the polarizer of the second optical film B is 10 ⁇ m or less, it is possible to suppress the problem that the liquid crystal panel is warped by the heating environment test. Since the thickness of the polarizer of the second optical film B of the evaluation liquid crystal panels A to F was 5 ⁇ m, it is considered that the liquid crystal panel did not warp in a heating environment test.
- Optical film set 2 Liquid crystal panel 10 First optical film 11 First glass film 12 First adhesive layer 13 First polarizing plate 14 First adhesive layer 20 Second optical film 23 Second polarized light Plate 24 Second adhesive layer 30 Liquid crystal cell 31 Liquid crystal layer 32, 33 Transparent substrate 131 First polarizer 132 First protective film 231 Second polarizing element 232 Second protective film
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
This liquid crystal panel has: a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates; a first optical film provided on the viewed side of the liquid crystal cell via a first adhesive layer; and a second optical film provided to a backlight side of the liquid crystal cell via a second adhesive layer, wherein the total thickness of the two transparent substrates is no greater than 450 μm, the first optical film has a glass film and a first polarization plate, the thickness of the glass film is 50-150 μm, and the first polarization plate has a polarizer having a thickness of no greater than 15 μm.
Description
本発明は、光学フィルムセット及び液晶パネルに関する。
The present invention relates to an optical film set and a liquid crystal panel.
近年、液晶表示素子や有機EL(Organic Electro-Luminescence)を用いた表示素子は、収納性、デザイン性の観点から軽量、薄型化が進んでいる。従来、表示素子の最表面としてカバーガラスが用いられており、偏光板を液晶セル等に貼り合わせた後、層間充填剤を介して偏光板上にカバーガラスが設けられている。
In recent years, liquid crystal display elements and display elements using organic EL (Organic Electro-Luminescence) have been made lighter and thinner from the viewpoint of storage and design. Conventionally, a cover glass has been used as the outermost surface of a display element, and after the polarizing plate is attached to a liquid crystal cell or the like, the cover glass is provided on the polarizing plate via an interlayer filler.
特許文献1では、偏光フィルムと液晶セルから得られる液晶パネルにおいて、液晶パネルに一体化されている偏光フィルム、特に偏光膜の高温環境下での収縮の影響による液晶パネルの反りを抑制する技術を開示している。
In Patent Document 1, in a liquid crystal panel obtained from a polarizing film and a liquid crystal cell, a technique for suppressing warpage of the polarizing film integrated with the liquid crystal panel, particularly the liquid crystal panel due to the influence of shrinkage of the polarizing film in a high temperature environment, is provided. It is disclosed.
一方で、極薄のガラス(ガラスフィルム)を偏光板と予め一体化して液晶セル等に貼り合わせることで、カバーガラスと偏光板とを層間充填剤を介して貼り合わせるプロセスを簡素化する取り組みもなされている。
On the other hand, there is also an effort to simplify the process of bonding the cover glass and the polarizing plate via an interlayer filler by integrating the ultra-thin glass (glass film) with the polarizing plate in advance and bonding it to a liquid crystal cell or the like. It has been done.
特許文献2には、ペン等の硬度の高い突起物の接触に対して優れた強度及び可撓性を有するガラスフィルム積層体を表示素子や照明素子の最表層に用いることが開示されている。具体的には、表示素子に用いるガラスフィルム積層体として、ガラスフィルム、接着剤層、保護フィルム、偏光子、粘着剤層を、この順に積層した光学フィルムが提案されている。
Patent Document 2 discloses that a glass film laminate having excellent strength and flexibility against contact with a protrusion having high hardness such as a pen is used for the outermost layer of a display element or a lighting element. Specifically, as a glass film laminate used for a display element, an optical film in which a glass film, an adhesive layer, a protective film, a polarizer, and an adhesive layer are laminated in this order has been proposed.
ここで、本発明者らは、ノートパソコン等の用途に合わせて、ガラスフィルム積層体をレーザや切削等の加工により所定のサイズとし、液晶セルに貼り合わせ液晶パネルとし、加熱環境下での耐久試験を行った。その結果、液晶パネルを写真観察したところ、液晶パネルの端部の色味が液晶パネルの中心部と比較して変化していることがわかった。
Here, the present inventors make a glass film laminate into a predetermined size by processing such as laser or cutting according to an application such as a notebook computer, and attach it to a liquid crystal cell to form a liquid crystal panel, which is durable in a heating environment. The test was conducted. As a result, when the liquid crystal panel was photographed and observed, it was found that the color of the edge portion of the liquid crystal panel was changed as compared with the central portion of the liquid crystal panel.
又、本発明者らは、ガラスフィルムを備えていない光学フィルムで液晶パネルを作製したところ、高温環境下で反りが抑制されていることを確認でき、かつ、液晶パネルの端部の色味の変化が起きていないことも確認できた。
Further, when the liquid crystal panel was made of an optical film not provided with a glass film, the present inventors could confirm that the warp was suppressed in a high temperature environment, and the color of the edge of the liquid crystal panel was confirmed. It was also confirmed that no change had occurred.
以上の検討より、本発明者らは、液晶パネルの端部の色味の変化は、特定の条件を満たす液晶パネルのみで発生することを見出した。
From the above studies, the present inventors have found that the change in the color of the edge of the liquid crystal panel occurs only in the liquid crystal panel satisfying a specific condition.
本発明は、上記の点に鑑みてなされたもので、加熱環境下においても色味変化が抑制された液晶パネルを提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal panel in which color change is suppressed even in a heating environment.
本液晶パネルは、2枚の透明基板に挟持された液晶層を有する液晶セルと、前記液晶セルの視認側に第1の粘着剤層を介して設けられる第1の光学フィルムと、前記液晶セルのバックライト側に第2の粘着剤層を介して設けられる第2の光学フィルムと、を有し、前記2枚の透明基板の合計の厚みが450μm以下であり、前記第1の光学フィルムは、ガラスフィルムと第1の偏光板と、を有し、前記ガラスフィルムの厚みは50μm以上150μm以下であり、前記第1の偏光板は厚み15μm以下の偏光子を有する。
The liquid crystal panel includes a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates, a first optical film provided on the visible side of the liquid crystal cell via a first pressure-sensitive adhesive layer, and the liquid crystal cell. The first optical film has a second optical film provided on the back light side of the film via a second pressure-sensitive adhesive layer, and the total thickness of the two transparent substrates is 450 μm or less. The glass film has a glass film and a first polarizing plate, and the thickness of the glass film is 50 μm or more and 150 μm or less, and the first polarizing plate has a polarizer having a thickness of 15 μm or less.
開示の技術によれば、加熱環境下においても色味変化が抑制された液晶パネルを提供できる。
According to the disclosed technology, it is possible to provide a liquid crystal panel in which color change is suppressed even in a heating environment.
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
Hereinafter, a mode for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
〈第1実施形態〉
図1は、第1実施形態に係る光学フィルムセットを例示する断面図である。図1を参照すると、光学フィルムセット1は、第1の光学フィルム10と、第2の光学フィルム20とを含む。 <First Embodiment>
FIG. 1 is a cross-sectional view illustrating the optical film set according to the first embodiment. Referring to FIG. 1, theoptical film set 1 includes a first optical film 10 and a second optical film 20.
図1は、第1実施形態に係る光学フィルムセットを例示する断面図である。図1を参照すると、光学フィルムセット1は、第1の光学フィルム10と、第2の光学フィルム20とを含む。 <First Embodiment>
FIG. 1 is a cross-sectional view illustrating the optical film set according to the first embodiment. Referring to FIG. 1, the
第1の光学フィルム10は、第1のガラスフィルム11と、第1の接着剤層12と、第1の偏光板13とをこの順に備える。
The first optical film 10 includes a first glass film 11, a first adhesive layer 12, and a first polarizing plate 13 in this order.
なお、本明細書において、粘着剤層とは、常温で接着性を有し、軽い圧力で被着体に接着する層をいう。従って、粘着剤層に貼着した被着体を剥離した場合にも、粘着剤層は実用的な粘着力を保持する。一方、接着剤層とは、物質の間に介在することによって物質を結合できる層をいう。従って、接着剤層に貼着した被着体を剥離した場合には、接着剤層は実用的な接着力を有さない。
In the present specification, the pressure-sensitive adhesive layer means a layer that has adhesiveness at room temperature and adheres to an adherend with a light pressure. Therefore, even when the adherend attached to the pressure-sensitive adhesive layer is peeled off, the pressure-sensitive adhesive layer retains a practical adhesive force. On the other hand, the adhesive layer is a layer capable of binding substances by interposing between the substances. Therefore, when the adherend attached to the adhesive layer is peeled off, the adhesive layer does not have a practical adhesive force.
第1の偏光板13は、第1の偏光子131及び第1の保護フィルム132を有する。第1の保護フィルム132は、第1の偏光子131の少なくとも片側(一方の面)に配置される。第1の保護フィルム132は、少なくとも第1の偏光子131の第1の接着剤層12側に配置されることが好ましいが、必要に応じ、第1の偏光子の両側(一方の面及び他方の面)に配置されてもよい。
The first polarizing plate 13 has a first polarizer 131 and a first protective film 132. The first protective film 132 is arranged on at least one side (one side) of the first polarizer 131. The first protective film 132 is preferably arranged at least on the side of the first adhesive layer 12 of the first polarizer 131, but if necessary, both sides of the first polarizer (one surface and the other). It may be arranged on the surface of).
なお、必要に応じ、第1の偏光板13の第1の接着剤層12とは反対側に、第1の位相差層を配置してもよい。第1の位相差層は、任意の適切な粘着剤層又は接着剤層を介して、第1の偏光板13に積層できる。又、必要に応じ、第1の偏光板13の第1の偏光子131側に、第1の粘着剤層を配置してもよいし、第1の粘着剤層を介して第1の離形フィルムを配置してもよい。
If necessary, the first retardation layer may be arranged on the side of the first polarizing plate 13 opposite to the first adhesive layer 12. The first retardation layer can be laminated on the first polarizing plate 13 via any suitable adhesive layer or adhesive layer. Further, if necessary, the first pressure-sensitive adhesive layer may be arranged on the side of the first polarizer 131 of the first polarizing plate 13, or the first mold release may be provided via the first pressure-sensitive adhesive layer. The film may be placed.
第2の光学フィルム20は、第2の偏光板23を備える。
The second optical film 20 includes a second polarizing plate 23.
第2の偏光板23は、第2の偏光子231を有する。第2の偏光板23は、必要に応じ、第2の偏光子231の片側又は両側に配置される第2の保護フィルム232を備えてもよい。
The second polarizing plate 23 has a second polarizer 231. The second polarizing plate 23 may include a second protective film 232 arranged on one side or both sides of the second polarizer 231 as required.
なお、必要に応じ、第2の偏光板23の第2の偏光子231側に、第2の位相差層を配置してもよい。第2の位相差層は、任意の適切な粘着剤層又は接着剤層を介して、第2の偏光板23に積層できる。又、必要に応じ、第2の偏光板23の第2の偏光子231側に、第2の粘着剤層を配置してもよいし、第2の粘着剤層を介して第2の離形フィルムを配置してもよい。又、必要に応じ、第2の偏光板23の第2の保護フィルム232側に、光学層を配置してもよい。光学層は、任意の適切な粘着剤層又は接着剤層を介して、第2の保護フィルム232に積層できる。
If necessary, a second retardation layer may be arranged on the second polarizer 231 side of the second polarizing plate 23. The second retardation layer can be laminated on the second polarizing plate 23 via any suitable adhesive layer or adhesive layer. Further, if necessary, a second pressure-sensitive adhesive layer may be arranged on the second polarizer 231 side of the second polarizing plate 23, or a second mold release may be provided via the second pressure-sensitive adhesive layer. The film may be placed. Further, if necessary, an optical layer may be arranged on the second protective film 232 side of the second polarizing plate 23. The optical layer can be laminated to the second protective film 232 via any suitable adhesive layer or adhesive layer.
以下、光学フィルムセット1の各構成要素について、更に詳しく説明する。
Hereinafter, each component of the optical film set 1 will be described in more detail.
(第1の光学フィルム)
[第1のガラスフィルム]
第1のガラスフィルム11は、特に限定はなく、目的に応じて適切なものを採用できる。第1のガラスフィルム11は、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。又、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記ガラスのアルカリ金属成分(例えば、Na2O、K2O、Li2O)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。 (First optical film)
[First glass film]
Thefirst glass film 11 is not particularly limited, and an appropriate one can be adopted depending on the intended purpose. According to the classification according to the composition, the first glass film 11 includes, for example, soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass and the like. Further, according to the classification according to the alkaline component, non-alkali glass and low-alkali glass can be mentioned. The content of the alkali metal component (for example, Na 2 O, K 2 O, Li 2 O) of the glass is preferably 15% by weight or less, and more preferably 10% by weight or less.
[第1のガラスフィルム]
第1のガラスフィルム11は、特に限定はなく、目的に応じて適切なものを採用できる。第1のガラスフィルム11は、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。又、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記ガラスのアルカリ金属成分(例えば、Na2O、K2O、Li2O)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。 (First optical film)
[First glass film]
The
第1のガラスフィルム11の厚みは、好ましくは50μm~150μmであり、より好ましくは60μm~140μmであり、更に好ましくは70μm~130μmであり、特に好ましくは80μm~120μmである。このような範囲であれば、フレキシブル性に優れロールツーロールプロセスでの加工が可能であり、かつ、ガラスフィルムが割れがたく生産性に優れる第1の光学フィルム10が得られる。
The thickness of the first glass film 11 is preferably 50 μm to 150 μm, more preferably 60 μm to 140 μm, further preferably 70 μm to 130 μm, and particularly preferably 80 μm to 120 μm. Within such a range, the first optical film 10 which is excellent in flexibility, can be processed by a roll-to-roll process, and the glass film is not easily cracked and is excellent in productivity can be obtained.
第1のガラスフィルム11の波長550nmにおける光透過率は、好ましくは85%以上である。第1のガラスフィルム11の波長550nmにおける屈折率は、好ましくは1.4~1.65である。
The light transmittance of the first glass film 11 at a wavelength of 550 nm is preferably 85% or more. The refractive index of the first glass film 11 at a wavelength of 550 nm is preferably 1.4 to 1.65.
