[go: up one dir, main page]

WO2021085097A1 - Multilayered fiber structure, clothing item and work wear - Google Patents

Multilayered fiber structure, clothing item and work wear Download PDF

Info

Publication number
WO2021085097A1
WO2021085097A1 PCT/JP2020/038445 JP2020038445W WO2021085097A1 WO 2021085097 A1 WO2021085097 A1 WO 2021085097A1 JP 2020038445 W JP2020038445 W JP 2020038445W WO 2021085097 A1 WO2021085097 A1 WO 2021085097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber structure
fibers
surface layer
multilayer structure
Prior art date
Application number
PCT/JP2020/038445
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田剛司
勝部禎一
中野克哉
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020556987A priority Critical patent/JPWO2021085097A1/ja
Publication of WO2021085097A1 publication Critical patent/WO2021085097A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/01Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with reflective or luminous safety means
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/14Air permeable, i.e. capable of being penetrated by gases
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/18Elastic
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof

Definitions

  • the present invention relates to a flame-retardant multi-layered fiber structure, clothing and work clothes.
  • the cellulosic fiber mainly used for the back structure does not have flame retardancy and is used as work clothes worn in a work place where there is a possibility of being exposed to fire. That is difficult. Further, in the technique disclosed in Patent Document 2, sufficient flame retardancy could not be obtained probably because it is basically composed of a double woven fabric having two layers of a front structure and a back structure.
  • Patent Documents 3 and 4 are basically composed of a single layer, it is very difficult to achieve both flame retardancy and high visibility on one cloth.
  • an object of the present invention is to use a fiber structure having high flame retardancy and excellent comfort and visibility, and using the fiber structure. To provide clothing and work clothes.
  • the present inventors have set the air permeability of the fiber structure and the mass ratio of the modaacrylic short fiber that emits a self-extinguishing gas to the entire fiber structure within a specific range. By doing so, it was found that the amount of self-extinguishing gas generated when the fiber structure was ignited could be adjusted to an appropriate amount, and it was found that the flame retardancy could be improved. Furthermore, it was also found that the visibility can be easily improved by making the structure of the fiber structure a three-layer structure.
  • the multi-layered fiber structure of the present invention is a multi-layered fiber structure having at least a surface layer, a knot layer and a back surface layer, and the surface layer is one or more fibers selected from polyester fibers and acrylic fibers. It is a fiber structure layer made of A, and the back surface layer is a fiber structure layer made of a composite spun yarn made by blending moda acrylic short fibers B, and the mass ratio of the moda acrylic short fibers B in the multilayer structure fiber structure is high. It is 30 to 70% by mass, the air permeability of the multilayer structure fiber structure is 5 to 60 cm 3 / (cm 2 ⁇ sec), and the cover factor is 1800 to 2500.
  • the fiber A is a polyester fiber.
  • the polyester fiber is a cationic dyeable polyester fiber.
  • the content mass ratio of the cationic dyeable polyester fiber in the multilayer structure fiber structure is 30% by mass or more.
  • the composite spun yarn contains carbonized fibers C other than modal acrylic short fibers B.
  • the content mass ratio of the modal acrylic short fiber B in the composite spun yarn is 60% by mass or more.
  • the multilayer structure fiber structure further contains elastic fibers, and the content mass ratio of the elastic fibers in the multilayer structure fiber structure is 1 to 10. It is mass%.
  • the elongation rate of the multilayer structure fiber structure is 5% or more.
  • the multilayer structure fiber structure of the present invention is measured by "8.5 E method (oxygen index method test) E-2" of JIS L1091: 1999 "Fiber product flammability test method”.
  • the OI value is 26% or more.
  • At least a part of the surface layer is colored with a fluorescent color.
  • the clothing of the present invention is composed of the above-mentioned multilayer structure fiber structure.
  • work clothes of the present invention are made of the above-mentioned multilayer structure fiber structure.
  • a multilayer structure fiber structure having high flame retardancy (residual flame time, residual dust time, combustion area) and excellent comfort and visibility can be obtained.
  • the multilayer structure fiber structure of the present invention is suitable as work clothes because it can work safely even in a place exposed to fire or the like, at night or in a dark place due to the above-mentioned characteristics. Can be used for.
  • the multilayer structure fiber structure of the present invention is a multilayer structure fiber structure having at least a surface layer, a knot layer, and a back surface layer, and the surface layer is one or more selected from polyester fibers and acrylic fibers. It is a fiber structure layer made of fibers A, and the back surface layer is a fiber structure layer made of a composite spun yarn made by blending moda acrylic short fibers B, and is a flame-retardant short fiber B in the multilayer structure fiber structure.
  • the content mass ratio is 30 to 70% by mass
  • the air permeability of the multilayer structure fiber structure is 5 to 60 cm 3 / (cm 2 ⁇ sec)
  • the cover factor is 1800 to 2500.
  • the multilayer fiber structure of the present invention has at least a surface layer. The details will be further described below.
  • the surface layer according to the present invention is a fiber structure layer composed of one or more fibers A selected from polyester fibers and acrylic fibers. This surface layer becomes the outermost layer when used as clothing or work clothes, and in particular, becomes a layer that contributes to visibility at night or in a dark place.
  • polyester fibers that can be dyed with a disperse dye
  • acrylic fibers that can be dyed with a cationic dye
  • cationic dyeable polyester fibers are preferable, and cationic dyeable polyester fibers are more preferable. By doing so, the texture and fastness of the multi-layered fiber structure can be improved.
  • the cationic dyeable polyester fiber is a polyester fiber modified so that it can be dyed with a cationic dye, and is a polyester fiber obtained by copolymerizing a dyed seat of the cationic dye.
  • Typical examples include cationic dyeable fibers "LOC”, “LOCII” and “Polyloft (registered trademark)” manufactured by Toray Industries, Inc.
  • the content mass ratio of the cationic dyeable polyester fiber in the multilayer structure fiber structure is 30% by mass or more.
  • this content is set to 30% by mass or more, more preferably 45% by mass or more and 60% by mass or less, high visibility and light fastness can be improved.
  • the chromaticity within the color coordinates of JIS T8127: 2015 can be obtained.
  • the surface layer according to the present invention it is preferable that at least a part of the surface layer is colored in a fluorescent color. By doing so, the visibility when used as work clothes can be improved.
  • the state of being "colored in fluorescent color” in the present invention means that as a result of coloring the surface layer, the chromaticity coordinates (x, y) of the surface layer and the brightness rate ⁇ are ISO 20471: 2013 "high”. Visibility Clothes-Fluorescent within the range of Fluorescent Yellow, Fluorescent Orange Red, Fluorescent Red specified in “Test Methods and Requirements” or Fluorescent specified in JIS T8127: 2015 "High Visibility Safety Clothing” Fluorescent green, fluorescent yellow green, fluorescent yellow orange, fluorescent orange within the range of yellow, fluorescent orange red, fluorescent red, or specified in JSAA 2001: 2017 "High visibility safety clothing standard for general users” , Fluorescent pink, fluorescent blue, or fluorescent violet.
  • the state of being colored in fluorescent yellow of ISO 20471: 2013 is determined by performing an evaluation test specified in ISO 20471: 2013 and performing chromaticity coordinates (x, y) :( 0.387, 0.610). , (0.356, 0.494), (0.398, 0.452), (0.460, 0.540), the chromaticity measurement result is within the range surrounded by four points, and It means that the measurement result of the chromaticity rate ⁇ is in a state of exceeding 0.70.
  • the fiber A such as polyester fiber used for the surface layer of the present invention preferably has a fineness of 0.8 to 6.0 dtex.
  • the fineness of fiber A such as polyester fiber is 0.8 dtex or more, more preferably 1.5 dtex or more, or the fineness of fiber A such as polyester fiber is 6.0 dtex or less, more preferably 3.0 dtex or more.
  • the fiber A such as the polyester fiber used for the surface layer of the present invention preferably has a fiber length of 15 mm to 150 mm.
  • a round cross-section fiber as the fiber A such as the polyester fiber used for the surface layer of the present invention.
  • the fiber A such as the polyester fiber used for the surface layer of the present invention.
  • the polyurethane elastic fiber refers to a fiber made of a long-chain synthetic polymer formed by urethane bonding, and the fineness of the polyurethane elastic fiber used may be arbitrarily selected according to a desired stretch force and stretchback property.
  • “Lycra (registered trademark)” manufactured by Toray Operontex Co., Ltd. may be mentioned, and those having chlorine resistance and deodorant functions may be selected.
  • the multilayer structure fiber structure of the present invention has at least a back surface layer in addition to the above-mentioned front surface layer. The details will be further described below.
  • the back surface layer according to the present invention is a fiber structure layer made of a composite spun yarn obtained by blending moda acrylic short fibers B. This back surface layer is the innermost layer (the layer on the human body side) when used as clothing such as work clothes.
  • the composite spun yarn used in the present invention is made by blending at least modal acrylic short fibers B.
  • Moda acrylic fibers are preferable because they are excellent in self-extinguishing gas generation effect and effect as carbonized fibers described later.
  • the composite spun yarn preferably further contains carbonized fibers C other than modal acrylic short fibers B.
  • the carbonized fiber is a fiber that does not melt at the time of combustion but carbonizes.
  • the above-mentioned moda acrylic fiber also falls under the category of carbonized fiber, but it is preferable to blend other carbonized fiber (carbonized fiber C).
  • the carbonized fiber C include cellulosic fibers typified by carbon fiber, rayon fiber, flame-retardant rayon fiber, cotton, and hemp. Among them, by mixing fibers such as rayon fiber and cellulose fiber such as flame-retardant rayon fiber, it is possible to improve hygroscopicity and touch when worn.
  • the mixing ratio is 5% by mass to 40% by mass in the composite spun yarn, which improves hygroscopicity and touch when worn. It is preferable because it causes.
  • the modacrylic short fiber used in the present invention is preferably 60% by mass or more, more preferably 70% by mass or more in the composite spun yarn from the viewpoint of sufficiently generating a self-extinguishing gas.
  • the mass content of the carbonized fibers including the modacrylic short fibers B and the carbonized fibers C in the composite spun yarn is preferably 65% by mass or more, and there is no particular upper limit, and 100% is not a problem.
  • other fibers D other than the above can be contained in the back surface layer of the present invention.
  • the other fiber D include elastic fibers such as polyurethane elastic fibers and conductive fibers. These other fibers D can be contained in the composite spun yarn constituting the back surface layer.
  • the content mass ratio is preferably 35% by mass or less, and more preferably 10% by mass or less in the back surface layer.
  • the lower limit may be 0% by mass or an amount capable of imparting a desired function, but specifically, it is preferably 2% by mass or more.
  • Elastic fibers such as polyurethane elastic fibers are preferably used for at least a part of the weft of the back surface layer.
  • elastic fibers such as polyurethane elastic fibers
  • long elastic fibers such as modacryl short fibers and long / short composite spun yarns such as core spandex yarn (CSY).
  • the polyurethane elastic fiber refers to a fiber made of a long-chain synthetic polymer formed by urethane bonding, and the fineness of the polyurethane used may be arbitrarily selected according to the desired stretch force and stretch back property.
  • “Lycra (registered trademark)” manufactured by Toray Operontex Co., Ltd. may be mentioned, and those having chlorine resistance and deodorant functions may be selected.
  • the conductive fibers are preferably used for at least a part of the warp threads.
  • the long-fiber conductive fiber As the usage form of the conductive fiber, it is preferable to use the long-fiber conductive fiber and use it as a long-short composite spun yarn such as a core-sheath composite spun yarn (CY).
  • CY core-sheath composite spun yarn
  • conductive fibers for the back layer, static electricity generated when wearing in winter can be suppressed, and discomfort when wearing can be avoided.
  • the conductive fibers used in the present invention include metal fibers and carbon fibers, but it is preferable to use carbon-containing fibers from the viewpoint of comfort and handleability.
  • “Bertron (registered trademark)” manufactured by KB Seiren Co., Ltd., “Cracabo (registered trademark)” manufactured by Kuraray Industries, Inc., and “Luana (registered trademark)” manufactured by Toray Industries, Inc. can be mentioned.
  • the multilayer structure fiber structure of the present invention has at least a nodule layer in addition to the above-mentioned front surface layer and back surface layer. The details will be further described below.
  • the nodule layer knots the front surface layer and the back surface layer by interlacing and knotting with the warp or weft of the front surface layer and interlacing and knotting with the warp or weft of the back surface layer. It is a layer to do.
  • the knotting threads that make up this nodule layer knot the front and back layers through the nodule layer, and the surface layer becomes a layer that connects the flame-retardant material so as not to expose it, and convection of self-extinguishing gas, which will be described later. It is a layer that contributes to.
  • the thread used for the nodule layer only the warp, only the weft, and both the warp and the weft can be used.
  • the warp threads forming the front surface layer, the warp threads forming the nodule layer, and the warp threads forming the back surface layer are warped and set on a loom, and the weft threads of the surface layer are interlaced
  • one A three-layer structure woven fabric can be woven by interlacing the portion with the warp of the nodule layer and knotting the portion, and when interlacing the weft of the back surface layer with the warp of the nodule layer and knotting a part of the portion.
  • the fiber used for the nodule layer of the present invention is preferably a flame-retardant fiber, and specifically, it is preferably the same composition as the material of the composite spun yarn that can be used for the back surface layer. In particular, it is preferably a fiber composed of modaacrylic short fibers and rayon short fibers.
  • the multilayer structure fiber structure of the present invention has at least the above-mentioned front surface layer, nodule layer, and back surface layer. The details will be further described below.
  • the multi-layered fiber structure of the present invention has a breathability of 5 to 60 cm 3 / (cm 2 ⁇ sec).
  • the air permeability By setting the air permeability to 5 cm 3 / (cm 2 ⁇ sec) or more, preferably 8 cm 3 / (cm 2 ⁇ sec) or more, it is possible to sufficiently convect the self-extinguishing gas emitted from the moda acrylic fiber at the time of combustion. it can.
  • it is 60 cm 3 / (cm 2 ⁇ sec) or less, preferably 30 cm 3 / (cm 2 ⁇ sec) or less, it is possible to suppress the dispersion of the self-extinguishing gas emitted from the modal acrylic fiber at the time of combustion. Can be done.
  • This air permeability can be controlled by the cover factor of the multilayer structure fiber structure described later.
  • the air permeability of the multilayer structure fiber structure is as follows, in accordance with "8.26.1 A method (Frazier type method)" of JIS L1096: 2010 "Fabric test method for woven fabrics and knitted fabrics”. Refers to the value measured and calculated according to the procedure in. (1) Collect one test piece of about 200 mm ⁇ 200 mm from each of five different samples. (2) After attaching the test piece to one end of the cylinder of the Frazier type tester, adjust the suction fan and air hole so that the inclined barometer shows a pressure of 125 Pa with an adjustment resistor, and the vertical atmospheric pressure at that time. Measure the pressure indicated by the meter.
  • the multilayer structure fiber structure of the present invention has a cover factor of 1800 to 2500.
  • the air permeability can be set to 30 cm 3 / (cm 2 ⁇ sec) or less, which is sufficient for convection of the self-extinguishing gas.
  • it when it is 2500 or less, preferably 2300 or less, it can be 8 cm 3 / (cm 2 ⁇ sec) capable of convection of the self-extinguishing gas.
  • the cover factor (CF) of the multilayer structure fiber structure refers to a value calculated as follows. (1) The cover factor of each layer of the front surface layer, the nodule layer, and the back surface layer is calculated by the following formula. If there are layers other than the front surface layer, nodule layer, and back surface layer, the calculation is performed in the same manner.
  • ⁇ CF ⁇ (a ⁇ ⁇ D) + (b ⁇ ⁇ D') ⁇ ⁇ 0.5 here, a: Number of warp threads per inch (25.4 mm) of the woven fabric in the layer (threads / 25.4 mm) b: Number of weft threads per inch (25.4 mm) of the woven fabric in the layer (threads / 25.4 mm) D: Total fineness of warp threads in the layer (dtex) D': Total fineness (dtex) of the weft in the layer. (2) Calculate the total value of the calculated cover factors of each layer.
  • the multilayer structure fiber structure of the present invention has an OI value (oxygen index) measured by "8.5 E method (oxygen index method test) E-2" of JIS L1091: 1999 "Combustibility test method for textile products”. ) Is preferably 26% or more. When the OI value (oxygen index) is 26% or more, even if the multilayer structure fiber structure is ignited, the residual flame time and the residual dust time can be shortened, and the combustion area can be reduced.
  • the thickness of the multilayer structure fiber structure of the present invention is preferably 0.3 mm or more and 0.7 mm or less.
  • the content mass ratio of the modal acrylic short fiber B in the multilayer structure fiber structure is preferably 30 to 70% by mass, and 35 to 60 is preferably mass%.
  • the content mass ratio of the elastic fibers in the multilayer structure fiber structure is 1 to 10% by mass, which is an appropriate elongation recovery property. It is preferable from the point of view.
  • the elongation rate of the multilayer structure fiber structure is 5% or more.
  • the upper limit is preferably 15%. Within the above range, it is possible to impart appropriate stretchability.
  • the multilayer structure fiber structure of the present invention since the multilayer structure fiber structure of the present invention has high flame retardancy, it is not always necessary to apply flame retardant treatment, but in order to further enhance the flame retardant effect.
  • a halogen-based or phosphorus-based flame retardant may be applied to at least a part of the multilayer structure fiber structure, or a fiber in which a halogen-based or phosphorus-based flame retardant is kneaded may be used. Above all, it is preferable to carry out the treatment using a melamine resin which does not easily affect the high visibility.
  • the clothing or work clothes of the present invention is composed of the above-mentioned multi-layered fiber structure.
  • Examples of clothing in the present invention include outer clothing blouson and pants that can be worn casually in outdoor scenes such as bonfire, BBQ, camping, and fireworks.
  • the work clothes of the present invention are excellent in comfort, have self-extinguishing property by constituent fibers even if sparks or flames ignite, and are also excellent in high visibility that facilitates worker recognition during night work. Therefore, it is particularly suitable for work clothes worn by night workers such as protective clothing for work near a fire source and welding work, railway security personnel, and road construction.
  • the present invention will be specifically described based on Examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, if there is no particular description, the measurement is performed based on the above method.
  • Measurement of light resistance (light fastness) of the multilayer structure fiber structure The light fastness is determined by performing a dye fastness test specified in JIS L0842: 2004 "Dyeing fastness test method for ultraviolet carbon arc lamp light”. Passed at 4th grade or higher.
  • the texture is too soft: 1, soft: 2, moderate: 3, hard: 4, too hard: 5.
  • Example 1 A long-short composite spun yarn (40s) which is a CSY in which a spun yarn (40s) made of a cationic dyeable polyester fiber (fineness: 1.45dtex, round cross section) is used as a warp and a polyurethane elastic fiber is covered with a cationic dyeable polyester fiber as a weft. ), Using a normal rapier loom, a surface layer having a weaving structure of 2/1 twill and a weaving density of 100 wefts / 25.4 mm ⁇ 80 wefts / 25.4 mm was formed.
  • Multilayer fiber structure The obtained fiber structure was dyed using a liquid flow dyeing machine to obtain a multilayer structure fiber structure having a cover factor of 2204 and an air permeability of 18 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure.
  • the residual flame time of this multilayer structure fiber structure was 0 seconds and the residual dust time was 4 seconds, which were particularly excellent in flame retardancy.
  • Example 2 The weaving density of the front surface layer and the back surface layer is 100 warp / 25.4 mm ⁇ 65 wefts / 25.4 mm, and the weaving density of the knot layer is 20 warp / 25.4 mm ⁇ 0 weft / 25.4 mm.
  • a multilayer structure fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 2041 and the air permeability was 30 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 0 seconds and the residual dust time was 4 seconds, which were particularly excellent in flame retardancy.
  • Example 3 The weaving density of the front surface layer and the back surface layer is 100 warp / 25.4 mm ⁇ 56 wefts / 25.4 mm, and the weaving density of the knot layer is 20 warp / 25.4 mm ⁇ 0 weft / 25.4 mm.
  • a multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 1859 and the air permeability was 56 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 0 seconds, and it was excellent in flame retardancy.
  • Example 1 The weaving density of the front surface layer and the back surface layer is 99 warp / 25.4 mm ⁇ 59 wefts / 25.4 mm, and the weaving density of the knot layer is 15 warp / 25.4 mm ⁇ 0 weft threads / 25.4 mm.
  • a multilayer structure fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 1870 and the air permeability was 65 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 10.5 seconds, and the residual dust time was 6.3 seconds, which were below the standard, and the flame retardancy was not sufficient.
  • Example 2 The weaving density of the front surface layer and the back surface layer is 116 warp / 25.4 mm ⁇ 95 weft / 25.4 mm, and the weaving density of the knot layer is 35 warp ⁇ 0 weft / 25.4 mm.
  • a multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor was 2582 and the air permeability was 7 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer fiber structure was 6.8 seconds, which was not sufficient for flame retardancy.
  • Example 3 The weaving density of the front surface layer and the back surface layer is 80 warp / 25.4 mm ⁇ 50 weft / 25.4 mm, and the weaving density of the knot layer is 10 warp ⁇ 0 weft / 25.4 mm.
  • a multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor was 1526 and the air permeability was 52 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 6 seconds, and the residual dust time was 8 seconds, and the flame retardancy was not good.
  • Example 4 The weaving density of the front surface layer and the back surface layer is 120 warp / 25.4 mm ⁇ 95 weft / 25.4 mm, and the weaving density of the knot layer is 35 warp / 25.4 mm ⁇ 0 weft / 25.4 mm.
  • a multilayer fiber structure was obtained in the same manner as in Example 1 except that the coverage factor of the fiber structure was 2628 and the air permeability was 4 cm 3 / (cm 2 ⁇ sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 7.5 seconds, and the residual dust time was 5 seconds, and the flame retardancy was not good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention provides: a multilayered fiber structure which has excellent comfort and visibility, while having high flame retardancy; and a clothing item and a work wear, each of which uses this multilayered fiber structure. This multilayered fiber structure has at least a front surface layer, a node layer and a back surface layer; the front surface layer is a fiber structure layer that is composed of one or more kinds of fibers A selected from among polyester fibers and acrylic fibers; the back surface layer is a fiber structure layer that is composed of a composite spun yarn obtained by blend spinning modacrylic short fibers B; the mass content of the modacrylic short fibers B in this multilayered fiber structure is from 30 to 70% by mass; the air permeability of this multilayered fiber structure is from 5 to 60 cm3/(cm2∙sec); and the cover factor of this multilayered fiber structure is from 1,800 to 2,500.

