WO2021085003A1 - Laminated glass - Google Patents
Laminated glass Download PDFInfo
- Publication number
- WO2021085003A1 WO2021085003A1 PCT/JP2020/036675 JP2020036675W WO2021085003A1 WO 2021085003 A1 WO2021085003 A1 WO 2021085003A1 JP 2020036675 W JP2020036675 W JP 2020036675W WO 2021085003 A1 WO2021085003 A1 WO 2021085003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus bar
- region
- conductive thin
- thin wire
- edge portion
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims abstract description 116
- 239000005340 laminated glass Substances 0.000 claims abstract description 75
- 239000011229 interlayer Substances 0.000 claims description 99
- 238000012360 testing method Methods 0.000 claims description 6
- 239000011295 pitch Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 abstract description 22
- 230000020169 heat generation Effects 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 46
- 239000000463 material Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- 230000004048 modification Effects 0.000 description 28
- 238000012986 modification Methods 0.000 description 28
- 238000000605 extraction Methods 0.000 description 26
- 239000002585 base Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 8
- 239000005341 toughened glass Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 for example Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/84—Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10376—Laminated safety glass or glazing containing metal wires
- B32B17/10385—Laminated safety glass or glazing containing metal wires for ohmic resistance heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/011—Heaters using laterally extending conductive material as connecting means
Definitions
- the present invention relates to laminated glass.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a laminated glass capable of suppressing energization strain generated in a band-shaped region.
- plan view refers to viewing a predetermined region of the laminated glass from the normal direction of the predetermined region
- planar shape refers to the shape of the predetermined region of the laminated glass viewed from the normal direction of the predetermined region. ..
- the actual curved shape is omitted and the windshield 20 is shown in a plane.
- the upper edge refers to the edge on the roof side of the vehicle
- the lower edge refers to the edge on the engine room side.
- the left edge refers to the side edge on the passenger seat side
- the right edge refers to the side edge on the driver's seat side.
- the glass plate 21 and the glass plate 22 are fixed so as to sandwich the interlayer film 23, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33.
- the shielding layer 24 is an opaque layer, for example, the peripheral edge of the windshield 20 (upper edge 20 1, lower edge 20 2, left edge 20 3, right edge 20 4) provided in a strip along the be able to.
- the shielding layer 24 is provided on the inner surface 21a of the glass plate 21.
- the shielding layer 24 may be provided on the vehicle inner surface 22a of the glass plate 22 as needed, or on both the vehicle inner surface 21a of the glass plate 21 and the vehicle inner surface 22a of the glass plate 22. It may be provided.
- the shielding layer 24 may be provided on both the glass plate 21 and the glass plate 22, or may be provided on only one of them.
- the shielding layer 24 is formed by applying a ceramic paste on the surface of the glass plate 21 and / or the glass plate 22 and then firing.
- the thickness of the shielding layer 24 is preferably 3 ⁇ m or more and 15 ⁇ m or less.
- the width of the shielding layer 24 is not particularly limited, but is preferably 20 mm or more and 300 mm or less.
- the shielding layer 24 is provided with a shielding region 24 1 and 24 2 are formed along the upper edge 20 1 and the lower edge 20 2 of the front glass 20, left edge 20 of the windshield 20 3 and the right edge 20 4 and a shielding region 24 3 and 24 4 which are formed along the.
- the width of the shielding area 24 3 and 24 4 it is preferably formed smaller than the width of the shielding area 24 1 and 24 2.
- the plurality of conductive thin wires 30 can heat the fluoroscopic region 28.
- the pattern formed by the plurality of conductive thin wires 30 is not particularly limited, but can be, for example, a mesh shape (mesh shape) shown in FIG. 1 (a).
- the plurality of conductive thin wires 30 may be a straight line, a wavy line (for example, a sine wave, a triangular wave, a rectangular wave, etc.), a combination of a wavy line and a straight line, or the like.
- the first bus bar 31, the second bus bar 32, and the third bus bar 33 is preferably arranged to be concealed in the shielding region 24 1, 24 2, and 24 3.
- FIG. 3 is a diagram for explaining a band-shaped region of the windshield for a vehicle according to the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
- the calorific value per unit length of the conductive thin wire 30 in at least one of the strip-shaped regions S 1 or S 2 is larger than the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C.
- the small region may be the entire strip-shaped regions S 1 and S 2 , but may be at least 30% or more of at least one of the strip-shaped regions S 1 or S 2.
- the calorific value per unit length of the conductive thin wire 30 in both the strip-shaped regions S 1 and S 2 is smaller than the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. do not have to.
- the band region S 1 at least a portion of the calorific value per unit length of the conductive thin wire 30 in the region, the heat generation per unit length of the conductive thin wire 30 in at least a partial region of the central region C It may be smaller than the amount.
- the calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 2 is the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. It may be smaller.
- the driver looks at the front of the vehicle through the windshield 20, the driver recognizes the energization distortion at the position on the windshield 20 where the driver's viewpoint becomes slanted (the angle from the eye point becomes large). Cheap. Therefore, among the band regions S 1 and S 2, it is effective when the driver's point of view to suppress the inhibition energized strain the heating value of the direction which becomes more oblique. If a vehicle having a windshield 20 is an automobile RHD, the driver's viewpoint becomes more oblique is the band region S 1 is located in the left edge portion 20 3.
- the driver's viewpoint becomes more oblique central region C
- the calorific value is suppressed by making it smaller than the calorific value per unit length of the conductive thin wire 30 in a part of the region, the effect of suppressing the energization strain is particularly remarkable.
- the resistance value between the first bus bar 31 and the second bus bar 32 in the central region C of the fluoroscopic region 28 is Rc
- the first bus bar 31 and the second bus bar 32 in the band-shaped regions S 1 and S 2 respectively.
- Rs be the resistance value between them. Then, consider a case where a voltage V is applied between the first bus bar 31 and the second bus bar 32.
- the amount of heat generated per unit area in at least a partial region of the central region C of the heating value of the perspective area 28 per unit area in at least a region It is preferable to make it smaller than.
- the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
- WF is a wave factor, which is a value obtained by dividing the line length of a wavy line starting from a point A and ending at a point B by a straight line distance between the point A and the point B.
- the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 600 W / m 2 or less. More preferably, it is 500 W / m 2 or less, and even more preferably 400 W / m 2 or less.
- the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 600 W / m 2 or less, the energization strain of the band-shaped region S 1 or S 2 can be suppressed.
- the glass plates 21 and 22 may be inorganic glass or organic glass.
- the inorganic glass for example, soda lime glass, borosilicate glass, non-alkali glass, quartz glass and the like are used without particular limitation. Of these, soda lime glass is particularly preferable.
- the inorganic glass may be either untempered glass or tempered glass. Untempered glass is made by molding molten glass into a plate shape and slowly cooling it. Tempered glass is formed by forming a compressive stress layer on the surface of untempered glass.
- the tempered glass may be either physically tempered glass (for example, wind-cooled tempered glass) or chemically tempered glass.
- physically tempered glass the glass surface that has been uniformly heated in bending molding is rapidly cooled from a temperature near the softening point, and a compressive stress is generated on the glass surface due to the temperature difference between the glass surface and the inside of the glass. May be strengthened.
- the glass surface may be strengthened by generating compressive stress on the glass surface by an ion exchange method or the like after bending molding.
- glass that absorbs ultraviolet rays or infrared rays may be used, and it is preferable that the glass is transparent, but a glass plate that is colored to such an extent that the transparency is not impaired may be used.
- the glass plates 21 and 22 are bent and molded after being molded by the float method or the like and before being bonded by the interlayer film 23. Bending molding is performed by softening the glass by heating. The heating temperature of the glass during bending is approximately 550 ° C to 700 ° C.
- the film thickness of the interlayer film 23 is preferably 0.3 mm or more at the thinnest part. When the film thickness of the interlayer film 23 is 0.3 mm or more, the penetration resistance required for the windshield is sufficient.
- the film thickness of the interlayer film 23 is preferably 2.28 mm or less at the thickest portion. When the maximum value of the film thickness of the interlayer film 23 is 2.28 mm or less, the mass of the laminated glass does not become too large.
- the film thickness of the interlayer film 23 is preferably 0.3 mm or more and 1 mm or less. Further, the interlayer film 23 may have a wedge shape in cross section because the film thickness is not uniform.
- the interlayer film 23 may have a sound insulating function.
- a sound insulating film capable of improving the sound insulation of laminated glass by forming an interlayer film consisting of three or more layers and lowering the shore hardness of the inner layer to be lower than the shore hardness of the outer layer by adjusting a plasticizer or the like. There may be.
- the shore hardness of the outer layer may be the same or different.
- the above resin material to be an interlayer film is appropriately selected and extruded in a heat-melted state using an extruder.
- the extrusion conditions such as the extrusion speed of the extruder are set to be uniform.
- the extruded resin film may be stretched, for example, if necessary, in order to give curvature to the upper side and the lower side according to the design of the windshield 20.
- shielding layer 24 examples include a layer formed by applying black ceramic printing ink on a glass plate by screen printing or the like and then firing the ink.
- the width of the shielding area either shielded area 24 1 to 24 4
- the first bus bar 31 disposed in the shielded region larger than the width of the second bus bar 32, or the third bus bar 33 Is preferable.
- the shielding layer 24 When the shielding layer 24 is provided on the inner surface 21a of the glass plate 21, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be concealed by the shielding layer 24 when the windshield 20 is viewed from the inside of the vehicle. , It is preferable that the design of the appearance is not impaired.
- the shielding layer 24 may be provided on both the vehicle inner surface 21a of the glass plate 21 and the vehicle inner surface 22a of the glass plate 22. In this case, when the windshield 20 is viewed from the inside and the outside of the vehicle, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be concealed by the shielding layer 24, which is more preferable without impairing the design of the appearance.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of, for example, the same material.
- each conductive thin wire 30 is preferably 20 ⁇ m or less, more preferably 12 ⁇ m or less, still more preferably 8 ⁇ m or less.
- the amount of heat generated per unit length of the conductive thin wire in at least a part of the region is changed to the conductivity in at least a part of the central region C. is made smaller than the amount of heat generated per unit length of sexual thin line, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized.
- the windshield 20 by setting the Rc and Rs to an appropriate value, in at least one strip-like region S 1 or S 2, it is possible to reduce the calorific value Ws per unit area in at least a part of the region, conduction sometimes heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused.
- FIG. 4 is a diagram illustrating a windshield for a vehicle according to a modification 1 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
- the windshield 20A differs from the windshield 20 (see FIGS. 1, 3, etc.) in that the conductive thin wire 30 is replaced with the conductive thin wire 30A.
- each conductive thin wire 30A is a wavy line
- the wavelength and period do not have to be constant.
- the phases of the adjacent conductive thin wires 30A may be aligned or may be out of phase, but if the phases of the adjacent conductive thin wires 30A are out of phase. , It is preferable in that it can suppress the light beam due to the regular scattering of light.
- the conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being attached to the interlayer film 23 in order.
- a first-layer bus bar serving as a first bus bar 31, a second bus bar 32, and a third bus bar 33 is formed with the pattern of FIG. Fix it so that it becomes. This fixing can be performed by pressing the first layer bus bar, which is the first bus bar 31, the second bus bar 32, and the third bus bar 33, against the surface of the interlayer film 23 while heating with a soldering iron or the like.
- the first bus bar 31, the second bus bar 32, and the third bus bar 33 are placed on the first layer bus bar with the conductive thin wire 30A interposed therebetween.
- the second layer bus bar is fixed so as to have the pattern shown in FIG. This fixing can be performed by pressing the second layer bus bar, which is the first bus bar 31, the second bus bar 32, and the third bus bar 33, against the surface of the interlayer film 23 while heating with a soldering iron or the like.
- the first laminated body is produced from the interlayer film 23 and the glass plate 21 on which the conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed.
- the glass plate 22 is further laminated on the interlayer film 23 of the first laminated body to produce the second laminated body, and the windshield 20A can be produced in the same manner as in the first embodiment.
- the plurality of conductive thin lines are not limited to a mesh-like pattern, and may be a straight line, a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.), or a combination of a wavy line and a straight line. Good.
- the first bus bar 31 is extended from the upper edge 20 1 to a left edge 20 3 and the right edge 20 4, together a plurality of linear conductive thin wire 30B It may be arranged in parallel.
- first bus bar 31 and second bus bar 32 as shown in FIG. 5, it is possible to align the direction of the electroconductive thin line 30B at the central region C and band region S 1 and S 2 of the fluoroscopic area 28, It can be manufactured more easily.
- the calorific value per unit length of the conductive thin wire 30B in at least a part of the region is calculated as the heat generation amount per unit length of the conductive thin wire in at least a part of the central region C. to be smaller than the amount of heat generated per unit length of 30B, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30B in at least part of the region, the central region of the perspective area 28 It is made thinner than the wire diameter of each conductive thin wire 30B in at least a part of C.
- One conductive thin wire 30B may have a linear thick portion and a thin portion.
- Use metal increase the pitch of adjacent conductive thin wires 30B, increase the WF of each conductive thin wire 30B when the conductive thin wire 30B is a wavy line, increase the wire length by folding back the conductive thin wire 30B, etc. Method can be used. Alternatively, two or more of these may be combined.
- the amount of heat generated per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. It is preferably smaller than the amount.
- the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
- the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28.
- Use metal increase the pitch of adjacent conductive thin wires 30B, increase the WF of each conductive thin wire 30B when the conductive thin wire 30B is a wavy line, increase the wire length by folding back the conductive thin wire 30B, etc. Method can be used. Alternatively, two or more of these may be combined.
- FIG. 6 is a diagram illustrating a windshield for a vehicle according to a modification 2 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
- the windshield 20C As shown in FIG. 6, the windshield 20C, the first bus bar 31 along the left edge 20 3 arranged, it is arranged a second bus bar 32 along the right edge 20 4. That is, the windshield 20C differs from the windshield 20 (see FIG. 1) in that the feeding direction is the left-right direction, which is the vertical direction.
- the first bus bar 31 and the second bus bar 32 are arranged to face each other so as to sandwich the conductive thin wire 30C in the perspective region 28 in a plan view and are connected to the conductive thin wire 30C, and can supply power to the conductive thin wire 30C.
- the plurality of conductive thin wires 30C are linear patterns. However, the plurality of conductive thin wires 30C may be wavy lines (for example, sine wave, triangular wave, square wave, etc.), a combination of wavy lines and straight lines, and the like. Further, a plurality of conductive thin wires 30C may be formed into a mesh-like pattern.
- the calorific value per unit length of the conductive thin wire 30C in at least a part of the region is calculated as the heat generation amount per unit length of the conductive thin wire in at least a part of the central region C. to be smaller than the amount of heat generated per unit length of 30C, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30C in at least part of the region, the central region of the perspective area 28 It is made thicker than the wire diameter of each conductive thin wire 30C in at least a part of C.
- the resistivity as a conductive thin wire 30C small metal You may use a method such as using. Alternatively, two or more of these may be combined.
- the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28.
- Methods such as using metal, reducing the pitch of adjacent conductive thin wires 30C, and reducing the WF of each conductive thin wire 30C when the conductive thin wire 30C is a wavy line can be used. Alternatively, two or more of these may be combined.
- the wire diameter of the electroconductive thin line 30D the same, at least one strip-like region S 1 or S 2 ,
- the conductive thin wire 30D arranged in at least a part of the region may be branched.
- the amount of heat generated per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. since it less than the amount, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized.
- the conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being attached to the interlayer film 23 in order.
- the forming method in the case where the conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are sequentially attached to the interlayer film 23 and formed of different materials is the modification of the first embodiment. Same as the case. The same applies when the conductive thin wire 30D is used instead of the conductive thin wire 30C.
- Modification 3 of the first embodiment shows another example in which the feeding direction to the conductive thin wire is different from that of the first embodiment.
- the description of the same component as that of the above-described embodiment may be omitted.
- FIG. 9 is a diagram illustrating a windshield for a vehicle according to a modification 3 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
- the first bus bar 31 1 arranged along the left edge 20 3, the second bus bar 32 1 is formed a pair of bus bars arranged in a left edge 20 3 side of the lower edge 20 2. Further, forming the first bus bar 31 2 arranged along the right edge 20 4, the second bus bar 32 a pair of bus bar 2 is other disposed on the right edge 20 4 side of the lower edge portion 20 2 doing.
- the first bus bar 31 2 and the second bus bar 32 2 is disposed in an L-shape in plan view.
- a plurality of electroconductive thin line 30F is a pattern having a linear portion and a curved portion, and is connected between the L-shaped vertical lines (a first bus bar 31 2) with the horizontal line (the second bus bar 32 2) .
- the plurality of conductive thin wires 30F arranged in at least a part of the band-shaped region S 2 include a linear conductor having one or more folds.
- a plurality of conductive thin wires 30F may be used as a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.) or a combination of a wavy line and a straight line. Further, a plurality of conductive thin wires 30F may be formed into a mesh-like pattern.
- the windshield 20F differs from the windshield 20 (see FIG. 1) in that the feeding direction is between the L-shaped vertical line and the horizontal line (L-shaped feeding).
- the third bus bar 33 1, first bus bar 31 1 and the electrode extraction portion 38 1, a bus bar connecting the second bus bar 32 1 and the electrode extraction portion 39 1.
- the third bus bar 33 2, first bus bar 31 2 and the electrode extraction portion 38 2, a bus bar connecting the second bus bar 32 2 and the electrode extraction portion 39 2.
- the feeding direction may be the left-right direction of the windshield, the vertical direction, or the L-shaped feeding direction.
- the L-shaped feed as in the case of FIG. 8 is a lateral feeding
- the upper edge portion 20 1 side, electroconductive thin line 30F, the first bus bar 31 1, the first bus bar 31 2, the second bus bar 32 1, and the second bus bar 32 2 it is easy to provide a region R that does not exist.
- the information transmission / reception area 50, the antenna arrangement area 52, and the like can be defined in the area R.
- the first bus bar 31 1 and the second bus bar 32 1 form a set of bus bars
- the first bus bar 3 12 and the second bus bar 32 2 form another set of bus bars.
- the configuration is not limited to having two sets of the first bus bar and the second bus bar, and one set of the first bus bar and the second bus bar may be provided.
- the first bus bar may be arranged at the side edge portion on the passenger seat side
- the second bus bar may be arranged at the lower edge portion. In this configuration, it is possible to suppress the amount of heat generated on the side where the driver's viewpoint is more slanted (passenger seat side) and suppress energization distortion.
- FIG. 10 is a diagram illustrating a windshield for a vehicle according to a modification 4 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
- the windshield 20G As shown in FIG. 10, the windshield 20G, the first bus bar 31, the second bus bar 32, in addition to the third bus bar 33, the fourth bus bar 41 1 and 41 2, the fifth bus bar 42 1 and 42 2, 6 busbar and a 43 1 and 43 2.
- a first bus bar 31 arranged in the center side of the upper edge portion 20 1, a second bus bar 32 disposed on the center side of the lower edge portion 20 2 is formed a pair of bus bars.
- the fourth bus bar 41 1 disposed at the left edge portion 20 3 side of the upper edge portion 20 1, a fifth bus bar 42 1 disposed at the left edge portion 20 3 side of the lower edge 20 2 other 1 It forms a pair of busbars.
- the fourth bus bar 41 2 disposed on the right edge 20 4 side of the upper edge portion 20 1, a lower edge 20 2 of the right edge 20 4 fifth bus bar 42 2 further other disposed on the side It forms a set of busbars.
- Fourth bus bar 41 second and fifth bus bars 42 2 is opposed so as to sandwich the placed electroconductive thin line 30G to band region S 2 of the fluoroscopic area 28 in a plan view, and a conductive thin wire 30G strip-like region S 2 are connected, can be supplied to the electroconductive thin line 30G of the strip-shaped region S 2.
- the plurality of conductive thin wires 30G are linear patterns. However, a plurality of conductive thin wires 30G may be used as a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.), a combination of a wavy line and a straight line, and the like. Further, a plurality of conductive thin wires 30G may be formed into a mesh-like pattern.
- the third bus bar 33 is a bus bar that connects the first bus bar 31 and the electrode take-out unit 38, and the second bus bar 32 and the electrode take-out unit 39. Further, the sixth bus bar 43 1, the fourth bus bar 41 1 and the electrode extraction portion 48 1, a bus bar for connecting the fifth bus bar 42 1 and the electrode extraction portion 49 1. Further, the sixth bus bar 43 2, fourth bus bar 41 2 and the electrode extraction portion 48 2, a bus bar for connecting the fifth bus bar 42 2 and the electrode extraction portion 49 2.
- Left edge 20 shielding region 24 3 is formed along the 3 and a right edge portion 20 shielded area 24 4 formed along the fourth windshield 20H is for the design improvement often narrows .. Therefore, in many cases sufficient space can not be taken to arrange the bus bars so as to be hidden in the shielded area 24 3 and 24 4.
