WO2021075568A1 - Method for producing megakaryocyte progenitor cell or megakaryocytic cell - Google Patents
Method for producing megakaryocyte progenitor cell or megakaryocytic cell Download PDFInfo
- Publication number
- WO2021075568A1 WO2021075568A1 PCT/JP2020/039162 JP2020039162W WO2021075568A1 WO 2021075568 A1 WO2021075568 A1 WO 2021075568A1 JP 2020039162 W JP2020039162 W JP 2020039162W WO 2021075568 A1 WO2021075568 A1 WO 2021075568A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- expression
- megakaryocyte
- cells
- cell
- Prior art date
Links
- 210000004027 cell Anatomy 0.000 title claims abstract description 109
- 210000002361 Megakaryocyte Progenitor Cell Anatomy 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 230000014509 gene expression Effects 0.000 claims abstract description 220
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 123
- 238000000034 method Methods 0.000 claims abstract description 76
- 101150113634 CDKN1A gene Proteins 0.000 claims abstract description 58
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims abstract description 28
- 210000003593 megakaryocyte Anatomy 0.000 claims description 115
- 108700025694 p53 Genes Proteins 0.000 claims description 44
- 230000004663 cell proliferation Effects 0.000 claims description 37
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 claims description 32
- 230000001629 suppression Effects 0.000 claims description 32
- 101150072736 ARF gene Proteins 0.000 claims description 30
- 108700020796 Oncogene Proteins 0.000 claims description 22
- 230000035755 proliferation Effects 0.000 claims description 22
- 101150062914 BMI1 gene Proteins 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 9
- 230000001737 promoting effect Effects 0.000 claims description 9
- 238000012258 culturing Methods 0.000 claims description 7
- 108091057508 Myc family Proteins 0.000 claims description 6
- 239000004480 active ingredient Substances 0.000 claims description 5
- 239000007952 growth promoter Substances 0.000 claims description 4
- 239000000047 product Substances 0.000 description 41
- 101000872170 Homo sapiens Polycomb complex protein BMI-1 Proteins 0.000 description 33
- 102100033566 Polycomb complex protein BMI-1 Human genes 0.000 description 33
- 108020004414 DNA Proteins 0.000 description 32
- 150000007523 nucleic acids Chemical group 0.000 description 25
- 239000002609 medium Substances 0.000 description 24
- 108091028043 Nucleic acid sequence Proteins 0.000 description 18
- 102000009508 Cyclin-Dependent Kinase Inhibitor p16 Human genes 0.000 description 17
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 16
- 229960003722 doxycycline Drugs 0.000 description 16
- 239000013598 vector Substances 0.000 description 16
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 15
- 230000006907 apoptotic process Effects 0.000 description 13
- 239000002299 complementary DNA Substances 0.000 description 13
- 108700025695 Suppressor Genes Proteins 0.000 description 12
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 11
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 11
- 101001070790 Homo sapiens Platelet glycoprotein Ib alpha chain Proteins 0.000 description 11
- 102100034173 Platelet glycoprotein Ib alpha chain Human genes 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 230000012010 growth Effects 0.000 description 10
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 10
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 9
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 9
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 9
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 8
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000002062 proliferating effect Effects 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 6
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 6
- 102100035716 Glycophorin-A Human genes 0.000 description 6
- 108091005250 Glycophorins Proteins 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 5
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 101001021527 Homo sapiens Huntingtin-interacting protein 1 Proteins 0.000 description 4
- 102100035957 Huntingtin-interacting protein 1 Human genes 0.000 description 4
- -1 LLW10 Chemical compound 0.000 description 4
- 108020004459 Small interfering RNA Proteins 0.000 description 4
- 102000036693 Thrombopoietin Human genes 0.000 description 4
- 108010041111 Thrombopoietin Proteins 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 210000000601 blood cell Anatomy 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000012228 culture supernatant Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 108010054624 red fluorescent protein Proteins 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 3
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 108091027967 Small hairpin RNA Proteins 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 239000010836 blood and blood product Substances 0.000 description 3
- 229940125691 blood product Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000004055 small Interfering RNA Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- HAGOWCONESKMDW-FRSCJGFNSA-N (2s)-4-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-4-oxobutanoic acid Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CC1=CC=CC=C1 HAGOWCONESKMDW-FRSCJGFNSA-N 0.000 description 2
- YQNRVGJCPCNMKT-LFVJCYFKSA-N 2-[(e)-[[2-(4-benzylpiperazin-1-ium-1-yl)acetyl]hydrazinylidene]methyl]-6-prop-2-enylphenolate Chemical compound [O-]C1=C(CC=C)C=CC=C1\C=N\NC(=O)C[NH+]1CCN(CC=2C=CC=CC=2)CC1 YQNRVGJCPCNMKT-LFVJCYFKSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102100028987 Dual specificity protein phosphatase 2 Human genes 0.000 description 2
- 101000838335 Homo sapiens Dual specificity protein phosphatase 2 Proteins 0.000 description 2
- 101001071312 Homo sapiens Platelet glycoprotein IX Proteins 0.000 description 2
- 101001080401 Homo sapiens Proteasome assembly chaperone 1 Proteins 0.000 description 2
- 102100023915 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 2
- 229960005552 PAC-1 Drugs 0.000 description 2
- 102100036851 Platelet glycoprotein IX Human genes 0.000 description 2
- KYGRCGGBECLWMH-UHFFFAOYSA-N Sterigmatocystin Natural products COc1cc2OC3C=COC3c2c4Oc5cccc(O)c5C(=O)c14 KYGRCGGBECLWMH-UHFFFAOYSA-N 0.000 description 2
- UTSVPXMQSFGQTM-UHFFFAOYSA-N Sterigmatrocystin Natural products O1C2=CC=CC(O)=C2C(=O)C2=C1C(C1C=COC1O1)=C1C=C2OC UTSVPXMQSFGQTM-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- NGOLMNWQNHWEKU-DEOSSOPVSA-N butyrolactone I Chemical compound C([C@@]1(C(=O)OC)C(=C(O)C(=O)O1)C=1C=CC(O)=CC=1)C1=CC=C(O)C(CC=C(C)C)=C1 NGOLMNWQNHWEKU-DEOSSOPVSA-N 0.000 description 2
- FQYAPAZNUPTQLD-DEOSSOPVSA-N butyrolactone I Natural products COC1=C(c2ccc(O)cc2)[C@](Cc3ccc(O)c(CC=C(C)C)c3)(OC1=O)C(=O)O FQYAPAZNUPTQLD-DEOSSOPVSA-N 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- RHGQIWVTIHZRLI-UHFFFAOYSA-N dihydrosterigmatocystin Natural products O1C2=CC=CC(O)=C2C(=O)C2=C1C(C1CCOC1O1)=C1C=C2OC RHGQIWVTIHZRLI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- HAGVCKULCLQGRF-UHFFFAOYSA-N pifithrin Chemical compound [Br-].C1=CC(C)=CC=C1C(=O)CN1[C+](N)SC2=C1CCCC2 HAGVCKULCLQGRF-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000001626 skin fibroblast Anatomy 0.000 description 2
- 229960003787 sorafenib Drugs 0.000 description 2
- UTSVPXMQSFGQTM-DCXZOGHSSA-N sterigmatocystin Chemical compound O1C2=CC=CC(O)=C2C(=O)C2=C1C([C@@H]1C=CO[C@@H]1O1)=C1C=C2OC UTSVPXMQSFGQTM-DCXZOGHSSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102100039061 Cytokine receptor common subunit beta Human genes 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 101100297420 Homarus americanus phc-1 gene Proteins 0.000 description 1
- 101000980932 Homo sapiens Cyclin-dependent kinase inhibitor 2A Proteins 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 101000994365 Homo sapiens Integrin alpha-6 Proteins 0.000 description 1
- 101001046677 Homo sapiens Integrin alpha-V Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 description 1
- 101000897042 Homo sapiens Nucleotide pyrophosphatase Proteins 0.000 description 1
- 101001070786 Homo sapiens Platelet glycoprotein Ib beta chain Proteins 0.000 description 1
- 101001033026 Homo sapiens Platelet glycoprotein V Proteins 0.000 description 1
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 1
- 101000799466 Homo sapiens Thrombopoietin receptor Proteins 0.000 description 1
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 1
- 102100032816 Integrin alpha-6 Human genes 0.000 description 1
- 102100022337 Integrin alpha-V Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 101100268648 Mus musculus Abl1 gene Proteins 0.000 description 1
- 101100519086 Mus musculus Pcgf2 gene Proteins 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 102100021969 Nucleotide pyrophosphatase Human genes 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102100034168 Platelet glycoprotein Ib beta chain Human genes 0.000 description 1
- 102100038411 Platelet glycoprotein V Human genes 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 108010022429 Polycomb-Group Proteins Proteins 0.000 description 1
- 102000012425 Polycomb-Group Proteins Human genes 0.000 description 1
- 208000020584 Polyploidy Diseases 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108091082327 RAF family Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102100034196 Thrombopoietin receptor Human genes 0.000 description 1
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 108700042226 ras Genes Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940082569 selenite Drugs 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 235000011649 selenium Nutrition 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/19—Platelets; Megacaryocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
Definitions
- the present invention broadly relates to megakaryocyte progenitor cells or methods for producing megakaryocyte cells.
- platelets Approximately 200 billion platelets are used for platelet transfusion each time, but since platelets generally have a short body life of several days, it is often necessary to administer them repeatedly. Although the number of elderly people who require repeated administration of platelet transfusions is steadily increasing due to the aging of society, the young donor population is declining.
- Non-Patent Documents 1 and 2 In order to meet the social demand for platelets, the inventors have established a technique for stable production of platelet preparations in vitro using human iPS cells (Non-Patent Documents 1 and 2). The inventors introduced three factors (MYC / BMI1 / BCL-XL) into hematopoietic cells derived from human iPS cells to establish an immortalized megakaryocyte strain (cells that are the source of platelets), and prepared a medium. A technique for mass-producing platelets (human iPS cell-derived artificial platelet preparation) has also been established simply by changing (Patent Documents 1 and 2).
- an object of the present invention is to provide a novel method for producing megakaryocyte progenitor cells or megakaryocyte cells having high proliferative ability in order to establish a stable production system for platelets.
- the present inventors have suppressed the expression of the CDKN1A gene encoding the cell cycle inhibitor p21 to obtain megakaryocyte progenitor cells or megakaryocytes having high proliferative capacity. We have found that cells can be obtained and have completed the present invention.
- a method for producing a megakaryocyte progenitor cell or a megakaryocyte cell which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
- the method according to [1] further comprising the step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
- a method of producing platelets [13] A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof.
- An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells which comprises, as an active ingredient, a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product thereof.
- the growth promoter according to [15] further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
- a method for producing megakaryocyte progenitor cells or megakaryocyte cells which comprises a step of suppressing the expression of the p53 gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
- the method according to [17] further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
- [20] The method according to any one of [17] to [19], wherein the megakaryocyte cells are immortalized.
- the method according to [22] further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
- [27] The method according to any one of [17] to [26], wherein the suppression step is carried out by introducing a molecule that suppresses the expression of a gene or the function of the expression product thereof into a cell.
- a method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells which comprises a step of suppressing the expression of the p53 gene or the function of the expression product thereof.
- An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells which comprises, as an active ingredient, a molecule that suppresses the expression of the p53 gene or the function of the expression product thereof.
- the growth promoter according to [31] further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
- the present invention by suppressing the expression of the CDKN1A gene in the starting cells, stable platelet production can be achieved in megakaryocyte precursor cells or megakaryocyte cells having a longer growth period and higher proliferative capacity than in the prior art. It enables the production of possible megakaryocyte precursor cells or megakaryocyte cells.
- the proliferation period of megakaryocyte progenitor cells or megakaryocyte cells is further extended, and the proliferation ability is further increased. ..
- megakaryocyte precursor cells or megakaryocyte progenitor cells that have a longer proliferation period and higher proliferative capacity than the prior art and are capable of stable platelet production. Alternatively, the production of megakaryocyte cells becomes possible.
- the proliferation period of the megakaryocyte progenitor cell or the megakaryocyte cell is further extended, and the proliferation ability is further increased.
- FIG. 1 shows the results of analyzing the proliferation of megakaryocyte progenitor cells or megakaryocyte cells (MKCL1) after suppressing the expression of the CDKN1A gene.
- the vertical axis shows the number of cell proliferations after suppressing gene expression, and the horizontal axis shows the number of days since expression suppression.
- FIG. 2 shows the results of analyzing the proliferation of megakaryocyte progenitor cells or megakaryocyte cells (MKCL23) after suppressing the expression of the CDKN1A gene, INK4A / ARF gene, and p53 gene.
- the vertical axis shows the number of cell proliferations after suppressing gene expression
- the horizontal axis shows the number of days since expression suppression.
- FIG. 3 shows the results of analyzing the proliferation of megakaryocyte progenitor cells or megakaryocyte cells (MKCL26) after suppressing the expression of the CDKN1A gene, INK4A / ARF gene, and p53 gene.
- the vertical axis shows the number of cell proliferations after suppressing gene expression, and the horizontal axis shows the number of days since expression suppression.
- FIG. 4 shows the results of analysis of the proliferation of megakaryocyte cells (MKCL1) after suppressing the expression of the CDKN1A gene and the p53 gene at the same time as the introduction of BCL-XL or 2 weeks after the introduction.
- the vertical axis shows the number of cell proliferations after suppressing gene expression, and the horizontal axis shows the number of days since expression suppression.
- FIG. 5 shows FACS dot plots (upper right and lower right, respectively) of megakaryocyte cells established by suppressing the expression of the CDKN1A gene and platelets produced from the megakaryocyte cells (X-axis: CD41; Y-axis: CD42b).
- FIG. 6 shows a megakaryocyte cell line having the best platelet-releasing ability by forcibly expressing the platelet-producing ability of a megakaryocyte cell (MKCL21) in which the expression of the CDKN1A gene was suppressed by the conventional three factors (MYC / BMI1 / BCL-XL). The result of comparison with (SeV2) is shown.
- FIG. 7 shows the results of comparing the platelet release ability of the MKCL7 strain after infection with the control vector, the MKCL21 strain after CDKN1A suppression, and the MKCL30 strain after CDKN1A and p53 suppression.
- FIG. 8 shows MKCL7 strain after control vector infection, MKCL21 strain after CDKN1A suppression, and MKCL30 strain after CDKN1A and p53 suppression, respectively, with no stimulation or 0.4 ⁇ M PMA or 100 ⁇ M ADP + 40 ⁇ M TRAP-, respectively.
- FIG. 9 shows a strain (MB) in which a macronuclear cell progenitor cell line into which two genes of c-MYC / BMI1 were introduced was cultured as it was after 14 days, and a BCL-XL gene was further added to the MB strain using a doxycycline-induced lentiviral vector.
- the introduced strain (MBX), the strain infected with the sh p21 / p53 lentiviral vector persistently expressed in the MB strain (MB-p21 / p53_KD), and the sh p21 / p53 lentivirus persistently expressed in the MBX strain.
- MBX-p21 / p53_KD the results of the cell proliferation numbers on the 14th, 31st and 43rd days are shown.
- FIG. 10 shows the results of FACS analysis of the expression of CD34 and CD41 in cells on the 31st and 43rd days of the MB strain, the MBX strain, the MB-p21 / p53_KD strain, and the MBX-p21 / p53_KD strain. ..
- FIG. 11 shows the results of FACS analysis of the expression of CD34 and CD42b in cells on the 31st and 43rd days of the MB strain, the MBX strain, the MB-p21 / p53_KD strain, and the MBX-p21 / p53_KD strain. .. FIG.
- the method for producing megakaryocyte progenitor cells or megakaryocyte cells includes a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cells or the megakaryocyte progenitor cells before polynuclearization. ..
- gene expression means that the DNA encoding the gene of interest is transcribed into mRNA and / or the mRNA is translated into protein.
- the CDKN1A (cyclin-dependent kinase inhibitor 1A) gene encodes the cell cycle inhibitor p21 and is also known as a downstream gene of the p53 gene, which is a tumor suppressor gene.
- the activated p53 protein acts as a transcription factor and increases the expression of p53 downstream genes. Therefore, as used herein, "suppressing gene expression or the function of an expression product thereof” means the expression of a gene of interest or the function of the expression product (for example, p21 in the case of the CDKN1A gene). It can be achieved by directly suppressing the gene, or it can be achieved by controlling the expression of genes upstream of the gene of interest and the function of those expression products.
- the p53 gene and further the upstream gene of the p53 gene are included in the upstream gene of the target CDKN1A gene.
- the INK4A gene and ARF gene, which are cancer-suppressing genes, are not included.
- the INK4 (inhibitors of CDK4) A gene and the ARF (alternate reading frame) gene are genes existing at the same locus and are known as tumor suppressor genes. Both genes share some exons, and both are thought to act to suppress growth. By using a molecule such as siRNA that targets a common exon, the expression of both genes can be suppressed.
- INK4A / ARF gene is construed as both genes or one of the genes, i.e. "INK4A gene and / or ARF gene”.
- CDKN1A gene it is preferable to suppress the expression of not only the CDKN1A gene but also the INK4A / ARF gene and / or the p53 gene, or the function of the expression products thereof.
- a combination of the CDKN1A gene and the p53 gene is more preferred.
- Each gene such as CDKN1A gene, INK4A / ARF gene, p53 gene, etc. as used in the present specification means one encoded by their known nucleic acid sequence, for example, cDNA sequence. Each gene may also contain a homolog that is identified based on the homology of known nucleic acid sequences.
- the homolog of the CDKN1A gene is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 1.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 1 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 1. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%.
- DNA consisting of a sequence having an identity of about 99% or more, or a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 1.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 1 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 1.
- DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs is the cell cycle. It is the one that inhibits.
- the homolog of the INK4A gene used in the present invention is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 2.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 2 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 2. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 2 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 2.
- DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs causes cancer. It is something that suppresses.
- the homologue of the ARF gene used in the present invention is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 3.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 3 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 3. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 3 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 3.
- the p53 gene is a gene whose cDNA sequence is substantially the same as, for example, the nucleic acid sequence shown in SEQ ID NO: 4.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 4 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 4.
- DNA consisting of a sequence having 94%, 95%, 96%, 97%, 98%, most preferably about 99% or more identity, or DNA consisting of a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 4. DNA that can hybridize under stringent conditions, and the protein encoded by that DNA suppresses cancer.
- the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 4 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 4.
- DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs causes cancer. It is something that suppresses.
- the stringent condition is a hybridization condition easily determined by those skilled in the art, and is generally an empirical experimental condition that depends on the base length, washing temperature, and salt concentration of nucleic acid. is there. In general, the longer the base, the higher the temperature for proper annealing, and the shorter the base, the lower the temperature. Hybridization generally depends on the ability of the complementary strand to reanneal in an environment slightly below its melting point.
- washing is performed in a 0.1 ⁇ SSC, 0.1% SDS solution under a temperature condition of 37 ° C. to 42 ° C. Things can be raised.
- high stringent conditions include, for example, washing in 65 ° C., 5 ⁇ SSC and 0.1% SDS in the washing step. By increasing the stringent conditions, polynucleotides with high homology can be obtained.
- Expression of a gene or suppression of the function of an expression product thereof can be performed by a known method, for example, siRNA, an antisense nucleic acid, or a nucleic acid molecule thereof that can specifically suppress the expression of each gene can be expressed. This can be done by introducing various molecules, such as expression vectors, into cells. Alternatively, the gene may be knocked down by using another technique such as genome editing technique. For example, when a gene is knocked down using the CRISPR-Cas system, a guide RNA that targets the gene and a fusion protein of inactivated Cas and a repressor domain such as dCas are used.
- SiRNA is typically a double-stranded oligo RNA consisting of RNA having a sequence complementary to the nucleotide sequence of the mRNA of the target gene or a partial sequence thereof and its complementary strand. Nucleotide sequences of these RNAs can be appropriately designed by those skilled in the art based on the sequence information of genes whose expression is suppressed. shRNA can also be used instead of siRNA.
- An antisense nucleic acid contains a nucleotide sequence capable of specifically hybridizing with a target mRNA under the physiological conditions of a cell expressing the target mRNA (mature mRNA or early transcript), and in a hybridized state, the target mRNA is used. Means a nucleic acid that can inhibit the translation of the encoded polypeptide.
- the type of antisense nucleic acid may be DNA or RNA, or may be a chimera of DNA and RNA.
- the nucleotide sequence of the antisense nucleic acid can be appropriately designed by those skilled in the art based on the sequence information of the gene whose expression is suppressed.
- compounds known to suppress the expression of each gene can also be used.
- p21 inhibitors such as UC2288, butyrolactone I, LLW10, sorafenib, and sterigmatocystin are known as compounds that suppress the expression of the CDKN1A gene.
- p53 inhibitors pifithrin ⁇ , natrin-3, ReACp53, RG7388 and the like are known.
- the gene of interest may be knocked out using a known technique in order to express the gene or suppress the function of the expression product thereof.