第1のガラスフィルム11の密度は、好ましくは2.3g/cm3~3.0g/cm3であり、更に好ましくは2.3g/cm3~2.7g/cm3である。上記範囲のガラスフィルムであれば、画像表示の軽量化に寄与し得る光学フィルムセット1を提供できる。
The density of the first glass film 11 is preferably 2.3 g / cm 3 to 3.0 g / cm 3 , and more preferably 2.3 g / cm 3 to 2.7 g / cm 3 . With the glass film in the above range, it is possible to provide an optical film set 1 that can contribute to weight reduction of image display.
第1のガラスフィルム11の成形方法は、特に限定はなく、目的に応じて適切なものを採用できる。代表的には、第1のガラスフィルム11は、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃程度の温度で溶融し、薄板状に成形した後、冷却して作製できる。第1のガラスフィルム11の成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラスフィルムは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。
The molding method of the first glass film 11 is not particularly limited, and an appropriate one can be adopted according to the purpose. Typically, the first glass film 11 is a mixture containing a main raw material such as silica and alumina, a defoaming agent such as sardine glass and antimony oxide, and a reducing agent such as carbon at about 1400 ° C to 1600 ° C. It can be produced by melting at the above temperature, forming it into a thin plate, and then cooling it. Examples of the molding method of the first glass film 11 include a slot down draw method, a fusion method, and a float method. The glass film formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve the smoothness.
[第1の接着剤層]
第1の接着剤層12は、特に限定はなく、目的に応じて適切な接着剤を採用できる。接着剤としては、例えば、ポリエステル系接着剤、ポリウレタン系接着剤、ポリビニルアルコール系接着剤、エポキシ系接着剤が挙げられる。この中でも、特に良好な密着性が得られるエポキシ系接着剤が好ましい。 [First adhesive layer]
The firstadhesive layer 12 is not particularly limited, and an appropriate adhesive can be adopted depending on the intended purpose. Examples of the adhesive include polyester adhesives, polyurethane adhesives, polyvinyl alcohol adhesives, and epoxy adhesives. Among these, an epoxy-based adhesive that can obtain particularly good adhesion is preferable.
第1の接着剤層12は、特に限定はなく、目的に応じて適切な接着剤を採用できる。接着剤としては、例えば、ポリエステル系接着剤、ポリウレタン系接着剤、ポリビニルアルコール系接着剤、エポキシ系接着剤が挙げられる。この中でも、特に良好な密着性が得られるエポキシ系接着剤が好ましい。 [First adhesive layer]
The first
第1の接着剤層12が熱硬化型接着剤である場合は、加熱して硬化(固化)することにより剥離抵抗力を発揮できる。又、第1の接着剤層12が紫外線硬化型等の光硬化型接着剤である場合は、紫外線等の光を照射して硬化することにより剥離抵抗力を発揮できる。又、第1の接着剤層12が湿気硬化型接着剤である場合は、空気中の水分等と反応して硬化し得るので、放置することによっても硬化して剥離抵抗力を発揮できる。
When the first adhesive layer 12 is a thermosetting adhesive, it can exhibit peeling resistance by heating and curing (solidifying). Further, when the first adhesive layer 12 is a photocurable adhesive such as an ultraviolet curable type, the peeling resistance can be exhibited by irradiating the first adhesive layer 12 with light such as ultraviolet rays and curing the adhesive. Further, when the first adhesive layer 12 is a moisture-curable adhesive, it can be cured by reacting with moisture in the air or the like, so that it can be cured even if left unattended to exhibit peeling resistance.
第1の接着剤層12は、例えば、市販の接着剤を使用してもよく、各種硬化型樹脂を溶媒に溶解又は分散し、接着剤溶液(又は分散液)として調製してもよい。
For the first adhesive layer 12, for example, a commercially available adhesive may be used, or various curable resins may be dissolved or dispersed in a solvent to prepare an adhesive solution (or dispersion liquid).
第1の接着剤層12の厚みは、好ましくは10μm以下であり、より好ましくは0.1μm~10μmであり、更に好ましくは0.5μm~8μmであり、特に好ましくは1μm~6μmである。このような範囲であれば、可撓性に優れ、かつ、耐突刺性に優れる第1の光学フィルム10が得られる。
The thickness of the first adhesive layer 12 is preferably 10 μm or less, more preferably 0.1 μm to 10 μm, still more preferably 0.5 μm to 8 μm, and particularly preferably 1 μm to 6 μm. Within such a range, the first optical film 10 having excellent flexibility and puncture resistance can be obtained.
第1の接着剤層12の弾性率は、好ましくは0.5GPa~15GPaであり、より好ましくは0.8GPa~10GPaであり、更に好ましくは1GPa~5GPaである。このような範囲であれば、可撓性に優れ、かつ、耐突刺性に優れる第1の光学フィルム10が得られる。本明細書において、弾性率は、オートグラフを用いて、下記の条件にて測定できる。
The elastic modulus of the first adhesive layer 12 is preferably 0.5 GPa to 15 GPa, more preferably 0.8 GPa to 10 GPa, and further preferably 1 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent flexibility and puncture resistance can be obtained. In the present specification, the elastic modulus can be measured under the following conditions using an autograph.
[弾性率測定方法]
測定温度:23℃
サンプルサイズ:幅2cm、長さ15cm
チャック間距離:10cm
引張速度:10mm/min。 [Modulus measurement method]
Measurement temperature: 23 ° C
Sample size:width 2 cm, length 15 cm
Distance between chucks: 10 cm
Tensile speed: 10 mm / min.
測定温度:23℃
サンプルサイズ:幅2cm、長さ15cm
チャック間距離:10cm
引張速度:10mm/min。 [Modulus measurement method]
Measurement temperature: 23 ° C
Sample size:
Distance between chucks: 10 cm
Tensile speed: 10 mm / min.
[第1の偏光板]
第1の偏光板13の厚みは、好ましくは5μm~300μmであり、より好ましくは10μm~250μmであり、更に好ましくは25μm~200μmであり、特に好ましくは25μm~100μmである。 [First polarizing plate]
The thickness of the firstpolarizing plate 13 is preferably 5 μm to 300 μm, more preferably 10 μm to 250 μm, still more preferably 25 μm to 200 μm, and particularly preferably 25 μm to 100 μm.
第1の偏光板13の厚みは、好ましくは5μm~300μmであり、より好ましくは10μm~250μmであり、更に好ましくは25μm~200μmであり、特に好ましくは25μm~100μmである。 [First polarizing plate]
The thickness of the first
第1の偏光板13の弾性率は、好ましくは1GPa以上であり、より好ましくは1GPa~10GPaであり、更に好ましくは2GPa~7GPaであり、特に好ましくは2GPa~5GPaあるである。このような範囲であれば、耐突刺性に優れる第1の光学フィルム10が得られる。
The elastic modulus of the first polarizing plate 13 is preferably 1 GPa or more, more preferably 1 GPa to 10 GPa, further preferably 2 GPa to 7 GPa, and particularly preferably 2 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent puncture resistance can be obtained.
第1の偏光板13の形状は、特に限定はなく、目的に応じて適切な形状を採用できるが、一例として、長辺と短辺とを有する方形形状が挙げられる。第1の偏光板13が方形形状である場合、第1の偏光板13が有する第1の偏光子131の吸収軸方向と、第1の偏光板13の長辺又は短辺とは、略平行であることが好ましい。なお、本明細書において、「略平行」とは、厳密に平行である場合のみならず、両線のなす角が±10°(好ましくは±5°)である場合も含む概念である。
The shape of the first polarizing plate 13 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned. When the first polarizing plate 13 has a rectangular shape, the absorption axis direction of the first polarizing element 131 of the first polarizing plate 13 and the long side or the short side of the first polarizing plate 13 are substantially parallel to each other. Is preferable. In addition, in this specification, "substantially parallel" is a concept including not only the case where it is strictly parallel but also the case where the angle formed by both lines is ± 10 ° (preferably ± 5 °).
[第1の偏光子]
第1の偏光子131の厚みは、特に限定はなく、目的に応じて適切な厚みを採用できる。第1の偏光子131の厚みは、代表的には、1μm~80μm程度である。第1の偏光子131として薄型の偏光子を用いてもよく、この場合、第1の偏光子131の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下である。 [First Polarizer]
The thickness of thefirst polarizer 131 is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose. The thickness of the first polarizer 131 is typically about 1 μm to 80 μm. A thin polarizer may be used as the first polarizer 131. In this case, the thickness of the first polarizer 131 is preferably 20 μm or less, more preferably 15 μm or less.
第1の偏光子131の厚みは、特に限定はなく、目的に応じて適切な厚みを採用できる。第1の偏光子131の厚みは、代表的には、1μm~80μm程度である。第1の偏光子131として薄型の偏光子を用いてもよく、この場合、第1の偏光子131の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下である。 [First Polarizer]
The thickness of the
特に、第1の偏光子131の厚みが15μm以下であれば、第1の光学フィルム10と第2の光学フィルム20をそれぞれ液晶セルの両側に配置して液晶パネルを形成したときに、加熱環境下(例えば、80℃)においても液晶パネルの端部の色味変化を抑制できる。
In particular, when the thickness of the first polarizer 131 is 15 μm or less, the heating environment is formed when the first optical film 10 and the second optical film 20 are arranged on both sides of the liquid crystal cell to form a liquid crystal panel. Even below (for example, 80 ° C.), the change in color of the edge of the liquid crystal panel can be suppressed.
第1の偏光子131は、好ましくは、波長380nm~780nmの何れかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、更に好ましくは42.0%以上、特に好ましくは43.0%以上である。第1の偏光子131の偏光度は、好ましくは99.8%以上であり、より好ましくは99.9%以上であり、更に好ましくは99.95%以上である。
The first polarizer 131 preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more. The degree of polarization of the first polarizer 131 is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
第1の偏光子131は、好ましくは、ヨウ素系偏光子である。より詳細には、上記偏光子は、ヨウ素を含むポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムから構成できる。
The first polarizer 131 is preferably an iodine-based polarizer. More specifically, the polarizer can be composed of a polyvinyl alcohol-based resin (hereinafter, referred to as "PVA-based resin") film containing iodine.
PVA系樹脂フィルムを形成するPVA系樹脂としては、特に限定はなく、目的に応じて適切な樹脂を採用できるが、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。
The PVA-based resin that forms the PVA-based resin film is not particularly limited, and an appropriate resin can be used depending on the intended purpose. Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、更に好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求められる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られる。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. Is. The degree of saponification is determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
PVA系樹脂の平均重合度は、特に限定はなく、目的に応じて適切に選択できる。PVA系樹脂の平均重合度は、例えば、1000~10000であり、好ましくは1200~5000であり、更に好ましくは1500~4500である。なお、平均重合度は、JIS K 6726-1994に準じて求められる。
The average degree of polymerization of the PVA-based resin is not particularly limited and can be appropriately selected according to the purpose. The average degree of polymerization of the PVA-based resin is, for example, 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500. The average degree of polymerization is determined according to JIS K 6726-1994.
第1の偏光子131の製造方法としては、例えば、PVA系樹脂フィルム単体を延伸、染色する方法(I)、樹脂基材とポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色する方法(II)等が挙げられる。方法(I)は、当業界で周知慣用の方法であるため、詳細な説明は省略する。
Examples of the method for producing the first polarizer 131 include a method (I) of stretching and dyeing a single PVA-based resin film, and a method (i) of stretching and dyeing a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer. Method (II) and the like. Since the method (I) is a well-known and commonly used method in the art, detailed description thereof will be omitted.
方法(II)は、好ましくは、樹脂基材と該樹脂基材の片側に形成されたポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色して、該樹脂基材上に偏光子を作製する工程を含む。積層体(i)は、樹脂基材上にポリビニルアルコール系樹脂を含む塗布液を塗布・乾燥して形成され得る。又、積層体(i)は、ポリビニルアルコール系樹脂層を樹脂基材上に転写して形成されてもよい。上記製造方法(II)の詳細は、例えば、特開2012-73580号公報に記載されており、この公報は、本明細書に参考として援用できる。
In the method (II), preferably, a laminate (i) having a resin base material and a polyvinyl alcohol-based resin layer formed on one side of the resin base material is stretched and dyed, and polarized light is applied onto the resin base material. Including the step of producing a child. The laminate (i) can be formed by applying and drying a coating liquid containing a polyvinyl alcohol-based resin on a resin base material. Further, the laminate (i) may be formed by transferring the polyvinyl alcohol-based resin layer onto the resin base material. Details of the production method (II) are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580, and this publication can be incorporated herein by reference.
[第1の保護フィルム]
第1の保護フィルム132としては、特に限定はなく、目的に応じて適切な樹脂フィルムを採用できる。第1の保護フィルム132の形成材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂等が挙げられる。これらの中でも、好ましくは、ポリエチレンテレフタレート(PET)である。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂及び/又はメタクリル系樹脂をいう。 [First protective film]
The firstprotective film 132 is not particularly limited, and an appropriate resin film can be used depending on the intended purpose. Examples of the material for forming the first protective film 132 include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, polyethylene, and polypropylene. Such as olefin resin, (meth) acrylic resin and the like. Among these, polyethylene terephthalate (PET) is preferable. The "(meth) acrylic resin" refers to an acrylic resin and / or a methacrylic resin.
第1の保護フィルム132としては、特に限定はなく、目的に応じて適切な樹脂フィルムを採用できる。第1の保護フィルム132の形成材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂等が挙げられる。これらの中でも、好ましくは、ポリエチレンテレフタレート(PET)である。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂及び/又はメタクリル系樹脂をいう。 [First protective film]
The first
(メタ)アクリル系樹脂としては、例えば、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報、特開2010-284840号公報に記載されている。これらの記載は、本明細書に参考として援用できる。
As the (meth) acrylic resin, for example, a (meth) acrylic resin having a glutarimide structure is used. Examples of the (meth) acrylic resin having a glutarimide structure (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements may be incorporated herein by reference.
第1の保護フィルム132と第1の偏光子131とは、任意の適切な接着剤層を介して積層できる。第1の偏光子131の作製時に用いた樹脂基材は、第1の保護フィルム132と第1の偏光子131とを積層する前、或いは積層した後に剥離される。
The first protective film 132 and the first polarizer 131 can be laminated via any suitable adhesive layer. The resin base material used in the production of the first polarizer 131 is peeled off before or after the first protective film 132 and the first polarizer 131 are laminated.