Description

多層構造繊維構造体、衣料品および作業服Multilayer fiber structure, clothing and workwear
 本発明は、難燃性を有する多層構造繊維構造体、衣料品および作業服に関する。 The present invention relates to a flame-retardant multi-layered fiber structure, clothing and work clothes.
 発電所や変電所あるいは化学プラントなどといった火災に晒される可能性のある作業場所や、建築物あるいは道路や鉄道の工事現場などにおいて、作業者は難燃布帛が用いられた作業服を着用している。この作業服は、当然、伸縮性や通気性などの快適性が優れていることが望ましい。 Workers wear work clothes made of flame-retardant fabrics at work places that may be exposed to fire, such as power plants, substations, or chemical plants, or at construction sites of buildings, roads, and railways. There is. Naturally, it is desirable that this work clothes have excellent comfort such as elasticity and breathability.
 また、上記の特性に加えて、夜間や暗所での作業をより安全にするため、第三者に対し存在を視認させることができるように、上記の作業場所で使用される作業服の視認性を高めることも同様に望まれている。 In addition to the above characteristics, in order to make work at night or in a dark place safer, the visibility of work clothes used in the above work place can be visually recognized by a third party. It is also desired to enhance sex.
 これまでに、特許文献1や2に開示されるような、高視認性を有する多層構造の織物が提案されている。一方、特許文献3や4に開示されるような、アラミド繊維を用いた難燃素材も提案されている。 So far, woven fabrics having a multi-layer structure with high visibility, as disclosed in Patent Documents 1 and 2, have been proposed. On the other hand, flame-retardant materials using aramid fibers as disclosed in Patent Documents 3 and 4 have also been proposed.
特開2014-185413号公報Japanese Unexamined Patent Publication No. 2014-185413 国際公開第2016/152814号International Publication No. 2016/152814 特開2008-101294号公報Japanese Unexamined Patent Publication No. 2008-101294 特開2014-208930号公報Japanese Unexamined Patent Publication No. 2014-208930
 しかしながら、特許文献1に開示された技術においては、裏組織に主として用いられるセルロース系繊維は難燃性を有さず、火災に晒される可能性のある作業場所で着用される作業着として使用することは困難である。また、特許文献2に開示された技術においては、基本的に表組織と裏組織の2層からなる2重織物で構成されているためか、十分な難燃性が得られなかった。 However, in the technique disclosed in Patent Document 1, the cellulosic fiber mainly used for the back structure does not have flame retardancy and is used as work clothes worn in a work place where there is a possibility of being exposed to fire. That is difficult. Further, in the technique disclosed in Patent Document 2, sufficient flame retardancy could not be obtained probably because it is basically composed of a double woven fabric having two layers of a front structure and a back structure.
 一方、特許文献3や4に開示された素材は、基本的に単層で構成されているため、一つの布帛上で難燃性と高視認性とを両立させることが非常に困難である。 On the other hand, since the materials disclosed in Patent Documents 3 and 4 are basically composed of a single layer, it is very difficult to achieve both flame retardancy and high visibility on one cloth.
 そこで本発明は、上記の事情に鑑みてなされたものであって、その目的は、高い難燃性を有しながらも快適性、視認性にも優れた繊維構造体、および、これを用いてなる衣料品および作業着を提供することにある。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to use a fiber structure having high flame retardancy and excellent comfort and visibility, and using the fiber structure. To provide clothing and work clothes.
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、繊維構造体の通気度と、自己消火性ガスを発するモダアクリル短繊維の繊維構造体全体に対する質量割合と、を特定の範囲とすることで、繊維構造体が着火した際に発生する自己消火性ガスを適切な量にすることができることを見出し、難燃性を向上できるという知見を得た。さらに、繊維構造体の構造を3層構造とすることで、視認性も容易に向上できることも判明した。 As a result of diligent studies to achieve the above object, the present inventors have set the air permeability of the fiber structure and the mass ratio of the modaacrylic short fiber that emits a self-extinguishing gas to the entire fiber structure within a specific range. By doing so, it was found that the amount of self-extinguishing gas generated when the fiber structure was ignited could be adjusted to an appropriate amount, and it was found that the flame retardancy could be improved. Furthermore, it was also found that the visibility can be easily improved by making the structure of the fiber structure a three-layer structure.
 本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.
 本発明の多層構造繊維構造体は、少なくとも表面層と結節層と裏面層とを有する多層構造繊維構造体であって、前記表面層はポリエステル系繊維およびアクリル系繊維から選択される一種以上の繊維Aからなる繊維組織層であり、前記裏面層はモダアクリル短繊維Bを混紡してなる複合紡績糸からなる繊維組織層であり、前記多層構造繊維構造体中のモダアクリル短繊維Bの含有質量率が30~70質量%であり、前記多層構造繊維構造体の通気度が5~60cm/(cm・sec)であり、カバーファクターが1800~2500である。 The multi-layered fiber structure of the present invention is a multi-layered fiber structure having at least a surface layer, a knot layer and a back surface layer, and the surface layer is one or more fibers selected from polyester fibers and acrylic fibers. It is a fiber structure layer made of A, and the back surface layer is a fiber structure layer made of a composite spun yarn made by blending moda acrylic short fibers B, and the mass ratio of the moda acrylic short fibers B in the multilayer structure fiber structure is high. It is 30 to 70% by mass, the air permeability of the multilayer structure fiber structure is 5 to 60 cm 3 / (cm 2 · sec), and the cover factor is 1800 to 2500.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記繊維Aがポリエステル系繊維である。 本発明の多層構造繊維構造体の好ましい態様によれば、前記のポリエステル系繊維が、カチオン可染ポリエステル系繊維である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the fiber A is a polyester fiber. According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the polyester fiber is a cationic dyeable polyester fiber.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記の多層構造繊維構造体中のカチオン可染ポリエステル系繊維の含有質量率が30質量%以上である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the content mass ratio of the cationic dyeable polyester fiber in the multilayer structure fiber structure is 30% by mass or more.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記前記複合紡績糸がモダアクリル短繊維B以外の炭化繊維Cを含む。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the composite spun yarn contains carbonized fibers C other than modal acrylic short fibers B.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記複合紡績糸中のモダアクリル短繊維Bの含有質量率が60質量%以上である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the content mass ratio of the modal acrylic short fiber B in the composite spun yarn is 60% by mass or more.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記多層構造繊維構造体が、さらに弾性繊維を含んでなり、前記の多層構造繊維構造体中の弾性繊維の含有質量率が1~10質量%である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the multilayer structure fiber structure further contains elastic fibers, and the content mass ratio of the elastic fibers in the multilayer structure fiber structure is 1 to 10. It is mass%.
 本発明の多層構造繊維構造体の好ましい態様によれば、前記多層構造繊維構造体の伸び率が5%以上である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, the elongation rate of the multilayer structure fiber structure is 5% or more.
 本発明の多層構造繊維構造体の好ましい態様によれば、JIS L1091:1999「繊維製品の燃焼性試験方法」の「8.5 E法(酸素指数法試験) E-2号」で測定されるOI値(酸素指数)が26%以上である。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, it is measured by "8.5 E method (oxygen index method test) E-2" of JIS L1091: 1999 "Fiber product flammability test method". The OI value (oxygen index) is 26% or more.
 本発明の多層構造繊維構造体の好ましい態様によれば、表面層の少なくとも一部が蛍光色に着色されてなる。 According to a preferred embodiment of the multilayer structure fiber structure of the present invention, at least a part of the surface layer is colored with a fluorescent color.
 また、本発明の衣料品は、前記の多層構造繊維構造体で構成されてなる。 Further, the clothing of the present invention is composed of the above-mentioned multilayer structure fiber structure.
 さらに、本発明の作業服は、前記の多層構造繊維構造体で構成されてなる。 Further, the work clothes of the present invention are made of the above-mentioned multilayer structure fiber structure.
 本発明によれば、高い難燃性(残炎時間、残塵時間、燃焼面積)を有しながらも快適性、視認性にも優れた多層構造繊維構造体が得られる。特に、本発明の多層構造繊維構造体は、前記の特徴から、火災等に晒される場所であっても、夜間や暗所での作業においても安全に作業することができるため、作業着として好適に用いることができる。 According to the present invention, a multilayer structure fiber structure having high flame retardancy (residual flame time, residual dust time, combustion area) and excellent comfort and visibility can be obtained. In particular, the multilayer structure fiber structure of the present invention is suitable as work clothes because it can work safely even in a place exposed to fire or the like, at night or in a dark place due to the above-mentioned characteristics. Can be used for.
 本発明の多層構造繊維構造体は、少なくとも表面層と結節層と裏面層とを有する多層構造繊維構造体であって、前記の表面層はポリエステル系繊維およびアクリル系繊維から選択される一種以上の繊維Aからなる繊維組織層であり、前記の裏面層はモダアクリル短繊維Bを混紡してなる複合紡績糸からなる繊維組織層であり、前記の多層構造繊維構造体中の難燃短繊維Bの含有質量率が30~70質量%であり、前記の多層構造繊維構造体の通気度が5~60cm/(cm・sec)であり、カバーファクターが1800~2500である。 The multilayer structure fiber structure of the present invention is a multilayer structure fiber structure having at least a surface layer, a knot layer, and a back surface layer, and the surface layer is one or more selected from polyester fibers and acrylic fibers. It is a fiber structure layer made of fibers A, and the back surface layer is a fiber structure layer made of a composite spun yarn made by blending moda acrylic short fibers B, and is a flame-retardant short fiber B in the multilayer structure fiber structure. The content mass ratio is 30 to 70% by mass, the air permeability of the multilayer structure fiber structure is 5 to 60 cm 3 / (cm 2 · sec), and the cover factor is 1800 to 2500.
 以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 The components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist of the present invention is not exceeded.
 [表面層]
 本発明の多層構造繊維構造体は、少なくとも表面層を有する。以下に、この詳細についてさらに説明する。
[Surface layer]
The multilayer fiber structure of the present invention has at least a surface layer. The details will be further described below.
 本発明に係る表面層は、ポリエステル系繊維およびアクリル系繊維から選択される一種以上の繊維Aからなる繊維組織層である。この表面層が衣料品、作業着として用いた際の最外層となり、特に、夜間や暗所における視認性に寄与する層となる。 The surface layer according to the present invention is a fiber structure layer composed of one or more fibers A selected from polyester fibers and acrylic fibers. This surface layer becomes the outermost layer when used as clothing or work clothes, and in particular, becomes a layer that contributes to visibility at night or in a dark place.