- Knockout of a gene means that all or part of the gene is disrupted or mutated so as not to perform its original function.
- the gene may be disrupted or mutated so that one allele on the genome does not function.
- a plurality of alleles may be disrupted or mutated.
- Knockout can be performed by a known method, for example, a method of knocking out by introducing a DNA construct designed to cause genetic recombination with a target gene into a cell, TALEN or CRISPR-Cas.
- a method of knocking out by inserting, deleting, or introducing a substitution using a genome editing technique such as a system can be mentioned.
- compounds that suppress transcription and transcripts of each gene, or binding inhibitors of the produced proteins to target proteins may be used.
- p21 binding inhibition: UC2288, Butyrolactone I, LLW10, sorafenib, sterigmatocystin, etc. may be used.
- hematopoietic progenitor cell is a hematopoietic cell characterized as a CD34-positive cell, prepared from, for example, ES cells or iPS cell-derived cells, particularly ES cells or iPS cells.
- ES-sac net-like structure
- iPS-sac net-like structure
- the "net-like structure" prepared from ES cells or iPS cells is a three-dimensional sac-like (with space inside) structure derived from ES cells or iPS cells, and is an endothelial cell population or the like. It is formed and contains hematopoietic progenitor cells inside.
- Megakaryocyte precursor cells before multinucleation are cells that are more undifferentiated than multinucleated megakaryocyte cells and are CD41a-positive / CD42a-positive / CD42b-positive, which are specific markers of the megakaryocyte lineage, and are nuclear. It means mononuclear or binuclear cells that have not undergone polyploidization.
- Hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells can be obtained by isolation from, for example, bone marrow, umbilical cord blood, and peripheral blood, and are pluripotent such as ES cells and iPS cells, which are more undifferentiated cells. It can also be obtained by inducing differentiation from sex stem cells.
- Megakaryocyte cells are produced by further inducing differentiation from hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells by a known method. Megakaryocyte cells are characterized by being positive for the cell surface markers CD41a, CD42a, and CD42b. In addition to these markers, megakaryocyte cells further express at least one marker selected from the group consisting of CD9, CD61, CD62p, CD42c, CD42d, CD49f, CD51, CD110, CD123, CD131, and CD203c. Sometimes. Megakaryocyte cells release platelets when they become polyploid and mature. Multinucleated megakaryocyte cells have 16 to 32 times the genome of normal cells.
- megakaryocyte cell includes all megakaryocyte cells such as immature megakaryocyte cells and mature megakaryocyte cells (mature megakaryocyte cells) unless otherwise specified. It is used as a meaning to.
- the megakaryocyte cells are further immortalized.
- methods for producing immortalized megakaryocyte cells include those described in WO 2011/034073 (supra) and US Patent Application Publication No. 2012/0238023.
- an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing an oncogene and a polycomb gene in cells that are more undifferentiated than megakaryocyte cells.
- an apoptosis suppressor gene in undifferentiated cells from megakaryocyte cells according to the methods described in International Publication No. 2012/157586 (above) and US Patent Application Publication No. 2014/0127815.
- Immortalized megakaryocyte cells can be obtained.
- these immortalized megakaryocyte cells acquire self-renewal ability, multinucleation progresses, and platelets are released.
- Forced expression of oncogene, polycomb gene, and / or apoptosis suppressor gene may be performed simultaneously or sequentially.
- an oncogene and a polycomb gene may be forcibly expressed, then the forcible expression may be suppressed, then an apoptosis-suppressing gene may be forcibly expressed, and then this forcible expression may be suppressed to obtain polynuclear macronuclear cells.
- a tumor suppressor gene and a polycomb gene are forcibly expressed, and then an apoptosis suppressor gene is forcibly expressed, and these forcible expression can be suppressed at the same time to obtain a polynuclear macronuclear cell.
- the expression of the CDKN1A gene, or suppression of the function of its expression product is simultaneous with the forced expression of any of the oncogene, polycomb gene, or apoptosis suppressor gene, preferably at the same time as the forced expression of the apoptosis suppressor gene, or thereafter, for example.
- Decreased cell proliferation for example, comparing the cell proliferation rate at a certain point in time with the most recent cell proliferation rate (for example, assuming that cell proliferation is confirmed weekly, the cell proliferation rate for a week is the proliferation one week before. It can be carried out after it is confirmed that the growth rate is halved or less (compared to the rate).
- the decrease in cell proliferation is not intended to be limited, but about 30 days, about 40 days, about 50 days, about 60 days, about 70 days, about 80 days after the forced expression of the oncogene or polycomb gene. , Or until about 90 days later.
- the term "oncogene” refers to a gene that induces canceration of cells in vivo, for example, MYC family genes (eg, c-MYC, N-MYC, L-MYC), SRC family.
- MYC family genes eg, c-MYC, N-MYC, L-MYC
- SRC family examples include genes, RAS family genes, RAF family genes, c-Kit, PDGFR, Abl and other protein kinase family genes.
- the MYC family gene, particularly c-MYC is preferable.
- polycomb group transmitter refers to a gene that negatively regulates the CDKN2a (INK4A / ARF) gene and functions to avoid cell senescence (Ogura et al., Regenerative Medicine, vol.6, No.). .4, pp26-32; Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006; Proc.Natur.Acad.Sci.USA, vol.2016, p. 2003).
- Non-limiting examples of polycomb genes include BMI1, Mel18, Ring1a / b, Phc1 / 2/3, Cbx2 / 4/6/7/8, Ezh2, Eed, Suz12, HADC, Dnmtl / 3a / 3b. .. Among these, BMI1 is preferable.
- the "apoptosis-suppressing gene” refers to a gene having a function of suppressing cell apoptosis, and examples thereof include BCL2 gene, BCL-XL gene, Survivin gene, and MCLl gene. Of these, the BCL-XL gene is preferred.
- the period of the forced expression can be appropriately determined by those skilled in the art, but the forced expression of the oncogene, polycomb gene, and / or the apoptosis-suppressing gene is forced after the desired period has elapsed after suppressing the expression of the CDKN1A gene. It is preferable to suppress (release) the expression.
- the cells may be subcultured after the forced expression, and the period from the last passage to the day when the forced expression is released is not particularly limited, but may be, for example, 1 day, 2 days, or 3 days or more. ..
- Forced expression may be suppressed by containing a drug, such as tetracycline or doxycycline, in the medium and removing them from the medium.
- a drug such as tetracycline or doxycycline
- the method for producing megakaryocyte progenitor cells or megakaryocyte progenitor cells comprises the step of suppressing the expression of the p53 gene or the function of its expression product in hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells. ..
- a combination of the CDKN1A gene and the p53 gene is more preferred.
- the expression of the gene or the suppression of the function of the expression product thereof can be performed by the above-mentioned method.
- expression of the above gene or suppression of the function of the expression product thereof is performed in cells before differentiation into megakaryocyte cells, for example, hematopoietic progenitor cells or megakaryocyte progenitor cells before polynuclearization.
- the megakaryocyte cells are further immortalized.
- methods for producing immortalized megakaryocyte cells include those described in WO 2011/034073 (supra) and US Patent Application Publication No. 2012/0238023.
- an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing an oncogene and a polycomb gene in cells that are more undifferentiated than megakaryocyte cells.
- an apoptosis suppressor gene in undifferentiated cells from megakaryocyte cells according to the methods described in International Publication No. 2012/157586 (above) and US Patent Application Publication No. 2014/0127815.
- Immortalized megakaryocyte cells can be obtained.
- these immortalized megakaryocyte cells acquire self-renewal ability, multinucleation progresses, and platelets are released.
- the forcible expression of the oncogene, the polycomb gene, and / or the apoptosis suppressor gene may be performed simultaneously or sequentially.
- an oncogene and a polycomb gene may be forcibly expressed, then the forcible expression may be suppressed, then an apoptosis-suppressing gene may be forcibly expressed, and then this forcible expression may be suppressed to obtain polynuclear macronuclear cells.
- a tumor suppressor gene and a polycomb gene are forcibly expressed, and then an apoptosis suppressor gene is forcibly expressed, and these forcible expression can be suppressed at the same time to obtain a polynuclear macronuclear cell.
- the expression of the p53 gene, or the suppression of the function of the expression product thereof is simultaneous with the forced expression of any of the oncogene, the polycomb gene, or the apoptosis suppressor gene, preferably at the same time as the forced expression of the apoptosis suppressor gene.
- a decrease in cell proliferation for example, the cell proliferation rate at a certain point in time is compared with the latest cell proliferation rate (for example, assuming that cell proliferation is confirmed weekly, the cell proliferation rate for a certain week is one of them. It can be carried out after it is confirmed that the growth rate has been reduced to 1/2 or less (compared to the growth rate a week ago).
- the decrease in cell proliferation is not intended to be limited, but about 30 days, about 40 days, about 50 days, about 60 days, about 70 days, about 80 days after the forced expression of the oncogene or polycomb gene. , Or until about 90 days later.
- the oncogene is preferably a MYC family gene, particularly c-MYC.
- BMI1 is preferable as the polycomb transmitter.
- the tumor suppressor gene the BCL-XL gene is preferable.
- an immortalized megakaryocyte cell line is obtained by forcibly expressing an oncogene (eg, c-MYC) and a polycomb gene (eg, BMI1). Forced expression of the apoptosis-suppressing gene (eg, BCL-XL) may or may not be performed.
- an oncogene eg, c-MYC
- a polycomb gene eg, BMI1
- Forced expression of the apoptosis-suppressing gene eg, BCL-XL
- the forced expression of the gene and the release of the forced expression can be performed by the method described above.
- the period of forced expression can be appropriately determined by those skilled in the art, but for forced expression of the cancer gene, polycomb gene, and / or apoptosis-suppressing gene, it is desired after suppressing the expression of p53 gene. It is preferable to suppress (release) forced expression after the lapse of a period.
- the cells may be subcultured after the forced expression, and the period from the last passage to the day when the forced expression is released is not particularly limited, but may be, for example, 1 day, 2 days, or 3 days or more. ..
- Cultivation conditions for hematopoietic progenitor cells or pre-megakaryocyte progenitor cells, and further megakaryocyte progenitor cells or megakaryocyte cells can be appropriately determined by those skilled in the art according to the cell type and its state.
- the culture temperature can be about 35 ° C. to about 42 ° C., about 36 ° C. to about 40 ° C., or about 37 ° C. to about 39 ° C.
- the carbon dioxide concentration is, for example, 5% CO 2
- the oxygen concentration is, for example, 20. It can be% 0 2.
- It may be a static culture or a shaking culture.
- the shaking speed in the case of shaking culture is also not particularly limited, and can be, for example, 10 rpm to 200 rpm, 30 rpm to 150 rpm, or the like.
- the medium may be an Iskov modified Darbecco medium (IMDM) medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, and TPO.
- IMDM Iskov modified Darbecco medium
- the IMDM medium may further contain SCF and may further contain heparin.
- concentrations are not particularly limited, but for example, TPO can be about 10 ng / mL to about 200 ng / mL, or about 50 ng / mL to about 100 ng / mL, and SCF can be about 10 g / mL to about 200 g.
- heparin can be from about 10 U / mL to about 100 U / mL, or about 25 U / mL.
- Phorbol ester eg, phorbol-12-millistart-13-acetate; PMA may be added.
- the cell culture step can be carried out in the presence or absence of feeder cells.
- the term "feeder cell” refers to a cell that is co-cultured with a target cell in order to prepare an environment necessary for culturing the target cell that is to be proliferated or differentiated.
- the feeder cell may be a cell of allogeneic origin or a cell of heterologous origin as long as it is a cell that can be distinguished from the target cell.
- the feeder cells may be cells that have been treated so as not to proliferate with antibiotics or gamma rays, or cells that have not been treated.
- the medium may contain serum or plasma, or may be serum-free. When serum is used, human serum is preferred. If desired, the medium may be, for example, albumin, insulin, transferase, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (eg L-glutamine), ascorbic acid. , Heparin, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines and the like.
- serum human serum
- the medium may be, for example, albumin, insulin, transferase, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (eg L-glutamine), ascorbic acid. , Heparin, non-essential amino acids, vitamins,
- cytokines include vascular endothelial growth factor (VEGF), thrombopoietin (TPO), various TPO-like agents, stem cell factor (SCF), ITS (insulin-transferrin-selenite) supplement, and ADAM (A Discintegrin And Metalloprotase) inhibition.
- VEGF vascular endothelial growth factor
- TPO thrombopoietin
- SCF stem cell factor
- ITS insulin-transferrin-selenite
- ADAM A Discintegrin And Metalloprotase inhibition.
- agents include agents.
- the feeder cells are not used. Even in this case, a platelet production promoting effect comparable to that when feeder cells are used can be obtained (International Publication No. 2016/20456 and US Patent Application Publication No. 2019/0048317).
- AhR aromatic hydrocarbon receptor
- ROCK Ra-associated coiled-coil forming kinase
- the method for producing platelets according to the present embodiment includes a step of further culturing megakaryocyte progenitor cells or megakaryocyte cells produced according to the above method.
- the medium for culturing megakaryocyte cells is not particularly limited, and a known medium suitable for producing platelets from megakaryocyte cells or a medium similar thereto can be appropriately used.
- a medium used for culturing animal cells can be prepared as a basal medium.
- the basal medium include Iskov-modified Dalveco medium (IMDM) medium, 199 medium, Eagle's minimum essential medium (EMEM), ⁇ MEM medium, Dalveco-modified Eagle's medium (DMEM) medium, Ham F12 medium, RPMI1640 medium, Fisher medium, and neurobasal. Medium (Life Technologies) and a mixed medium thereof can be mentioned.
- the method for producing a platelet preparation includes a step of collecting a platelet-rich fraction and a step of removing blood cell lineage components other than platelets from the platelet-rich fraction.
- the step of removing blood cell components is performed by removing blood cell components other than platelets, including megakaryocyte cells, using a leukocyte removal filter (for example, manufactured by Terumo Corporation or Asahi Kasei Medical Co., Ltd.). Can be done. More specific methods for producing platelet preparations are described, for example, in International Publication No. 2011/034073 (above) and US Patent Application Publication No. 2012/0238023.
- the method for producing a blood product includes a step of producing a platelet preparation and a step of mixing the platelet preparation with other components. Other components include, for example, red blood cells. Platelet and blood products may also contain other components that contribute to cell stabilization.
- the method for promoting the proliferation of megakaryocyte precursor cells or megakaryocyte cells is a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and / or the p53 gene.
- the expression of the above, or the step of suppressing the function of those expression products is included.
- the method of promoting the proliferation of megakaryocyte precursor cells or megakaryocyte cells is a step of suppressing the expression of the p53 gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and / or the CDKN1A gene. Includes the step of suppressing the expression of, or the function of those expression products.
- the megakaryocyte precursor cell or the proliferation promoter of megakaryocyte cell contains a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product as an active ingredient, and optionally, the INK4A / ARF gene and / Alternatively, it contains a molecule that suppresses the expression of the p53 gene or the function of those expression products.
- the megakaryocyte precursor cell or megakaryocyte cell proliferation promoter comprises, as an active ingredient, a molecule that suppresses the expression of the p53 gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and /. Alternatively, it contains a molecule that suppresses the expression of the CDKN1A gene or the function of those expression products.
- Example 1 Suppression of CDKN1A gene expression From human iPS cells (TKDN SeV2: human fetal skin fibroblast-derived iPS cells established using Sendai virus), Takayama N. et al. , Et al. J Exp Med.
- TKDN SeV2 human fetal skin fibroblast-derived iPS cells established using Sendai virus
- Differentiation culture into blood cell cells was carried out according to the method described in 2817-2830 (2010). That is, human iPS cell colonies (NC13X strain) were co-cultured with C3H10T1 / 2 feeder cells for 14 days in the presence of 20 ng / mL VEGF (R & D SYSTEMS) to prepare hematopoietic progenitor cells (HPC).
- the culture conditions were 20% O 2 and 5% CO 2 .
- An immortalized megakaryocyte cell line was established by introducing the three genes c-MYC / BMI1 / BCL-XL into the obtained hematopoietic progenitor cells.
- a lentiviral vector that forcibly expresses c-MYC / BMI1 was introduced into hematopoietic progenitor cells on the 14th day of culture under control of doxycycline, and 1 ⁇ g / ml of doxycycline was added 24 hours after infection to carry out gene expression. Two weeks later, a lentiviral vector that forcibly expresses BCL-XL under doxycycline control was introduced to establish an immortalized megakaryocyte cell line.
- ShCDKN1A (clone 1 (SEQ ID NO: 5) or clone 2 (SEQ ID NO: 6)) was added to megakaryocyte progenitor cells or megakaryocyte strains (MKCL21 strain) with decreased cell proliferation 50 days after the introduction of MYC / BMI1 / BCL-XL. ))-The RFP lentiviral vector was infected. Three days after infection, RFP (Red Fluorescent Protein) positive infected cells were sorted using FACS Maria IIIu. The estimated secondary structures of clones 1 and 2 are shown below.
- Example 2 Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (cell proliferation reduction stage)
- An immortalized megakaryocyte cell line was established by introducing the three genes MYC / BMI1 / BCL-XL into hematopoietic progenitor cells derived from a human iPS cell line (YZWJ strain) different from that used in Example 1.
- the megakaryocyte strain (MKCL23 strain) whose cell proliferation decreased 60 days after the introduction of MYC / BMI1 / BCL-XL and the megakaryocyte strain (MKCL26 strain) whose cell proliferation decreased 90 days after the introduction.
- a lentiviral vector having the following genes was infected. The procedure was the same as in Example 1. 1: Control-RFP (LacZ) 2: shCDKN1A-RFP + shp53-GFP + shINK4A / ARF-GFP Three days after infection, RFP / GFP-positive infected cells were sorted using FACS Maria IIIu. shCDKN1A used the above clones 1 and 2.
- the estimated secondary structures of the sequence of shp53 (SEQ ID NO: 7) and the sequence of shINK4A / ARF (SEQ ID NO: 8) are described below.
- the shINK4A / ARF targets a common exon of the INK4A gene and the ARF gene.
- an immortalized megakaryocyte cell line was established by introducing the three genes MYC / BMI1 / BCL-XL into hematopoietic progenitor cells derived from a human iPS cell line (NIH5 strain) different from that used in Example 1.
- MKCL1 strain a megakaryocyte strain having decreased cell proliferation was infected with a lentiviral vector having the following genes.
- the procedure was the same as in Example 1. 1: Control-RFP (LacZ) 2: shCDKN1A-RFP 3: shp53-GFP 4: shINK4A / ARF-GFP 5: shCDKN1A-RFP + shp53-GFP + shARF-GFP The above shRNA was used. Then, positively infected cells were collected using FACS MariaIIIu.
- the cell proliferation was significantly increased as compared with the control (excluding INK4A / ARF).
- the control excluding INK4A / ARF.
- Example 3 Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (at the time of introduction of BCL-XL)
- a megakaryocyte strain MKCL30 strain
- YZWJ516 human iPS cell line which could not be established by conventional forced expression of MBX
- a wrench viral vector having the following genes. .. The procedure was the same as in Example 1.
- the cell proliferation period was extended by 8 weeks or more and the proliferation was 10 to 15 times by suppressing the expression of the CDKN1A gene as compared with the control.
- the cell proliferation effect was highest when the expression of both the CDKN1A gene and the p53 gene was suppressed (2.5x10 17 times in 8 weeks). It is growing on the priority date of the present application (October 17, 2019, 127 days after c-MYC / BMI1 infection). Following this, the cell proliferation effect of the cells in which the expression of all the INK4A gene, ARF gene and p53 gene was suppressed was high.
- Example 4 Examination of platelet production by megakaryocyte cells in which the expression of the CDKN1A gene was suppressed MKCL21 strain after CDKN1A suppression and control vector infection in which proliferation was promoted using clone 2 (SEQ ID NO: 6) in Example 1 Platelet release in the MKCL21 strain was compared.
- Doxycycline was removed from the culture mediums of both cells, and after suppressing the expression of the three factors MYC / BMI1 / BCL-XL, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS on the 5th day.
- As the antibody APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used.
- the FACS dot plot is shown in FIG.
- Example 2 the platelet-producing ability of the MKCL21 strain in which the expression of the CDKN1A gene was suppressed in Example 2 was changed to the megakaryocyte strain having the best platelet-releasing ability by the conventional forced expression of three factors (MYC / BMI1 / BCL-XL). Compared with SeV2).
- the FACS dot plots are shown in FIG.
- As the antibody APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used.
- the upper panel of FIG. 6 shows a state in which doxycycline is added to express the three factors of MYC / BMI1 / BCL-XL. Since both strains are immature, there are few CD41-positive / CD42b-positive platelets (upper right part of the figure divided into four).
- the lower panel of FIG. 6 shows the state on the 5th day when doxycycline was removed from the culture medium and the expression of the three factors MYC / BMI1 / BCL-XL was suppressed, and the platelets were CD41a-positive / CD42b-positive (4).