第1の保護フィルム132の厚みは、好ましくは4μm~250μmであり、より好ましくは5μm~150μmであり、更に好ましくは10μm~100μmであり、特に好ましくは10μm~50μmである。
The thickness of the first protective film 132 is preferably 4 μm to 250 μm, more preferably 5 μm to 150 μm, further preferably 10 μm to 100 μm, and particularly preferably 10 μm to 50 μm.
第1の保護フィルム132の弾性率は、1GPa以上であり、好ましくは1GPa~10GPaであり、より好ましくは1.8GPa~7GPaであり、更に好ましくは2GPa~5GPaである。このような範囲であれば、耐突刺性に優れる第1の光学フィルム10が得られる。
The elastic modulus of the first protective film 132 is 1 GPa or more, preferably 1 GPa to 10 GPa, more preferably 1.8 GPa to 7 GPa, and further preferably 2 GPa to 5 GPa. Within such a range, the first optical film 10 having excellent puncture resistance can be obtained.
[第1の位相差層]
前述のように、第1の位相差層は、必須の構成ではなく、必要に応じて設けられる。第1の位相差層は、特に限定はなく、目的に応じて任意の適切な光学的特性及び/又は機械的特性を有してよい。第1の位相差層は、代表的には遅相軸を有する。第1の位相差層の光学的特性及び/又は機械的特性は、液晶セルの配向モードにより適宜選択できる。 [First retardation layer]
As described above, the first retardation layer is not an essential configuration and is provided as needed. The first retardation layer is not particularly limited and may have any suitable optical property and / or mechanical property depending on the purpose. The first retardation layer typically has a slow axis. The optical and / or mechanical properties of the first retardation layer can be appropriately selected depending on the orientation mode of the liquid crystal cell.
前述のように、第1の位相差層は、必須の構成ではなく、必要に応じて設けられる。第1の位相差層は、特に限定はなく、目的に応じて任意の適切な光学的特性及び/又は機械的特性を有してよい。第1の位相差層は、代表的には遅相軸を有する。第1の位相差層の光学的特性及び/又は機械的特性は、液晶セルの配向モードにより適宜選択できる。 [First retardation layer]
As described above, the first retardation layer is not an essential configuration and is provided as needed. The first retardation layer is not particularly limited and may have any suitable optical property and / or mechanical property depending on the purpose. The first retardation layer typically has a slow axis. The optical and / or mechanical properties of the first retardation layer can be appropriately selected depending on the orientation mode of the liquid crystal cell.
第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。
The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may be shown, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measurement light.
第1の位相差層の厚みは、好ましくは60μm以下であり、より好ましくは30μm~55μmであり、更に好ましくは30μm以下である。
The thickness of the first retardation layer is preferably 60 μm or less, more preferably 30 μm to 55 μm, and further preferably 30 μm or less.
第1の位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成できる。そのような樹脂の代表例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂、高分子液晶樹脂が挙げられる。
The first retardation layer can be made of any suitable resin film that can satisfy the above characteristics. Typical examples of such resins are cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, and acrylics. Examples thereof include based resins and polymer liquid crystal resins.
[第1の粘着剤層]
前述のように、第1の粘着剤層は、必須の構成ではなく、必要に応じて設けられる。第1の粘着剤層は、任意の適切な粘着剤から形成できる。粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとする粘着剤が用いられる。好ましくは、アクリル系粘着剤が用いられる。アクリル系粘着剤は、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れ得るからである。特に、炭素数が4~12のアクリル系ポリマーよりなるアクリル系粘着剤が好ましい。 [First adhesive layer]
As described above, the first pressure-sensitive adhesive layer is not an essential configuration and is provided as needed. The first pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive. As the pressure-sensitive adhesive, for example, a pressure-sensitive adhesive based on a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, or a rubber-based polymer is used. Preferably, an acrylic pressure-sensitive adhesive is used. This is because the acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesiveness, and can be excellent in weather resistance, heat resistance, and the like. In particular, an acrylic pressure-sensitive adhesive made of an acrylic polymer having 4 to 12 carbon atoms is preferable.
前述のように、第1の粘着剤層は、必須の構成ではなく、必要に応じて設けられる。第1の粘着剤層は、任意の適切な粘着剤から形成できる。粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとする粘着剤が用いられる。好ましくは、アクリル系粘着剤が用いられる。アクリル系粘着剤は、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れ得るからである。特に、炭素数が4~12のアクリル系ポリマーよりなるアクリル系粘着剤が好ましい。 [First adhesive layer]
As described above, the first pressure-sensitive adhesive layer is not an essential configuration and is provided as needed. The first pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive. As the pressure-sensitive adhesive, for example, a pressure-sensitive adhesive based on a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, or a rubber-based polymer is used. Preferably, an acrylic pressure-sensitive adhesive is used. This is because the acrylic pressure-sensitive adhesive is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesiveness, and can be excellent in weather resistance, heat resistance, and the like. In particular, an acrylic pressure-sensitive adhesive made of an acrylic polymer having 4 to 12 carbon atoms is preferable.
第1の粘着剤層は、前記粘着剤から形成される。第1の粘着剤層の厚みは、特に制限されず、例えば、1~400μm程度である。また、第1の粘着剤層の厚みは、粘着剤に用いる(メタ)アクリル系ポリマーの製造方法によって、適宜に好ましい範囲を設定できる。例えば、溶液重合等により(メタ)アクリル系ポリマーを製造する場合には、第1の粘着剤層の厚みは、1~100μmが好ましく、2~50μmがより好ましく、2~40μmが更に好ましく、5~35μmが特に好ましい。また、放射線重合等により、(メタ)アクリル系ポリマーを製造する場合には、第1の粘着剤層の厚みは、50~400μmが好ましく、75~300μmがより好ましく、100~200μmが更に好ましい。
The first pressure-sensitive adhesive layer is formed from the pressure-sensitive adhesive. The thickness of the first pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 400 μm. Further, the thickness of the first pressure-sensitive adhesive layer can be appropriately set in a preferable range depending on the method for producing the (meth) acrylic polymer used for the pressure-sensitive adhesive. For example, when a (meth) acrylic polymer is produced by solution polymerization or the like, the thickness of the first pressure-sensitive adhesive layer is preferably 1 to 100 μm, more preferably 2 to 50 μm, further preferably 2 to 40 μm, and 5 ~ 35 μm is particularly preferable. When a (meth) acrylic polymer is produced by radiation polymerization or the like, the thickness of the first pressure-sensitive adhesive layer is preferably 50 to 400 μm, more preferably 75 to 300 μm, and even more preferably 100 to 200 μm.
このような厚みのアクリル系ポリマーを製造する際には溶液重合が好適である。
Solution polymerization is suitable for producing an acrylic polymer with such a thickness.
[第1の離形フィルム]
前述のように、第1の離形フィルムは、必須の構成ではなく、必要に応じて設けられる。第1の離形フィルムは、例えば、ポリエチレンテレフタレート(PET)の樹脂により形成できる。第1の離形フィルムの厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmであり、更に好ましくは30μm~50μmである。第1の離形フィルムは、第1の光学フィルム10が液晶セル等の光学素子に貼り付けられる前に、第1の粘着剤層との界面で剥離される。 [First release film]
As described above, the first release film is not an essential configuration and is provided as needed. The first release film can be formed of, for example, a resin of polyethylene terephthalate (PET). The thickness of the first release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 30 μm to 50 μm. The first release film is peeled off at the interface with the first pressure-sensitive adhesive layer before the firstoptical film 10 is attached to an optical element such as a liquid crystal cell.
前述のように、第1の離形フィルムは、必須の構成ではなく、必要に応じて設けられる。第1の離形フィルムは、例えば、ポリエチレンテレフタレート(PET)の樹脂により形成できる。第1の離形フィルムの厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmであり、更に好ましくは30μm~50μmである。第1の離形フィルムは、第1の光学フィルム10が液晶セル等の光学素子に貼り付けられる前に、第1の粘着剤層との界面で剥離される。 [First release film]
As described above, the first release film is not an essential configuration and is provided as needed. The first release film can be formed of, for example, a resin of polyethylene terephthalate (PET). The thickness of the first release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 30 μm to 50 μm. The first release film is peeled off at the interface with the first pressure-sensitive adhesive layer before the first
(第2の光学フィルム)
第2の光学フィルム20は、寸法変化が、好ましくは0.5%以下であり、より好ましくは0%~0.2%である。光学フィルムセット1は、第1のガラスフィルム11を備える第1の光学フィルム10と、上記のような寸法変化を示す第2の光学フィルム20とを組み合わせている。そのため、第1の光学フィルム10と第2の光学フィルム20をそれぞれ液晶セルの両側に配置することで、反りの少ない液晶パネル(第1の光学フィルム/液晶セル/第2の光学フィルム)が得られる。 (Second optical film)
The dimensional change of the secondoptical film 20 is preferably 0.5% or less, more preferably 0% to 0.2%. The optical film set 1 is a combination of a first optical film 10 including a first glass film 11 and a second optical film 20 exhibiting a dimensional change as described above. Therefore, by arranging the first optical film 10 and the second optical film 20 on both sides of the liquid crystal cell, a liquid crystal panel with less warpage (first optical film / liquid crystal cell / second optical film) can be obtained. Be done.
第2の光学フィルム20は、寸法変化が、好ましくは0.5%以下であり、より好ましくは0%~0.2%である。光学フィルムセット1は、第1のガラスフィルム11を備える第1の光学フィルム10と、上記のような寸法変化を示す第2の光学フィルム20とを組み合わせている。そのため、第1の光学フィルム10と第2の光学フィルム20をそれぞれ液晶セルの両側に配置することで、反りの少ない液晶パネル(第1の光学フィルム/液晶セル/第2の光学フィルム)が得られる。 (Second optical film)
The dimensional change of the second
なお、寸法変化は、第2の偏光子231の吸収軸方向にX0の長さ(例えば、20cm)を有する矩形状サンプルを、温度80℃の環境下に150時間静置した場合の寸法変化率(|試験前の吸収軸方向の長さX0-試験後の吸収軸方向の長さX1|/試験前の吸収軸方向の長さX0)×100である。寸法変化は、平面二軸測長機、例えば Quick Vision (Mitutoyo社製)により測定できる。
The dimensional change is the dimensional change when a rectangular sample having a length of X 0 (for example, 20 cm) in the absorption axis direction of the second polarizer 231 is allowed to stand in an environment at a temperature of 80 ° C. for 150 hours. The rate (| length in the absorption axis direction before the test X 0- length in the absorption axis direction after the test X 1 | / length in the absorption axis direction before the test X 0 ) × 100. The dimensional change can be measured by a plane biaxial length measuring machine, for example, Quick Vision (manufactured by Mitutoyo).
[第2の偏光板]
第2の偏光板23の厚みは、好ましくは5μm~250μmであり、より好ましくは10μm~200μmであり、更に好ましくは25μm~200μmであり、特に好ましくは25μm~100μmである。 [Second polarizing plate]
The thickness of the second polarizing plate 23 is preferably 5 μm to 250 μm, more preferably 10 μm to 200 μm, further preferably 25 μm to 200 μm, and particularly preferably 25 μm to 100 μm.
第2の偏光板23の厚みは、好ましくは5μm~250μmであり、より好ましくは10μm~200μmであり、更に好ましくは25μm~200μmであり、特に好ましくは25μm~100μmである。 [Second polarizing plate]
The thickness of the second polarizing plate 23 is preferably 5 μm to 250 μm, more preferably 10 μm to 200 μm, further preferably 25 μm to 200 μm, and particularly preferably 25 μm to 100 μm.
第2の偏光板23の形状は、特に限定はなく、目的に応じて適切な形状を採用できるが、一例として、長辺と短辺とを有する方形形状が挙げられる。第2の偏光板23が方形形状である場合、第2の偏光板23が有する第2の偏光子231の吸収軸方向と、第2の偏光板23の長辺又は短辺とは、略平行であることが好ましい。
The shape of the second polarizing plate 23 is not particularly limited, and an appropriate shape can be adopted depending on the purpose. As an example, a square shape having a long side and a short side can be mentioned. When the second polarizing plate 23 has a rectangular shape, the absorption axis direction of the second polarizing element 231 of the second polarizing plate 23 and the long side or the short side of the second polarizing plate 23 are substantially parallel to each other. Is preferable.
第2の偏光板23と第1の偏光板13との関係は、一例として、第1の偏光子131の吸収軸方向と第1の偏光板13の短辺とが略平行であり、かつ、第2の偏光子231の吸収軸と第2の偏光板23の長辺とが略平行である。
As an example, the relationship between the second polarizing plate 23 and the first polarizing plate 13 is such that the absorption axis direction of the first polarizing element 131 and the short side of the first polarizing plate 13 are substantially parallel to each other. The absorption axis of the second polarizer 231 and the long side of the second polarizing plate 23 are substantially parallel to each other.
第2の偏光板23と第1の偏光板13との関係は、他の例として、第1の偏光子131の吸収軸方向と第1の偏光板13の長辺とが略平行であり、かつ、第2の偏光子231の吸収軸と第2の偏光板23の短辺とが略平行である。
As for the relationship between the second polarizing plate 23 and the first polarizing plate 13, as another example, the absorption axis direction of the first polarizing element 131 and the long side of the first polarizing plate 13 are substantially parallel. Moreover, the absorption axis of the second polarizer 231 and the short side of the second polarizing plate 23 are substantially parallel to each other.
[第2の偏光子]
第2の偏光子231の厚みは、1μm以上10μm以下であることが好ましい。第2の偏光子231の厚みが1μm以上10μm以下であれば、寸法変化が少ない第2の光学フィルム20が得られる。又、第2の偏光子231の厚みが10μm以下であれば、第1の光学フィルム10と第2の光学フィルム20をそれぞれ液晶セルの両側に配置して液晶パネルを形成したときに、液晶パネルの反りを抑制できる。 [Second Polarizer]
The thickness of the second polarizer 231 is preferably 1 μm or more and 10 μm or less. When the thickness of the second polarizer 231 is 1 μm or more and 10 μm or less, the secondoptical film 20 with little dimensional change can be obtained. If the thickness of the second polarizer 231 is 10 μm or less, the liquid crystal panel is formed when the first optical film 10 and the second optical film 20 are arranged on both sides of the liquid crystal cell to form the liquid crystal panel. Warp can be suppressed.
