WO2021077849A1 - 玻璃纤维组及玻纤增强树脂基复合材料 - Google Patents
玻璃纤维组及玻纤增强树脂基复合材料 Download PDFInfo
- Publication number
- WO2021077849A1 WO2021077849A1 PCT/CN2020/107018 CN2020107018W WO2021077849A1 WO 2021077849 A1 WO2021077849 A1 WO 2021077849A1 CN 2020107018 W CN2020107018 W CN 2020107018W WO 2021077849 A1 WO2021077849 A1 WO 2021077849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass fiber
- glass
- fiber group
- composite material
- fibers
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/005—Manufacture of flakes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/04—Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
- C08J5/08—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L59/00—Compositions of polyacetals; Compositions of derivatives of polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/38—Inorganic fibres or flakes siliceous
- D21H13/40—Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2355/00—Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
- C08J2355/02—Acrylonitrile-Butadiene-Styrene [ABS] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2359/00—Characterised by the use of polyacetals containing polyoxymethylene sequences only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the invention belongs to the field of composite materials, and particularly relates to a glass fiber group and a glass fiber reinforced resin-based composite material.
- Plastic has the characteristics of light weight and is widely used for various purposes, but its elastic modulus is low and it is not suitable for use as a structural material. Therefore, by making a composite material with high elastic modulus such as glass fiber, plastic can be used as a lightweight and high-strength material. It is known that glass fiber is widely used as a reinforcing material for forming composite materials, and there are other fibers such as carbon fiber and high-strength resin fiber Kevlar.
- One of the known methods for mixing and dispersing fibers in resin is to use side feeding methods, mixing chopped strands cut into strands of hundreds of fiber bundles, or from the vent on the upper part of the resin pelletizer, etc. A yarn strand made of several to dozens of strands is mixed into the opening.
- glass fibers that can disperse resin have a fiber diameter of approximately 10 to 18 ⁇ m (see Japanese Patent Application Publication No. 2009-7179) and 10 to 20 ⁇ m (see Japanese Patent Application Publication No. 2007-277391).
- the specific product is manufactured by the following process: firstly, it is made into resin pellets that uniformly disperse the extruded glass fiber, then the pellets are fed to the injection molding machine, the resin pellets are heated and melted in the molding machine, and finally they are injected into the mold A two-step process for molding, or a one-step process for continuous mixing and injection molding.
- the diameter of glass fiber is 10-18 ⁇ m. If the resin with a fiber content of 20%-50% is injection molded into a thin wall (thickness less than 1mm), the uniform dispersion of the fiber will be impaired and the injection molded product will be damaged. Surface unevenness, fiber lifting, and other surface smoothness problems, as a solution to these problems, 6 ⁇ m glass fiber with a smaller diameter can be used.
- glass fibers are manufactured by mechanical winding methods. In order to form smaller fibers, the winding speed must be increased, and the frequency of fiber cutting during the manufacturing process increases, which is not conducive to stable production. In reality, the production volume has to be reduced. This leads to extremely high production costs, so the use of this ultra-fine glass fiber is limited to special purposes.
- milled fibers have the disadvantage that the aspect ratio of the fiber length to fiber diameter ratio is reduced to 10 or less, and the reinforcement effect is impaired. In order to enhance the performance of the plastic, the preferred aspect ratio is 100 or more.
- the solution containing silane coupling agent and film forming agent was sprayed on short glass fiber (glass wool) with a fiber diameter smaller than chopped yarn strands, a fiber diameter of 3-6 ⁇ m, and an average fiber length of 300-1000 ⁇ m.
- surface treatment can make short glass fibers (glass wool) uniformly dispersed in the thermoplastic resin. It is also possible to use short glass fibers (glass wool) whose fiber length and fiber diameter are smaller than general glass fibers as a reinforcing material, making thin-wall molding easier. Even if injection molded products with a thickness of 1 mm or less are manufactured, appearance defects can be reduced (see JP 2011-183638 Bulletin).
- the short glass fiber refers to that the high-temperature molten glass is introduced into a high-speed rotating centrifuge. Under the action of centrifugal force, the molten glass is thrown out from the tens of thousands of small holes on the side wall of the centrifuge, and then the high temperature It is stretched into very fine fibers under the blowing of gas.
- the silane coupling agent is indispensable for maintaining the interfacial adhesion between the inorganic glass fiber and the organic thermoplastic resin.
- spraying is used for surface treatment, It will be very uneven, and there will be many areas on the surface of the glass fiber that do not have sufficient or almost no adhesion.
- the silane coupling agent is insufficiently bonded, the interface adhesion with the thermoplastic resin is insufficient, and the reinforcing effect cannot be fully exhibited.
- short glass fibers are bundled into a mat shape during the production process.
- the volume is very large, and it is difficult to stably input a predetermined amount into the kneading extruder. Therefore, short glass fibers (glass wool) are cut using a shredder or the like, processed into pellets with an average fiber length of about 800 to 1000 ⁇ m, and a screw feeder is used for feeding.
- the shredder cuts short glass fibers (glass wool)
- it will produce powdery fibers with an aspect ratio of less than 10.
- the reinforcing effect of the powdered fiber is general, and in some patent documents, the aspect ratio is preferably 10 or more.
- the processed short glass fiber (glass wool) has large deviations in fiber length and uneven particle size. Therefore, there is a problem that the feeding amount of the kneading extruder is uneven and the stability is lacking.
- the present invention provides glass fiber groups and glass fiber reinforced resin matrix composite materials.
- the glass fiber group is characterized in that the glass fiber group includes a plurality of glass fibers or modified glass fibers with a diameter of 1-7 ⁇ m.
- the glass fiber group is formed by random distribution of multiple glass fibers or modified glass fibers.
- the glass fiber group is formed by a plurality of glass fibers or modified glass fibers criss-crossed and has meshes.
- the density of the glass fiber group is 100-300 kg/m 3 .
- the thickness of the glass fiber group is 0.2-5 mm.
- the thickness of the glass fiber group is 1 to 3 mm.
- the length and width of the glass fiber group are 2-50 mm.
- the average length of the glass fiber or modified glass fiber is 30-5000 ⁇ m.
- the aspect ratio of the glass fiber or modified glass fiber is greater than 10.
- the glass fiber group is made by a wet molding process.
- the glass fiber is made by a centrifugal molding process.
- the shape of the glass fiber group is one or more of sheet shape, block shape and strip shape.
- a glass fiber-reinforced resin-based composite material is characterized in that the glass fiber-reinforced resin-based composite material comprises 10% to 98% of thermoplastic resin and 2% to 90% of the aforementioned glass fiber group by mass percentage; the glass The fiber group is dispersed in the thermoplastic resin.
- the thermoplastic resin includes polyethylene, high-density polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene-butadiene-acrylonitrile copolymer, polyamide, polycarbonate , Polyacetal, polymethyl methacrylate, polysulfone, polyphenoxy, polyester, thermotropic liquid crystal polymer, polyphenylene sulfide, LCP industrial liquid crystal polymer, polyphenylene sulfide, polyether ether ketone, polyether One or more of sulfone, polyamideimide, polyimide, polyurethane, polyetheramide, polyetherimide, and polyesteramide.
- the aforementioned method for manufacturing the glass fiber group is characterized in that the glass fiber is produced by a centrifugal method, and then the glass fiber is produced by a wet or dry molding process to obtain a glass fiber group with a predetermined shape.
- the glass wool is dispersed in deionized water after being decomposed by a decomposing machine; deionized water is added during decomposing, and the mass ratio of glass wool to deionized water is 1:10-50 during decomposing.
- the deionized glass fiber is added to deionized water, and the glass fiber concentration is 2.8-4.8 kg/L.
- step (3) vacuum dehydration is used to form a glass fiber group of glass fibers; the density of the glass fiber group is 100-300 kg/m 3 .
- step (3.5) there is a step (3.5) between step (3) and step (4), in which the glass fiber group is infiltrated into the modifier and then dried.
- the modifier includes one or more of calixarene, silane coupling agent, phthalate coupling agent and lubricant.
- the amount of the modifier is 0.2 to 1 wt% of the weight of the glass fiber group.
- the glass fiber group produced by the aforementioned method is directly mixed with a thermoplastic resin according to a mass ratio of 0.1 to 50:1, or after being modified, it is mixed with the thermoplastic resin uniformly and then added to the mixer for mixing. Refining or mixing is formed by extrusion molding, injection molding or blow molding through an extruder.
- the glass fiber group is added by a metered side feeding method.
- the disorder in the application of the present invention refers to: 1.
- the multiple glass fibers forming the glass fiber group have different lengths and are randomly distributed within the length range defined by the present invention. 2.
- the multiple glass fibers forming the glass fiber group have different diameters and are randomly distributed within the diameter range defined by the present invention. 3.
- the multiple glass fibers forming the glass fiber group have different length-to-diameter ratios and are randomly distributed within the numerical range defined by the present invention. 4.
- the multiple glass fibers that form the glass fiber group are arranged in different directions. They point to various directions randomly, and form meshes after crisscrossing. The meshes do not run through the thickness direction regularly, but form a structure similar to filter paper. .
- the aspect ratio of the glass fiber group is not particularly limited, as long as it can form a continuous shape.
- the present invention provides a glass fiber group and a glass fiber reinforced resin-based composite material, wherein the composite material includes thermoplastic resin and glass fiber or modified glass fiber, and the glass fiber is made by a centrifugal method, and is formed by a wet molding process or a dry method The process is made into glass fiber group, and then dispersed in resin material.
- the glass fiber group can be made into sheet, block, strip, rod and other required shapes and then added to the thermoplastic resin.
- the fiber in the glass fiber group of the present invention, can be added with resin without surface treatment, and the viscosity of the resin can also be increased to enhance the injection molding ability. Since the glass fiber is manufactured by the centrifugal method, the wet molding process can significantly reduce glass slag and powdered glass, reduce the non-fibrillation phenomenon in the composite material, so that the added glass material can achieve the effect of enhancing the performance of the resin. The resulting composite material has better mechanical strength and more stable quality.
- the glass fiber is processed into a glass fiber group through a wet molding process and a modifier.
- the cutting shape can be arbitrarily selected, and the The addition of glass fiber group to the thermoplastic resin can make the added amount of modified glass fiber more stable, and the glass fiber group obtained by the above pretreatment method not only avoids the generation of glass slag and powdered glass, but also ensures a certain amount of fiber Containment rate.
- the glass fiber group can better maintain the stability of the tensile strength and bending strength of the composite material, and can improve the strength of the composite material.
- the manufacturing method provided in the present invention involves the surface treatment of the glass fiber.
- a more complete fiber surface treatment can be obtained by infiltration. Compared with the usual spraying or spraying method, the surface of the glass fiber can be uniform and comprehensive. Ground adhesion of the modifier is conducive to the stable formation of composite materials. The tensile impact performance of composite materials is better and more stable.
- the mixing process of glass fibers is omitted, so the amount of fibers scattered to the work site can be reduced, and the work environment can be kept clean.