- the upper right part of the divided figure) is increasing. From these results, it can be seen that the platelet-producing ability was increased by suppressing the expression of the CDKN1A gene.
- Example 5 Examination of platelet production by macronuclear cells that suppressed the expression of CDKN1A gene and p53 gene MKCL7 strain after control vector infection and clone 2 (SEQ ID NO: 6) in Example 1 were used to promote proliferation.
- CDKN1A and p53 whose proliferation was promoted using "5: shCDKN1A-RFP + shp53-GFP" of Example 3 at the same time as the introduction of the MKCL21 strain after CDKN1A suppression and clone 2 (SEQ ID NO: 6) of Example 1. Platelet release with the suppressed MKCL30 strain was compared.
- the strain (ON) that did not suppress the expression of the three factors of MYC / BMI1 / BCL-XL and the MKCL7 strain, the MKCL21 strain, and the MKCL30 after suppressing the expression of the three factors of MYC / BMI1 / BCL-XL.
- MYC / BMI1 / BCL-XL MYC / BMI1 / BCL-XL
- MKCL21 strain MKCL21 strain
- MKCL30 after suppressing the expression of the three factors of MYC / BMI1 / BCL-XL.
- No stimulation-ON Results in no stimulation using a strain that did not suppress the expression of 3 factors of MYC / BMI1 / BCL-XL
- PMA-ON Suppressed the expression of 3 factors of MYC / BMI1 / BCL-XL Results under PMA using a strain that did not suppress AT-ON: Results under AT using a strain that did not suppress the expression of the three factors AT-ON: MYC / BMI1 / BCL-XL.
- Example 6 Expression of BCL-XL gene and suppression of expression of p21 / p53 gene From iPS cells derived from human skin fibroblasts, iPS-Sac method (Takayama N., et al. J Exp Med. 2817-2830 (2010) )), The cells were cultured for 14 days to prepare hematopoietic progenitor cells.
- a megakaryocyte progenitor cell line was established by introducing two genes (MB) of c-MYC / BMI1 into the obtained hematopoietic progenitor cells using a doxycycline-induced lentiviral vector. 14 days later, the strain (MB) cultured as it was, the strain (MBX) in which the BCL-XL gene was further introduced using a doxycycline-induced lentiviral vector in addition to the MB introduction, and the sh that was continuously expressed in addition to the MB introduction.
- a strain further infected with a p21 / p53 lentiviral vector (MB-p21 / p53_KD), and a BCL-XL gene introduced using a doxycycline-induced lentiviral vector in addition to MB introduction, and continuously expressed sh p21 /
- a giant nuclear progenitor cell line of a strain infected with the p53 lentiviral vector (MBX-p21 / p53_KD) was prepared. The results of confirming the proliferative properties of the cells on the 14th, 31st, and 43rd days of each megakaryocyte progenitor cell line are shown in FIG.
- the results of FACS analysis of the expression of CD34 and CD41 in cells on the 31st and 43rd days of the MB strain, MBX strain, MB-p21 / p53_KD strain, and MBX-p21 / p53_KD strain are shown in FIG.
- the results of FACS analysis of the expression of CD34 and CD42b in cells are shown in FIG. 11, and the results of FACS analysis of the expression of CD34 and GPA in cells are shown in FACS dot plot.
- Antibodies are APC anti-human CD41 Antibody (BioLegend, catalog number: 303710), PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473), GPA (Glycophorin A) antibody (BioLegend, Catalog number: 555473), GPA (Glycophorin A) antibody (Bio A CD34 antibody (BioLegend, Catalog No .: 343514) was used.
- the results of the MB-p21 / p53_KD strain show that the results of the MB strain (black circles) are considerably superior to the results of the MB strain (black circles).
- the result of the MBX-p21 / p53_KD strain black triangle indicates that the growth is equal to or higher than the result of the MBX strain (black square) or the result of the MB-p21 / p53_KD strain (white circle).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Virology (AREA)
- Immunology (AREA)
- Developmental Biology & Embryology (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention provides a method for producing a megakaryocyte progenitor cell or a megakaryocytic cell, the method comprising a step of suppressing the expression of CDKN1A gene or the function of an expression product of the gene in a hematopoietic progenitor cell or a megakaryocyte progenitor cell that is not polynucleated yet.
Description
本発明は広く、巨核球前駆細胞又は巨核球細胞の製造方法等に関する。
The present invention broadly relates to megakaryocyte progenitor cells or methods for producing megakaryocyte cells.
血小板輸血には毎回約2000億個の血小板が使われるが、血小板は一般に体内寿命が数日と短いため、繰返し投与することがしばしば必要となる。社会高齢化により血小板輸血の繰り返し投与が必要とされる高齢者は増加の一途を辿っているものの、若年ドナー人口は減少している。
Approximately 200 billion platelets are used for platelet transfusion each time, but since platelets generally have a short body life of several days, it is often necessary to administer them repeatedly. Although the number of elderly people who require repeated administration of platelet transfusions is steadily increasing due to the aging of society, the young donor population is declining.
血小板の社会的需要に応えるべく、発明者らはヒトiPS細胞を用いて試験管内で血小板製剤の安定産生技術を確立した(非特許文献1、2)。発明者らは、ヒトiPS細胞由来の造血細胞等に3つの因子(MYC/BMI1/BCL-XL)を導入して、不死化巨核球株(血小板の素になる細胞)を樹立し、培地を変更するだけで、血小板を大量産生する技術(ヒトiPS細胞由来人工血小板製剤)も確立している(特許文献1、2)。
In order to meet the social demand for platelets, the inventors have established a technique for stable production of platelet preparations in vitro using human iPS cells (Non-Patent Documents 1 and 2). The inventors introduced three factors (MYC / BMI1 / BCL-XL) into hematopoietic cells derived from human iPS cells to establish an immortalized megakaryocyte strain (cells that are the source of platelets), and prepared a medium. A technique for mass-producing platelets (human iPS cell-derived artificial platelet preparation) has also been established simply by changing (Patent Documents 1 and 2).
1011個/血小板を含む製剤1パックを、例えば1000パック供給するためには、少なくとも1014-15個(増殖日数で計算するとヒトiPS細胞から誘導した10-14日目の造血前駆細胞にMYC、BMI1及びBCL-XLを導入後、約4~5ヶ月間)の不死化巨核球細胞が必要である。そのため、血小板製造には高い細胞増殖能力を有する巨核球前駆細胞又は巨核球細胞の製造が欠かせないが、質の悪いiPS細胞や造血前駆細胞に上記3因子(MYC/BMI1/BCL-XL)を導入して得られる巨核球前駆細胞又は巨核球細胞の細胞増殖能力には限界があることが判明した。
In order to supply 1 pack of a preparation containing 10 11 cells / platelets, for example, 1000 packs, at least 10 14-15 cells (calculated by the number of growth days, MYC to hematopoietic progenitor cells on days 10-14 derived from human iPS cells). , BMI1 and BCL-XL (about 4-5 months after introduction)) immortalized megakaryocytic cells are required. Therefore, the production of megakaryocyte progenitor cells or megakaryocyte cells having high cell proliferation ability is indispensable for the production of platelets, but the above three factors (MYC / BMI1 / BCL-XL) are used for poor quality iPS cells and hematopoietic progenitor cells. It was found that the cell proliferation ability of megakaryocyte progenitor cells or megakaryocyte cells obtained by introducing the above was limited.
かかる事情に鑑み、本発明は、血小板の安定した産生系の確立のために、増殖能力の高い巨核球前駆細胞又は巨核球細胞を製造する新規な方法を提供することを目的とする。
In view of such circumstances, an object of the present invention is to provide a novel method for producing megakaryocyte progenitor cells or megakaryocyte cells having high proliferative ability in order to establish a stable production system for platelets.
本発明者らは、上記課題を解決するために検討を重ねた結果、細胞周期の阻害因子p21をコードするCDKN1A遺伝子の発現を抑制することで、高い増殖能力を有する巨核球前駆細胞又は巨核球細胞が得られることを見出し、本発明を完成させるに至った。
As a result of repeated studies to solve the above problems, the present inventors have suppressed the expression of the CDKN1A gene encoding the cell cycle inhibitor p21 to obtain megakaryocyte progenitor cells or megakaryocytes having high proliferative capacity. We have found that cells can be obtained and have completed the present invention.
すなわち、本願発明は以下の発明を包含する。
[1] 造血前駆細胞又は多核化前の巨核球前駆細胞において、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞を製造する方法。
[2] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[1]に記載の方法。
[3] 巨核球細胞が成熟巨核球細胞である、[2]に記載の方法。
[4] 巨核球細胞が不死化されている、[1]~[3]のいずれかに記載の方法。
[5] 造血前駆細胞において、MYCファミリー遺伝子から選択される癌遺伝子及びBMI1遺伝子を強制発現する工程をさらに含む、[4]に記載の方法。
[6] BCL-XL遺伝子を強制発現する工程をさらに含む、[5]に記載の方法。
[7] 癌遺伝子、BMI1遺伝子及びBCL-XL遺伝子の強制発現を抑制する工程をさらに含む、[6]に記載の方法。
[8] CDKN1A遺伝子の発現、又はその発現産物の機能の抑制がBCL-XL遺伝子の強制発現と同時に実施される、[1]~[7]のいずれかに記載の方法。
[9] CDKN1A遺伝子の発現、又はその発現産物の機能の抑制が、BMI1遺伝子及びBCL-XL遺伝子の強制発現後の細胞の増殖低下の後に実施される、[1]~[7]のいずれかに記載の方法。
[10] 細胞の増殖低下がBMI1遺伝子及びBCL-XL遺伝子の強制発現から30日以上後である、[9]に記載の方法。
[11] 抑制工程が、遺伝子の発現又はその発現産物の機能を抑制する分子を細胞に導入することによって行われる、[1]~[10]のいずれかに記載の方法。
[12] [1]~[11]のいずれかに記載の方法により巨核球前駆細胞又は巨核球細胞を製造する工程、及び
製造された巨核球前駆細胞又は巨核球細胞を培養する工程を含む、血小板を製造する方法。
[13] CDKN1A遺伝子の発現又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法。
[14] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[13]に記載の方法。
[15] CDKN1A遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む、巨核球前駆細胞又は巨核球細胞の増殖促進剤。
[16] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子をさらに含む、[15]に記載の増殖促進剤。 That is, the invention of the present application includes the following inventions.
[1] A method for producing a megakaryocyte progenitor cell or a megakaryocyte cell, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
[2] The method according to [1], further comprising the step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[3] The method according to [2], wherein the megakaryocyte cell is a mature megakaryocyte cell.
[4] The method according to any one of [1] to [3], wherein the megakaryocyte cells are immortalized.
[5] The method according to [4], further comprising a step of forcibly expressing an oncogene and a BMI1 gene selected from MYC family genes in hematopoietic progenitor cells.
[6] The method according to [5], further comprising a step of forcibly expressing the BCL-XL gene.
[7] The method according to [6], further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
[8] The method according to any one of [1] to [7], wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out at the same time as the forced expression of the BCL-XL gene.
[9] Any of [1] to [7], wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out after the decrease in cell proliferation after the forced expression of the BMI1 gene and the BCL-XL gene. The method described in.
[10] The method according to [9], wherein the decrease in cell proliferation is 30 days or more after the forced expression of the BMI1 gene and the BCL-XL gene.
[11] The method according to any one of [1] to [10], wherein the suppression step is performed by introducing a molecule that suppresses the expression of a gene or the function of the expression product thereof into a cell.
[12] A step of producing megakaryocyte progenitor cells or megakaryocyte cells by the method according to any one of [1] to [11], and a step of culturing the produced megakaryocyte progenitor cells or megakaryocyte cells. A method of producing platelets.
[13] A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof.
[14] The method according to [13], further comprising the step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[15] An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells, which comprises, as an active ingredient, a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product thereof.
[16] The growth promoter according to [15], further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[1] 造血前駆細胞又は多核化前の巨核球前駆細胞において、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞を製造する方法。
[2] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[1]に記載の方法。
[3] 巨核球細胞が成熟巨核球細胞である、[2]に記載の方法。
[4] 巨核球細胞が不死化されている、[1]~[3]のいずれかに記載の方法。
[5] 造血前駆細胞において、MYCファミリー遺伝子から選択される癌遺伝子及びBMI1遺伝子を強制発現する工程をさらに含む、[4]に記載の方法。
[6] BCL-XL遺伝子を強制発現する工程をさらに含む、[5]に記載の方法。
[7] 癌遺伝子、BMI1遺伝子及びBCL-XL遺伝子の強制発現を抑制する工程をさらに含む、[6]に記載の方法。
[8] CDKN1A遺伝子の発現、又はその発現産物の機能の抑制がBCL-XL遺伝子の強制発現と同時に実施される、[1]~[7]のいずれかに記載の方法。
[9] CDKN1A遺伝子の発現、又はその発現産物の機能の抑制が、BMI1遺伝子及びBCL-XL遺伝子の強制発現後の細胞の増殖低下の後に実施される、[1]~[7]のいずれかに記載の方法。
[10] 細胞の増殖低下がBMI1遺伝子及びBCL-XL遺伝子の強制発現から30日以上後である、[9]に記載の方法。
[11] 抑制工程が、遺伝子の発現又はその発現産物の機能を抑制する分子を細胞に導入することによって行われる、[1]~[10]のいずれかに記載の方法。
[12] [1]~[11]のいずれかに記載の方法により巨核球前駆細胞又は巨核球細胞を製造する工程、及び
製造された巨核球前駆細胞又は巨核球細胞を培養する工程を含む、血小板を製造する方法。
[13] CDKN1A遺伝子の発現又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法。
[14] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[13]に記載の方法。
[15] CDKN1A遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む、巨核球前駆細胞又は巨核球細胞の増殖促進剤。
[16] INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子をさらに含む、[15]に記載の増殖促進剤。 That is, the invention of the present application includes the following inventions.
[1] A method for producing a megakaryocyte progenitor cell or a megakaryocyte cell, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
[2] The method according to [1], further comprising the step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[3] The method according to [2], wherein the megakaryocyte cell is a mature megakaryocyte cell.
[4] The method according to any one of [1] to [3], wherein the megakaryocyte cells are immortalized.
[5] The method according to [4], further comprising a step of forcibly expressing an oncogene and a BMI1 gene selected from MYC family genes in hematopoietic progenitor cells.
[6] The method according to [5], further comprising a step of forcibly expressing the BCL-XL gene.
[7] The method according to [6], further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
[8] The method according to any one of [1] to [7], wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out at the same time as the forced expression of the BCL-XL gene.
[9] Any of [1] to [7], wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out after the decrease in cell proliferation after the forced expression of the BMI1 gene and the BCL-XL gene. The method described in.
[10] The method according to [9], wherein the decrease in cell proliferation is 30 days or more after the forced expression of the BMI1 gene and the BCL-XL gene.
[11] The method according to any one of [1] to [10], wherein the suppression step is performed by introducing a molecule that suppresses the expression of a gene or the function of the expression product thereof into a cell.
[12] A step of producing megakaryocyte progenitor cells or megakaryocyte cells by the method according to any one of [1] to [11], and a step of culturing the produced megakaryocyte progenitor cells or megakaryocyte cells. A method of producing platelets.
[13] A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof.
[14] The method according to [13], further comprising the step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[15] An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells, which comprises, as an active ingredient, a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product thereof.
[16] The growth promoter according to [15], further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
[17] 造血前駆細胞又は多核化前の巨核球前駆細胞において、p53遺伝子の発現、又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞を製造する方法。
[18] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[17]に記載の方法。
[19] 巨核球細胞が成熟巨核球細胞である、[17]又は[18]に記載の方法。
[20] 巨核球細胞が不死化されている、[17]~[19]のいずれかに記載の方法。
[21] 造血前駆細胞において、MYCファミリー遺伝子から選択される癌遺伝子及びBMI1遺伝子を強制発現する工程をさらに含む、[20]に記載の方法。
[22] BCL-XL遺伝子を強制発現する工程をさらに含む、[21]に記載の方法。
[23] 癌遺伝子、BMI1遺伝子及びBCL-XL遺伝子の強制発現を抑制する工程をさらに含む、[22]に記載の方法。
[24] p53遺伝子の発現、又はその発現産物の機能の抑制がBCL-XL遺伝子の強制発現と同時に実施される、[17]~[23]のいずれかに記載の方法。
[25] p53遺伝子の発現、又はその発現産物の機能の抑制が、BMI1遺伝子及びBCL-XL遺伝子の強制発現後の細胞の増殖低下の後に実施される、[17]~[23]のいずれかに記載の方法。
[26] 細胞の増殖低下がBMI1遺伝子及びBCL-XL遺伝子の強制発現から30日以上後である、[25]に記載の方法。
[27] 抑制工程が、遺伝子の発現又はその発現産物の機能を抑制する分子を細胞に導入することによって行われる、[17]~[26]のいずれかに記載の方法。
[28] [17]~[27]のいずれかに記載の方法により巨核球前駆細胞又は巨核球細胞を製造する工程、及び
製造された巨核球前駆細胞又は巨核球細胞を培養する工程を含む、血小板を製造する方法。
[29] p53遺伝子の発現又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法。
[30] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[29]に記載の方法。
[31] p53遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む、巨核球前駆細胞又は巨核球細胞の増殖促進剤。
[32] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子をさらに含む、[31]に記載の増殖促進剤。 [17] A method for producing megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the p53 gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
[18] The method according to [17], further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
[19] The method according to [17] or [18], wherein the megakaryocyte cell is a mature megakaryocyte cell.
[20] The method according to any one of [17] to [19], wherein the megakaryocyte cells are immortalized.
[21] The method according to [20], further comprising a step of forcibly expressing an oncogene and a BMI1 gene selected from MYC family genes in hematopoietic progenitor cells.
[22] The method according to [21], further comprising a step of forcibly expressing the BCL-XL gene.
[23] The method according to [22], further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
[24] The method according to any one of [17] to [23], wherein the expression of the p53 gene or the suppression of the function of the expression product thereof is carried out at the same time as the forced expression of the BCL-XL gene.
[25] Any of [17] to [23], wherein the expression of the p53 gene or the suppression of the function of the expression product thereof is carried out after the decrease in cell proliferation after the forced expression of the BMI1 gene and the BCL-XL gene. The method described in.
[26] The method according to [25], wherein the decrease in cell proliferation is 30 days or more after the forced expression of the BMI1 gene and the BCL-XL gene.
[27] The method according to any one of [17] to [26], wherein the suppression step is carried out by introducing a molecule that suppresses the expression of a gene or the function of the expression product thereof into a cell.
[28] The step of producing megakaryocyte progenitor cells or megakaryocyte cells by the method according to any one of [17] to [27], and the step of culturing the produced megakaryocyte progenitor cells or megakaryocyte cells. A method of producing platelets.
[29] A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the p53 gene or the function of the expression product thereof.
[30] The method according to [29], further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
[31] An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells, which comprises, as an active ingredient, a molecule that suppresses the expression of the p53 gene or the function of the expression product thereof.
[32] The growth promoter according to [31], further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
[18] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[17]に記載の方法。
[19] 巨核球細胞が成熟巨核球細胞である、[17]又は[18]に記載の方法。
[20] 巨核球細胞が不死化されている、[17]~[19]のいずれかに記載の方法。
[21] 造血前駆細胞において、MYCファミリー遺伝子から選択される癌遺伝子及びBMI1遺伝子を強制発現する工程をさらに含む、[20]に記載の方法。
[22] BCL-XL遺伝子を強制発現する工程をさらに含む、[21]に記載の方法。
[23] 癌遺伝子、BMI1遺伝子及びBCL-XL遺伝子の強制発現を抑制する工程をさらに含む、[22]に記載の方法。
[24] p53遺伝子の発現、又はその発現産物の機能の抑制がBCL-XL遺伝子の強制発現と同時に実施される、[17]~[23]のいずれかに記載の方法。
[25] p53遺伝子の発現、又はその発現産物の機能の抑制が、BMI1遺伝子及びBCL-XL遺伝子の強制発現後の細胞の増殖低下の後に実施される、[17]~[23]のいずれかに記載の方法。
[26] 細胞の増殖低下がBMI1遺伝子及びBCL-XL遺伝子の強制発現から30日以上後である、[25]に記載の方法。
[27] 抑制工程が、遺伝子の発現又はその発現産物の機能を抑制する分子を細胞に導入することによって行われる、[17]~[26]のいずれかに記載の方法。
[28] [17]~[27]のいずれかに記載の方法により巨核球前駆細胞又は巨核球細胞を製造する工程、及び
製造された巨核球前駆細胞又は巨核球細胞を培養する工程を含む、血小板を製造する方法。
[29] p53遺伝子の発現又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法。
[30] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、[29]に記載の方法。
[31] p53遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む、巨核球前駆細胞又は巨核球細胞の増殖促進剤。
[32] INK4A遺伝子及び/又はARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子をさらに含む、[31]に記載の増殖促進剤。 [17] A method for producing megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the p53 gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
[18] The method according to [17], further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
[19] The method according to [17] or [18], wherein the megakaryocyte cell is a mature megakaryocyte cell.