 本発明で用いられる繊維Aとしては、分散染料で染色可能なポリエステル系繊維、カチオン染料で染色可能なアクリル系繊維、カチオン可染ポリエステル系繊維、などが挙げられる。中でも、ポリエステル系繊維が好ましく、カチオン可染ポリエステル系繊維であることがより好ましい。このようにすることで、多層構造繊維構造体の風合いと堅牢度とを向上させることができる。 Examples of the fiber A used in the present invention include polyester fibers that can be dyed with a disperse dye, acrylic fibers that can be dyed with a cationic dye, and cationic dyeable polyester fibers. Of these, polyester fibers are preferable, and cationic dyeable polyester fibers are more preferable. By doing so, the texture and fastness of the multi-layered fiber structure can be improved.
 本発明において、カチオン可染ポリエステル系繊維とは、カチオン染料で染色できるよう改質されたポリエステル系繊維であり、カチオン染料の染着座席を共重合させたポリエステル系繊維のことである。代表的なものとしては東レ株式会社製カチオン可染繊維「LOC」、「LOCII」および「ポリロフト(登録商標)」などが挙げられる。 In the present invention, the cationic dyeable polyester fiber is a polyester fiber modified so that it can be dyed with a cationic dye, and is a polyester fiber obtained by copolymerizing a dyed seat of the cationic dye. Typical examples include cationic dyeable fibers "LOC", "LOCII" and "Polyloft (registered trademark)" manufactured by Toray Industries, Inc.
 本発明において、多層構造繊維構造体中のカチオン可染ポリエステル系繊維の含有質量率が30質量%以上であることがより好ましい。この含有率を30質量%以上、さらに好ましくは、45質量%以上、60質量%以下とすることで、高視認性と耐光堅牢度向上させることができる。また、JIS T8127:2015の色座標内の色度が得られる点からも好ましい。 In the present invention, it is more preferable that the content mass ratio of the cationic dyeable polyester fiber in the multilayer structure fiber structure is 30% by mass or more. By setting this content to 30% by mass or more, more preferably 45% by mass or more and 60% by mass or less, high visibility and light fastness can be improved. It is also preferable from the viewpoint that the chromaticity within the color coordinates of JIS T8127: 2015 can be obtained.
 本発明に係る表面層において、表面層の少なくとも一部が蛍光色に着色されてなることが好ましい。このようにすることで、作業着として使用する際の視認性を向上させることができる。 In the surface layer according to the present invention, it is preferable that at least a part of the surface layer is colored in a fluorescent color. By doing so, the visibility when used as work clothes can be improved.
 本発明でいう「蛍光色に着色されてなる」状態とは、表面層が着色された結果、表面層の色度座標(x,y)、および、輝度率βが、ISO 20471:2013「高視認性衣服-試験方法と要求事項」で規定された、蛍光イエロー、蛍光オレンジレッド、蛍光レッドのいずれかの範囲内、あるいは、JIS T8127:2015「高視認性安全服」で規定された、蛍光イエロー、蛍光オレンジレッド、蛍光レッドのいずれかの範囲内、あるいは、JSAA2001:2017「一般利用者向け高視認性安全服規格」に規定された、蛍光グリーン、蛍光イエローグリーン、蛍光イエローオレンジ、蛍光オレンジ、蛍光ピンク、蛍光ブルー、蛍光バイオレットのいずれかの範囲内にあることを指す。例えば、ISO 20471:2013の蛍光イエローに着色されてなる状態とは、ISO 20471:2013に規定されている評価試験を行い、色度座標(x、y):(0.387、0.610)、(0.356、0.494)、(0.398、0.452)、(0.460、0.540)の4点で囲まれた範囲内に色度の測定結果があり、かつ、輝度率βの測定結果が0.70を上回る状態にあることを言う。 The state of being "colored in fluorescent color" in the present invention means that as a result of coloring the surface layer, the chromaticity coordinates (x, y) of the surface layer and the brightness rate β are ISO 20471: 2013 "high". Visibility Clothes-Fluorescent within the range of Fluorescent Yellow, Fluorescent Orange Red, Fluorescent Red specified in "Test Methods and Requirements" or Fluorescent specified in JIS T8127: 2015 "High Visibility Safety Clothing" Fluorescent green, fluorescent yellow green, fluorescent yellow orange, fluorescent orange within the range of yellow, fluorescent orange red, fluorescent red, or specified in JSAA 2001: 2017 "High visibility safety clothing standard for general users" , Fluorescent pink, fluorescent blue, or fluorescent violet. For example, the state of being colored in fluorescent yellow of ISO 20471: 2013 is determined by performing an evaluation test specified in ISO 20471: 2013 and performing chromaticity coordinates (x, y) :( 0.387, 0.610). , (0.356, 0.494), (0.398, 0.452), (0.460, 0.540), the chromaticity measurement result is within the range surrounded by four points, and It means that the measurement result of the chromaticity rate β is in a state of exceeding 0.70.
 本発明の表面層に用いるポリエステル系繊維等の繊維Aは、繊度が0.8~6.0dtexであることが好ましい。ポリエステル系繊維等の繊維Aの繊度を0.8dtex以上、より好ましくは1.5dtex以上とすることで、あるいは、ポリエステル系繊維等の繊維Aの繊度を6.0dtex以下、より好ましくは3.0dtex以下とすることで、風合い、発色性に優れた多層構造繊維構造体とすることができる。 The fiber A such as polyester fiber used for the surface layer of the present invention preferably has a fineness of 0.8 to 6.0 dtex. The fineness of fiber A such as polyester fiber is 0.8 dtex or more, more preferably 1.5 dtex or more, or the fineness of fiber A such as polyester fiber is 6.0 dtex or less, more preferably 3.0 dtex or more. By doing the following, it is possible to obtain a multi-layered fiber structure having excellent texture and color development.
 また、本発明の表面層に用いるポリエステル系繊維等の繊維Aは、その繊維長が15mm~150mmであることが好ましい。ポリエステル系繊維等の繊維Aの繊維長を15mm以上、より好ましくは25mm以上とすることで、あるいは、150mm以下、より好ましくは76mm以下とすることで、風合い、発色性に優れた多層構造繊維構造体とすることができる。 Further, the fiber A such as the polyester fiber used for the surface layer of the present invention preferably has a fiber length of 15 mm to 150 mm. A multi-layered fiber structure with excellent texture and color development by setting the fiber length of fiber A such as polyester fiber to 15 mm or more, more preferably 25 mm or more, or 150 mm or less, more preferably 76 mm or less. Can be a body.
 さらに、本発明の表面層に用いるポリエステル系繊維等の繊維Aは、丸断面繊維を用いることが好ましい。異形断面糸を用いた場合に比べ、丸断面繊維を用いた場合には表面層において影ができたり、光が乱反射したりすることを抑制し、よりビビットな色味の多層構造繊維構造体とすることができる。 Further, it is preferable to use a round cross-section fiber as the fiber A such as the polyester fiber used for the surface layer of the present invention. Compared with the case of using irregular cross-section yarn, when round cross-section fiber is used, shadow formation and diffuse reflection of light are suppressed in the surface layer, resulting in a multi-layered fiber structure with a more vivid color. can do.
 加えて、本発明の表面層に、緯糸の少なくとも一部にポリウレタン弾性繊維などの弾性繊維を用いることも好ましい。このようにすることで、多層構造繊維構造体にストレッチ性を付与することができる。上記ポリウレタン弾性繊維とはウレタン結合による長鎖状合成高分子からなる繊維を指し、用いるポリウレタン弾性繊維の繊度は所望のストレッチ力やストレッチバック性によって任意に選択すれば良い。例えば、東レ・オペロンテックス株式会社製の「Lycra(登録商標)」が挙げられ、耐塩素性、消臭性機能があるものを選択しても構わない。 In addition, it is also preferable to use elastic fibers such as polyurethane elastic fibers for at least a part of the weft in the surface layer of the present invention. By doing so, it is possible to impart stretchability to the multilayer structure fiber structure. The polyurethane elastic fiber refers to a fiber made of a long-chain synthetic polymer formed by urethane bonding, and the fineness of the polyurethane elastic fiber used may be arbitrarily selected according to a desired stretch force and stretchback property. For example, "Lycra (registered trademark)" manufactured by Toray Operontex Co., Ltd. may be mentioned, and those having chlorine resistance and deodorant functions may be selected.
 [裏面層]
 本発明の多層構造繊維構造体は、少なくとも前記の表面層に加えて裏面層を有する。以下に、この詳細についてさらに説明する。
[Back layer]
The multilayer structure fiber structure of the present invention has at least a back surface layer in addition to the above-mentioned front surface layer. The details will be further described below.
 本発明に係る裏面層は、モダアクリル短繊維Bを混紡してなる複合紡績糸からなる繊維組織層である。この裏面層が作業着等衣料として用いた際の最内層(最も人体側の層)となる。 The back surface layer according to the present invention is a fiber structure layer made of a composite spun yarn obtained by blending moda acrylic short fibers B. This back surface layer is the innermost layer (the layer on the human body side) when used as clothing such as work clothes.
 本発明で用いられる複合紡績糸は、少なくともモダアクリル短繊維Bを混紡してなる。モダアクリル繊維は自己消火性ガス発生効果および後述する炭化繊維としての効果に優れる点から好ましい。 The composite spun yarn used in the present invention is made by blending at least modal acrylic short fibers B. Moda acrylic fibers are preferable because they are excellent in self-extinguishing gas generation effect and effect as carbonized fibers described later.
 上記複合紡績糸は、さらにモダアクリル短繊維B以外の炭化繊維Cを含むことが好ましい。 The composite spun yarn preferably further contains carbonized fibers C other than modal acrylic short fibers B.
 本発明において、炭化繊維とは燃焼時に溶融せず、炭化する繊維である。上記モダアクリル繊維も炭化繊維に該当するが、それ以外の炭化繊維(炭化繊維C)を混紡することが好ましい。炭化繊維Cとしては、炭素繊維やレーヨン繊維、難燃レーヨン繊維、コットン、麻などに代表されるセルロース系繊維が挙げられる。なかでもレーヨン繊維、難燃レーヨン繊維等のセルロース繊維といった繊維が混合されることによって、着用時の吸湿性、肌触りなどを向上させることができる。 In the present invention, the carbonized fiber is a fiber that does not melt at the time of combustion but carbonizes. The above-mentioned moda acrylic fiber also falls under the category of carbonized fiber, but it is preferable to blend other carbonized fiber (carbonized fiber C). Examples of the carbonized fiber C include cellulosic fibers typified by carbon fiber, rayon fiber, flame-retardant rayon fiber, cotton, and hemp. Among them, by mixing fibers such as rayon fiber and cellulose fiber such as flame-retardant rayon fiber, it is possible to improve hygroscopicity and touch when worn.
 なお、本発明で用いられる複合紡績糸において、前記炭化繊維Cを混紡する場合、その混率割合は複合紡績糸中5質量%~40質量%であることが、着用時の吸湿性、肌触りを向上させるため、好ましい。 In the composite spun yarn used in the present invention, when the carbonized fiber C is blended, the mixing ratio is 5% by mass to 40% by mass in the composite spun yarn, which improves hygroscopicity and touch when worn. It is preferable because it causes.
 本発明で用いられるモダクリル短繊維は自己消火性ガスを十分に発生させる観点から、複合紡績糸中60質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The modacrylic short fiber used in the present invention is preferably 60% by mass or more, more preferably 70% by mass or more in the composite spun yarn from the viewpoint of sufficiently generating a self-extinguishing gas.
 また、炭化繊維は、布帛が着火した際、火源から布帛へ火が広がっていくが、火源近くの生地が火に晒されたあとに炭化する、炭化繊維があることで燃えるものがなくなり、火源から火が広がりにくくなくなる。したがって、モダクリル短繊維Bと炭化繊維Cを含めた炭化繊維の複合紡績糸中の含有質量率としては、65質量%以上であることが好ましく、上限は特になく、100%でも問題はない。 In addition, when the fabric is ignited, the fire spreads from the fire source to the fabric, but the carbonized fiber carbonizes after the fabric near the fire source is exposed to the fire. , It becomes difficult for the fire to spread from the fire source. Therefore, the mass content of the carbonized fibers including the modacrylic short fibers B and the carbonized fibers C in the composite spun yarn is preferably 65% by mass or more, and there is no particular upper limit, and 100% is not a problem.