- busbar strip-like regions S 1 and S 2 By consolidating the busbar strip-like regions S 1 and S 2 to the lower edge 20 2, it is possible to reduce the number of bus bars arranged in a left edge 20 3 and the right edge 20 4. Thus, even if the narrow shielding regions 24 3 and 24 4, can be arranged bus bars so as to be hidden in the shielded area 24 3 and 24 4.
- FIG. 12 is a cross-sectional view showing a modified example of the cross-sectional structure of the windshield, and shows a cross section corresponding to FIG. 1 (b).
- the film thickness of the first interlayer film 231 is preferably 0.01 mm or more and 0.8 mm or less, more preferably 0.025 mm or more and 0.4 mm or less, and further preferably 0.05 mm or more and 0.1 mm or less.
- the film thickness of the first interlayer film 231 is not more than the lower limit, the handleability and handling at the time of manufacturing are excellent.
- the film thickness of the first interlayer film 231 is not more than the upper limit, heat transfer to the outside of the glass by energization is excellent.
- the film thickness of the second interlayer film 232 is preferably 0.3 mm or more and 2.0 mm or less, more preferably 0.4 mm or more and 1.8 mm or less, and further preferably 0.5 mm or more and 1.5 mm or less.
- the film thickness of the second interlayer film 232 is at least the lower limit, the penetration resistance is excellent.
- the film thickness of the second interlayer film 232 is not more than the upper limit, the weight reduction is excellent.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 32 are formed on the inner surface of the vehicle of the first interlayer film 231.
- the bus bar 33 is formed.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material by the method described above.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being sequentially attached to the first interlayer film 231 by the method described above.
- the glass plate is brought into contact with the vehicle outer surface 21b of the glass plate 21 and the vehicle inner surfaces of the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the first interlayer film 231.
- the first interlayer film 231 is laminated on 21 to prepare a first laminated body.
- the second intermediate film 232 and the glass plate 22 are sequentially laminated on the first intermediate film 231 of the first laminated body to prepare the second laminated body.
- a laminated glass having the cross-sectional structure of FIG. 12A can be produced.
- the suitable film thickness and Young's modulus of the first interlayer film 231 and the second interlayer film 232 are the same as in the case of FIG. 12A.
- the first interlayer film 231 is laminated on the glass plate 21 so that the outer surface 21b of the glass plate 21 and the inner surface of the first interlayer film 231 are in contact with each other to prepare the first laminated body.
- the second interlayer film is in contact with the outer surfaces of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the first interlayer film 231 of the first laminated body.
- the 232 is laminated, and the glass plate 22 is further laminated to prepare a second laminated body. Then, by heating and pressurizing the second laminated body in a vacuum as described above, a laminated glass having the cross-sectional structure of FIG. 12B can be produced.
- the second intermediate film 232 is deformed by heating and pressurizing in a vacuum, and the second intermediate film 232 comes into contact with the first intermediate film 231.
- the single-layer interlayer film 23 is provided as a first interlayer film 231 provided on the glass plate 21 side and a second intermediate film 232 provided on the glass plate 22 side.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed on the inner surface of the base material 25 arranged between the first interlayer film 231 and the second interlayer film 232. Has been done.
- the suitable film thickness and Young's modulus of the first interlayer film 231 and the second interlayer film 232 are the same as in the case of FIG. 12A.
- a conductive thin wire 30, a first bus bar 31, a second bus bar 32, and a third bus bar 33 are formed on the inner surface of the base material 25.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material by the method described above.
- the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being sequentially attached to the first interlayer film 231 by the method described above.
- the first interlayer film 231 is arranged on the outer surface 21b of the glass plate 21. Further, the inner surface of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the base material 25 is in contact with the outer surface of the first interlayer film 231.
- the base material 25 is placed on the first interlayer film 231 to prepare the first laminated body.
- the second interlayer film 232 and the glass plate 22 are sequentially laminated on the base material 25 of the first laminated body to prepare the second laminated body. Then, by heating and pressurizing the second laminated body in a vacuum as described above, a laminated glass having the cross-sectional structure of FIG. 12C can be produced.
- the first intermediate film 231 is deformed by heating and pressurizing in a vacuum, and the first intermediate film 231 comes into contact with the base material 25.
- Example 1 As shown in the plan view of FIG. 13, a laminated glass 300A simulating a windshield was produced as an evaluation sample.
- the laminated glass 300A has a trapezoidal shape in a plan view, and has a central region 301 and band-shaped regions 302 and 303 on both sides of the central region 301.
- the cross-sectional shape was as shown in FIG. 1 (b).
- a copper foil having a thickness of 9 ⁇ m was attached to a PET film having a thickness of 100 ⁇ m, and then etched using photolithography to form conductive thin wires. Then, the first bus bar is arranged on the upper side and the second bus bar is arranged on the lower side, and the third bus bar for taking out the electrode is arranged outside the laminated glass 300A with the minimum length (about 100 mm) and arranged on the upper and lower sides respectively, and is conductive. A PET film with a fine wire was produced.
- two glass plates (commonly known as FL manufactured by AGC, plate thickness 2 mm) and two interlayer films (PVB manufactured by Solusia Japan, thickness 0.38 mm) were prepared.
- a glass plate / interlayer film / PET film with conductive thin wire / interlayer film / glass plate were laminated in this order to prepare a laminated body.
- this laminate is placed in a rubber bag, bonded in a vacuum of -65 to -100 kPa at a temperature of about 70 to 110 ° C., and further, under the conditions of 100 to 150 ° C. and a pressure of 0.6 to 1.3 MPa.
- a crimping treatment was carried out by heating and pressurizing with a laminated glass 300A.
- the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 1 of the above.
- Example 2 A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300B).
- the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 2 of the above.
- Example 3 A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300C).
- the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 3 of the above.
- Example 4 A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300D).
- the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 4 of the above.
- FIG. 14 is a diagram for explaining the positional relationship between the laminated glass for evaluation and the observer, and the laminated glass 300A is arranged on a horizontal plane at the same angle as when the laminated glass 300A is mounted on the vehicle as a windshield, and is regarded as a driver. It is a schematic cross-sectional view when cut in the direction parallel to the horizontal plane at the height of the line of sight of the observer 400.
- the X direction shows the left-right direction of the vehicle when the laminated glass 300A is mounted on the vehicle as the windshield
- the Y direction shows the front-rear direction of the vehicle when the laminated glass 300A is mounted on the vehicle as the windshield.
- the laminated glass 300A was arranged on the horizontal plane at the same angle as when the laminated glass 300A was mounted on the vehicle as a windshield.
- the distance Ld 0.3 m in the X-direction from the right end of the laminated glass 300A, and the laminated glass 300A
- the angle ⁇ between the viewpoint position of the observer 400 and the center of the band-shaped region 302 was set to 55 degrees.
- the voltage of 11.5 [V] is added from 14 [V] assuming the vehicle voltage to the voltage loss due to the resistance of the third bus bar and the harness in the actual product form.
- the energization strain of the central region 301 and the band-shaped region 302 on the opposite side of the observer 400 was confirmed from the position of the observer 400, and the strength of the energization strain was evaluated on a scale of 0 to 3.
- 0 is a level at which energization distortion is not felt
- 1 is a level at which energization distortion can be slightly recognized but hardly noticeable
- 2 is a level at which energization distortion can be recognized but is acceptable
- 3 is a level at which energization distortion can be recognized and is unacceptable.
- 0 and 1 were set to ⁇ (pass)
- 2 was set to ⁇ (pass)
- 3 was set to x (fail).
- the laminated glass 300B to 300D was also evaluated in the same manner as the laminated glass 300A. The results are shown in FIG.
- the laminated glass 300A of Example 1 in which the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is smaller than the calorific value Wwc per unit length of the conductive thin wire in the central region 301 eg.
- the energization strain of the central region 301 was all passed ( ⁇ ), and the energization strain of the band-shaped region 302 was also passed ( ⁇ or ⁇ ).
- the energization strain in the central region 301 is any.
- the energization distortion of the band-shaped region 302 was also passed ( ⁇ ).
- the energization strain of the central region 301 also increases. It was found that the energization strain of the band-shaped region 302 was also at an acceptable level.
- the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is 1.7 W / m or less, the current-carrying strain of the strip-shaped region 302 is not felt or the current-carrying strain can be recognized slightly. It turned out that it can be reduced to a level that is almost unnoticeable.
- the conductive thin wire and each bus bar are arranged on the glass plate 21 side inside the vehicle.
- the conductive thin wire and each bus bar may be arranged on the glass plate 22 side on the outside of the vehicle.
Landscapes
- Joining Of Glass To Other Materials (AREA)
- Surface Heating Bodies (AREA)
Abstract
This laminated glass comprises a pair of glass plates facing one another, a middle film located between the pair of glass plates, and a plurality of electric conductive thin wires located between the pair of glass plates and heating a see-through region of the pair of glass plates. The see-through region includes a center region and a ribbon-shaped region adjacent to the center region. The amount of heat generation per unit length of the electric conductive thin wires in at least a partial region within the ribbon-shaped region is less than the amount of heat generation per unit length of the electric conductive thin wires in at least a partial region within the center region.
Description
本発明は、合わせガラスに関する。
The present invention relates to laminated glass.
自動車や鉄道の窓ガラスで、冬季に窓ガラスに付着した水分の凍結を解消したり、窓ガラスの曇りを晴らしたりするために、通電により発熱する導電性細線を中間膜と共に一対のガラス板間に挟み込んだ合わせガラスが広く知られている。このような合わせガラスは、電熱窓ガラスや電熱ガラスと称される場合もある。
In the window glass of automobiles and railways, in order to eliminate the freezing of water adhering to the window glass in winter and to clear the fogging of the window glass, conductive thin wires that generate heat when energized are placed between a pair of glass plates together with an interlayer film. Laminated glass sandwiched between them is widely known. Such laminated glass is sometimes referred to as electric window glass or electric heating glass.
具体的には、例えば、主に細い金属線を中間膜に予め張り付けて作製されるもの(例えば、特許文献1参照)、ベース基材上に導電性の配線が形成されたフィルムを封入するもの(例えば、特許文献2、3、4参照)等が挙げられる。
Specifically, for example, a film produced by preliminarily attaching a thin metal wire to an interlayer film (see, for example, Patent Document 1), or a film in which conductive wiring is formed on a base base material is enclosed. (See, for example, Patent Documents 2, 3 and 4) and the like.
しかしながら、上記のような導電性細線を備えた合わせガラスでは、通電時に導電性細線の付近が加熱され、中間膜に温度分布ができることによる通電歪が課題として知られている。特に、自動車のフロントガラスにおいて、透視領域の中央領域と比べ両側辺付近に位置する帯状領域では通電歪が目立ち、運転者に不快感を生じさせるという課題があった。
However, in laminated glass provided with the above-mentioned conductive thin wires, the vicinity of the conductive thin wires is heated during energization, and the current distortion due to the formation of a temperature distribution in the interlayer film is known as a problem. In particular, in the windshield of an automobile, there is a problem that energization distortion is conspicuous in a band-shaped region located near both sides of the windshield as compared with the central region of the fluoroscopic region, causing discomfort to the driver.
本発明は、上記の点に鑑みてなされたものであり、帯状領域に生じる通電歪を抑制可能な合わせガラスを提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a laminated glass capable of suppressing energization strain generated in a band-shaped region.
本合わせガラスは、互いに対向する一対のガラス板と、前記一対のガラス板の間に位置する中間膜と、前記一対のガラス板の間に位置し、前記一対のガラス板の透視領域を加熱する複数の導電性細線と、を有し、前記透視領域は、中央領域、及び前記中央領域に隣接する帯状領域、を含み、前記帯状領域の少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量が、前記中央領域の少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量よりも小さい。
The laminated glass is a plurality of conductive films located between a pair of glass plates facing each other, an interlayer film located between the pair of glass plates, and a plurality of conductive regions located between the pair of glass plates and heating a transparent region of the pair of glass plates. The fluoroscopic region includes a central region and a band-shaped region adjacent to the central region, and the amount of heat generated per unit length of the conductive thin wire in at least a part of the strip-shaped region is , It is smaller than the calorific value per unit length of the conductive thin wire in at least a part of the central region.
開示の一実施態様によれば、帯状領域に生じる通電歪を抑制可能な合わせガラスを提供できる。
According to one embodiment of the disclosure, it is possible to provide a laminated glass capable of suppressing energization strain generated in a band-shaped region.
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。又、各図面において、本発明の内容を理解しやすいように、大きさや形状を一部誇張している場合がある。
Hereinafter, a mode for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted. Further, in each drawing, the size and shape may be partially exaggerated so that the content of the present invention can be easily understood.
なお、以下において、車両とは、代表的には自動車であるが、電車、船舶、航空機等を含む移動体を指すものとする。
In the following, the vehicle is typically an automobile, but refers to a moving body including a train, a ship, an aircraft, and the like.
又、平面視とは合わせガラスの所定領域を所定領域の法線方向から視ることを指し、平面形状とは合わせガラスの所定領域を所定領域の法線方向から視た形状を指すものとする。
Further, the plan view refers to viewing a predetermined region of the laminated glass from the normal direction of the predetermined region, and the planar shape refers to the shape of the predetermined region of the laminated glass viewed from the normal direction of the predetermined region. ..
〈第1実施形態〉
図1は、第1実施形態に係る車両用のフロントガラスを例示する図(その1)であり、図1(a)はフロントガラスを車室内から車室外に視認した様子を模式的に示した図である。図1(b)は、図1(a)のA-A線に沿う部分拡大断面図である。 <First Embodiment>
FIG. 1 is a view (No. 1) illustrating the windshield for a vehicle according to the first embodiment, and FIG. 1 (a) schematically shows a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle. It is a figure. FIG. 1B is a partially enlarged cross-sectional view taken along the line AA of FIG. 1A.
図1は、第1実施形態に係る車両用のフロントガラスを例示する図(その1)であり、図1(a)はフロントガラスを車室内から車室外に視認した様子を模式的に示した図である。図1(b)は、図1(a)のA-A線に沿う部分拡大断面図である。 <First Embodiment>
FIG. 1 is a view (No. 1) illustrating the windshield for a vehicle according to the first embodiment, and FIG. 1 (a) schematically shows a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle. It is a figure. FIG. 1B is a partially enlarged cross-sectional view taken along the line AA of FIG. 1A.
図1(a)では、説明の便宜上、実際の湾曲した形状を省略しフロントガラス20を平面的に示している。なお、以下の説明において、符号201をフロントガラス20の上縁部と称し、符号202を下縁部と称し、符号203を左縁部と称し、符号204を右縁部と称する。ここで、フロントガラス20を右ハンドル車の車両に取り付けて車内側から視たときに、上縁部とは車両のルーフ側の縁部を指し、下縁部とはエンジンルーム側の縁部を指し、左縁部とは助手席側の側縁部を指し、右縁部とは運転席側の側縁部を指す。
In FIG. 1A, for convenience of explanation, the actual curved shape is omitted and the windshield 20 is shown in a plane. In the following explanation, the reference numerals 20 1 and the upper edge of the windshield 20, the reference numeral 20 2 referred to as lower edge, called the reference numeral 20 3 and a left edge portion, referred numeral 20 4 and right edges .. Here, when the windshield 20 is attached to the vehicle of a right-hand drive vehicle and viewed from the inside of the vehicle, the upper edge refers to the edge on the roof side of the vehicle, and the lower edge refers to the edge on the engine room side. The left edge refers to the side edge on the passenger seat side, and the right edge refers to the side edge on the driver's seat side.
図1に示すように、フロントガラス20は、ガラス板21と、ガラス板22と、中間膜23と、遮蔽層24と、導電性細線30と、第1バスバー31と、第2バスバー32と、第3バスバー33とを有する車両用の合わせガラスである。フロントガラス20には、UNR43で定められる試験領域Aが画定されている。
As shown in FIG. 1, the windshield 20 includes a glass plate 21, a glass plate 22, an interlayer film 23, a shielding layer 24, a conductive thin wire 30, a first bus bar 31, a second bus bar 32, and the like. It is a laminated glass for a vehicle having a third bus bar 33. A test area A defined by UNR43 is defined on the windshield 20.
Lは、フロントガラス20を車両に取り付けたときの水平方向の最短長さを示している。すなわち、フロントガラス20を車両に取り付けたときの水平方向の長さは、L以上である。
L indicates the shortest horizontal length when the windshield 20 is attached to the vehicle. That is, the length in the horizontal direction when the windshield 20 is attached to the vehicle is L or more.
ガラス板21は、フロントガラス20を車両に取り付けたときに車内側となる車内側ガラス板である。又、ガラス板22は、フロントガラス20を車両に取り付けたときに車外側となる車外側ガラス板である。
The glass plate 21 is a glass plate inside the vehicle that becomes the inside of the vehicle when the windshield 20 is attached to the vehicle. Further, the glass plate 22 is a vehicle outer glass plate that becomes the outer side of the vehicle when the windshield 20 is attached to the vehicle.
ガラス板21とガラス板22は互いに対向する一対のガラス板であり、中間膜23、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は一対のガラス板の間に位置している。但し、第3バスバー33は、少なくとも一部が一対のガラス板の間に位置していればよく、一対のガラス板の間から一対のガラス板の外側に延伸する部分を有してもよい。
The glass plate 21 and the glass plate 22 are a pair of glass plates facing each other, and the interlayer film 23, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are located between the pair of glass plates. ing. However, the third bus bar 33 may have a portion extending from between the pair of glass plates to the outside of the pair of glass plates, as long as at least a part of the third bus bar 33 is located between the pair of glass plates.
ガラス板21とガラス板22とは、中間膜23、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を挟んだ状態で固着されている。
The glass plate 21 and the glass plate 22 are fixed so as to sandwich the interlayer film 23, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33.
導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、中間膜23とガラス板21との間に配置できる。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33の車内側の面は、ガラス板21の車外側の面21bに接している。又、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33の車外側の面は、中間膜23の車内側の面に接している。なお、中間膜23は、複数層からなる積層体であってもよい。
The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be arranged, for example, between the interlayer film 23 and the glass plate 21. The inner surface of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 is in contact with the outer surface 21b of the glass plate 21. Further, the outer surfaces of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are in contact with the inner surface of the interlayer film 23. The interlayer film 23 may be a laminated body composed of a plurality of layers.
遮蔽層24は、不透明な層であり、例えば、フロントガラス20の周縁部(上縁部201、下縁部202、左縁部203、右縁部204)に沿って帯状に設けることができる。図1の例では、遮蔽層24は、ガラス板21の車内側の面21aに設けられている。但し、遮蔽層24は、必要に応じ、ガラス板22の車内側の面22aに設けられてもよいし、ガラス板21の車内側の面21a及びガラス板22の車内側の面22aの両方に設けられてもよい。
The shielding layer 24 is an opaque layer, for example, the peripheral edge of the windshield 20 (upper edge 20 1, lower edge 20 2, left edge 20 3, right edge 20 4) provided in a strip along the be able to. In the example of FIG. 1, the shielding layer 24 is provided on the inner surface 21a of the glass plate 21. However, the shielding layer 24 may be provided on the vehicle inner surface 22a of the glass plate 22 as needed, or on both the vehicle inner surface 21a of the glass plate 21 and the vehicle inner surface 22a of the glass plate 22. It may be provided.
フロントガラス20の周縁部に不透明な遮蔽層24が存在することで、フロントガラス20の周縁部を車体に保持するウレタン等の樹脂や、カメラ等を係止するブラケットをフロントガラス20に貼り付ける接着部材等の紫外線による劣化を抑制できる。又、バスバーを隠蔽できる。
Due to the presence of the opaque shielding layer 24 on the peripheral edge of the windshield 20, a resin such as urethane that holds the peripheral edge of the windshield 20 on the vehicle body or a bracket that locks the camera or the like is attached to the windshield 20. Deterioration of members due to ultraviolet rays can be suppressed. Also, the bus bar can be hidden.
遮蔽層24はガラス板21とガラス板22の両方に設けられていてもよいし、何れか一方にのみに設けられていてもよい。遮蔽層24は、セラミックペーストをガラス板21及び/またはガラス板22の面上に塗布した後に焼成することにより形成される。遮蔽層24の厚みは3μm以上15μm以下であることが好ましい。また、遮蔽層24の幅は特に限定されないが、20mm以上300mm以下であることが好ましい。
The shielding layer 24 may be provided on both the glass plate 21 and the glass plate 22, or may be provided on only one of them. The shielding layer 24 is formed by applying a ceramic paste on the surface of the glass plate 21 and / or the glass plate 22 and then firing. The thickness of the shielding layer 24 is preferably 3 μm or more and 15 μm or less. The width of the shielding layer 24 is not particularly limited, but is preferably 20 mm or more and 300 mm or less.