[20] The method according to any one of [17] to [19], wherein the megakaryocyte cells are immortalized.
[21] The method according to [20], further comprising a step of forcibly expressing an oncogene and a BMI1 gene selected from MYC family genes in hematopoietic progenitor cells.
[22] The method according to [21], further comprising a step of forcibly expressing the BCL-XL gene.
[23] The method according to [22], further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
[24] The method according to any one of [17] to [23], wherein the expression of the p53 gene or the suppression of the function of the expression product thereof is carried out at the same time as the forced expression of the BCL-XL gene.
[25] Any of [17] to [23], wherein the expression of the p53 gene or the suppression of the function of the expression product thereof is carried out after the decrease in cell proliferation after the forced expression of the BMI1 gene and the BCL-XL gene. The method described in.
[26] The method according to [25], wherein the decrease in cell proliferation is 30 days or more after the forced expression of the BMI1 gene and the BCL-XL gene.
[27] The method according to any one of [17] to [26], wherein the suppression step is carried out by introducing a molecule that suppresses the expression of a gene or the function of the expression product thereof into a cell.
[28] The step of producing megakaryocyte progenitor cells or megakaryocyte cells by the method according to any one of [17] to [27], and the step of culturing the produced megakaryocyte progenitor cells or megakaryocyte cells. A method of producing platelets.
[29] A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the p53 gene or the function of the expression product thereof.
[30] The method according to [29], further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
[31] An agent for promoting the growth of megakaryocyte progenitor cells or megakaryocyte cells, which comprises, as an active ingredient, a molecule that suppresses the expression of the p53 gene or the function of the expression product thereof.
[32] The growth promoter according to [31], further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the CDKN1A gene, or the function of the expression product thereof.
本発明によれば、出発細胞におけるCDKN1A遺伝子の発現を抑制することで、従来技術よりも増殖期間が長く、増殖能力が高い巨核球前駆細胞又は巨核球細胞であって、安定した血小板の産生が可能な巨核球前駆細胞又は巨核球細胞の製造が可能になる。
According to the present invention, by suppressing the expression of the CDKN1A gene in the starting cells, stable platelet production can be achieved in megakaryocyte precursor cells or megakaryocyte cells having a longer growth period and higher proliferative capacity than in the prior art. It enables the production of possible megakaryocyte precursor cells or megakaryocyte cells.
CDKN1A遺伝子に加え、更に癌抑制遺伝子であるp53遺伝子及び/又はINK4A/ARF遺伝子の発現を抑制することで、巨核球前駆細胞又は巨核球細胞の増殖期間が更に長くなり、増殖能力も更に増大する。
By further suppressing the expression of the tumor suppressor genes p53 gene and / or INK4A / ARF gene in addition to the CDKN1A gene, the proliferation period of megakaryocyte progenitor cells or megakaryocyte cells is further extended, and the proliferation ability is further increased. ..
出発細胞におけるp53遺伝子の発現を抑制することでも、従来技術よりも増殖期間が長く、増殖能力が高い巨核球前駆細胞又は巨核球細胞であって、安定した血小板の産生が可能な巨核球前駆細胞又は巨核球細胞の製造が可能になる。
By suppressing the expression of the p53 gene in the starting cells, megakaryocyte precursor cells or megakaryocyte progenitor cells that have a longer proliferation period and higher proliferative capacity than the prior art and are capable of stable platelet production. Alternatively, the production of megakaryocyte cells becomes possible.
p53遺伝子に加え、更にCDKN1A遺伝子及び/又はINK4A/ARF遺伝子の発現を抑制することで、巨核球前駆細胞又は巨核球細胞の増殖期間が更に長くなり、増殖能力も更に増大する。
By further suppressing the expression of the CDKN1A gene and / or the INK4A / ARF gene in addition to the p53 gene, the proliferation period of the megakaryocyte progenitor cell or the megakaryocyte cell is further extended, and the proliferation ability is further increased.
(巨核球前駆細胞又は巨核球細胞の製造方法)
本実施形態に係る巨核球前駆細胞又は巨核球細胞を製造する方法は、造血前駆細胞又は多核化前の巨核球前駆細胞において、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する工程を含む。本明細書で使用する場合、「遺伝子の発現」とは、対象の遺伝子をコードするDNAがmRNAへ転写されること、及び/又はmRNAがタンパク質へ翻訳されることを意味する。 (Method for producing megakaryocyte progenitor cells or megakaryocyte cells)
The method for producing megakaryocyte progenitor cells or megakaryocyte cells according to the present embodiment includes a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cells or the megakaryocyte progenitor cells before polynuclearization. .. As used herein, "gene expression" means that the DNA encoding the gene of interest is transcribed into mRNA and / or the mRNA is translated into protein.
本実施形態に係る巨核球前駆細胞又は巨核球細胞を製造する方法は、造血前駆細胞又は多核化前の巨核球前駆細胞において、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する工程を含む。本明細書で使用する場合、「遺伝子の発現」とは、対象の遺伝子をコードするDNAがmRNAへ転写されること、及び/又はmRNAがタンパク質へ翻訳されることを意味する。 (Method for producing megakaryocyte progenitor cells or megakaryocyte cells)
The method for producing megakaryocyte progenitor cells or megakaryocyte cells according to the present embodiment includes a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cells or the megakaryocyte progenitor cells before polynuclearization. .. As used herein, "gene expression" means that the DNA encoding the gene of interest is transcribed into mRNA and / or the mRNA is translated into protein.
CDKN1A(cyclin-dependent kinase inhibitor 1A)遺伝子は細胞周期の阻害因子p21をコードしており、癌抑制遺伝子であるp53遺伝子の下流遺伝子としても知られている。活性化したp53タンパク質は転写因子として働き、p53下流遺伝子群の発現を増加させる。そのため、本明細書で使用する場合、「遺伝子の発現、又はその発現産物の機能を抑制する」とは、対象の遺伝子の発現やその発現産物(例えば、CDKN1A遺伝子の場合にはp21)の機能を直接抑制することによって達成してもよいし、対象の遺伝子の上流にある遺伝子の発現やそれらの発現産物の機能を制御することで達成することもできる。ただし、本明細書においては、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する場合、その対象となるCDKN1A遺伝子の上流遺伝子の中に、p53遺伝子、更にはp53遺伝子の上流にある別の癌抑制遺伝子であるINK4A遺伝子及びARF遺伝子は含まれない。
The CDKN1A (cyclin-dependent kinase inhibitor 1A) gene encodes the cell cycle inhibitor p21 and is also known as a downstream gene of the p53 gene, which is a tumor suppressor gene. The activated p53 protein acts as a transcription factor and increases the expression of p53 downstream genes. Therefore, as used herein, "suppressing gene expression or the function of an expression product thereof" means the expression of a gene of interest or the function of the expression product (for example, p21 in the case of the CDKN1A gene). It can be achieved by directly suppressing the gene, or it can be achieved by controlling the expression of genes upstream of the gene of interest and the function of those expression products. However, in the present specification, when the expression of the CDKN1A gene or the function of the expression product thereof is suppressed, the p53 gene and further the upstream gene of the p53 gene are included in the upstream gene of the target CDKN1A gene. The INK4A gene and ARF gene, which are cancer-suppressing genes, are not included.
INK4(inhibitors of CDK4)A遺伝子及びARF(alternative reading frame)遺伝子は同じ遺伝子座に存在する遺伝子であり、癌抑制遺伝子として知られている。両遺伝子は一部のエクソンを共有しており、どちらも増殖抑制に働くと考えられている。共通のエクソンを標的とするsiRNAなどの分子を使用することで、両遺伝子の発現を抑制することができる。本明細書で使用する場合、「INK4A/ARF遺伝子」とは両方の遺伝子か、いずれか一方の遺伝子、つまり「INK4A遺伝子及び/又はARF遺伝子」として解釈される。
The INK4 (inhibitors of CDK4) A gene and the ARF (alternate reading frame) gene are genes existing at the same locus and are known as tumor suppressor genes. Both genes share some exons, and both are thought to act to suppress growth. By using a molecule such as siRNA that targets a common exon, the expression of both genes can be suppressed. As used herein, "INK4A / ARF gene" is construed as both genes or one of the genes, i.e. "INK4A gene and / or ARF gene".
CDKN1A遺伝子のみならず、INK4A/ARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制することが好ましい。CDKN1A遺伝子とp53遺伝子の組み合わせがより好ましい。
It is preferable to suppress the expression of not only the CDKN1A gene but also the INK4A / ARF gene and / or the p53 gene, or the function of the expression products thereof. A combination of the CDKN1A gene and the p53 gene is more preferred.
本明細書で使用する場合のCDKN1A遺伝子、INK4A/ARF遺伝子、p53遺伝子等の各遺伝子は、それらの公知の核酸配列、例えばcDNA配列でコードされるものを意味する。各遺伝子には、公知の核酸配列の相同性に基づいて同定されるホモログも含まれ得る。
Each gene such as CDKN1A gene, INK4A / ARF gene, p53 gene, etc. as used in the present specification means one encoded by their known nucleic acid sequence, for example, cDNA sequence. Each gene may also contain a homolog that is identified based on the homology of known nucleic acid sequences.
CDKN1A遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号1で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号1で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号1で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、もしくは、配列番号1で表わされる核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。あるいは、配列番号1で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号1で表される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。
The homolog of the CDKN1A gene is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 1. The cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 1 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 1. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%. , 94%, 95%, 96%, 97%, 98%, most preferably a DNA consisting of a sequence having an identity of about 99% or more, or a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 1. DNA that can be hybridized with DNA or RNA under stringent conditions, and the protein encoded by these DNAs inhibits the cell cycle. Alternatively, the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 1 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 1. DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs is the cell cycle. It is the one that inhibits.
また、本発明で用いられるINK4A遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号2で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号2で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号2で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、もしくは、配列番号2で表わされる核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、癌を抑制するもののことである。あるいは、配列番号2で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号2で表される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、癌を抑制するもののことである。
Further, the homolog of the INK4A gene used in the present invention is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 2. The cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 2 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 2. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%. , 94%, 95%, 96%, 97%, 98%, most preferably a DNA consisting of a sequence having an identity of about 99% or more, or a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 2. DNA that can hybridize with DNA or RNA under stringent conditions, and the protein encoded by that DNA suppresses cancer. Alternatively, the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 2 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 2. DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs causes cancer. It is something that suppresses.
また、本発明で用いられるARF遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号3で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号3で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号3で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、もしくは、配列番号3で表わされる核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、癌を抑制するもののことである。あるいは、配列番号3で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号3で表される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、癌を抑制するもののことである。
Further, the homologue of the ARF gene used in the present invention is a gene whose cDNA sequence is, for example, substantially the same as the nucleic acid sequence shown in SEQ ID NO: 3. The cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 3 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 3. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably about 90% or more, such as 91%, 92%, 93%. , 94%, 95%, 96%, 97%, 98%, most preferably a DNA consisting of a sequence having an identity of about 99% or more, or a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 3. DNA that can hybridize with DNA or RNA under stringent conditions, and the protein encoded by that DNA suppresses cancer. Alternatively, the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 3 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 3. DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs causes cancer. It is something that suppresses.
p53遺伝子とは、そのcDNA配列が、例えば、配列番号4で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号4で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号4で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、もしくは、配列番号4で表わされる核酸配列に相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、癌を抑制するもののことである。あるいは、配列番号4で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号4で表される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、癌を抑制するもののことである。
The p53 gene is a gene whose cDNA sequence is substantially the same as, for example, the nucleic acid sequence shown in SEQ ID NO: 4. The cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 4 is about 60% or more, preferably about 70% or more, more preferably about the DNA consisting of the sequence represented by SEQ ID NO: 4. 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, and even more preferably 90% or more, such as 91%, 92%, 93%, DNA consisting of a sequence having 94%, 95%, 96%, 97%, 98%, most preferably about 99% or more identity, or DNA consisting of a sequence complementary to the nucleic acid sequence represented by SEQ ID NO: 4. DNA that can hybridize under stringent conditions, and the protein encoded by that DNA suppresses cancer. Alternatively, the cDNA consisting of a sequence substantially the same as the nucleic acid sequence represented by SEQ ID NO: 4 is one or more, for example, 1 to 10, preferably several, for example, in the sequence represented by SEQ ID NO: 4. DNA consisting of sequences in which 1 to 5, 1 to 4, 1 to 3, and 1 to 2 bases are deleted, substituted, or added, and the protein encoded by these DNAs causes cancer. It is something that suppresses.
ここで、ストリンジェントな条件とは、当業者によって容易に決定されるハイブリダイゼーションの条件のことであり、一般的に核酸の塩基長、洗浄温度、及び塩濃度に依存する経験的な実験条件である。一般に、塩基が長くなると適切なアニーリングのための温度が高くなり、塩基が短くなると温度は低くなる。ハイブリッド形成は、一般的に、相補的鎖がその融点よりやや低い環境における再アニール能力に依存する。
Here, the stringent condition is a hybridization condition easily determined by those skilled in the art, and is generally an empirical experimental condition that depends on the base length, washing temperature, and salt concentration of nucleic acid. is there. In general, the longer the base, the higher the temperature for proper annealing, and the shorter the base, the lower the temperature. Hybridization generally depends on the ability of the complementary strand to reanneal in an environment slightly below its melting point.
具体的には、例えば、低ストリンジェントな条件として、ハイブリダイゼーション後のフィルターの洗浄段階において、37℃~42℃の温度条件下、0.1×SSC、0.1%SDS溶液中で洗浄することなどが上げられる。また、高ストリンジェントな条件として、例えば、洗浄段階において、65℃、5×SSC及び0.1%SDS中で洗浄することなどが挙げられる。ストリンジェントな条件をより高くすることにより、相同性の高いポリヌクレオチドを得ることができる。
Specifically, for example, as a low stringent condition, in the washing step of the filter after hybridization, washing is performed in a 0.1 × SSC, 0.1% SDS solution under a temperature condition of 37 ° C. to 42 ° C. Things can be raised. In addition, high stringent conditions include, for example, washing in 65 ° C., 5 × SSC and 0.1% SDS in the washing step. By increasing the stringent conditions, polynucleotides with high homology can be obtained.
遺伝子の発現又はその発現産物の機能の抑制は、既知の方法により行うことができ、例えば、各遺伝子の発現を特異的に抑制し得るsiRNA、アンチセンス核酸、又はこれらの核酸分子を発現し得る発現ベクターなどの、種々の分子を細胞に導入することにより行うことができる。あるいは、それ以外の技術、例えばゲノム編集技術などを利用し、遺伝子をノックダウンしてもよい。例えば、CRISPR-Casシステムを利用して遺伝子をノックダウンする場合、その遺伝子を標的とするガイドRNAと、dCasのような不活化Casとリプレッサードメインの融合タンパク質などが用いられる。
Expression of a gene or suppression of the function of an expression product thereof can be performed by a known method, for example, siRNA, an antisense nucleic acid, or a nucleic acid molecule thereof that can specifically suppress the expression of each gene can be expressed. This can be done by introducing various molecules, such as expression vectors, into cells. Alternatively, the gene may be knocked down by using another technique such as genome editing technique. For example, when a gene is knocked down using the CRISPR-Cas system, a guide RNA that targets the gene and a fusion protein of inactivated Cas and a repressor domain such as dCas are used.
siRNAは、典型的には、標的遺伝子のmRNAのヌクレオチド配列又はその部分配列と相補的な配列を有するRNAとその相補鎖からなる2本鎖オリゴRNAである。これらのRNAのヌクレオチド配列は、発現が抑制される遺伝子の配列情報により当業者が適宜設計することができる。siRNAの代わりにshRNAを使用することもできる。
SiRNA is typically a double-stranded oligo RNA consisting of RNA having a sequence complementary to the nucleotide sequence of the mRNA of the target gene or a partial sequence thereof and its complementary strand. Nucleotide sequences of these RNAs can be appropriately designed by those skilled in the art based on the sequence information of genes whose expression is suppressed. shRNA can also be used instead of siRNA.
アンチセンス核酸とは、標的mRNA(成熟mRNA又は初期転写産物)を発現する細胞の生理的条件下で標的mRNAと特異的にハイブリダイズし得るヌクレオチド配列を含み、かつハイブリダイズした状態で標的mRNAにコードされるポリペプチドの翻訳を阻害し得る核酸を意味する。アンチセンス核酸の種類は、DNA又はRNAであってもよいし、あるいはDNAとRNAのキメラであってもよい。アンチセンス核酸のヌクレオチド配列は、発現が抑制される遺伝子の配列情報により当業者が適宜設計することができる。
An antisense nucleic acid contains a nucleotide sequence capable of specifically hybridizing with a target mRNA under the physiological conditions of a cell expressing the target mRNA (mature mRNA or early transcript), and in a hybridized state, the target mRNA is used. Means a nucleic acid that can inhibit the translation of the encoded polypeptide. The type of antisense nucleic acid may be DNA or RNA, or may be a chimera of DNA and RNA. The nucleotide sequence of the antisense nucleic acid can be appropriately designed by those skilled in the art based on the sequence information of the gene whose expression is suppressed.
上記の技術に加え、各遺伝子の発現を抑制することが知られている化合物を使用することもできる。例えば、CDKN1A遺伝子の発現を抑制する化合物として、UC2288、ブチロラクトンI、LLW10、ソラフェニブ、ステリグマトシスチンなどのp21阻害剤が知られている。また、p53阻害剤としては、ピフィスリンα、ナトリン-3、ReACp53、RG7388などが知られている。
In addition to the above techniques, compounds known to suppress the expression of each gene can also be used. For example, p21 inhibitors such as UC2288, butyrolactone I, LLW10, sorafenib, and sterigmatocystin are known as compounds that suppress the expression of the CDKN1A gene. Further, as p53 inhibitors, pifithrin α, natrin-3, ReACp53, RG7388 and the like are known.
あるいは、遺伝子の発現又はその発現産物の機能の抑制のために、公知の技術を用いて対象の遺伝子をノックアウトしてもよい。遺伝子のノックアウトとは、遺伝子の全部又は一部がその本来の機能を発揮しないように破壊又は変異されていることを意味する。遺伝子は、ゲノム上の一つの対立遺伝子が機能しないように破壊又は変異されていてもよい。また、複数の対立遺伝子が破壊又は変異されていてもよい。ノックアウトは、既知の方法により行うことができ、例えば、標的遺伝子との間で遺伝的組換えが起こるように作られたDNAコンストラクトを細胞に導入することによりノックアウトする方法や、TALENやCRISPR-Casシステムなどのゲノム編集技術を利用して、塩基の挿入、欠失、置換導入によりノックアウトする方法が挙げられる。
Alternatively, the gene of interest may be knocked out using a known technique in order to express the gene or suppress the function of the expression product thereof. Knockout of a gene means that all or part of the gene is disrupted or mutated so as not to perform its original function. The gene may be disrupted or mutated so that one allele on the genome does not function. In addition, a plurality of alleles may be disrupted or mutated. Knockout can be performed by a known method, for example, a method of knocking out by introducing a DNA construct designed to cause genetic recombination with a target gene into a cell, TALEN or CRISPR-Cas. A method of knocking out by inserting, deleting, or introducing a substitution using a genome editing technique such as a system can be mentioned.
その他、各遺伝子の転写及び転写産物を抑制する化合物、又は産生されたタンパクの標的タンパクとの結合阻害剤 (p53結合阻害: ピフィスリンα、ナトリン-3、ReACp53、RG7388等;p21結合阻害:UC2288、ブチロラクトンI、LLW10、ソラフェニブ、ステリグマトシスチン等)などを使用してもよい。
In addition, compounds that suppress transcription and transcripts of each gene, or binding inhibitors of the produced proteins to target proteins (p53 binding inhibition: pifithrin α, natrin-3, ReACp53, RG7388, etc .; p21 binding inhibition: UC2288, Butyrolactone I, LLW10, sorafenib, sterigmatocystin, etc.) may be used.
上記遺伝子の発現又はその発現産物の機能の抑制は、巨核球細胞へ分化する前の細胞、例えば、造血前駆細胞又は多核化前の巨核球前駆細胞において行われる。本明細書で使用する場合、「造血前駆細胞」とは、CD34陽性細胞として特徴付けられる造血系の細胞であり、例えば、ES細胞又はiPS細胞由来の細胞、特に、ES細胞又はiPS細胞から調製されるネット様構造物(ES-sac又はiPS-sacとも称する)から得られる細胞(特に、ネット様構造物から分離した直後の細胞)が好ましい。ここで、ES細胞又はiPS細胞から調製される「ネット様構造物」とは、ES細胞又はiPS細胞由来の立体的な嚢状(内部に空間を伴うもの)構造体で、内皮細胞集団などで形成され、内部に造血前駆細胞を含むもののことである。
Expression of the above gene or suppression of the function of the expression product thereof is performed in cells before differentiation into megakaryocyte cells, for example, hematopoietic progenitor cells or megakaryocyte progenitor cells before polynuclearization. As used herein, a "hematopoietic progenitor cell" is a hematopoietic cell characterized as a CD34-positive cell, prepared from, for example, ES cells or iPS cell-derived cells, particularly ES cells or iPS cells. Cells obtained from the net-like structure (also referred to as ES-sac or iPS-sac) to be produced (particularly, cells immediately after separation from the net-like structure) are preferable. Here, the "net-like structure" prepared from ES cells or iPS cells is a three-dimensional sac-like (with space inside) structure derived from ES cells or iPS cells, and is an endothelial cell population or the like. It is formed and contains hematopoietic progenitor cells inside.