第2の偏光子231の厚みは、1μm以上10μm以下であることが好ましい。第2の偏光子231の厚みが1μm以上10μm以下であれば、寸法変化が少ない第2の光学フィルム20が得られる。又、第2の偏光子231の厚みが10μm以下であれば、第1の光学フィルム10と第2の光学フィルム20をそれぞれ液晶セルの両側に配置して液晶パネルを形成したときに、液晶パネルの反りを抑制できる。 [Second Polarizer]
The thickness of the second polarizer 231 is preferably 1 μm or more and 10 μm or less. When the thickness of the second polarizer 231 is 1 μm or more and 10 μm or less, the second
第2の偏光子231の単体透過率、材料、製造方法等については、前述の第1の偏光子131と同様の記載内容を例示できる。
Regarding the simple substance transmittance, material, manufacturing method, etc. of the second polarizer 231, the same description as that of the above-mentioned first polarizer 131 can be exemplified.
[第2の保護フィルム]
第2の保護フィルム232としては、例えば、前述の第1の保護フィルム132と同様の保護フィルムが用いられる。 [Second protective film]
As the second protective film 232, for example, a protective film similar to the above-mentioned firstprotective film 132 is used.
第2の保護フィルム232としては、例えば、前述の第1の保護フィルム132と同様の保護フィルムが用いられる。 [Second protective film]
As the second protective film 232, for example, a protective film similar to the above-mentioned first
[第2の位相差層]
前述のように、第2の位相差層は、必須の構成ではなく、必要に応じて設けられる。第2の位相差層としては、例えば、前述の第1の位相差層と同様の位相差層が用いられる。 [Second retardation layer]
As described above, the second retardation layer is not an essential configuration and is provided as needed. As the second retardation layer, for example, a retardation layer similar to the first retardation layer described above is used.
前述のように、第2の位相差層は、必須の構成ではなく、必要に応じて設けられる。第2の位相差層としては、例えば、前述の第1の位相差層と同様の位相差層が用いられる。 [Second retardation layer]
As described above, the second retardation layer is not an essential configuration and is provided as needed. As the second retardation layer, for example, a retardation layer similar to the first retardation layer described above is used.
[光学層]
前述のように、光学層は、必須の構成ではなく、必要に応じて設けられる。光学層としては、例えば、反射型偏光子等が挙げられる。光学層の厚みは、例えば、1μm~200μmである。 [Optical layer]
As described above, the optical layer is not an essential configuration and is provided as needed. Examples of the optical layer include a reflective polarizer and the like. The thickness of the optical layer is, for example, 1 μm to 200 μm.
前述のように、光学層は、必須の構成ではなく、必要に応じて設けられる。光学層としては、例えば、反射型偏光子等が挙げられる。光学層の厚みは、例えば、1μm~200μmである。 [Optical layer]
As described above, the optical layer is not an essential configuration and is provided as needed. Examples of the optical layer include a reflective polarizer and the like. The thickness of the optical layer is, for example, 1 μm to 200 μm.
反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。反射型偏光子は、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、3M社製の商品名DBEF、3M社製の商品名APF棟が挙げられる。
As the reflective polarizer, for example, those described in JP-A-9-507308 can be used. As the reflective polarizer, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of commercially available products include the product name DBEF manufactured by 3M and the product name APF building manufactured by 3M.
[第2の粘着剤層]
前述のように、第2の粘着剤層は、必須の構成ではなく、必要に応じて設けられる。第2の粘着剤層は、任意の適切な粘着剤から形成できる。粘着剤としては、第1の粘着剤層の厚み以外は同様でよい。 [Second adhesive layer]
As described above, the second pressure-sensitive adhesive layer is not an essential configuration and is provided as needed. The second pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive. The pressure-sensitive adhesive may be the same except for the thickness of the first pressure-sensitive adhesive layer.
前述のように、第2の粘着剤層は、必須の構成ではなく、必要に応じて設けられる。第2の粘着剤層は、任意の適切な粘着剤から形成できる。粘着剤としては、第1の粘着剤層の厚み以外は同様でよい。 [Second adhesive layer]
As described above, the second pressure-sensitive adhesive layer is not an essential configuration and is provided as needed. The second pressure-sensitive adhesive layer can be formed from any suitable pressure-sensitive adhesive. The pressure-sensitive adhesive may be the same except for the thickness of the first pressure-sensitive adhesive layer.
第2の粘着剤層の厚みは、50μm以上200μm以下である。第2の粘着剤層の厚みが50μm以上200μm以下であれば、後述の液晶パネル2を構成したときに、第1のガラスフィルム11の割れに対する耐性を向上できる。特に、第1のガラスフィルム11の厚みが50μm以上150μm以下である場合に、第1のガラスフィルム11が薄くて割れやすい。そのため、第2の粘着剤層の厚みを50μm以上200μm以下とし、第1のガラスフィルム11の割れに対する耐性を向上する意義が大きい。
The thickness of the second pressure-sensitive adhesive layer is 50 μm or more and 200 μm or less. When the thickness of the second pressure-sensitive adhesive layer is 50 μm or more and 200 μm or less, the resistance to cracking of the first glass film 11 can be improved when the liquid crystal panel 2 described later is configured. In particular, when the thickness of the first glass film 11 is 50 μm or more and 150 μm or less, the first glass film 11 is thin and easily broken. Therefore, it is significant to set the thickness of the second pressure-sensitive adhesive layer to 50 μm or more and 200 μm or less to improve the resistance of the first glass film 11 to cracking.
このような厚みのアクリル系ポリマーを製造する際には放射線重合が好適である。
Radiation polymerization is suitable for producing an acrylic polymer with such a thickness.
[第2の離形フィルム]
前述のように、第2の離形フィルムは、必須の構成ではなく、必要に応じて設けられる。第2の離形フィルムは、例えば、ポリエチレンテレフタレート(PET)の樹脂により形成できる。第2の離形フィルムの厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmであり、更に好ましくは30μm~50μmである。第2の離形フィルムは、第2の光学フィルム20が液晶セル等の光学素子に貼り付けられる前に、第2の粘着剤層との界面で剥離される。 [Second release film]
As described above, the second release film is not an essential configuration and is provided as needed. The second release film can be formed of, for example, a resin of polyethylene terephthalate (PET). The thickness of the second release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 30 μm to 50 μm. The second release film is peeled off at the interface with the second pressure-sensitive adhesive layer before the secondoptical film 20 is attached to an optical element such as a liquid crystal cell.
前述のように、第2の離形フィルムは、必須の構成ではなく、必要に応じて設けられる。第2の離形フィルムは、例えば、ポリエチレンテレフタレート(PET)の樹脂により形成できる。第2の離形フィルムの厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmであり、更に好ましくは30μm~50μmである。第2の離形フィルムは、第2の光学フィルム20が液晶セル等の光学素子に貼り付けられる前に、第2の粘着剤層との界面で剥離される。 [Second release film]
As described above, the second release film is not an essential configuration and is provided as needed. The second release film can be formed of, for example, a resin of polyethylene terephthalate (PET). The thickness of the second release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 30 μm to 50 μm. The second release film is peeled off at the interface with the second pressure-sensitive adhesive layer before the second
後述のように、光学フィルムセット1は、例えば、2枚の透明基板に挟持された液晶層を有し、2枚の透明基板の総厚みが450μm以下である液晶セルに用いることができる。この際、第1の光学フィルム10は、例えば、液晶セルの視認側に第1の粘着剤層を介して設けられ、液晶パネルの前面板として機能する。第2の光学フィルム20は、例えば、液晶セルの背面側に第2の粘着剤層を介して設けられる。なお、視認側とは、所定の部材を画像表示装置に適用した際に視認される方に向いた側を意味する。又、背面側とは、視認側とは反対の側(バックライト側)である。
As will be described later, the optical film set 1 can be used for, for example, a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates and having a total thickness of 450 μm or less of the two transparent substrates. At this time, the first optical film 10 is provided, for example, on the visible side of the liquid crystal cell via the first adhesive layer, and functions as a front plate of the liquid crystal panel. The second optical film 20 is provided, for example, on the back surface side of the liquid crystal cell via the second pressure-sensitive adhesive layer. The visual side means a side facing the side to be visually recognized when the predetermined member is applied to the image display device. The back side is the side opposite to the visual recognition side (backlight side).
〈第2実施形態〉
第2実施形態では、第1実施形態に係る光学フィルムセットを有する液晶パネルの例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Second Embodiment>
The second embodiment shows an example of a liquid crystal panel having an optical film set according to the first embodiment. In the second embodiment, the description of the same components as those in the above-described embodiment may be omitted.
第2実施形態では、第1実施形態に係る光学フィルムセットを有する液晶パネルの例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Second Embodiment>
The second embodiment shows an example of a liquid crystal panel having an optical film set according to the first embodiment. In the second embodiment, the description of the same components as those in the above-described embodiment may be omitted.
図2は、第2実施形態に係る液晶パネルを例示する断面図である。図2を参照すると、液晶パネル2は、第1の光学フィルム10と、液晶セル30と、第2の光学フィルム20とを視認側からこの順に備える。
FIG. 2 is a cross-sectional view illustrating the liquid crystal panel according to the second embodiment. Referring to FIG. 2, the liquid crystal panel 2 includes a first optical film 10, a liquid crystal cell 30, and a second optical film 20 in this order from the viewing side.
すなわち、液晶パネル2において、第1の光学フィルム10は液晶セル30の視認側に第1の粘着剤層14を介して積層され、第2の光学フィルム20は液晶セル30の視認側とは反対側(バックライト側)に第2の粘着剤層24を介して積層されている。
That is, in the liquid crystal panel 2, the first optical film 10 is laminated on the visible side of the liquid crystal cell 30 via the first adhesive layer 14, and the second optical film 20 is opposite to the visible side of the liquid crystal cell 30. It is laminated on the side (backlight side) via the second pressure-sensitive adhesive layer 24.
液晶パネル2において、例えば、第1のガラスフィルム11、第1の接着剤層12、第1の偏光板13、第1の粘着剤層14、液晶セル30、第2の粘着剤層24、及び第2の偏光板23は、視認側からこの順となるように配置できる。但し、前述のように、必要に応じて、液晶パネル2は、第1の位相差層、第2の位相差層、及び光学層等を有してもよい。
In the liquid crystal panel 2, for example, the first glass film 11, the first adhesive layer 12, the first polarizing plate 13, the first pressure-sensitive adhesive layer 14, the liquid crystal cell 30, the second pressure-sensitive adhesive layer 24, and The second polarizing plate 23 can be arranged in this order from the viewing side. However, as described above, the liquid crystal panel 2 may have a first retardation layer, a second retardation layer, an optical layer, and the like, if necessary.
液晶セル30は、2枚の透明基板32及び33に挟持された液晶層31を有する。つまり、透明基板32及び33は、表示媒体である液晶層31を両側から挟持する。
The liquid crystal cell 30 has a liquid crystal layer 31 sandwiched between two transparent substrates 32 and 33. That is, the transparent substrates 32 and 33 sandwich the liquid crystal layer 31, which is a display medium, from both sides.
液晶層31は、例えば、電界が存在しない状態でホモジニアス配向した液晶分子を含む。液晶層31としては、例えば、IPS方式の液晶層が好適に用いられるが、TN型、STN型、π型、VA型等の液晶層を用いてもよい。液晶層31の厚みは、例えば、1.5μm~4μm程度である。
The liquid crystal layer 31 contains, for example, liquid crystal molecules homogenically oriented in the absence of an electric field. As the liquid crystal layer 31, for example, an IPS type liquid crystal layer is preferably used, but a TN type, STN type, π type, VA type or the like liquid crystal layer may be used. The thickness of the liquid crystal layer 31 is, for example, about 1.5 μm to 4 μm.
液晶セル30は、ノートPC等への搭載を考慮して薄型化されているため、2枚の透明基板32及び33の合計の厚みは450μm以下である。透明基板32及び33は、例えば、同じ厚みである。透明基板32及び33は、例えば、ガラス製である。
Since the liquid crystal cell 30 is thinned in consideration of mounting on a notebook PC or the like, the total thickness of the two transparent substrates 32 and 33 is 450 μm or less. The transparent substrates 32 and 33 have, for example, the same thickness. The transparent substrates 32 and 33 are made of, for example, glass.
液晶セル30は、例えば、インセルタイプである。液晶セル30がインセルタイプである場合、例えば、透明基板32と透明基板33との間にタッチセンサやタッチ駆動の機能を備えたタッチセンシング電極部が設けられる。液晶セル30は、カラーフィルタ等を有してもよい。
The liquid crystal cell 30 is, for example, an in-cell type. When the liquid crystal cell 30 is an in-cell type, for example, a touch sensing electrode portion having a touch sensor or a touch drive function is provided between the transparent substrate 32 and the transparent substrate 33. The liquid crystal cell 30 may have a color filter or the like.
発明者らは、液晶セル30のように、合計の厚みが450μm以下の薄い透明基板32及び33を有する場合、加熱環境下(例えば、80℃)での耐久試験を行うと、液晶パネル2の端部の色味が液晶パネル2の中心部と比較して変化する場合があることを見出した。そして、加熱環境下における液晶パネル2の端部の色味変化は、第1の偏光板13を構成する第1の偏光子131の厚みに依存し、第1の偏光子131の厚みが15μm以下であると、加熱環境下においても液晶パネル2の端部の色味変化が抑制されることを見出した。
When the inventors have thin transparent substrates 32 and 33 having a total thickness of 450 μm or less, such as the liquid crystal cell 30, when a durability test is performed in a heating environment (for example, 80 ° C.), the liquid crystal panel 2 is subjected to a durability test. It has been found that the color of the edge portion may change as compared with the central portion of the liquid crystal panel 2. The change in color of the edge of the liquid crystal panel 2 in a heating environment depends on the thickness of the first polarizing element 131 constituting the first polarizing plate 13, and the thickness of the first polarizing element 131 is 15 μm or less. Then, it was found that the change in color of the edge of the liquid crystal panel 2 was suppressed even in a heating environment.
すなわち、第1の光学フィルム10において、第1の偏光板13が厚み15μm以下の第1の偏光子131を有することにより、加熱環境下においても液晶パネル2の端部の色味変化が抑制される。
That is, in the first optical film 10, since the first polarizing plate 13 has the first polarizing element 131 having a thickness of 15 μm or less, the color change of the edge portion of the liquid crystal panel 2 is suppressed even in a heating environment. To.