- the glass fiber After the glass fiber is processed into a glass fiber group, it can be put into the resin material by means of metered side feeding for mixing, injection, extrusion or blow molding to ensure that the amount of glass fiber added is controllable and save Production time and manufacturing cost are reduced.
- Figure 1(a) is a scanning electron micrograph of the glass fiber group prepared in Example 1 of the present invention.
- Figure 1(b) is a scanning electron micrograph of the broken glass fiber wool in Comparative Example 1.
- Fig. 2 is a scanning electron micrograph of unfibrillated products produced during the manufacture of glass fibers.
- Figure 3 is a scanning electron micrograph of glass fibers mixed with unfibrous materials.
- Figure 4 is the scanning electron microscope images (a), (b), (c) of the glass fiber group prepared in Example 2 of the present invention under different magnifications, and the scanning electron microscope images of the broken glass fiber cotton in Comparative Example 2 ( d).
- Figure 5 is the scanning electron microscope images (a), (b), (c) of the glass fiber group prepared in Example 3 of the present invention under different magnifications, and the scanning electron microscope images of the broken glass fiber cotton in Comparative Example 3 ( d).
- Fig. 6 is a photo (a) of the glass fiber cotton obtained by crushing by a crusher in Comparative Example 1, and a photo (b) of the glass fiber group obtained by cutting in Example 1 of the present invention.
- Fig. 7 is the scanning electron micrographs (a) and (b) of the surface-treated glass fiber in Comparative Example 2, and the scanning electron micrographs (c) and (d) of the surface-treated glass fiber in Example 2 of the present invention.
- FIG. 8 is a comparison diagram of fiber length distribution in the glass fiber cotton obtained in Comparative Example 2 and the glass fiber group obtained in Example 2.
- FIG. 8 is a comparison diagram of fiber length distribution in the glass fiber cotton obtained in Comparative Example 2 and the glass fiber group obtained in Example 2.
- FIG. 9 is a comparison diagram of the glass fiber content (a) in the composite material obtained in Comparative Example 3 and the fiber glass fiber content (b) in the composite material obtained in Example 3 under different mixing times.
- FIG 10 is a comparison diagram of the glass fiber content (a) in the composite material obtained in Comparative Example 4 and the fiber glass fiber content (b) in the composite material obtained in Example 4 under different mixing times.
- FIG. 11 is a comparison diagram of the glass fiber content (a) in the composite material obtained in Comparative Example 5 and the fiber glass fiber content (b) in the composite material obtained in Example 6 under different mixing times.
- the present invention provides a glass fiber-reinforced resin-based composite material.
- the glass fiber-reinforced resin-based composite material includes 10% to 98% of thermoplastic resin and 2% to 90% of glass fiber or modified glass fiber by mass percentage. ; Preferably 30% to 95% of thermoplastic resin and 5% to 70% of glass fiber or modified glass fiber; more preferably 40% to 90% of thermoplastic resin and 10% to 60% of glass fiber or modified glass fiber.
- the glass fiber or modified glass fiber is dispersed in the thermoplastic resin in the form of a glass fiber group; the glass fiber group may exist in a sheet, block or strip form.
- the so-called flake shape refers to a shape in which the plane dimension of the cross section perpendicular to the thickness direction is larger than the thickness dimension.
- Both the block shape and the sheet shape have a plane with a predetermined shape, but the block shape is thicker than the sheet shape.
- the so-called strip shape means that the length dimension is larger than the plane dimension of the cross section perpendicular to the length direction.
- Each glass fiber group includes multiple glass fibers or modified glass fibers with a diameter of 1-7 ⁇ m. The glass fiber group is formed by random distribution of multiple glass fibers or selected glass fibers.
- the disordered distribution means that the diameter, length, and direction of multiple glass fibers are not particularly limited, and are randomly distributed; the glass fibers crisscross and form a mesh-like structure similar to filter paper.
- the density of the glass fiber group is 100-300 kg/m 3 .
- the thickness of the glass fiber group is 0.2 to 5 mm; preferably, the thickness of the glass fiber group is 1 to 3 mm.
- the length and width of the glass fiber group is 2-50mm; preferably, the length and width of the glass fiber group is 5-30mm; more preferably, the length and width of the glass fiber group is 10-25mm .
- the average length of the glass fiber or modified glass fiber is 30 to 5000 ⁇ m; preferably, the average length of the glass fiber or modified glass fiber is 100 to 5000 ⁇ m; more preferably, the glass fiber or modified glass fiber has an average length of 100 to 5000 ⁇ m.
- the average length of the glass fiber is 300 to 3000 ⁇ m.
- the aspect ratio of the glass fiber or modified glass fiber is greater than 10.
- the glass fiber is made by a centrifugal molding process, and then a glass fiber group is formed through a wet molding process or a dry molding process, and is made by impregnating a modifier as required.
- the glass fiber is manufactured by a centrifugal method.
- the high-temperature glass liquid is introduced into a high-speed rotating centrifuge. Under the action of centrifugal force, the glass fiber is thrown out from the tens of thousands of small holes on the side wall of the centrifuge, and the liquid glass is thrown out at high temperature. It is stretched into very fine cotton-like fibers under the blowing of gas. Multiple glass fibers are randomly and disorderly distributed to form a cotton-like shape. Then, the glass fiber group of the required shape is formed by wet molding or dry molding process.
- the wet molding refers to a method of using ionized water in the molding process.
- the so-called dry molding refers to a method that does not use ionized water in the molding process.
- a corresponding mold can be used to obtain a glass fiber group in a predetermined shape, such as a sheet, a block, or a strip.
- the manufacturing method of the glass fiber reinforced resin-based composite material includes the steps of adding the glass fiber group to the thermoplastic resin material directly or after being impregnated with a modifier, and then mixing by a mixer or molding, extrusion, and blow molding.
- the unfibrous material is produced as shown in Fig. 2.
- the unfibrous material mixed in the glass fiber is shown in Fig. 3.
- the disordered glass fiber wraps the unfibrous material like a net. It is difficult to eliminate the unfibrous material, which will affect the subsequent production process of the composite material, and is not conducive to the production of the composite material.
- the glass fiber made by the centrifugal method is processed by the wet molding process, the glass fiber is added to deionized water, and the glass slag will sink to the bottom when the mass of the glass fiber is larger, which effectively removes the impact on the reinforced thermoplastic resin.
- the modifier is uniformly attached to the surface of the glass fiber by infiltration, and the amount is 0.2 to 1 wt% of the weight of the glass fiber group, which can increase the thermoplastic resin and
- the combination between glass fibers can better improve the mechanical strength of composite materials and provide composite materials with more stable quality.
- the modifier includes one or more of calixarene, silane coupling agent, phthalate coupling agent and lubricant, preferably one or two of silane coupling agents.
- the glass fiber is made into a glass fiber group after the wet molding process and the pretreatment of the modifier, and the glass fiber group is cut into a predetermined shape, and then the metering type side feeding method can be used Adding to the thermoplastic resin can significantly reduce the powdery fibers or unfibrous materials, and reduce the deviation of the fiber length after the subsequent composite material processing.
- the thickness of the pretreated glass fiber group is 0.2-5 mm, and more preferably, the thickness is 1-3 mm.
- the length and width of the glass fiber group are 2-50 mm; preferably, 5-30 mm; more preferably, 10-25 mm.
- the cutting shape can be arbitrarily selected, for example, the cutting can be made into a square with a size of 2mm ⁇ 2mm-50mm ⁇ 50mm, or it can be cut into a rectangle, circle, triangle, rhombus or irregular shape, etc.
- the thermoplastic resin in the present invention includes one or more of commonly used thermoplastic resins such as general plastics, engineering plastics, and super engineering plastics.
- General plastics include polyethylene (PE), high-density polyethylene (HDPE), polypropylene ( PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene resin (ABS resin) ), styrene acrylonitrile copolymer (AS resin), acrylic resin (PMMA), etc.
- engineering plastics include polyamide (PA), polyacetal (POM), polycarbonate (PC), modified Polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), syndiotactic polystyrene (SPS), Cyc
- polyethylene high-density polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene-butadiene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal , Polymethyl methacrylate, polysulfone, polyphenoxy, polyester, thermotropic liquid crystal polymer, polyphenylene sulfide, LCP industrial liquid crystal polymer, polyphenylene sulfide, polyether ether ketone, polyether sulfone, polyamide One or more of imide, polyimide, polyurethane, polyetheramide, polyetherimide and polyesteramide.
- the glass fiber is first processed to obtain a glass fiber group, and then the glass fiber group is directly or modified and mixed with a thermoplastic resin or through injection molding, extrusion, Blow molding process to obtain glass fiber reinforced resin matrix composite material.
- the glass fiber cotton (average diameter of 5um) is prepared by centrifugal method.
- the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of glass fiber cotton and deionized water is 1:10, and the decomposing time is 5 minutes.
- the deionized glass fiber is transported to the batching pool through a centrifugal pump, and deionized water is added to make the glass fiber dispersed in the water more evenly.
- the glass fiber with smaller mass is suspended in deionized water, and the glass slag with larger mass sinks to the bottom.
- the mixed slurry in the slurry tank is subjected to forced dehydration and rapid prototyping by a vacuum pump to obtain a glass fiber group with a density of 100 kg/m 3.
- the scanning electron microscope image of the glass fiber group is shown in Figure 1 (a).
- the above-mentioned glass fiber group is immersed in the modifier, the modifier is KH-540 (Momentive A-1110), the amount of which is 0.2wt% of the weight of the above-mentioned glass fiber group used; the modifier can be uniformized by infiltration Coated on each surface of the glass fiber group. After soaking, place it in a drying device and dry it at 100°C. Finally, it is cut to obtain a square block glass fiber group with a size of 2mm ⁇ 2mm and a thickness of 2mm.
- KH-540 Momentive A-1110
- the HDPE Densing Petrochemical 5000S
- the above-mentioned glass fiber group according to the mass ratio of 50:1, the HDPE and the glass fiber group are mixed uniformly into the blow molding machine to obtain a glass fiber reinforced resin-based composite material, which includes 98% of the thermoplastic resin And 2% modified glass fiber.
- the glass fiber cotton (average diameter 3.5um) is prepared by centrifugal method. First, the glass fiber cotton is decomposed by a decomposing machine, and deionized water is added during decomposing. The mass ratio of the glass fiber cotton and deionized water is 1:12, and the decomposing time is 10 minutes. .
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed. In this way, a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 3 kg/L.
- the mixed slurry is forcibly dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 120kg/m 3.
- the glass fiber group obtained is obtained by scanning electron microscopy to obtain Figure 4 (a), (b) and ( c).
- the above-mentioned glass fiber group is immersed in a modifier, the modifier is KH-550 (Momentive A-1100), and its dosage is 0.3wt% of the weight of the above-mentioned glass fiber group used. After soaking, place it in a drying device and dry it at 130°C. Finally, it is cut to obtain a square sheet glass fiber group with a size of 15mm ⁇ 15mm and a thickness of 0.5mm.