「多核化前の巨核球前駆細胞」とは、多核化した巨核球細胞よりも未分化な細胞であって、巨核球系列の特異的マーカーであるCD41a陽性/CD42a陽性/CD42b陽性で、核の多倍体化を起こしていない単核又は二核の細胞を意味する。
"Megakaryocyte precursor cells before multinucleation" are cells that are more undifferentiated than multinucleated megakaryocyte cells and are CD41a-positive / CD42a-positive / CD42b-positive, which are specific markers of the megakaryocyte lineage, and are nuclear. It means mononuclear or binuclear cells that have not undergone polyploidization.
造血前駆細胞又は多核化前の巨核球前駆細胞は、例えば、骨髄、臍帯血、末梢血から単離して得ることもできるし、さらにより未分化な細胞であるES細胞、iPS細胞等の多能性幹細胞から分化誘導して得ることもできる。
Hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells can be obtained by isolation from, for example, bone marrow, umbilical cord blood, and peripheral blood, and are pluripotent such as ES cells and iPS cells, which are more undifferentiated cells. It can also be obtained by inducing differentiation from sex stem cells.
巨核球細胞は、公知の手法により、造血前駆細胞又は多核化前の巨核球前駆細胞から更に分化誘導することで製造される。巨核球細胞は、細胞表面マーカーであるCD41a、CD42a、及びCD42bが陽性であることを特徴としている。巨核球細胞は、これらのマーカーに加え、CD9、CD61、CD62p、CD42c、CD42d、CD49f、CD51、CD110、CD123、CD131、及びCD203cからなる群より選択される少なくとも1つのマーカーをさらに発現していることもある。巨核球細胞は、多核化(多倍体化)し成熟すると、血小板を放出する。多核化した巨核球細胞は、通常の細胞の16~32倍のゲノムを有する。
Megakaryocyte cells are produced by further inducing differentiation from hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells by a known method. Megakaryocyte cells are characterized by being positive for the cell surface markers CD41a, CD42a, and CD42b. In addition to these markers, megakaryocyte cells further express at least one marker selected from the group consisting of CD9, CD61, CD62p, CD42c, CD42d, CD49f, CD51, CD110, CD123, CD131, and CD203c. Sometimes. Megakaryocyte cells release platelets when they become polyploid and mature. Multinucleated megakaryocyte cells have 16 to 32 times the genome of normal cells.
本明細書において単に「巨核球細胞」という場合、特に断らない限り、未成熟な巨核球細胞や、多核化が進んで成熟した巨核球細胞(成熟巨核球細胞)など、あらゆる巨核球細胞を包含する意味として使用される。
In the present specification, the term "megakaryocyte cell" includes all megakaryocyte cells such as immature megakaryocyte cells and mature megakaryocyte cells (mature megakaryocyte cells) unless otherwise specified. It is used as a meaning to.
巨核球細胞は更に不死化されていることが好ましい。不死化巨核球細胞の製造方法の非限定的な例として、国際公開第2011/034073号(上掲)及び米国特許出願公開第2012/0238023号に記載された方法が挙げられる。同方法では、巨核球細胞より未分化な細胞において、癌遺伝子とポリコーム遺伝子を強制発現させることにより、無限に増殖する不死化巨核球細胞株を得ることができる。
It is preferable that the megakaryocyte cells are further immortalized. Non-limiting examples of methods for producing immortalized megakaryocyte cells include those described in WO 2011/034073 (supra) and US Patent Application Publication No. 2012/0238023. In this method, an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing an oncogene and a polycomb gene in cells that are more undifferentiated than megakaryocyte cells.
また、国際公開第2012/157586号(上掲)及び米国特許出願公開第2014/0127815号に記載された方法に従って、巨核球細胞より未分化な細胞においてアポトーシス抑制遺伝子を強制発現させることによっても、不死化巨核球細胞を得ることができる。これらの不死化巨核球細胞は、遣伝子の強制発現を解除することにより、自己複製能を獲得するとともに、多核化が進み、血小板を放出するようになる。
Also, by forcibly expressing an apoptosis suppressor gene in undifferentiated cells from megakaryocyte cells according to the methods described in International Publication No. 2012/157586 (above) and US Patent Application Publication No. 2014/0127815. Immortalized megakaryocyte cells can be obtained. By releasing the forced expression of the gene, these immortalized megakaryocyte cells acquire self-renewal ability, multinucleation progresses, and platelets are released.
癌遺伝子、ポリコーム遺伝子、及び/又はアポトーシス抑制遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、癌遺伝子とポリコーム遺伝子を強制発現させ、その後この強制発現を抑制し、続いてアポトーシス抑制遺伝子を強制発現させ、その後この強制発現を抑制して、多核化巨核球細胞を得てもよい。また、癌遺伝子とポリコーム遺伝子とアポトーシス抑制遺伝子を同時に強制発現させ、これらの強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。まず、癌遣伝子とポリコーム遺伝子を強制発現させ、続いてアポトーシス抑制遺伝子を強制発現させ、これらの強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。
Forced expression of oncogene, polycomb gene, and / or apoptosis suppressor gene may be performed simultaneously or sequentially. For example, an oncogene and a polycomb gene may be forcibly expressed, then the forcible expression may be suppressed, then an apoptosis-suppressing gene may be forcibly expressed, and then this forcible expression may be suppressed to obtain polynuclear macronuclear cells. It is also possible to obtain a polynuclearized megakaryocyte cell by simultaneously forcibly expressing an oncogene, a polycomb gene, and an apoptosis suppressor gene and simultaneously suppressing these forcible expression. First, a tumor suppressor gene and a polycomb gene are forcibly expressed, and then an apoptosis suppressor gene is forcibly expressed, and these forcible expression can be suppressed at the same time to obtain a polynuclear macronuclear cell.
CDKN1A遺伝子の発現、又はその発現産物の機能の抑制は、癌遺伝子、ポリコーム遺伝子、又はアポトーシス抑制遺伝子のいずれかの強制発現と同時、好ましくはアポトーシス抑制遺伝子の強制発現と同時か、あるいはその後、例えば細胞増殖の低下、例えば、ある時点の細胞増殖率を直近の細胞増殖率と比較し(例えば、一週間ごとに細胞の増殖を確認したとして、ある週の細胞増殖率をその一週間前の増殖率と比較して)、増殖率が1/2以下になった状態が確認された後に実施することができる。細胞増殖の低下は、限定することを意図するものではないが、癌遺伝子又はポリコーム遺伝子の強制発現直後から約30日後、約40日後、約50日後、約60日後、約70日後、約80日後、又は約90日後まで見られる。
The expression of the CDKN1A gene, or suppression of the function of its expression product, is simultaneous with the forced expression of any of the oncogene, polycomb gene, or apoptosis suppressor gene, preferably at the same time as the forced expression of the apoptosis suppressor gene, or thereafter, for example. Decreased cell proliferation, for example, comparing the cell proliferation rate at a certain point in time with the most recent cell proliferation rate (for example, assuming that cell proliferation is confirmed weekly, the cell proliferation rate for a week is the proliferation one week before. It can be carried out after it is confirmed that the growth rate is halved or less (compared to the rate). The decrease in cell proliferation is not intended to be limited, but about 30 days, about 40 days, about 50 days, about 60 days, about 70 days, about 80 days after the forced expression of the oncogene or polycomb gene. , Or until about 90 days later.
本明細書において「癌遺伝子」とは、生体内において細胞の癌化を誘導する遺伝子のことをいい、例えば、MYCファミリー遺伝子(例えば、c-MYC、N-MYC、L-MYC)、SRCファミリー遺伝子、RASファミリー遺伝子、RAFファミリー遺伝子、c-Kit、PDGFR、Ablなどのプロテインキナーゼファミリー遺伝子が挙げられる。これらの中でもMYCファミリー遺伝子、特にc-MYCが好ましい。
As used herein, the term "oncogene" refers to a gene that induces canceration of cells in vivo, for example, MYC family genes (eg, c-MYC, N-MYC, L-MYC), SRC family. Examples include genes, RAS family genes, RAF family genes, c-Kit, PDGFR, Abl and other protein kinase family genes. Among these, the MYC family gene, particularly c-MYC, is preferable.
本明細書において「ポリコーム遣伝子」とは、CDKN2a(INK4A/ARF)遺伝子を負に制御し、細胞老化を回避するために機能する遺伝子をいう(小倉ら, 再生医療,vol.6,No.4,pp26-32;Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7,pp667-677,2006;Proc.Natl.Acad.Sci.USA,vol.100,pp211-216,2003)。ポリコーム遺伝子の非限定的な例として、BMI1、Mel18、Ring1a/b、Phc1/2/3、Cbx2/4/6/7/8、Ezh2、Eed、Suz12、HADC、Dnmtl/3a/3bが挙げられる。これらの中でもBMI1が好ましい。
As used herein, the term "polycomb group transmitter" refers to a gene that negatively regulates the CDKN2a (INK4A / ARF) gene and functions to avoid cell senescence (Ogura et al., Regenerative Medicine, vol.6, No.). .4, pp26-32; Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006; Proc.Natur.Acad.Sci.USA, vol.2016, p. 2003). Non-limiting examples of polycomb genes include BMI1, Mel18, Ring1a / b, Phc1 / 2/3, Cbx2 / 4/6/7/8, Ezh2, Eed, Suz12, HADC, Dnmtl / 3a / 3b. .. Among these, BMI1 is preferable.
本明細書において「アポトーシス抑制遺伝子」とは、細胞のアポトーシスを抑制する機能を有する遣伝子をいい、例えば、BCL2遺伝子、BCL-XL遺伝子、Survivin遺伝子、MCLl遺伝子などが挙げられる。これらの中でもBCL-XL遺伝子が好ましい。
In the present specification, the "apoptosis-suppressing gene" refers to a gene having a function of suppressing cell apoptosis, and examples thereof include BCL2 gene, BCL-XL gene, Survivin gene, and MCLl gene. Of these, the BCL-XL gene is preferred.
遺伝子の強制発現及び強制発現の解除は、国際公開第2011/034073号(上掲)及び米国特許出願公開第2012/0238023号、国際公開第2012/157586号(上掲)及び米国特許出願公開第2014/0127815号、国際公開第2014/123242号及び米国特許出願公開第2016/0002599号、又はNakamura S et al, Cell Stem Cell. 14, 535-548, 2014に記載された方法、その他の公知の方法又はそれに準ずる方法で行うことができる。
Forcible expression of genes and release of forced expression are described in International Publication No. 2011/034073 (above), US Patent Application Publication No. 2012/0238023, International Publication No. 2012/157586 (above), and US Patent Application Publication No. 2014/0127815, International Publication No. 2014/123242 and US Patent Application Publication No. 2016/0002599, or Nakamura S et al, Cell Stem Cell. It can be carried out by the method described in 14, 535-548, 2014, other known methods, or a method equivalent thereto.
上記強制発現の期間は当業者が適宜決定することができるが、癌遺伝子、ポリコーム遺伝子、及び/又はアポトーシス抑制遺伝子の強制発現については、CDKN1A遺伝子の発現を抑制した後、所望の期間経過後に強制発現を抑制(解除)することが好ましい。なお、強制発現後に、細胞を継代培養してもよく、最後の継代から強制発現を解除する日までの期間も特に限定されないが、例えば、1日間、2日間又は3日間以上としてもよい。
The period of the forced expression can be appropriately determined by those skilled in the art, but the forced expression of the oncogene, polycomb gene, and / or the apoptosis-suppressing gene is forced after the desired period has elapsed after suppressing the expression of the CDKN1A gene. It is preferable to suppress (release) the expression. The cells may be subcultured after the forced expression, and the period from the last passage to the day when the forced expression is released is not particularly limited, but may be, for example, 1 day, 2 days, or 3 days or more. ..
遺伝子の強制発現及びその解除のためにTet-on(登録商標)又はTet-off(登録商標)システムのような薬剤応答性の遺伝子発現誘導システムを用いる場合、強制発現する工程においては、対応する薬剤、例えば、テトラサイクリン又はドキシサイクリンを培地に含有させ、これらを培地から除くことによって強制発現を抑制してもよい。
When a drug-responsive gene expression-inducing system, such as a Tet-on® or Tet-off® system, is used for forced expression and release of a gene, the forced expression step should be addressed. Forced expression may be suppressed by containing a drug, such as tetracycline or doxycycline, in the medium and removing them from the medium.
更なる局面において、巨核球前駆細胞又は巨核球細胞を製造する方法は、造血前駆細胞又は多核化前の巨核球前駆細胞において、p53遺伝子の発現、又はその発現産物の機能を抑制する工程を含む。
In a further aspect, the method for producing megakaryocyte progenitor cells or megakaryocyte progenitor cells comprises the step of suppressing the expression of the p53 gene or the function of its expression product in hematopoietic progenitor cells or pre-multinucleated megakaryocyte progenitor cells. ..
本局面において、p53遺伝子のみならず、INK4A/ARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制することが好ましい。CDKN1A遺伝子とp53遺伝子の組み合わせがより好ましい。
In this aspect, it is preferable to suppress the expression of not only the p53 gene but also the INK4A / ARF gene and / or the CDKN1A gene, or the function of their expression products. A combination of the CDKN1A gene and the p53 gene is more preferred.
本局面において、遺伝子の発現又はその発現産物の機能の抑制は、上述の方法により行うことができる。
In this aspect, the expression of the gene or the suppression of the function of the expression product thereof can be performed by the above-mentioned method.
本局面において、上記遺伝子の発現又はその発現産物の機能の抑制は、巨核球細胞へ分化する前の細胞、例えば、造血前駆細胞又は多核化前の巨核球前駆細胞において行われる。
In this aspect, expression of the above gene or suppression of the function of the expression product thereof is performed in cells before differentiation into megakaryocyte cells, for example, hematopoietic progenitor cells or megakaryocyte progenitor cells before polynuclearization.
本局面において、巨核球細胞は更に不死化されていることが好ましい。不死化巨核球細胞の製造方法の非限定的な例として、国際公開第2011/034073号(上掲)及び米国特許出願公開第2012/0238023号に記載された方法が挙げられる。同方法では、巨核球細胞より未分化な細胞において、癌遺伝子とポリコーム遺伝子を強制発現させることにより、無限に増殖する不死化巨核球細胞株を得ることができる。
In this aspect, it is preferable that the megakaryocyte cells are further immortalized. Non-limiting examples of methods for producing immortalized megakaryocyte cells include those described in WO 2011/034073 (supra) and US Patent Application Publication No. 2012/0238023. In this method, an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing an oncogene and a polycomb gene in cells that are more undifferentiated than megakaryocyte cells.
また、国際公開第2012/157586号(上掲)及び米国特許出願公開第2014/0127815号に記載された方法に従って、巨核球細胞より未分化な細胞においてアポトーシス抑制遺伝子を強制発現させることによっても、不死化巨核球細胞を得ることができる。これらの不死化巨核球細胞は、遣伝子の強制発現を解除することにより、自己複製能を獲得するとともに、多核化が進み、血小板を放出するようになる。
Also, by forcibly expressing an apoptosis suppressor gene in undifferentiated cells from megakaryocyte cells according to the methods described in International Publication No. 2012/157586 (above) and US Patent Application Publication No. 2014/0127815. Immortalized megakaryocyte cells can be obtained. By releasing the forced expression of the gene, these immortalized megakaryocyte cells acquire self-renewal ability, multinucleation progresses, and platelets are released.
本局面において、癌遺伝子、ポリコーム遺伝子、及び/又はアポトーシス抑制遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、癌遺伝子とポリコーム遺伝子を強制発現させ、その後この強制発現を抑制し、続いてアポトーシス抑制遺伝子を強制発現させ、その後この強制発現を抑制して、多核化巨核球細胞を得てもよい。また、癌遺伝子とポリコーム遺伝子とアポトーシス抑制遺伝子を同時に強制発現させ、これらの強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。まず、癌遣伝子とポリコーム遺伝子を強制発現させ、続いてアポトーシス抑制遺伝子を強制発現させ、これらの強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。
In this aspect, the forcible expression of the oncogene, the polycomb gene, and / or the apoptosis suppressor gene may be performed simultaneously or sequentially. For example, an oncogene and a polycomb gene may be forcibly expressed, then the forcible expression may be suppressed, then an apoptosis-suppressing gene may be forcibly expressed, and then this forcible expression may be suppressed to obtain polynuclear macronuclear cells. It is also possible to obtain a polynuclearized megakaryocyte cell by simultaneously forcibly expressing an oncogene, a polycomb gene, and an apoptosis suppressor gene and simultaneously suppressing these forcible expression. First, a tumor suppressor gene and a polycomb gene are forcibly expressed, and then an apoptosis suppressor gene is forcibly expressed, and these forcible expression can be suppressed at the same time to obtain a polynuclear macronuclear cell.
本局面において、p53遺伝子の発現、又はその発現産物の機能の抑制は、癌遺伝子、ポリコーム遺伝子、又はアポトーシス抑制遺伝子のいずれかの強制発現と同時、好ましくはアポトーシス抑制遺伝子の強制発現と同時か、あるいはその後、例えば細胞増殖の低下、例えば、ある時点の細胞増殖率を直近の細胞増殖率と比較し(例えば、一週間ごとに細胞の増殖を確認したとして、ある週の細胞増殖率をその一週間前の増殖率と比較して)、増殖率が1/2以下になった状態が確認された後に実施することができる。細胞増殖の低下は、限定することを意図するものではないが、癌遺伝子又はポリコーム遺伝子の強制発現直後から約30日後、約40日後、約50日後、約60日後、約70日後、約80日後、又は約90日後まで見られる。
In this aspect, the expression of the p53 gene, or the suppression of the function of the expression product thereof, is simultaneous with the forced expression of any of the oncogene, the polycomb gene, or the apoptosis suppressor gene, preferably at the same time as the forced expression of the apoptosis suppressor gene. Alternatively, after that, for example, a decrease in cell proliferation, for example, the cell proliferation rate at a certain point in time is compared with the latest cell proliferation rate (for example, assuming that cell proliferation is confirmed weekly, the cell proliferation rate for a certain week is one of them. It can be carried out after it is confirmed that the growth rate has been reduced to 1/2 or less (compared to the growth rate a week ago). The decrease in cell proliferation is not intended to be limited, but about 30 days, about 40 days, about 50 days, about 60 days, about 70 days, about 80 days after the forced expression of the oncogene or polycomb gene. , Or until about 90 days later.
本局面において、癌遺伝子としては、MYCファミリー遺伝子、特にc-MYCが好ましい。ポリコーム遣伝子としては、BMI1が好ましい。アポトーシス抑制遺伝子としては、BCL-XL遺伝子が好ましい。
In this aspect, the oncogene is preferably a MYC family gene, particularly c-MYC. BMI1 is preferable as the polycomb transmitter. As the tumor suppressor gene, the BCL-XL gene is preferable.
本局面の一態様において、癌遺伝子(例、c-MYC)及びポリコーム遺伝子(例、BMI1)を強制発現させることにより、不死化巨核球細胞株を得る。アポトーシス抑制遺伝子(例、BCL-XL)の強制発現は行っても行わなくてもよい。
In one aspect of this aspect, an immortalized megakaryocyte cell line is obtained by forcibly expressing an oncogene (eg, c-MYC) and a polycomb gene (eg, BMI1). Forced expression of the apoptosis-suppressing gene (eg, BCL-XL) may or may not be performed.
本局面において、遺伝子の強制発現及び強制発現の解除は、上述した方法により行うことができる。
In this aspect, the forced expression of the gene and the release of the forced expression can be performed by the method described above.
本局面において、上記強制発現の期間は当業者が適宜決定することができるが、癌遺伝子、ポリコーム遺伝子、及び/又はアポトーシス抑制遺伝子の強制発現については、p53遺伝子の発現を抑制した後、所望の期間経過後に強制発現を抑制(解除)することが好ましい。なお、強制発現後に、細胞を継代培養してもよく、最後の継代から強制発現を解除する日までの期間も特に限定されないが、例えば、1日間、2日間又は3日間以上としてもよい。
In this aspect, the period of forced expression can be appropriately determined by those skilled in the art, but for forced expression of the cancer gene, polycomb gene, and / or apoptosis-suppressing gene, it is desired after suppressing the expression of p53 gene. It is preferable to suppress (release) forced expression after the lapse of a period. The cells may be subcultured after the forced expression, and the period from the last passage to the day when the forced expression is released is not particularly limited, but may be, for example, 1 day, 2 days, or 3 days or more. ..