又、発明者らは、液晶パネル2の反りが第2の偏光板23を構成する第2の偏光子231の厚みに依存し、第2の偏光子231の厚みが10μm以下であると、液晶パネル2の反りが抑制されることを見出した。
Further, the inventors have stated that the warp of the liquid crystal panel 2 depends on the thickness of the second polarizing element 231 constituting the second polarizing plate 23, and that the thickness of the second polarizer 231 is 10 μm or less. It was found that the warp of the panel 2 was suppressed.
すなわち、第2の光学フィルム20において、第2の偏光板23が厚み10μm以下の第2の偏光子231を有することにより、液晶パネル2の反りが抑制される。
That is, in the second optical film 20, the warp of the liquid crystal panel 2 is suppressed by having the second polarizing plate 231 having a thickness of 10 μm or less in the second polarizing plate 23.
なお、液晶パネル2は、第1の偏光子131の吸収軸と、第2の偏光子231の吸収軸とが、略直交するようにして構成されることが好ましい。このような構成とすれば、より反りの生じ難い液晶パネル2が得られる。なお、「略直交」とは、厳密に直交する場合のみならず、両線のなす角が90°±10°(好ましくは90°±5°)である場合も含む概念である。
It is preferable that the liquid crystal panel 2 is configured such that the absorption axis of the first polarizer 131 and the absorption axis of the second polarizer 231 are substantially orthogonal to each other. With such a configuration, a liquid crystal panel 2 that is less likely to warp can be obtained. The term "substantially orthogonal" is a concept that includes not only the case of being strictly orthogonal but also the case where the angle formed by both lines is 90 ° ± 10 ° (preferably 90 ° ± 5 °).
[実施例]
以下、実施例及び比較例を挙げて光学フィルムセット及び液晶パネルについて更に具体的に説明するが、本発明は、これらの実施例に何ら限定されるものではない。又、実施例において、特に明記しない限り、「部」及び「%」は重量基準である。 [Example]
Hereinafter, the optical film set and the liquid crystal panel will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Further, in the examples, unless otherwise specified, "parts" and "%" are based on weight.
以下、実施例及び比較例を挙げて光学フィルムセット及び液晶パネルについて更に具体的に説明するが、本発明は、これらの実施例に何ら限定されるものではない。又、実施例において、特に明記しない限り、「部」及び「%」は重量基準である。 [Example]
Hereinafter, the optical film set and the liquid crystal panel will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Further, in the examples, unless otherwise specified, "parts" and "%" are based on weight.
[製造例1]偏光板Aの準備
厚み30μmのポリビニルアルコールフィルム(PVA)を、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み15μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み25μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み20μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板A(厚み:60μm)を得た。 [Production Example 1] Preparation of Polarizing Plate A Polyvinyl alcohol film (PVA) having a thickness of 30 μm is dyed three times in rolls having different speed ratios in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute. Stretched to. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 15 μm. A saponified 25 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 20 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 60 μm) was obtained.
厚み30μmのポリビニルアルコールフィルム(PVA)を、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み15μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み25μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み20μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板A(厚み:60μm)を得た。 [Production Example 1] Preparation of Polarizing Plate A Polyvinyl alcohol film (PVA) having a thickness of 30 μm is dyed three times in rolls having different speed ratios in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute. Stretched to. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 15 μm. A saponified 25 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 20 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 60 μm) was obtained.
[製造例2]偏光板Bの準備
(偏光子の準備)
まず、非晶性PET基材に9μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を生成した。次に、延伸積層体を染色によって着色積層体を生成し、更に着色積層体を延伸温度65度のホウ酸水中延伸によって総合延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された5μm厚のPVA層を含む光学フィルム積層体を生成した。 [Manufacturing Example 2] Preparation of polarizing plate B (preparation of polarizer)
First, a stretched laminate in which a 9 μm-thick PVA layer was formed on an amorphous PET substrate was subjected to aerial auxiliary stretching at a stretching temperature of 130 ° C. to produce a stretched laminate. Next, the stretched laminate was dyed to produce a colored laminate, and the colored laminate was further stretched in boric acid at a stretching temperature of 65 ° C. to obtain a total stretching ratio of 5.94 times with an amorphous PET substrate. An optical film laminate containing a 5 μm-thick PVA layer stretched integrally was produced.
(偏光子の準備)
まず、非晶性PET基材に9μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を生成した。次に、延伸積層体を染色によって着色積層体を生成し、更に着色積層体を延伸温度65度のホウ酸水中延伸によって総合延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された5μm厚のPVA層を含む光学フィルム積層体を生成した。 [Manufacturing Example 2] Preparation of polarizing plate B (preparation of polarizer)
First, a stretched laminate in which a 9 μm-thick PVA layer was formed on an amorphous PET substrate was subjected to aerial auxiliary stretching at a stretching temperature of 130 ° C. to produce a stretched laminate. Next, the stretched laminate was dyed to produce a colored laminate, and the colored laminate was further stretched in boric acid at a stretching temperature of 65 ° C. to obtain a total stretching ratio of 5.94 times with an amorphous PET substrate. An optical film laminate containing a 5 μm-thick PVA layer stretched integrally was produced.
このような2段延伸によって非晶性PET基材に製膜されたPVA層のPVA分子が高次に配向され、染色によって吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向された高機能偏光子を構成する、厚み5μmのPVA層を含む光学フィルム積層体を生成できた。
The PVA molecules in the PVA layer formed on the amorphous PET substrate by such two-step stretching are highly oriented, and the iodine adsorbed by dyeing is highly oriented in one direction as a polyiodine ion complex. It was possible to generate an optical film laminate containing a PVA layer having a thickness of 5 μm, which constitutes a high-performance polarizer.
(アクリル系フィルムの準備)
グルタルイミド環単位を有するメタクリル樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押し出してフィルム状に成形した。このフィルムを、搬送方向(MD方向)に樹脂のTgより10℃高い雰囲気下で延伸し、次いでフィルム搬送方向と直交する方向(TD方向)に樹脂のTgより7℃高い雰囲気下で延伸し、厚み20μm、30μm、及び40μmのアクリル系フィルムをそれぞれ得た。 (Preparation of acrylic film)
A methacrylic resin pellet having a glutarimide ring unit was dried at 100.5 kPa at 100 ° C. for 12 hours, and extruded from a T-die at a die temperature of 270 ° C. using a single-screw extruder to form a film. This film was stretched in the transport direction (MD direction) in anatmosphere 10 ° C. higher than the Tg of the resin, and then stretched in the direction orthogonal to the film transport direction (TD direction) in an atmosphere 7 ° C. higher than the Tg of the resin. Acrylic films having thicknesses of 20 μm, 30 μm, and 40 μm were obtained, respectively.
グルタルイミド環単位を有するメタクリル樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押し出してフィルム状に成形した。このフィルムを、搬送方向(MD方向)に樹脂のTgより10℃高い雰囲気下で延伸し、次いでフィルム搬送方向と直交する方向(TD方向)に樹脂のTgより7℃高い雰囲気下で延伸し、厚み20μm、30μm、及び40μmのアクリル系フィルムをそれぞれ得た。 (Preparation of acrylic film)
A methacrylic resin pellet having a glutarimide ring unit was dried at 100.5 kPa at 100 ° C. for 12 hours, and extruded from a T-die at a die temperature of 270 ° C. using a single-screw extruder to form a film. This film was stretched in the transport direction (MD direction) in an
(硬化型接着剤の準備)
N-ヒドロキシエチルアクリルアミドHEAA(興人社製)35重量部と、N-アクリロイルモルホリンACMO(興人社製)45重量部と、ポリプロピレングリコールジアクリレートTPGDA(東亜合成社製、「商品名」アロニックスM-220)25重量部と、光重合開始剤(チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア184」)を3重量部、別の光重合開始剤(日本化薬社製、商品名「KAYACUREDETX-S」)を1.5重量部とを混合して、硬化型接着剤を得た。 (Preparation of curable adhesive)
35 parts by weight of N-hydroxyethylacrylamide HEAA (manufactured by Kojin Co., Ltd.), 45 parts by weight of N-acryloyl morpholine ACMO (manufactured by Kojin Co., Ltd.), and polypropylene glycol diacrylate TPGDA (manufactured by Toa Synthetic Co., Ltd., "trade name" Aronix M. -220) 25 parts by weight, 3 parts by weight of photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name "Irgacure 184"), another photopolymerization initiator (manufactured by Nippon Kayaku Co., Ltd., trade name "KAYACUREDETX") -S ") was mixed with 1.5 parts by weight to obtain a curable adhesive.
N-ヒドロキシエチルアクリルアミドHEAA(興人社製)35重量部と、N-アクリロイルモルホリンACMO(興人社製)45重量部と、ポリプロピレングリコールジアクリレートTPGDA(東亜合成社製、「商品名」アロニックスM-220)25重量部と、光重合開始剤(チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア184」)を3重量部、別の光重合開始剤(日本化薬社製、商品名「KAYACUREDETX-S」)を1.5重量部とを混合して、硬化型接着剤を得た。 (Preparation of curable adhesive)
35 parts by weight of N-hydroxyethylacrylamide HEAA (manufactured by Kojin Co., Ltd.), 45 parts by weight of N-acryloyl morpholine ACMO (manufactured by Kojin Co., Ltd.), and polypropylene glycol diacrylate TPGDA (manufactured by Toa Synthetic Co., Ltd., "trade name" Aronix M. -220) 25 parts by weight, 3 parts by weight of photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name "Irgacure 184"), another photopolymerization initiator (manufactured by Nippon Kayaku Co., Ltd., trade name "KAYACUREDETX") -S ") was mixed with 1.5 parts by weight to obtain a curable adhesive.
(偏光板の作製)
PETフィルム上に作製された偏光子に上記硬化型接着剤を塗布厚みを約1μmとして塗布した。次いで接着剤層に上記40μm(弾性率2.5GPa)のアクリル系フィルムを貼り合せた。PETフィルム側よりコンベア式UV照射装置(fusion社製)、ピークUV照度;1600mW/cm2、UV積算光量;1000mJ/cm2(波長380~440nm)の紫外線を照射した接着剤を硬化させ、更に70℃で2分間乾燥した。最後にアクリル系フィルムと偏光子、PETフィルムが積層された積層体より、PETフィルムを剥離してアクリル系フィルム(保護フィルム)と偏光子の積層体(厚みが45μmの偏光板B)を得た。 (Preparation of polarizing plate)
The above-mentioned curable adhesive was applied to a polarizer produced on a PET film with a coating thickness of about 1 μm. Next, the 40 μm (elastic modulus 2.5 GPa) acrylic film was attached to the adhesive layer. Conveyor type UV irradiation device (manufactured by fusion) from the PET film side, peak UV illuminance; 1600 mW / cm 2 , UV integrated light intensity: 1000 mJ / cm 2 (wavelength 380 to 440 nm), and the adhesive irradiated with ultraviolet rays is cured. It was dried at 70 ° C. for 2 minutes. Finally, the PET film was peeled off from the laminate in which the acrylic film, the polarizer, and the PET film were laminated to obtain a laminate of the acrylic film (protective film) and the polarizer (polarizing plate B having a thickness of 45 μm). ..
PETフィルム上に作製された偏光子に上記硬化型接着剤を塗布厚みを約1μmとして塗布した。次いで接着剤層に上記40μm(弾性率2.5GPa)のアクリル系フィルムを貼り合せた。PETフィルム側よりコンベア式UV照射装置(fusion社製)、ピークUV照度;1600mW/cm2、UV積算光量;1000mJ/cm2(波長380~440nm)の紫外線を照射した接着剤を硬化させ、更に70℃で2分間乾燥した。最後にアクリル系フィルムと偏光子、PETフィルムが積層された積層体より、PETフィルムを剥離してアクリル系フィルム(保護フィルム)と偏光子の積層体(厚みが45μmの偏光板B)を得た。 (Preparation of polarizing plate)
The above-mentioned curable adhesive was applied to a polarizer produced on a PET film with a coating thickness of about 1 μm. Next, the 40 μm (elastic modulus 2.5 GPa) acrylic film was attached to the adhesive layer. Conveyor type UV irradiation device (manufactured by fusion) from the PET film side, peak UV illuminance; 1600 mW / cm 2 , UV integrated light intensity: 1000 mJ / cm 2 (wavelength 380 to 440 nm), and the adhesive irradiated with ultraviolet rays is cured. It was dried at 70 ° C. for 2 minutes. Finally, the PET film was peeled off from the laminate in which the acrylic film, the polarizer, and the PET film were laminated to obtain a laminate of the acrylic film (protective film) and the polarizer (polarizing plate B having a thickness of 45 μm). ..
[製造例3]偏光板Cの準備
厚み75μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み28μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板C(厚み:98μm)を得た。 [Production Example 3] Preparation of Polarizing Plate C PVA having a thickness of 75 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different speed ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 28 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 98 μm) was obtained.
厚み75μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み28μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板C(厚み:98μm)を得た。 [Production Example 3] Preparation of Polarizing Plate C PVA having a thickness of 75 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different speed ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 28 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 98 μm) was obtained.
[製造例4]偏光板Dの準備
厚み60μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み23μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板D(厚み:93μm)を得た。 [Production Example 4] Preparation of Polarizing Plate D PVA having a thickness of 60 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different speed ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 23 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 93 μm) was obtained.
厚み60μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み23μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板D(厚み:93μm)を得た。 [Production Example 4] Preparation of Polarizing Plate D PVA having a thickness of 60 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different speed ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 23 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 93 μm) was obtained.
[製造例5]偏光板Eの準備
厚み45μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み18μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板E(厚み:88μm)を得た。 [Production Example 5] Preparation of Polarizing Plate E PVA having a thickness of 45 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different velocity ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 18 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 88 μm) was obtained.