 また、炭化繊維は1種類だけでなく、炭化する温度が異なる炭化繊維を2種類以上であることがより好ましい。炭化する温度が異なる炭化繊維を2種類以上混ぜることで、炭化するスピードが2段階になり、自己消火性ガスが生地に循環させる時間を稼ぐことができるからである。 Further, it is more preferable that not only one type of carbonized fiber but also two or more types of carbonized fiber having different carbonization temperatures are used. This is because by mixing two or more types of carbonized fibers having different carbonization temperatures, the carbonization speed becomes two stages, and it is possible to gain time for the self-extinguishing gas to circulate in the dough.
 加えて、本発明の裏面層に上記以外のその他繊維Dを含有させることができる。その他繊維Dとしては、ポリウレタン弾性繊維などの弾性繊維、導電性繊維などが挙げられる。これらその他繊維Dは、裏面層を構成する複合紡績糸の中に含有せしめることができる。含有質量率としては、裏面層中、35質量%以下であることが好ましく、10質量%以下であることがより好ましい。またその他繊維Dは任意成分であるから、下限としては、0質量%であってもよく、所望の機能が付与できる量であれよいが、具体的には2質量%以上であることが好ましい。 In addition, other fibers D other than the above can be contained in the back surface layer of the present invention. Examples of the other fiber D include elastic fibers such as polyurethane elastic fibers and conductive fibers. These other fibers D can be contained in the composite spun yarn constituting the back surface layer. The content mass ratio is preferably 35% by mass or less, and more preferably 10% by mass or less in the back surface layer. Further, since the other fiber D is an optional component, the lower limit may be 0% by mass or an amount capable of imparting a desired function, but specifically, it is preferably 2% by mass or more.
 ポリウレタン弾性繊維等の弾性繊維は裏面層の緯糸の少なくとも一部に用いることが好ましい。 Elastic fibers such as polyurethane elastic fibers are preferably used for at least a part of the weft of the back surface layer.
 また、ポリウレタン弾性繊維等の弾性繊維の使用形態として、長繊維の弾性繊維を用い、上記モダクリル短繊維等の繊維とコアスパンデックスヤーン(CSY)などの長短複合紡績糸として用いることが好ましい。 Further, as the usage form of elastic fibers such as polyurethane elastic fibers, it is preferable to use long elastic fibers as the above-mentioned fibers such as modacryl short fibers and long / short composite spun yarns such as core spandex yarn (CSY).
 弾性繊維を用いることで、多層構造繊維構造体にストレッチ性を付与することができる。 By using elastic fibers, it is possible to impart stretchability to the multi-layered fiber structure.
 上記ポリウレタン弾性繊維とは表面層同様、ウレタン結合による長鎖状合成高分子からなる繊維を指し、用いるポリウレタンの繊度は所望のストレッチ力やストレッチバック性によって任意に選択すれば良い。例えば、東レ・オペロンテックス株式会社製の「Lycra(登録商標)」が挙げられ、耐塩素性、消臭性機能があるものを選択しても構わない。 Like the surface layer, the polyurethane elastic fiber refers to a fiber made of a long-chain synthetic polymer formed by urethane bonding, and the fineness of the polyurethane used may be arbitrarily selected according to the desired stretch force and stretch back property. For example, "Lycra (registered trademark)" manufactured by Toray Operontex Co., Ltd. may be mentioned, and those having chlorine resistance and deodorant functions may be selected.
 また、上記導電性繊維は、経糸の少なくとも一部に用いることが好ましい。 Further, the conductive fibers are preferably used for at least a part of the warp threads.
 導電性繊維の使用形態として、長繊維の導電性繊維を用い、芯鞘複合紡績糸(CY)などの長短複合紡績糸として用いることが好ましい。 As the usage form of the conductive fiber, it is preferable to use the long-fiber conductive fiber and use it as a long-short composite spun yarn such as a core-sheath composite spun yarn (CY).
 裏面層に導電性繊維を用いることで、冬場の着用時に発生する静電気を抑制することができ、着用時の不快さを避けることができる。本発明に用いられる導電性繊維としては、金属繊維や炭素繊維が挙げられるが、着心地性や取り扱い性の観点からカーボン含有繊維を用いることが好適である。例えば、KBセーレン株式会社製の「ベルトロン(登録商標)」、株式会社クラレ製の「クラカーボ(登録商標)」、東レ株式会社製の「ルアナ(登録商標)」などが挙げられる。 By using conductive fibers for the back layer, static electricity generated when wearing in winter can be suppressed, and discomfort when wearing can be avoided. Examples of the conductive fibers used in the present invention include metal fibers and carbon fibers, but it is preferable to use carbon-containing fibers from the viewpoint of comfort and handleability. For example, "Bertron (registered trademark)" manufactured by KB Seiren Co., Ltd., "Cracabo (registered trademark)" manufactured by Kuraray Industries, Inc., and "Luana (registered trademark)" manufactured by Toray Industries, Inc. can be mentioned.
 [結節層]
 本発明の多層構造繊維構造体は、少なくとも前記の表面層、裏面層に加えて結節層を有する。以下に、この詳細についてさらに説明する。
[Nodule layer]
The multilayer structure fiber structure of the present invention has at least a nodule layer in addition to the above-mentioned front surface layer and back surface layer. The details will be further described below.
 本発明に係る結節層は、表面層の経糸または緯糸と交錯して絡んで結節し、裏面層の経糸または緯糸と交錯して絡んで結節することにより、前記の表面層と裏面層とを結節する層である。この結節層を構成する結節糸が結節層を介して、表裏お互いの層を結節し、表面層には難燃素材を露出させないように接続する層となるとともに、後述する自己消火性ガスの対流に寄与する層となっている。 The nodule layer according to the present invention knots the front surface layer and the back surface layer by interlacing and knotting with the warp or weft of the front surface layer and interlacing and knotting with the warp or weft of the back surface layer. It is a layer to do. The knotting threads that make up this nodule layer knot the front and back layers through the nodule layer, and the surface layer becomes a layer that connects the flame-retardant material so as not to expose it, and convection of self-extinguishing gas, which will be described later. It is a layer that contributes to.
 結節層に用いる糸として、経糸のみ、緯糸のみ、経糸および緯糸の両方で用いることができる。例えば経糸のみを用いる場合、表面層を構成する経糸、結節層を構成する経糸、裏面層を構成する経糸をそれぞれ、整経して、織機にセットし、表面層の緯糸を交錯させる際、一部を結節層の経糸とも交錯させて結節し、裏面層の緯糸を交錯させる際、一部を結節層の経糸とも交錯させて結節させることにより、3層構造織物を製織することができる。 As the thread used for the nodule layer, only the warp, only the weft, and both the warp and the weft can be used. For example, when only the warp threads are used, when the warp threads forming the front surface layer, the warp threads forming the nodule layer, and the warp threads forming the back surface layer are warped and set on a loom, and the weft threads of the surface layer are interlaced, one A three-layer structure woven fabric can be woven by interlacing the portion with the warp of the nodule layer and knotting the portion, and when interlacing the weft of the back surface layer with the warp of the nodule layer and knotting a part of the portion.
 本発明の結節層に用いられる繊維としては、難燃繊維であることが好ましく、具体的には、裏面層に用いることができる複合紡績糸の素材と同じ構成であることが好ましい。特にモダアクリル短繊維とレーヨン短繊維からなる繊維であることが好ましい。 The fiber used for the nodule layer of the present invention is preferably a flame-retardant fiber, and specifically, it is preferably the same composition as the material of the composite spun yarn that can be used for the back surface layer. In particular, it is preferably a fiber composed of modaacrylic short fibers and rayon short fibers.
 [多層構造繊維積層体]
 本発明の多層構造繊維構造体は、少なくとも前記の表面層と結節層と裏面層とを有する。以下に、この詳細についてさらに説明する。
[Multilayer fiber laminate]
The multilayer structure fiber structure of the present invention has at least the above-mentioned front surface layer, nodule layer, and back surface layer. The details will be further described below.
 本発明の多層構造繊維構造体は、その通気度が5~60cm/(cm・sec)である。通気度を5cm/(cm・sec)以上、好ましくは、8cm/(cm・sec)以上であることによって、モダアクリル繊維から燃焼時に発せられる自己消火性ガスを十分に対流させることができる。一方、60cm/(cm・sec)以下、好ましくは、30cm/(cm・sec)以下であることによって、モダアクリル繊維から燃焼時に発せられる自己消火性ガスが分散させるのを抑制させることができる。この通気度は、後述する多層構造繊維構造体のカバーファクターによって制御することができる。 The multi-layered fiber structure of the present invention has a breathability of 5 to 60 cm 3 / (cm 2 · sec). By setting the air permeability to 5 cm 3 / (cm 2 · sec) or more, preferably 8 cm 3 / (cm 2 · sec) or more, it is possible to sufficiently convect the self-extinguishing gas emitted from the moda acrylic fiber at the time of combustion. it can. On the other hand, when it is 60 cm 3 / (cm 2 · sec) or less, preferably 30 cm 3 / (cm 2 · sec) or less, it is possible to suppress the dispersion of the self-extinguishing gas emitted from the modal acrylic fiber at the time of combustion. Can be done. This air permeability can be controlled by the cover factor of the multilayer structure fiber structure described later.
 なお、本発明において、多層構造繊維構造体の通気度は、JIS L1096:2010「織物及び編物の生地試験方法」の「8.26.1 A法(フラジール形法)」に準拠して、以下の手順で測定し、算出される値を指す。
(1)試料の異なる5か所から試験片約200mm×200mmをそれぞれ1枚採取する。
(2)フラジール形試験機の円筒の一端に試験片を取り付けた後、加減抵抗器によって傾斜型気圧計が125Paの圧力を示すように吸込みファンおよび空気孔を調整し、そのときの垂直型気圧計の示す圧力を測る。
(3)測定した圧力と使用した空気孔の種類とから、試験機に付属の換算表によって試験片を通過する空気量(cm/(cm・sec))を求める。
(4)5回の試験結果の平均値を求め、小数点以下1桁に丸める。
In the present invention, the air permeability of the multilayer structure fiber structure is as follows, in accordance with "8.26.1 A method (Frazier type method)" of JIS L1096: 2010 "Fabric test method for woven fabrics and knitted fabrics". Refers to the value measured and calculated according to the procedure in.
(1) Collect one test piece of about 200 mm × 200 mm from each of five different samples.
(2) After attaching the test piece to one end of the cylinder of the Frazier type tester, adjust the suction fan and air hole so that the inclined barometer shows a pressure of 125 Pa with an adjustment resistor, and the vertical atmospheric pressure at that time. Measure the pressure indicated by the meter.
(3) From the measured pressure and the type of air holes used, determine the amount of air passing through the test piece (cm 3 / (cm 2 · sec)) from the conversion table attached to the testing machine.
(4) Obtain the average value of the results of five tests and round to one digit after the decimal point.
 本発明の多層構造繊維構造体は、そのカバーファクターが1800~2500である。カバーファクターを1800以上、好ましくは2000以上とすることによって、自己消火性ガスを対流させるのに十分な通気度30cm/(cm・sec)以下とすることができる。一方、2500以下、好ましくは、2300以下であることによって、自己消火性ガスを対流させることができる8cm/(cm・sec)とすることができる。 The multilayer structure fiber structure of the present invention has a cover factor of 1800 to 2500. By setting the cover factor to 1800 or more, preferably 2000 or more, the air permeability can be set to 30 cm 3 / (cm 2 · sec) or less, which is sufficient for convection of the self-extinguishing gas. On the other hand, when it is 2500 or less, preferably 2300 or less, it can be 8 cm 3 / (cm 2 · sec) capable of convection of the self-extinguishing gas.