造血前駆細胞又は多核化前の巨核球前駆細胞、更には巨核球前駆細胞又は巨核球細胞の培養条件は、細胞の種類やその状態に応じて当業者が適宜決定することができる。例えば、培養温度は約35℃~約42℃、約36℃~約40℃、又は約37℃~約39℃とすることができ、二酸化炭素濃度は例えば5%CO2、酸素濃度は例えば20%02とすることができる。静置培養であっても、振とう培養であってもよい。振とう培養の場合の振とう速度も特に限定されず、例えば、10rpm~200rpm、30rpm~150rpm等とすることができる。
Cultivation conditions for hematopoietic progenitor cells or pre-megakaryocyte progenitor cells, and further megakaryocyte progenitor cells or megakaryocyte cells can be appropriately determined by those skilled in the art according to the cell type and its state. For example, the culture temperature can be about 35 ° C. to about 42 ° C., about 36 ° C. to about 40 ° C., or about 37 ° C. to about 39 ° C., the carbon dioxide concentration is, for example, 5% CO 2 , and the oxygen concentration is, for example, 20. It can be% 0 2. It may be a static culture or a shaking culture. The shaking speed in the case of shaking culture is also not particularly limited, and can be, for example, 10 rpm to 200 rpm, 30 rpm to 150 rpm, or the like.
培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むイスコフ改変ダルベッコ培地(IMDM)培地であってもよい。この場合、IMDM培地はさらにSCFを含んでいてもよく、さらにヘパリンを含んでいてもよい。それぞれの濃度も特に限定されないが、例えば、TPOは、約10ng/mL~約200ng/mL、又は約50ng/mL~約100ng/mLとすることができ、SCFは、約10g/mL~約200g/mL、又は約50g/mLとすることができ、ヘパリンは、約10U/mL~約100U/mL、又は約25U/mLとすることができる。ホルボールエステル(例えば、ホルボール-12-ミリスタート-13-アセタート;PMA)を加えてもよい。
The medium may be an Iskov modified Darbecco medium (IMDM) medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, and TPO. In this case, the IMDM medium may further contain SCF and may further contain heparin. The respective concentrations are not particularly limited, but for example, TPO can be about 10 ng / mL to about 200 ng / mL, or about 50 ng / mL to about 100 ng / mL, and SCF can be about 10 g / mL to about 200 g. It can be / mL, or about 50 g / mL, and heparin can be from about 10 U / mL to about 100 U / mL, or about 25 U / mL. Phorbol ester (eg, phorbol-12-millistart-13-acetate; PMA) may be added.
細胞の培養工程は、フィーダー細胞の存在下又は不在下で実施することができる。本明細書において、「フィーダー細胞」とは、増殖又は分化させようとしている標的細胞の培養に必要な環境を整えるために、標的細胞と共培養される細胞をいう。フィーダー細胞は、標的細胞と識別できる細胞である限り、同種由来の細胞であっても異種由来の細胞であってもよい。フィーダー細胞は、抗生物質やガンマ線により増殖しないよう処理した細胞であっても、処理されていない細胞であってもよい。
The cell culture step can be carried out in the presence or absence of feeder cells. As used herein, the term "feeder cell" refers to a cell that is co-cultured with a target cell in order to prepare an environment necessary for culturing the target cell that is to be proliferated or differentiated. The feeder cell may be a cell of allogeneic origin or a cell of heterologous origin as long as it is a cell that can be distinguished from the target cell. The feeder cells may be cells that have been treated so as not to proliferate with antibiotics or gamma rays, or cells that have not been treated.
培地は、血清又は血漿を含有していてもよく、あるいは無血清でもよい。血清を用いる場合は、ヒト血清が好ましい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、モノチオグリセロール(MTG)、脂質、アミノ酸(例えばL-グルタミン)、アスコルビン酸、ヘパリン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどの1つ以上の物質も含有してもよい。サイトカインとしては、例えば、血管内皮細胞増殖因子(VEGF)、トロンボポエチン(TPO)、各種TPO様作用物質、幹細胞因子(SCF)、ITS(インスリンートランスフェリンーセレナイト)サプリメント、ADAM(A Disintegrin And Metalloprotease)阻害剤などが例示される。
The medium may contain serum or plasma, or may be serum-free. When serum is used, human serum is preferred. If desired, the medium may be, for example, albumin, insulin, transferase, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (eg L-glutamine), ascorbic acid. , Heparin, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines and the like. Examples of cytokines include vascular endothelial growth factor (VEGF), thrombopoietin (TPO), various TPO-like agents, stem cell factor (SCF), ITS (insulin-transferrin-selenite) supplement, and ADAM (A Discintegrin And Metalloprotase) inhibition. Examples include agents.
芳香族炭化水素受容体(Aryl Hydrocarbon Receptor;AhR)アンタゴニスト単独、又はROCK(Rho-associated coiled-coil forming kinase)阻害剤との組み合わせを添加した培地で巨核球細胞を培養すると、フィーダー細胞を使用しない場合でも、フィーダー細胞を使用した場合に匹敵する血小板産生促進効果を得ることができる(国際公開2016/204256号公報及び米国特許出願公開第2019/0048317号)。
When the megakaryocyte cells are cultured in a medium supplemented with an aromatic hydrocarbon receptor (AhR) antagonist alone or in combination with a ROCK (Rho-associated coiled-coil forming kinase) inhibitor, the feeder cells are not used. Even in this case, a platelet production promoting effect comparable to that when feeder cells are used can be obtained (International Publication No. 2016/20456 and US Patent Application Publication No. 2019/0048317).
(血小板の製造方法)
本実施形態に係る血小板を製造する方法は、上記方法に従い製造された巨核球前駆細胞又は巨核球細胞を更に培養する工程を含む。 (Platelet manufacturing method)
The method for producing platelets according to the present embodiment includes a step of further culturing megakaryocyte progenitor cells or megakaryocyte cells produced according to the above method.
本実施形態に係る血小板を製造する方法は、上記方法に従い製造された巨核球前駆細胞又は巨核球細胞を更に培養する工程を含む。 (Platelet manufacturing method)
The method for producing platelets according to the present embodiment includes a step of further culturing megakaryocyte progenitor cells or megakaryocyte cells produced according to the above method.
巨核球細胞を培養する際の培地は特に限定されず、巨核球細胞から血小板を産生するのに好適な公知の培地やそれに準ずる培地を適宜使用することができる。例えば、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばイスコフ改変ダルベッコ培地(IMDM)培地、199培地、イーグル最小必須培地(EMEM)、αMEM培地、ダルベッコ改変イーグル培地(DMEM)培地、ハムF12培地、RPMI1640培地、フィッシャー培地、ニューロベーサル培地(ライフテクノロジーズ)及びこれらの混合培地が挙げられる。
The medium for culturing megakaryocyte cells is not particularly limited, and a known medium suitable for producing platelets from megakaryocyte cells or a medium similar thereto can be appropriately used. For example, a medium used for culturing animal cells can be prepared as a basal medium. Examples of the basal medium include Iskov-modified Dalveco medium (IMDM) medium, 199 medium, Eagle's minimum essential medium (EMEM), αMEM medium, Dalveco-modified Eagle's medium (DMEM) medium, Ham F12 medium, RPMI1640 medium, Fisher medium, and neurobasal. Medium (Life Technologies) and a mixed medium thereof can be mentioned.
高品質な血小板を大量に製造する観点からは、撹拌羽根や撹拌子を備えた培養容器内で巨核球細胞を培養することが好ましい(国際公開2017/047492号公報及び米国特許出願公開第2018/0258395号、国際公開2017/077964号公報及び米国特許出願公開第2018/0318352号)。
From the viewpoint of producing a large amount of high-quality platelets, it is preferable to culture megakaryocyte cells in a culture vessel equipped with a stirring blade and a stir bar (International Publication No. 2017/047942 and US Patent Application Publication No. 2018 / 0258395, WO 2017/077964 and US Patent Application Publication No. 2018/0318352).
製造した血小板を用いて、更に血小板製剤又は血液製剤を製造することもできる。血小板製剤の製造方法は、血小板が豊富に存在する画分を回収する工程と、血小板が豊富に存在する画分から血小板以外の血球系細胞成分を除去する工程とを含む。血球系細胞成分を除去する工程は、白血球除去フィルター(例えば、テルモ社製、旭化成メディカル社製)などを使用して、巨核球細胞を含む血小板以外の血球系細胞成分を除去することによって行うことができる。血小板製剤のより具体的な製造方法は、例えば、国際公開第2011/034073号(上掲)及び米国特許出願公開第2012/0238023号に記載されている。血液製剤の製造方法は、血小板製剤を製造する工程と、当該血小板製剤を他の成分と混合する工程とを含む。他の成分としては、例えば赤血球細胞が挙げられる。血小板製剤及び血液製剤は、その他、細胞の安定化に資する他の成分を含んでもよい。
It is also possible to further produce a platelet preparation or a blood product using the produced platelets. The method for producing a platelet preparation includes a step of collecting a platelet-rich fraction and a step of removing blood cell lineage components other than platelets from the platelet-rich fraction. The step of removing blood cell components is performed by removing blood cell components other than platelets, including megakaryocyte cells, using a leukocyte removal filter (for example, manufactured by Terumo Corporation or Asahi Kasei Medical Co., Ltd.). Can be done. More specific methods for producing platelet preparations are described, for example, in International Publication No. 2011/034073 (above) and US Patent Application Publication No. 2012/0238023. The method for producing a blood product includes a step of producing a platelet preparation and a step of mixing the platelet preparation with other components. Other components include, for example, red blood cells. Platelet and blood products may also contain other components that contribute to cell stabilization.
(巨核球前駆細胞又は巨核球細胞の増殖促進方法)
本実施形態に係る巨核球前駆細胞又は巨核球細胞の増殖を促進する方法は、CDKN1A遺伝子の発現又はその発現産物の機能を抑制する工程、及び、任意に、INK4A/ARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程を含む。 (Method for promoting proliferation of megakaryocyte progenitor cells or megakaryocyte cells)
The method for promoting the proliferation of megakaryocyte precursor cells or megakaryocyte cells according to the present embodiment is a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and / or the p53 gene. The expression of the above, or the step of suppressing the function of those expression products is included.
本実施形態に係る巨核球前駆細胞又は巨核球細胞の増殖を促進する方法は、CDKN1A遺伝子の発現又はその発現産物の機能を抑制する工程、及び、任意に、INK4A/ARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程を含む。 (Method for promoting proliferation of megakaryocyte progenitor cells or megakaryocyte cells)
The method for promoting the proliferation of megakaryocyte precursor cells or megakaryocyte cells according to the present embodiment is a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and / or the p53 gene. The expression of the above, or the step of suppressing the function of those expression products is included.
更なる局面において、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法は、p53遺伝子の発現又はその発現産物の機能を抑制する工程、及び、任意に、INK4A/ARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程を含む。
In a further aspect, the method of promoting the proliferation of megakaryocyte precursor cells or megakaryocyte cells is a step of suppressing the expression of the p53 gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and / or the CDKN1A gene. Includes the step of suppressing the expression of, or the function of those expression products.
(巨核球前駆細胞又は巨核球細胞の増殖促進剤)
本実施形態に係る巨核球前駆細胞又は巨核球細胞の増殖促進剤は、CDKN1A遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含み、更に、任意に、INK4A/ARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子を含む。 (Megakaryocyte progenitor cell or megakaryocyte cell proliferation promoter)
The megakaryocyte precursor cell or the proliferation promoter of megakaryocyte cell according to the present embodiment contains a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product as an active ingredient, and optionally, the INK4A / ARF gene and / Alternatively, it contains a molecule that suppresses the expression of the p53 gene or the function of those expression products.
本実施形態に係る巨核球前駆細胞又は巨核球細胞の増殖促進剤は、CDKN1A遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含み、更に、任意に、INK4A/ARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子を含む。 (Megakaryocyte progenitor cell or megakaryocyte cell proliferation promoter)
The megakaryocyte precursor cell or the proliferation promoter of megakaryocyte cell according to the present embodiment contains a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product as an active ingredient, and optionally, the INK4A / ARF gene and / Alternatively, it contains a molecule that suppresses the expression of the p53 gene or the function of those expression products.
更なる局面において、巨核球前駆細胞又は巨核球細胞の増殖促進剤は、p53遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含み、更に、任意に、INK4A/ARF遺伝子及び/又はCDKN1A遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子を含む。
In a further aspect, the megakaryocyte precursor cell or megakaryocyte cell proliferation promoter comprises, as an active ingredient, a molecule that suppresses the expression of the p53 gene or the function of the expression product thereof, and optionally, the INK4A / ARF gene and /. Alternatively, it contains a molecule that suppresses the expression of the CDKN1A gene or the function of those expression products.
以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto. One of ordinary skill in the art can modify the present invention in various aspects without departing from the meaning of the present invention, and such modifications are also included in the scope of the present invention.
実施例1:CDKN1A遺伝子の発現抑制
ヒトiPS細胞(TKDN SeV2:センダイウイルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞)から、Takayama N.,et al.J Exp Med. 2817-2830(2010)に記載の方法に従って、血球細胞への分化培養を実施した。即ち、ヒトiPS細胞コロニー(NC13X株)を20ng/mL VEGF(R&D SYSTEMS)存在下でC3H10T1/2フィーダー細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells;HPC)を作製した。培養条件は20%O2、5%CO2で実施した。 Example 1: Suppression of CDKN1A gene expression From human iPS cells (TKDN SeV2: human fetal skin fibroblast-derived iPS cells established using Sendai virus), Takayama N. et al. , Et al. J Exp Med. Differentiation culture into blood cell cells was carried out according to the method described in 2817-2830 (2010). That is, human iPS cell colonies (NC13X strain) were co-cultured with C3H10T1 / 2 feeder cells for 14 days in the presence of 20 ng / mL VEGF (R & D SYSTEMS) to prepare hematopoietic progenitor cells (HPC). The culture conditions were 20% O 2 and 5% CO 2 .
ヒトiPS細胞(TKDN SeV2:センダイウイルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞)から、Takayama N.,et al.J Exp Med. 2817-2830(2010)に記載の方法に従って、血球細胞への分化培養を実施した。即ち、ヒトiPS細胞コロニー(NC13X株)を20ng/mL VEGF(R&D SYSTEMS)存在下でC3H10T1/2フィーダー細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells;HPC)を作製した。培養条件は20%O2、5%CO2で実施した。 Example 1: Suppression of CDKN1A gene expression From human iPS cells (TKDN SeV2: human fetal skin fibroblast-derived iPS cells established using Sendai virus), Takayama N. et al. , Et al. J Exp Med. Differentiation culture into blood cell cells was carried out according to the method described in 2817-2830 (2010). That is, human iPS cell colonies (NC13X strain) were co-cultured with C3H10T1 / 2 feeder cells for 14 days in the presence of 20 ng / mL VEGF (R & D SYSTEMS) to prepare hematopoietic progenitor cells (HPC). The culture conditions were 20% O 2 and 5% CO 2 .
得られた造血前駆細胞にc-MYC/BMI1/BCL-XLの3遺伝子を導入することで不死化巨核球細胞株を樹立した。培養14日目の造血前駆細胞にドキシサイクリン制御によりc-MYC/BMI1を強制発現するレンチウイルスベクターを導入し、感染24時間後にドキシサイクリン1μg/mlを添加して、遺伝子発現を行った。さらに2週間後に、ドキシサイクリン制御によりBCL-XLを強制発現するレンチウイルスベクターを導入し、不死化巨核球細胞株を樹立した。
An immortalized megakaryocyte cell line was established by introducing the three genes c-MYC / BMI1 / BCL-XL into the obtained hematopoietic progenitor cells. A lentiviral vector that forcibly expresses c-MYC / BMI1 was introduced into hematopoietic progenitor cells on the 14th day of culture under control of doxycycline, and 1 μg / ml of doxycycline was added 24 hours after infection to carry out gene expression. Two weeks later, a lentiviral vector that forcibly expresses BCL-XL under doxycycline control was introduced to establish an immortalized megakaryocyte cell line.
MYC/BMI1/BCL-XLを導入してから50日目の細胞増殖が低下した巨核球前駆細胞又は巨核球株(MKCL21株)にshCDKN1A(クローン1(配列番号5)またはクローン2(配列番号6))-RFPレンチウイルスベクターを感染させた。感染3日後にRFP(Red Fluorescent Protein)陽性感染細胞をFACS AriaIIIuを用いて分取した。クローン1と2の推定二次構造を以下に示す。
ShCDKN1A (clone 1 (SEQ ID NO: 5) or clone 2 (SEQ ID NO: 6)) was added to megakaryocyte progenitor cells or megakaryocyte strains (MKCL21 strain) with decreased cell proliferation 50 days after the introduction of MYC / BMI1 / BCL-XL. ))-The RFP lentiviral vector was infected. Three days after infection, RFP (Red Fluorescent Protein) positive infected cells were sorted using FACS Maria IIIu. The estimated secondary structures of clones 1 and 2 are shown below.
15%FBSを含む培養液中で分取した細胞の培養を継続したところ、CDKN1A遺伝子の発現抑制から300日以上の細胞増殖が確認され、また、発現抑制時の細胞との比較で巨核球前駆細胞又は巨核球細胞が1066倍に増殖した(図1)。
When the cells separated in the culture medium containing 15% FBS were continuously cultured, cell proliferation was confirmed for 300 days or more from the suppression of the expression of the CDKN1A gene, and the megakaryocyte precursor was compared with the cells at the time of the suppression of the expression. Cells or megakaryocyte cells proliferated 1066- fold (Fig. 1).
実施例2:CDKN1A遺伝子、INK4A/ARF遺伝子及びp53遺伝子の発現抑制(細胞増殖低下段階)
実施例1で使用したものとは別のヒトiPS細胞株(YZWJ株)由来造血前駆細胞にMYC/BMI1/BCL-XLの3遺伝子を導入することで不死化巨核球細胞株を樹立した。 Example 2: Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (cell proliferation reduction stage)
An immortalized megakaryocyte cell line was established by introducing the three genes MYC / BMI1 / BCL-XL into hematopoietic progenitor cells derived from a human iPS cell line (YZWJ strain) different from that used in Example 1.
実施例1で使用したものとは別のヒトiPS細胞株(YZWJ株)由来造血前駆細胞にMYC/BMI1/BCL-XLの3遺伝子を導入することで不死化巨核球細胞株を樹立した。 Example 2: Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (cell proliferation reduction stage)
An immortalized megakaryocyte cell line was established by introducing the three genes MYC / BMI1 / BCL-XL into hematopoietic progenitor cells derived from a human iPS cell line (YZWJ strain) different from that used in Example 1.
MYC/BMI1/BCL-XLを導入してから60日目の細胞増殖が低下した巨核球株(MKCL23株)と、導入後90日目の細胞増殖が低下した巨核球株(MKCL26株)に、以下の遺伝子を有するレンチウイルスベクターを感染させた。手順は実施例1と同様に行った。
1:コントロール-RFP (LacZ)
2:shCDKN1A-RFP+shp53-GFP+shINK4A/ARF-GFP
感染3日後にRFP/GFP陽性感染細胞をFACS AriaIIIuを用いて分取した。shCDKN1Aは上記クローン1及び2を使用した。shp53の配列(配列番号7)とshINK4A/ARFの配列(配列番号8)の推定二次構造を以下に記載する。
なお、shINK4A/ARFは、INK4A遺伝子とARF遺伝子の共通のエクソンを標的とするものである。
The megakaryocyte strain (MKCL23 strain) whose cell proliferation decreased 60 days after the introduction of MYC / BMI1 / BCL-XL and the megakaryocyte strain (MKCL26 strain) whose cell proliferation decreased 90 days after the introduction. A lentiviral vector having the following genes was infected. The procedure was the same as in Example 1.
1: Control-RFP (LacZ)
2: shCDKN1A-RFP + shp53-GFP + shINK4A / ARF-GFP
Three days after infection, RFP / GFP-positive infected cells were sorted using FACS Maria IIIu. shCDKN1A used theabove clones 1 and 2. The estimated secondary structures of the sequence of shp53 (SEQ ID NO: 7) and the sequence of shINK4A / ARF (SEQ ID NO: 8) are described below.
The shINK4A / ARF targets a common exon of the INK4A gene and the ARF gene.