図2は、第1実施形態に係る車両用のフロントガラスを例示する図(その2)であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。図2では、遮蔽層24の形成領域を例示している。
FIG. 2 is a view (No. 2) illustrating the windshield for a vehicle according to the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle. FIG. 2 illustrates a region where the shielding layer 24 is formed.
遮蔽層24は、フロントガラス20の上縁部201及び下縁部202に沿って形成される遮蔽領域241及び242と、フロントガラス20の左縁部203及び右縁部204に沿って形成される遮蔽領域243及び244とを含んでいる。遮蔽層24において、フロントガラス20の左右の視界を広げる観点から、遮蔽領域243及び244の幅は遮蔽領域241及び242の幅より小さく形成されていることが好ましい。
The shielding layer 24 is provided with a shielding region 24 1 and 24 2 are formed along the upper edge 20 1 and the lower edge 20 2 of the front glass 20, left edge 20 of the windshield 20 3 and the right edge 20 4 and a shielding region 24 3 and 24 4 which are formed along the. In shielding layer 24, from the viewpoint of widening the left and right view of the windshield 20, the width of the shielding area 24 3 and 24 4 it is preferably formed smaller than the width of the shielding area 24 1 and 24 2.
フロントガラス20において、遮蔽領域241、242、243、及び244で囲まれる台形状の領域は透視領域28であり、透視領域28に図1に示す導電性細線30が配置される。導電性細線30は、透視領域28の全面に設けられていてもよく、その一部に設けられていてもよい。なお、図1(a)は遮蔽層24を透視した状態であり、遮蔽層24、遮蔽領域241、242、243、及び244の符号のみを図示している。後述の各図についても同様である。
In the windshield 20, the area of the trapezoidal surrounded by a shielding region 24 1, 24 2, 24 3, and 24 4 are perspective region 28, conductive thin wire 30 shown in FIG. 1 is disposed in the perspective region 28. The conductive thin wire 30 may be provided on the entire surface of the fluoroscopic region 28, or may be provided on a part thereof. Incidentally, FIG. 1 (a) is a transparent state the shielding layer 24, it is illustrated shield layer 24, the shielding area 24 1, 24 2, 24 3, and 24 4 symbols only. The same applies to each figure described later.
図1に戻り、複数の導電性細線30は、透視領域28を加熱できる。複数の導電性細線30によって形成されるパターンは、特に限定はされないが、例えば、図1(a)に示す網目状(メッシュ状)にできる。複数の導電性細線30は、直線や波線(例えば、正弦波、三角波、矩形波等)、波線と直線との組み合わせ等としてもよい。
Returning to FIG. 1, the plurality of conductive thin wires 30 can heat the fluoroscopic region 28. The pattern formed by the plurality of conductive thin wires 30 is not particularly limited, but can be, for example, a mesh shape (mesh shape) shown in FIG. 1 (a). The plurality of conductive thin wires 30 may be a straight line, a wavy line (for example, a sine wave, a triangular wave, a rectangular wave, etc.), a combination of a wavy line and a straight line, or the like.
第1バスバー31及び第2バスバー32は、平面視で透視領域28の導電性細線30を挟むように対向配置されて導電性細線30と接続されており、導電性細線30に給電できる。第1バスバー31はフロントガラス20の上縁部201に沿って配置されており、第2バスバー32はフロントガラス20の下縁部202に沿って配置されている。
The first bus bar 31 and the second bus bar 32 are arranged to face each other so as to sandwich the conductive thin wire 30 in the perspective region 28 in a plan view and are connected to the conductive thin wire 30, so that power can be supplied to the conductive thin wire 30. The first bus bar 31 is disposed along the upper edge 20 1 of the front glass 20, the second bus bar 32 is disposed along the lower edge 20 2 of the front glass 20.
第3バスバー33は、第1バスバー31と電極取り出し部38、第2バスバー32と電極取り出し部39を接続するバスバーである。すなわち、電極取り出し部38は第3バスバー33を介して第1バスバー31と電気的に接続され、電極取り出し部39は第3バスバー33を介して第2バスバー32と電気的に接続されている。電極取り出し部38及び39は、第3バスバー33の端部に位置し、外部電源の正側及び負側と接続される一対の電極取り出し部である。
The third bus bar 33 is a bus bar that connects the first bus bar 31 and the electrode take-out unit 38, and the second bus bar 32 and the electrode take-out unit 39. That is, the electrode extraction unit 38 is electrically connected to the first bus bar 31 via the third bus bar 33, and the electrode extraction unit 39 is electrically connected to the second bus bar 32 via the third bus bar 33. The electrode take-out portions 38 and 39 are a pair of electrode take-out portions located at the end of the third bus bar 33 and connected to the positive side and the negative side of the external power supply.
電極取り出し部38と電極取り出し部39との間に電圧が印加されると、第1バスバー31と第2バスバー32との間に接続された導電性細線30に電流が流れ、導電性細線30が発熱する。なお、電極取り出し部38と電極取り出し部39との間に電圧が印加されたとしても、第1バスバー31、第2バスバー32、及び第3バスバー33は導電性細線30よりも抵抗値が十分低くなるように設定されるため、第1バスバー31、第2バスバー32、及び第3バスバー33は殆ど発熱しない。
When a voltage is applied between the electrode take-out portion 38 and the electrode take-out portion 39, a current flows through the conductive thin wire 30 connected between the first bus bar 31 and the second bus bar 32, and the conductive thin wire 30 becomes It generates heat. Even if a voltage is applied between the electrode take-out portion 38 and the electrode take-out portion 39, the resistance values of the first bus bar 31, the second bus bar 32, and the third bus bar 33 are sufficiently lower than those of the conductive thin wire 30. The first bus bar 31, the second bus bar 32, and the third bus bar 33 generate almost no heat.
第1バスバー31、第2バスバー32、及び第3バスバー33は、遮蔽領域241、242、及び243に隠蔽されるように配置されることが好ましい。
The first bus bar 31, the second bus bar 32, and the third bus bar 33 is preferably arranged to be concealed in the shielding region 24 1, 24 2, and 24 3.
図3は、第1実施形態に係る車両用のフロントガラスの帯状領域について説明する図であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。
FIG. 3 is a diagram for explaining a band-shaped region of the windshield for a vehicle according to the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
図3に示すように、フロントガラス20を平面視したときに、透視領域28は、中央領域C、並びに中央領域Cに隣接する帯状領域S1及びS2を含む。
As shown in FIG. 3, when the windshield 20 is viewed in a plan view, the perspective region 28 includes a central region C and strip-shaped regions S 1 and S 2 adjacent to the central region C.
帯状領域S1は、透視領域28において、試験領域Aの左縁部及びその延長線で規定される仮想線IL1より外側(左側)の領域である。又、帯状領域S2は、透視領域28において、試験領域Aの右縁部及びその延長線で規定される仮想線IL2より外側(右側)の領域である。又、透視領域28の中央領域Cは、透視領域28において、左右に位置する帯状領域S1と帯状領域S2に挟まれた領域である。
The band-shaped region S 1 is a region outside (left side) of the virtual line IL 1 defined by the left edge portion of the test region A and its extension line in the fluoroscopic region 28. Further, the band-shaped region S 2 is a region outside (right side) of the virtual line IL 2 defined by the right edge portion of the test region A and the extension line thereof in the fluoroscopic region 28. The central area C of the perspective region 28, in the perspective region 28 is sandwiched between the band region S 1 and the band region S 2 located on the left and right areas.
つまり、合わせガラス10を車両に取り付けたときに、中央領域Cは、透視領域28においてUNR43で定められる試験領域A及び試験領域Aと上下に隣接した領域とを合わせた領域であり、帯状領域S1及びS2は、中央領域Cの左右に隣接した領域である。
That is, when the laminated glass 10 is attached to the vehicle, the central region C is a region in which the test region A defined by the UNR 43 and the region A adjacent to the upper and lower sides are combined in the fluoroscopic region 28, and the strip-shaped region S. 1 and S 2 are regions adjacent to the left and right of the central region C.
フロントガラス20では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を、中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さくしている。
In the windshield 20, the amount of heat generated per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 1 or S 2 is determined by the amount of heat generated per unit length of the conductive thin wire 30 in at least a part of the central region C. It is smaller than the calorific value per unit length of 30.
帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を、中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さくすることで、通電時の発熱により生じる帯状領域S1又はS2の少なくとも一方に生じる通電歪を抑制できる。
In at least one of the strip-shaped regions S 1 and S 2, the amount of heat generated per unit length of the conductive thin wire 30 in at least a part of the region is the unit length of the conductive thin wire 30 in at least a part of the central region C. It is made smaller than the amount of heat generated per can suppress the energization distortion of the at least one strip-like region S 1 or S 2 caused by heat generation during energization.
なお、帯状領域S1又はS2の少なくとも一方おける導電性細線30の単位長さ当たりの発熱量が、中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さい領域は、帯状領域S1及びS2の全体であってもよいが、帯状領域S1又はS2の少なくとも一方の30%以上の領域であってもよい。
The calorific value per unit length of the conductive thin wire 30 in at least one of the strip-shaped regions S 1 or S 2 is larger than the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. The small region may be the entire strip-shaped regions S 1 and S 2 , but may be at least 30% or more of at least one of the strip-shaped regions S 1 or S 2.
つまり、帯状領域S1及びS2の両方における導電性細線30の単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さくする必要はない。例えば、帯状領域S1のみの、少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を、中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量より小さくしてもよい。或いは、帯状領域S2のみの、少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量より小さくしてもよい。
That is, the calorific value per unit length of the conductive thin wire 30 in both the strip-shaped regions S 1 and S 2 is smaller than the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. do not have to. For example, only the band region S 1, at least a portion of the calorific value per unit length of the conductive thin wire 30 in the region, the heat generation per unit length of the conductive thin wire 30 in at least a partial region of the central region C It may be smaller than the amount. Alternatively, the calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 2 is the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. It may be smaller.
帯状領域S1又はS2の少なくとも一方おける導電性細線30の単位長さ当たりの発熱量と、中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量と、の差は、0.14W/m以上1.5W/m以下であることが好ましく、0.56W/m以上1.0W/m以下であることがより好ましい。発熱量の差が該範囲にあることで、中央領域と帯状領域との間の通電歪の差が気にならないレベルにできる。
The calorific value per unit length of the conductive thin wire 30 in at least one of the strip-shaped regions S 1 or S 2 and the calorific value per unit length of the conductive thin wire 30 in at least a part of the central region C. The difference is preferably 0.14 W / m or more and 1.5 W / m or less, and more preferably 0.56 W / m or more and 1.0 W / m or less. When the difference in calorific value is within this range, the difference in energization strain between the central region and the band-shaped region can be set to a level that is not noticeable.
ここで、発熱量は、「W=IV=RI2=V2/R・・・(1)」により算出できる。又、導電性細線30の抵抗と導電性細線30の長さ及び断面積との関係は、「R=ρ(L/A)・・・(2)」である。但し、W:電力、V:電圧、I:電流、R:抵抗、L:長さ、A:断面積、ρ:電気抵抗率である。
Here, the calorific value can be calculated by "W = IV = RI 2 = V 2 / R ... (1)". The relationship between the resistance of the conductive thin wire 30 and the length and cross-sectional area of the conductive thin wire 30 is "R = ρ (L / A) ... (2)". However, W: electric power, V: voltage, I: current, R: resistance, L: length, A: cross-sectional area, ρ: electrical resistivity.
従って、式(1)(2)より、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さくするには、以下のようにすればよい。
Therefore, according to the equations (1) and (2) , in at least one of the strip-shaped regions S 1 and S 2 , the calorific value per unit length of the conductive thin wire 30 in at least a part of the region is determined to be at least a part of the central region C. In order to make it smaller than the amount of heat generated per unit length of the conductive thin wire 30 in the region, the following may be performed.
すなわち、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、導電性細線30として抵抗率の大きい金属を用いる、導電性細線30の線径を細くする、導電性細線30を薄くする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。
That is, in at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, using a metal having a high resistivity as a conductive thin wire 30, the wire diameter of the electroconductive thin line 30 A method such as thinning or thinning the conductive thin wire 30 can be used. Alternatively, two or more of these may be combined.
帯状領域S1又はS2の少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量は、2.1W/m以下であることが望ましく、1.7W/m以下であることがより望ましい。帯状領域S1又はS2の少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量が2.1W/m以下であれば、帯状領域S1又はS2の通電歪を抑制できる。帯状領域S1又はS2の少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量が1.7W/m以下であれば、帯状領域S1又はS2の通電歪を更に抑制できる。
The calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 1 or S 2 is preferably 2.1 W / m or less, and preferably 1.7 W / m or less. More desirable. If the calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 1 or S 2 is 2.1 W / m or less, the energization strain of the strip-shaped region S 1 or S 2 can be suppressed. .. If the calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 1 or S 2 is 1.7 W / m or less, the energization strain of the strip-shaped region S 1 or S 2 is further suppressed. it can.
又、融氷や防曇の性能を発現するため、帯状領域S1又はS2の少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量は、0.6W/m以上であることが望ましい。
Further, in order to exhibit the performance of ice melting and anti-fog, the calorific value per unit length of the conductive thin wire 30 in at least a part of the band-shaped region S 1 or S 2 is 0.6 W / m or more. Is desirable.
運転者がフロントガラス20を通して車両の前方を見たときに、運転者の視点が斜めになる(アイポイントからの角度が大きくなる)フロントガラス20上の位置において、運転者は通電歪を認識しやすい。そのため、帯状領域S1及びS2のうち、運転者の視点がより斜めになる方の発熱量を抑制し通電歪を抑制すると有効である。フロントガラス20を有する車両が右ハンドルの自動車である場合、運転者の視点がより斜めになるのは、左縁部203側に位置する帯状領域S1である。そのため、帯状領域S1及びS2のうち、運転者の視点がより斜めになる帯状領域S1の少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30の単位長さ当たりの発熱量よりも小さくして発熱量を抑制すると、通電歪を抑制する効果が特に顕著である。
When the driver looks at the front of the vehicle through the windshield 20, the driver recognizes the energization distortion at the position on the windshield 20 where the driver's viewpoint becomes slanted (the angle from the eye point becomes large). Cheap. Therefore, among the band regions S 1 and S 2, it is effective when the driver's point of view to suppress the inhibition energized strain the heating value of the direction which becomes more oblique. If a vehicle having a windshield 20 is an automobile RHD, the driver's viewpoint becomes more oblique is the band region S 1 is located in the left edge portion 20 3. Therefore, among the band regions S 1 and S 2, at least the amount of heat generated per unit length of the conductive thin wire 30 in at least a partial region of the band region S 1 the driver's viewpoint becomes more oblique central region C When the calorific value is suppressed by making it smaller than the calorific value per unit length of the conductive thin wire 30 in a part of the region, the effect of suppressing the energization strain is particularly remarkable.
又、フロントガラス20を車両に取り付けたときの水平方向の長さが長いほど、運転者の視点がより斜めになり易い。そのため、フロントガラス20を車両に取り付けたときの水平方向の長さL(図1参照)が1000mm以上である場合に、帯状領域S1及びS2のうち、運転者の視点がより斜めになる方の発熱量を抑制すると、通電歪を抑制する効果が特に顕著である。
Further, the longer the length in the horizontal direction when the windshield 20 is attached to the vehicle, the more the driver's viewpoint tends to be slanted. Therefore, when the horizontal length when attached to the windshield 20 of the vehicle L (see FIG. 1) is not less than 1000 mm, among the band regions S 1 and S 2, the driver's viewpoint becomes more oblique When the calorific value of the one is suppressed, the effect of suppressing the energization strain is particularly remarkable.
ここで、透視領域28の中央領域Cにおける第1バスバー31と第2バスバー32との間の抵抗値をRc、帯状領域S1及びS2のそれぞれの第1バスバー31と第2バスバー32との間の抵抗値をRsとする。そして、第1バスバー31と第2バスバー32との間に電圧Vを印加する場合を考える。
Here, the resistance value between the first bus bar 31 and the second bus bar 32 in the central region C of the fluoroscopic region 28 is Rc, and the first bus bar 31 and the second bus bar 32 in the band-shaped regions S 1 and S 2 , respectively, Let Rs be the resistance value between them. Then, consider a case where a voltage V is applied between the first bus bar 31 and the second bus bar 32.
図3に示すような上下方向からの給電(上下給電)の場合、RcとRsとが並列に接続されるので、透視領域28の中央領域Cの発熱量Wcは「Wc=V2/Rc」で表され、帯状領域S1及びS2のそれぞれの発熱量Wsは「Ws=V2/Rs」で表される。すなわち、RsをRcに対して大きくすることで、発熱量Wsを発熱量Wcよりも小さくすることが可能となり、通電時に発熱が原因で帯状領域S1及びS2に生じる通電歪を抑制できる。
In the case of power supply from the vertical direction (vertical power supply) as shown in FIG. 3, since Rc and Rs are connected in parallel, the calorific value Wc of the central region C of the fluoroscopic region 28 is “Wc = V 2 / Rc”. The calorific value Ws of each of the band-shaped regions S 1 and S 2 is represented by “Ws = V 2 / Rs”. In other words, by increasing the Rs respect Rc, it is possible to reduce than the calorific value Ws calorific Wc, heat generation can be suppressed energization distortion of the band region S 1 and S 2 caused when energized.
フロントガラス20では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることが好ましい。帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を更に抑制できる。
In the windshield 20, in at least one strip-like region S 1 or S 2, the amount of heat generated per unit area in at least a partial region of the central region C of the heating value of the perspective area 28 per unit area in at least a region It is preferable to make it smaller than. In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を、透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくするには、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30として抵抗率の大きい金属を用いる、導電性細線30の線径を細くする、導電性細線30を薄くする、隣接する導電性細線30のピッチを大きくする、導電性細線30が波線の場合には各導電性細線30のWFを大きくする、導電性細線30を折り返して線長を長くする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。なお、WFは、ウェーブファクターであり、点Aを始点とし点Bを終点とする波線の線長を、点Aと点Bとの間の直線距離で除した値である。
In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. the at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, using a metal having a high resistivity as a conductive thin wire 30, The wire diameter of the conductive thin wire 30 is reduced, the conductive thin wire 30 is thinned, the pitch of the adjacent conductive thin wire 30 is increased, and when the conductive thin wire 30 is a wavy line, the WF of each conductive thin wire 30 is increased. A method such as folding back the conductive thin wire 30 to lengthen the wire length can be used. Alternatively, two or more of these may be combined. Note that WF is a wave factor, which is a value obtained by dividing the line length of a wavy line starting from a point A and ending at a point B by a straight line distance between the point A and the point B.
帯状領域S1又はS2の少なくとも一部の領域における単位面積当たりの発熱量は、600W/m2以下であることが望ましい。より望ましくは500W/m2以下、更に望ましくは400W/m2以下である。帯状領域S1又はS2の少なくとも一部の領域における単位面積当たりの発熱量が600W/m2以下であれば、帯状領域S1又はS2の通電歪を抑制できる。帯状領域S1又はS2の少なくとも一部の領域における単位面積当たりの発熱量が500W/m2以下であれば、帯状領域S1又はS2の通電歪をより抑制できる。帯状領域S1又はS2の少なくとも一部の領域における単位面積当たりの発熱量が400W/m2以下であれば、帯状領域S1又はS2の通電歪を更に抑制できる。
It is desirable that the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 600 W / m 2 or less. More preferably, it is 500 W / m 2 or less, and even more preferably 400 W / m 2 or less. When the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 600 W / m 2 or less, the energization strain of the band-shaped region S 1 or S 2 can be suppressed. When the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 500 W / m 2 or less, the energization strain of the band-shaped region S 1 or S 2 can be further suppressed. When the calorific value per unit area in at least a part of the band-shaped region S 1 or S 2 is 400 W / m 2 or less, the energization strain of the band-shaped region S 1 or S 2 can be further suppressed.
又、融氷や防曇の性能を発現するため、帯状領域S1又はS2における単位面積当たりの発熱量は、300W/m2以上であることが望ましい。
Further, in order to exhibit the performance of ice melting and anti-fog, it is desirable that the calorific value per unit area in the band-shaped region S 1 or S 2 is 300 W / m 2 or more.
但し、必ずしも、帯状領域S1及びS2の両方における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくする必要はない。例えば、帯状領域S1のみにおける単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくしてもよい。或いは、帯状領域S2のみにおける単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくしてもよい。
However, it is not always necessary to be smaller than the amount of heat generated per unit area in at least a partial region of the central region C of the belt-like regions S 1 and S 2 of the perspective of the amount of heat generated per unit area in both regions 28. For example, it may be smaller than the amount of heat generated per unit area in at least a partial region of the central region C of the belt-like region S 1 seen through the heating value per unit area in only the region 28. Alternatively, the calorific value per unit area in only the band-shaped region S 2 may be smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28.
次に、フロントガラス20の各構成要素の材料等について説明する。
Next, the materials and the like of each component of the windshield 20 will be described.