厚み45μmのPVAを、速度比の異なるロール間において、30℃、0.3%濃度のヨウ素溶液中で1分間染色しながら、3倍まで延伸した。その後、60℃、4%濃度のホウ酸、10%濃度のヨウ化カリウムを含む水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍まで延伸した。次いで、30℃、4.0%濃度のヨウ化カリウムを含む水溶液中に10秒間浸漬することで洗浄した後、50℃で4分間乾燥を行い、厚み18μmの偏光子を得た。当該偏光子の片面に、けん化処理した厚み40μmのトリアセチルセルロースフィルム(TAC)を、他の片面に厚み30μmのアクリル系樹脂フィルムを、それぞれ、ポリビニルアルコール系接着剤により貼り合せて偏光板E(厚み:88μm)を得た。 [Production Example 5] Preparation of Polarizing Plate E PVA having a thickness of 45 μm was stretched up to 3 times while being stained in an iodine solution at 30 ° C. and a 0.3% concentration for 1 minute between rolls having different velocity ratios. Then, the total stretching ratio was stretched to 6 times while being immersed in an aqueous solution containing boric acid having a concentration of 4% and potassium iodide having a concentration of 10% at 60 ° C. for 0.5 minutes. Then, it was washed by immersing it in an aqueous solution containing potassium iodide having a concentration of 4.0% at 30 ° C. for 10 seconds, and then dried at 50 ° C. for 4 minutes to obtain a polarizer having a thickness of 18 μm. A saponified 40 μm-thick triacetyl cellulose film (TAC) is attached to one side of the polarizing element, and a 30 μm-thick acrylic resin film is attached to the other side with a polyvinyl alcohol-based adhesive. Thickness: 88 μm) was obtained.
[製造例6]粘着剤の準備
(アクリル系ポリマーの調製)
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、ブチルアクリレート100重量部、アクリル酸5重量部及び2-ヒドロキシエチルアクリレート0.075重量部、重合開始剤として2,2'-アゾビスイソブチロニトリル0.2重量部、重合溶媒として酢酸エチル200重量部を仕込み、十分に窒素置換した後、窒素気流下で撹拌しながらフラスコ内の液温を55℃付近に保って10時間重合反応を行い、アクリル系ポリマー溶液を調製した。上記アクリル系ポリマーの重量平均分子量は220万であった。 [Manufacturing Example 6] Preparation of Adhesive (Preparation of Acrylic Polymer)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 100 parts by weight of butyl acrylate, 5 parts by weight of acrylic acid and 0.075 parts by weight of 2-hydroxyethyl acrylate, and 2 as a polymerization initiator. , 2'-Azobisisobutyronitrile 0.2 parts by weight and ethyl acetate 200 parts by weight as a polymerization solvent were charged, and after sufficient nitrogen substitution, the liquid temperature in the flask was adjusted to around 55 ° C. while stirring under a nitrogen stream. The polymerization reaction was carried out for 10 hours to prepare an acrylic polymer solution. The weight average molecular weight of the acrylic polymer was 2.2 million.
(アクリル系ポリマーの調製)
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、ブチルアクリレート100重量部、アクリル酸5重量部及び2-ヒドロキシエチルアクリレート0.075重量部、重合開始剤として2,2'-アゾビスイソブチロニトリル0.2重量部、重合溶媒として酢酸エチル200重量部を仕込み、十分に窒素置換した後、窒素気流下で撹拌しながらフラスコ内の液温を55℃付近に保って10時間重合反応を行い、アクリル系ポリマー溶液を調製した。上記アクリル系ポリマーの重量平均分子量は220万であった。 [Manufacturing Example 6] Preparation of Adhesive (Preparation of Acrylic Polymer)
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 100 parts by weight of butyl acrylate, 5 parts by weight of acrylic acid and 0.075 parts by weight of 2-hydroxyethyl acrylate, and 2 as a polymerization initiator. , 2'-Azobisisobutyronitrile 0.2 parts by weight and ethyl acetate 200 parts by weight as a polymerization solvent were charged, and after sufficient nitrogen substitution, the liquid temperature in the flask was adjusted to around 55 ° C. while stirring under a nitrogen stream. The polymerization reaction was carried out for 10 hours to prepare an acrylic polymer solution. The weight average molecular weight of the acrylic polymer was 2.2 million.
(粘着剤組成物の調製)
上記アクリル系ポリマー溶液の固形分100重量部に、過酸化物としてジベンゾイルパーオキシド(ナイパーBMT、日本油脂社製)0.2重量部、エポキシ系架橋剤としてジグリシジルアミノメチルシクロへキサン(三菱瓦斯化学社製、テトラッドC)0.05重量部、イソシアネート系架橋剤としてトリメチロールプロパン/トリレンジイソシアネートのアダクト体(日本ポリウレタン工業社製、コロネートL)0.1重量部と、シランカップリング剤(信越化学工業社製、KBM403)0.075重量部を、均一に混合撹拌して、アクリル系粘着剤(固形分10.9重量%)を調製した。 (Preparation of adhesive composition)
Dibenzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.2 parts by weight as a peroxide in 100 parts by weight of the solid content of the acrylic polymer solution, and diglycidylaminomethylcyclohexane (Mitsubishi) as an epoxy-based cross-linking agent. 0.05 parts by weight of Tetrad C) manufactured by Gas Chemicals, 0.1 parts by weight of trimethylolpropane / tolylene diisocyanate adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as an isocyanate-based crosslinker, and a silane coupling agent. (KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.075 parts by weight were uniformly mixed and stirred to prepare an acrylic pressure-sensitive adhesive (solid content 10.9% by weight).
上記アクリル系ポリマー溶液の固形分100重量部に、過酸化物としてジベンゾイルパーオキシド(ナイパーBMT、日本油脂社製)0.2重量部、エポキシ系架橋剤としてジグリシジルアミノメチルシクロへキサン(三菱瓦斯化学社製、テトラッドC)0.05重量部、イソシアネート系架橋剤としてトリメチロールプロパン/トリレンジイソシアネートのアダクト体(日本ポリウレタン工業社製、コロネートL)0.1重量部と、シランカップリング剤(信越化学工業社製、KBM403)0.075重量部を、均一に混合撹拌して、アクリル系粘着剤(固形分10.9重量%)を調製した。 (Preparation of adhesive composition)
Dibenzoyl peroxide (Niper BMT, manufactured by Nippon Polyurethane Industry Co., Ltd.) 0.2 parts by weight as a peroxide in 100 parts by weight of the solid content of the acrylic polymer solution, and diglycidylaminomethylcyclohexane (Mitsubishi) as an epoxy-based cross-linking agent. 0.05 parts by weight of Tetrad C) manufactured by Gas Chemicals, 0.1 parts by weight of trimethylolpropane / tolylene diisocyanate adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as an isocyanate-based crosslinker, and a silane coupling agent. (KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.075 parts by weight were uniformly mixed and stirred to prepare an acrylic pressure-sensitive adhesive (solid content 10.9% by weight).
[製造例7]接着剤の準備
(エポキシ系接着剤の準備)
セロキサイド2021P(ダイセル化学工業社製)70重量部、EHPE3150を5重量部、アロンオキセタンOXT-221(東亜合成社製)19重量部、KBM-403(信越化学工業社製)を4重量部、CPI101A(サンアフロ社製)を2重量部配合しエポキシ系接着剤を準備した。
[実施例1]
(第1の光学フィルムAの作製)
ガラスフィルム(日本電気硝子社製、商品名「OA-10G」、厚み:100μm)と、製造例1で作製した偏光板Aとを、製造例7で調製した接着剤から構成される接着剤層を介して、貼り合わせた。このとき、偏光板Aは、トリアセチルセルロースフィルムがガラスフィルム側になるようにして配置した。次に、高圧水銀ランプにより接着剤層に紫外線を照射(500mJ/cm2)して接着剤層を硬化させて、第1の光学フィルムAを得た。接着剤層は厚み5μm、弾性率は、1.8GPaとした。
(第2の光学フィルムBの作製)
反射型偏光子(3M社製、商品名「APF V3」、厚み:30μm)と、製造例2で作製した偏光板Bとを、製造例6で調製した粘着剤から構成される粘着剤層(厚み12μm)を介して、貼り合わせた。このとき、偏光板Bは、アクリル系フィルムが反射型偏光子側になるようにして配置した。 [Manufacturing Example 7] Preparation of Adhesive (Preparation of Epoxy Adhesive)
Celoxide 2021P (manufactured by Daicel Chemical Industries) 70 parts by weight, EHPE3150 5 parts by weight, Aron Oxetan OXT-221 (manufactured by Toagosei Co., Ltd.) 19 parts by weight, KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by weight, CPI101A (Manufactured by San Afro) was blended in 2 parts by weight to prepare an epoxy adhesive.
[Example 1]
(Preparation of the first optical film A)
An adhesive layer composed of a glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name "OA-10G", thickness: 100 μm) and a polarizing plate A produced in Production Example 1 and an adhesive prepared in Production Example 7. It was pasted together via. At this time, the polarizing plate A was arranged so that the triacetyl cellulose film was on the glass film side. Next, the adhesive layer was irradiated with ultraviolet rays (500 mJ / cm 2 ) with a high-pressure mercury lamp to cure the adhesive layer, and a first optical film A was obtained. The adhesive layer had a thickness of 5 μm and an elastic modulus of 1.8 GPa.
(Preparation of the second optical film B)
A pressure-sensitive adhesive layer (manufactured by 3M, trade name "APF V3", thickness: 30 μm) and a polarizing plate B produced in Production Example 2 composed of a pressure-sensitive adhesive prepared in Production Example 6 (manufactured by 3M). They were bonded together via a thickness of 12 μm). At this time, the polarizing plate B was arranged so that the acrylic film was on the reflective polarizer side.
(エポキシ系接着剤の準備)
セロキサイド2021P(ダイセル化学工業社製)70重量部、EHPE3150を5重量部、アロンオキセタンOXT-221(東亜合成社製)19重量部、KBM-403(信越化学工業社製)を4重量部、CPI101A(サンアフロ社製)を2重量部配合しエポキシ系接着剤を準備した。
[実施例1]
(第1の光学フィルムAの作製)
ガラスフィルム(日本電気硝子社製、商品名「OA-10G」、厚み:100μm)と、製造例1で作製した偏光板Aとを、製造例7で調製した接着剤から構成される接着剤層を介して、貼り合わせた。このとき、偏光板Aは、トリアセチルセルロースフィルムがガラスフィルム側になるようにして配置した。次に、高圧水銀ランプにより接着剤層に紫外線を照射(500mJ/cm2)して接着剤層を硬化させて、第1の光学フィルムAを得た。接着剤層は厚み5μm、弾性率は、1.8GPaとした。
(第2の光学フィルムBの作製)
反射型偏光子(3M社製、商品名「APF V3」、厚み:30μm)と、製造例2で作製した偏光板Bとを、製造例6で調製した粘着剤から構成される粘着剤層(厚み12μm)を介して、貼り合わせた。このとき、偏光板Bは、アクリル系フィルムが反射型偏光子側になるようにして配置した。 [Manufacturing Example 7] Preparation of Adhesive (Preparation of Epoxy Adhesive)
Celoxide 2021P (manufactured by Daicel Chemical Industries) 70 parts by weight, EHPE3150 5 parts by weight, Aron Oxetan OXT-221 (manufactured by Toagosei Co., Ltd.) 19 parts by weight, KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by weight, CPI101A (Manufactured by San Afro) was blended in 2 parts by weight to prepare an epoxy adhesive.
[Example 1]
(Preparation of the first optical film A)
An adhesive layer composed of a glass film (manufactured by Nippon Electric Glass Co., Ltd., trade name "OA-10G", thickness: 100 μm) and a polarizing plate A produced in Production Example 1 and an adhesive prepared in Production Example 7. It was pasted together via. At this time, the polarizing plate A was arranged so that the triacetyl cellulose film was on the glass film side. Next, the adhesive layer was irradiated with ultraviolet rays (500 mJ / cm 2 ) with a high-pressure mercury lamp to cure the adhesive layer, and a first optical film A was obtained. The adhesive layer had a thickness of 5 μm and an elastic modulus of 1.8 GPa.
(Preparation of the second optical film B)
A pressure-sensitive adhesive layer (manufactured by 3M, trade name "APF V3", thickness: 30 μm) and a polarizing plate B produced in Production Example 2 composed of a pressure-sensitive adhesive prepared in Production Example 6 (manufactured by 3M). They were bonded together via a thickness of 12 μm). At this time, the polarizing plate B was arranged so that the acrylic film was on the reflective polarizer side.
なお、この粘着剤層は、製造例6で調整したモノマー成分、片面をシリコーンで剥離処理した厚み38μmのポリエステルフィルム(商品名:ダイアホイルMRF、三菱樹脂(株)製)の剥離処理面に、最終的な厚みが12μmになるように塗布して塗布層を形成した。次いで、塗布されたモノマー成分の表面に、片面をシリコーンで剥離処理した厚み38μmのポリエステルフィルム(商品名:ダイアホイルMRE、三菱樹脂(株)製)を、当該フィルムの剥離処理面が塗布層側になるようにして被覆した。これにより、モノマー成分の塗布層を酸素から遮断した。このようにして得られた塗布層を有するシートにケミカルライトランプ((株)東芝製))を用いて照度5mW/cm2(約350nmに最大感度をもつトプコンUVR-T1で測定)の紫外線を360秒間照射して、塗布層を硬化させて粘着剤層を形成し、粘着シートを作製した。粘着剤層の両面に被覆されたポリエステルフィルムは、離形フィルムとして機能する。
This adhesive layer is formed on the peeled surface of a polyester film (trade name: Diafoil MRF, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm, which is a monomer component prepared in Production Example 6 and one side of which is peeled with silicone. A coating layer was formed by coating so that the final thickness was 12 μm. Next, a polyester film (trade name: Diafoil MRE, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm, one side of which was peeled off with silicone, was applied to the surface of the coated monomer component, and the peeled surface of the film was on the coated layer side. It was coated so as to be. As a result, the coating layer of the monomer component was shielded from oxygen. The sheet having the coating layer thus obtained is subjected to ultraviolet rays having an illuminance of 5 mW / cm 2 (measured by Topcon UVR-T1 having the maximum sensitivity at about 350 nm) using a chemical light lamp (manufactured by Toshiba Corporation). The coating layer was irradiated for 360 seconds to cure the pressure-sensitive adhesive layer to form a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet was prepared. The polyester film coated on both sides of the pressure-sensitive adhesive layer functions as a release film.
次に片面のポリエステルフィルムを剥離し第2の光学フィルムBのアクリル系フィルム側に積層した後、もう一方のポリエステルフィルムを剥離し、反射型偏光子に積層した。
(評価用液晶パネルAの作製)
表示媒体である液晶層と、液晶層を両側から挟持する2枚の透明基板とを有する液晶セルを準備した。液晶セルは、13.3インチ、298mm×170mmであり、2枚の透明基板の合計の厚みは、450μmである。 Next, the polyester film on one side was peeled off and laminated on the acrylic film side of the second optical film B, and then the other polyester film was peeled off and laminated on the reflective polarizer.