 なお、本発明において、多層構造繊維構造体のカバーファクター(CF)は、以下のように算出される値のことをいう。
(1)表面層、結節層、裏面層の各層のカバーファクターを以下の式で算出する。表面層、結節層、裏面層以外の層があれば、同様に算出する。
・CF={(a×√D)+(b×√D’)}×0.5
ここで、
a: 層内における織物の1インチ(25.4mm)あたりの経糸本数(本/25.4mm)
b: 層内における織物の1インチ(25.4mm)あたりの緯糸本数(本/25.4mm)
D: 層内における経糸のトータル繊度(dtex)
D’: 層内における緯糸のトータル繊度(dtex)。
(2)算出した各層のカバーファクターの合計値を算出する。
In the present invention, the cover factor (CF) of the multilayer structure fiber structure refers to a value calculated as follows.
(1) The cover factor of each layer of the front surface layer, the nodule layer, and the back surface layer is calculated by the following formula. If there are layers other than the front surface layer, nodule layer, and back surface layer, the calculation is performed in the same manner.
・ CF = {(a × √D) + (b × √D')} × 0.5
here,
a: Number of warp threads per inch (25.4 mm) of the woven fabric in the layer (threads / 25.4 mm)
b: Number of weft threads per inch (25.4 mm) of the woven fabric in the layer (threads / 25.4 mm)
D: Total fineness of warp threads in the layer (dtex)
D': Total fineness (dtex) of the weft in the layer.
(2) Calculate the total value of the calculated cover factors of each layer.
 本発明の多層構造繊維構造体は、JIS L1091:1999「繊維製品の燃焼性試験方法」の「8.5 E法(酸素指数法試験) E-2号」で測定されるOI値(酸素指数)が26%以上であることが好ましい。OI値(酸素指数)を26%以上であることで、多層構造繊維構造体が着火しても、残炎時間、残塵時間を短く、そして、燃焼面積を小さくすることができる。 The multilayer structure fiber structure of the present invention has an OI value (oxygen index) measured by "8.5 E method (oxygen index method test) E-2" of JIS L1091: 1999 "Combustibility test method for textile products". ) Is preferably 26% or more. When the OI value (oxygen index) is 26% or more, even if the multilayer structure fiber structure is ignited, the residual flame time and the residual dust time can be shortened, and the combustion area can be reduced.
 本発明の多層構造繊維構造体は、その厚みが0.3mm以上0.7mm以下であることが好ましい。このようにすることによって、自己消火性ガスを多層構造繊維構造体内において、適度に循環させることができるため、より高い難燃性を有させることができる。 The thickness of the multilayer structure fiber structure of the present invention is preferably 0.3 mm or more and 0.7 mm or less. By doing so, the self-extinguishing gas can be appropriately circulated in the multi-layered fiber structure, so that it can have higher flame retardancy.
 また、本発明の多層構造繊維構造体は、多層構造繊維構造体中のモダアクリル短繊維Bの含有質量率が30~70質量%であり、35~60が質量%であることが好ましい。 Further, in the multilayer structure fiber structure of the present invention, the content mass ratio of the modal acrylic short fiber B in the multilayer structure fiber structure is preferably 30 to 70% by mass, and 35 to 60 is preferably mass%.
 さらに本発明の多層構造繊維構造体が上記のように弾性繊維を含む場合、前記多層構造繊維構造体中の弾性繊維の含有質量率が1~10質量%であることが適度な伸長回復性の点から好ましい。 Further, when the multilayer structure fiber structure of the present invention contains elastic fibers as described above, the content mass ratio of the elastic fibers in the multilayer structure fiber structure is 1 to 10% by mass, which is an appropriate elongation recovery property. It is preferable from the point of view.
 その際、多層構造繊維構造体の伸び率が5%以上であることが好ましい。上限としては、15%であることが好ましい。上記範囲にあることにより適度なストレッチ性を付与することが可能である。 At that time, it is preferable that the elongation rate of the multilayer structure fiber structure is 5% or more. The upper limit is preferably 15%. Within the above range, it is possible to impart appropriate stretchability.
 本発明の多層構造繊維構造体は、前記のとおり、高い難燃性を有していることから、難燃処理が施されることは必ずしも必要ではないが、より難燃性効果を高めるためにハロゲン系やリン系の難燃剤を多層構造繊維構造体の少なくとも一部に塗布したり、またはハロゲン系やリン系の難燃剤が練り込まれた繊維を用いたりしても構わない。中でも、高視認性に影響が出にくいメラミン樹脂を用いた処理を行うことが好ましい。 As described above, since the multilayer structure fiber structure of the present invention has high flame retardancy, it is not always necessary to apply flame retardant treatment, but in order to further enhance the flame retardant effect. A halogen-based or phosphorus-based flame retardant may be applied to at least a part of the multilayer structure fiber structure, or a fiber in which a halogen-based or phosphorus-based flame retardant is kneaded may be used. Above all, it is preferable to carry out the treatment using a melamine resin which does not easily affect the high visibility.
 [衣料品、作業服]
 本発明の衣料品、あるいは、作業服は、前記の多層構造繊維構造体で構成されてなる。本発明でいう衣料品としては、焚火やBBQ、キャンプ、花火など屋外で火を使うシーンでカジュアルに着用ができるアウター衣料のブルゾン、パンツなどが挙げられる。また、本発明の作業服は、快適性に優れ、火花や炎が着火しても構成繊維による自己消火性を有し、さらに、夜間作業時の作業者認知が容易になる高視認性に優れることから、特に、火源近傍での作業や溶接作業時の防護服、鉄道保安員、道路工事などの夜間作業従事者が着用する作業服に好適である。
[Clothing, work clothes]
The clothing or work clothes of the present invention is composed of the above-mentioned multi-layered fiber structure. Examples of clothing in the present invention include outer clothing blouson and pants that can be worn casually in outdoor scenes such as bonfire, BBQ, camping, and fireworks. In addition, the work clothes of the present invention are excellent in comfort, have self-extinguishing property by constituent fibers even if sparks or flames ignite, and are also excellent in high visibility that facilitates worker recognition during night work. Therefore, it is particularly suitable for work clothes worn by night workers such as protective clothing for work near a fire source and welding work, railway security personnel, and road construction.
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 Next, the present invention will be specifically described based on Examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, if there is no particular description, the measurement is performed based on the above method.
 [測定方法]
 (1)複合紡績糸の糸番手の測定
 複合紡績糸の糸番手は、JIS L1095:2010「一般紡績糸試験方法」の「9.4.2 見掛テックス及び番手」は、同規格の「9.1 糸長」および「9.3 正量」によって求めた糸長L(m)および正量W(g)から、次の式によって求め、小数点以下1桁に丸めて表した。
・S=(453.59×L×n)/(W×768.1)
ここで、
S: 綿番手(Ne)
L: 糸長(m)
W: 正量(g)
n: より合わせ本数
である。
[Measuring method]
(1) Measurement of yarn count of composite spun yarn The yarn count of composite spun yarn is JIS L1095: 2010 "General spun yarn test method""9.4.2 Apparent tex and count" is "9" of the same standard. From the thread length L (m) and the positive amount W (g) obtained by "1.1 Thread length" and "9.3 Positive amount", it was calculated by the following formula and rounded to one digit after the decimal point.
S = (453.59 x L x n) / (W x 768.1)
here,
S: Cotton count (Ne)
L: Thread length (m)
W: Positive amount (g)
n: The total number of twists.
 (2)多層構造繊維構造体の通気度の測定
 前記した方法に従って、測定を行った。測定には、フラジール形試験機として、株式会社大栄科学精機製作所製 AP-360SM(Hand lever clamp)を用いた。
(2) Measurement of air permeability of the multilayer structure fiber structure The measurement was performed according to the above-mentioned method. For the measurement, AP-360SM (Hand level clamp) manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd. was used as a Frazier type tester.
 (3)多層構造繊維構造体の燃焼性試験
 (3-1)多層構造繊維構造体のOI値(酸素指数)の測定
 前記した方法に従って、測定を行った。大気中での試料が燃焼する際に要する最小限度の酸素、窒素容量を測定し、酸素と窒素に対する酸素濃度(比率)%を算出して限界酸素指数を求め、26以上を合格とした。
(3) Combustibility test of multi-layered fiber structure (3-1) Measurement of OI value (oxygen index) of multi-layered fiber structure Measurement was performed according to the above-mentioned method. The minimum oxygen and nitrogen capacities required for the sample to burn in the atmosphere were measured, the oxygen concentration (ratio)% to oxygen and nitrogen was calculated to obtain the critical oxygen index, and 26 or more was passed.
 (3-2)多層構造繊維構造体の残炎時間の測定
 残炎時間は、ISO25025 A法に規定された方法で実施し、生地に着火後、バーナーを取り去ってから炎を上げて燃える状態が止むまでの経過時間を測定し、3秒以内を合格とした。
(3-2) Measurement of after-flame time of multi-layered fiber structure The after-flame time is measured by the method specified in ISO25025 A method, and after the fabric is ignited, the burner is removed and the flame is raised to burn. The elapsed time until stopping was measured, and a pass was made within 3 seconds.
 (3-3)多層構造繊維構造体の残塵時間の測定
 残塵時間は、ISO25025 A法に規定された方法で実施し、生地に着火後、バーナーを取り去ってから炎を上げずに燃える状態が止むまでの経過時間を測定し、5秒以内を合格とした。
(3-3) Measurement of residual dust time of multi-layered fiber structure The residual dust time is measured by the method specified in ISO25025 A method, and after the fabric is ignited, the burner is removed and then it burns without raising the flame. The elapsed time until the stop was measured was measured, and a pass was made within 5 seconds.
 (4)多層構造繊維構造体の表面層の色座標・輝度率の測定(高視認性の評価)
 色座標、および、輝度率はコニカミノルタ株式会社製多光源分光測色計(cm-3700d)を用い、SCE(正反射光除去)方式で測定した。併せて、キセノン耐光試験後の評価も実施した。なお、JIS T8127:2015の色座標については、JIS Z8720:2012の4.2.2に規定する標準イルミナントD65を用い、2゜視野(CIE 1931測色標準観測者の等式関数)の条件で求めた。色度座標(x、y):(0.387、0.610)、(0.356、0.494)、(0.398、0.452)、(0.460、0.540)の4点で囲まれた範囲内に色度の測定結果があり、かつ、輝度率βの測定結果が0.70を上回る状態にあるものを合格とし、外れるものを不合格とした。
(4) Measurement of color coordinates and brightness of the surface layer of the multi-layered fiber structure (evaluation of high visibility)
The color coordinates and the radiance rate were measured by the SCE (specular reflection light removal) method using a multi-light source spectrophotometer (cm-3700d) manufactured by Konica Minolta Co., Ltd. At the same time, evaluation after the xenon light resistance test was also carried out. For the color coordinates of JIS T8127: 2015, the standard illuminant D65 specified in 4.2.2 of JIS Z8720: 2012 is used, and the condition of the 2 ° field of view (CIE 1931 colorimetric standard observer's equation function) is used. I asked. Saturation coordinates (x, y): 4 of (0.387, 0.610), (0.356, 0.494), (0.398, 0.452), (0.460, 0.540) Those having a chromaticity measurement result within the range surrounded by dots and having a brightness factor β measurement result exceeding 0.70 were regarded as acceptable, and those out of the range were rejected.
 (5)多層構造繊維構造体の耐光性(耐光堅牢度)の測定