〔ガラス板21、22〕
ガラス板21及び22は、無機ガラスであっても有機ガラスであってもよい。無機ガラスとしては、例えば、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が特に制限なく用いられる。これらのうちでもソーダライムガラスが特に好ましい。無機ガラスは、未強化ガラス、強化ガラスの何れでもよい。未強化ガラスは、溶融ガラスを板状に成形し、徐冷したものである。強化ガラスは、未強化ガラスの表面に圧縮応力層を形成したものである。 [Glass plates 21, 22]
The glass plates 21 and 22 may be inorganic glass or organic glass. As the inorganic glass, for example, soda lime glass, borosilicate glass, non-alkali glass, quartz glass and the like are used without particular limitation. Of these, soda lime glass is particularly preferable. The inorganic glass may be either untempered glass or tempered glass. Untempered glass is made by molding molten glass into a plate shape and slowly cooling it. Tempered glass is formed by forming a compressive stress layer on the surface of untempered glass.
ガラス板21及び22は、無機ガラスであっても有機ガラスであってもよい。無機ガラスとしては、例えば、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が特に制限なく用いられる。これらのうちでもソーダライムガラスが特に好ましい。無機ガラスは、未強化ガラス、強化ガラスの何れでもよい。未強化ガラスは、溶融ガラスを板状に成形し、徐冷したものである。強化ガラスは、未強化ガラスの表面に圧縮応力層を形成したものである。 [
The
強化ガラスは、物理強化ガラス(例えば風冷強化ガラス)、化学強化ガラスの何れでもよい。物理強化ガラスである場合は、曲げ成形において均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化してもよい。
The tempered glass may be either physically tempered glass (for example, wind-cooled tempered glass) or chemically tempered glass. In the case of physically tempered glass, the glass surface that has been uniformly heated in bending molding is rapidly cooled from a temperature near the softening point, and a compressive stress is generated on the glass surface due to the temperature difference between the glass surface and the inside of the glass. May be strengthened.
化学強化ガラスである場合は、曲げ成形の後、イオン交換法等によってガラス表面に圧縮応力を生じさせることでガラス表面を強化してもよい。又、紫外線又は赤外線を吸収するガラスを用いてもよく、更に、透明であることが好ましいが、透明性を損なわない程度に着色されたガラス板であってもよい。
In the case of chemically tempered glass, the glass surface may be strengthened by generating compressive stress on the glass surface by an ion exchange method or the like after bending molding. Further, glass that absorbs ultraviolet rays or infrared rays may be used, and it is preferable that the glass is transparent, but a glass plate that is colored to such an extent that the transparency is not impaired may be used.
一方、有機ガラスとしては、ポリカーボネート等の透明樹脂が挙げられる。ガラス板21及び22の形状は、特に矩形状に限定されるものではなく、種々の形状及び曲率に加工された形状であってもよい。ガラス板21及び22の曲げ成形としては、重力成形、又はプレス成形等が用いられる。ガラス板21及び22の成形法についても特に限定されないが、例えば、無機ガラスの場合はフロート法等により成形されたガラス板が好ましい。
On the other hand, examples of organic glass include transparent resins such as polycarbonate. The shapes of the glass plates 21 and 22 are not particularly limited to a rectangular shape, and may be a shape processed into various shapes and curvatures. As the bending molding of the glass plates 21 and 22, gravity molding, press molding or the like is used. The molding method of the glass plates 21 and 22 is not particularly limited, but for example, in the case of inorganic glass, a glass plate molded by a float method or the like is preferable.
ガラス板21及び22の板厚は、0.4mm以上3.0mm以下であることが好ましく、1.0mm以上2.5mm以下であることがより好ましく、1.5mm以上2.3mm以下であることが更に好ましく、1.7mm以上2.0mm以下であることが特に好ましい。ガラス板21及び22は互いの板厚は同じでもよく、異なっていてもよい。ガラス板21及び22の板厚が互いに異なる場合は、車内側に位置するガラス板の板厚の方が薄いことが好ましい。車内側に位置するガラス板の方の板厚が薄い場合は、車内側に位置するガラス板の板厚が0.4mm以上、1.3mm以下であると、フロントガラス20を十分軽量化できる。
The plate thickness of the glass plates 21 and 22 is preferably 0.4 mm or more and 3.0 mm or less, more preferably 1.0 mm or more and 2.5 mm or less, and 1.5 mm or more and 2.3 mm or less. Is more preferable, and it is particularly preferable that the thickness is 1.7 mm or more and 2.0 mm or less. The glass plates 21 and 22 may have the same plate thickness or different plate thicknesses. When the plate thicknesses of the glass plates 21 and 22 are different from each other, it is preferable that the plate thickness of the glass plate located inside the vehicle is thinner. When the thickness of the glass plate located inside the vehicle is thinner, the windshield 20 can be sufficiently reduced in weight if the thickness of the glass plate located inside the vehicle is 0.4 mm or more and 1.3 mm or less.
但し、ガラス板21及び22の板厚は常に一定ではなく、必要に応じて場所毎に変わってもよい。例えば、ガラス板21及び22の一方又は両方が、フロントガラス20を車両に取り付けたときの垂直方向の上端側の厚さが下端側よりも厚い断面視楔状の領域を備えていてもよい。
However, the plate thicknesses of the glass plates 21 and 22 are not always constant, and may change from place to place as needed. For example, one or both of the glass plates 21 and 22 may have a cross-sectional wedge-shaped region in which the thickness of the upper end side in the vertical direction when the windshield 20 is attached to the vehicle is thicker than that of the lower end side.
フロントガラス20が湾曲形状である場合、ガラス板21及び22は、フロート法等による成形の後、中間膜23による接着前に、曲げ成形される。曲げ成形は、ガラスを加熱により軟化させて行われる。曲げ成形時のガラスの加熱温度は、大凡550℃~700℃である。
When the windshield 20 has a curved shape, the glass plates 21 and 22 are bent and molded after being molded by the float method or the like and before being bonded by the interlayer film 23. Bending molding is performed by softening the glass by heating. The heating temperature of the glass during bending is approximately 550 ° C to 700 ° C.
〔中間膜23〕
中間膜23としては、熱可塑性樹脂が多く用いられ、例えば、可塑化ポリビニルアセタール系樹脂、可塑化ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、可塑化飽和ポリエステル系樹脂、ポリウレタン系樹脂、可塑化ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等の従来からこの種の用途に用いられている熱可塑性樹脂が挙げられる。又、特開2015-821号公報に記載されている変性ブロック共重合体水素化物を含有する樹脂組成物も好適に使用できる。中間膜23は、可塑化ポリビニルアセタール系樹脂であることが好ましく、ポリビニルブチラールであることがより好ましい。 [Intermediate film 23]
A thermoplastic resin is often used as theinterlayer film 23. For example, a plasticized polyvinyl acetal resin, a plasticized polyvinyl chloride resin, a saturated polyester resin, a plasticized saturated polyester resin, a polyurethane resin, and a plasticized polyurethane Examples thereof include thermoplastic resins conventionally used for this type of application, such as based resins, ethylene-vinyl acetate copolymer resins, and ethylene-ethyl acrylate copolymer resins. Further, a resin composition containing a modified block copolymer hydride described in JP-A-2015-821 can also be preferably used. The interlayer film 23 is preferably a plasticized polyvinyl acetal-based resin, and more preferably polyvinyl butyral.
中間膜23としては、熱可塑性樹脂が多く用いられ、例えば、可塑化ポリビニルアセタール系樹脂、可塑化ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、可塑化飽和ポリエステル系樹脂、ポリウレタン系樹脂、可塑化ポリウレタン系樹脂、エチレン-酢酸ビニル共重合体系樹脂、エチレン-エチルアクリレート共重合体系樹脂等の従来からこの種の用途に用いられている熱可塑性樹脂が挙げられる。又、特開2015-821号公報に記載されている変性ブロック共重合体水素化物を含有する樹脂組成物も好適に使用できる。中間膜23は、可塑化ポリビニルアセタール系樹脂であることが好ましく、ポリビニルブチラールであることがより好ましい。 [Intermediate film 23]
A thermoplastic resin is often used as the
中間膜23の膜厚は、最薄部で0.3mm以上であることが好ましい。中間膜23の膜厚が0.3mm以上であるとフロントガラスとして必要な耐貫通性が十分となる。又、中間膜23の膜厚は、最厚部で2.28mm以下であることが好ましい。中間膜23の膜厚の最大値が2.28mm以下であると、合わせガラスの質量が大きくなり過ぎない。中間膜23の膜厚は、0.3mm以上1mm以下であることが好ましい。又、中間膜23は膜厚が均一ではなく、断面視楔形状を有してもよい。
The film thickness of the interlayer film 23 is preferably 0.3 mm or more at the thinnest part. When the film thickness of the interlayer film 23 is 0.3 mm or more, the penetration resistance required for the windshield is sufficient. The film thickness of the interlayer film 23 is preferably 2.28 mm or less at the thickest portion. When the maximum value of the film thickness of the interlayer film 23 is 2.28 mm or less, the mass of the laminated glass does not become too large. The film thickness of the interlayer film 23 is preferably 0.3 mm or more and 1 mm or less. Further, the interlayer film 23 may have a wedge shape in cross section because the film thickness is not uniform.
なお、中間膜23は、遮音性の機能を有してもよい。例えば、中間膜を3層以上の層から構成し、内部層のショア硬度を可塑剤の調整等により外側の層のショア硬度よりも低くすることにより、合わせガラスの遮音性を向上できる遮音膜であってもよい。この場合、外側の層のショア硬度は同じでもよいし、異なってもよい。
The interlayer film 23 may have a sound insulating function. For example, a sound insulating film capable of improving the sound insulation of laminated glass by forming an interlayer film consisting of three or more layers and lowering the shore hardness of the inner layer to be lower than the shore hardness of the outer layer by adjusting a plasticizer or the like. There may be. In this case, the shore hardness of the outer layer may be the same or different.
中間膜23を作製するには、例えば、中間膜となる上記の樹脂材料を適宜選択し、押出機を用い、加熱溶融状態で押し出し成形する。押出機の押出速度等の押出条件は均一となるように設定する。その後、押し出し成形された樹脂膜を、フロントガラス20のデザインに合わせて、上辺及び下辺に曲率を持たせるために、例えば必要に応じ伸展してもよい。
To produce the interlayer film 23, for example, the above resin material to be an interlayer film is appropriately selected and extruded in a heat-melted state using an extruder. The extrusion conditions such as the extrusion speed of the extruder are set to be uniform. Then, the extruded resin film may be stretched, for example, if necessary, in order to give curvature to the upper side and the lower side according to the design of the windshield 20.
〔遮蔽層24〕
遮蔽層24としては、黒色セラミックス印刷用インクをガラス板上にスクリーン印刷等により塗布後に焼成することにより形成された層を例示できる。遮蔽層24において、遮蔽領域(遮蔽領域241~244の何れか)の幅は、その遮蔽領域に配置される第1バスバー31、第2バスバー32、又は第3バスバー33の幅よりも大きいことが好ましい。 [Shielding layer 24]
Examples of theshielding layer 24 include a layer formed by applying black ceramic printing ink on a glass plate by screen printing or the like and then firing the ink. In shielding layer 24, the width of the shielding area (either shielded area 24 1 to 24 4), the first bus bar 31 disposed in the shielded region, larger than the width of the second bus bar 32, or the third bus bar 33 Is preferable.
遮蔽層24としては、黒色セラミックス印刷用インクをガラス板上にスクリーン印刷等により塗布後に焼成することにより形成された層を例示できる。遮蔽層24において、遮蔽領域(遮蔽領域241~244の何れか)の幅は、その遮蔽領域に配置される第1バスバー31、第2バスバー32、又は第3バスバー33の幅よりも大きいことが好ましい。 [Shielding layer 24]
Examples of the
遮蔽層24をガラス板21の車内側の面21aに設けると、車内からフロントガラス20を見たときに、遮蔽層24によって第1バスバー31、第2バスバー32、及び第3バスバー33を隠蔽でき、外観の意匠性が損なわれず好ましい。
When the shielding layer 24 is provided on the inner surface 21a of the glass plate 21, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be concealed by the shielding layer 24 when the windshield 20 is viewed from the inside of the vehicle. , It is preferable that the design of the appearance is not impaired.
又、遮蔽層24をガラス板22の車内側の面22aに設けると、車外からフロントガラス20を見たときに、遮蔽層24によって第1バスバー31、第2バスバー32、及び第3バスバー33を隠蔽でき、外観の意匠性が損なわれず好ましい。
Further, when the shielding layer 24 is provided on the inner surface 22a of the glass plate 22, when the windshield 20 is viewed from the outside of the vehicle, the shielding layer 24 causes the first bus bar 31, the second bus bar 32, and the third bus bar 33 to be formed. It is preferable because it can be concealed and the design of the appearance is not impaired.
又、遮蔽層24を、ガラス板21の車内側の面21aとガラス板22の車内側の面22aの両方に設けてもよい。この場合、車内及び車外からフロントガラス20を見たときに、遮蔽層24によって第1バスバー31、第2バスバー32、及び第3バスバー33を隠蔽でき、外観の意匠性が損なわれず更に好ましい。
Further, the shielding layer 24 may be provided on both the vehicle inner surface 21a of the glass plate 21 and the vehicle inner surface 22a of the glass plate 22. In this case, when the windshield 20 is viewed from the inside and the outside of the vehicle, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be concealed by the shielding layer 24, which is more preferable without impairing the design of the appearance.
〔導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33〕
導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、同一材料により一体に形成できる。 [Conductivethin wire 30, first bus bar 31, second bus bar 32, and third bus bar 33]
The conductivethin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of, for example, the same material.
導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、同一材料により一体に形成できる。 [Conductive
The conductive
導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33の材料は、導電性材料であれば特に制限はないが、例えば、金属材料が挙げられる。金属材料の一例としては、金、銀、銅、アルミニウム、タングステン、白金、パラジウム、ニッケル、コバルト、チタン、イリジウム、亜鉛、マグネシウム、スズ等が挙げられる。又、これらの金属は、めっき加工されていてもよく、合金又は樹脂とのコンポジット(複合)であってもよい。
The material of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 is not particularly limited as long as it is a conductive material, and examples thereof include a metal material. Examples of metal materials include gold, silver, copper, aluminum, tungsten, platinum, palladium, nickel, cobalt, titanium, iridium, zinc, magnesium, tin and the like. Further, these metals may be plated or may be a composite with an alloy or a resin.
導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を同一材料により一体に形成する場合の形成方法は、フォトリソグラフィー等のエッチング方式でもよく、スクリーン印刷、インクジェット印刷、オフセット印刷、フレキソ印刷、又はグラビア印刷等の印刷方式でもよい。何れの方式でも、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を同一材料により一体に形成できる。この場合、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を互いに等しい厚さとしてもよいし、互いに異なる厚さとしてもよい。
When the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are integrally formed of the same material, the forming method may be an etching method such as photolithography, screen printing, inkjet printing, or offset printing. A printing method such as printing, flexographic printing, or gravure printing may be used. In any method, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material. In this case, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may have the same thickness or different thicknesses from each other.
各々の導電性細線30の線幅は、好ましくは25μm以下、より好ましくは20μm以下、更に好ましくは16μm以下である。導電性細線30の線幅が狭いほど、運転者が導電性細線30を視認しにくくなり、導電性細線30の存在が運転の妨げになることを防止できる。
The line width of each conductive thin wire 30 is preferably 25 μm or less, more preferably 20 μm or less, and further preferably 16 μm or less. The narrower the line width of the conductive thin wire 30, the more difficult it is for the driver to see the conductive thin wire 30, and it is possible to prevent the presence of the conductive thin wire 30 from hindering the operation.
各々の導電性細線30の厚さは、好ましくは20μm以下、より好ましくは12μm以下、更に好ましくは8μm以下である。導電性細線30の厚さが薄いほど、導電性細線30が光を反射する面積が減少し、太陽光や対向車のヘッドランプ等の光が反射しにくくなるため、反射光が運転者の運転の妨げになることを防止できる。
The thickness of each conductive thin wire 30 is preferably 20 μm or less, more preferably 12 μm or less, still more preferably 8 μm or less. The thinner the conductive thin wire 30, the smaller the area where the conductive thin wire 30 reflects light, and the less light such as sunlight and headlamps of oncoming vehicles is reflected, so that the reflected light is driven by the driver. It can be prevented from becoming an obstacle.
〔フロントガラス20の製造方法〕
フロントガラス20の製造方法としては、一般的な製造方法を挙げることができるが、以下に一例を示す。 [Manufacturing method of windshield 20]
As a method for manufacturing thewindshield 20, a general manufacturing method can be mentioned, and an example is shown below.
フロントガラス20の製造方法としては、一般的な製造方法を挙げることができるが、以下に一例を示す。 [Manufacturing method of windshield 20]
As a method for manufacturing the
まず、中間膜23の車内側の面に導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成する。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、同一材料により一体に形成できる。中間膜23の車内側の面に導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成する方法は、例えば、中間膜23に直接形成してもよい。或いは、例えば中間膜が2層以上から成り、一つの中間膜上に、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を表面に形成した別の中間膜を積層して、中間膜23としてもよい。後者についての詳細な説明は後述する。
First, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed on the inner surface of the interlayer film 23. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of, for example, the same material. The method of forming the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 on the inner surface of the interlayer film 23 may be formed directly on the interlayer film 23, for example. Alternatively, for example, the interlayer film is composed of two or more layers, and another interlayer film having the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the surface thereof is laminated on one intermediate film. Then, the interlayer film 23 may be used. A detailed description of the latter will be described later.
次に、ガラス板21の車外側の面21bと、中間膜23に形成された第1バスバー31、第2バスバー32、及び第3バスバー33の車内側の面が接するように、ガラス板21上に中間膜23を積層して第1積層体を作製する。そして、第1積層体の中間膜23上に、更にガラス板22を積層して第2積層体を作製する。
Next, on the glass plate 21 so that the vehicle outer surface 21b of the glass plate 21 and the vehicle inner surfaces of the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the interlayer film 23 are in contact with each other. The interlayer film 23 is laminated on the surface to prepare a first laminated body. Then, the glass plate 22 is further laminated on the interlayer film 23 of the first laminated body to prepare the second laminated body.
そして、例えば、第2積層体をゴム袋の中に入れ、-65~-100kPaの真空中で温度約70~110℃で接着する。更に、例えば100~150℃、圧力0.6~1.3MPaの条件で加熱加圧する圧着処理を行うことで、より耐久性の優れた合わせガラスを得ることができる。但し、場合によっては工程の簡略化、及び合わせガラス中に封入する材料の特性を考慮して、この加熱加圧工程を使用しない場合もある。真空中での加熱及び加圧により、中間膜23が変形し、中間膜23に形成された導電性細線30の車内側の面がガラス板21の車外側の面21bと接する。
Then, for example, the second laminate is placed in a rubber bag and bonded at a temperature of about 70 to 110 ° C. in a vacuum of -65 to -100 kPa. Further, for example, by performing a pressure bonding process of heating and pressurizing under the conditions of 100 to 150 ° C. and a pressure of 0.6 to 1.3 MPa, a laminated glass having more excellent durability can be obtained. However, in some cases, this heating and pressurizing step may not be used in consideration of the simplification of the step and the characteristics of the material to be sealed in the laminated glass. The interlayer film 23 is deformed by heating and pressurizing in a vacuum, and the inner surface of the conductive thin wire 30 formed on the interlayer film 23 comes into contact with the outer surface 21b of the glass plate 21.
なお、ガラス板21とガラス板22との間に、本願の効果を損なわない範囲で、中間膜23及び導電性細線30の他に、赤外線反射、発光、調光、可視光反射、散乱、加飾、吸収等の機能を持つフィルムやデバイスを有していてもよい。
In addition to the interlayer film 23 and the conductive thin wire 30, infrared reflection, light emission, dimming, visible light reflection, scattering, and addition are applied between the glass plate 21 and the glass plate 22 as long as the effects of the present application are not impaired. It may have a film or device having functions such as decoration and absorption.
このように、フロントガラス20では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を抑制できる。
As described above, in the windshield 20, in at least one of the strip-shaped regions S 1 and S 2 , the amount of heat generated per unit length of the conductive thin wire in at least a part of the region is changed to the conductivity in at least a part of the central region C. is made smaller than the amount of heat generated per unit length of sexual thin line, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized.
又、フロントガラス20では、RcとRsを適切な値に設定することで、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量Wsを小さくでき、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を抑制できる。
Moreover, the windshield 20, by setting the Rc and Rs to an appropriate value, in at least one strip-like region S 1 or S 2, it is possible to reduce the calorific value Ws per unit area in at least a part of the region, conduction sometimes heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused.