1:コントロール-RFP (LacZ)
2:shCDKN1A-RFP+shp53-GFP+shINK4A/ARF-GFP
感染3日後にRFP/GFP陽性感染細胞をFACS AriaIIIuを用いて分取した。shCDKN1Aは上記クローン1及び2を使用した。shp53の配列(配列番号7)とshINK4A/ARFの配列(配列番号8)の推定二次構造を以下に記載する。
1: Control-RFP (LacZ)
2: shCDKN1A-RFP + shp53-GFP + shINK4A / ARF-GFP
Three days after infection, RFP / GFP-positive infected cells were sorted using FACS Maria IIIu. shCDKN1A used the
分取後、15%FBSを含む培養液中で培養を継続したところ、MKCL23株とMKCL26株のいずれも、コントロールとの比較で、CDKN1A遺伝子の発現を抑制することで30日以上の細胞増殖期間の延長と、104倍の増殖が確認された(図2、図3)。CDKN1A遺伝子の発現抑制では不十分な場合でも、INK4A/ARF遺伝子及びp53遺伝子の発現を抑制することで増殖効果が改善することが明らかとなった。
After sorting, when the culture was continued in a culture medium containing 15% FBS, both the MKCL23 strain and the MKCL26 strain suppressed the expression of the CDKN1A gene in comparison with the control, resulting in a cell growth period of 30 days or more. and extension of, 10 4 fold expansion was observed (Figure 2, Figure 3). It was clarified that the proliferative effect was improved by suppressing the expression of the INK4A / ARF gene and the p53 gene even when the suppression of the expression of the CDKN1A gene was insufficient.
更に実施例1で使用したものとは別のヒトiPS細胞株(NIH5株)由来造血前駆細胞にMYC/BMI1/BCL-XLの3遺伝子を導入することで不死化巨核球細胞株を樹立した。
Furthermore, an immortalized megakaryocyte cell line was established by introducing the three genes MYC / BMI1 / BCL-XL into hematopoietic progenitor cells derived from a human iPS cell line (NIH5 strain) different from that used in Example 1.
MYC/BMI1/BCL-XLを導入してから40日前後の細胞増殖が低下した巨核球株(MKCL1株)に以下の遺伝子を有するレンチウイルスベクターを感染させた。手順は実施例1と同様に行った。
1:コントロール-RFP(LacZ)
2:shCDKN1A-RFP
3:shp53-GFP
4:shINK4A/ARF-GFP
5:shCDKN1A-RFP+shp53-GFP+shARF-GFP
各shRNAは上記のものを使用した。その後陽性感染細胞をFACS AriaIIIuを用いて分取した。 About 40 days after the introduction of MYC / BMI1 / BCL-XL, a megakaryocyte strain (MKCL1 strain) having decreased cell proliferation was infected with a lentiviral vector having the following genes. The procedure was the same as in Example 1.
1: Control-RFP (LacZ)
2: shCDKN1A-RFP
3: shp53-GFP
4: shINK4A / ARF-GFP
5: shCDKN1A-RFP + shp53-GFP + shARF-GFP
The above shRNA was used. Then, positively infected cells were collected using FACS MariaIIIu.
1:コントロール-RFP(LacZ)
2:shCDKN1A-RFP
3:shp53-GFP
4:shINK4A/ARF-GFP
5:shCDKN1A-RFP+shp53-GFP+shARF-GFP
各shRNAは上記のものを使用した。その後陽性感染細胞をFACS AriaIIIuを用いて分取した。 About 40 days after the introduction of MYC / BMI1 / BCL-XL, a megakaryocyte strain (MKCL1 strain) having decreased cell proliferation was infected with a lentiviral vector having the following genes. The procedure was the same as in Example 1.
1: Control-RFP (LacZ)
2: shCDKN1A-RFP
3: shp53-GFP
4: shINK4A / ARF-GFP
5: shCDKN1A-RFP + shp53-GFP + shARF-GFP
The above shRNA was used. Then, positively infected cells were collected using FACS MariaIIIu.
分取後、15%FBSを含む培養液中で培養を継続したところ、コントロールと比較して、細胞増殖が顕著に増大した(INK4A/ARF除く)。特に、CDKN1A遺伝子、INK4A遺伝子、ARF遺伝子及びp53遺伝子の全ての発現を抑制した細胞は20日の細胞増殖期間の延長と、104倍の増殖が確認された。
After sorting, when the culture was continued in the culture medium containing 15% FBS, the cell proliferation was significantly increased as compared with the control (excluding INK4A / ARF). In particular, CDKN1A gene, INK4A gene, an extension of all the cells that suppress the expression of cell growth period of 20 days of ARF gene and p53 gene, 10 4 fold expansion was observed.
実施例3:CDKN1A遺伝子、INK4A/ARF遺伝子及びp53遺伝子の発現抑制(BCL-XL導入時)
実施例2でBCL-XLを導入したのと同時に、従来のMBX強制発現では樹立できなかったYZWJ516ヒトiPS細胞株由来巨核球株(MKCL30株)に以下の遺伝子を有するレンチウイルスベクターを感染させた。手順は実施例1と同様に行った。
1:コントロール-RFP(LacZ)
2:shCDKN1A-RFP
3:shp53-GFP
4:shINK4A/ARF-GFP
5:shCDKN1A-RFP+shp53-GFP
6:shCDKN1A-RFP+shARF-GFP
7:shp53-GFP+shARF-GFP
8:shCDKN1A-RFP+shp53-GFP+shARF-GFP各shRNAは上記のものを使用した。その後陽性感染細胞をFACS AriaIIIuを用いて分取した。 Example 3: Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (at the time of introduction of BCL-XL)
At the same time that BCL-XL was introduced in Example 2, a megakaryocyte strain (MKCL30 strain) derived from the YZWJ516 human iPS cell line, which could not be established by conventional forced expression of MBX, was infected with a wrench viral vector having the following genes. .. The procedure was the same as in Example 1.
1: Control-RFP (LacZ)
2: shCDKN1A-RFP
3: shp53-GFP
4: shINK4A / ARF-GFP
5: shCDKN1A-RFP + shp53-GFP
6: shCDKN1A-RFP + shARF-GFP
7: shp53-GFP + shARF-GFP
8: shRNA1A-RFP + hep53-GFP + shRNA-GFP Each shRNA used as described above. Then, positively infected cells were collected using FACS MariaIIIu.
実施例2でBCL-XLを導入したのと同時に、従来のMBX強制発現では樹立できなかったYZWJ516ヒトiPS細胞株由来巨核球株(MKCL30株)に以下の遺伝子を有するレンチウイルスベクターを感染させた。手順は実施例1と同様に行った。
1:コントロール-RFP(LacZ)
2:shCDKN1A-RFP
3:shp53-GFP
4:shINK4A/ARF-GFP
5:shCDKN1A-RFP+shp53-GFP
6:shCDKN1A-RFP+shARF-GFP
7:shp53-GFP+shARF-GFP
8:shCDKN1A-RFP+shp53-GFP+shARF-GFP各shRNAは上記のものを使用した。その後陽性感染細胞をFACS AriaIIIuを用いて分取した。 Example 3: Suppression of expression of CDKN1A gene, INK4A / ARF gene and p53 gene (at the time of introduction of BCL-XL)
At the same time that BCL-XL was introduced in Example 2, a megakaryocyte strain (MKCL30 strain) derived from the YZWJ516 human iPS cell line, which could not be established by conventional forced expression of MBX, was infected with a wrench viral vector having the following genes. .. The procedure was the same as in Example 1.
1: Control-RFP (LacZ)
2: shCDKN1A-RFP
3: shp53-GFP
4: shINK4A / ARF-GFP
5: shCDKN1A-RFP + shp53-GFP
6: shCDKN1A-RFP + shARF-GFP
7: shp53-GFP + shARF-GFP
8: shRNA1A-RFP + hep53-GFP + shRNA-GFP Each shRNA used as described above. Then, positively infected cells were collected using FACS MariaIIIu.
分取後、15%FBSを含む培養液中で培養を継続したところ、コントロールと比較して、CDKN1A遺伝子の発現を抑制することで8週間以上の細胞増殖期間の延長と、1015倍の増殖が確認された。CDKN1A遺伝子とp53遺伝子の両方の発現を抑制した場合の細胞増殖効果が最も高かった(8週間で2.5x1017倍)。本願の優先日(2019年10月17日、c-MYC/BMI1感染後127日目)において増殖中である。これに続いてINK4A遺伝子、ARF遺伝子及びp53遺伝子の全ての発現を抑制した細胞の細胞増殖効果が高かった。
After sorting, when the culture was continued in a culture medium containing 15% FBS, the cell proliferation period was extended by 8 weeks or more and the proliferation was 10 to 15 times by suppressing the expression of the CDKN1A gene as compared with the control. Was confirmed. The cell proliferation effect was highest when the expression of both the CDKN1A gene and the p53 gene was suppressed (2.5x10 17 times in 8 weeks). It is growing on the priority date of the present application (October 17, 2019, 127 days after c-MYC / BMI1 infection). Following this, the cell proliferation effect of the cells in which the expression of all the INK4A gene, ARF gene and p53 gene was suppressed was high.
さらに、ノックダウンの時期を検証するために、BCL-XLの導入と同時及び導入の2週間後に、以下のノックダウン実験を行った。
9:コントロール-RFP(LacZ)
10:shCDKN1A-RFP+shp53-GFP Furthermore, in order to verify the timing of knockdown, the following knockdown experiments were performed at the same time as the introduction of BCL-XL and 2 weeks after the introduction.
9: Control-RFP (LacZ)
10: shCDKN1A-RFP + shp53-GFP
9:コントロール-RFP(LacZ)
10:shCDKN1A-RFP+shp53-GFP Furthermore, in order to verify the timing of knockdown, the following knockdown experiments were performed at the same time as the introduction of BCL-XL and 2 weeks after the introduction.
9: Control-RFP (LacZ)
10: shCDKN1A-RFP + shp53-GFP
結果を図4に示す。感染時期としては、BCL-XL導入と同時の感染の方が、BCL-XLの導入2週間後の感染よりも104倍以上増殖が良い(shCDKN1A-RFP+shp53-GFP同時 2.5x1017倍 vs shCDKN1A-RFP+shp53-GFP同時 5.8x1012倍)ことが確認された。
The results are shown in FIG. The time of infection, BCL-XL towards the introduction and simultaneous infection, BCL-XL of introduction 10 4 times more than the infection after two weeks of growth is good (shCDKN1A-RFP + shp53-GFP simultaneous 2.5x10 17 times vs shCDKN1A -RFP + shp53-GFP simultaneous 5.8x10 12 times) was confirmed.
CDKN1A遺伝子制御とp53遺伝子制御の組み合わせよりも増殖効果は劣るものの、CDKN1A遺伝子制御単独又はp53遺伝子制御単独についてもBCL-XL導入と同時にノックダウンした方が細胞の増殖能が増大することが分かった。
Although the proliferative effect was inferior to that of the combination of CDKN1A gene regulation and p53 gene regulation, it was found that the cell proliferative ability of CDKN1A gene regulation alone or p53 gene regulation alone was increased by knocking down at the same time as the introduction of BCL-XL. ..
実施例4:CDKN1A遺伝子の発現を抑制した巨核球細胞による血小板産生の検討
実施例1でクローン2(配列番号6)を用いて増殖を促進させたCDKN1A抑制後のMKCL21株とコントロールベクター感染後のMKCL21株での血小板放出を比較した。 Example 4: Examination of platelet production by megakaryocyte cells in which the expression of the CDKN1A gene was suppressed MKCL21 strain after CDKN1A suppression and control vector infection in which proliferation was promoted using clone 2 (SEQ ID NO: 6) in Example 1 Platelet release in the MKCL21 strain was compared.
実施例1でクローン2(配列番号6)を用いて増殖を促進させたCDKN1A抑制後のMKCL21株とコントロールベクター感染後のMKCL21株での血小板放出を比較した。 Example 4: Examination of platelet production by megakaryocyte cells in which the expression of the CDKN1A gene was suppressed MKCL21 strain after CDKN1A suppression and control vector infection in which proliferation was promoted using clone 2 (SEQ ID NO: 6) in Example 1 Platelet release in the MKCL21 strain was compared.
両細胞の培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制後、5日目に巨核球、及び培養上清に放出された血小板をFACSで解析した。抗体はAPC anti-human CD41 Antibody(BioLegend、カタログ番号:303710)及びPE Mouse Anti-Human CD42b Clone HIP1(BD、カタログ番号:555473)を使用した。FACSドットプロットを図5に示す。
Doxycycline was removed from the culture mediums of both cells, and after suppressing the expression of the three factors MYC / BMI1 / BCL-XL, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS on the 5th day. As the antibody, APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used. The FACS dot plot is shown in FIG.
また、FACSを用いてカウントされた血小板数を比較したところ、CDKN1A遺伝子の発現を抑制することで血小板産生が亢進することが明らかとなった。
Moreover, when the number of platelets counted using FACS was compared, it was clarified that the platelet production was enhanced by suppressing the expression of the CDKN1A gene.
続いて、実施例2でCDKN1A遺伝子の発現を抑制したMKCL21株の血小板産生能を、従来の3因子(MYC/BMI1/BCL-XL)強制発現によるもっとも優れた血小板放出能のある巨核球株(SeV2)とで比較した。それらのFACSドットプロットを図6に示す。抗体はAPC anti-human CD41 Antibody(BioLegend、カタログ番号:303710)及びPE Mouse Anti-Human CD42b Clone HIP1(BD、カタログ番号:555473)を使用した。
Subsequently, the platelet-producing ability of the MKCL21 strain in which the expression of the CDKN1A gene was suppressed in Example 2 was changed to the megakaryocyte strain having the best platelet-releasing ability by the conventional forced expression of three factors (MYC / BMI1 / BCL-XL). Compared with SeV2). The FACS dot plots are shown in FIG. As the antibody, APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used.
図6の上パネルは、ドキシサイクリンを加え、MYC/BMI1/BCL-XLの3因子の発現をさせた状態のものである。どちらの株も未成熟なため、CD41陽性/CD42b陽性の血小板(4分割された図の右上部分)が少ない。一方、図6の下パネルは、培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制して5日目の状態であり、CD41a陽性/CD42b陽性の血小板(4分割された図の右上部分)が増大している。これらの結果から、CDKN1A遺伝子の発現を抑制することで血小板産生能が増大したことが分かる。
The upper panel of FIG. 6 shows a state in which doxycycline is added to express the three factors of MYC / BMI1 / BCL-XL. Since both strains are immature, there are few CD41-positive / CD42b-positive platelets (upper right part of the figure divided into four). On the other hand, the lower panel of FIG. 6 shows the state on the 5th day when doxycycline was removed from the culture medium and the expression of the three factors MYC / BMI1 / BCL-XL was suppressed, and the platelets were CD41a-positive / CD42b-positive (4). The upper right part of the divided figure) is increasing. From these results, it can be seen that the platelet-producing ability was increased by suppressing the expression of the CDKN1A gene.
実施例5:CDKN1A遺伝子及びp53遺伝子の発現を抑制した巨核球細胞による血小板産生の検討
コントロールベクター感染後のMKCL7株と、実施例1でクローン2(配列番号6)を用いて増殖を促進させたCDKN1A抑制後のMKCL21株と、実施例1のクローン2(配列番号6)の導入と同じ時期に、実施例3の「5:shCDKN1A-RFP+shp53-GFP」を用いて増殖を促進させたCDKN1A及びp53抑制後のMKCL30株とでの血小板放出を比較した。 Example 5: Examination of platelet production by macronuclear cells that suppressed the expression of CDKN1A gene and p53 gene MKCL7 strain after control vector infection and clone 2 (SEQ ID NO: 6) in Example 1 were used to promote proliferation. CDKN1A and p53 whose proliferation was promoted using "5: shCDKN1A-RFP + shp53-GFP" of Example 3 at the same time as the introduction of the MKCL21 strain after CDKN1A suppression and clone 2 (SEQ ID NO: 6) of Example 1. Platelet release with the suppressed MKCL30 strain was compared.
コントロールベクター感染後のMKCL7株と、実施例1でクローン2(配列番号6)を用いて増殖を促進させたCDKN1A抑制後のMKCL21株と、実施例1のクローン2(配列番号6)の導入と同じ時期に、実施例3の「5:shCDKN1A-RFP+shp53-GFP」を用いて増殖を促進させたCDKN1A及びp53抑制後のMKCL30株とでの血小板放出を比較した。 Example 5: Examination of platelet production by macronuclear cells that suppressed the expression of CDKN1A gene and p53 gene MKCL7 strain after control vector infection and clone 2 (SEQ ID NO: 6) in Example 1 were used to promote proliferation. CDKN1A and p53 whose proliferation was promoted using "5: shCDKN1A-RFP + shp53-GFP" of Example 3 at the same time as the introduction of the MKCL21 strain after CDKN1A suppression and clone 2 (SEQ ID NO: 6) of Example 1. Platelet release with the suppressed MKCL30 strain was compared.
各細胞の培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制後、5日目に巨核球、及び培養上清に放出された血小板をFACSで解析した。抗体はAPC anti-human CD41 Antibody(BioLegend、カタログ番号:303710)及びPE Mouse Anti-Human CD42b Clone HIP1(BD、カタログ番号:555473)を使用した。
ただし、MKCL7株については、ドキシサイクリンを除去せず、MYC/BMI1/BCL-XLの3因子の発現を抑制しなかったサンプルも準備した(MBX ON)。5日目に、上記同様に巨核球、及び培養上清に放出された血小板をFACSで解析した。
FACSドットプロットを図7(A)に示す。また、FACSを用いてカウントされた血小板数の結果を図7(B)に示す。 After removing doxycycline from the culture medium of each cell and suppressing the expression of the three factors of MYC / BMI1 / BCL-XL, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS on the 5th day. As the antibody, APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used.
However, for the MKCL7 strain, a sample in which doxycycline was not removed and the expression of the three factors MYC / BMI1 / BCL-XL was not suppressed was also prepared (MBX ON). On the 5th day, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS in the same manner as described above.
The FACS dot plot is shown in FIG. 7 (A). In addition, the result of the platelet count counted using FACS is shown in FIG. 7 (B).
ただし、MKCL7株については、ドキシサイクリンを除去せず、MYC/BMI1/BCL-XLの3因子の発現を抑制しなかったサンプルも準備した(MBX ON)。5日目に、上記同様に巨核球、及び培養上清に放出された血小板をFACSで解析した。
FACSドットプロットを図7(A)に示す。また、FACSを用いてカウントされた血小板数の結果を図7(B)に示す。 After removing doxycycline from the culture medium of each cell and suppressing the expression of the three factors of MYC / BMI1 / BCL-XL, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS on the 5th day. As the antibody, APC anti-human CD41 Antibody (BioLegend, catalog number: 303710) and PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473) were used.
However, for the MKCL7 strain, a sample in which doxycycline was not removed and the expression of the three factors MYC / BMI1 / BCL-XL was not suppressed was also prepared (MBX ON). On the 5th day, megakaryocytes and platelets released into the culture supernatant were analyzed by FACS in the same manner as described above.
The FACS dot plot is shown in FIG. 7 (A). In addition, the result of the platelet count counted using FACS is shown in FIG. 7 (B).
続いて、MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株(ON)と、MYC/BMI1/BCL-XLの3因子の発現を抑制後した、MKCL7株、MKCL21株及びMKCL30株とのそれぞれについて、5日目に巨核球、及び培養上清に放出された血小板を回収し、無刺激、或いは0.4μMのPMA(Phorbol Myristate Acetate, Sigma Aldrich Cat#P1585)(PMA)、又は100μMのADP(Adenosine diphosphate, Sigma Aldrich Cat#A-2754)+40μMのTRAP-6(Thrombin receptor activator peptide 6, BACHEM Cat#H-8365.0005)(AT)存在下でのP-selectin抗体(Bio Legend/#304910)及びPAC-1抗体(BD Bioscience/#34507)での染色行い、FACSで解析した。P-selectin及びPAC-1抗体での結果をそれぞれ図8(D)及び(E)に示す。
表中の説明は以下のとおりである。
No stimulation-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、無刺激における結果
PMA-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、PMA下における結果
AT-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、AT下における結果
No stimulation_MKCL7:MKCL7株を用いた、無刺激における結果
PMA_MKCL7:MKCL7株を用いた、PMA下における結果
AT_MKCL7:MKCL7株を用いた、AT下における結果
No stimulation_MKCL21#:MKCL21株を用いた、無刺激における結果
PMA_MKCL21#:MKCL21株を用いた、PMA下における結果
AT_MKCL21#:MKCL21株を用いた、AT下における結果
No stimulation_MKCL30:MKCL30株を用いた、無刺激における結果
PMA_MKCL30:MKCL30株を用いた、PMA下における結果
AT_MKCL30:MKCL30株を用いた、AT下における結果 Subsequently, the strain (ON) that did not suppress the expression of the three factors of MYC / BMI1 / BCL-XL and the MKCL7 strain, the MKCL21 strain, and the MKCL30 after suppressing the expression of the three factors of MYC / BMI1 / BCL-XL. For each of the strains, megakaryocytes and platelets released into the culture supernatant were collected onday 5, and were unstimulated or 0.4 μM PMA (Thrombol Myristate Antibody, Sigma Aldrich Cat # P1585) (PMA). Or 100 μM ADP (Adenosine diphosphate, Sigma Aldrich Cat # A-2754) + 40 μM TRAP-6 (Thrombin receptor activator peptide 6, in the presence of BACHEM Cat # H-8365.0005) antibody (AT Staining with Legend / # 304910) and PAC-1 antibody (BD Bioscience / # 34507) was performed and analyzed by FACS. The results with P-selectin and PAC-1 antibodies are shown in FIGS. 8 (D) and 8 (E), respectively.