 耐光堅牢度は、JIS L0842:2004「紫外線カーボンアーク灯光に対する染色堅ろう度試験方法」に規定される染色堅牢性試験を行い、4級以上で合格とした。
(5) Measurement of light resistance (light fastness) of the multilayer structure fiber structure The light fastness is determined by performing a dye fastness test specified in JIS L0842: 2004 "Dyeing fastness test method for ultraviolet carbon arc lamp light". Passed at 4th grade or higher.
 (6)多層構造繊維構造体の風合いの評価
 染色加工後の風合いについて、官能評価を実施し、1~5点での採点で評価を行った。
(6) Evaluation of the texture of the multi-layered fiber structure The texture after the dyeing process was subjected to a sensory evaluation and evaluated by scoring from 1 to 5 points.
 風合いが柔らかすぎる:1、柔らかい:2、程良い:3、硬い:4、硬すぎる:5。 The texture is too soft: 1, soft: 2, moderate: 3, hard: 4, too hard: 5.
 (7)多層構造繊維構造体のストレッチ性の評価
 ストレッチ性は、JIS L1096:2010「織物及び編物の生地試験方法」に規定された測定方法を用い、多層構造繊維構造体の測定・評価を行った。(定荷重時)伸び率(Ep)については同規格の「8.16.1 b) B法(織物の定荷重法)」、を用いて測定を行った。なお、以下の式で伸び率(%)の計算を実施した。
Ep={(L1-L0)/L0}×100
ここで、
Ep: (定荷重時)伸び率(%)
: 初荷重を加えたときの印間の長さ(500mm)
: 14.7Nの荷重を1分間加えた後の印間の長さ(mm)
である。
(7) Evaluation of Stretchability of Multilayered Fiber Structure Stretchability is measured and evaluated for the multilayered fiber structure using the measuring method specified in JIS L1096: 2010 "Fabric test method for woven fabrics and knitted fabrics". It was. The elongation rate (Ep) (at constant load) was measured using "8.16.1 b) B method (constant load method for woven fabrics)" of the same standard. The growth rate (%) was calculated using the following formula.
Ep = {(L 1- L 0 ) / L 0 } x 100
here,
Ep: (At constant load) Elongation rate (%)
L 0 : Length between marks when initial load is applied (500 mm)
L 1 : Length between marks (mm) after applying a load of 14.7 N for 1 minute.
Is.
 (実施例1)
 [表面層]
 経糸としてカチオン可染ポリエステル繊維(繊度:1.45dtex、丸断面)からなる紡績糸(40s)を用い、緯糸としてポリウレタン弾性繊維をカチオン可染ポリエステル繊維でカバリングしたCSYである長短複合紡績糸(40s)を用い、通常のレピア織機を用いて、織組織を2/1ツイル、織密度を経100本/25.4mm×緯80本/25.4mmとした表面層を形成した。
(Example 1)
[Surface layer]
A long-short composite spun yarn (40s) which is a CSY in which a spun yarn (40s) made of a cationic dyeable polyester fiber (fineness: 1.45dtex, round cross section) is used as a warp and a polyurethane elastic fiber is covered with a cationic dyeable polyester fiber as a weft. ), Using a normal rapier loom, a surface layer having a weaving structure of 2/1 twill and a weaving density of 100 wefts / 25.4 mm × 80 wefts / 25.4 mm was formed.
 [裏面層]
 経糸としてモダアクリル繊維とレーヨン繊維混紡糸からなる紡績糸(35s)(モダアクリル繊維:レーヨン繊維(質量比)=9:1)と導電繊維(KBセーレン(株)製“ベルトロン”(登録商標))をモダアクリル繊維とレーヨン繊維の混紡糸でカバリングしたCYである長短複合紡績糸(35s)(導電繊維:モダアクリル繊維:レーヨン繊維(質量比)=8:1:1)を用い、緯糸としてポリウレタン弾性繊維をモダアクリル繊維とレーヨン繊維の混紡糸でカバリングしたCSYである長短複合紡績糸(35s)(ポリウレタン弾性繊維:モダアクリル繊維:レーヨン繊維(質量比)=8:1:1)を用い、前記通常のレピア織機を用いて、織組織を2/1ツイル、織密度を経100本/25.4mm×緯80本/25.4mmとした裏面層を形成した。
[Back layer]
As warp yarns, spun yarn (35s) consisting of moda acrylic fiber and rayon fiber blended yarn (moda acrylic fiber: rayon fiber (mass ratio) = 9: 1) and conductive fiber (KB Salen Co., Ltd. "Bertron" (registered trademark)) are used. Long-short composite spun yarn (35s) (conductive fiber: moda acrylic fiber: rayon fiber (mass ratio) = 8: 1: 1), which is a CY covered with a blended yarn of moda acrylic fiber and rayon fiber, is used, and polyurethane elastic fiber is used as the weft. Using a long-short composite spun yarn (35s) (polyurethane elastic fiber: moda acrylic fiber: rayon fiber (mass ratio) = 8: 1: 1) which is CSY covered by a blended yarn of moda acrylic fiber and rayon fiber, the above-mentioned ordinary rapier weaving machine. Was used to form a back surface layer having a woven structure of 2/1 twill and a weaving density of 100 fibers / 25.4 mm × 80 wefts / 25.4 mm.
 [結節層]
 経糸としてモダアクリル繊維とレーヨン繊維混紡糸からなる紡績糸(35s)(モダアクリル繊維:レーヨン繊維(質量比)=9:1)を用いた。結節点において、経糸で表面層と裏面層とを結節した。具体的には織密度が経30本/25.4mm×緯0本/25.4mmの結節層を形成し、表面層、裏面層、および結節層からなる3層織物である繊維構造体を形成した。
[Nodule layer]
As the warp, a spun yarn (35s) composed of a blended yarn of moda acrylic fiber and rayon fiber (moda acrylic fiber: rayon fiber (mass ratio) = 9: 1) was used. At the nodule point, the front surface layer and the back surface layer were knotted with warp threads. Specifically, a nodule layer having a weaving density of 30 warp / 25.4 mm × 0 weft / 25.4 mm is formed, and a fiber structure which is a three-layer woven fabric consisting of a front surface layer, a back surface layer, and a nodule layer is formed. did.
 [多層構造繊維構造体]
 得られた繊維構造体に対し、液流染色機を用いて染色加工を行って、カバーファクターが2204、通気度が18cm/(cm・sec)の多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は0秒、残塵時間4秒であり、難燃性に特に優れたものであった。
[Multilayer fiber structure]
The obtained fiber structure was dyed using a liquid flow dyeing machine to obtain a multilayer structure fiber structure having a cover factor of 2204 and an air permeability of 18 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 0 seconds and the residual dust time was 4 seconds, which were particularly excellent in flame retardancy.
 (実施例2)
 表面層、裏面層の織密度を経100本/25.4mm×緯65本/25.4mm、結節層の織密度を経20本/25.4mm×緯0本/25.4mmとし、多層構造繊維構造体のカバーファクターを2041、通気度を30cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は0秒、残塵時間4秒であり難燃性に特に優れたものであった。
(Example 2)
The weaving density of the front surface layer and the back surface layer is 100 warp / 25.4 mm × 65 wefts / 25.4 mm, and the weaving density of the knot layer is 20 warp / 25.4 mm × 0 weft / 25.4 mm. A multilayer structure fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 2041 and the air permeability was 30 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 0 seconds and the residual dust time was 4 seconds, which were particularly excellent in flame retardancy.
 (実施例3)
 表面層、裏面層の織密度を経100本/25.4mm×緯56本/25.4mm、結節層の織密度を経20本/25.4mm×緯0本/25.4mmとし、多層構造繊維構造体のカバーファクターを1859、通気度を56cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は0秒であり、難燃性に優れたものであった。
(Example 3)
The weaving density of the front surface layer and the back surface layer is 100 warp / 25.4 mm × 56 wefts / 25.4 mm, and the weaving density of the knot layer is 20 warp / 25.4 mm × 0 weft / 25.4 mm. A multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 1859 and the air permeability was 56 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 0 seconds, and it was excellent in flame retardancy.
 (比較例1)
 表面層、裏面層の織密度を経99本/25.4mm×緯59本/25.4mm、結節層の織密度を経15本/25.4mm×緯糸0本/25.4mmとし、多層構造繊維構造体のカバーファクターを1870、通気度を65cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は10.5秒、残塵時間が6.3秒と規格以下であり難燃性が十分ではなかった。
(Comparative Example 1)
The weaving density of the front surface layer and the back surface layer is 99 warp / 25.4 mm × 59 wefts / 25.4 mm, and the weaving density of the knot layer is 15 warp / 25.4 mm × 0 weft threads / 25.4 mm. A multilayer structure fiber structure was obtained in the same manner as in Example 1 except that the cover factor of the fiber structure was 1870 and the air permeability was 65 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 10.5 seconds, and the residual dust time was 6.3 seconds, which were below the standard, and the flame retardancy was not sufficient.
 (比較例2)
 表面層、裏面層の織密度を経116本/25.4mm×緯95本/25.4mm、結節層の織密度を経35本×緯0本/25.4mmとし、多層構造繊維構造体のカバーファクターを2582、通気度を7cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は6.8秒と難燃性が十分ではなかった。
(Comparative Example 2)
The weaving density of the front surface layer and the back surface layer is 116 warp / 25.4 mm × 95 weft / 25.4 mm, and the weaving density of the knot layer is 35 warp × 0 weft / 25.4 mm. A multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor was 2582 and the air permeability was 7 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer fiber structure was 6.8 seconds, which was not sufficient for flame retardancy.
 (比較例3)
 表面層、裏面層の織密度を経80本/25.4mm×緯50本/25.4mm、結節層の織密度を経10本×緯0本/25.4mmとし、多層構造繊維構造体のカバーファクターを1526、通気度を52cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は6秒、残塵時間8秒と難燃性が良好ではなかった。
(Comparative Example 3)
The weaving density of the front surface layer and the back surface layer is 80 warp / 25.4 mm × 50 weft / 25.4 mm, and the weaving density of the knot layer is 10 warp × 0 weft / 25.4 mm. A multilayer fiber structure was obtained in the same manner as in Example 1 except that the cover factor was 1526 and the air permeability was 52 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 6 seconds, and the residual dust time was 8 seconds, and the flame retardancy was not good.
 (比較例4)
 表面層、裏面層の織密度を経120本/25.4mm×緯95本/25.4mm、結節層の織密度を経35本/25.4mm×緯0本/25.4mmとし、多層構造繊維構造体のカバーファクターを2628、通気度を4cm/(cm・sec)とした以外は、実施例1と同様に多層構造繊維構造体を得た。得られた多層構造繊維構造体について、各評価を行った結果を表1に示す。この多層構造繊維構造体の残炎時間は7.5秒、残塵時間5秒と難燃性が良好ではなかった。
(Comparative Example 4)
The weaving density of the front surface layer and the back surface layer is 120 warp / 25.4 mm × 95 weft / 25.4 mm, and the weaving density of the knot layer is 35 warp / 25.4 mm × 0 weft / 25.4 mm. A multilayer fiber structure was obtained in the same manner as in Example 1 except that the coverage factor of the fiber structure was 2628 and the air permeability was 4 cm 3 / (cm 2 · sec). Table 1 shows the results of each evaluation of the obtained multilayer fiber structure. The residual flame time of this multilayer structure fiber structure was 7.5 seconds, and the residual dust time was 5 seconds, and the flame retardancy was not good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1~3については、残炎時間、残塵時間ともに優れていることが分かる。特に、実施例1、2の難燃性が優れていた。一方、比較例1~4については、難燃性が十分なものではなく、残炎時間、残塵時間の少なくとも一方が低い結果であった。 As shown in Table 1, it can be seen that the residual flame time and the residual dust time are both excellent in Examples 1 to 3. In particular, the flame retardancy of Examples 1 and 2 was excellent. On the other hand, in Comparative Examples 1 to 4, the flame retardancy was not sufficient, and at least one of the residual flame time and the residual dust time was low.