又、フロントガラス20では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を、透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を更に抑制できる。
Further, in the windshield 20, in at least one of the strip-shaped regions S 1 and S 2 , the amount of heat generated per unit area in at least a part of the region is measured per unit area in at least a part of the central region C of the fluoroscopic region 28. is made smaller than the amount of heat generation can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
又、フロントガラス20では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における発熱量Wsを小さくすることで、総消費電力を低減可能となり、車両の航続距離を伸ばすことができる。すなわち、従来の電熱ガラスでは、透視領域を全て一様に加熱することしかできず、消費電力を浪費してしまう問題があり、車両の航続距離を伸ばすことが困難であったが、フロントガラス20では、この問題を解決できる。
Moreover, the windshield 20, in at least one strip-like region S 1 or S 2, by reducing the calorific value Ws at least part of the region, it becomes possible to reduce the total power consumption, is to extend the cruising distance of the vehicle it can. That is, with the conventional electric heating glass, only the entire see-through region can be heated uniformly, and there is a problem that power consumption is wasted, and it is difficult to extend the cruising range of the vehicle. However, the windshield 20 So we can solve this problem.
〈第1実施形態の変形例1〉
第1実施形態の変形例1では、各々の導電性細線が第1実施形態とは形状が異なる例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification 1 of the first embodiment>
Modification 1 of the first embodiment shows an example in which each conductive thin wire has a different shape from that of the first embodiment. In the first modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
第1実施形態の変形例1では、各々の導電性細線が第1実施形態とは形状が異なる例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <
図4は、第1実施形態の変形例1に係る車両用のフロントガラスを例示する図であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。
FIG. 4 is a diagram illustrating a windshield for a vehicle according to a modification 1 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
図4に示すように、フロントガラス20Aは、導電性細線30が導電性細線30Aに置換された点がフロントガラス20(図1、図3等参照)と相違する。
As shown in FIG. 4, the windshield 20A differs from the windshield 20 (see FIGS. 1, 3, etc.) in that the conductive thin wire 30 is replaced with the conductive thin wire 30A.
複数の導電性細線30は網目状(メッシュ状)のパターンであったが、複数の導電性細線30Aは直線状のパターンである。直線状の複数の導電性細線30Aは、互いに平行に配置されていなくてもよい。又、複数の導電性細線30Aを波線(例えば、正弦波、三角波、矩形波等)や、波線と直線との組み合わせ等としてもよい。
The plurality of conductive thin wires 30 had a mesh-like pattern, but the plurality of conductive thin wires 30A had a linear pattern. The plurality of linear conductive thin wires 30A do not have to be arranged parallel to each other. Further, the plurality of conductive thin wires 30A may be a wavy line (for example, a sine wave, a triangular wave, a rectangular wave, etc.), a combination of the wavy line and a straight line, and the like.
帯状領域S1及びS2に配置された導電性細線30Aのピッチは、2.8mm以下であることが好ましい。帯状領域S1及びS2に配置された導電性細線30Aのピッチが2.8mm以下であると、導電性細線30Aの1本当たりに流れる電流を抑制できる。また、ピッチが該範囲であれば、中間膜が均一に加熱され、温度分布が生じづらくなる。
The pitch of the conductive thin wires 30A arranged in the strip-shaped regions S 1 and S 2 is preferably 2.8 mm or less. When the pitch of the conductive thin wires 30A arranged in the strip-shaped regions S 1 and S 2 is 2.8 mm or less, the current flowing through each of the conductive thin wires 30A can be suppressed. Further, when the pitch is in this range, the interlayer film is heated uniformly, and it becomes difficult for the temperature distribution to occur.
各々の導電性細線30Aが波線である場合、波長や周期が一定でなくてもよい。又、各々の導電性細線30Aが波線である場合、隣接する導電性細線30Aの位相は揃っていてもよいし、ずれていてもよいが、隣接する導電性細線30Aの位相がずれていると、光の規則的な散乱による光芒を抑制できる点で好適である。
When each conductive thin wire 30A is a wavy line, the wavelength and period do not have to be constant. Further, when each of the conductive thin wires 30A is a wavy line, the phases of the adjacent conductive thin wires 30A may be aligned or may be out of phase, but if the phases of the adjacent conductive thin wires 30A are out of phase. , It is preferable in that it can suppress the light beam due to the regular scattering of light.
図4の例では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30Aの単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30Aの単位長さ当たりの発熱量よりも小さくするために、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Aの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Aの線径よりも細くしている。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Aとして抵抗率の大きい金属を用いる等の方法を用いてもよい。或いは、これらの2つ以上を組み合わせてもよい。
In the example of FIG. 4 , in at least one of the strip-shaped regions S 1 and S 2 , the calorific value per unit length of the conductive thin wire 30A in at least a part of the region is determined by the conductive thin wire in at least a part of the central region C. to be smaller than the amount of heat generated per unit length of 30A, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30A in at least a part of the region, the central region of the perspective area 28 It is made thinner than the wire diameter of each conductive thin wire 30A in at least a part of C. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, a large resistivity as a conductive thin wire 30A A method such as using a metal may be used. Alternatively, two or more of these may be combined.
又、図4において、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を、透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることが好ましい。帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を更に抑制できる。
Further, in FIG. 4, in at least one of the strip-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. It is preferable that the calorific value is smaller than the calorific value. In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
帯状領域S11又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を、透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくするには、例えば、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Aの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Aの線径よりも細くすればよい。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Aとして抵抗率の大きい金属を用いる、隣接する導電性細線30Aのピッチを大きくする、導電性細線30Aが波線の場合には各導電性細線30AのWFを大きくする、導電性細線30Aを折り返して線長を長くする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。
In at least one of the band-shaped regions S 11 or S 2 , the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. the, for example, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30A in at least part of the region, the conductivity in at least a partial region of the central region C of the perspective area 28 It may be thinner than the wire diameter of the thin wire 30A. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, a large resistivity as a conductive thin wire 30A Use metal, increase the pitch of adjacent conductive thin wires 30A, increase the WF of each conductive thin wire 30A when the conductive thin wire 30A is a wavy line, increase the wire length by folding back the conductive thin wire 30A, etc. Method can be used. Alternatively, two or more of these may be combined.
導電性細線30A、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、同一材料により一体に形成できる。導電性細線30A、第1バスバー31、第2バスバー32、及び第3バスバー33を同一材料により一体に形成する場合の形成方法は、第1実施形態の場合と同様である。
The conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of, for example, the same material. The forming method in the case where the conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are integrally formed of the same material is the same as in the case of the first embodiment.
導電性細線30A、第1バスバー31、第2バスバー32、及び第3バスバー33は、中間膜23に順に張り付ける形で異なる材料で形成してもよい。具体的には、例えば、まず、中間膜23の表面(例えば車内側の表面)に、第1バスバー31、第2バスバー32、及び第3バスバー33となる1層目バスバーを図4のパターンとなるように固定する。この固定は、第1バスバー31、第2バスバー32、及び第3バスバー33となる1層目バスバーをはんだごて等で加熱しながら、中間膜23の表面に押し付けることで行うことができる。
The conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being attached to the interlayer film 23 in order. Specifically, for example, first, on the surface of the interlayer film 23 (for example, the surface inside the vehicle), a first-layer bus bar serving as a first bus bar 31, a second bus bar 32, and a third bus bar 33 is formed with the pattern of FIG. Fix it so that it becomes. This fixing can be performed by pressing the first layer bus bar, which is the first bus bar 31, the second bus bar 32, and the third bus bar 33, against the surface of the interlayer film 23 while heating with a soldering iron or the like.
次に、1層目バスバーが形成された中間膜23において、複数の導電性細線30Aを所定間隔で図4のパターンとなるように固定し、1層目バスバーと接続された導電性細線30Aを形成する。この固定は、複数の導電性細線30Aをはんだごて等で加熱しながら、中間膜23の表面に押し付けることで行うことができる。なお、複数の導電性細線30Aが波線である場合には、複数の導電性細線30Aを加熱し、かつ波形を付けながら中間膜23の表面に押し付ければよい。
Next, in the interlayer film 23 on which the first layer bus bar is formed, a plurality of conductive thin wires 30A are fixed at predetermined intervals so as to have the pattern shown in FIG. Form. This fixing can be performed by pressing a plurality of conductive thin wires 30A against the surface of the interlayer film 23 while heating them with a soldering iron or the like. When the plurality of conductive thin wires 30A are wavy lines, the plurality of conductive thin wires 30A may be heated and pressed against the surface of the interlayer film 23 while being corrugated.
次に、1層目バスバー及び導電性細線30Aが形成された中間膜23において、導電性細線30Aを挟んで1層目バスバー上に第1バスバー31、第2バスバー32、及び第3バスバー33となる2層目バスバーを図4のパターンとなるように固定する。この固定は、第1バスバー31、第2バスバー32、及び第3バスバー33となる2層目バスバーをはんだごて等で加熱しながら、中間膜23の表面に押し付けることで行うことができる。
Next, in the interlayer film 23 on which the first layer bus bar and the conductive thin wire 30A are formed, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are placed on the first layer bus bar with the conductive thin wire 30A interposed therebetween. The second layer bus bar is fixed so as to have the pattern shown in FIG. This fixing can be performed by pressing the second layer bus bar, which is the first bus bar 31, the second bus bar 32, and the third bus bar 33, against the surface of the interlayer film 23 while heating with a soldering iron or the like.
以上の工程で、1層目バスバー及び2層目バスバーにより第1バスバー31、第2バスバー32、及び第3バスバー33が形成される。又、1層目バスバーと2層目バスバーの互いに対向する面には不図示のはんだ層等が設けられ、はんだ層等によって導電性細線30Aが固定される。なお、余剰の導電性細線30Aが存在する場合には除去する。
In the above steps, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed by the first layer bus bar and the second layer bus bar. Further, a solder layer (not shown) or the like is provided on the surfaces of the first layer bus bar and the second layer bus bar facing each other, and the conductive thin wire 30A is fixed by the solder layer or the like. If the excess conductive thin wire 30A is present, it is removed.
次に、導電性細線30A、第1バスバー31、第2バスバー32、及び第3バスバー33が形成された中間膜23とガラス板21から第1積層体を作製する。そして、第1積層体の中間膜23上に、更にガラス板22を積層して第2積層体を作製し、第1実施形態と同様にしてフロントガラス20Aを作製できる。
Next, the first laminated body is produced from the interlayer film 23 and the glass plate 21 on which the conductive thin wire 30A, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed. Then, the glass plate 22 is further laminated on the interlayer film 23 of the first laminated body to produce the second laminated body, and the windshield 20A can be produced in the same manner as in the first embodiment.
このように、複数の導電性細線は網目状(メッシュ状)のパターンには限定はされず、直線や波線(例えば、正弦波、三角波、矩形波等)、波線と直線との組み合わせ等としてもよい。
In this way, the plurality of conductive thin lines are not limited to a mesh-like pattern, and may be a straight line, a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.), or a combination of a wavy line and a straight line. Good.
なお、図5に示すフロントガラス20Bのように、第1バスバー31を上縁部201から左縁部203及び右縁部204に延伸させ、直線状の複数の導電性細線30Bを互いに平行に配置してもよい。第1バスバー31及び第2バスバー32を図5のように配置することで、透視領域28の中央領域Cと帯状領域S1及びS2とで導電性細線30Bの方向を揃えることができるため、より簡易に製造できる。
As in the windshield 20B shown in FIG. 5, the first bus bar 31 is extended from the upper edge 20 1 to a left edge 20 3 and the right edge 20 4, together a plurality of linear conductive thin wire 30B It may be arranged in parallel. By disposing the first bus bar 31 and second bus bar 32 as shown in FIG. 5, it is possible to align the direction of the electroconductive thin line 30B at the central region C and band region S 1 and S 2 of the fluoroscopic area 28, It can be manufactured more easily.
図5の例では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30Bの単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30Bの単位長さ当たりの発熱量よりも小さくするために、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Bの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Bの線径よりも細くしている。1本の導電性細線30Bが、線形の太い部分と細い部分とを有していてもよい。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Bとして抵抗率の大きい金属を用いる、隣接する導電性細線30Bのピッチを大きくする、導電性細線30Bが波線の場合には各導電性細線30BのWFを大きくする、導電性細線30Bを折り返して線長を長くする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。
In the example of FIG. 5 , in at least one of the strip-shaped regions S 1 and S 2 , the calorific value per unit length of the conductive thin wire 30B in at least a part of the region is calculated as the heat generation amount per unit length of the conductive thin wire in at least a part of the central region C. to be smaller than the amount of heat generated per unit length of 30B, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30B in at least part of the region, the central region of the perspective area 28 It is made thinner than the wire diameter of each conductive thin wire 30B in at least a part of C. One conductive thin wire 30B may have a linear thick portion and a thin portion. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, a large resistivity as a conductive thin wire 30B Use metal, increase the pitch of adjacent conductive thin wires 30B, increase the WF of each conductive thin wire 30B when the conductive thin wire 30B is a wavy line, increase the wire length by folding back the conductive thin wire 30B, etc. Method can be used. Alternatively, two or more of these may be combined.
又、図5において、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることが好ましい。帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を更に抑制できる。
Further, in FIG. 5, in at least one of the strip-shaped regions S 1 and S 2 , the amount of heat generated per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. It is preferably smaller than the amount. In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくするには、例えば、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Bの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Bの線径よりも細くすればよい。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Bとして抵抗率の大きい金属を用いる、隣接する導電性細線30Bのピッチを大きくする、導電性細線30Bが波線の場合には各導電性細線30BのWFを大きくする、導電性細線30Bを折り返して線長を長くする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。
In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. is, for example, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30B in at least part of the region, the electroconductive thin line in at least a partial region of the central region C of the perspective area 28 It may be thinner than the wire diameter of 30B. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, a large resistivity as a conductive thin wire 30B Use metal, increase the pitch of adjacent conductive thin wires 30B, increase the WF of each conductive thin wire 30B when the conductive thin wire 30B is a wavy line, increase the wire length by folding back the conductive thin wire 30B, etc. Method can be used. Alternatively, two or more of these may be combined.
〈第1実施形態の変形例2〉
第1実施形態の変形例2では、第1実施形態とは導電性細線への給電方向が異なる例を示す。なお、第1実施形態の変形例2において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification 2 of the first embodiment>
Modification 2 of the first embodiment shows an example in which the feeding direction to the conductive thin wire is different from that of the first embodiment. In the second modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
第1実施形態の変形例2では、第1実施形態とは導電性細線への給電方向が異なる例を示す。なお、第1実施形態の変形例2において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <
図6は、第1実施形態の変形例2に係る車両用のフロントガラスを例示する図であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。
FIG. 6 is a diagram illustrating a windshield for a vehicle according to a modification 2 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
図6に示すように、フロントガラス20Cでは、左縁部203に沿って第1バスバー31を配置し、右縁部204に沿って第2バスバー32を配置している。すなわち、フロントガラス20Cでは給電方向が左右方向である点が、給電方向が上下方向であるフロントガラス20(図1参照)と相違する。
As shown in FIG. 6, the windshield 20C, the first bus bar 31 along the left edge 20 3 arranged, it is arranged a second bus bar 32 along the right edge 20 4. That is, the windshield 20C differs from the windshield 20 (see FIG. 1) in that the feeding direction is the left-right direction, which is the vertical direction.
第1バスバー31及び第2バスバー32は、平面視で透視領域28の導電性細線30Cを挟むように対向配置されて導電性細線30Cと接続されており、導電性細線30Cに給電できる。複数の導電性細線30Cは直線状のパターンである。但し、複数の導電性細線30Cを波線(例えば、正弦波、三角波、矩形波等)や、波線と直線との組み合わせ等としてもよい。又、複数の導電性細線30Cを網目状(メッシュ状)のパターンとしてもよい。
The first bus bar 31 and the second bus bar 32 are arranged to face each other so as to sandwich the conductive thin wire 30C in the perspective region 28 in a plan view and are connected to the conductive thin wire 30C, and can supply power to the conductive thin wire 30C. The plurality of conductive thin wires 30C are linear patterns. However, the plurality of conductive thin wires 30C may be wavy lines (for example, sine wave, triangular wave, square wave, etc.), a combination of wavy lines and straight lines, and the like. Further, a plurality of conductive thin wires 30C may be formed into a mesh-like pattern.
図6に示すような左右方向からの給電(左右給電)の場合、前述のRcとRsとが直列に接続されるので、透視領域28の中央領域C発熱量Wcは「Wc=I2×Rc」で表され、帯状領域S1及びS2のそれぞれ発熱量Wsは「Ws=I2×Rs」で表される。すなわち、RsをRcに対して小さくすることで、発熱量Wsを発熱量Wcよりも小さくでき、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を抑制できる。
In the case of power supply from the left-right direction (left-right power supply) as shown in FIG. 6, since the above-mentioned Rc and Rs are connected in series, the central region C calorific value Wc of the fluoroscopic region 28 is “Wc = I 2 × Rc”. , And the calorific value Ws of each of the band-shaped regions S 1 and S 2 is represented by “Ws = I 2 × Rs”. That is, by reducing the Rs respect Rc, the calorific value Ws can be smaller than the calorific value Wc, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized.
図6の例では、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における導電性細線30Cの単位長さ当たりの発熱量を中央領域Cの少なくとも一部の領域における導電性細線30Cの単位長さ当たりの発熱量よりも小さくするために、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Cの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Cの線径よりも太くしている。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Cとして抵抗率小さい金属を用いる等の方法を用いてもよい。或いは、これらの2つ以上を組み合わせてもよい。
In the example of FIG. 6 , in at least one of the strip-shaped regions S 1 and S 2 , the calorific value per unit length of the conductive thin wire 30C in at least a part of the region is calculated as the heat generation amount per unit length of the conductive thin wire in at least a part of the central region C. to be smaller than the amount of heat generated per unit length of 30C, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30C in at least part of the region, the central region of the perspective area 28 It is made thicker than the wire diameter of each conductive thin wire 30C in at least a part of C. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, at least part of the region, the resistivity as a conductive thin wire 30C small metal You may use a method such as using. Alternatively, two or more of these may be combined.
又、図6において、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることが好ましい。帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくすることで、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を更に抑制できる。
Further, in FIG. 6, in at least one of the strip-shaped regions S 1 and S 2 , the amount of heat generated per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. It is preferably smaller than the amount. In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. in, can be further suppressed energization distortion of the band region S 1 or S 2 exotherm caused when energized.
帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくするには、例えば、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における各導電性細線30Cの線径を、透視領域28の中央領域Cの少なくとも一部の領域における各導電性細線30Cの線径よりも太くすればよい。但し、これに代えて、透視領域28の中央領域Cの少なくとも一部の領域よりも帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域において、導電性細線30Cとして抵抗率の小さい金属を用いる、隣接する導電性細線30Cのピッチを小さくする、導電性細線30Cが波線の場合には各導電性細線30CのWFを小さくする等の方法を用いることができる。或いは、これらの2つ以上を組み合わせてもよい。
In at least one of the band-shaped regions S 1 and S 2 , the calorific value per unit area in at least a part of the region is made smaller than the calorific value per unit area in at least a part of the central region C of the fluoroscopic region 28. is, for example, at least one strip-like region S 1 or S 2, the wire diameter of the electroconductive thin line 30C in at least part of the region, the electroconductive thin line in at least a partial region of the central region C of the perspective area 28 It may be thicker than the wire diameter of 30C. However, instead of this, at least one strip-like region S 1 or S 2 than at least a portion of the area of the central region C of the perspective region 28, in at least some areas, a small resistivity as a conductive thin wire 30C Methods such as using metal, reducing the pitch of adjacent conductive thin wires 30C, and reducing the WF of each conductive thin wire 30C when the conductive thin wire 30C is a wavy line can be used. Alternatively, two or more of these may be combined.
図7に示すフロントガラス20Dのように、透視領域28の中央領域Cと帯状領域S1及びS2において各導電性細線30Dの線径を同一とし、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域に配置された導電性細線30Dを分岐させてもよい。この場合にも、帯状領域S1又はS2の少なくとも一方において、少なくとも一部の領域における単位面積当たりの発熱量を、透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくできるため、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を抑制できる。
As the windshield 20D shown in FIG. 7, in the central region C and band region S 1 and S 2 of the fluoroscopic area 28 the wire diameter of the electroconductive thin line 30D the same, at least one strip-like region S 1 or S 2 , The conductive thin wire 30D arranged in at least a part of the region may be branched. Also in this case, in at least one of the strip-shaped regions S 1 and S 2 , the amount of heat generated per unit area in at least a part of the region is the amount of heat generated per unit area in at least a part of the central region C of the fluoroscopic region 28. since it less than the amount, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized.
導電性細線30C、第1バスバー31、第2バスバー32、及び第3バスバー33は、例えば、同一材料により一体に形成できる。導電性細線30C、第1バスバー31、第2バスバー32、及び第3バスバー33を同一材料により一体に形成する場合の形成方法は、第1実施形態の場合と同様である。導電性細線30Cに代えて導電性細線30Dを用いる場合も同様である。
The conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of, for example, the same material. The forming method in the case where the conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are integrally formed of the same material is the same as in the case of the first embodiment. The same applies when the conductive thin wire 30D is used instead of the conductive thin wire 30C.