The explanations in the table are as follows.
No stimulation-ON: Results in no stimulation using a strain that did not suppress the expression of 3 factors of MYC / BMI1 / BCL-XL PMA-ON: Suppressed the expression of 3 factors of MYC / BMI1 / BCL-XL Results under PMA using a strain that did not suppress AT-ON: Results under AT using a strain that did not suppress the expression of the three factors AT-ON: MYC / BMI1 / BCL-XL. Results in non-stimulation PMA_MKCL7: MKCL7 strain was used, results under PMA AT_MKCL7: MKCL7 strain was used, results under AT No simulation_MKCL21 #: MKCL21 strain was used, results in no stimulation PMA_MKCL21 #: MKCL21 strain was used. , PMA result AT_MKCL21 #: MKCL21 strain was used, AT result No simulation_MKCL30: MKCL30 strain was used, no stimulation result PMA_MKCL30: MKCL30 strain was used, PMA result AT_MKCL30: MKCL30 strain was used. , Results under AT
表中の説明は以下のとおりである。
No stimulation-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、無刺激における結果
PMA-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、PMA下における結果
AT-ON:MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった株を用いた、AT下における結果
No stimulation_MKCL7:MKCL7株を用いた、無刺激における結果
PMA_MKCL7:MKCL7株を用いた、PMA下における結果
AT_MKCL7:MKCL7株を用いた、AT下における結果
No stimulation_MKCL21#:MKCL21株を用いた、無刺激における結果
PMA_MKCL21#:MKCL21株を用いた、PMA下における結果
AT_MKCL21#:MKCL21株を用いた、AT下における結果
No stimulation_MKCL30:MKCL30株を用いた、無刺激における結果
PMA_MKCL30:MKCL30株を用いた、PMA下における結果
AT_MKCL30:MKCL30株を用いた、AT下における結果 Subsequently, the strain (ON) that did not suppress the expression of the three factors of MYC / BMI1 / BCL-XL and the MKCL7 strain, the MKCL21 strain, and the MKCL30 after suppressing the expression of the three factors of MYC / BMI1 / BCL-XL. For each of the strains, megakaryocytes and platelets released into the culture supernatant were collected on
The explanations in the table are as follows.
No stimulation-ON: Results in no stimulation using a strain that did not suppress the expression of 3 factors of MYC / BMI1 / BCL-XL PMA-ON: Suppressed the expression of 3 factors of MYC / BMI1 / BCL-XL Results under PMA using a strain that did not suppress AT-ON: Results under AT using a strain that did not suppress the expression of the three factors AT-ON: MYC / BMI1 / BCL-XL. Results in non-stimulation PMA_MKCL7: MKCL7 strain was used, results under PMA AT_MKCL7: MKCL7 strain was used, results under AT No simulation_MKCL21 #: MKCL21 strain was used, results in no stimulation PMA_MKCL21 #: MKCL21 strain was used. , PMA result AT_MKCL21 #: MKCL21 strain was used, AT result No simulation_MKCL30: MKCL30 strain was used, no stimulation result PMA_MKCL30: MKCL30 strain was used, PMA result AT_MKCL30: MKCL30 strain was used. , Results under AT
以上の結果から、CDKN1A遺伝子やp53遺伝子の発現を抑制しても、刺激に対して良好な活性化反応を示す機能的な血小板が産生され、血小板の機能は阻害されないことが明らかになった。一方、ドキシサイクリンを除去せず、MYC/BMI1/BCL-XLの3因子の発現を抑制しなかった群(MBX ON)では、巨核球の成熟が進まず、ほとんど血小板が産生されないことを確認した。
From the above results, it was clarified that even if the expression of the CDKN1A gene or the p53 gene is suppressed, functional platelets showing a good activation reaction to the stimulus are produced, and the function of the platelets is not inhibited. On the other hand, in the group (MBX ON) in which the expression of the three factors MYC / BMI1 / BCL-XL was not suppressed without removing doxycycline, it was confirmed that the maturation of megakaryocytes did not proceed and almost no platelets were produced.
実施例6:BCL-XL遺伝子の発現とp21/p53遺伝子の発現抑制
ヒト皮膚線維芽細胞由来のiPS細胞から、iPS-Sac法(Takayama N.,et al.J Exp Med.2817-2830(2010)に記載の方法)に従って、14日間培養して造血前駆細胞を作製した。 Example 6: Expression of BCL-XL gene and suppression of expression of p21 / p53 gene From iPS cells derived from human skin fibroblasts, iPS-Sac method (Takayama N., et al. J Exp Med. 2817-2830 (2010) )), The cells were cultured for 14 days to prepare hematopoietic progenitor cells.
ヒト皮膚線維芽細胞由来のiPS細胞から、iPS-Sac法(Takayama N.,et al.J Exp Med.2817-2830(2010)に記載の方法)に従って、14日間培養して造血前駆細胞を作製した。 Example 6: Expression of BCL-XL gene and suppression of expression of p21 / p53 gene From iPS cells derived from human skin fibroblasts, iPS-Sac method (Takayama N., et al. J Exp Med. 2817-2830 (2010) )), The cells were cultured for 14 days to prepare hematopoietic progenitor cells.
得られた造血前駆細胞にドキシサイクリン誘導レンチウイルスベクターを用いて、c-MYC/BMI1の2遺伝子(MB)を導入することで巨核球前駆細胞株を樹立した。その14日後に、そのまま培養した株(MB)、MB導入に加えてドキシサイクリン誘導レンチウイルスベクターを用いてBCL-XL遺伝子を更に導入した株(MBX)、MB導入に加えて持続的に発現するsh p21/p53レンチウイルスベクターを更に感染させた株(MB-p21/p53_KD)、及びMB導入に加えてドキシサイクリン誘導レンチウイルスベクターを用いてBCL-XL遺伝子を導入し、持続的に発現するsh p21/p53レンチウイルスベクターを感染させた株(MBX-p21/p53_KD)の巨核球前駆細胞株を作製した。各巨核球前駆細胞株について、14日目と31日目と43日目の細胞の増殖性を確認した結果を図9に示す。
A megakaryocyte progenitor cell line was established by introducing two genes (MB) of c-MYC / BMI1 into the obtained hematopoietic progenitor cells using a doxycycline-induced lentiviral vector. 14 days later, the strain (MB) cultured as it was, the strain (MBX) in which the BCL-XL gene was further introduced using a doxycycline-induced lentiviral vector in addition to the MB introduction, and the sh that was continuously expressed in addition to the MB introduction. A strain further infected with a p21 / p53 lentiviral vector (MB-p21 / p53_KD), and a BCL-XL gene introduced using a doxycycline-induced lentiviral vector in addition to MB introduction, and continuously expressed sh p21 / A giant nuclear progenitor cell line of a strain infected with the p53 lentiviral vector (MBX-p21 / p53_KD) was prepared. The results of confirming the proliferative properties of the cells on the 14th, 31st, and 43rd days of each megakaryocyte progenitor cell line are shown in FIG.
また、MB株、MBX株、MB-p21/p53_KD株、及びMBX-p21/p53_KD株について、31日目と43日目に、細胞のCD34及びCD41の発現をFACSで解析した結果を図10に、細胞のCD34及びCD42bの発現をFACSで解析した結果を図11に、細胞のCD34及びGPAの発現をFACSで解析した結果を図12に、FACSドットプロットで示す。抗体はAPC anti-human CD41 Antibody(BioLegend、カタログ番号:303710)、PE Mouse Anti-Human CD42b Clone HIP1(BD、カタログ番号:555473)、GPA(Glycophorin A)抗体(BioLegend、カタログ番号:306612)、及びCD34抗体(BioLegend、カタログ番号:343514)を使用した。
The results of FACS analysis of the expression of CD34 and CD41 in cells on the 31st and 43rd days of the MB strain, MBX strain, MB-p21 / p53_KD strain, and MBX-p21 / p53_KD strain are shown in FIG. The results of FACS analysis of the expression of CD34 and CD42b in cells are shown in FIG. 11, and the results of FACS analysis of the expression of CD34 and GPA in cells are shown in FACS dot plot. Antibodies are APC anti-human CD41 Antibody (BioLegend, catalog number: 303710), PE Mouse Anti-Human CD42b Clone HIP1 (BD, catalog number: 555473), GPA (Glycophorin A) antibody (BioLegend, Catalog number: 555473), GPA (Glycophorin A) antibody (Bio A CD34 antibody (BioLegend, Catalog No .: 343514) was used.
いずれの条件においても、CD41陽性、CD42b弱陽性の巨核球前駆細胞が得られた。培養43日目の段階では、MB-p21/p53_KD株の結果(図9中の白丸)は、MB株の結果(黒丸)に比べて、かなり増殖性に優れることを示している。また、MBX-p21/p53_KD株の結果(黒三角)は、MBX株の結果(黒四角)又はMB- p21/p53_KD株の結果(白丸)と同等以上の増殖性であることを示している。これらの結果から、BCL-XL遺伝子の導入がなくても、c-MYC/BMI1の2遺伝子を導入することにより得られた巨核球前駆細胞株の増殖がp21/p53KDで促進されること、すなわちBCL-XLがp21/p53KDで置き換え可能であることが示唆された。
Under all conditions, CD41-positive and CD42b-weakly positive megakaryocyte progenitor cells were obtained. At the stage of the 43rd day of culture, the results of the MB-p21 / p53_KD strain (white circles in FIG. 9) show that the results of the MB strain (black circles) are considerably superior to the results of the MB strain (black circles). In addition, the result of the MBX-p21 / p53_KD strain (black triangle) indicates that the growth is equal to or higher than the result of the MBX strain (black square) or the result of the MB-p21 / p53_KD strain (white circle). From these results, the proliferation of the megakaryocyte progenitor cell line obtained by introducing the two genes of c-MYC / BMI1 is promoted by p21 / p53KD even without the introduction of the BCL-XL gene, that is, It was suggested that BCL-XL could be replaced by p21 / p53KD.
刊行物、特許文献等を含む、本明細書に引用されたすべての参考文献は、引用により、それらが個々に具体的に参考として援用されかつその内容全体が具体的に記載されているのと同程度まで、本明細書に援用される。
All references cited in this specification, including publications, patent documents, etc., are individually and specifically incorporated as references and the entire contents are specifically described. To the same extent, incorporated herein.
Claims (16)
- 造血前駆細胞又は多核化前の巨核球前駆細胞において、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞を製造する方法。 A method for producing a megakaryocyte progenitor cell or a megakaryocyte cell, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product in the hematopoietic progenitor cell or the megakaryocyte progenitor cell before polynuclearization.
- INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、請求項1に記載の方法。 The method according to claim 1, further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
- 巨核球細胞が成熟巨核球細胞である、請求項2に記載の方法。 The method according to claim 2, wherein the megakaryocyte cell is a mature megakaryocyte cell.
- 巨核球細胞が不死化されている、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the megakaryocyte cells are immortalized.
- 造血前駆細胞において、MYCファミリー遺伝子から選択される癌遺伝子及びBMI1遺伝子を強制発現する工程をさらに含む、請求項4に記載の方法。 The method according to claim 4, further comprising a step of forcibly expressing an oncogene and a BMI1 gene selected from MYC family genes in hematopoietic progenitor cells.
- BCL-XL遺伝子を強制発現する工程をさらに含む、請求項5に記載の方法。 The method according to claim 5, further comprising a step of forcibly expressing the BCL-XL gene.
- 癌遺伝子、BMI1遺伝子及びBCL-XL遺伝子の強制発現を抑制する工程をさらに含む、請求項6に記載の方法。 The method according to claim 6, further comprising a step of suppressing forced expression of an oncogene, a BMI1 gene and a BCL-XL gene.
- CDKN1A遺伝子の発現、又はその発現産物の機能の抑制がBCL-XL遺伝子の強制発現と同時に実施される、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out at the same time as the forced expression of the BCL-XL gene.
- CDKN1A遺伝子の発現、又はその発現産物の機能の抑制が、BMI1遺伝子及びBCL-XL遺伝子の強制発現後の細胞の増殖低下の後に実施される、請求項1~7のいずれか一項に記載の方法。 The expression according to any one of claims 1 to 7, wherein the expression of the CDKN1A gene or the suppression of the function of the expression product thereof is carried out after the decrease in cell proliferation after the forced expression of the BMI1 gene and the BCL-XL gene. Method.
- 細胞の増殖低下がBMI1遺伝子及びBCL-XL遺伝子の強制発現から30日以上後である、請求項9に記載の方法。 The method according to claim 9, wherein the decrease in cell proliferation is 30 days or more after the forced expression of the BMI1 gene and the BCL-XL gene.
- 抑制工程が、遺伝子の発現又はその発現産物の機能を抑制する分子を細胞に導入することによって行われる、請求項1~10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the suppression step is performed by introducing a molecule that suppresses the expression of a gene or the function of the expression product into a cell.
- 請求項1~11のいずれか一項に記載の方法により巨核球前駆細胞又は巨核球細胞を製造する工程、及び
製造された巨核球前駆細胞又は巨核球細胞を培養する工程を含む、血小板を製造する方法。 Producing platelets, which comprises the step of producing megakaryocyte progenitor cells or megakaryocyte cells by the method according to any one of claims 1 to 11 and the step of culturing the produced megakaryocyte progenitor cells or megakaryocyte cells. how to. - CDKN1A遺伝子の発現又はその発現産物の機能を抑制する工程を含む、巨核球前駆細胞又は巨核球細胞の増殖を促進する方法。 A method for promoting the proliferation of megakaryocyte progenitor cells or megakaryocyte cells, which comprises a step of suppressing the expression of the CDKN1A gene or the function of the expression product thereof.
- INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する工程をさらに含む、請求項13に記載の方法。 The method according to claim 13, further comprising a step of suppressing the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
- CDKN1A遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む、巨核球前駆細胞又は巨核球細胞の増殖促進剤。 A growth promoter for megakaryocyte progenitor cells or megakaryocyte cells, which comprises a molecule that suppresses the expression of the CDKN1A gene or the function of the expression product as an active ingredient.
- INK4A遺伝子及び/又はARF遺伝子及び/又はp53遺伝子の発現、あるいはそれらの発現産物の機能を抑制する分子をさらに含む、請求項15に記載の増殖促進剤。 The growth promoter according to claim 15, further comprising a molecule that suppresses the expression of the INK4A gene and / or the ARF gene and / or the p53 gene, or the function of the expression product thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021552480A JP7659784B2 (en) | 2019-10-17 | 2020-10-16 | Method for producing megakaryocyte precursor cells or megakaryocyte cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-190048 | 2019-10-17 | ||
JP2019190048 | 2019-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075568A1 true WO2021075568A1 (en) | 2021-04-22 |
Family
ID=75538277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/039162 WO2021075568A1 (en) | 2019-10-17 | 2020-10-16 | Method for producing megakaryocyte progenitor cell or megakaryocytic cell |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7659784B2 (en) |
TW (1) | TW202128987A (en) |
WO (1) | WO2021075568A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022265117A1 (en) * | 2021-06-18 | 2022-12-22 | 株式会社メガカリオン | Method for producing multinucleated megakaryocyte with enhanced platelet production capability, method for producing platelets, method for producing platelet preparation, and method for producing blood preparation |
WO2024143555A1 (en) * | 2022-12-28 | 2024-07-04 | 国立大学法人千葉大学 | Method for regulating degree of cell differentiation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157586A1 (en) * | 2011-05-13 | 2012-11-22 | 国立大学法人東京大学 | Polynucleated megakaryocytic cell and method for manufacturing platelets |
JP2014503190A (en) * | 2010-11-02 | 2014-02-13 | ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー | Methods and vectors for cell immortalization |
-
2020
- 2020-10-16 TW TW109136032A patent/TW202128987A/en unknown
- 2020-10-16 WO PCT/JP2020/039162 patent/WO2021075568A1/en active Application Filing
- 2020-10-16 JP JP2021552480A patent/JP7659784B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014503190A (en) * | 2010-11-02 | 2014-02-13 | ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー | Methods and vectors for cell immortalization |
WO2012157586A1 (en) * | 2011-05-13 | 2012-11-22 | 国立大学法人東京大学 | Polynucleated megakaryocytic cell and method for manufacturing platelets |
Non-Patent Citations (5)
Title |
---|
BESANCENOT R. ET AL.: "A Senescence-Like Cell -Cycle Arrest Occurs During Megakaryocytic Maturation: Implications for Physiological and Pathological Megakaryocytic Proliferation", PLOS BIOLOGY, vol. 8, no. 9, 2010, pages 1 - 11 * |
IWAMA ATSUSHI: "Basic and clinical research on pathophysiology : Recent advances 14, basic research, regulation of hematopoietic stem cell by a polycomb gene product Bmil", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, September 2005 (2005-09-01), pages 55 - 58 * |
MUÑOZ-ALONSO MARÍA J., ACOSTA JUAN C., RICHARD CARLOS, DELGADO M. DOLORES, SEDIVY JOHN, LEÓN JAVIER: "p21Cip1 and p27Kip1 Induce Distinct Cell Cycle Effects and Differentiation Programs in Myeloid Leukemia Cells", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 18, 5 May 2005 (2005-05-05), pages 18120 - 18129, XP055818991 * |
RONIQUE BACCINI VÉ, ROY LYDIA, VITRAT NATACHA, DIA CHAGRAOUI HÉ, SABRI SIHAM, LE COUEDIC JEAN-PIERRE, DEBILI NAJET, WENDLING FRANÇ: "Role of p21Cip1/Waf1 in cell -cycle exit of endomitotic megakaryocytes", BLOOD, vol. 98, no. 12, 1 December 2001 (2001-12-01), pages 3274 - 3282, XP055818998 * |
RUBINSTEIN JEREMY D., ELAGIB KAMALELDIN E., GOLDFARB ADAM N.: "Cyclic AMP Signaling Inhibits Megakaryocytic Differentiation by Targeting Transcription Factor 3 (E2A) Cyclin-dependent Kinase Inhibitor 1A (CDKN1A) Transcriptional Axis", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 287, no. 23, 1 June 2012 (2012-06-01), pages 19207 - 19215, XP055818988 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022265117A1 (en) * | 2021-06-18 | 2022-12-22 | 株式会社メガカリオン | Method for producing multinucleated megakaryocyte with enhanced platelet production capability, method for producing platelets, method for producing platelet preparation, and method for producing blood preparation |
EP4342982A4 (en) * | 2021-06-18 | 2025-05-28 | Megakaryon Corporation | METHOD FOR PRODUCING MULTINUCLEATED MEGAKARYOCYTES WITH ENHANCED PLATELET PRODUCTION CAPACITY, METHOD FOR PRODUCING PLATELET, METHOD FOR PRODUCING PLATELET PREPARATION, AND METHOD FOR PRODUCING BLOOD PREPARATION |
WO2024143555A1 (en) * | 2022-12-28 | 2024-07-04 | 国立大学法人千葉大学 | Method for regulating degree of cell differentiation |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021075568A1 (en) | 2021-04-22 |
JP7659784B2 (en) | 2025-04-10 |
TW202128987A (en) | 2021-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107709546B (en) | Method for producing highly functional platelets | |
CN102712906B (en) | The novel processing step of noble cells | |
CN103814126B (en) | Multinuclear megacaryocyte and hematoblastic manufacture method | |
JP6445971B2 (en) | Generation of functional and durable endothelial cells from human amniotic fluid-derived cells | |
US12006513B2 (en) | Methods for the long-term expansion of granulocyte-macrophage progenitors and applications thereof | |
US20210222124A1 (en) | Method for Producing Culture Containing Megakaryocytes, and Method for Producing Platelets Using Same | |
JP2019509065A (en) | Colony forming medium and use thereof | |
WO2021075568A1 (en) | Method for producing megakaryocyte progenitor cell or megakaryocytic cell | |
JP6879511B2 (en) | Platelet production promoter and method for producing platelets using it | |
KR20230078712A (en) | Improved reprogramming, maintenance and preservation of induced pluripotent stem cells | |
EP4365283A1 (en) | Method for improving proliferative properties of common myeloid progenitor cells (cmp) or myelocytic progenitor cells | |
JP2019026591A (en) | Platelet production promoter containing ahr antagonist, and method for producing platelet using the same | |
EP4342982A1 (en) | Method for producing multinucleated megakaryocyte with enhanced platelet production capability, method for producing platelets, method for producing platelet preparation, and method for producing blood preparation | |
EP3409774B1 (en) | Screening method of platelet production promoter | |
WO2024143555A1 (en) | Method for regulating degree of cell differentiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20876923 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021552480 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20876923 Country of ref document: EP Kind code of ref document: A1 |