- KH-550 Momentive A-1100
- the glass fiber reinforced resin-based composite material is obtained by hot pressing and forming, which includes 90% of the thermoplastic resin and 10% of the modified glass fiber.
- the glass fiber cotton (average diameter 4um) is prepared by centrifugal method.
- the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of glass fiber cotton and deionized water is 1:15, and the decomposing time is 17 minutes.
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 3.4 kg/L.
- the mixed slurry is forcibly dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 150kg/m 3.
- the glass fiber group obtained is obtained by scanning electron microscopy to obtain Figure 5 (a), (b) and ( c).
- the above-mentioned glass fiber group is immersed in a modifier, the modifier is KH-560 (Momentive A-187), and its dosage is 0.3 wt% of the weight of the above-mentioned glass fiber group used. After soaking, place it in a drying device and dry it at 150°C. Finally, it is cut to obtain a round sheet glass fiber group with a diameter of 5mm and a thickness of 0.2mm.
- the glass fiber cotton is prepared by the centrifugal method, and the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of the glass fiber cotton and deionized water is 1:20, and the decomposing time is 15 minutes.
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 3.5 kg/L.
- the mixed slurry is forced to be dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 170 kg/m 3.
- the above-mentioned glass fiber group is immersed in the modifier, the modifiers are KH-550 (Momentive A-1100) and KH-560 (Momentive A-187), and the dosage is 0.4 of the weight of the above-mentioned glass fiber group used. wt%. After soaking, place it in a drying device and dry it at 180°C. Finally, it is cut to obtain a strip-shaped glass fiber group with a size of 5mm ⁇ 8mm and a thickness of 3mm.
- the PC (Covestro 2805) and the above-mentioned glass fiber group are mixed uniformly according to the mass ratio of 1.5:1, and then added to the mixer for mixing, and finally filled into the mold, dried, and hot-pressed to obtain a glass fiber reinforced resin-based composite material , which includes 60% thermoplastic resin and 40% modified glass fiber.
- the glass fiber cotton is prepared by a centrifugal method, and the glass fiber cotton is firstly decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of the glass fiber cotton and the deionized water is 1:30, and the decomposing time is 20 minutes.
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 3.9 kg/L.
- the mixed slurry is subjected to forced dehydration and rapid shaping by a vacuum pump to obtain a glass fiber group with a density of 230 kg/m 3. Finally, it is cut to obtain a triangular block glass fiber group with a side length of 6mm and a thickness of 5mm.
- the glass fiber cotton is prepared by the centrifugal method, and the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of the glass fiber cotton and the deionized water is 1:38, and the decomposing time is 23 minutes.
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 4.1 kg/L.
- the mixed slurry is forcibly dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 200 kg/m 3. Finally, it is cut to obtain a strip-shaped glass fiber group with a size of 12mm ⁇ 30mm and a thickness of 3.5mm.
- ABS resin Zhenjiang Chimei PA-757K
- the above-mentioned glass fiber group are mixed uniformly according to the mass ratio of 1:1, and then added to the mixer for mixing, and finally filled into the mold, dried, and hot-pressed to obtain a glass fiber reinforced resin matrix.
- Composite material which includes 50% thermoplastic resin and 50% glass fiber.
- the glass fiber cotton is prepared by the centrifugal method, and the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of the glass fiber cotton and deionized water is 1:45, and the decomposing time is 25 minutes.
- the deionized glass fiber is transported to the batching pool through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber with smaller mass Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 4.3 kg/L.
- the mixed slurry is forcibly dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 260 kg/m 3.
- the above-mentioned glass fiber group is immersed in the modifier, the modifier is vinyl tris ( ⁇ -methoxyethoxy) silane, resorcinol cyclic tetramer, isopropoxy triisooctanoyl titanium
- the amount of the acid ester and isopropyl trioleyl titanate is 0.7 wt% of the weight of the glass fiber group used.
- cutting was performed to obtain a square sheet glass fiber group with a size of 10 mm ⁇ 10 mm and a thickness of 1 mm and a square block glass fiber group with a side length of 3 mm.
- the LCP industrialized liquid crystal polymer (Tales) and the above-mentioned glass fiber group are mixed uniformly according to the mass ratio of 19:1, and then added to the injection molding machine to obtain a glass fiber reinforced resin-based composite material, which includes 95% thermoplastic resin and 5 % Modified glass fiber.
- the glass fiber cotton is prepared by the centrifugal method, and the glass fiber cotton is first decomposed by a decomposing machine, and deionized water is added during decomposing.
- the mass ratio of the glass fiber cotton and the deionized water is 1:50, and the decomposing time is 30 minutes.
- the deionized glass fiber is transported to the batching tank through a centrifugal pump, and deionized water is added to obtain a mixed slurry of the glass fiber dispersed in the deionized water, and the deionized water is added to make the glass fiber dispersed in the water more uniformly, and the glass fiber of smaller quality Suspended in deionized water, the glass slag with larger mass sinks to the bottom, and the glass slag is removed.
- a mixed slurry of glass fiber dispersed in deionized water is obtained.
- the mixed slurry after removing the slag is sent to the slurry storage tank.
- the concentration of glass fiber in the mixed slurry is 4.8 kg/L.
- the mixed slurry is forcibly dehydrated and rapidly formed by a vacuum pump to obtain a glass fiber group with a density of 300 kg/m 3.
- the above-mentioned glass fiber group is immersed in the modifier.
- the modifier is KH-550, KH-560, isopropoxy triisostearoyl titanate, glycol dioleyl titanate and silicone oil.
- the amount used is 1 wt% of the weight of the above-mentioned glass fiber group used.
- the glass fiber cotton is prepared by the centrifugal method, and the glass fiber cotton is rolled into a glass fiber group with a density of 280 kg/m 3.
- the glass fiber group is immersed in the modifier, and the modifier is vinyl trichlorosilane and vinyl triethoxy silane, and the amount of the modifier is 1 wt% of the weight of the glass fiber group used. After soaking, place it in a drying device and dry it at 200°C. Finally, it is cut to obtain a strip-shaped glass fiber group with a size of 20mm ⁇ 50mm and a thickness of 4.5mm.
- the glass fiber cotton was prepared by the same centrifugation method as in Example 1.
- the average diameter of the glass fiber was 3.5 ⁇ m; the surface treatment was carried out by spraying the nozzle during the process of spinning the cotton and collecting cotton by the centrifugal disc.
- the modifier used was KH540( Momentive A-1100), the dosage is 0.2wt% of the total amount of the glass fiber cotton used. It is crushed to about 2000 ⁇ m by a crusher.
- the electron micrograph of the crushed glass fiber cotton is shown in Figure 1(b); after heating at 100°C for one hour, the HDPE (Daqing Petrochemical 5000S ) And the above-mentioned modified glass fiber cotton are mixed according to the mass ratio of 50:1, the heating method of the side feeding temperature is 200°C, the side feeding speed is 350 revolutions per minute, and finally the composite material is formed.
- the glass fiber cotton was prepared by the same centrifugal method as in Example 2, and the average diameter of the glass fiber was 3.5 ⁇ m; the surface treatment was carried out by spraying the nozzle during the process of spinning the cotton and collecting cotton by the centrifugal disc.
- the modifier used was KH550( Momentive A-1100), the dosage is 0.3wt% of the total amount of the glass fiber wool used.
- PP Tinopec T30S
- the above-mentioned modified glass fiber cotton are kneaded at a mass ratio of 9:1 using the method described in the patent of authorized announcement number CN103360778B.
- the heating method of the side-feeding heating temperature is 200°C, and the side-feeding speed is 350 revolutions per minute, and finally the composite material is formed.
- the glass fiber group processed by the present invention has a small content of unfibrillated substances, and the effect of removing unfibrillated substances can be basically achieved in the process of manufacturing the composite material.
- Table 2 shows the comparison data of fiber length between the glass fiber group obtained in Example 2 and the fiber cotton obtained in Comparative Example 2 after crushing. Under a microscope of 100 times, 300 glass fibers were selected from the glass fiber cotton obtained in Comparative Example 2 and the glass fiber group obtained in Example 2, and the length distribution of each selected glass fiber was compared. The data in the second middle school is plotted as a histogram shown in Figure 8.
- the length of the glass fiber prepared by the present invention is longer, and the number of medium-length fibers in the limited length range is larger.
- the average length of glass fiber is mainly between 400 and 1500 ⁇ m, and the aspect ratio of the glass fiber in the glass fiber group will be greater than 10, which can be mixed with a relatively stable length when manufacturing composite materials, which is also stable for obtaining stable performance.
- Composite materials provide a guarantee.
- the glass fiber cotton was prepared by the same centrifugal method as in Example 3, and the average diameter of the glass fiber was 4.5 ⁇ m; the surface treatment was performed by spraying the nozzle during the process of spinning the cotton and collecting cotton by the centrifugal disc.
- the modifier used was KH560( Momentive A-187), the dosage is 0.3wt% of the total amount of glass fiber wool used.
- the mass ratio of POM (Poly M-90) and the above-mentioned modified glass fiber cotton is 2.33:1 using the method described in the patent of Authorized Announcement No. CN103360778B
- the heating method of the side feed heating temperature is 200°C, and the side feed speed is 480 revolutions per minute, and finally the composite material is formed.
- Fig. 5 shows the short-length glass fibers in the glass fiber cotton obtained by the traditional method.
- Comparative Example 3 and Example 3 are both to obtain a composite material with a glass fiber content of 30%. It can be seen from Figure 9 that compared to the glass fiber content of the composite material obtained by the traditional method in Comparative Example 3 (curve a)
- the glass fiber content (curve b) of the composite material obtained in the present invention is basically stable at 30% as expected, and will not be affected by the mixing time. This is mainly because the glass fiber group in the present invention makes the glass fiber addition amount more stable.
- the glass fiber wool was prepared by the same centrifugal method as in Example 4, the average diameter of the glass fiber was 4 ⁇ m; the surface treatment was performed by spraying the nozzle during the process of spinning the cotton and collecting the cotton by the centrifugal disc.
- the modifier used was KH550 (Mai Figure A-1100) and KH560 (Momentive Figure A-187), the amount of which is 0.4wt% of the total amount of glass fiber cotton used.
- the PC Covestro 2805
- the above-mentioned modified glass fiber cotton are mixed at a mass ratio of 1.5:1 using the method described in the patent of authorized announcement number CN103360778B. Refining, the heating method of the side feed heating temperature is 200 °C, the side feed speed is 480 revolutions per minute, and finally the composite material is formed.
- the glass fiber cotton was prepared by the same centrifugal method as in Example 6, and the average diameter of the glass fiber was 4 ⁇ m. After the cotton was collected by the centrifugal disc, it was pulverized into about 2000 ⁇ m by a crusher, using the method described in the patent of authorized announcement number CN103360778B.