Claims (12)

  1.  少なくとも表面層と結節層と裏面層とを有する多層構造繊維構造体であって、前記表面層はポリエステル系繊維およびアクリル系繊維から選択される一種以上の繊維Aからなる繊維組織層であり、前記裏面層はモダアクリル短繊維Bを混紡してなる複合紡績糸からなる繊維組織層であり、前記多層構造繊維構造体中のモダアクリル短繊維Bの含有質量率が30~70質量%であり、前記多層構造繊維構造体の通気度が5~60cm/(cm・sec)であり、カバーファクターが1800~2500である、多層構造繊維構造体。 A multi-layered fiber structure having at least a surface layer, a knot layer, and a back surface layer, wherein the surface layer is a fiber structure layer made of one or more fibers A selected from polyester fibers and acrylic fibers. The back surface layer is a fiber structure layer made of a composite spun yarn obtained by blending moda acrylic short fibers B, and the content mass ratio of the moda acrylic short fibers B in the multilayer structure fiber structure is 30 to 70% by mass, and the multilayer structure is described. A multi-layered fiber structure having an air permeability of 5 to 60 cm 3 / (cm 2 · sec) and a cover factor of 1800 to 2500.
  2.  前記繊維Aがポリエステル系繊維である請求項1記載の多層構造繊維構造体。 The multilayer structure fiber structure according to claim 1, wherein the fiber A is a polyester fiber.
  3.  前記ポリエステル系繊維が、カチオン可染ポリエステル系繊維である、請求項1または2に記載の多層構造繊維構造体。 The multilayer structure fiber structure according to claim 1 or 2, wherein the polyester fiber is a cationic dyeable polyester fiber.
  4.  前記多層構造繊維構造体中のカチオン可染ポリエステル系繊維の含有質量率が30質量%以上である、請求項3に記載の多層構造繊維構造体。 The multilayer structure fiber structure according to claim 3, wherein the content mass ratio of the cationic dyeable polyester fiber in the multilayer structure fiber structure is 30% by mass or more.
  5.  前記前記複合紡績糸がモダアクリル短繊維B以外の炭化繊維Cを含む、請求項1~4のいずれかに記載の多層構造繊維構造体。 The multilayer structure fiber structure according to any one of claims 1 to 4, wherein the composite spun yarn contains carbonized fibers C other than modal acrylic short fibers B.
  6.  前記複合紡績糸中のモダアクリル短繊維Bの含有質量率が60質量%以上である、請求項1~5のいずれかに記載の多層構造繊維構造体。 The multilayer structure fiber structure according to any one of claims 1 to 5, wherein the content mass ratio of the modal acrylic short fiber B in the composite spun yarn is 60% by mass or more.
  7.  前記多層構造繊維構造体が、さらに弾性繊維を含んでなり、前記多層構造繊維構造体中の弾性繊維の含有質量率が1~10質量%である、請求項1~6のいずれかに記載の多層構造繊維構造体。 The invention according to any one of claims 1 to 6, wherein the multilayer structure fiber structure further contains elastic fibers, and the content mass ratio of the elastic fibers in the multilayer structure fiber structure is 1 to 10% by mass. Multi-layered fiber structure.
  8.  前記多層構造繊維構造体の伸び率が5%以上である、請求項7に記載の多層構造繊維構造体。 The multilayer structure fiber structure according to claim 7, wherein the elongation rate of the multilayer structure fiber structure is 5% or more.
  9.  JIS L1091:1999「繊維製品の燃焼性試験方法」の「8.5 E法(酸素指数法試験) E-2号」で測定されるOI値(酸素指数)が26%以上である、請求項1~8のいずれかに記載の多層構造繊維構造体。 Claim that the OI value (oxygen index) measured by "8.5 E method (oxygen index method test) E-2" of JIS L1091: 1999 "combustibility test method for textile products" is 26% or more. The multilayer structure fiber structure according to any one of 1 to 8.
  10.  表面層の少なくとも一部が蛍光色に着色されてなる、請求項1~9のいずれかに記載の多層構造繊維構造体。 The multilayer structure fiber structure according to any one of claims 1 to 9, wherein at least a part of the surface layer is colored with a fluorescent color.
  11.  少なくとも一部が請求項1~10のいずれかに記載の多層構造繊維構造体で構成されてなる、衣料品。 Clothing that is composed of at least a part of the multi-layered fiber structure according to any one of claims 1 to 10.
  12.  少なくとも一部が請求項1~10のいずれかに記載の多層構造繊維構造体で構成されてなる、作業服。 Work clothes that are composed of at least a part of the multi-layered fiber structure according to any one of claims 1 to 10.
PCT/JP2020/038445 2019-10-31 2020-10-12 Multilayered fiber structure, clothing item and work wear WO2021085097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556987A JPWO2021085097A1 (en) 2019-10-31 2020-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-198710 2019-10-31
JP2019198710 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085097A1 true WO2021085097A1 (en) 2021-05-06