導電性細線30C、第1バスバー31、第2バスバー32、及び第3バスバー33は、中間膜23に順に張り付ける形で異なる材料で形成してもよい。導電性細線30C、第1バスバー31、第2バスバー32、及び第3バスバー33を中間膜23に順に張り付ける形で異なる材料で形成する場合の形成方法は、第1実施形態の変形例1の場合と同様である。導電性細線30Cに代えて導電性細線30Dを用いる場合も同様である。
The conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being attached to the interlayer film 23 in order. The forming method in the case where the conductive thin wire 30C, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are sequentially attached to the interlayer film 23 and formed of different materials is the modification of the first embodiment. Same as the case. The same applies when the conductive thin wire 30D is used instead of the conductive thin wire 30C.
このように、給電方向は、フロントガラスの左右方向であっても、上下方向であってもよい。特に、給電方向が左右方向である場合には、図8に示すフロントガラス20Eのように、上縁部201側に、導電性細線30C、第1バスバー31、及び第2バスバー32が存在しない領域Rを設けることが容易である。この場合、領域R内に情報送受信領域50やアンテナ配置領域52等を画定できる点で好適である。
As described above, the power feeding direction may be the left-right direction of the windshield or the up-down direction. In particular, when the feed direction is the lateral direction, as the windshield 20E shown in FIG. 8, the upper edge portion 20 1 side, electroconductive thin line 30C, not the first bus bar 31, and the second bus bar 32 is present It is easy to provide the region R. In this case, it is preferable that the information transmission / reception area 50, the antenna arrangement area 52, and the like can be defined in the area R.
〈第1実施形態の変形例3〉
第1実施形態の変形例3では、第1実施形態とは導電性細線への給電方向が異なる他の例を示す。なお、第1実施形態の変形例3において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification 3 of the first embodiment>
Modification 3 of the first embodiment shows another example in which the feeding direction to the conductive thin wire is different from that of the first embodiment. In the third modification of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
第1実施形態の変形例3では、第1実施形態とは導電性細線への給電方向が異なる他の例を示す。なお、第1実施形態の変形例3において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <
図9は、第1実施形態の変形例3に係る車両用のフロントガラスを例示する図であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。
FIG. 9 is a diagram illustrating a windshield for a vehicle according to a modification 3 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
図9に示すように、フロントガラス20Fは、第1バスバー31と第2バスバー32の組を2組有している。
As shown in FIG. 9, the windshield 20F has two sets of the first bus bar 31 and the second bus bar 32.
左縁部203に沿って配置された第1バスバー311と、下縁部202の左縁部203側に配置された第2バスバー321が1組のバスバーを形成している。又、右縁部204に沿って配置された第1バスバー312と、下縁部202の右縁部204側に配置された第2バスバー322が他の1組のバスバーを形成している。
The first bus bar 31 1 arranged along the left edge 20 3, the second bus bar 32 1 is formed a pair of bus bars arranged in a left edge 20 3 side of the lower edge 20 2. Further, forming the first bus bar 31 2 arranged along the right edge 20 4, the second bus bar 32 a pair of bus bar 2 is other disposed on the right edge 20 4 side of the lower edge portion 20 2 doing.
第1バスバー311及び第2バスバー321は、平面視でL字形に配置されている。そして、複数の導電性細線30Fは、直線部や曲線部等を有するパターンとして、L字の縦線(第1バスバー311)と横線(第2バスバー321)との間に接続されている。帯状領域S1に配置された複数の導電性細線30Fは、1回以上の折り返しを有する線状導体を含む。これにより、帯状領域S1の少なくとも一部の領域に配置された導電性細線30Fの単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくできる。
The first bus bar 31 1 and the second bus bar 32 1 are arranged in an L shape in a plan view. The plurality of conductive thin wires 30F are connected between the L-shaped vertical line (first bus bar 31 1 ) and the horizontal line (second bus bar 32 1 ) as a pattern having a straight line portion, a curved portion, and the like. .. The plurality of conductive thin wires 30F arranged in the strip-shaped region S 1 include a linear conductor having one or more folds. Thus, from the amount of heat generated per unit area in at least a partial region of the central region C of the belt-like area S 1 of the calorific perspective regions 28 per unit area of at least arranged in a partial region the electroconductive thin line 30F Can also be made smaller.
又、第1バスバー312及び第2バスバー322は、平面視でL字形に配置されている。そして、複数の導電性細線30Fは、直線部や曲線部等を有するパターンとして、L字の縦線(第1バスバー312)と横線(第2バスバー322)との間に接続されている。帯状領域S2の少なくとも一部の領域に配置された複数の導電性細線30Fは、1回以上の折り返しを有する線状導体を含む。これにより、帯状領域S2の少なくとも一部の領域に配置された導電性細線30Fの単位面積当たりの発熱量を透視領域28の中央領域Cの少なくとも一部の領域における単位面積当たりの発熱量よりも小さくできる。
The first bus bar 31 2 and the second bus bar 32 2 is disposed in an L-shape in plan view. Then, a plurality of electroconductive thin line 30F is a pattern having a linear portion and a curved portion, and is connected between the L-shaped vertical lines (a first bus bar 31 2) with the horizontal line (the second bus bar 32 2) .. The plurality of conductive thin wires 30F arranged in at least a part of the band-shaped region S 2 include a linear conductor having one or more folds. Thus, from the amount of heat generated per unit area in at least a partial region of the central region C of the belt-shaped region S 2 of the perspective of the amount of heat generated per unit area of at least arranged in a partial region conductive thin line 30F area 28 Can also be made smaller.
但し、複数の導電性細線30Fを波線(例えば、正弦波、三角波、矩形波等)や、波線と直線との組み合わせ等としてもよい。又、複数の導電性細線30Fを網目状(メッシュ状)のパターンとしてもよい。
However, a plurality of conductive thin wires 30F may be used as a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.) or a combination of a wavy line and a straight line. Further, a plurality of conductive thin wires 30F may be formed into a mesh-like pattern.
すなわち、フロントガラス20Fでは、給電方向がL字の縦線と横線との間(L字給電)である点が、給電方向が上下方向であるフロントガラス20(図1参照)と相違する。
That is, the windshield 20F differs from the windshield 20 (see FIG. 1) in that the feeding direction is between the L-shaped vertical line and the horizontal line (L-shaped feeding).
第3バスバー331は、第1バスバー311と電極取り出し部381、第2バスバー321と電極取り出し部391を接続するバスバーである。又、第3バスバー332は、第1バスバー312と電極取り出し部382、第2バスバー322と電極取り出し部392を接続するバスバーである。
The third bus bar 33 1, first bus bar 31 1 and the electrode extraction portion 38 1, a bus bar connecting the second bus bar 32 1 and the electrode extraction portion 39 1. The third bus bar 33 2, first bus bar 31 2 and the electrode extraction portion 38 2, a bus bar connecting the second bus bar 32 2 and the electrode extraction portion 39 2.
電極取り出し部381と電極取り出し部391との間に電圧が印加されると、第1バスバー311と第2バスバー321との間に接続された導電性細線30Fに電流が流れ、導電性細線30Fが発熱する。又、電極取り出し部382と電極取り出し部392との間に電圧が印加されると、第1バスバー312と第2バスバー322との間に接続された導電性細線30Fに電流が流れ、導電性細線30Fが発熱する。
When a voltage is applied between the electrode extraction portion 38 1 and the electrode extraction portion 39 1, a current flows to connected electroconductive thin line 30F between the first bus bar 31 1 and the second bus bar 32 1, conductive The thin wire 30F generates heat. Further, when a voltage is applied, current to the first bus bar 31 2 and connected to the conductive thin line 30F between the second bus bar 32 2 flows between the electrode extraction portion 38 2 and the electrode extraction portion 39 2 , The conductive thin wire 30F generates heat.
図9に示すL字給電の場合は、透視領域28の中央領域Cの少なくとも一部における単位面積当たりの発熱量Wc、並びに帯状領域S1及びS2のそれぞれにおける少なくとも一部の領域の単位面積当たりの発熱量Wsは上下給電の場合と同様に表される。そのため、RsをRcに対して大きくすることで、発熱量Wsを発熱量Wcよりも小さくでき、通電時に発熱が原因で帯状領域S1又はS2に生じる通電歪を抑制できる。RsをRcに対して大きくする方法についても、上下給電の場合と同様である。
For L-shaped feed shown in FIG. 9, a unit area of at least part of the area in each of the heat generation amount Wc, and band region S 1 and S 2 per unit area of at least a portion of the central region C of the perspective area 28 The calorific value Ws per hit is expressed in the same manner as in the case of vertical power supply. Therefore, by increasing the Rs respect Rc, the calorific value Ws can be smaller than the calorific value Wc, heat generation can be suppressed energization distortion of the band region S 1 or S 2 caused when energized. The method of increasing Rs with respect to Rc is the same as in the case of vertical power supply.
このように、給電方向は、フロントガラスの左右方向であっても、上下方向であってもよく、L字給電であってもよい。特に、L字給電の場合には、左右給電である図8の場合と同様に、上縁部201側に、導電性細線30F、第1バスバー311、第1バスバー312、第2バスバー321、及び第2バスバー322が存在しない領域Rを設けることが容易である。この場合、領域R内に情報送受信領域50やアンテナ配置領域52等を画定できる点で好適である。
As described above, the feeding direction may be the left-right direction of the windshield, the vertical direction, or the L-shaped feeding direction. Particularly, in the case of the L-shaped feed, as in the case of FIG. 8 is a lateral feeding, the upper edge portion 20 1 side, electroconductive thin line 30F, the first bus bar 31 1, the first bus bar 31 2, the second bus bar 32 1, and the second bus bar 32 2 it is easy to provide a region R that does not exist. In this case, it is preferable that the information transmission / reception area 50, the antenna arrangement area 52, and the like can be defined in the area R.
なお、図9の例では、第1バスバー311と第2バスバー321が1組のバスバーを形成し、第1バスバー312と第2バスバー322が他の1組のバスバーを形成している。しかし、第1バスバーと第2バスバーの組を2組有する構成には限定されず、第1バスバーと第2バスバーの組を1組有してもよい。第1バスバーと第2バスバーの組を1組有する構成の場合、例えば、第1バスバーは助手席側の側縁部に配置され、第2バスバーは下縁部に配置されてもよい。この構成では、運転者の視点がより斜めになる方(助手席側)の発熱量を抑制し、通電歪を抑制できる。
In the example of FIG. 9, the first bus bar 31 1 and the second bus bar 32 1 form a set of bus bars, and the first bus bar 3 12 and the second bus bar 32 2 form another set of bus bars. There is. However, the configuration is not limited to having two sets of the first bus bar and the second bus bar, and one set of the first bus bar and the second bus bar may be provided. In the case of a configuration having one pair of the first bus bar and the second bus bar, for example, the first bus bar may be arranged at the side edge portion on the passenger seat side, and the second bus bar may be arranged at the lower edge portion. In this configuration, it is possible to suppress the amount of heat generated on the side where the driver's viewpoint is more slanted (passenger seat side) and suppress energization distortion.
〈第1実施形態の変形例4〉
第1実施形態の変形例4では、透視領域28の中央領域Cの加熱と帯状領域S1及びS2の加熱を別回路で行う(独立に加熱する)例を示す。なお、第1実施形態の変形例4において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification 4 of the first embodiment>
In Modification 4 of the first embodiment, heat of the heating strip-shaped region S 1 and S 2 in the central region C of theperspective region 28 in a different circuit (heating independently) shows an example. In the modified example 4 of the first embodiment, the description of the same component as that of the above-described embodiment may be omitted.
第1実施形態の変形例4では、透視領域28の中央領域Cの加熱と帯状領域S1及びS2の加熱を別回路で行う(独立に加熱する)例を示す。なお、第1実施形態の変形例4において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification 4 of the first embodiment>
In Modification 4 of the first embodiment, heat of the heating strip-shaped region S 1 and S 2 in the central region C of the
図10は、第1実施形態の変形例4に係る車両用のフロントガラスを例示する図であり、フロントガラスを車室内から車室外に視認した様子を模式的に示した図である。
FIG. 10 is a diagram illustrating a windshield for a vehicle according to a modification 4 of the first embodiment, and is a diagram schematically showing a state in which the windshield is visually recognized from the inside of the vehicle to the outside of the vehicle.
図10に示すように、フロントガラス20Gは、第1バスバー31、第2バスバー32、第3バスバー33に加え、第4バスバー411及び412、第5バスバー421及び422、第6バスバー431及び432を有している。
As shown in FIG. 10, the windshield 20G, the first bus bar 31, the second bus bar 32, in addition to the third bus bar 33, the fourth bus bar 41 1 and 41 2, the fifth bus bar 42 1 and 42 2, 6 busbar and a 43 1 and 43 2.
上縁部201の中央側に配置された第1バスバー31と、下縁部202の中央側に配置された第2バスバー32が1組のバスバーを形成している。又、上縁部201の左縁部203側に配置された第4バスバー411と、下縁部202の左縁部203側に配置された第5バスバー421が他の1組のバスバーを形成している。又、上縁部201の右縁部204側に配置された第4バスバー412と、下縁部202の右縁部204側に配置された第5バスバー422が更に他の1組のバスバーを形成している。
A first bus bar 31 arranged in the center side of the upper edge portion 20 1, a second bus bar 32 disposed on the center side of the lower edge portion 20 2 is formed a pair of bus bars. Further, the fourth bus bar 41 1 disposed at the left edge portion 20 3 side of the upper edge portion 20 1, a fifth bus bar 42 1 disposed at the left edge portion 20 3 side of the lower edge 20 2 other 1 It forms a pair of busbars. Further, the fourth bus bar 41 2 disposed on the right edge 20 4 side of the upper edge portion 20 1, a lower edge 20 2 of the right edge 20 4 fifth bus bar 42 2 further other disposed on the side It forms a set of busbars.
第1バスバー31及び第2バスバー32は、平面視で透視領域28の中央領域Cに配置された導電性細線30Gを挟むように対向配置され、中央領域Cの導電性細線30Gと接続されており、中央領域Cの導電性細線30Gに給電できる。第4バスバー411及び第5バスバー421は、平面視で透視領域28の帯状領域S1に配置された導電性細線30Gを挟むように対向配置され、帯状領域S1の導電性細線30Gと接続されており、帯状領域S1の導電性細線30Gに給電できる。第4バスバー412及び第5バスバー422は、平面視で透視領域28の帯状領域S2に配置された導電性細線30Gを挟むように対向配置され、帯状領域S2の導電性細線30Gと接続されており、帯状領域S2の導電性細線30Gに給電できる。
The first bus bar 31 and the second bus bar 32 are arranged to face each other so as to sandwich the conductive thin wire 30G arranged in the central region C of the perspective region 28 in a plan view, and are connected to the conductive thin wire 30G in the central region C. , The conductive thin wire 30G in the central region C can be fed. Fourth bus bar 41 first and fifth bus bar 42 1 is disposed opposite so as to sandwich the placed electroconductive thin line 30G to band region S 1 of the perspective region 28 in plan view, the electroconductive thin line 30G of the band-like region S 1 are connected, it can be supplied to the electroconductive thin line 30G of the band-like region S 1. Fourth bus bar 41 second and fifth bus bars 42 2 is opposed so as to sandwich the placed electroconductive thin line 30G to band region S 2 of the fluoroscopic area 28 in a plan view, and a conductive thin wire 30G strip-like region S 2 are connected, can be supplied to the electroconductive thin line 30G of the strip-shaped region S 2.
複数の導電性細線30Gは直線状のパターンである。但し、複数の導電性細線30Gを波線(例えば、正弦波、三角波、矩形波等)や、波線と直線との組み合わせ等としてもよい。又、複数の導電性細線30Gを網目状(メッシュ状)のパターンとしてもよい。
The plurality of conductive thin wires 30G are linear patterns. However, a plurality of conductive thin wires 30G may be used as a wavy line (for example, a sine wave, a triangular wave, a square wave, etc.), a combination of a wavy line and a straight line, and the like. Further, a plurality of conductive thin wires 30G may be formed into a mesh-like pattern.
第3バスバー33は、第1バスバー31と電極取り出し部38、第2バスバー32と電極取り出し部39を接続するバスバーである。又、第6バスバー431は、第4バスバー411と電極取り出し部481、第5バスバー421と電極取り出し部491を接続するバスバーである。又、第6バスバー432は、第4バスバー412と電極取り出し部482、第5バスバー422と電極取り出し部492を接続するバスバーである。
The third bus bar 33 is a bus bar that connects the first bus bar 31 and the electrode take-out unit 38, and the second bus bar 32 and the electrode take-out unit 39. Further, the sixth bus bar 43 1, the fourth bus bar 41 1 and the electrode extraction portion 48 1, a bus bar for connecting the fifth bus bar 42 1 and the electrode extraction portion 49 1. Further, the sixth bus bar 43 2, fourth bus bar 41 2 and the electrode extraction portion 48 2, a bus bar for connecting the fifth bus bar 42 2 and the electrode extraction portion 49 2.
電極取り出し部38と電極取り出し部39との間に電圧が印加されると、第1バスバー31と第2バスバー32との間に接続された中央領域Cの導電性細線30Gに電流が流れ、中央領域Cの導電性細線30Gが発熱する。又、電極取り出し部481と電極取り出し部491との間に電圧が印加されると、第4バスバー411と第5バスバー421との間に接続された帯状領域S1の導電性細線30Gに電流が流れ、帯状領域S1の導電性細線30Gが発熱する。又、電極取り出し部482と電極取り出し部492との間に電圧が印加されると、第4バスバー412と第5バスバー422との間に接続された帯状領域S2の導電性細線30Gに電流が流れ、帯状領域S2の導電性細線30Gが発熱する。
When a voltage is applied between the electrode take-out portion 38 and the electrode take-out portion 39, a current flows through the conductive thin wire 30G in the central region C connected between the first bus bar 31 and the second bus bar 32, and the center The conductive thin wire 30G in the region C generates heat. Further, when a voltage is applied between the electrode extraction portion 48 1 and the electrode extraction portion 49 1, the fourth bus bar 41 1 and connected to electroconductive thin line of the band-like region S 1 between the fifth bus bar 42 1 current flows through the 30G, electroconductive thin line 30G of the band-like region S 1 is heated. Further, when a voltage is applied between the electrode extraction portion 48 2 and the electrode extraction portion 49 2, the fourth bus bar 41 2 and connected to electroconductive thin line of the strip-shaped region S 2 between the fifth bus bar 42 2 current flows through the 30G, electroconductive thin line 30G of the strip-shaped region S 2 generates heat.
電極取り出し部38と電極取り出し部39との間に第1電源から電圧を印加し、電極取り出し部481及び482と電極取り出し部491及び492との間に第2電源から電圧を印加できる。これにより、透視領域28の中央領域Cと帯状領域S1及びS2とを独立に加熱可能となる。例えば、融氷や防曇の優先度の高い透視領域28の中央領域Cを優先的に加熱し、不必要なときは帯状領域S1及びS2は加熱しないようにすることで、総消費電力を抑えることができる。
A voltage is applied from the first power source between the electrode extraction portion 38 and the electrode extraction portion 39, applying a voltage from the second power source between the electrode extraction portion 48 1 and 48 2 and the electrode extraction portion 49 1 and 49 2 it can. This enables heating the central region C and band region S 1 and S 2 of the fluoroscopic area 28 independently. For example, the central area C is heated preferentially high fluoroscopic area 28 priority of deicing and defogging, band region S 1 and S 2 when unnecessary than possible not to heat, the total power consumption Can be suppressed.
但し、電極取り出し部38と電極取り出し部39との間、並びに、電極取り出し部481及び482と電極取り出し部491及び492との間に同一電源を接続して同時に加熱することも可能である。
However, between the electrode extraction portion 38 and the electrode extraction portion 39, as well, it is also possible to heat at the same time by connecting the same power between the electrode extraction portion 48 1 and 48 2 and the electrode extraction portion 49 1 and 49 2 Is.
図11に示すフロントガラス20Hのように、帯状領域S1の第4バスバー411及び第5バスバー421、並びに帯状領域S2の第4バスバー412及び第5バスバー422を下縁部202に集約してもよい。
Like the windshield 20H shown in FIG. 11, the fourth bus bar 41 1 and the fifth bus bar 42 1 of the strip-shaped region S 1 and the fourth bus bar 4 1 2 and the fifth bus bar 42 2 of the strip-shaped region S 2 are formed at the lower edge portion 20. It may be aggregated into 2.