(Manufacturing of liquid crystal panel A for evaluation)
A liquid crystal cell having a liquid crystal layer as a display medium and two transparent substrates sandwiching the liquid crystal layer from both sides was prepared. The liquid crystal cell is 13.3 inches, 298 mm × 170 mm, and the total thickness of the two transparent substrates is 450 μm.
(評価用液晶パネルAの作製)
表示媒体である液晶層と、液晶層を両側から挟持する2枚の透明基板とを有する液晶セルを準備した。液晶セルは、13.3インチ、298mm×170mmであり、2枚の透明基板の合計の厚みは、450μmである。 Next, the polyester film on one side was peeled off and laminated on the acrylic film side of the second optical film B, and then the other polyester film was peeled off and laminated on the reflective polarizer.
(Manufacturing of liquid crystal panel A for evaluation)
A liquid crystal cell having a liquid crystal layer as a display medium and two transparent substrates sandwiching the liquid crystal layer from both sides was prepared. The liquid crystal cell is 13.3 inches, 298 mm × 170 mm, and the total thickness of the two transparent substrates is 450 μm.
第1の光学フィルムAを、偏光子の吸収軸方向と短辺とが平行になるようにして、296mm×168mmのサイズに裁断した。
The first optical film A was cut into a size of 296 mm × 168 mm so that the absorption axis direction of the polarizer and the short side were parallel to each other.
第2の光学フィルムBを、偏光子の吸収軸方向と長辺とが平行になるようにして、296mm×168mmのサイズに裁断した。
The second optical film B was cut into a size of 296 mm × 168 mm so that the absorption axis direction of the polarizer and the long side were parallel to each other.
上記液晶セルの一方の面(一方の透明基板の表面)に、第1の光学フィルムAを、液晶セルと第1の光学フィルムAそれぞれの短辺が平行になるようにし、かつ、偏光板A(偏光子)が液晶セル側となるようにして、積層した。
The first optical film A is placed on one surface of the liquid crystal cell (the surface of one transparent substrate) so that the short sides of the liquid crystal cell and the first optical film A are parallel to each other, and the polarizing plate A is used. The layers were laminated so that the (polarizer) was on the liquid crystal cell side.
上記液晶セルの他方の面(他方の透明基板の表面)に、第2の光学フィルムBを、液晶セルと第2の光学フィルムAそれぞれの短辺が平行になるようにし、かつ、偏光子が液晶セル側になるようにして、積層した。
The second optical film B is placed on the other surface of the liquid crystal cell (the surface of the other transparent substrate) so that the short sides of the liquid crystal cell and the second optical film A are parallel to each other, and the polarizer is formed. The layers were laminated so as to be on the liquid crystal cell side.
第1の光学フィルムAは、製造例6で調製した粘着剤から構成される粘着剤層(厚み:30μm)を介して、液晶セルに積層した。なお、この粘着剤層は、以下のようにして形成した。(i)シリコーン処理したポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム社製、厚み:38μm)上に塗布し、155℃で1分間加熱して、乾燥後の厚みが20μmの粘着剤層を形成し、(ii)当該粘着剤層を、ポリエチレンテレフタレートフィルムから、偏光板Aに転写して、粘着剤層を形成した。
The first optical film A was laminated on the liquid crystal cell via a pressure-sensitive adhesive layer (thickness: 30 μm) composed of the pressure-sensitive adhesive prepared in Production Example 6. The pressure-sensitive adhesive layer was formed as follows. (I) A silicone-treated polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 μm) was applied and heated at 155 ° C. for 1 minute to form an adhesive layer having a thickness of 20 μm after drying. ii) The pressure-sensitive adhesive layer was transferred from a polyethylene terephthalate film to a polarizing plate A to form a pressure-sensitive adhesive layer.
第2の光学フィルムBは、製造例6で調製した粘着剤から構成される粘着剤層(厚み:20μm)を介して、液晶セルに積層した。なお、この粘着剤層は、製造例6で調整したモノマー成分、片面をシリコーンで剥離処理した厚み38μmのポリエステルフィルム(商品名:ダイアホイルMRF、三菱樹脂(株)製)の剥離処理面に、最終的な厚みが100μmになるように塗布して塗布層を形成した。次いで、塗布されたモノマー成分の表面に、片面をシリコーンで剥離処理した厚み38μmのポリエステルフィルム(商品名:ダイアホイルMRE、三菱樹脂(株)製)を、当該フィルムの剥離処理面が塗布層側になるようにして被覆した。これにより、モノマー成分の塗布層を酸素から遮断した。このようにして得られた塗布層を有するシートにケミカルライトランプ((株)東芝製))を用いて照度5mW/cm2(約350nmに最大感度をもつトプコンUVR-T1で測定)の紫外線を360秒間照射して、塗布層を硬化させて粘着剤層を形成し、粘着シートを作製した。粘着剤層の両面に被覆されたポリエステルフィルムは、離形フィルムとして機能する。
The second optical film B was laminated on the liquid crystal cell via a pressure-sensitive adhesive layer (thickness: 20 μm) composed of the pressure-sensitive adhesive prepared in Production Example 6. This adhesive layer is formed on the peeled surface of a polyester film (trade name: Diafoil MRF, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm, which is a monomer component prepared in Production Example 6 and one side of which is peeled with silicone. A coating layer was formed by coating so that the final thickness was 100 μm. Next, a polyester film (trade name: Diafoil MRE, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm, one side of which was peeled off with silicone, was applied to the surface of the coated monomer component, and the peeled surface of the film was on the coated layer side. It was coated so as to be. As a result, the coating layer of the monomer component was shielded from oxygen. The sheet having the coating layer thus obtained is subjected to ultraviolet rays having an illuminance of 5 mW / cm 2 (measured by Topcon UVR-T1 having the maximum sensitivity at about 350 nm) using a chemical light lamp (manufactured by Toshiba Corporation). The coating layer was irradiated for 360 seconds to cure the pressure-sensitive adhesive layer to form a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet was prepared. The polyester film coated on both sides of the pressure-sensitive adhesive layer functions as a release film.
次に片面のポリエステルフィルムを剥離し光学フィルムBに積層した後、もう一方のポリエステルフィルムを剥離し、液晶セルに積層した。
Next, the polyester film on one side was peeled off and laminated on the optical film B, and then the other polyester film was peeled off and laminated on the liquid crystal cell.
上記のようにして、評価用液晶パネルAを作製した。
The evaluation liquid crystal panel A was produced as described above.
[実施例2]
製造例1で作製した偏光板Aに代えて製造例2で作製した偏光板Bを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルBを作製した。 [Example 2]
The evaluation liquid crystal panel B was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate B produced in Production Example 2 instead of the polarizing plate A produced in Production Example 1. Made.
製造例1で作製した偏光板Aに代えて製造例2で作製した偏光板Bを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルBを作製した。 [Example 2]
The evaluation liquid crystal panel B was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate B produced in Production Example 2 instead of the polarizing plate A produced in Production Example 1. Made.
[比較例1]
製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルCを作製した。 [Comparative Example 1]
The evaluation liquid crystal panel C was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1. Made.
製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルCを作製した。 [Comparative Example 1]
The evaluation liquid crystal panel C was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate C produced in Production Example 3 instead of the polarizing plate A produced in Production Example 1. Made.
[比較例2]
製造例1で作製した偏光板Aに代えて製造例4で作製した偏光板Dを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルDを作製した。 [Comparative Example 2]
The evaluation liquid crystal panel D was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate D produced in Production Example 4 instead of the polarizing plate A produced in Production Example 1. Made.
製造例1で作製した偏光板Aに代えて製造例4で作製した偏光板Dを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルDを作製した。 [Comparative Example 2]
The evaluation liquid crystal panel D was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate D produced in Production Example 4 instead of the polarizing plate A produced in Production Example 1. Made.
[比較例3]
製造例1で作製した偏光板Aに代えて製造例5で作製した偏光板Eを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルEを作製した。 [Comparative Example 3]
The evaluation liquid crystal panel E was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate E produced in Production Example 5 instead of the polarizing plate A produced in Production Example 1. Made.
製造例1で作製した偏光板Aに代えて製造例5で作製した偏光板Eを用いて第1の光学フィルムAを作製した以外は、実施例1と同様にして、評価用液晶パネルEを作製した。 [Comparative Example 3]
The evaluation liquid crystal panel E was formed in the same manner as in Example 1 except that the first optical film A was produced by using the polarizing plate E produced in Production Example 5 instead of the polarizing plate A produced in Production Example 1. Made.
[参考例1]
製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、かつ偏光板Cにガラスフィルムを貼り合わせなかった以外は、実施例1と同様にして、評価用液晶パネルFを作製した。つまり、評価用液晶パネルFは、比較例1に係る評価用液晶パネルCからガラスフィルムを削除した構成である。 [Reference example 1]
An evaluation liquid crystal in the same manner as in Example 1 except that the polarizing plate C produced in Production Example 3 was used instead of the polarizing plate A produced in Production Example 1 and the glass film was not attached to the polarizing plate C. Panel F was produced. That is, the evaluation liquid crystal panel F has a configuration in which the glass film is removed from the evaluation liquid crystal panel C according to Comparative Example 1.
製造例1で作製した偏光板Aに代えて製造例3で作製した偏光板Cを用い、かつ偏光板Cにガラスフィルムを貼り合わせなかった以外は、実施例1と同様にして、評価用液晶パネルFを作製した。つまり、評価用液晶パネルFは、比較例1に係る評価用液晶パネルCからガラスフィルムを削除した構成である。 [Reference example 1]
An evaluation liquid crystal in the same manner as in Example 1 except that the polarizing plate C produced in Production Example 3 was used instead of the polarizing plate A produced in Production Example 1 and the glass film was not attached to the polarizing plate C. Panel F was produced. That is, the evaluation liquid crystal panel F has a configuration in which the glass film is removed from the evaluation liquid crystal panel C according to Comparative Example 1.
(評価)
実施例1、2、比較例1~3、及び参考例1で得られた各々の評価用液晶パネルA~Fについて、加熱環境試験を実施し、その後、色味変化の評価を行った。 (Evaluation)
A heating environment test was carried out on each of the evaluation liquid crystal panels A to F obtained in Examples 1 and 2, Comparative Examples 1 to 3, and Reference Example 1, and then the color change was evaluated.
実施例1、2、比較例1~3、及び参考例1で得られた各々の評価用液晶パネルA~Fについて、加熱環境試験を実施し、その後、色味変化の評価を行った。 (Evaluation)
A heating environment test was carried out on each of the evaluation liquid crystal panels A to F obtained in Examples 1 and 2, Comparative Examples 1 to 3, and Reference Example 1, and then the color change was evaluated.
〈加熱環境試験〉
評価用液晶パネルA~Fにオートクレーブ処理(50℃/5気圧/15分)を施した後、80℃の加熱オーブンに投入し120時間後に取り出した。 <Heating environment test>
After the evaluation liquid crystal panels A to F were autoclaved (50 ° C./5 atm / 15 minutes), they were placed in a heating oven at 80 ° C. and taken out 120 hours later.
評価用液晶パネルA~Fにオートクレーブ処理(50℃/5気圧/15分)を施した後、80℃の加熱オーブンに投入し120時間後に取り出した。 <Heating environment test>
After the evaluation liquid crystal panels A to F were autoclaved (50 ° C./5 atm / 15 minutes), they were placed in a heating oven at 80 ° C. and taken out 120 hours later.
〈色味変化の評価〉
上記の条件で加熱環境試験を行った後の評価用液晶パネルA~Fについて、色味変化の評価を行った。 <Evaluation of color change>
The color change was evaluated for the evaluation liquid crystal panels A to F after the heating environment test was performed under the above conditions.
上記の条件で加熱環境試験を行った後の評価用液晶パネルA~Fについて、色味変化の評価を行った。 <Evaluation of color change>
The color change was evaluated for the evaluation liquid crystal panels A to F after the heating environment test was performed under the above conditions.
具体的には、加熱環境試験後の評価用液晶パネルA~Fを、各々の第2の光学フィルムBが下側になるようにして、バックライト上に配置した。そして、未表示(事実上の黒表示)の状態で、評価用液晶パネルA~Fの各々の視認側表面の端部の色味変化を目視で評価した。
Specifically, the evaluation liquid crystal panels A to F after the heating environment test were placed on the backlight so that each of the second optical films B was on the lower side. Then, in the undisplayed state (substantially black display), the color change at the edge of each of the visual side surface of the evaluation liquid crystal panels A to F was visually evaluated.
なお、色味変化の評価の際には、評価用液晶パネルA~Fの各々の液晶パネルの液晶層は透過モードになっている。又、事実上の黒表示とは、バックライト側の偏光板を透過した光は液晶層をそのまま通過するので、視認側の偏光板に全部吸収され、黒表示となることを意味している。
When evaluating the color change, the liquid crystal layer of each of the evaluation liquid crystal panels A to F is in the transmission mode. Further, the de facto black display means that the light transmitted through the polarizing plate on the backlight side passes through the liquid crystal layer as it is, so that the light is completely absorbed by the polarizing plate on the viewing side, resulting in a black display.
色味変化の評価基準は、評価用液晶パネルの視認側表面の端部の色味が中心部と比較して明らかに変化している場合を×(不合格)、端部の色味が中心部と比較して若干変化しているが製品化した際に許容できる場合を△(合格)、端部の色味が中心部と比較してほとんど変化していない場合を〇(合格)とした。各評価用液晶パネルの構成と共に、色味変化の評価結果を表1に示す。
The evaluation criteria for color change is x (failure) when the color of the edge of the visible side surface of the evaluation liquid crystal panel is clearly changed compared to the center, and the color of the edge is the center. The case where the color is slightly changed compared to the part but is acceptable when commercialized is evaluated as △ (pass), and the case where the color of the edge is hardly changed compared to the central part is evaluated as 〇 (pass). .. Table 1 shows the evaluation results of the color change along with the configuration of each evaluation liquid crystal panel.