- the ABS resin (Zhenjiang Chimei PA-757K) and the above-mentioned glass fiber cotton are mixed according to the mass ratio of 1:1.
- the heating method of the side feed is 200 °C, and the side feed speed is 480 revolutions per minute. Form a composite material.
- FIG. 11 shows the glass fiber content obtained under different mixing times during the manufacturing process of the composite materials of Comparative Example 5 and Example 6. It can be seen from the figure that the glass fiber content (curve b) of the composite material obtained in Example 6 of the present invention can be stabilized at the expected 50% glass fiber content.
- the manufacturing method of the composite material of the present invention can obtain the composite material with the target glass fiber content, thereby providing a stable basis for obtaining the composite material with the expected performance.
- the composite material of the present invention is better than that obtained by the previous traditional method.
- the composite material is reduced, and for the tensile strength, elongation at break, flexural modulus, flexural strength, notched impact strength and unnotched impact strength, the composite material of the present invention is improved compared with the composite material obtained by the traditional method.
- the mechanical strength and performance of the composite material of the present invention are improved.
- the test results of the composite material of the present invention are relatively stable after multiple tests of the same composite material, while the difference between the multiple test results of the same performance of the composite material of the traditional method The values are larger; it shows that the performance of the glass fiber reinforced resin matrix composite material of the present invention is more stable. Therefore, the manufacturing method of the present invention improves the product quality of the final product and reduces the generation of defective products, thereby improving the performance of the glass fiber reinforced resin-based composite material of the present invention and enhancing the stability of various properties at the same time.
- the present invention provides a glass fiber reinforced resin-based composite material and a manufacturing method thereof, wherein the composite material includes a thermoplastic resin and glass fiber or modified glass fiber, and the glass fiber is made by a centrifugal method and is formed by a wet molding process or a dry method The process is made into glass fiber group, and then dispersed in the resin material.
- the glass fiber group can be made into sheet, block, strip, rod and other required shapes and then added to the thermoplastic resin.
- the fiber in the glass fiber group of the present invention, can be added with resin without surface treatment, and the viscosity of the resin can also be increased to enhance the injection molding ability. Since the glass fiber is manufactured by centrifugal method, the wet molding process can significantly reduce glass slag and powdered glass, reduce the non-fibrillation phenomenon in the composite material, so that the added glass material can achieve the effect of enhancing the performance of the resin. The resulting composite material has better mechanical strength and more stable quality.
- the glass fiber is processed into a glass fiber group through a wet molding process and a modifier.
- the cutting shape can be arbitrarily selected, and the The addition of glass fiber group to the thermoplastic resin can make the added amount of modified glass fiber more stable, and the glass fiber group obtained by the above pretreatment method not only avoids the generation of glass slag and powdered glass, but also ensures a certain amount of fiber Containment rate.
- the glass fiber group can better maintain the stability of the tensile strength and bending strength of the composite material, and can improve the strength of the composite material.
- the manufacturing method provided in the present invention involves the surface treatment of the glass fiber.
- a more complete fiber surface treatment can be obtained by infiltration. Compared with the usual spraying or spraying method, the surface of the glass fiber can be uniform and comprehensive. Ground adhesion of the modifier is conducive to the stable formation of composite materials. The tensile impact performance of composite materials is better and more stable.
- the mixing process of the glass fiber is omitted, so the amount of fiber scattered to the work site can be reduced and the work environment can be kept clean.
- the glass fiber After the glass fiber is processed into a glass fiber group, it can be put into the resin material by means of metered side feeding for mixing, injection, extrusion or blow molding to ensure that the amount of glass fiber added is controllable and save Production time and manufacturing cost are reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种玻璃纤维组及玻纤增强树脂基复合材料,所述玻璃纤维组包括多根直径为1~7μm的玻璃纤维或改性玻璃纤维。由于玻璃纤维采用离心法制造,经过湿法成型工艺可以明显减少玻璃渣及粉末状玻璃,减小复合材料中的未纤维化现象,使添加的玻璃材料均能达到增强树脂性能的作用。玻纤增强树脂基复合材料中的玻璃纤维的保留长度更长,玻璃纤维的含量稳定可控并且分散均匀,机械强度和性能都得到了提高且更加稳定。
Description
本发明属于复合材料领域,尤其涉及一种玻璃纤维组及玻纤增强树脂基复合材料。
塑料具有重量轻的特点,被广泛用于各种用途,但其弹性模量低,不适合用作结构材料。因此,通过制成含有玻璃纤维等具有高弹性模量的复合材料,塑料可被用作轻质且高强度的材料。已知玻璃纤维被广泛应用于形成复合材料的增强材料,其他还有碳纤维、高强度树脂纤维凯夫拉等纤维。
这些含有玻璃纤维和热塑性树脂的复合材料广泛应用于机械零件、电气零件、飞机零件、船舶零件、汽车零件、办公零件、建筑材料、纤维制品、杂物等多个领域,如果树脂中的玻璃纤维分布不均匀,则会在注塑成型、挤出成型等产品制造期间或产品使用期间出现翘曲等故障。因此,重要的是使纤维均匀地分散于树脂之中。