Family

ID=75714642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038445 WO2021085097A1 (en) 2019-10-31 2020-10-12 Multilayered fiber structure, clothing item and work wear

Country Status (2)

Country Link
JP (1) JPWO2021085097A1 (en)
WO (1) WO2021085097A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253065A (en) * 1975-10-28 1977-04-28 Mitsubishi Rayon Co Fire retardent fabric
JPS6124060U (en) * 1984-07-18 1986-02-13 東レ株式会社 Fire spread prevention film
JP2004513252A (en) * 2000-11-03 2004-04-30 ケルメル High visibility fabric surface
JP2004527667A (en) * 2001-01-09 2004-09-09 ラミネション テクノロジース リミテット Three-dimensional fabric with porous layer
US20090029618A1 (en) * 2007-07-27 2009-01-29 General Electric Company Waterproof breathable high-vis arc resistant laminate
JP2014159666A (en) * 2013-02-18 2014-09-04 Wl Gore & Associates Gmbh Flameproof fabric structure
JP2014208930A (en) * 2013-03-28 2014-11-06 日本毛織株式会社 Flame retardant stretchable fabric and clothing using the same
WO2016152814A1 (en) * 2015-03-24 2016-09-29 東レ株式会社 Fabric and garment
JP2018500477A (en) * 2014-12-23 2018-01-11 ユーロプロテクト・フランス・ソシエテ・アノニム Cloth for manufacturing clothing for fire protection
JP2018021275A (en) * 2016-08-03 2018-02-08 帝人株式会社 Laminated cloth and fiber product
US20190309451A1 (en) * 2016-10-12 2019-10-10 Davey Textile Solutions Inc. Flame resistant, high visibility fabrics and methods of manufacture thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253065A (en) * 1975-10-28 1977-04-28 Mitsubishi Rayon Co Fire retardent fabric
JPS6124060U (en) * 1984-07-18 1986-02-13 東レ株式会社 Fire spread prevention film
JP2004513252A (en) * 2000-11-03 2004-04-30 ケルメル High visibility fabric surface
JP2004527667A (en) * 2001-01-09 2004-09-09 ラミネション テクノロジース リミテット Three-dimensional fabric with porous layer
US20090029618A1 (en) * 2007-07-27 2009-01-29 General Electric Company Waterproof breathable high-vis arc resistant laminate
JP2014159666A (en) * 2013-02-18 2014-09-04 Wl Gore & Associates Gmbh Flameproof fabric structure
JP2014208930A (en) * 2013-03-28 2014-11-06 日本毛織株式会社 Flame retardant stretchable fabric and clothing using the same
JP2018500477A (en) * 2014-12-23 2018-01-11 ユーロプロテクト・フランス・ソシエテ・アノニム Cloth for manufacturing clothing for fire protection
WO2016152814A1 (en) * 2015-03-24 2016-09-29 東レ株式会社 Fabric and garment
JP2018021275A (en) * 2016-08-03 2018-02-08 帝人株式会社 Laminated cloth and fiber product
US20190309451A1 (en) * 2016-10-12 2019-10-10 Davey Textile Solutions Inc. Flame resistant, high visibility fabrics and methods of manufacture thereof

Also Published As

Publication number Publication date
JPWO2021085097A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US11846043B2 (en) Flame resistant fabrics having fibers containing energy absorbing and/or reflecting additives
JP5913783B2 (en) Flame retardant fabric and garment made therefrom
CA2618266C (en) Two-layer fabric and heat-resistant protective clothing containing the same
US20180127917A1 (en) Lightweight, arc-rated, dyeable fabrics
KR102610650B1 (en) flame retardant fabric
DE60219422T2 (en) IMPROVED PROTECTIVE CLOTHES AND PROTECTIVE CLOTHING
WO2010135214A1 (en) Blend of lyocell and flame resistant fibers for protective garments
JP6819573B2 (en) Cloth and clothing
CN108474147A (en) The printable flame-retardant textile of lightweight suitable for the protective garment dressed heat and/or wet environment
CN109642346B (en) Homogeneous blend of carbon-containing and dyeable flame-retardant fibers
JP2019529725A (en) Carbon-containing fiber blends including aramid and modacrylic fibers
KR102612742B1 (en) Carbon-containing arc-resistant aramid fabric made from different types of yarns
JP2004532367A (en) Composite yarn
EP0288470A1 (en) Improvements in textile materials
WO2021085097A1 (en) Multilayered fiber structure, clothing item and work wear
CN114341414B (en) flame retardant fabric
BR112021019283B1 (en) FABRICS FORMED FROM FIRST THREADS AND SECOND THREADS, AND CLOTHES FORMED FROM THE FABRICS

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882555

Country of ref document: EP

Kind code of ref document: A1