表1に示すように、第1の光学フィルムAの偏光子の厚みが15μmである実施例1に係る評価用液晶パネルAの色味変化の評価結果は△、第1の光学フィルムAの偏光子の厚みが5μmである実施例2に係る評価用液晶パネルBの色味変化の評価結果は〇であった。一方、第1の光学フィルムAの偏光子の厚みが15μmよりも大きい比較例1~3に係る評価用液晶パネルC~Eの色味変化の評価結果は×であった。
As shown in Table 1, the evaluation result of the tint change of the evaluation liquid crystal panel A according to Example 1 in which the thickness of the polarizer of the first optical film A is 15 μm is Δ, and the polarization of the first optical film A is Δ. The evaluation result of the color change of the evaluation liquid crystal panel B according to Example 2 in which the thickness of the child was 5 μm was 〇. On the other hand, the evaluation result of the color tint change of the evaluation liquid crystal panels C to E according to Comparative Examples 1 to 3 in which the thickness of the polarizer of the first optical film A was larger than 15 μm was x.
この結果より、第1の光学フィルムAの偏光子の厚みを薄くすることで、加熱環境試験後の評価用液晶パネルにおいて、視認側表面の端部の色味が中心部と比較して変化することを抑制できるといえる。特に、第1の光学フィルムAの偏光子の厚みが15μm以下である場合に、液晶パネルの色味変化を抑制できる。これは、第1の光学フィルムAの偏光子の厚みを薄くすることで、加熱環境試験後の偏光子の熱収縮率が小さくなり、液晶パネルの端部にかかる収縮応力が緩和されたためであると考えられる。
From this result, by reducing the thickness of the polarizer of the first optical film A, in the evaluation liquid crystal panel after the heating environment test, the color of the edge portion of the visible side surface changes as compared with the central portion. It can be said that this can be suppressed. In particular, when the thickness of the polarizer of the first optical film A is 15 μm or less, the change in color of the liquid crystal panel can be suppressed. This is because by reducing the thickness of the polarizer of the first optical film A, the heat shrinkage rate of the polarizer after the heating environment test is reduced, and the shrinkage stress applied to the edge of the liquid crystal panel is relaxed. it is conceivable that.
ところで、第1の光学フィルムAがガラスフィルムを備えていない参考例1に係る評価用液晶パネルFでは、偏光子の厚みが28μmであるにもかかわらず、端部の色味が中心部と比較してほとんど変化していなかった。発明者らの追加の検討によれば、第1の光学フィルムAがガラスフィルムを備えていない場合には、偏光子の厚みが15μm以下であるか否かにかかわらず(偏光子の厚みには依存せずに)、液晶パネルの端部の色味変化は生じないことがわかった。
By the way, in the evaluation liquid crystal panel F according to Reference Example 1 in which the first optical film A does not include a glass film, the color of the edge is compared with that of the center even though the thickness of the polarizer is 28 μm. And there was almost no change. According to an additional study by the inventors, when the first optical film A does not include a glass film, regardless of whether the thickness of the polarizer is 15 μm or less (the thickness of the polarizer is determined). (Independently), it was found that the color change at the edge of the liquid crystal panel did not occur.
このように、液晶パネルの端部の色味変化は、第1の光学フィルムAがガラスフィルムを備えている液晶パネルのみで発生するが、第1の光学フィルムAの偏光子の厚みを15μm以下とすることで、液晶パネルの色味変化を抑制できることがわかった。
As described above, the color change at the edge of the liquid crystal panel occurs only in the liquid crystal panel in which the first optical film A includes the glass film, but the thickness of the polarizer of the first optical film A is 15 μm or less. By doing so, it was found that the change in color of the liquid crystal panel can be suppressed.
発明者らの検討によれば、液晶セルを構成する2枚の透明基板の合計の厚みが450μm以下である場合に、液晶パネルの色味変化が発生し易い。そのため、このような液晶セルにおいて、第1の光学フィルムAの偏光子の厚みを15μm以下とすることは、特に有効である。
According to the studies by the inventors, when the total thickness of the two transparent substrates constituting the liquid crystal cell is 450 μm or less, the color of the liquid crystal panel is likely to change. Therefore, in such a liquid crystal cell, it is particularly effective to set the thickness of the polarizer of the first optical film A to 15 μm or less.
なお、加熱環境試験により液晶パネルに反りが生じることが問題となる場合があるが、加熱環境試験後の評価用液晶パネルA~Fの何れにも、問題となるような反りは生じていなかった。
Although it may be a problem that the liquid crystal panel is warped by the heating environment test, no problematic warp has occurred in any of the evaluation liquid crystal panels A to F after the heating environment test. ..
発明者らの検討によれば、第2の光学フィルムBの偏光子の厚みを10μm以下とすることで、加熱環境試験により液晶パネルに反りが生じる問題を抑制できる。評価用液晶パネルA~Fは、第2の光学フィルムBの偏光子の厚みが5μmであったことから、加熱環境試験により液晶パネルに問題となるような反りが生じなかったと考えられる。
According to the studies by the inventors, by setting the thickness of the polarizer of the second optical film B to 10 μm or less, it is possible to suppress the problem that the liquid crystal panel is warped by the heating environment test. Since the thickness of the polarizer of the second optical film B of the evaluation liquid crystal panels A to F was 5 μm, it is considered that the liquid crystal panel did not warp in a heating environment test.
以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。
Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope of claims. Can be added.
本国際出願は2019年11月12日に出願した日本国特許出願2019-204932号に基づく優先権を主張するものであり、日本国特許出願2019-204932号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese patent application 2019-204932 filed on November 12, 2019, and the entire contents of Japanese patent application 2019-204932 are incorporated into this international application. ..
1 光学フィルムセット
2 液晶パネル
10 第1の光学フィルム
11 第1のガラスフィルム
12 第1の接着剤層
13 第1の偏光板
14 第1の粘着剤層
20 第2の光学フィルム
23 第2の偏光板
24 第2の粘着剤層
30 液晶セル
31 液晶層
32、33 透明基板
131 第1の偏光子
132 第1の保護フィルム
231 第2の偏光子
232 第2の保護フィルム 1 Optical film set 2Liquid crystal panel 10 First optical film 11 First glass film 12 First adhesive layer 13 First polarizing plate 14 First adhesive layer 20 Second optical film 23 Second polarized light Plate 24 Second adhesive layer 30 Liquid crystal cell 31 Liquid crystal layer 32, 33 Transparent substrate 131 First polarizer 132 First protective film 231 Second polarizing element 232 Second protective film
2 液晶パネル
10 第1の光学フィルム
11 第1のガラスフィルム
12 第1の接着剤層
13 第1の偏光板
14 第1の粘着剤層
20 第2の光学フィルム
23 第2の偏光板
24 第2の粘着剤層
30 液晶セル
31 液晶層
32、33 透明基板
131 第1の偏光子
132 第1の保護フィルム
231 第2の偏光子
232 第2の保護フィルム 1 Optical film set 2
Claims (5)
- 2枚の透明基板に挟持された液晶層を有する液晶セルと、
前記液晶セルの視認側に第1の粘着剤層を介して設けられる第1の光学フィルムと、
前記液晶セルのバックライト側に第2の粘着剤層を介して設けられる第2の光学フィルムと、を有し、
前記2枚の透明基板の合計の厚みが450μm以下であり、
前記第1の光学フィルムは、ガラスフィルムと第1の偏光板と、を有し、
前記ガラスフィルムの厚みは50μm以上150μm以下であり、
前記第1の偏光板は厚み15μm以下の偏光子を有することを特徴とする液晶パネル。 A liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates,
A first optical film provided on the visible side of the liquid crystal cell via a first adhesive layer, and
It has a second optical film provided on the backlight side of the liquid crystal cell via a second pressure-sensitive adhesive layer.
The total thickness of the two transparent substrates is 450 μm or less.
The first optical film includes a glass film and a first polarizing plate.
The thickness of the glass film is 50 μm or more and 150 μm or less.
The first polarizing plate is a liquid crystal panel having a polarizing element having a thickness of 15 μm or less. - 前記第2の光学フィルムは、第2の偏光板を有し、
前記第2の偏光板は厚み10μm以下の偏光子を有することを特徴とする請求項1に記載の液晶パネル。 The second optical film has a second polarizing plate and has a second polarizing plate.
The liquid crystal panel according to claim 1, wherein the second polarizing plate has a polarizer having a thickness of 10 μm or less. - 前記ガラスフィルムと前記第1の光学フィルムは、接着剤層を介して積層されていることを特徴とする請求項1又は2に記載の液晶パネル。 The liquid crystal panel according to claim 1 or 2, wherein the glass film and the first optical film are laminated via an adhesive layer.
- 2枚の透明基板に挟持された液晶層を有し、前記2枚の透明基板の総厚みが450μm以下である液晶セルに用いられる光学フィルムセットであって、
前記液晶セルの視認側に第1の粘着剤層を介して設けられる第1の光学フィルムと、
前記液晶セルのバックライト側に第2の粘着剤層を介して設けられる第2の光学フィルムと、を有し、
前記第1の光学フィルムは、ガラスフィルムと第1の偏光板と、を有し、
前記ガラスフィルムの厚みは50μm以上150μm以下であり、
前記第1の偏光板は厚み15μm以下の偏光子を有することを特徴とする光学フィルムセット。 An optical film set used for a liquid crystal cell having a liquid crystal layer sandwiched between two transparent substrates and having a total thickness of 450 μm or less.
A first optical film provided on the visible side of the liquid crystal cell via a first adhesive layer, and
It has a second optical film provided on the backlight side of the liquid crystal cell via a second pressure-sensitive adhesive layer.
The first optical film includes a glass film and a first polarizing plate.
The thickness of the glass film is 50 μm or more and 150 μm or less.
The first polarizing plate is an optical film set having a polarizer having a thickness of 15 μm or less. - 前記第2の光学フィルムは、第2の偏光板を有し、
前記第2の偏光板は厚み10μm以下の偏光子を有することを特徴とする請求項4に記載の光学フィルムセット。 The second optical film has a second polarizing plate and has a second polarizing plate.
The optical film set according to claim 4, wherein the second polarizing plate has a polarizer having a thickness of 10 μm or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227015038A KR20220097895A (en) | 2019-11-12 | 2020-10-27 | Optical film set and liquid crystal panel |
CN202080077830.8A CN114651205A (en) | 2019-11-12 | 2020-10-27 | Optical film group and liquid crystal panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-204932 | 2019-11-12 | ||
JP2019204932A JP2021076778A (en) | 2019-11-12 | 2019-11-12 | Optical film set, liquid crystal panel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021095516A1 true WO2021095516A1 (en) | 2021-05-20 |
Family
ID=75899028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040301 WO2021095516A1 (en) | 2019-11-12 | 2020-10-27 | Optical film set and liquid crystal panel |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2021076778A (en) |
KR (1) | KR20220097895A (en) |
CN (1) | CN114651205A (en) |
TW (1) | TW202132877A (en) |
WO (1) | WO2021095516A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3936333A4 (en) * | 2019-03-06 | 2022-11-09 | Nitto Denko Corporation | Sensor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4326635B2 (en) * | 1999-09-29 | 2009-09-09 | 三菱樹脂株式会社 | Glass film handling method and glass laminate |
JP2011121320A (en) * | 2009-12-11 | 2011-06-23 | Nippon Electric Glass Co Ltd | Glass film laminate, glass roll thereof, and method for manufacturing glass roll |
WO2013175767A1 (en) * | 2012-05-23 | 2013-11-28 | コニカミノルタ株式会社 | Polarizing plate, fabrication method for polarizing plate, and image display device |
WO2015015538A1 (en) * | 2013-07-29 | 2015-02-05 | コニカミノルタ株式会社 | Polarizing plate protection film, polarizing plate and liquid crystal display device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008165185A (en) * | 2006-12-07 | 2008-07-17 | Nitto Denko Corp | Multilayer optical film, liquid crystal panel using multilayer optical film, and liquid crystal display device |
JP5932749B2 (en) | 2013-10-03 | 2016-06-08 | 住友化学株式会社 | Polarizer set and front panel integrated liquid crystal display panel |
KR102039824B1 (en) | 2018-01-17 | 2019-11-01 | 부경대학교 산학협력단 | Production method of high unsaturated fatty acid using marine microalgae |
-
2019
- 2019-11-12 JP JP2019204932A patent/JP2021076778A/en active Pending
-
2020
- 2020-10-27 CN CN202080077830.8A patent/CN114651205A/en active Pending
- 2020-10-27 KR KR1020227015038A patent/KR20220097895A/en active Pending
- 2020-10-27 WO PCT/JP2020/040301 patent/WO2021095516A1/en active Application Filing
- 2020-11-02 TW TW109138101A patent/TW202132877A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4326635B2 (en) * | 1999-09-29 | 2009-09-09 | 三菱樹脂株式会社 | Glass film handling method and glass laminate |
JP2011121320A (en) * | 2009-12-11 | 2011-06-23 | Nippon Electric Glass Co Ltd | Glass film laminate, glass roll thereof, and method for manufacturing glass roll |
WO2013175767A1 (en) * | 2012-05-23 | 2013-11-28 | コニカミノルタ株式会社 | Polarizing plate, fabrication method for polarizing plate, and image display device |
WO2015015538A1 (en) * | 2013-07-29 | 2015-02-05 | コニカミノルタ株式会社 | Polarizing plate protection film, polarizing plate and liquid crystal display device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3936333A4 (en) * | 2019-03-06 | 2022-11-09 | Nitto Denko Corporation | Sensor device |
US12215972B2 (en) | 2019-03-06 | 2025-02-04 | Nitto Denko Corporation | Sensor device |
Also Published As
Publication number | Publication date |
---|---|
TW202132877A (en) | 2021-09-01 |
KR20220097895A (en) | 2022-07-08 |
CN114651205A (en) | 2022-06-21 |
JP2021076778A (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019087938A1 (en) | Laminate for image display devices | |
CN105122099B (en) | The one-piece type liquid crystal display panel of group and foreboard of polarizer | |
WO2020203647A1 (en) | Optical film | |
WO2021060107A1 (en) | Optical film | |
JP7553174B2 (en) | Optical film set, optical laminate | |
TWI736968B (en) | Optical film group and optical laminate | |
WO2021095516A1 (en) | Optical film set and liquid crystal panel | |
CN108351460B (en) | Polarizing plate and liquid crystal display device | |
WO2020179376A1 (en) | Sensor device | |
TWI779144B (en) | Polarizing plate group and liquid crystal display panel | |
TWI848081B (en) | Method for manufacturing glass resin layer stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20886881 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20886881 Country of ref document: EP Kind code of ref document: A1 |