已知在树脂中混合、分散纤维的方法之一,是利用侧喂料方式、混合将数百根纤维集束的纱股切断成的短切纱股,或者从树脂造粒机上部的通风口等开口部投入混合由数根~数十根股线制成的纱股。
已知可使树脂分散的玻璃纤维,其纤维直径约为10~18μm(参见特开2009-7179号公报)、10~20μm(参见特开2007-277391号公报)。
具体产品采用以下工艺制造而成:首先制成使挤出的玻璃纤维均匀分散的树脂颗粒,然后将该颗粒供给到注塑成型机,在成型机内加热熔融树脂颗粒,最后将其注塑到模具内进行成型的两步法工艺,或者连续进行混炼和注塑成型的一步法工艺。
一般的玻璃纤维直径为10~18μm,如果将纤维含有率为20%~50%的树脂注塑成形为薄壁(厚度1mm以下),则会损害纤维的均匀分散性,还会造成注塑成形品的表面凹凸不平、纤维翘起等表面平滑度不良问题,作为这些问题的解决方法,可以使用直径更细的6μm玻璃纤维。但是,玻璃纤维通过机械缠绕方法制造而成,为了形成更细小的纤维则必须提高缠绕速度,而在制造过程中纤维被切断的频率升高,不利于稳定生产,现实中不得不降低生产量,这会导致生产成本极高,因此这种超细玻璃纤维的使用仅限于特殊用途。
其他均匀分散方法还可以考虑使用粉碎纤维、将纤维长度缩短到约100μm以下的研磨纤维,但研磨纤维存在纤维长度和纤维直径之比的长径比降低至10以下、增强效果受损的缺点。为了增强塑料性能,优选的长径比在100以上。
为解决成本高的问题,将含有硅烷偶联剂和成膜剂的溶液喷涂在比短切纱股纤维直径小且纤维直径3~6μm、平均纤维长度300~1000μm左右的玻璃短纤维(玻璃棉)表面,进行表面处理,可以使玻璃短纤维(玻璃棉)均匀分散在热塑性树脂中。还可以通过使用纤维长度及纤维直径均小于一般玻璃纤维的玻璃短纤维(玻璃棉)作为增强材料,更易于薄壁成形,即使制造厚度1mm以下的注塑成形品,也可以减少外观不良故障(参照特开2011-183638号公报)。
在特开2011-183638号专利所述方法中,细小的玻璃短纤维与热塑性树脂混炼时容易被切断,与短切纱股熔融混炼而成的复合形成材料相比,存在增强效果差的缺点。故提出如下解决方案:通过加热玻璃短纤维(玻璃棉)并在树脂中混炼,可使纤维难以切断,提高增强效果。
此外,所述玻璃短纤维(玻璃棉)是指,高温玻璃液导入一个高速旋转的离心器,在离心力的作用下,玻璃液从离心器侧壁上的上万小孔甩出,然后在高温燃气的喷吹下拉伸成很细的纤维。
然而,在上述专利文献所述方法中,存在影响玻璃短纤维(玻璃棉)的增强效果和复合材料品质的4个问题点。
第一,硅烷偶联剂对于保持无机物的玻璃纤维与有机物的热塑性树脂之间的界面粘结性不可或缺,但在离心法玻璃棉的生产工艺过程中,用喷涂法作表面处理的话,会非常不均匀,玻璃纤维表面会有好多没有足够粘结力或几乎没有粘结力的部位。硅烷偶联剂粘结不充分的部位,与热塑性树脂的界面粘结性不足,无法充分发挥增强效果。
第二,玻璃短纤维(玻璃棉)在生产工艺中被集束成垫状,该状态下体积非常庞大,很难稳定地将预定量投入混炼挤出机。因此,使用切碎机等切断玻璃短纤维(玻璃棉),将其加工成平均纤维长度800~1000μm左右的颗粒状,并采用螺旋送料器进行投料的方法。切碎机在切断玻璃短纤维(玻璃棉)时,会产生长径比小于10的粉末状纤维。该粉末状纤维的增强效果一般,在有些专利文献中优选长径比为10以上。经加工的玻璃短纤维(玻璃棉)的纤维长度有较大偏差,粒径不均匀。因此,存在混炼挤出机的投料量有偏差,缺乏稳定性的问题。
第三,在投入到混炼挤出机之前暂时贮存在螺旋送料器料斗中,但在贮存时用搅拌叶片搅拌时,由于剪切导致纤维长度变短,产生缺乏增强效果的长径比小于10的纤维。
第四,利用离心法制造玻璃短纤维(玻璃棉)时,会产生块状的未纤维化物(玻璃渣)。未纤维化物(玻璃渣)无助于增强,其原因在于,除了熔融玻璃中未溶解的原料和气泡之外,流入旋转器的熔融玻璃的流速和温度波动等生产工艺因素不稳定,在制法上很难消除未纤维化物(玻璃渣)。
发明内容
本发明为克服上述现有技术的不足,提供玻璃纤维组及玻纤增强树脂基复合材料。
为实现以上目的,本发明通过以下技术方案实现:
玻璃纤维组,其特征在于,所述玻璃纤维组包括多根直径为1~7μm的玻璃纤维或改性玻璃纤维。
优选地,所述玻璃纤维组由多根玻璃纤维或改性玻璃纤维无序分布而成。
优选地,所述玻璃纤维组,由多根玻璃纤维或改性玻璃纤维纵横交错形成并具有网孔。
优选地,所述玻璃纤维组的密度为100~300kg/m
3。
优选地,所述玻璃纤维组的厚度为0.2~5mm。
优选地,所述玻璃纤维组的厚度为1~3mm。
优选地,所述玻璃纤维组长宽尺寸为2~50mm。
优选地,所述玻璃纤维或改性玻璃纤维的平均长度为30~5000μm。
优选地,所述玻璃纤维或改性玻璃纤维的长径比大于10。
优选地,所述玻璃纤维组为湿法成型工艺制成。
优选地,所述玻璃纤维为离心法成型工艺制成。
优选地,所述玻璃纤维组的形状为片状、块状和条状中的一种或几种。
玻纤增强树脂基复合材料,其特征在于,所述玻纤增强树脂基复合材料包括按质量百分比计10%~98%的热塑性树脂和2%~90%的前述的玻璃纤维组;所述玻璃纤维组分散于所述热塑性树脂中。
优选地,所述热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚氯乙烯、聚偏氯乙烯、聚苯乙烯、苯乙烯-丁二稀-丙烯腈共聚物、聚酰胺、聚碳酸酯、聚缩醛、聚甲基丙烯酸甲酯、聚砜、聚苯氧、聚酯、热致液晶聚合物、聚苯硫、LCP工业化液晶聚合物、 聚苯硫醚、聚醚醚酮、聚醚砜、聚酰胺酰亚胺、聚酰亚胺、聚氨基甲酸酯、聚醚酰胺、聚醚酰亚胺和聚酯酰胺中的一种或多种。
前述玻璃纤维组的制造方法,其特征在于,使用离心法生产玻璃纤维,再将玻璃纤维采用湿法成型或干法成型工艺生产得到预定形状的玻璃纤维组。
优选地,包括步骤:
(1)采用离心法制得玻璃棉;
(2)玻璃棉分散于去离子水中,除渣;
(3)分散于去离子水中的玻璃纤维脱水成型制成片状的玻璃纤维组;
(4)裁切玻璃纤维组至需要的尺寸。
优选地,步骤(2)中,玻璃棉经疏解机疏解后再分散于去离子水中;疏解时添加去离子水,疏解时玻璃棉与去离子水的质量比为1:10~50。
优选地,疏解后的玻璃纤维添加至去离子水中,玻璃纤维浓度为2.8~4.8kg/L。
优选地,步骤(3)中,采用真空脱水使玻璃纤维形成的玻璃纤维组;所述玻璃纤维组的密度为100~300kg/m
3。
优选地,步骤(3)与步骤(4)之间还有步骤(3.5),将玻璃纤维组浸润至改性剂中,然后烘干。
优选地,步骤(3.5)中,所述改性剂包括杯芳烃、硅烷偶联剂、酞酸酯偶联剂和润滑剂中的一种或多种。
优选地,步骤(3.5)中,所述改性剂的用量为所述玻璃纤维组重量的0.2~1wt%。
优选地,包括步骤:
(1)采用离心法制得玻璃棉;
(2)玻璃棉辊压成型制成玻璃纤维组;
(3)玻璃纤维组浸润至改性剂中、烘干;
(4)裁切玻璃纤维组至需要的尺寸。
前述玻纤增强树脂基复合材料的制造方法,将前述方法生产的玻璃纤维组按照0.1~50:1的质量比直接与热塑性树脂混合或者经过改性后与热塑性树脂混合均匀后加入混炼机混炼或者混合通过挤出机挤出成型、注塑成型或者吹塑成型。
优选地是,所述玻璃纤维组通过计量式侧喂料方式加入。
本发明申请中的无序是指:1、形成玻璃纤维组的多根玻璃纤维,长度不一致,在本发明限定的长度范围内随机分布。2、形成玻璃纤维组的多根玻璃纤维,直径不一致,在本发明限定的直径范围内随机分布。3、形成玻璃纤维组的多根玻璃纤维,长径比不一致,在本发明限定的数值范围内随机分布。4、形成玻璃纤维组的多根玻璃纤维,排列方向并不一致,是随机地指向各个方向,纵横交错后形成网孔,该网孔并非规则地贯穿厚度方向,而是形成类似于滤纸的结构形式。对玻璃纤维组的纵横比无特别限制,只要其能够形成一连续的形状即可。
本发明提供一种玻璃纤维组及玻纤增强树脂基复合材料,其中复合材料包括热塑性树脂和玻璃纤维或改性玻璃纤维,并且玻璃纤维通过离心法制成,并通过湿法成型工艺或干法成型工艺制成玻璃纤维组,然后分散于树脂材料中。玻璃纤维组可制成片状、块状、条状、棒状等需要的形状再加入热塑性树脂中,通过上述方法得到复合材料中的玻璃纤维的保留长度更长,玻璃纤维的含量稳定可控并且分散均匀。本发明中的玻璃纤维组,其中的纤维不用表面处理也能添加加入树脂,也可以提高树脂粘度提升注塑成型的能力。由于玻璃纤维采用离心法制造,经过湿法成型工艺可以明显减少玻璃渣及粉末状玻璃,减小复合材料中的未纤维化现象,使添加的玻璃材料均能达到增强树脂性能的作用。最后得到的复合材料的机械强度更好、质量更加稳定。
与直接把玻璃纤维使用切碎机等分解后混炼到树脂中相比,本发明中将玻璃纤维通 过湿法成型工艺和改性剂加工成玻璃纤维组,裁切形状可任意选择,再将玻璃纤维组添加至热塑性树脂中可使改性玻璃纤维的添加量更稳定,并且,通过上述预处理方法得到的玻璃纤维组不仅避免了玻璃渣和粉末状玻璃的产生,还保证了一定的纤维含有率。玻璃纤维组可以更好地保持复合材料的拉伸强度和弯曲强度等性能的稳定,并可以提高复合材料的强度。本发明中提供的制造方法其中涉及到的玻璃纤维的表面处理,通过浸润的方式可以得到较完整的纤维表面处理,相比于通常采用的喷淋或喷涂方法,能够在玻璃纤维表面均匀且全面地附着改性剂,有利于稳定形成复合材料。复合材料的拉伸冲击性能更佳、更稳定。在热塑性树脂中混炼玻璃纤维时,省去玻璃纤维的搅拌工艺,因此可以减少飞散至作业场所的纤维量,保持作业环境清洁。
将玻璃纤维加工成玻璃纤维组后,可采用计量式侧喂料的方式投入树脂材料中进行混炼、注塑、挤塑或者吹塑等成型工艺加工,确保玻璃纤维的添加量可控,节约了生产时间、减少了制造成本。
图1(a)为本发明实施例1制得的玻璃纤维组的扫描电镜图。
图1(b)为对比例1破碎后的玻璃纤维棉的扫描电镜图。
图2为制造玻璃纤维时产生的未纤维化物的扫描电镜图。
图3为玻璃纤维中混杂有未纤维化物的扫描电镜图。
图4为本发明实施例2制得的玻璃纤维组在不同放大倍数下的扫描电镜图(a)、(b)、(c),和对比例2破碎后的玻璃纤维棉的扫描电镜图(d)。
图5为本发明实施例3制得的玻璃纤维组在不同放大倍数下的扫描电镜图(a)、(b)、(c),和对比例3破碎后的玻璃纤维棉的扫描电镜图(d)。
图6为对比例1中经过破碎机粉碎得到的玻璃纤维棉的照片(a),和本发明实施例1中经过裁切得到的玻璃纤维组的照片(b)。
图7为对比例2中经过表面处理的玻璃纤维的扫描电镜图(a)和(b),以及本发明实施例2中经过表面处理的玻璃纤维的扫描电镜图(c)和(d)。
图8为对比例2中得到的玻璃纤维棉和实施例2中得到的玻璃纤维组中纤维长度分布对比图。
图9为不同混炼时间下对比例3得到的复合材料中的玻璃纤维含量(a)和实施例3得到的复合材料中的纤维玻璃纤维含量(b)的对比图。
图10为不同混炼时间下对比例4得到的复合材料中的玻璃纤维含量(a)和实施例4得到的复合材料中的纤维玻璃纤维含量(b)的对比图。
图11为不同混炼时间下对比例5得到的复合材料中的玻璃纤维含量(a)和实施例6得到的复合材料中的纤维玻璃纤维含量(b)的对比图。
下面结合附图对本发明进行详细的描述。
本发明中提供一种玻纤增强树脂基复合材料,所述玻纤增强树脂基复合材料包括按质量百分比计10%~98%的热塑性树脂和2%~90%的玻璃纤维或改性玻璃纤维;优选为30%~95%的热塑性树脂和5%~70%的玻璃纤维或改性玻璃纤维;更优选为40%~90%的热塑性树脂和10%~60%的玻璃纤维或改性玻璃纤维。所述玻璃纤维或改性玻璃纤维以玻璃纤维组的形式分散于所述热塑性树脂中;玻璃纤维组可以片状、块状或者条状形式存在。本领域内技术人员可以理解,所谓片状是指垂直于厚度方向的横截面的平面尺寸大于厚度尺寸的形状。块状与片状均具有预定形状的平面,仅是块状厚度大于片状厚度。所谓条状是指长度尺寸大于垂直于长度方向的横截面的平面尺寸。每一玻璃纤维组包括多根直径为1~7μm的玻璃纤维或改性玻璃纤维。所述玻璃纤维组由多根玻璃纤维或改选玻璃纤维无序分布而成。其中,无序分布是多根玻璃纤维直径、长度及方向无特别限制,随 机地分布;玻璃纤维纵横交错形成具有类似滤纸的网孔状的结构。如图1(a)所示。所述玻璃纤维组的密度为100~300kg/m
3。所述玻璃纤维组的厚度为0.2~5mm;优选地是,所述玻璃纤维组的厚度为1~3mm。所述玻璃纤维组的长宽尺寸为2~50mm;优选地是,所述玻璃纤维组的长宽尺寸为5~30mm;更优选地是,所述玻璃纤维组的长宽尺寸为10~25mm。所述玻璃纤维或改性玻璃纤维的平均长度为30~5000μm;优选地是,所述玻璃纤维或改性玻璃纤维的平均长度为100~5000μm;更优选地是,所述玻璃纤维或改性玻璃纤维的平均长度为300~3000μm。所述玻璃纤维或改性玻璃纤维的长径比大于10。所述玻璃纤维为离心法成型工艺制成,然后经湿法成型工艺或者干法成型工艺形成玻璃纤维组,根据需要浸渍改性剂制成。