フロントガラス20Hでは、フロントガラス20Gと同様に、第1バスバー31及び第2バスバー32は、平面視で透視領域28の中央領域Cに配置された導電性細線30Hを挟むように対向配置され、中央領域Cの導電性細線30Hと接続されている。第4バスバー411及び第5バスバー421は、所定間隔を空けて下縁部202の左縁部203側に配置され、帯状領域S1に配置された導電性細線30Hと接続されている。又、第4バスバー412及び第5バスバー422は、所定間隔を空けて下縁部202の右縁部204側に配置され、帯状領域S2に配置された導電性細線30Hと接続されている。
In the windshield 20H, similarly to the windshield 20G, the first bus bar 31 and the second bus bar 32 are arranged so as to face each other so as to sandwich the conductive thin wire 30H arranged in the central region C of the fluoroscopic region 28 in a plan view. It is connected to the conductive thin wire 30H in the region C. Fourth bus bar 41 first and fifth bus bar 42 1 is disposed in a left edge 20 3 side of the lower edge portion 20 2 at predetermined intervals, and is connected to the arranged conductive fine line 30H to band region S 1 There is. The fourth bus bar 41 second and fifth bus bars 42 2 is disposed on the right edge 20 4 side of the lower edge portion 20 2 at predetermined intervals, connected to the arranged conductive fine line 30H to band region S 2 Has been done.
フロントガラス20Hの左縁部203に沿って形成される遮蔽領域243及び右縁部204に沿って形成される遮蔽領域244は、デザイン性向上のため、狭くなっていることが多い。そのため、遮蔽領域243及び244に隠れるようにバスバーを配置する十分なスペースが取れない場合が多い。
Left edge 20 shielding region 24 3 is formed along the 3 and a right edge portion 20 shielded area 24 4 formed along the fourth windshield 20H is for the design improvement often narrows .. Therefore, in many cases sufficient space can not be taken to arrange the bus bars so as to be hidden in the shielded area 24 3 and 24 4.
帯状領域S1及びS2のバスバーを下縁部202に集約することで、左縁部203及び右縁部204に配置するバスバーの個数を減らすことができる。これにより、遮蔽領域243及び244が狭い場合にも、遮蔽領域243及び244に隠れるようにバスバーを配置できる。
By consolidating the busbar strip-like regions S 1 and S 2 to the lower edge 20 2, it is possible to reduce the number of bus bars arranged in a left edge 20 3 and the right edge 20 4. Thus, even if the narrow shielding regions 24 3 and 24 4, can be arranged bus bars so as to be hidden in the shielded area 24 3 and 24 4.
〈断面構造の変形例〉
図1(b)にフロントガラス20の断面構造を示したが、フロントガラス20の断面構造は図1(b)には限定されず、各実施形態及び変形例において、図12(a)~図12(c)のように変形してもよい。なお、図12(a)~図12(c)において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification example of cross-sectional structure>
Although the cross-sectional structure of thewindshield 20 is shown in FIG. 1 (b), the cross-sectional structure of the windshield 20 is not limited to FIG. 1 (b), and in each embodiment and modification, FIGS. 12 (a) to 12 (a) to FIG. It may be deformed as in 12 (c). Note that, in FIGS. 12 (a) to 12 (c), the description of the same component as that of the embodiment already described may be omitted.
図1(b)にフロントガラス20の断面構造を示したが、フロントガラス20の断面構造は図1(b)には限定されず、各実施形態及び変形例において、図12(a)~図12(c)のように変形してもよい。なお、図12(a)~図12(c)において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。 <Modification example of cross-sectional structure>
Although the cross-sectional structure of the
図12は、フロントガラスの断面構造の変形例を示す断面図であり、図1(b)に対応する断面を示している。
FIG. 12 is a cross-sectional view showing a modified example of the cross-sectional structure of the windshield, and shows a cross section corresponding to FIG. 1 (b).
図12(a)は、図1(b)において、単層の中間膜23を、ガラス板21側に設けられた第1中間膜231と、ガラス板22側に設けられた第2中間膜232との積層構造に変更した例である。第1中間膜231と第2中間膜232とは接している。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、第1中間膜231とガラス板21との間に配置されている。
In FIG. 12A, in FIG. 1B, the single-layer interlayer film 23 is provided on the glass plate 21 side of the first interlayer film 231 and on the glass plate 22 side of the second interlayer film 232. This is an example of changing to a laminated structure with. The first interlayer film 231 and the second interlayer film 232 are in contact with each other. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are arranged between the first interlayer film 231 and the glass plate 21.
第1中間膜231の膜厚は0.01mm以上0.8mm以下が好ましく、0.025mm以上0.4mm以下がより好ましく、0.05mm以上0.1mm以下が更に好ましい。第1中間膜231の膜厚が下限以上であると製造時の扱い性、ハンドリングに優れる。第1中間膜231の膜厚が上限以下であると通電によるガラス外への熱伝達に優れる。
The film thickness of the first interlayer film 231 is preferably 0.01 mm or more and 0.8 mm or less, more preferably 0.025 mm or more and 0.4 mm or less, and further preferably 0.05 mm or more and 0.1 mm or less. When the film thickness of the first interlayer film 231 is not more than the lower limit, the handleability and handling at the time of manufacturing are excellent. When the film thickness of the first interlayer film 231 is not more than the upper limit, heat transfer to the outside of the glass by energization is excellent.
第2中間膜232の膜厚は0.3mm以上2.0mm以下が好ましく、0.4mm以上1.8mm以下がより好ましく、0.5mm以上1.5mm以下が更に好ましい。第2中間膜232の膜厚が下限以上であると耐貫通性に優れる。第2中間膜232の膜厚が上限以下であると軽量化に優れる。
The film thickness of the second interlayer film 232 is preferably 0.3 mm or more and 2.0 mm or less, more preferably 0.4 mm or more and 1.8 mm or less, and further preferably 0.5 mm or more and 1.5 mm or less. When the film thickness of the second interlayer film 232 is at least the lower limit, the penetration resistance is excellent. When the film thickness of the second interlayer film 232 is not more than the upper limit, the weight reduction is excellent.
第1中間膜231のヤング率は第2中間膜232のヤング率より大きいことが好ましい。第1中間膜231のヤング率が高いことにより、膜厚が薄くてもハンドリングに優れ、また剛性を有するため導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を正確に形成できる。一方、第2中間膜232は適度な柔軟性を有することで、合わせガラスの耐貫通性等の安全性に関わる性能を満たす。第1中間膜231の所定のヤング率は、例えば、ポリビニルアセタール系樹脂の可塑剤量の添加を少量にする、好ましくは可塑剤を添加しないことで得られる。
The Young's modulus of the first interlayer film 231 is preferably larger than the Young's modulus of the second interlayer film 232. Due to the high Young's modulus of the first interlayer film 231, it is excellent in handling even if the film thickness is thin, and because it has rigidity, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be accurately adjusted. Can be formed into. On the other hand, since the second interlayer film 232 has appropriate flexibility, it satisfies performance related to safety such as penetration resistance of laminated glass. The predetermined Young's modulus of the first interlayer film 231 can be obtained, for example, by adding a small amount of the plasticizer of the polyvinyl acetal-based resin, preferably by not adding the plasticizer.
図12(a)の断面構造を有する合わせフロントガラスを作製するには、まず、第1中間膜231の車内側の面に導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成する。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法により、同一材料により一体に形成できる。或いは、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法で、第1中間膜231に順に張り付ける形で異なる材料で形成してもよい。
In order to produce the laminated windshield having the cross-sectional structure of FIG. 12A, first, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 32 are formed on the inner surface of the vehicle of the first interlayer film 231. The bus bar 33 is formed. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material by the method described above. Alternatively, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being sequentially attached to the first interlayer film 231 by the method described above.
次に、ガラス板21の車外側の面21bと、第1中間膜231に形成された第1バスバー31、第2バスバー32、及び第3バスバー33の車内側の面が接するように、ガラス板21上に第1中間膜231を積層して第1積層体を作製する。そして、第1積層体の第1中間膜231上に、更に第2中間膜232及びガラス板22を順次積層して第2積層体を作製する。そして、第2積層体を前述のように真空中で加熱及び加圧することで、図12(a)の断面構造を有する合わせガラスを作製できる。
Next, the glass plate is brought into contact with the vehicle outer surface 21b of the glass plate 21 and the vehicle inner surfaces of the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the first interlayer film 231. The first interlayer film 231 is laminated on 21 to prepare a first laminated body. Then, the second intermediate film 232 and the glass plate 22 are sequentially laminated on the first intermediate film 231 of the first laminated body to prepare the second laminated body. Then, by heating and pressurizing the second laminated body in a vacuum as described above, a laminated glass having the cross-sectional structure of FIG. 12A can be produced.
図12(b)は、図1(b)において、単層の中間膜23を、ガラス板21側に設けられた第1中間膜231と、ガラス板22側に設けられた第2中間膜232との積層構造に変更した他の例である。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、第1中間膜231と第2中間膜232との間に配置されている。
In FIG. 12 (b), in FIG. 1 (b), the single-layer interlayer film 23 is provided on the glass plate 21 side of the first interlayer film 231 and on the glass plate 22 side of the second interlayer film 232. This is another example of changing to a laminated structure with. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are arranged between the first intermediate film 231 and the second intermediate film 232.
第1中間膜231及び第2中間膜232の好適な膜厚やヤング率は、図12(a)の場合と同様である。
The suitable film thickness and Young's modulus of the first interlayer film 231 and the second interlayer film 232 are the same as in the case of FIG. 12A.
図12(b)の断面構造を有する合わせガラスを作製するには、まず、第1中間膜231の車外側の面に導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成する。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法により、同一材料により一体に形成できる。或いは、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法で、第1中間膜231に順に張り付ける形で異なる材料で形成してもよい。
In order to produce the laminated glass having the cross-sectional structure of FIG. 12B, first, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar are formed on the outer surface of the vehicle of the first interlayer film 231. Form 33. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material by the method described above. Alternatively, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being sequentially attached to the first interlayer film 231 by the method described above.
次に、ガラス板21の車外側の面21bと第1中間膜231の車内側の面が接するように、ガラス板21上に第1中間膜231を積層して第1積層体を作製する。次に、第1積層体の第1中間膜231に形成された導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33の車外側の面と接するように第2中間膜232を積層し、更にガラス板22を積層して第2積層体を作製する。そして、第2積層体を前述のように真空中で加熱及び加圧することで、図12(b)の断面構造を有する合わせガラスを作製できる。真空中での加熱及び加圧により、第2中間膜232が変形し、第2中間膜232が第1中間膜231と接する。
Next, the first interlayer film 231 is laminated on the glass plate 21 so that the outer surface 21b of the glass plate 21 and the inner surface of the first interlayer film 231 are in contact with each other to prepare the first laminated body. Next, the second interlayer film is in contact with the outer surfaces of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the first interlayer film 231 of the first laminated body. The 232 is laminated, and the glass plate 22 is further laminated to prepare a second laminated body. Then, by heating and pressurizing the second laminated body in a vacuum as described above, a laminated glass having the cross-sectional structure of FIG. 12B can be produced. The second intermediate film 232 is deformed by heating and pressurizing in a vacuum, and the second intermediate film 232 comes into contact with the first intermediate film 231.
図12(c)は、図1(b)において、単層の中間膜23を、ガラス板21側に設けられた第1中間膜231と、ガラス板22側に設けられた第2中間膜232との積層構造に変更した更に他の例である。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、第1中間膜231と第2中間膜232との間に配置された基材25の車内側の面に形成されている。
In FIG. 12 (c), in FIG. 1 (b), the single-layer interlayer film 23 is provided as a first interlayer film 231 provided on the glass plate 21 side and a second intermediate film 232 provided on the glass plate 22 side. This is yet another example in which the structure is changed to a laminated structure with. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 are formed on the inner surface of the base material 25 arranged between the first interlayer film 231 and the second interlayer film 232. Has been done.
第1中間膜231及び第2中間膜232の好適な膜厚やヤング率は、図12(a)の場合と同様である。
The suitable film thickness and Young's modulus of the first interlayer film 231 and the second interlayer film 232 are the same as in the case of FIG. 12A.
基材25は、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成するための支持体となるものである。基材25は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、環状ポリオレフィン、ポリビニルブチラール等のフィルム状基材を用いることができる。基材25の厚さは、例えば、25~150μm程度にできる。
The base material 25 serves as a support for forming the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33. As the base material 25, for example, a film-like base material such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, cyclic polyolefin, or polyvinyl butyral can be used. The thickness of the base material 25 can be, for example, about 25 to 150 μm.
図12(c)の断面構造を有する合わせガラスを作製するには、まず、基材25の車内側の面に導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33を形成する。導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法により、同一材料により一体に形成できる。或いは、導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33は、前述の方法で、第1中間膜231に順に張り付ける形で異なる材料で形成してもよい。
In order to produce the laminated glass having the cross-sectional structure of FIG. 12 (c), first, a conductive thin wire 30, a first bus bar 31, a second bus bar 32, and a third bus bar 33 are formed on the inner surface of the base material 25. Form. The conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 can be integrally formed of the same material by the method described above. Alternatively, the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 may be formed of different materials in the form of being sequentially attached to the first interlayer film 231 by the method described above.
次に、ガラス板21の車外側の面21bに第1中間膜231を配置する。更に、基材25に形成された導電性細線30、第1バスバー31、第2バスバー32、及び第3バスバー33の車内側の面が第1中間膜231の車外側の面と接するように、第1中間膜231上に基材25を配置し、第1積層体を作製する。そして、第1積層体の基材25上に、更に第2中間膜232及びガラス板22を順次積層して第2積層体を作製する。そして、第2積層体を前述のように真空中で加熱及び加圧することで、図12(c)の断面構造を有する合わせガラスを作製できる。真空中での加熱及び加圧により、第1中間膜231が変形し、第1中間膜231が基材25と接する。
Next, the first interlayer film 231 is arranged on the outer surface 21b of the glass plate 21. Further, the inner surface of the conductive thin wire 30, the first bus bar 31, the second bus bar 32, and the third bus bar 33 formed on the base material 25 is in contact with the outer surface of the first interlayer film 231. The base material 25 is placed on the first interlayer film 231 to prepare the first laminated body. Then, the second interlayer film 232 and the glass plate 22 are sequentially laminated on the base material 25 of the first laminated body to prepare the second laminated body. Then, by heating and pressurizing the second laminated body in a vacuum as described above, a laminated glass having the cross-sectional structure of FIG. 12C can be produced. The first intermediate film 231 is deformed by heating and pressurizing in a vacuum, and the first intermediate film 231 comes into contact with the base material 25.
このように、フロントガラスの断面構造は様々な形態にでき、又、中間膜23を複数の中間膜の積層構造としてもよい。
As described above, the cross-sectional structure of the windshield can be in various forms, and the interlayer film 23 may be a laminated structure of a plurality of interlayer films.
[実施例]
以下、実施例について説明するが、本発明は、これらの例に何ら限定されるものではない。 [Example]
Examples will be described below, but the present invention is not limited to these examples.
以下、実施例について説明するが、本発明は、これらの例に何ら限定されるものではない。 [Example]
Examples will be described below, but the present invention is not limited to these examples.
(例1)
図13の平面図に示すように、評価用サンプルとして、フロントガラスを模擬した合わせガラス300Aを作製した。合わせガラス300Aは、平面視において台形形状であり、中央領域301と、中央領域301の両側に帯状領域302及び303とを有する。 (Example 1)
As shown in the plan view of FIG. 13, alaminated glass 300A simulating a windshield was produced as an evaluation sample. The laminated glass 300A has a trapezoidal shape in a plan view, and has a central region 301 and band-shaped regions 302 and 303 on both sides of the central region 301.
図13の平面図に示すように、評価用サンプルとして、フロントガラスを模擬した合わせガラス300Aを作製した。合わせガラス300Aは、平面視において台形形状であり、中央領域301と、中央領域301の両側に帯状領域302及び303とを有する。 (Example 1)
As shown in the plan view of FIG. 13, a
中央領域301は、上底La=900mm、下底Lb=1100mm、高さLc=850mmの平面視台形形状とした。帯状領域302及び303は、合わせガラス300Aの左右端部からの幅W1=W2=200mmの平面視平行四辺形とした。又、断面形状は、図1(b)に示した通りとした。
The central region 301 has a trapezoidal shape with an upper base La = 900 mm, a lower base Lb = 1100 mm, and a height Lc = 850 mm. The band-shaped regions 302 and 303 are parallelograms having a width W1 = W2 = 200 mm from the left and right ends of the laminated glass 300A. The cross-sectional shape was as shown in FIG. 1 (b).
合わせガラス300Aの作製方法は、次の通りである。
The method for manufacturing the laminated glass 300A is as follows.
まず、厚さ100μmのPETフィルムに厚さ9μmの銅箔を貼り合わせた後、フォトリソグラフィーを用いてエッチングし、導電性細線を形成した。そして、上辺に第1バスバー、下辺に第2バスバーを配置し、合わせガラス300Aの外に電極を取り出すための第3バスバーを最小限の長さ(約100mm)にして上下それぞれに配置し、導電性細線付きPETフィルムを作製した。
First, a copper foil having a thickness of 9 μm was attached to a PET film having a thickness of 100 μm, and then etched using photolithography to form conductive thin wires. Then, the first bus bar is arranged on the upper side and the second bus bar is arranged on the lower side, and the third bus bar for taking out the electrode is arranged outside the laminated glass 300A with the minimum length (about 100 mm) and arranged on the upper and lower sides respectively, and is conductive. A PET film with a fine wire was produced.
次に、2枚のガラス板(AGC社製 通称FL、板厚2mm)と、2枚の中間膜(ソルーシア・ジャパン社製 PVB、厚み0.38mm)を準備した。そして、ガラス板/中間膜/導電性細線付きPETフィルム/中間膜/ガラス板の順に積層して積層体を作製した。次に、この積層体をゴム袋の中に入れ、-65~-100kPaの真空中で温度約70~110℃で接着し、更に、100~150℃、圧力0.6~1.3MPaの条件で加熱加圧する圧着処理を行い、合わせガラス300Aを得た。
Next, two glass plates (commonly known as FL manufactured by AGC, plate thickness 2 mm) and two interlayer films (PVB manufactured by Solusia Japan, thickness 0.38 mm) were prepared. Then, a glass plate / interlayer film / PET film with conductive thin wire / interlayer film / glass plate were laminated in this order to prepare a laminated body. Next, this laminate is placed in a rubber bag, bonded in a vacuum of -65 to -100 kPa at a temperature of about 70 to 110 ° C., and further, under the conditions of 100 to 150 ° C. and a pressure of 0.6 to 1.3 MPa. A crimping treatment was carried out by heating and pressurizing with a laminated glass 300A.
なお、合わせガラス300Aにおいて、中央領域301並びに帯状領域302及び303の各々の単位面積当たりの発熱量、導電性細線の単位長さ当たりの発熱量、ピッチ、線径、ウェーブファクターについては、図15の例1に示す通りとした。
In the laminated glass 300A, the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 1 of the above.
(例2)
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Bとする)。 (Example 2)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300B).
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Bとする)。 (Example 2)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300B).
なお、合わせガラス300Bにおいて、中央領域301並びに帯状領域302及び303の各々の単位面積当たりの発熱量、導電性細線の単位長さ当たりの発熱量、ピッチ、線径、ウェーブファクターについては、図15の例2に示す通りとした。
In the laminated glass 300B, the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 2 of the above.
(例3)
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Cとする)。 (Example 3)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300C).
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Cとする)。 (Example 3)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300C).
なお、合わせガラス300Cにおいて、中央領域301並びに帯状領域302及び303の各々の単位面積当たりの発熱量、導電性細線の単位長さ当たりの発熱量、ピッチ、線径、ウェーブファクターについては、図15の例3に示す通りとした。
In the laminated glass 300C, the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 3 of the above.
(例4)
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Dとする)。 (Example 4)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300D).
例1と同様にして、図13の形状の合わせガラスを作製した(便宜上、合わせガラス300Dとする)。 (Example 4)
A laminated glass having the shape shown in FIG. 13 was produced in the same manner as in Example 1 (for convenience, the laminated glass is 300D).
なお、合わせガラス300Dにおいて、中央領域301並びに帯状領域302及び303の各々の単位面積当たりの発熱量、導電性細線の単位長さ当たりの発熱量、ピッチ、線径、ウェーブファクターについては、図15の例4に示す通りとした。
In the laminated glass 300D, the calorific value per unit area of each of the central region 301 and the strip-shaped regions 302 and 303, the calorific value per unit length of the conductive thin wire, the pitch, the wire diameter, and the wave factor are shown in FIG. As shown in Example 4 of the above.