本发明中,玻璃纤维是通过离心法制造得到,是将高温玻璃液导入一个高速旋转的离心器,在离心力的作用下玻璃液从离心器侧壁上的上万小孔甩出,并在高温燃气的喷吹下拉伸成很细的棉状纤维。多根玻璃纤维随机、无序分布形成棉花状。再经湿法成型或者干法成型工艺形成需要的形状的玻璃纤维组。所述湿法成型,是指在成型工艺中使用离子水的方法。所谓干法成型,是指在成型工艺中不使用离子水的方法。在脱水成型工艺中,可采用相应的模具以获得预定形状比如片状、块状或者条状的玻璃纤维组。
玻纤增强树脂基复合材料的制造方法包括步骤,将玻璃纤维组直接或经过浸渍改性剂后添加至热塑性树脂材料中,经混炼机混炼或者注塑、挤塑、吹塑工艺成型。
在离心法制造玻璃纤维时,会产生如图2所示的未纤维化物,在玻璃纤维中混杂有的未纤维化物如图3所示,无序的玻璃纤维像网一样包裹住未纤维化物,使未纤维化物很难被消除,会影响后续制造复合材料时的生产工艺,不利于复合材料的生产。在本发明中,通过将离心法制得的玻璃纤维通过湿法成型工艺的处理后,玻璃纤维加入去离子水中,玻璃渣的质量较大则会沉于底部,有效地去除了对增强热塑性树脂的性能没有贡献的玻璃渣。还可以进一步减少纤维间存在的空气量,提高玻璃纤维组的密度,进而减少复合材料中的空隙,改善了最终成品的产品品质,减少缺陷产品的产生。
为了增强玻璃纤维和热塑性树脂之间的粘结力,通过浸润的方式将改性剂均匀地附着于玻璃纤维的表面,且其用量为玻璃纤维组重量的0.2~1wt%,可增加热塑性树脂和玻璃纤维之间的结合,从而更好地提高复合材料的机械强度,提供质量更加稳定的复合材料。其中,改性剂包括杯芳烃、硅烷偶联剂、酞酸酯偶联剂和润滑剂中的一种或多种,优选为硅烷偶联剂中的一种或两种。
在生产复合材料的工艺中,为了稳定地将玻璃纤维投入混炼机中,传统方法中在使用如切碎机这一类装置时,会使玻璃纤维变为长径比较小甚至小于10的粉末状玻璃材料,已有研究表明这种粉末状玻璃对复合材料的性能增强效果无益。如图1(b)所示,传统方法会使玻璃纤维的长度相差较大,因此,玻璃纤维的添加量无法得到稳定的控制;在复合材料中,玻璃纤维的添加量变化较大。在本发明中,将玻璃纤维通过湿法成型工艺和改性剂的预处理后制成玻璃纤维组,并将玻璃纤维组裁切为预定的形状,然后即可通过计量式侧喂料的方式投加至热塑性树脂中,可以显著减少粉末状纤维或未纤维化物,减少后续复合材料加工后的纤维长度的偏差。经过预处理的玻璃纤维组的厚度为0.2~5mm,更加优选的是厚度为1~3mm。玻璃纤维组的长宽尺寸为2~50mm;优选地,5~30mm;更优选地,10~25mm。裁切的形状可任意选择,例如,可使裁切为方形,其尺寸为2mm×2mm~50mm×50mm,或者裁切为矩形、圆形、三角形、菱形或者不规则的形状等等。
本发明中的热塑性树脂包括通用塑料、工程塑料、超级工程塑料等通常使用的热塑性树脂中的一种或多种,通用塑料包括聚乙烯(PE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚偏二氯乙烯、聚苯乙烯(PS)、聚醋酸乙烯酯(PVAc)、聚四氟乙烯(PTFE)、丙烯腈丁二烯苯乙烯树脂(ABS树脂)、苯乙烯丙烯腈共聚物(AS树脂)、丙烯酸树脂(PMMA) 等;工程塑料包括以尼龙为代表的聚酰胺(PA)、聚缩醛(POM)、聚碳酸酯(PC)、改性聚苯醚(m-PPE、改性PPE、PPO)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、间规聚苯乙烯(SPS)、环状聚烯烃(COP)等;超级工程塑料包括有LCP工业化液晶聚合物、聚苯硫醚(PPS)、聚四氟乙烯(PTFE)、聚砜(PSF)、聚醚砜(PES)、非晶态聚芳酯(PAR)、聚醚醚酮(PEEK)、热塑性聚酰亚胺(PI)、聚酰胺酰亚胺(PAI)、聚醚酰亚胺(PEI)等。尤其是,包括聚乙烯、高密度聚乙烯、聚丙烯、聚氯乙烯、聚偏氯乙烯、聚苯乙烯、苯乙烯-丁二稀-丙烯腈共聚物、聚酰胺、聚碳酸酯、聚缩醛、聚甲基丙烯酸甲酯、聚砜、聚苯氧、聚酯、热致液晶聚合物、聚苯硫、LCP工业化液晶聚合物、聚苯硫醚、聚醚醚酮、聚醚砜、聚酰胺酰亚胺、聚酰亚胺、聚氨基甲酸酯、聚醚酰胺、聚醚酰亚胺和聚酯酰胺中的一种或多种。
所述的玻纤增强树脂基复合材料的制造方法,其先将玻璃纤维进行处理得到玻璃纤维组,再将所述玻璃纤维组直接或者改性后与热塑性树脂混炼或者通过注塑、挤塑、吹塑工艺成型,得到玻纤增强树脂基复合材料。
实施例1
通过离心法制得玻璃纤维棉(平均直径5um),玻璃纤维棉先通过疏解机疏解,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:10,疏解时间为5min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为2.8kg/L。
储浆池中的混合浆液通过真空泵进行强行脱水快速成型,得到密度为100kg/m
3的玻璃纤维组,玻璃纤维组的扫描电镜图如图1(a)所示。
将上述玻璃纤维组浸润于改性剂中,改性剂为KH-540(迈图A-1110),其用量为使用的上述玻璃纤维组重量的0.2wt%;通过浸润可将改性剂均匀涂布于玻璃纤维组的每一个表面。浸润后将其放置于烘干装置中在100℃下烘干。最后进行裁切得到尺寸为2mm×2mm、厚度为2mm的方形块状玻璃纤维组。
将HDPE(大庆石化5000S)和上述的玻璃纤维组按照50:1的质量比,将HDPE与玻璃纤维组混合均匀加入吹塑成形机得到玻纤增强树脂基复合材料,其中包括98%的热塑性树脂和2%的改性玻璃纤维。
实施例2
通过离心法制得玻璃纤维棉(平均直径3.5um),先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:12,疏解时间为10min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为3kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为120kg/m
3的玻璃纤维组,将制得的该玻璃纤维组通过扫描电镜得到不同放大倍数下的图4(a)、(b)和(c)。
将上述玻璃纤维组浸润于改性剂中,改性剂为KH-550(迈图A-1100),其用量为使用的上述玻璃纤维组重量的0.3wt%。浸润后将其放置于烘干装置中在130℃下烘干。最后进行裁切得到尺寸为15mm×15mm、厚度为0.5mm的方形片状玻璃纤维组。
将PP(中石化T30S)和上述的玻璃纤维组按照9:1的质量比,以计量式侧喂料的方式添加玻璃纤维组,将PP和玻璃纤维组加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括90%的热塑性树脂和10%的改性玻璃纤维。
实施例3
通过离心法制得玻璃纤维棉(平均直径4um),先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:15,疏解时间为17min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为3.4kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为150kg/m
3的玻璃纤维组,将制得的该玻璃纤维组通过扫描电镜得到不同放大倍数下的图5(a)、(b)和(c)。
将上述玻璃纤维组浸润于改性剂中,改性剂为KH-560(迈图A-187),其用量为使用的上述玻璃纤维组重量的0.3wt%。浸润后将其放置于烘干装置中在150℃下烘干。最后进行裁切得到直径为5mm、厚度为0.2mm的圆形片状玻璃纤维组。
将POM(宝丽M-90)和上述的玻璃纤维组按照2.33:1的质量比混合均匀,再加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括70%的热塑性树脂和30%的改性玻璃纤维。
实施例4
通过离心法制得玻璃纤维棉,先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:20,疏解时间为15min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为3.5kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为170kg/m
3的玻璃纤维组。
将上述玻璃纤维组浸润于改性剂中,改性剂为KH-550(迈图A-1100)和KH-560(迈图A-187),其用量为使用的上述玻璃纤维组重量的0.4wt%。浸润后将其放置于烘干装置中在180℃下烘干。最后进行裁切得到尺寸为5mm×8mm、厚度为3mm的条状玻璃纤维组。
将PC(科思创2805)和上述的玻璃纤维组按照1.5:1的质量比混合均匀,再加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括60%的热塑性树脂和40%的改性玻璃纤维。
实施例5
通过离心法制得玻璃纤维棉,先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:30,疏解时间为20min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为3.9kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为230kg/m
3的玻璃纤维组。最后进行裁切得到边长为6mm、厚度为5mm的三角形块状玻璃纤维组。
将PS(镇江奇美PG-33)和上述的玻璃纤维组按照3:7的质量比混合均匀,再加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括30%的热塑性树脂和70%的玻璃纤维。
实施例6
通过离心法制得玻璃纤维棉,先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:38,疏解时间为23min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为4.1kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为200kg/m
3的玻璃纤维组。最后进行裁切得到尺寸为12mm×30mm、厚度为3.5mm的条状玻璃纤维组。
将ABS树脂(镇江奇美PA-757K)和上述的玻璃纤维组按照1:1的质量比混合均匀,再加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括50%的热塑性树脂和50%的玻璃纤维。
实施例7
通过离心法制得玻璃纤维棉,先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:45,疏解时间为25min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为4.3kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为260kg/m
3的玻璃纤维组。
将上述玻璃纤维组浸润于改性剂中,改性剂为乙烯基三(β-甲氧基乙氧基)硅烷、间苯二酚环状四聚物、异丙氧基三异辛酰基钛酸酯和三油酰基钛酸异丙酯,其用量为使用的上述玻璃纤维组重量的0.7wt%。浸润后将其放置于烘干装置中在260℃下烘干。最后进行裁切得到尺寸为10mm×10mm、厚度为1mm的方形片状玻璃纤维组以及边长为3mm的方形块状玻璃纤维组。
将LCP工业化液晶聚合物(泰莱斯)和上述的玻璃纤维组按照19:1的质量比混合均匀,再加入注塑成形机得到玻纤增强树脂基复合材料,其中包括95%的热塑性树脂和5%的改性玻璃纤维。
实施例8
通过离心法制得玻璃纤维棉,先通过疏解机疏解玻璃纤维棉,疏解时添加去离子水,其中玻璃纤维棉和去离子水的质量比为1:50,疏解时间为30min。将疏解好的玻璃纤维通过离心泵输送到配料池,加入去离子水得到玻璃纤维分散于去离子水中的混合浆液,加入去离子水使玻璃纤维在水中分散的更加均匀,质量较小的玻璃纤维悬浮于去离子水中,质量较大的玻璃渣则沉到底部,除去玻璃渣,这样就得到玻璃纤维分散于去离子水中的混合浆液,将除渣后的混合浆液送入储浆池,此时混合浆液中玻璃纤维的浓度为4.8kg/L。
混合浆液通过真空泵进行强行脱水快速成型,得到密度为300kg/m
3的玻璃纤维组。
将上述玻璃纤维组浸润于改性剂中,改性剂为KH-550、KH-560、异丙氧基三异硬脂酰基钛酸酯、二油酰基钛酸乙二醇酯和硅油,其用量为使用的上述玻璃纤维组重量的1wt%。浸润后将其放置于烘干装置中在300℃下烘干。最后进行裁切得到边长为25mm、厚度为5mm的菱形片状玻璃纤维组。
将PPS(东丽)和上述的玻璃纤维组按照4:6的质量比混合均匀,再加入单螺杆挤塑机得到玻纤增强树脂基复合材料,其中包括40%的热塑性树脂和60%的改性玻璃纤维。
实施例9
通过离心法制得玻璃纤维棉,将玻璃纤维棉辊压成型制成密度为280kg/m
3的玻璃纤维组。将玻璃纤维组浸润于改性剂中,改性剂为乙烯基三氯硅烷和乙烯基三乙氧基硅烷,其用量为使用的上述玻璃纤维组重量的1wt%。浸润后将其放置于烘干装置中在200℃下烘干。最后进行裁切得到尺寸为20mm×50mm、厚度为4.5mm的条状玻璃纤维组。
将PEI(沙比克)和上述的玻璃纤维组按照0.1:1的质量比混合均匀,再加入混炼机混炼,最后填入模具烘干后热压成型得到玻纤增强树脂基复合材料,其中包括10%的热塑性树脂和90%的改性玻璃纤维。
对比例1
采用与实施例1同样的离心法制得玻璃纤维棉,玻璃纤维的平均直径为3.5μm;离心盘甩棉集棉下落的过程中通过喷嘴喷射的方式进行表面处理,使用的改性剂为KH540(迈图A-1100),其用量为使用的上述玻璃纤维棉总量的0.2wt%。通过破碎机粉碎成约2000μm,破碎后的玻璃纤维棉的电镜图如图1(b)所示;100℃加热一小时以后,利用授权公告号CN103360778B的专利所记载的方式将HDPE(大庆石化5000S)和上述的改性玻璃纤维棉按照50:1的质量比混炼,其加热方式侧喂料的加热温度为200℃,侧喂料转速为每分钟350转,最后形成复合材料。
通过图1(a)和(b)的对比可以看出,采用传统方法进行破碎得到的玻璃纤维棉中的玻璃纤维长度相差较大,并会出现长度较小、长径比较小的玻璃纤维。将上述对比例1中同样的离心法制得的玻璃纤维棉采用破碎机粉碎后的玻璃纤维棉与实施例1得到的玻璃纤维组相比,粉碎后的玻璃纤维棉尺寸为5~20mm,并且每块玻璃纤维棉的大小有差异,如图6(a)所示;而本发明实施例1得到的玻璃纤维组的大小几乎无差异,如图6(b)所示,能以稳定的量与树脂相混合,为得到稳定性能的复合材料提供了保证。
对比例2
采用与实施例2同样的离心法制得玻璃纤维棉,玻璃纤维的平均直径为3.5μm;离心盘甩棉集棉下落的过程中通过喷嘴喷射的方式进行表面处理,使用的改性剂为KH550(迈图A-1100),其用量为使用的上述玻璃纤维棉总量的0.3wt%。通过破碎机粉碎成约1000μm,130℃加热一小时以后,利用授权公告号CN103360778B的专利所记载的方式将PP(中石化T30S)和上述的改性玻璃纤维棉按照9:1的质量比混炼,其加热方式侧喂料的加热温度为200℃,侧喂料转速为每分钟350转,最后形成复合材料。
从图4中可以看出,本发明实施例2得到的玻璃纤维组中的玻璃纤维可以保留较长长度,如图4(a)、(b)和(c)。而图4(d)显示了传统方法得到的玻璃纤维棉中玻璃纤维长度无法得到较好的控制,会出现长度较短的玻璃纤维。
取对比例2中得到的改性玻璃纤维棉和实施例2中得到的玻璃纤维组置于电镜下,得到如图7所示的结果,从图中可以看出,经过对比例2的表面处理,改性剂仅是附着于玻璃纤维的部分位置,如图7(a)、(b)所示;而经过本发明实施例2的表面处理后,改性剂可均匀涂布于每根玻璃纤维表面,如图7(c)、(d)所示,这就有利于复合材料的制造以及复合材料性能的提高。
取对比例2中得到的玻璃纤维棉和实施例2中得到的玻璃纤维组,根据建材行业标准JC/T978-2012中的方法对未纤维化物含量进行多组测试,结果如表一所示。通过本发明处理的玻璃纤维组中的未纤维化物质的含量较小,可以在制造复合材料的过程基本达到去除未纤维化物质的效果。
表一
实施例2获得的玻璃纤维组与对比例2所获得的纤维棉破碎后的纤维长度对比数据如表二所示。在100倍的显微镜下,分别从对比例2中得到的玻璃纤维棉和实施例2中得到的玻璃纤维组中,选取300根玻璃纤维,对比各选出的玻璃纤维的长度分布情况,将表二中的数据绘制成图8所示的柱状图。
表二
从表二及图8中可以看出,本发明制得的玻璃纤维长度更长,且在限定的长度范围内中等长度的纤维数量更多。玻璃纤维平均长度主要在400~1500μm之间,则玻璃纤维组中的玻璃纤维的长径比均会大于10,在制造复合材料时能够以较稳定的长度进行混炼,同样为得到稳定性能的复合材料提供了保证。
对比例3
采用与实施例3同样的离心法制得玻璃纤维棉,玻璃纤维的平均直径为4.5μm;离心盘甩棉集棉下落的过程中通过喷嘴喷射的方式进行表面处理,使用的改性剂为KH560(迈图A-187),其用量为使用的上述玻璃纤维棉总量的0.3wt%。通过破碎机粉碎成约1000μm,150℃加热一小时以后,利用授权公告号CN103360778B的专利所记载的方式将POM(宝丽M-90)和上述的改性玻璃纤维棉按照2.33:1的质量比混炼,其加热方式侧喂料的加热温度为200℃,侧喂料转速为每分钟480转,最后形成复合材料。
从图5中可以看出,本发明实施例3得到的玻璃纤维组中的玻璃纤维可以保留较长长度,如图5(a)、(b)和(c)。而图5(d)显示了传统方法得到的玻璃纤维棉中出现长度较短的玻璃纤维。
按照对比例3和实施例3中的步骤制造复合材料的过程中,分别进行不同时间的混炼,并计算出不同混炼时间下复合材料中的玻璃纤维含量。对比例3和实施例3均是为了得到玻璃纤维含量为30%的复合材料,从图9中可以看出,相比于对比例3中传统方法得到的复合材料的玻璃纤维含量(曲线a),本发明得到的复合材料的玻璃纤维含量(曲线b)基本稳定于预期的30%,不会受到混炼时间的影响,这主要因为本发明中玻璃纤维组的制造,使得玻璃纤维的添加量更加稳定。
对比例4
采用与实施例4同样的离心法制得玻璃纤维棉,玻璃纤维的平均直径为4μm;离心盘甩棉集棉下落的过程中通过喷嘴喷射的方式进行表面处理,使用的改性剂为KH550(迈图A-1100)和KH560(迈图A-187),其用量为使用的上述玻璃纤维棉总量的0.4wt%。通过破碎机粉碎成约3000μm,180℃加热一小时以后,利用授权公告号CN103360778B的专利所记载的方式将PC(科思创2805)和上述的改性玻璃纤维棉按照1.5:1的质量比混炼,其加热方式侧喂料的加热温度为200℃,侧喂料转速为每分钟480转,最后形成复合材料。
按照对比例4和实施例4中的步骤制造复合材料的过程中,分别进行不同时间的混炼,并计算出不同混炼时间下复合材料中的玻璃纤维含量。对比例4和实施例4制造的复合材料中均是为了得到40%的玻璃纤维含量,从图10中可以看出,对比例4得到的复合材料的玻璃纤维含量(曲线a)较不稳定,本发明的实施例4得到的复合材料的玻璃纤维含量(曲线b)基本能稳定于40%。
对比例5
采用与实施例6同样的离心法制得玻璃纤维棉,玻璃纤维的平均直径为4μm;离心盘甩棉集棉下落后,通过破碎机粉碎成约2000μm,利用授权公告号CN103360778B的专利所记载的方式将ABS树脂(镇江奇美PA-757K)和上述的玻璃纤维棉按照1:1的质量比混炼,其加热方式侧喂料的加热温度为200℃,侧喂料转速为每分钟480转,最后形成复合材料。
图11显示的是对比例5和实施例6的复合材料的制造过程中,不同混炼时间下,得到的玻璃纤维含量的情况。从图中可以看出,本发明的实施例6得到的复合材料的玻璃纤维含量(曲线b)能够稳定于预期的50%的玻璃纤维含量。本发明的复合材料的制造方法能够得到目标玻璃纤维含量的复合材料,从而为得到预期性能的复合材料提供稳定的基础。
分别取对比例2和实施例2得到的玻纤增强树脂基复合材料,进行五组测试,进行如表三(1)和表三(2)所示的性能测试,具体结果如表三(1)和表三(2)所示。
表三(1)
表三(2)
同样地,分别取对比例3和实施例3得到的玻纤增强树脂基复合材料,进行五组测试,进行如表四(1)和表四(2)所示的性能测试,具体结果如表四(1)和表四(2)所示。
表四(1)
表四(2)
从表三(1)和表三(2)和如表四(1)和表四(2)中可以看出,对于复合材料的灰分的测定,本发明的复合材料较以前的传统方法得到的复合材料减小了,而对于拉伸强度、断裂伸长率、弯曲模量、弯曲强度、缺口冲击强度和无缺口冲击强度,本发明的复合材料都比传统方法得到的复合材料提高了,说明本发明的复合材料的机械强度和性能都得到了提高。而且,从表中还可以看出,同样的复合材料的多次测试,本发明的复合材料的测试结果都较稳定,而传统方法的复合材料的同项性能的多次测试结果之间的差值都较大;说明了本发明的玻纤增强树脂基复合材料的性能更加稳定。因此,本发明的制造方法改善了最终成品的产品品质,减少缺陷产品的产生,从而使本发明的玻纤增强树脂基复合材料性能得到了提高,同时增强了各项性能的稳定性。
经实验检测,本发明其它各实施例均能达到相应的提升效果。
本发明提供一种玻纤增强树脂基复合材料及其制造方法,其中复合材料包括热塑性树脂和玻璃纤维或改性玻璃纤维,并且玻璃纤维通过离心法制成,并通过湿法成型工艺或干法成型工艺制成玻璃纤维组,然后分散于树脂材料中。玻璃纤维组可制成片状、块状、条状、棒状等需要的形状再加入热塑性树脂中,通过上述方法得到复合材料中的玻璃纤维的保留长度更长,玻璃纤维的含量稳定可控并且分散均匀。本发明中的玻璃纤维组,其中的纤维不用表面处理也能添加加入树脂,也可以提高树脂粘度提升注塑成型的能力。由于玻璃纤维采用离心法制造,经过湿法成型工艺可以明显减少玻璃渣及粉末状 玻璃,减小复合材料中的未纤维化现象,使添加的玻璃材料均能达到增强树脂性能的作用。最后得到的复合材料的机械强度更好、质量更加稳定。
与直接把玻璃纤维使用切碎机等分解后混炼到树脂中相比,本发明中将玻璃纤维通过湿法成型工艺和改性剂加工成玻璃纤维组,裁切形状可任意选择,再将玻璃纤维组添加至热塑性树脂中可使改性玻璃纤维的添加量更稳定,并且,通过上述预处理方法得到的玻璃纤维组不仅避免了玻璃渣和粉末状玻璃的产生,还保证了一定的纤维含有率。玻璃纤维组可以更好地保持复合材料的拉伸强度和弯曲强度等性能的稳定,并可以提高复合材料的强度。本发明中提供的制造方法其中涉及到的玻璃纤维的表面处理,通过浸润的方式可以得到较完整的纤维表面处理,相比于通常采用的喷淋或喷涂方法,能够在玻璃纤维表面均匀且全面地附着改性剂,有利于稳定形成复合材料。复合材料的拉伸冲击性能更佳、更稳定。在热塑性树脂中混炼玻璃纤维组时,省去玻璃纤维的搅拌工艺,因此可以减少飞散至作业场所的纤维量,保持作业环境清洁。
将玻璃纤维加工成玻璃纤维组后,可采用计量式侧喂料的方式投入树脂材料中进行混炼、注塑、挤塑或者吹塑等成型工艺加工,确保玻璃纤维的添加量可控,节约了生产时间、减少了制造成本。
本发明中的实施例仅用于对本发明进行说明,并不构成对权利要求范围的限制,本领域内技术人员可以想到的其他实质上等同的替代,均在本发明保护范围内。
Claims (14)
- 玻璃纤维组,其特征在于,所述玻璃纤维组包括多根直径为1~7μm的玻璃纤维或改性玻璃纤维。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组由多根玻璃纤维或改性玻璃纤维无序分布而成。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组,由多根玻璃纤维或改性玻璃纤维纵横交错形成并具有网孔的结构。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组的密度为100~300kg/m 3。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组的厚度为0.2~5mm。
- 根据权利要求5所述的玻璃纤维组,其特征在于,所述玻璃纤维组的厚度为1~3mm。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组长宽尺寸为2~50mm。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维或改性玻璃纤维的平均长度为30~5000μm。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维或改性玻璃纤维的长径比大于10。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组为湿法成型工艺制成。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维为离心法成型工艺制成。
- 根据权利要求1所述的玻璃纤维组,其特征在于,所述玻璃纤维组的形状为片状、块状和条状中的一种或几种。
- 玻纤增强树脂基复合材料,其特征在于,所述玻纤增强树脂基复合材料包括按质量百分比计10%~98%的热塑性树脂和2%~90%的权利要求1至11任一权利要求所述的玻璃纤维组;所述玻璃纤维组分散于所述热塑性树脂中。
- 根据权利要求13所述的玻纤增强树脂基复合材料,其特征在于,所述热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚氯乙烯、聚偏氯乙烯、聚苯乙烯、苯乙烯-丁二稀-丙烯腈共聚物、聚酰胺、聚碳酸酯、聚缩醛、聚甲基丙烯酸甲酯、聚砜、聚苯氧、聚酯、热致液晶聚合物、聚苯硫、LCP工业化液晶聚合物、聚苯硫醚、聚醚醚酮、聚醚砜、聚酰胺酰亚胺、聚酰亚胺、聚氨基甲酸酯、聚醚酰胺、聚醚酰亚胺和聚酯酰胺中的一种或多种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910998712.X | 2019-10-21 | ||
CN201910998712.XA CN112759794B (zh) | 2019-10-21 | 2019-10-21 | 玻璃纤维组及玻纤增强树脂基复合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077849A1 true WO2021077849A1 (zh) | 2021-04-29 |
Family
ID=75620368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107018 WO2021077849A1 (zh) | 2019-10-21 | 2020-08-05 | 玻璃纤维组及玻纤增强树脂基复合材料 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112759794B (zh) |
WO (1) | WO2021077849A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116332531A (zh) * | 2021-12-24 | 2023-06-27 | 清华大学 | 一种改性玻璃纤维及利用多巴胺对玻璃纤维进行改性的方法与增强聚酰胺6复合材料 |
CN116332530A (zh) * | 2021-12-24 | 2023-06-27 | 清华大学 | 一种聚乙烯亚胺改性玻璃纤维及其制备方法以及增强尼龙6复合材料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115975289B (zh) * | 2022-12-27 | 2024-05-17 | 富联裕展科技(深圳)有限公司 | 一种塑胶复合材料及其制作方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179152A (en) * | 1990-06-21 | 1993-01-12 | Mitsubishi Gas Chemical Co., Inc. | Fiber-reinforced resin composition having surface smoothness |
JPH0649229A (ja) * | 1992-07-29 | 1994-02-22 | Nippon Muki Co Ltd | グラスウールモールド成形体の製造方法 |
CN1757807A (zh) * | 2004-10-06 | 2006-04-12 | Kvg技术有限公司 | 振动压缩的玻璃纤维和/或其他材料的纤维毡及其制造方法 |
CN101275013A (zh) * | 2008-04-23 | 2008-10-01 | 北京正康创智科技发展有限公司 | 以废印刷电路板中的玻璃纤维增强的复合材料及制备方法 |
CN102807321A (zh) * | 2011-06-02 | 2012-12-05 | 成都思摩纳米技术有限公司 | 一种用于真空隔热板的芯材的制备方法 |
CN103328395A (zh) * | 2010-12-22 | 2013-09-25 | 霍林斯沃思和沃斯有限公司 | 包括玻璃纤维的过滤介质 |
US20160107335A1 (en) * | 2012-06-01 | 2016-04-21 | Masanori Fujita | Method for composite forming material |
CN106700198A (zh) * | 2016-11-11 | 2017-05-24 | 山东理工大学 | 玻璃纤维湿法薄毡改性热塑性塑料及其制备方法 |
CN107129616A (zh) * | 2016-02-29 | 2017-09-05 | 顾洪洲 | 一种高强度薄膜及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8114197B2 (en) * | 2009-12-22 | 2012-02-14 | Hollingsworth & Vose Company | Filter media and articles including dendrimers and/or other components |
-
2019
- 2019-10-21 CN CN201910998712.XA patent/CN112759794B/zh active Active
-
2020
- 2020-08-05 WO PCT/CN2020/107018 patent/WO2021077849A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179152A (en) * | 1990-06-21 | 1993-01-12 | Mitsubishi Gas Chemical Co., Inc. | Fiber-reinforced resin composition having surface smoothness |
JPH0649229A (ja) * | 1992-07-29 | 1994-02-22 | Nippon Muki Co Ltd | グラスウールモールド成形体の製造方法 |
CN1757807A (zh) * | 2004-10-06 | 2006-04-12 | Kvg技术有限公司 | 振动压缩的玻璃纤维和/或其他材料的纤维毡及其制造方法 |
CN101275013A (zh) * | 2008-04-23 | 2008-10-01 | 北京正康创智科技发展有限公司 | 以废印刷电路板中的玻璃纤维增强的复合材料及制备方法 |
CN103328395A (zh) * | 2010-12-22 | 2013-09-25 | 霍林斯沃思和沃斯有限公司 | 包括玻璃纤维的过滤介质 |
CN102807321A (zh) * | 2011-06-02 | 2012-12-05 | 成都思摩纳米技术有限公司 | 一种用于真空隔热板的芯材的制备方法 |
US20160107335A1 (en) * | 2012-06-01 | 2016-04-21 | Masanori Fujita | Method for composite forming material |
CN107129616A (zh) * | 2016-02-29 | 2017-09-05 | 顾洪洲 | 一种高强度薄膜及其制备方法 |
CN106700198A (zh) * | 2016-11-11 | 2017-05-24 | 山东理工大学 | 玻璃纤维湿法薄毡改性热塑性塑料及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116332531A (zh) * | 2021-12-24 | 2023-06-27 | 清华大学 | 一种改性玻璃纤维及利用多巴胺对玻璃纤维进行改性的方法与增强聚酰胺6复合材料 |
CN116332530A (zh) * | 2021-12-24 | 2023-06-27 | 清华大学 | 一种聚乙烯亚胺改性玻璃纤维及其制备方法以及增强尼龙6复合材料 |
Also Published As
Publication number | Publication date |
---|---|
CN112759794B (zh) | 2022-10-04 |
CN112759794A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021077848A1 (zh) | 玻璃纤维组及其制造方法、玻纤增强树脂基复合材料及其制造方法 | |
WO2021077849A1 (zh) | 玻璃纤维组及玻纤增强树脂基复合材料 | |
Ku et al. | A review on the tensile properties of natural fiber reinforced polymer composites | |
CN1433443B (zh) | 嵌入聚合物基质中的取向纳米纤维 | |
CN104812957B (zh) | 短切碳纤维束及短切碳纤维束的制造方法 | |
US5433906A (en) | Composite of small carbon fibers and thermoplastics and method for making same | |
Novais et al. | The effect of flow type and chemical functionalization on the dispersion of carbon nanofiber agglomerates in polypropylene | |
CN105002595B (zh) | 一种含部分还原石墨烯的高分子复合功能纤维及其制备方法 | |
CN103342858B (zh) | 一种短玻纤增强聚丙烯复合材料及其制备方法和应用 | |
CN103980595B (zh) | 一种用于3d打印的改性超高分子量聚乙烯及其制备方法 | |
WO2015111536A1 (ja) | 射出成形、押出成形、又は引抜成形用の成形材料、炭素繊維強化熱可塑性樹脂ペレット、成形体、射出成形体の製造方法、及び射出成形体 | |
JPWO2006112487A1 (ja) | ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体 | |
WO2013111862A1 (ja) | 導電性樹脂用マスターバッチの製造方法およびマスターバッチ | |
JPWO2015178483A1 (ja) | バイオマスナノ繊維を含む高分子樹脂複合体及びバイオマスナノ繊維の製造方法並びに同高分子樹脂複合体の製造方法 | |
Wang et al. | Morphology evolutions and mechanical properties of in situ fibrillar polylactic acid/thermoplastic polyurethane blends fabricated by fused deposition modeling | |
CN104695043A (zh) | 一种接枝SiO2粒子簇取向增强涤纶纤维的制备方法 | |
CN107603131B (zh) | 一种低能耗、规模化制备石墨烯填充母料的方法 | |
CN106380806A (zh) | 用于热熔型3d打印的导电聚乳酸复合材料组合物及其制备方法 | |
CN108299812A (zh) | 一种3d打印用pla/ptw丝材及其制备方法 | |
JP2006016450A (ja) | カーボンナノ線条体分散樹脂組成物の製造方法 | |
TWI721556B (zh) | 導電樹脂組合物及其製備方法 | |
CN111417500B (zh) | 成形机清洗用的清洗剂及清洗方法 | |
Isma’il et al. | Effect of Addition of Dipersion Agent on Tensile Mechanical Strength of HDPE Water Hyacinth Composites | |
WO2021035202A1 (en) | Graphene reinforced hybrid composites | |
Jafrey Daniel James et al. | Manufacturing Issues and Process Parameters of Composite Filament for Additive Manufacturing Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880256 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880256 Country of ref document: EP Kind code of ref document: A1 |