(評価)
図14は、評価用の合わせガラスと観察者との位置関係について説明する図であり、合わせガラス300Aをフロントガラスとして車両に搭載する場合と同様の角度で水平面上に配置し、ドライバーに見立てた観察者400の視線の高さで水平面と平行な方向に切断したときの横断面模式図である。図14において、X方向は合わせガラス300Aをフロントガラスとして車両に搭載した場合の車両の左右方向、Y方向は合わせガラス300Aをフロントガラスとして車両に搭載した場合の車両の前後方向を示している。 (Evaluation)
FIG. 14 is a diagram for explaining the positional relationship between the laminated glass for evaluation and the observer, and thelaminated glass 300A is arranged on a horizontal plane at the same angle as when the laminated glass 300A is mounted on the vehicle as a windshield, and is regarded as a driver. It is a schematic cross-sectional view when cut in the direction parallel to the horizontal plane at the height of the line of sight of the observer 400. In FIG. 14, the X direction shows the left-right direction of the vehicle when the laminated glass 300A is mounted on the vehicle as the windshield, and the Y direction shows the front-rear direction of the vehicle when the laminated glass 300A is mounted on the vehicle as the windshield.
図14は、評価用の合わせガラスと観察者との位置関係について説明する図であり、合わせガラス300Aをフロントガラスとして車両に搭載する場合と同様の角度で水平面上に配置し、ドライバーに見立てた観察者400の視線の高さで水平面と平行な方向に切断したときの横断面模式図である。図14において、X方向は合わせガラス300Aをフロントガラスとして車両に搭載した場合の車両の左右方向、Y方向は合わせガラス300Aをフロントガラスとして車両に搭載した場合の車両の前後方向を示している。 (Evaluation)
FIG. 14 is a diagram for explaining the positional relationship between the laminated glass for evaluation and the observer, and the
図14に示すように、まず、合わせガラス300Aをフロントガラスとして車両に搭載する場合と同様の角度で水平面上に配置した。このとき、合わせガラス300Aがフロントガラスとして車両に搭載された場合のドライバーとの位置関係を考慮し、合わせガラス300Aの右端部からX-方向に距離Ld=0.3mで、かつ合わせガラス300Aの車内面からY-方向に距離Le=0.9m離れた位置に観察者400を配置した。又、観察者400の視点位置と帯状領域302の中央との角度θを55度とした。
As shown in FIG. 14, first, the laminated glass 300A was arranged on the horizontal plane at the same angle as when the laminated glass 300A was mounted on the vehicle as a windshield. At this time, considering the positional relationship with the driver when the laminated glass 300A is mounted on the vehicle as a windshield, the distance Ld = 0.3 m in the X-direction from the right end of the laminated glass 300A, and the laminated glass 300A The observer 400 was placed at a position separated from the inner surface of the vehicle in the Y-direction by a distance Le = 0.9 m. Further, the angle θ between the viewpoint position of the observer 400 and the center of the band-shaped region 302 was set to 55 degrees.
次に、合わせガラス300Aの第3バスバーに、車両電圧を想定した14[V]から、実際の商品形態における第3バスバーやハーネスの抵抗による電圧損失を加味し、11.5[V]の電圧を印加させた。そして、観察者400の位置から中央領域301と、観察者400と反対側の帯状領域302の通電歪を確認し、通電歪の強弱を0~3の4段階で評価した。
Next, for the third bus bar of the laminated glass 300A, the voltage of 11.5 [V] is added from 14 [V] assuming the vehicle voltage to the voltage loss due to the resistance of the third bus bar and the harness in the actual product form. Was applied. Then, the energization strain of the central region 301 and the band-shaped region 302 on the opposite side of the observer 400 was confirmed from the position of the observer 400, and the strength of the energization strain was evaluated on a scale of 0 to 3.
ここで、0は通電歪を感じないレベル、1は僅かに通電歪を認識できるがほとんど気にならないレベル、2は通電歪を認識できるが許容できるレベル、3は通電歪が認識でき許容できないレベルとし、0及び1を◎(合格)、2を〇(合格)、3を×(不合格)とした。
Here, 0 is a level at which energization distortion is not felt, 1 is a level at which energization distortion can be slightly recognized but hardly noticeable, 2 is a level at which energization distortion can be recognized but is acceptable, and 3 is a level at which energization distortion can be recognized and is unacceptable. 0 and 1 were set to ⊚ (pass), 2 was set to 〇 (pass), and 3 was set to x (fail).
合わせガラス300B~300Dについても、合わせガラス300Aと同様に評価した。結果を図15に示す。
The laminated glass 300B to 300D was also evaluated in the same manner as the laminated glass 300A. The results are shown in FIG.
図15に示すように、帯状領域302における導電性細線の単位長さ当たりの発熱量Wwsと、中央領域301における導電性細線の単位長さ当たりの発熱量Wwcとが等しい例2の合わせガラス300Bでは、中央領域301の通電歪は合格(◎)であったが、帯状領域302の通電歪は許容できないレベルで×(不合格)であった。
As shown in FIG. 15, the laminated glass 300B of Example 2 in which the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 and the calorific value Wwc per unit length of the conductive thin wire in the central region 301 are equal. The energization strain in the central region 301 was acceptable (⊚), but the energization strain in the strip region 302 was × (failed) at an unacceptable level.
これに対して、帯状領域302における導電性細線の単位長さ当たりの発熱量Wwsが、中央領域301における導電性細線の単位長さ当たりの発熱量Wwcよりも小さい例1の合わせガラス300A、例3の合わせガラス300C、及び例4の合わせガラス300Dでは、中央領域301の通電歪は何れも合格(◎)であり、帯状領域302の通電歪も何れも合格(〇又は◎)であった。
On the other hand, the laminated glass 300A of Example 1 in which the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is smaller than the calorific value Wwc per unit length of the conductive thin wire in the central region 301, eg. In the laminated glass 300C of No. 3 and the laminated glass 300D of Example 4, the energization strain of the central region 301 was all passed (⊚), and the energization strain of the band-shaped region 302 was also passed (〇 or ◎).
特に、帯状領域302における導電性細線の単位長さ当たりの発熱量Wwsが1.7W/m以下である例1の合わせガラス300A及び例4の合わせガラス300Dでは、中央領域301の通電歪は何れも合格(◎)であり、帯状領域302の通電歪も何れも合格(◎)であった。
In particular, in the laminated glass 300A of Example 1 and the laminated glass 300D of Example 4 in which the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is 1.7 W / m or less, the energization strain in the central region 301 is any. Was also passed (⊚), and the energization distortion of the band-shaped region 302 was also passed (⊚).
このように、帯状領域302における導電性細線の単位長さ当たりの発熱量Wwsが、中央領域301における導電性細線の単位長さ当たりの発熱量Wwcよりも小さければ、中央領域301の通電歪も帯状領域302の通電歪も許容できるレベルであることがわかった。
As described above, if the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is smaller than the calorific value Wwc per unit length of the conductive thin wire in the central region 301, the energization strain of the central region 301 also increases. It was found that the energization strain of the band-shaped region 302 was also at an acceptable level.
又、帯状領域302における導電性細線の単位長さ当たりの発熱量Wwsが1.7W/m以下であると、帯状領域302の通電歪を感じないレベルか、又は僅かに通電歪を認識できるがほとんど気にならないレベルまで低減できることがわかった。
Further, when the calorific value Wws per unit length of the conductive thin wire in the strip-shaped region 302 is 1.7 W / m or less, the current-carrying strain of the strip-shaped region 302 is not felt or the current-carrying strain can be recognized slightly. It turned out that it can be reduced to a level that is almost unnoticeable.
以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。
Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope of claims. Can be added.
例えば、各実施形態及び変形例では、導電性細線及び各バスバーを車内側のガラス板21側に配置する例を示した。しかし、導電性細線及び各バスバーを車外側のガラス板22側に配置してもよい。
For example, in each embodiment and modification, an example in which the conductive thin wire and each bus bar are arranged on the glass plate 21 side inside the vehicle is shown. However, the conductive thin wire and each bus bar may be arranged on the glass plate 22 side on the outside of the vehicle.
本国際出願は2019年10月30日に出願した日本国特許出願2019-197372号に基づく優先権を主張するものであり、日本国特許出願2019-197372号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2019-197372 filed on October 30, 2019, and the entire contents of Japanese Patent Application No. 2019-197372 are incorporated into this international application. ..
20、20A、20B、20C、20D、20E、20F、20G、20H フロントガラス
201 上縁部
202 下縁部
203 左縁部
204 右縁部
21、22 ガラス板
21a、21b、22a 面
23 中間膜
24 遮蔽層
241、242、243、244 遮蔽領域
25 基材
28 透視領域
30、30A、30B、30C、30D、30E、30F、30G、30H 導電性細線
31、311、312 第1バスバー
32、321、322 第2バスバー
33、331、332 第3バスバー
38、381、382、39、391、392、481、482、491、492 電極取り出し部
411、412 第4バスバー
421、422 第5バスバー
431、432 第6バスバー
50 情報送受信領域
52 アンテナ配置領域
231 第1中間膜
232 第2中間膜 20,20A, 20B, 20C, 20D, 20E, 20F, 20G,20H windshield 20 1 upper edge 20 2 lower edge 20 3 left edge portion 20 4 right edge 21, 22 glass plates 21a, 21b, 22a face 23 intermediate film 24 shielding layer 24 1, 24 2, 24 3, 24 4 shielding region 25 substrate 28 transparent region 30,30A, 30B, 30C, 30D, 30E, 30F, 30G, 30H electroconductive thin line 31 1, 31 2 first bus bar 32, 32 1, 32 2 second bus bar 33 1, 33 2 third bus bar 38 1, 38 2, 39 1, 39 2, 48 1, 48 2, 49 1, 492 2 Electrode take-out section 41 1 , 41 2 4th bus bar 42 1 , 42 2 5th bus bar 43 1 , 43 2 6th bus bar 50 Information transmission / reception area 52 Antenna arrangement area 231 1st interlayer film 232 2nd interlayer film
201 上縁部
202 下縁部
203 左縁部
204 右縁部
21、22 ガラス板
21a、21b、22a 面
23 中間膜
24 遮蔽層
241、242、243、244 遮蔽領域
25 基材
28 透視領域
30、30A、30B、30C、30D、30E、30F、30G、30H 導電性細線
31、311、312 第1バスバー
32、321、322 第2バスバー
33、331、332 第3バスバー
38、381、382、39、391、392、481、482、491、492 電極取り出し部
411、412 第4バスバー
421、422 第5バスバー
431、432 第6バスバー
50 情報送受信領域
52 アンテナ配置領域
231 第1中間膜
232 第2中間膜 20,20A, 20B, 20C, 20D, 20E, 20F, 20G,
Claims (15)
- 互いに対向する一対のガラス板と、
前記一対のガラス板の間に位置する中間膜と、
前記一対のガラス板の間に位置し、前記一対のガラス板の透視領域を加熱する複数の導電性細線と、を有し、
前記透視領域は、中央領域、及び前記中央領域に隣接する帯状領域、を含み、
前記帯状領域の少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量が、前記中央領域の少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量よりも小さい合わせガラス。 A pair of glass plates facing each other and
An interlayer film located between the pair of glass plates and
It is located between the pair of glass plates and has a plurality of conductive thin wires that heat the see-through region of the pair of glass plates.
The fluoroscopic region includes a central region and a band-shaped region adjacent to the central region.
A laminated glass in which the calorific value per unit length of the conductive thin wire in at least a part of the strip-shaped region is smaller than the calorific value per unit length of the conductive thin wire in at least a part of the central region. - 前記合わせガラスを車両に取り付けたときに、
前記中央領域は、前記透視領域においてUNR43で定められる試験領域A及び前記試験領域Aと上下に隣接した領域とを合わせた領域であり、
前記帯状領域は、前記中央領域の左右に隣接した領域である請求項1に記載の合わせガラス。 When the laminated glass is attached to the vehicle,
The central region is a region in which the test region A defined by UNR43 and the region A vertically adjacent to the test region A are combined in the fluoroscopic region.
The laminated glass according to claim 1, wherein the strip-shaped region is a region adjacent to the left and right of the central region. - 前記帯状領域の少なくとも一部の領域における導電性細線の単位長さ当たりの発熱量が0.6W/m以上2.1W/m以下である請求項1又は2に記載の合わせガラス。 The laminated glass according to claim 1 or 2, wherein the calorific value per unit length of the conductive thin wire in at least a part of the strip-shaped region is 0.6 W / m or more and 2.1 W / m or less.
- 前記帯状領域に配置された前記導電性細線と、前記中央領域に配置された前記導電性細線とは、少なくとも一部において、線径が異なる請求項1乃至3の何れか一項に記載の合わせガラス。 The combination according to any one of claims 1 to 3, wherein the conductive thin wire arranged in the strip-shaped region and the conductive thin wire arranged in the central region have different wire diameters at least in part. Glass.
- 前記帯状領域に配置された前記導電性細線と、前記中央領域に配置された前記導電性細線とは、少なくとも一部において、ピッチが異なる請求項1乃至4の何れか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 4, wherein the conductive thin wire arranged in the strip-shaped region and the conductive thin wire arranged in the central region have different pitches at least in a part thereof. ..
- 前記帯状領域の少なくとも一部の領域に配置された前記導電性細線のピッチが2.8mm以下である請求項1乃至5の何れか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 5, wherein the pitch of the conductive thin wires arranged in at least a part of the strip-shaped region is 2.8 mm or less.
- 前記帯状領域の少なくとも一部の領域における単位面積当たりの発熱量が前記中央領域の少なくとも一部の領域における単位面積当たりの発熱量よりも小さい請求項1乃至6の何れか一項に記載の合わせガラス。 The combination according to any one of claims 1 to 6, wherein the calorific value per unit area in at least a part of the band-shaped region is smaller than the calorific value per unit area in at least a part of the central region. Glass.
- 前記合わせガラスは、前記合わせガラスを車両に取り付けて車内側から視たときに、運転席側の側縁部、助手席側の側縁部、上縁部、及び下縁部、を備え、
前記運転席側の側縁部、前記助手席側の側縁部、前記上縁部、及び前記下縁部のうちの少なくとも2つに配置され、前記導電性細線に給電する第1バスバー及び第2バスバーを有する請求項1乃至7の何れか一項に記載の合わせガラス。 The laminated glass includes a side edge portion on the driver's seat side, a side edge portion on the passenger seat side, an upper edge portion, and a lower edge portion when the laminated glass is attached to the vehicle and viewed from the inside of the vehicle.
A first bus bar and a first bus bar arranged at at least two of the side edge portion on the driver's seat side, the side edge portion on the passenger seat side, the upper edge portion, and the lower edge portion to supply power to the conductive thin wire. 2. The laminated glass according to any one of claims 1 to 7, which has a bus bar. - 前記第1バスバーは、前記上縁部に配置され、前記第2バスバーは、前記下縁部に配置される請求項8に記載の合わせガラス。 The laminated glass according to claim 8, wherein the first bus bar is arranged at the upper edge portion, and the second bus bar is arranged at the lower edge portion.
- 前記第1バスバーは、前記運転席側の側縁部に配置され、前記第2バスバーは、前記助手席側の側縁部に配置される請求項8に記載の合わせガラス。 The laminated glass according to claim 8, wherein the first bus bar is arranged on the side edge portion on the driver's seat side, and the second bus bar is arranged on the side edge portion on the passenger seat side.
- 前記第1バスバーと前記第2バスバーの組を2組有し、
一方の組において、前記第1バスバーは、前記助手席側の側縁部に配置され、前記第2バスバーは、前記下縁部の前記助手席側の側縁部側に配置され、
他方の組において、前記第1バスバーは、前記運転席側の側縁部に配置され、前記第2バスバーは、前記下縁部の前記運転席側の側縁部側に配置される請求項8に記載の合わせガラス。 It has two sets of the first bus bar and the second bus bar.
In one set, the first bus bar is arranged on the side edge portion on the passenger seat side, and the second bus bar is arranged on the side edge portion side on the passenger seat side of the lower edge portion.
In the other set, the first bus bar is arranged on the side edge portion on the driver's seat side, and the second bus bar is arranged on the side edge portion on the driver's seat side of the lower edge portion. Laminated glass as described in. - 前記第1バスバーと前記第2バスバーの組を1組有し、
前記第1バスバーは、前記助手席側の側縁部に配置され、前記第2バスバーは、前記下縁部に配置される請求項8に記載の合わせガラス。 Having one set of the first bus bar and the second bus bar,
The laminated glass according to claim 8, wherein the first bus bar is arranged on the side edge portion on the passenger seat side, and the second bus bar is arranged on the lower edge portion. - 前記第1バスバー及び前記第2バスバーは、前記中央領域に配置された前記導電性細線に給電し、
前記帯状領域に配置された前記導電性細線に給電する第4バスバー及び第5バスバーを有し、
前記帯状領域は、前記中央領域と独立に加熱可能である請求項8又は9に記載の合わせガラス。 The first bus bar and the second bus bar supply power to the conductive thin wire arranged in the central region.
It has a fourth bus bar and a fifth bus bar that supply power to the conductive thin wire arranged in the strip-shaped region.
The laminated glass according to claim 8 or 9, wherein the strip-shaped region can be heated independently of the central region. - 前記第1バスバー、前記第2バスバー、前記第4バスバー、及び前記第5バスバーのうちの少なくとも2つが前記下縁部に配置された請求項13に記載の合わせガラス。 The laminated glass according to claim 13, wherein at least two of the first bus bar, the second bus bar, the fourth bus bar, and the fifth bus bar are arranged at the lower edge portion.
- 前記第4バスバー及び前記第5バスバーが前記下縁部に配置された請求項14に記載の合わせガラス。 The laminated glass according to claim 14, wherein the fourth bus bar and the fifth bus bar are arranged at the lower edge portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020004272.3T DE112020004272T5 (en) | 2019-10-30 | 2020-09-28 | LAMINATED GLASS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-197372 | 2019-10-30 | ||
JP2019197372A JP2022177338A (en) | 2019-10-30 | 2019-10-30 | laminated glass |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085003A1 true WO2021085003A1 (en) | 2021-05-06 |
Family
ID=75716181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/036675 WO2021085003A1 (en) | 2019-10-30 | 2020-09-28 | Laminated glass |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022177338A (en) |
DE (1) | DE112020004272T5 (en) |
WO (1) | WO2021085003A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025121303A1 (en) * | 2023-12-08 | 2025-06-12 | Nissha株式会社 | Conductive sheet, resin molded article and production method therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0872674A (en) * | 1994-07-08 | 1996-03-19 | Asahi Glass Co Ltd | Electric heating window glass |
JP2017204388A (en) * | 2016-05-11 | 2017-11-16 | 大日本印刷株式会社 | Conductive heating element and laminated glass |
JP2018123053A (en) * | 2012-12-20 | 2018-08-09 | サン−ゴバン グラス フランスSaint−Gobain Glass France | Glass plate provided with electric heating layer and method for producing the same |
JP2019099405A (en) * | 2017-11-29 | 2019-06-24 | 日本板硝子株式会社 | Windshield |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006045514B4 (en) | 2006-08-16 | 2012-04-05 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Transparent surface electrode |
JP2019197372A (en) | 2018-05-09 | 2019-11-14 | 株式会社日立製作所 | Human flow estimation device and human flow estimation method |
-
2019
- 2019-10-30 JP JP2019197372A patent/JP2022177338A/en active Pending
-
2020
- 2020-09-28 WO PCT/JP2020/036675 patent/WO2021085003A1/en active Application Filing
- 2020-09-28 DE DE112020004272.3T patent/DE112020004272T5/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0872674A (en) * | 1994-07-08 | 1996-03-19 | Asahi Glass Co Ltd | Electric heating window glass |
JP2018123053A (en) * | 2012-12-20 | 2018-08-09 | サン−ゴバン グラス フランスSaint−Gobain Glass France | Glass plate provided with electric heating layer and method for producing the same |
JP2017204388A (en) * | 2016-05-11 | 2017-11-16 | 大日本印刷株式会社 | Conductive heating element and laminated glass |
JP2019099405A (en) * | 2017-11-29 | 2019-06-24 | 日本板硝子株式会社 | Windshield |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025121303A1 (en) * | 2023-12-08 | 2025-06-12 | Nissha株式会社 | Conductive sheet, resin molded article and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2022177338A (en) | 2022-12-01 |
DE112020004272T5 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7192862B2 (en) | glass | |
EP3718983B1 (en) | Windshield | |
US12226977B2 (en) | Laminated glass | |
CN112566880B (en) | Laminated glass | |
JP7044791B2 (en) | Laminated glass and its manufacturing method | |
JP7173429B2 (en) | laminated glass | |
JPWO2017204291A1 (en) | Laminated glass | |
JP7029945B2 (en) | Laminated glass | |
US20230093219A1 (en) | Automobile window glass | |
JP7375771B2 (en) | laminated glass | |
WO2021085003A1 (en) | Laminated glass | |
RU2818273C1 (en) | Laminated glass | |
RU2782822C2 (en) | Multilayered glass | |
CN115461254B (en) | Window glass | |
JP7696537B2 (en) | Window Glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20881612 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20881612 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |