[go: up one dir, main page]

WO2021065248A1 - Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler - Google Patents

Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler Download PDF

Info

Publication number
WO2021065248A1
WO2021065248A1 PCT/JP2020/031805 JP2020031805W WO2021065248A1 WO 2021065248 A1 WO2021065248 A1 WO 2021065248A1 JP 2020031805 W JP2020031805 W JP 2020031805W WO 2021065248 A1 WO2021065248 A1 WO 2021065248A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
specific gravity
conductive filler
inorganic layer
thermally conductive
Prior art date
Application number
PCT/JP2020/031805
Other languages
French (fr)
Japanese (ja)
Inventor
直之 鴛海
細川 武広
誠 溝口
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社, 国立大学法人九州大学 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2021065248A1 publication Critical patent/WO2021065248A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction

Definitions

  • the present disclosure relates to thermally conductive fillers, thermally conductive composite materials, wire harnesses, and methods for producing thermally conductive fillers. Regarding.
  • Thermally conductive fillers may be added to organic polymer materials for the purpose of improving heat dissipation and minimizing the effects of heat generation due to energization, etc., in the insulating members that make up electrical and electronic components.
  • the thermally conductive filler is often composed of an inorganic compound having high thermal conductivity such as alumina, aluminum nitride, and boron nitride.
  • the thermal conductivity of the material can be improved, but if a large amount of a filler made of an inorganic compound is mixed with the organic polymer material, the specific gravity of the material increases. It becomes difficult to reduce the weight of electrical and electronic components. From the viewpoint of weight reduction of the entire automobile, weight reduction is important for electric and electronic parts for automobiles. Therefore, weight reduction is desired in the material containing the heat conductive filler. As a method for that, attempts have been made to reduce the amount of filler added.
  • Patent Document 1 discloses a filler having a void portion inside and having a porosity within a predetermined range.
  • Patent Document 2 boron nitride particles are dispersed in a resin as a matrix in the state of exfoliated flat particles generated by undergoing an exfoliation step of delaminating secondary particles which are a laminate of primary particles.
  • Organic composite compositions are disclosed.
  • Patent Document 3 discloses a highly thermally conductive composite in which highly thermally conductive fillers having anisotropy in shape are in direct contact with each other to form a network structure in a matrix resin.
  • Inorganic compounds such as alumina, aluminum nitride, and boron nitride exhibit high thermal conductivity, but have a large specific gravity, and when added as a filler to an organic polymer material or the like to form a composite material, the specific gravity of the composite material as a whole. It is difficult to achieve high thermal conductivity while keeping the size small.
  • a filler made of an oxide such as alumina tends to have a large specific gravity.
  • the amount of the inorganic compound added can be suppressed to some extent by devising the shape of the filler and the arrangement of the particles, but there is a limit to that. If the specific gravity of the filler itself can be reduced by examining the constituent materials of the filler, it is possible that the composite material to which the filler is added can achieve both weight reduction and high thermal conductivity at a higher level.
  • An object of the present invention is to provide a method for producing a thermally conductive filler capable of producing a filler.
  • the thermally conductive filler of the present disclosure has an organic portion containing an organic polymer and an inorganic layer containing an inorganic substance that covers the surface of the organic portion, and is in the form of particles.
  • the thermally conductive composite material of the present disclosure includes the thermally conductive filler and the matrix material, and the thermally conductive filler is dispersed in the matrix material.
  • the wire harness of the present disclosure includes the heat conductive composite material.
  • the method for producing a thermally conductive filler of the present disclosure uses a raw material constituting the inorganic layer as it is or through a chemical reaction on the surface of polymer particles containing an organic polymer having an acidic group.
  • the thermally conductive filler is produced by comprising a step of binding the raw material to the acidic group.
  • the thermally conductive filler according to the present disclosure is a thermally conductive filler capable of exhibiting high thermal conductivity while keeping the specific gravity small. Further, the heat conductive composite material and the wire harness according to the present disclosure include such a heat conductive filler. The method for producing a thermally conductive filler according to the present disclosure can produce such a thermally conductive filler.
  • FIG. 1 is a schematic view illustrating the structure of the heat conductive filler and the heat conductive composite material according to the embodiment of the present disclosure.
  • FIG. 2 is a side view showing a wire harness according to an embodiment of the present disclosure.
  • FIG. 3A is an SEM image of the cross section of the filler F1 observed.
  • 3B to 3D are EDX element distribution images corresponding to the SEM image of FIG. 3A, where C is shown in FIG. 3B, Al is shown in FIG. 3C, and O is shown in FIG. 3D.
  • the thermally conductive filler according to the present disclosure has an organic portion containing an organic polymer and an inorganic layer containing an inorganic substance that covers the surface of the organic portion, and is in the form of particles.
  • the above-mentioned heat conductive filler includes not only an inorganic substance but also an organic part containing an organic polymer as a constituent material.
  • the organic polymer has a lower specific gravity than the inorganic substance, so that the heat conductive filler contains the organic polymer, so that the specific gravity of the heat conductive filler as a whole is higher than that when the heat conductive filler consists of only the inorganic substance. Becomes smaller.
  • the inorganic layer containing the inorganic substance covers the surface of the organic portion containing the organic polymer, so that the filler particles are the other filler particles or other surrounding filler particles. It can come into contact with the material in the inorganic layer and exhibit high thermal conductivity. As described above, in the heat conductive filler, it is possible to secure high heat conductivity while keeping the specific gravity small.
  • the organic polymer may have an acidic group. Then, due to the interaction with the acidic group on the surface of the organic part and the chemical reaction, the inorganic substance constituting the inorganic layer or the raw material which becomes the inorganic substance can be easily bonded to the surface of the organic part. As a result, a thermally conductive filler in which the surface of the organic portion is coated with an inorganic layer can be stably and easily formed.
  • the organic polymer may contain at least one of polyacrylic acid, an acrylic acid copolymer, and a maleic anhydride-modified polymer. These organic polymers have a small specific gravity, and by using them as an organic part, it is easy to keep the specific gravity of the heat conductive filler as a whole small, and in order to stably expose acidic groups on the particle surface, they are combined with the acidic groups on the surface. It is easy to form an inorganic layer on the surface by utilizing the bond by interaction or chemical reaction.
  • the inorganic substance may contain a metal oxide.
  • metal oxides exhibit relatively high thermal conductivity and are easily formed in layers on the surface of an organic portion containing an organic polymer. Therefore, it is easy to form a thermally conductive filler having a low specific gravity and excellent thermal conductivity.
  • the inorganic substance may contain a compound containing at least one of Al and Mg.
  • Al and Mg compounds such as oxides exhibit high thermal conductivity.
  • Al and Mg such as alkoxide and carbonate, are easily available as raw material compounds that can be bonded to the surface of organic polymer particles to form a stable compound film. Therefore, by forming the inorganic layer as a compound containing Al or Mg, a thermally conductive filler having both low specific gravity and high thermal conductivity can be easily produced.
  • the specific gravity of only the organic part is R1
  • the specific gravity of the heat conductive filler as a whole is R2
  • the specific gravity R of the inorganic layer is 5% or more. It is good to be. Then, the inorganic layer is formed by occupying a sufficient amount with respect to the organic portion, and it becomes easy to secure high thermal conductivity as the whole thermally conductive filler particles.
  • the specific gravity of only the organic part is R1
  • the specific gravity of the heat conductive filler as a whole is R2
  • the specific gravity R of the inorganic layer is 40% or less. It is good to be. Then, it is possible to prevent the effect of improving the thermal conductivity by the inorganic layer from being saturated, and to suppress an increase in the specific gravity of the thermal conductive filler due to the formation of an excessively thick inorganic layer.
  • the specific gravity R2 of the heat conductive filler as a whole is preferably 1.5 or less. In this case, the low specific gravity of the heat conductive filler can be sufficiently ensured.
  • the thermally conductive composite material according to the present disclosure includes the thermally conductive filler and the matrix material, and the thermally conductive filler is dispersed in the matrix material.
  • the heat conductive composite material contains the heat conductive filler having an organic part containing an organic polymer and an inorganic layer containing an inorganic substance covering the surface of the organic part described above. Therefore, it is possible to improve the heat dissipation by utilizing the high thermal conductivity of the thermally conductive filler while keeping the specific gravity of the thermally conductive composite material as a whole small.
  • the matrix material may be an organic polymer.
  • Most organic polymers have low thermal conductivity, but by mixing the above-mentioned thermally conductive filler having an inorganic layer on the surface, high heat dissipation can be ensured as a whole thermally conductive composite material.
  • many organic polymers have a relatively small specific gravity, but the heat conductive filler to be mixed contains an organic part and the specific gravity is suppressed to be small, so that even when the heat conductive filler is added. , The specific gravity can be kept small.
  • the heat conductive composite material preferably has a specific gravity of 1.5 or less. In this case, the specific gravity of the thermally conductive composite material as a whole can be suppressed sufficiently small.
  • the thermally conductive composite material preferably has a thermal conductivity of 1.0 W / (m ⁇ K) or more at room temperature. In this case, a sufficiently high thermal conductivity is ensured for the entire thermally conductive composite material.
  • the wire harness according to the present disclosure includes the heat conductive composite material.
  • the wire harness contains the thermally conductive composite material described above, it is possible to utilize high thermal conductivity while keeping the specific gravity of the constituent members small. Therefore, high heat dissipation can be obtained while keeping the mass of the wire harness as a whole small. Therefore, even if heat is generated by energizing the electric wires constituting the wire harness while maintaining the light weight of the wire harness, the influence of the heat generation can be suppressed to a small value.
  • the method for producing a thermally conductive filler according to the present disclosure is to use a raw material constituting the inorganic layer as it is or through a chemical reaction on the surface of polymer particles containing an organic polymer having an acidic group.
  • the thermally conductive filler is produced by comprising a step of binding the raw material to the acidic group of the above.
  • an inorganic layer containing an inorganic substance is formed on the surface of an organic part containing an organic polymer, and a thermally conductive filler having a small specific gravity and high thermal conductivity can be easily produced. Can be done.
  • the raw material may be at least one of a metal alkoxide and a metal carbonate. Then, an inorganic layer containing a metal oxide can be formed on the surface of the polymer particles by a simple chemical reaction step, and a thermally conductive filler can be obtained.
  • the thermally conductive composite material according to the embodiment of the present disclosure is configured by comprising the thermally conductive filler according to the embodiment of the present disclosure.
  • the wire harness according to the embodiment of the present disclosure is configured by including the thermally conductive composite material according to the embodiment of the present disclosure.
  • the production method according to the embodiment of the present disclosure can be used to produce the thermally conductive filler according to the embodiment of the present disclosure.
  • a certain component is a main component of a certain material means a state in which the component occupies 50% by mass or more with respect to the mass of all the components constituting the material.
  • thermally conductive filler (hereinafter, may be simply referred to as “filler”) according to an embodiment of the present disclosure will be described.
  • the thermally conductive filler 10 according to the embodiment of the present disclosure has an organic portion 11 and an inorganic layer 12, and is in the form of particles.
  • the inorganic layer 12 covers the surface of the organic portion 11.
  • the organic part 11 contains an organic polymer.
  • the inorganic layer 12 contains an inorganic substance. Many organic polymers have a lower specific gravity than inorganic substances. On the other hand, many inorganic substances have higher thermal conductivity than organic polymers.
  • the thermally conductive filler 10 according to the present embodiment has an organic portion 11 containing an organic polymer having a small specific gravity, the specific gravity as a whole can be reduced as compared with the case where the whole is made of an inorganic substance.
  • the heat conductive filler 10 according to the present embodiment covers the surface of the organic portion 11 and has an inorganic layer 12.
  • the inorganic layer 12 has high thermal conductivity, and the thermal conductivity of the filler 10 as a whole can be enhanced. As shown in FIG. 1, the inorganic layer 12 on the surface of the filler particles 10 comes into contact with the matrix material 2 surrounding the filler particles 10 and the inorganic layer 12 on the surface of the other filler particles 10 to contact the filler particles 10.
  • the inorganic layer 12 is provided only on the surface of the organic portion 11, the volume of the filler particles 10 as a whole can be secured by the organic portion 11, and the small volume of the inorganic layer 12 can exhibit thermal conductivity. it can. Adjacent filler particles 10 can form a heat conduction path by contacting each other via the surface inorganic layer 12.
  • the specific gravity of the filler 10 as a whole is preferably 1.5 or less, more preferably 1.4 or less, 1.2 or less.
  • the specific gravity of the filler 10 as a whole is 0.3 or more, preferably 0.6 or more, more preferably 0.6 or more. It should be 0.9 or more.
  • the specific gravity of the filler 10 can be measured as the true density of the powdered filler 10 using, for example, a hydrometer.
  • the specific gravity of the filler 10 as a whole is used as the specific gravity R2 in the formula (1) which will explain the ratio of the inorganic layer 12 later.
  • the organic part 11 contains an organic polymer.
  • the organic part 11 contains an organic polymer as a main component.
  • the organic polymer constituting the organic part 11 may be any organic polymer such as various resins, elastomers and rubbers.
  • the organic polymer constituting the organic part 11 preferably has an acidic group. Since the organic polymer has an acidic group, as will be described later, when the raw material inorganic compound to be the inorganic layer 12 is bonded to the surface of the polymer particles to be the organic part 11 to form the inorganic layer 12, the organic polymer is formed. This is because it is easy to form a stable inorganic layer 12 by forming a bond between the acidic group of the above and the raw material inorganic compound.
  • Examples of the acidic group contained in the organic polymer include a carboxylic acid group, a carboxylic acid anhydride group, a sulfonic acid group, and a phosphoric acid group.
  • an organic polymer having a carboxylic acid group is particularly preferable in terms of low specific gravity and availability.
  • the organic part 11 preferably contains at least one of polyacrylic acid, an acrylic acid copolymer, and a maleic anhydride-modified polymer. These polymers have a small specific gravity, and when they are made into polymer particles, it is easy to stably expose acidic groups on the surface.
  • the organic polymer constituting the organic part 11 may be only one kind or a mixture of two or more kinds. As long as the specific gravity of the organic part 11 can be kept smaller than the specific gravity of the inorganic layer 12, that is, as long as the specific gravity of the organic part 11 alone can be kept smaller than the specific gravity of the filler 10 as a whole, the organic part 11 is an organic polymer. In addition, various additives made of organic or inorganic substances such as flame retardant, stabilizer, and antioxidant may be appropriately contained. Further, the organic part 11 may have a layer of a surface treatment agent such as a surfactant as appropriate between the organic part 11 and the inorganic layer 12.
  • a surface treatment agent such as a surfactant
  • the specific gravity of the organic portion 11 is preferably small, for example, 1.2 or less, preferably 1.0 or less. Although no lower limit is set for the specific gravity of the organic portion 11, the specific gravity of the organic polymer particles is approximately 0.8 or more.
  • the organic portion 11 is in the form of particles, and its particle size (average particle size D50; the same applies hereinafter) is not particularly limited, but is not excessively small with respect to the thickness of the inorganic layer 12. By doing so, the specific gravity of the filler 10 as a whole can be suppressed to a small value, and the thickness is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the particle size of the organic portion 11 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of suppressing the influence on the characteristics of the matrix material 2 to which the filler 10 is added to be small and increasing the specific surface area. ..
  • the inorganic layer 12 contains an inorganic substance.
  • the inorganic layer 12 contains an inorganic substance as a main component.
  • the type of the inorganic substance is not particularly limited, and may be either a metal or a non-metal such as an inorganic compound.
  • the inorganic layer 12 preferably contains an inorganic compound, particularly a metal compound, as an inorganic substance.
  • the metal elements constituting the metal compound also include metalloids such as B and Si (the same applies hereinafter).
  • the metal compound constituting the inorganic layer 12 examples include oxides containing metal elements, nitrides, carbides, oxynitrides, carbonitrides, carbon oxides, hydroxides, borides, etc., and metal silicates and aluminates. , Titanate and the like can be exemplified. From the viewpoints of excellent thermal conductivity and easy formation of a film-like inorganic layer 12 on the surface of the organic portion 11, the inorganic layer 12 preferably contains a metal oxide among various metal compounds. It is particularly preferable that the inorganic layer 12 contains a metal oxide as a main component.
  • the filler 10 is formed as an inorganic layer 12 coexisting with the organic portion 11, so that the effect of reducing the specific gravity by the organic portion 11 can be obtained. You can enjoy it greatly.
  • the inorganic substance constituting the inorganic layer 12 preferably contains a compound containing at least one of Al and Mg among various metal compounds.
  • it preferably contains Al.
  • Al and Mg preferably form an oxide.
  • Al and Mg compounds such as oxides exhibit high thermal conductivity, and are in the form of a film that is stably and firmly adhered to the surface of the particulate organic portion 11 by using a commercially available raw material compound. This is because it is easy to form as the inorganic layer 12.
  • the inorganic substance constituting the inorganic layer 12 may be one kind or a plurality of kinds. Further, when a plurality of inorganic substances are used, the inorganic substances may be mixed, may form a complex, or may be laminated in layers. Further, the inorganic layer 12 may contain not only an inorganic substance but also an organic substance such as various additives and reaction residues. Further, when the matrix material 2 contains an organic polymer, an organic film may be provided on the surface of the inorganic layer 12 from the viewpoint of enhancing the affinity with the matrix material 2. However, from the viewpoint of enhancing the thermal conductivity by direct contact between the inorganic layers 12 between the adjacent filler particles 10, it is preferable not to provide such an organic film.
  • the inorganic layer 12 may cover at least a part of the surface of the organic portion 11, but the contact between the filler particles 10 and the matrix material 2 and between the adjacent filler particles 10 via the inorganic layer 12 From the viewpoint of sufficiently securing the above, it is preferable that the inorganic layer 12 covers at least half of the surface area of the organic portion 11 and the entire surface of the organic portion 11 except for unavoidable defects and the like. ..
  • the proportion of the inorganic layer 12 in the filler 10 is not particularly limited, but the inorganic layer specific weight ratio R defined by the following formula (1) is preferably 5% or more.
  • R (R2-R1) / R1 (1)
  • R1 refers to the specific gravity of only the organic portion 11
  • R2 refers to the specific gravity of the filler 10 as a whole.
  • the larger the specific gravity ratio R of the inorganic layer the larger the proportion of the region occupied by the inorganic layer 12 in the filler 10. Since the state of the organic part 11 does not substantially change due to the formation of the inorganic layer 12, the specific gravity R1 of the organic part 11 can be replaced by the specific gravity of the polymer particles used in producing the filler 10.
  • the filler 10 When the specific gravity ratio R of the inorganic layer is 5% or more, the filler 10 has a sufficient volume of the inorganic layer 12, so that the thermal conductivity of the filler 10 as a whole can be sufficiently enhanced.
  • the inorganic layer specific weight ratio R is more preferably 10% or more, more preferably 20% or more.
  • the inorganic layer 12 preferably occupies 9% by mass or more in terms of mass ratio and 3% by volume or more in volume ratio with respect to the entire filler particles 10.
  • the thickness of the inorganic layer 12 preferably occupies 1% or more of the particle size of the filler particles 10 on average.
  • the specific weight ratio R of the inorganic layer is 50% or less, more preferably 40% or less. Since the region occupied by the inorganic layer 12 in the filler particles 10 is thinner than the particle size of the organic portion 11, the particle size of the filler particles 10 as a whole is not significantly different from the particle size of the organic portion 11 and is 1 ⁇ m. Above, more preferably 5 ⁇ m or more, 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the thermally conductive filler 10 has a double structure in which the inorganic layer 12 is formed on the surface of the organic portion 11, so that the filler is an inorganic substance while maintaining high thermal conductivity.
  • the specific gravity is reduced as compared with the case where only the material is used. Therefore, as in the case of the thermally conductive composite material described later, by combining the composite material with other substances to form the composite material, the thermal conductivity of the composite material is enhanced without significantly increasing the specific gravity of the composite material as a whole. Become.
  • thermally conductive filler 10 can be produced by carrying out the organic part preparation step and the inorganic layer forming step.
  • polymer particles containing an organic polymer which will be the organic part 11 in the manufactured filler 10 are prepared.
  • an organic polymer material having a desired chemical composition may be made into granules having a desired particle size by a chemical method such as liquid phase synthesis or a physical method such as pulverization.
  • the inorganic layer 12 containing the inorganic compound can be easily formed in the next inorganic layer forming step.
  • the inorganic layer 12 is formed on the surface of the polymer particles.
  • the inorganic layer 12 is formed by a direct forming method in which the inorganic substance itself constituting the inorganic layer 12 in the produced filler 10 is arranged on the surface of the polymer particles as a raw material, or by appropriately undergoing a chemical reaction.
  • An indirect forming method may be adopted in which the raw material to be the inorganic substance to be used is placed on the surface of the polymer particles.
  • the direct forming method When the direct forming method is adopted, the raw material material arranged on the surface of the polymer particles becomes the inorganic layer 12 as it is. Examples of the direct forming method include thin film deposition and precipitation.
  • the inorganic layer 12 is formed by arranging the raw material on the surface of the polymer particles and then causing a chemical reaction.
  • a raw material is bonded to the surface of polymer particles by an interaction such as electrostatic interaction (ionic bonding) or through a chemical reaction, and then the raw material is bonded to the bonded raw material.
  • a method of forming the inorganic layer 12 having a desired composition by carrying out a chemical reaction can be mentioned.
  • the polymer particles contain an organic polymer having an acidic group and the acidic group is exposed on the surface, it is easy to easily and firmly achieve the binding of the raw material compound through an interaction or a chemical reaction. ..
  • a constituent material of the polymer particle and an inorganic layer 12 are formed in a dispersion medium (solvent).
  • a raw material solution containing both of the raw material compounds as the inorganic substances to be used may be prepared.
  • the polymer particles may be dispersed or dissolved in the state of solid particles.
  • the raw material compound which is an inorganic substance constituting the inorganic layer needs to be present in a liquid state, and may be in a molten state as well as in a state of being dissolved in a dispersion medium (solvent).
  • the polymer particles may be in a finely dispersed state.
  • the dispersion medium (solvent) constituting the raw material solution is particularly limited as long as it can disperse the polymer particles without dissolving them and dissolve the raw material compound for forming the inorganic layer 12.
  • organic solvents such as toluene and tetrahydrofuran (THF), and alcohols such as isobutyl alcohol can be exemplified.
  • the polymer particles When preparing the raw material liquid, for example, the polymer particles may be first added to the dispersion medium and sufficiently stirred to disperse the polymer particles. Next, the raw material compound to be the inorganic layer 12 may be added to the dispersion liquid of the polymer particles and dissolved by stirring or the like. In this operation, the raw material compound is bonded to the acidic group on the surface of the polymer particles by an interaction such as an electrostatic interaction (ionic bond) or through a chemical reaction. When it is necessary to decompose the raw material compound in order to make the raw material compound bondable to the acidic group of the polymer particles, or to form a bond between the raw material compound and the acidic group of the polymer particles through a chemical reaction. In some cases, if heating or addition of a reactant is required for the decomposition or chemical reaction, these operations may be carried out in combination with stirring as appropriate.
  • the raw material compound When the raw material compound is bonded to the surface of the polymer particles, the raw material compound may then undergo a chemical reaction to be converted into a desired inorganic substance constituting the inorganic layer 12. At this time, an operation may be performed according to the type of required chemical reaction. For example, in addition to stirring, heating, addition of a reactant, contact with gas molecules such as oxygen, and the like may be performed. It is preferable that the inorganic layer 12 can be easily formed if the conversion from the raw material compound can be completed only by heating, contact with the atmosphere, or both, in addition to stirring.
  • the product may be appropriately isolated by filtration or the like. Further, the thermally conductive filler 10 can be obtained by removing the volatile components by performing heat drying or vacuum drying.
  • the raw material compound used in the inorganic layer forming step it is preferable to use a compound capable of forming metal-containing ions in the dispersion liquid of the polymer particles or on the surface of the polymer particles.
  • the specific type of the compound is not particularly limited, and suitable examples of such a raw material compound include metal alkoxides and metal carbonates.
  • the metal alkoxide may be added to the dispersion liquid of the polymer particles, and the mixture may be stirred while heating. The metal alkoxide hydrolyzes to form a metal hydrate with the generation of alcohol.
  • the presence of a trace amount of acidic groups on the surface of the polymer particles or in the dispersion medium increases the rate of formation of metal hydrates around them.
  • the resulting metal hydrate forms an ionic bond with the acidic group on the surface of the polymer particles, and in the state of a film, firmly bonds to the surface of the polymer.
  • the reaction solution is appropriately heated and the dispersion medium is dried, so that the heat conductive filler has an inorganic layer 12 containing at least one of a metal hydroxide and a metal oxide after being oxidized by oxygen in the atmosphere. 10 is obtained.
  • oxidation in the inorganic layer 12 proceeds to the state of metal oxides.
  • the type of metal alkoxide is not particularly limited, and methoxide, ethoxide, isopropoxide and the like can be exemplified, but aluminum isopropoxide and magnesium ethoxide are used in terms of safety and availability. Cheap.
  • the metal carbonate When a metal carbonate is used as the raw material compound, when the basic carbonate is added to the dispersion liquid of the polymer particles, the metal hydroxide is formed on the surface of the polymer particles and is firmly bonded to the surface of the polymer particles. , Consists of the membrane. Then, as in the case of the above alkoxide, the reaction solution is appropriately heated and the dispersion medium is dried, so that the inorganic layer containing at least one of the metal hydroxide and the metal oxide is oxidized by oxygen in the atmosphere. A thermally conductive filler 10 having 12 is obtained. In many cases, oxidation in the inorganic layer 12 proceeds to the state of metal oxides.
  • the heat conductive composite material 1 includes the heat conductive filler 10 according to the embodiment of the present disclosure described above and the matrix material 2.
  • the filler 10 is dispersed in the matrix material 2.
  • the composite material 1 according to the present embodiment contains the thermally conductive filler 10 having the inorganic layer 12 on the surface of the organic portion 11 described above, the composite material is provided by the high thermal conductivity imparted by the inorganic layer 12. 1 As a whole, it exhibits high thermal conductivity and excellent heat dissipation. At the same time, due to the effect of lowering the specific gravity of the heat conductive filler 10 by the organic portion 11, the specific gravity of the composite material 1 as a whole becomes small.
  • the type of the matrix material 2 is not particularly limited, but the matrix material 2 preferably contains an organic polymer, and more preferably contains an organic polymer as a main component.
  • the specific organic polymer constituting the matrix material 2 is not particularly limited, and may be the same as or different from the organic polymer constituting the organic portion 11 of the filler 10, but is organic.
  • the part 11 has a limited degree of freedom in selecting a constituent material due to the availability of polymer particles and the possibility of forming the inorganic layer 12, whereas the matrix material 2 is not subject to such restrictions. It is preferable to select a material having desired properties from materials different from the above.
  • the organic polymer constituting the matrix material 2 include various resins, thermoplastic elastomers, rubber and the like.
  • a resin material when used as the organic polymer, it may be a curable resin, a thermoplastic resin, or a solvent-soluble plastic, depending on the desired application.
  • the types of resins constituting the matrix material 2 include polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polylactic acid, polystyrene-based resins, polyvinyl acetate, ABS resin, AS resin, acrylic resin, methacrylic resin, and polyamide.
  • the matrix material 2 may contain only one type of organic polymer or may contain a plurality of organic polymers. Further, the matrix material 2 may appropriately contain additives such as a flame retardant, a filler, and a colorant in addition to the organic polymer.
  • the specific gravity of the matrix material 2 itself is not particularly limited, but it is preferably suppressed to 1.5 or less from the viewpoint of suppressing the specific gravity of the composite material 1 to which the filler 10 is added as a whole.
  • the specific gravity of the matrix material 2 is not particularly limited, but when an organic polymer is used as the matrix material 2, the specific gravity is about 0.8 or more.
  • the thermal conductivity of the matrix material 2 itself is not particularly limited, but 0.1 W / (m ⁇ K) from the viewpoint of ensuring high thermal conductivity of the composite material 1 to which the filler 10 is added as a whole. It is preferable to keep the above.
  • the thermal conductivity of the matrix material 2 is not particularly limited, but when an organic polymer is used as the matrix material 2, the thermal conductivity is approximately 0.6 W / (m ⁇ K) or less.
  • the specific gravity of the matrix material 2 and the composite material 1 can be measured by a water substitution method or the like. Further, the thermal conductivity of these materials can be measured by a laser flash method, a hot wire method, or the like.
  • the content of the filler 10 may be appropriately determined so that the desired specific gravity and thermal conductivity can be obtained for the composite material 1 as a whole. As the content of the filler 10 increases, the thermal conductivity of the composite material 1 increases. Therefore, the content of the filler 10 may be determined with the content at which the desired thermal conductivity can be obtained as the lower limit. For example, the content of the filler 10 may be determined so that the thermal conductivity of the composite material 1 is 5 times or more, more 6 times or more, the thermal conductivity of the matrix material 2 to which the filler 10 is not added.
  • the content of the filler 10 may be determined so that the thermal conductivity of the composite material 1 is 1.0 W / (m ⁇ K) or more, further 1.2 W / (m ⁇ K) or more.
  • the thermal conductivity of the matrix material 2 is 50 times or less, further 30 times or less.
  • the upper limit of the content of the filler 10 is suppressed to a desired range. It may be determined as the content to be obtained.
  • the content of the filler 10 may be determined so that the specific gravity of the composite material 1 can be suppressed to 1.3 times or less, further 1.2 times or less, the specific gravity of the matrix material 2 to which the filler 10 is not added.
  • the content of the filler 10 may be determined so that the specific gravity value of the composite material 1 can be suppressed to 1.5 or less, further 1.4 or less. The smaller the specific gravity of the composite material 1, the more preferable it is, and the lower limit is not particularly set.
  • the content of the filler 10 is defined by the ratio of the filler 10 to the entire composite material 1, the content of the filler 10 is generally 40 from the viewpoint of sufficiently improving the thermal conductivity of the composite material 1.
  • the volume may be% or more.
  • the content of the filler 10 is preferably selected so that the inorganic layers 12 of the adjacent filler particles 10 come into contact with each other to form a heat conduction path.
  • the composite material 1 according to the present embodiment has both high thermal conductivity and low specific gravity. Therefore, the composite material 1 can be suitably used as a material for constituting a member that is required to have both light weight and heat dissipation, such as a wire harness described below.
  • the composite material 1 according to the present embodiment can be produced by mixing the powdery filler 10 produced by the production method described above with the matrix material 2 at a predetermined blending ratio.
  • the wire harness according to the present embodiment includes the heat conductive composite material 1 according to the embodiment of the present disclosure described above.
  • the wire harness 5 is provided with a connector 52 including a connection terminal (not shown) at the terminal portion of the insulated wire 51 having an insulating coating on the outer periphery of the wire conductor.
  • a plurality of insulated wires 51 may be bundled, and in this case, the tape 53 is used as an exterior material for bundling the insulated wires 51.
  • the composite material 1 according to the embodiment of the present disclosure described above can constitute various members that are required to have heat dissipation. Mainly, it is preferable to use the composite material 1 in which the filler 10 is added to the organic polymer as the matrix material 2 as the insulating member.
  • an insulating member an insulating coating constituting the insulated wire 51, an exterior material such as a tape 53 or a protective tube arranged outside the insulated wire 51, and an adhesive used for fixing or stopping water between the constituent members.
  • the connector housing and the like constituting the connector 52 can be exemplified.
  • reaction solution was returned to room temperature and filtered, and the solid component was dried at 100 ° C. for 48 hours to obtain filler F3.
  • MAH-SEBS was in the form of particles having an average particle size of 40 ⁇ m.
  • fillers F1 to F3 In addition to the fillers F1 to F3, the following three types of fillers were prepared for reference.
  • -PAA Polyacrylic acid particles (average molecular weight 1,000,000; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)-Same as used for the synthesis of filler F1-CA-PP: Carboxylic acid-modified PP (manufactured by Adivant Co., Ltd.) Polybond 1001 ”) freeze-crushed product-the same as used for the synthesis of filler F2 ⁇
  • Alumina Showa Denko Co., Ltd. Rounded alumina for filling (1-80 ⁇ m diameter; average particle size 40 ⁇ m)
  • filler structure The structures of fillers F1 to F3 were evaluated by observing them with a scanning electron microscope (SEM). Specifically, the filler particles were embedded in a resin and cut, and the cross section was observed by SEM. In addition to SEM observation, measurement by energy dispersive X-ray analysis (EDX) was also performed to evaluate the distribution of C and Al in the cross section.
  • SEM scanning electron microscope
  • each filler was measured using an electronic hydrometer (manufactured by Alpha Mirage).
  • the specific gravities of the polymer particles and alumina fillers constituting each filler were measured in the same manner.
  • FIG. 3A shows an SEM observation image (secondary electron image) of the cross section of the filler F1.
  • the brighter the part the larger the amount of secondary electrons detected, indicating that the charge is large.
  • FIGS. 3B to 3D show distribution images of C, Al, and O obtained by EDX measurement corresponding to the SEM observation of FIG. 3A, respectively.
  • the brighter the area the higher the concentration of each element.
  • the filler on which the image is posted has a diameter of about 40 ⁇ m.
  • a layered region observed relatively dark is observed on the surface of the granular portion observed brightly.
  • the thickness of the layer is about 2 ⁇ m, which corresponds to about 5% of the particle size of the resin particles.
  • the brightly observed granular portion has a large charge and can be associated with a portion derived from the polymer particles which are organic substances.
  • the layered portion has a small charge and is considered to be composed of an inorganic substance.
  • the granular part inside can be associated with the organic part derived from the polymer particles.
  • the layered portion of the surface can be associated with an inorganic layer composed of Al oxide (or hydroxide) formed from aluminum propoxide as a raw material.
  • the organic portion is substantially not affected by the formation of the inorganic layer such as the invasion of the Al compound. From the above, it was confirmed that the filler was formed as a granular material having a double structure in which the surface of the organic portion was coated with an inorganic layer. Although the results are omitted, the same double structure was observed for the fillers F2 and F3.
  • Table 1 shows the measurement results of the specific gravity of the entire filler and the polymer particles constituting the filler.
  • the inorganic layer specific gravity ratio R calculated by the formula (1) based on those specific gravities is also shown in the table.
  • the specific gravity is increased as compared with the case where only the polymer particles are used, because the inorganic layer is formed on the surface of the organic portion composed of the polymer particles.
  • the specific gravity of each of these fillers is 1.5 or less, which is considerably smaller than the specific gravity of the alumina filler of 4.0.
  • the specific gravity of the filler as a whole can be significantly reduced by forming the filler into a double structure in which the inorganic substances are layered on the surface of the organic portion instead of being composed of only the inorganic substances.
  • Table 2 shows the specific gravity and thermal conductivity of the composite materials for Samples A1 to A3 and Samples B1 to B5, along with the blending ratio (unit: mass%) of the filler and matrix material and the blending amount (unit: volume%) of the filler. Summarize the measurement results of the rate.
  • the polymer particles themselves are added to the matrix material, and no increase in specific gravity is observed as compared with the sample B1.
  • the aluminum compound does not contain an inorganic substance exhibiting high thermal conductivity, so that the thermal conductivity shows a low value that is almost the same as that of sample B1.
  • the polymer particles themselves cannot be used as a thermally conductive filler.
  • the specific gravity of the composite material to which the filler is added is suppressed to 1.5 or less.
  • the rate of increase from the specific gravity of sample B1 to which no filler is added is 25% or less.
  • the specific gravity is rather lowered by adding the filler in response to the fact that the filler has a smaller specific gravity than the matrix material.
  • the thermal conductivity is 1.0 W / (m ⁇ K) or more. These values correspond to 5 times or more the thermal conductivity of the sample B1 to which the filler is not added. From this result, in the samples A1 to A3 using the fillers F1 to F3 having the inorganic layer formed on the surface of the organic part, the filler contains the organic part having a low specific gravity, so that the entire composite material to which the filler is added is added. As a result, it can be seen that high thermal conductivity can be obtained while keeping the specific gravity small.
  • each of the obtained fillers was added to the epoxy resin to prepare a composite material for Samples C1 to C7.
  • the preparation of the composite material and the preparation of the cured resin test piece were carried out in the same manner as in the test [1].
  • the amount of the filler added was such that the blending amount per volume was 50% by volume.
  • Table 3 shows the measurement results of the specific gravity and thermal conductivity of the samples C1 to C7 to which each filler was added, along with the compounding ratio (unit: mass%) of each component and the compounding amount (unit: volume%) of the filler.
  • the left column shows the specific gravity and the specific gravity ratio R of the inorganic layer, as well as the amount of aluminum isopropoxide used in the synthesis for each filler.
  • the specific gravity ratio R of the inorganic layer is calculated by setting the specific gravity of the organic part to 1.20, which is the value of PAA.
  • the thickness of the inorganic layer formed on the surface of the polymer particles can be controlled by the concentration of the raw material compound of the inorganic layer used at the time of filler synthesis, and the higher the concentration of the raw material compound, the thicker the inorganic layer is formed. You can see that.
  • the ratio of the inorganic layer to the filler is 9% by mass in terms of mass ratio and volume ratio. Is estimated to be 3% by mass.
  • the thickness of the inorganic layer with respect to the particle size of the polymer particles is estimated to be about 1%.
  • the inorganic layer specific gravity of the filler is preferably in the range of 5% or more and 40% or less from the viewpoint of achieving both improvement of thermal conductivity and reduction of specific gravity.
  • the inorganic layer specific weight ratio R of the fillers F2 and F3 is also within the range of 5% or more and 40% or less.
  • Table 4 shows the measurement results of specific gravity and thermal conductivity together with the compounding ratio (unit: mass%) of each component and the compounding amount (unit: volume%) of the filler for each sample.
  • the larger the amount of filler blended the higher the thermal conductivity.
  • the larger the filler compounding amount the larger the increase in thermal conductivity with respect to the increase in the filler compounding amount.
  • This behavior is similar to the behavior of the thermal conductivity when the blending amount is increased for a filler made of a conventional general inorganic compound. From this result, even in the filler according to the embodiment of the present disclosure in which an inorganic layer is formed on the surface of the organic portion, the adjacent fillers come into contact with each other in the matrix material as in the case of the filler made of a conventional general inorganic compound. It can be seen that the improvement of the thermal conductivity is achieved by the mechanism that the heat conduction path is formed in.
  • the blending amount of the filler is preferably 40% by volume or more.
  • the specific gravity of the composite material is suppressed to 1.5 or less even if the compounding amount of the filler is 70% by volume, but if it is desired to further suppress the specific gravity to 1.3 or less, the compounding amount of the filler is 60.
  • the volume may be% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Provided are: a thermally-conductive filler that has reduced specific gravity and can exhibit high thermal conductivity; a thermally-conductive composite material and a wire harness that contain such a thermally-conductive filler; and a thermally-conductive filler production method capable of producing such a thermally-conductive filler. This thermally-conductive filler has an organic part containing an organic polymer, and an inorganic layer that contains an inorganic material and that covers the surface of the organic part, and is in the form of particles. In addition, this thermally-conductive composite material contains the thermally-conductive filler and a matrix material, wherein the thermally-conductive filler is dispersed in the matrix material. In addition, this wire harness contains the thermally-conductive composite material.

Description

熱伝導性フィラー、熱伝導性複合材料、ワイヤーハーネス、および熱伝導性フィラーの製造方法How to make thermally conductive fillers, thermally conductive composites, wire harnesses, and thermally conductive fillers
 本開示は、熱伝導性フィラー、熱伝導性複合材料、ワイヤーハーネス、および熱伝導性フィラーの製造方法に関する。
に関する。
The present disclosure relates to thermally conductive fillers, thermally conductive composite materials, wire harnesses, and methods for producing thermally conductive fillers.
Regarding.
 電気電子部品を構成する絶縁性部材において、放熱性を高め、通電等による発熱の影響を小さく抑える目的で、有機ポリマー材料に、熱伝導性フィラーが添加される場合がある。熱伝導性フィラーは、多くの場合、アルミナや窒化アルミニウム、窒化ホウ素等、熱伝導性の高い無機化合物より構成される。 Thermally conductive fillers may be added to organic polymer materials for the purpose of improving heat dissipation and minimizing the effects of heat generation due to energization, etc., in the insulating members that make up electrical and electronic components. The thermally conductive filler is often composed of an inorganic compound having high thermal conductivity such as alumina, aluminum nitride, and boron nitride.
 近年、自動車用エレクトロニクスをはじめとする種々の電気電子部品において、大電流化や集積化が進んでおり、通電時の発熱量が増大する傾向にある。その発熱の影響を抑制する手段として、例えば、自動車用ワイヤーハーネスであれば、電線をフラット化し、電線の表面積を増やすことや、電線を高熱伝導性の外装材に効率良く接触させること等、部材の形状や構造の改良による放熱性の向上が進められている。一方で、電線被覆や電線外装材等、電気電子部品の絶縁性部材を構成する材料自体の熱伝導性を高めることも、放熱性の向上に重要である。 In recent years, various electric and electronic parts such as automobile electronics have been increasing in current and integrated, and the amount of heat generated when energized tends to increase. As a means for suppressing the influence of the heat generation, for example, in the case of a wire harness for an automobile, a member such as flattening the electric wire to increase the surface area of the electric wire and efficiently contacting the electric wire with an exterior material having high thermal conductivity. The heat dissipation is being improved by improving the shape and structure of the wire. On the other hand, it is also important to improve the heat dissipation of the material itself that constitutes the insulating member of the electric / electronic component, such as the electric wire coating and the electric wire exterior material.
 有機ポリマー材料等に、多量のフィラーを混合すれば、材料の熱伝導性を高めることができるが、無機化合物よりなるフィラーを多量に有機ポリマー材料に混合すると、材料の比重が大きくなってしまい、電気電子部品を軽量化することが難しくなる。自動車全体の軽量化の観点から、自動車用の電気電子部品においては、軽量化が重要となる。よって、熱伝導性フィラーを含む材料において、軽量化が望まれる。そのための方法として、フィラーの添加量を少なく抑えることが試みられている。 If a large amount of filler is mixed with an organic polymer material or the like, the thermal conductivity of the material can be improved, but if a large amount of a filler made of an inorganic compound is mixed with the organic polymer material, the specific gravity of the material increases. It becomes difficult to reduce the weight of electrical and electronic components. From the viewpoint of weight reduction of the entire automobile, weight reduction is important for electric and electronic parts for automobiles. Therefore, weight reduction is desired in the material containing the heat conductive filler. As a method for that, attempts have been made to reduce the amount of filler added.
 フィラーの添加量を少なく抑えながら、高熱伝導性を維持することを目的として、フィラーの形状や粒子配置に関して、工夫がなされている。例えば、特許文献1では、内部に空隙部を有し、空隙率が所定の範囲とされたフィラーが開示されている。特許文献2では、マトリックスとしての樹脂中に、窒化ホウ素粒子を、一次粒子の積層体である二次粒子を層間剥離させる剥離工程を経ることにより生じた剥離扁平粒子の状態で分散させた、無機有機複合組成物が開示されている。特許文献3では、形状に異方性をもつ高熱伝導性フィラー同士が直接接触して、マトリックス樹脂中で網目構造を形成している高熱伝導性複合体が開示されている。 The shape and particle arrangement of the filler have been devised for the purpose of maintaining high thermal conductivity while keeping the amount of filler added small. For example, Patent Document 1 discloses a filler having a void portion inside and having a porosity within a predetermined range. In Patent Document 2, boron nitride particles are dispersed in a resin as a matrix in the state of exfoliated flat particles generated by undergoing an exfoliation step of delaminating secondary particles which are a laminate of primary particles. Organic composite compositions are disclosed. Patent Document 3 discloses a highly thermally conductive composite in which highly thermally conductive fillers having anisotropy in shape are in direct contact with each other to form a network structure in a matrix resin.
特開2019-1849号公報JP-A-2019-1849 特開2012-255055号公報Japanese Unexamined Patent Publication No. 2012-255055 特開2010-13580号公報Japanese Unexamined Patent Publication No. 2010-13580 特開2012-122057号公報Japanese Unexamined Patent Publication No. 2012-12257 特開2015-178543号公報Japanese Unexamined Patent Publication No. 2015-178543 特開2015-108058号公報Japanese Unexamined Patent Publication No. 2015-108058 特開2003-221453号公報Japanese Unexamined Patent Publication No. 2003-221453
 アルミナや窒化アルミニウム、窒化ホウ素に代表される無機化合物は、高い熱伝導性を示す一方、比重が大きく、フィラーとして有機ポリマー材料等に添加して複合材料とした際に、複合材料全体としての比重を小さく保ちながら、高熱伝導性を達成することは、難しい。特に、アルミナ等の酸化物よりなるフィラーは、比重が大きくなりやすい。特許文献1~3に記載されるように、フィラーの形状や粒子配置の工夫により、無機化合物の添加量をある程度少なく抑えることはできるが、それにも限界がある。フィラーの構成材料を検討することで、フィラー自体の比重を低減することができれば、フィラーを添加した複合材料において、軽量化と高熱伝導性の両立を、さらに高度に達成できる可能性がある。 Inorganic compounds such as alumina, aluminum nitride, and boron nitride exhibit high thermal conductivity, but have a large specific gravity, and when added as a filler to an organic polymer material or the like to form a composite material, the specific gravity of the composite material as a whole. It is difficult to achieve high thermal conductivity while keeping the size small. In particular, a filler made of an oxide such as alumina tends to have a large specific gravity. As described in Patent Documents 1 to 3, the amount of the inorganic compound added can be suppressed to some extent by devising the shape of the filler and the arrangement of the particles, but there is a limit to that. If the specific gravity of the filler itself can be reduced by examining the constituent materials of the filler, it is possible that the composite material to which the filler is added can achieve both weight reduction and high thermal conductivity at a higher level.
 そこで、比重を小さく抑えながら、高い熱伝導性を発揮することができる熱伝導性フィラー、また、そのような熱伝導性フィラーを含んだ熱伝導性複合材料およびワイヤーハーネス、そのような熱伝導性フィラーを製造することができる熱伝導性フィラーの製造方法を提供することを課題とする。 Therefore, a thermally conductive filler capable of exhibiting high thermal conductivity while keeping the specific gravity small, a thermally conductive composite material and a wire harness containing such a thermally conductive filler, and such a thermally conductive filler. An object of the present invention is to provide a method for producing a thermally conductive filler capable of producing a filler.
 本開示の熱伝導性フィラーは、有機ポリマーを含んだ有機部と、前記有機部の表面を被覆する、無機物質を含んだ無機層と、を有し、粒子状となっている。 The thermally conductive filler of the present disclosure has an organic portion containing an organic polymer and an inorganic layer containing an inorganic substance that covers the surface of the organic portion, and is in the form of particles.
 本開示の熱伝導性複合材料は、前記熱伝導性フィラーと、マトリクス材料と、を含み、前記熱伝導性フィラーが前記マトリクス材料中に分散されている。 The thermally conductive composite material of the present disclosure includes the thermally conductive filler and the matrix material, and the thermally conductive filler is dispersed in the matrix material.
 本開示のワイヤーハーネスは、前記熱伝導性複合材料を含む。 The wire harness of the present disclosure includes the heat conductive composite material.
 本開示の熱伝導性フィラーの製造方法は、そのままの状態で、または化学反応を経て、前記無機層を構成する原料物質を用い、酸性基を有する有機ポリマーを含んだポリマー粒子に対し、表面の前記酸性基に、前記原料物質を結合させる工程を含んで、前記熱伝導性フィラーを製造する。 The method for producing a thermally conductive filler of the present disclosure uses a raw material constituting the inorganic layer as it is or through a chemical reaction on the surface of polymer particles containing an organic polymer having an acidic group. The thermally conductive filler is produced by comprising a step of binding the raw material to the acidic group.
 本開示にかかる熱伝導性フィラーは、比重を小さく抑えながら、高い熱伝導性を発揮することができる熱伝導性フィラーとなる。また、本開示にかかる熱伝導性複合材料およびワイヤーハーネスは、そのような熱伝導性フィラーを含んだものとなる。本開示にかかる熱伝導性フィラーの製造方法は、そのような熱伝導性フィラーを製造することができる。 The thermally conductive filler according to the present disclosure is a thermally conductive filler capable of exhibiting high thermal conductivity while keeping the specific gravity small. Further, the heat conductive composite material and the wire harness according to the present disclosure include such a heat conductive filler. The method for producing a thermally conductive filler according to the present disclosure can produce such a thermally conductive filler.
図1は、本開示の一実施形態にかかる熱伝導性フィラーおよび熱伝導性複合材料の構造を説明する模式図である。FIG. 1 is a schematic view illustrating the structure of the heat conductive filler and the heat conductive composite material according to the embodiment of the present disclosure. 図2は、本開示の一実施形態にかかるワイヤーハーネスを示す側面図である。FIG. 2 is a side view showing a wire harness according to an embodiment of the present disclosure. 図3Aは、フィラーF1の断面を観察したSEM像である。図3B~3Dは、図3AのSEM像に対応するEDXによる元素分布像であり、図3BはC、図3CはAl、図3DはOの分布を示している。FIG. 3A is an SEM image of the cross section of the filler F1 observed. 3B to 3D are EDX element distribution images corresponding to the SEM image of FIG. 3A, where C is shown in FIG. 3B, Al is shown in FIG. 3C, and O is shown in FIG. 3D.
[本開示の実施形態の説明]
 最初に、本開示の実施形態を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 本開示にかかる熱伝導性フィラーは、有機ポリマーを含んだ有機部と、前記有機部の表面を被覆する、無機物質を含んだ無機層と、を有し、粒子状となっている。 The thermally conductive filler according to the present disclosure has an organic portion containing an organic polymer and an inorganic layer containing an inorganic substance that covers the surface of the organic portion, and is in the form of particles.
 上記熱伝導性フィラーは、無機物質のみではなく、有機ポリマーを含んだ有機部を、構成材料として備えるものとなっている。多くの場合、有機ポリマーは、無機物質より比重が小さいため、熱伝導性フィラーが有機ポリマーを含むことにより、熱伝導性フィラーが無機物質のみよりなる場合よりも、熱伝導性フィラー全体としての比重が小さくなる。一方、熱伝導性フィラーの粒子において、無機物質を含んだ無機層が、有機ポリマーを含む有機部の表面を被覆していることにより、フィラー粒子が、他のフィラー粒子、または周囲を囲む他の材料と、無機層において接触し、高い熱伝導性を発揮することができる。このように、熱伝導性フィラーにおいて、比重を小さく抑えながら、高い熱伝導性を確保することが可能となる。 The above-mentioned heat conductive filler includes not only an inorganic substance but also an organic part containing an organic polymer as a constituent material. In many cases, the organic polymer has a lower specific gravity than the inorganic substance, so that the heat conductive filler contains the organic polymer, so that the specific gravity of the heat conductive filler as a whole is higher than that when the heat conductive filler consists of only the inorganic substance. Becomes smaller. On the other hand, in the particles of the thermally conductive filler, the inorganic layer containing the inorganic substance covers the surface of the organic portion containing the organic polymer, so that the filler particles are the other filler particles or other surrounding filler particles. It can come into contact with the material in the inorganic layer and exhibit high thermal conductivity. As described above, in the heat conductive filler, it is possible to secure high heat conductivity while keeping the specific gravity small.
 ここで、前記有機ポリマーは、酸性基を有するとよい。すると、有機部の表面の酸性基との相互作用や化学反応により、無機層を構成する無機物質、あるいはその無機物質となる原料物質を、有機部の表面に結合させやすくなる。その結果、有機部の表面が無機層に被覆された熱伝導性フィラーを、安定に、また簡便に形成することができる。 Here, the organic polymer may have an acidic group. Then, due to the interaction with the acidic group on the surface of the organic part and the chemical reaction, the inorganic substance constituting the inorganic layer or the raw material which becomes the inorganic substance can be easily bonded to the surface of the organic part. As a result, a thermally conductive filler in which the surface of the organic portion is coated with an inorganic layer can be stably and easily formed.
 前記有機ポリマーは、ポリアクリル酸、アクリル酸共重合物、無水マレイン酸変性ポリマーの少なくとも1種を含有するとよい。それらの有機ポリマーは、比重が小さく、有機部として用いることで、熱伝導性フィラー全体としての比重を小さく抑えやすいうえ、粒子表面に酸性基を安定に露出させるため、それら表面の酸性基との相互作用や化学反応による結合を利用して、表面に無機層を形成しやすい。 The organic polymer may contain at least one of polyacrylic acid, an acrylic acid copolymer, and a maleic anhydride-modified polymer. These organic polymers have a small specific gravity, and by using them as an organic part, it is easy to keep the specific gravity of the heat conductive filler as a whole small, and in order to stably expose acidic groups on the particle surface, they are combined with the acidic groups on the surface. It is easy to form an inorganic layer on the surface by utilizing the bond by interaction or chemical reaction.
 前記無機物質は、金属酸化物を含むとよい。金属酸化物は、種々の無機物質の中で、比較的高い熱伝導性を示すとともに、有機ポリマーを含む有機部の表面に、層状に形成しやすい。よって、低比重で熱伝導性に優れた熱伝導性フィラーを構成しやすい。 The inorganic substance may contain a metal oxide. Among various inorganic substances, metal oxides exhibit relatively high thermal conductivity and are easily formed in layers on the surface of an organic portion containing an organic polymer. Therefore, it is easy to form a thermally conductive filler having a low specific gravity and excellent thermal conductivity.
 前記無機物質は、AlおよびMgの少なくとも一方を含有する化合物を含むとよい。AlやMgは、酸化物をはじめとする化合物が、高い熱伝導性を示す。また、AlやMgは、アルコキシドや炭酸塩をはじめとして、有機ポリマー粒子の表面に結合させ、安定な化合物膜を形成することができる原料化合物が、入手しやすい。よって、無機層を、AlやMgを含有する化合物として形成することで、低比重と高熱伝導性を両立する熱伝導性フィラーを、簡便に製造することができる。 The inorganic substance may contain a compound containing at least one of Al and Mg. As for Al and Mg, compounds such as oxides exhibit high thermal conductivity. Further, Al and Mg, such as alkoxide and carbonate, are easily available as raw material compounds that can be bonded to the surface of organic polymer particles to form a stable compound film. Therefore, by forming the inorganic layer as a compound containing Al or Mg, a thermally conductive filler having both low specific gravity and high thermal conductivity can be easily produced.
 前記有機部のみの比重をR1、前記熱伝導性フィラー全体としての比重をR2とし、無機層比重率RをR=(R2-R1)/R1として、前記無機層比重率Rは、5%以上であるとよい。すると、有機部に対して、十分な量を占めて、無機層が形成されることになり、熱伝導性フィラー粒子全体として、高い熱伝導性を確保しやすくなる。 The specific gravity of only the organic part is R1, the specific gravity of the heat conductive filler as a whole is R2, the specific gravity R of the inorganic layer is R = (R2-R1) / R1, and the specific gravity R of the inorganic layer is 5% or more. It is good to be. Then, the inorganic layer is formed by occupying a sufficient amount with respect to the organic portion, and it becomes easy to secure high thermal conductivity as the whole thermally conductive filler particles.
 前記有機部のみの比重をR1、前記熱伝導性フィラー全体としての比重をR2とし、無機層比重率RをR=(R2-R1)/R1として、前記無機層比重率Rは、40%以下であるとよい。すると、無機層による熱伝導性向上の効果が飽和するのを避けて、過剰に厚い無機層を形成することによる熱伝導性フィラーの比重の増大を、抑制することができる。 The specific gravity of only the organic part is R1, the specific gravity of the heat conductive filler as a whole is R2, the specific gravity R of the inorganic layer is R = (R2-R1) / R1, and the specific gravity R of the inorganic layer is 40% or less. It is good to be. Then, it is possible to prevent the effect of improving the thermal conductivity by the inorganic layer from being saturated, and to suppress an increase in the specific gravity of the thermal conductive filler due to the formation of an excessively thick inorganic layer.
 前記熱伝導性フィラー全体としての比重R2は、1.5以下であるとよい。この場合には、熱伝導性フィラーの低比重性を、十分に確保することができる。 The specific gravity R2 of the heat conductive filler as a whole is preferably 1.5 or less. In this case, the low specific gravity of the heat conductive filler can be sufficiently ensured.
 本開示にかかる熱伝導性複合材料は、前記熱伝導性フィラーと、マトリクス材料と、を含み、前記熱伝導性フィラーが前記マトリクス材料中に分散されている。 The thermally conductive composite material according to the present disclosure includes the thermally conductive filler and the matrix material, and the thermally conductive filler is dispersed in the matrix material.
 上記熱伝導性複合材料は、上記で説明した、有機ポリマーを含んだ有機部と、その有機部の表面を被覆する無機物質を含んだ無機層とを有する熱伝導性フィラーを含有している。よって、熱伝導性複合材料全体としての比重を小さく抑えながら、熱伝導性フィラーが有する高い熱伝導性を利用して、放熱性を高めることができる。 The heat conductive composite material contains the heat conductive filler having an organic part containing an organic polymer and an inorganic layer containing an inorganic substance covering the surface of the organic part described above. Therefore, it is possible to improve the heat dissipation by utilizing the high thermal conductivity of the thermally conductive filler while keeping the specific gravity of the thermally conductive composite material as a whole small.
 ここで、前記マトリクス材料は、有機ポリマーであるとよい。多くの有機ポリマーは、熱伝導性が低いが、表面に無機層を有する上記熱伝導性フィラーを混合することで、熱伝導性複合材料全体として、高い放熱性を確保することができる。一方、有機ポリマーは、比重が比較的小さいものが多いが、混合する熱伝導性フィラーが、有機部を含み、比重が小さく抑えられたものであることにより、熱伝導性フィラーを添加した状態でも、比重を小さく抑えることができる。 Here, the matrix material may be an organic polymer. Most organic polymers have low thermal conductivity, but by mixing the above-mentioned thermally conductive filler having an inorganic layer on the surface, high heat dissipation can be ensured as a whole thermally conductive composite material. On the other hand, many organic polymers have a relatively small specific gravity, but the heat conductive filler to be mixed contains an organic part and the specific gravity is suppressed to be small, so that even when the heat conductive filler is added. , The specific gravity can be kept small.
 前記熱伝導性複合材料は、比重が1.5以下であるとよい。この場合には、熱伝導性複合材料全体としての比重が、十分に小さく抑えられることになる。 The heat conductive composite material preferably has a specific gravity of 1.5 or less. In this case, the specific gravity of the thermally conductive composite material as a whole can be suppressed sufficiently small.
 前記熱伝導性複合材料は、室温における熱伝導率が、1.0W/(m・K)以上であるとよい。この場合には、熱伝導性複合材料全体として、十分に高い熱伝導性が確保されることになる。 The thermally conductive composite material preferably has a thermal conductivity of 1.0 W / (m · K) or more at room temperature. In this case, a sufficiently high thermal conductivity is ensured for the entire thermally conductive composite material.
 本開示にかかるワイヤーハーネスは、前記熱伝導性複合材料を含んでいる。 The wire harness according to the present disclosure includes the heat conductive composite material.
 上記ワイヤーハーネスは、上記で説明した熱伝導性複合材料を含んでいるため、構成部材の比重を小さく抑えながら、高熱伝導率を利用することができる。よって、ワイヤーハーネス全体としての質量を小さく抑えながら、高い放熱性が得られる。そのため、ワイヤーハーネスの軽量性を保ちながら、ワイヤーハーネスを構成する電線への通電等によって発熱が起こっても、その発熱の影響を、小さく抑えることができる。 Since the wire harness contains the thermally conductive composite material described above, it is possible to utilize high thermal conductivity while keeping the specific gravity of the constituent members small. Therefore, high heat dissipation can be obtained while keeping the mass of the wire harness as a whole small. Therefore, even if heat is generated by energizing the electric wires constituting the wire harness while maintaining the light weight of the wire harness, the influence of the heat generation can be suppressed to a small value.
 本開示にかかる熱伝導性フィラーの製造方法は、そのままの状態で、または化学反応を経て、前記無機層を構成する原料物質を用い、酸性基を有する有機ポリマーを含んだポリマー粒子に対し、表面の前記酸性基に、前記原料物質を結合させる工程を含んで、前記熱伝導性フィラーを製造する。 The method for producing a thermally conductive filler according to the present disclosure is to use a raw material constituting the inorganic layer as it is or through a chemical reaction on the surface of polymer particles containing an organic polymer having an acidic group. The thermally conductive filler is produced by comprising a step of binding the raw material to the acidic group of the above.
 上記製造方法によれば、有機ポリマーを含んだ有機部の表面に、無機物質を含んだ無機層を形成し、比重が小さく、かつ熱伝導性の高い熱伝導性フィラーを、簡便に製造することができる。 According to the above production method, an inorganic layer containing an inorganic substance is formed on the surface of an organic part containing an organic polymer, and a thermally conductive filler having a small specific gravity and high thermal conductivity can be easily produced. Can be done.
 ここで、前記原料物質は、金属アルコキシドおよび金属炭酸塩の少なくとも一方であるとよい。すると、簡素な化学反応工程によって、ポリマー粒子の表面に金属酸化物を含む無機層を形成し、熱伝導性フィラーを得ることができる。 Here, the raw material may be at least one of a metal alkoxide and a metal carbonate. Then, an inorganic layer containing a metal oxide can be formed on the surface of the polymer particles by a simple chemical reaction step, and a thermally conductive filler can be obtained.
[本開示の実施形態の詳細]
 以下に、本開示の実施形態にかかる熱伝導性フィラー、熱伝導性複合材料、ワイヤーハーネス、および熱伝導性フィラーの製造方法について、図面を用いて詳細に説明する。本開示の実施形態にかかる熱伝導性フィラーを含んで、本開示の実施形態にかかる熱伝導性複合材料が構成される。また、本開示の実施形態にかかる熱伝導性複合材料を含んで、本開示の実施形態にかかるワイヤーハーネスが構成される。さらに、本開示の実施形態にかかる製造方法によって、本開示の実施形態にかかる熱伝導性フィラーを製造することができる。
[Details of Embodiments of the present disclosure]
Hereinafter, a method for producing a thermally conductive filler, a thermally conductive composite material, a wire harness, and a thermally conductive filler according to the embodiment of the present disclosure will be described in detail with reference to the drawings. The thermally conductive composite material according to the embodiment of the present disclosure is configured by comprising the thermally conductive filler according to the embodiment of the present disclosure. Further, the wire harness according to the embodiment of the present disclosure is configured by including the thermally conductive composite material according to the embodiment of the present disclosure. Further, the production method according to the embodiment of the present disclosure can be used to produce the thermally conductive filler according to the embodiment of the present disclosure.
 本明細書において、各種物性値は、特記しない限り、室温、大気中にて計測されるものとする。また、本明細書において、ある成分が、ある材料の主成分であるとは、その成分が、その材料を構成する全成分の質量に対して、50質量%以上を占めている状態を指す。 In this specification, various physical property values shall be measured at room temperature and in the air unless otherwise specified. Further, in the present specification, a certain component is a main component of a certain material means a state in which the component occupies 50% by mass or more with respect to the mass of all the components constituting the material.
<熱伝導性フィラー>
 まず、本開示の一実施形態にかかる熱伝導性フィラー(以下、単に「フィラー」と称する場合がある)について説明する。図1に示すように、本開示の一実施形態にかかる熱伝導性フィラー10は、有機部11と、無機層12とを有しており、粒子状となっている。無機層12は、有機部11の表面を被覆している。
<Thermal conductive filler>
First, a thermally conductive filler (hereinafter, may be simply referred to as “filler”) according to an embodiment of the present disclosure will be described. As shown in FIG. 1, the thermally conductive filler 10 according to the embodiment of the present disclosure has an organic portion 11 and an inorganic layer 12, and is in the form of particles. The inorganic layer 12 covers the surface of the organic portion 11.
 有機部11および無機層12の具体的な材料については、後に説明するが、有機部11は、有機ポリマーを含んでいる。一方、無機層12は、無機物質を含んでいる。多くの有機ポリマーは、無機物質よりも、小さな比重を有している。一方、多くの無機物質は、有機ポリマーよりも高い熱伝導率を有している。 The specific materials of the organic part 11 and the inorganic layer 12 will be described later, but the organic part 11 contains an organic polymer. On the other hand, the inorganic layer 12 contains an inorganic substance. Many organic polymers have a lower specific gravity than inorganic substances. On the other hand, many inorganic substances have higher thermal conductivity than organic polymers.
 本実施形態にかかる熱伝導性フィラー10は、比重の小さい有機ポリマーを含む有機部11を有することにより、全体が無機物質よりなる場合と比較して、全体としての比重を小さくすることができる。一方、本実施形態かかる熱伝導性フィラー10は、有機部11の表面を被覆して、無機層12を有している。無機層12は、高い熱伝導性を有しており、フィラー10全体としての熱伝導性を高めることができる。図1に示すように、フィラー粒子10の表面の無機層12が、そのフィラー粒子10を取り囲むマトリクス材料2や、他のフィラー粒子10の表面の無機層12と接触することで、フィラー粒子10とマトリクス材料2の間、またフィラー粒子10の間の熱伝導に寄与する。有機部11の表面にのみ無機層12が設けられているため、フィラー粒子10全体としての体積は、有機部11によって確保しながら、小体積の無機層12によって、熱伝導性を発揮することができる。隣接するフィラー粒子10が、表層の無機層12を介して、相互に接触することによって、熱伝導経路を形成することができる。 Since the thermally conductive filler 10 according to the present embodiment has an organic portion 11 containing an organic polymer having a small specific gravity, the specific gravity as a whole can be reduced as compared with the case where the whole is made of an inorganic substance. On the other hand, the heat conductive filler 10 according to the present embodiment covers the surface of the organic portion 11 and has an inorganic layer 12. The inorganic layer 12 has high thermal conductivity, and the thermal conductivity of the filler 10 as a whole can be enhanced. As shown in FIG. 1, the inorganic layer 12 on the surface of the filler particles 10 comes into contact with the matrix material 2 surrounding the filler particles 10 and the inorganic layer 12 on the surface of the other filler particles 10 to contact the filler particles 10. It contributes to heat conduction between the matrix material 2 and between the filler particles 10. Since the inorganic layer 12 is provided only on the surface of the organic portion 11, the volume of the filler particles 10 as a whole can be secured by the organic portion 11, and the small volume of the inorganic layer 12 can exhibit thermal conductivity. it can. Adjacent filler particles 10 can form a heat conduction path by contacting each other via the surface inorganic layer 12.
 フィラー10の質量の増加を避ける観点から、フィラー10全体としての比重は、1.5以下、さらに好ましくは1.4以下、1.2以下であるとよい。一方、比重を小さく抑えすぎることにより、無機層12を十分な厚さで形成できなくなることを避ける観点から、フィラー10全体としての比重は0.3以上、好ましくは0.6以上、さらに好ましくは0.9以上であるとよい。フィラー10の比重は、例えば、比重計を用いて、粉末状のフィラー10の真密度として計測することができる。なお、フィラー10全体としての比重は、後に無機層12の割合について説明する式(1)において、比重R2として用いられる。 From the viewpoint of avoiding an increase in the mass of the filler 10, the specific gravity of the filler 10 as a whole is preferably 1.5 or less, more preferably 1.4 or less, 1.2 or less. On the other hand, from the viewpoint of avoiding that the inorganic layer 12 cannot be formed with a sufficient thickness by suppressing the specific gravity too small, the specific gravity of the filler 10 as a whole is 0.3 or more, preferably 0.6 or more, more preferably 0.6 or more. It should be 0.9 or more. The specific gravity of the filler 10 can be measured as the true density of the powdered filler 10 using, for example, a hydrometer. The specific gravity of the filler 10 as a whole is used as the specific gravity R2 in the formula (1) which will explain the ratio of the inorganic layer 12 later.
 ここで、有機部11および無機層12を構成する材料等について説明する。上記のように、有機部11は、有機ポリマーを含んでいる。好ましくは、有機部11は、有機ポリマーを主成分として含んでいる。有機部11を構成する有機ポリマーは、各種樹脂、エラストマー、ゴム等、いかなる有機ポリマーであってもよい。しかし、有機部11を構成する有機ポリマーは、酸性基を有するものであることが好ましい。有機ポリマーが酸性基を有することで、後に説明するように、有機部11となるポリマー粒子の表面に、無機層12となる原料無機化合物を結合させて無機層12を形成する際に、有機ポリマーの酸性基と原料無機化合物との間に結合を形成し、安定な無機層12を簡便に形成しやすいからである。 Here, the materials and the like constituting the organic part 11 and the inorganic layer 12 will be described. As described above, the organic part 11 contains an organic polymer. Preferably, the organic part 11 contains an organic polymer as a main component. The organic polymer constituting the organic part 11 may be any organic polymer such as various resins, elastomers and rubbers. However, the organic polymer constituting the organic part 11 preferably has an acidic group. Since the organic polymer has an acidic group, as will be described later, when the raw material inorganic compound to be the inorganic layer 12 is bonded to the surface of the polymer particles to be the organic part 11 to form the inorganic layer 12, the organic polymer is formed. This is because it is easy to form a stable inorganic layer 12 by forming a bond between the acidic group of the above and the raw material inorganic compound.
 有機ポリマーに含まれる酸性基としては、カルボン酸基、カルボン酸無水物基、スルホン酸基、リン酸基等を例示することができる。これらの酸性基のうち、カルボン酸基を有する有機ポリマーが、低比重性および入手容易性において、特に好ましい。カルボン酸基を有する有機ポリマーの具体例として、有機部11は、ポリアクリル酸、アクリル酸共重合物、無水マレイン酸変性ポリマーの少なくとも1種を含むことが好ましい。それらのポリマーは、比重が小さいうえ、ポリマー粒子とした際に、表面に酸性基を安定に露出させやすい。 Examples of the acidic group contained in the organic polymer include a carboxylic acid group, a carboxylic acid anhydride group, a sulfonic acid group, and a phosphoric acid group. Of these acidic groups, an organic polymer having a carboxylic acid group is particularly preferable in terms of low specific gravity and availability. As a specific example of the organic polymer having a carboxylic acid group, the organic part 11 preferably contains at least one of polyacrylic acid, an acrylic acid copolymer, and a maleic anhydride-modified polymer. These polymers have a small specific gravity, and when they are made into polymer particles, it is easy to stably expose acidic groups on the surface.
 有機部11を構成する有機ポリマーは、1種のみであっても、2種以上が混合されてもよい。有機部11の比重を、無機層12の比重よりも小さく保てる限りにおいて、つまり、有機部11のみでの比重を、フィラー10全体としての比重よりも小さく保てる限りにおいて、有機部11は、有機ポリマー以外に、難燃剤、安定化剤、酸化防止剤等、有機物あるいは無機物よりなる各種添加剤を、適宜含んでいてもよい。また、有機部11は、無機層12との間に、適宜、界面活性剤等、表面処理剤の層を有していてもよい。 The organic polymer constituting the organic part 11 may be only one kind or a mixture of two or more kinds. As long as the specific gravity of the organic part 11 can be kept smaller than the specific gravity of the inorganic layer 12, that is, as long as the specific gravity of the organic part 11 alone can be kept smaller than the specific gravity of the filler 10 as a whole, the organic part 11 is an organic polymer. In addition, various additives made of organic or inorganic substances such as flame retardant, stabilizer, and antioxidant may be appropriately contained. Further, the organic part 11 may have a layer of a surface treatment agent such as a surfactant as appropriate between the organic part 11 and the inorganic layer 12.
 フィラー10全体としての比重を小さく抑える観点から、有機部11の比重も小さい方が好ましく、例えば、1.2以下、好ましくは1.0以下であるとよい。有機部11の比重に特に下限は設けられないが、有機ポリマー粒子の比重は、概ね0.8以上である。有機部11は、粒子状となっており、その粒径(平均粒径D50;以下においても同様)は、特に限定されるものではないが、無機層12の厚さに対して過度に小さくならないようにすることで、フィラー10全体としての比重を小さく抑えられるようにする等の観点から、1μm以上、さらには5μm以上であることが好ましい。一方、フィラー10が添加されるマトリクス材料2の特性への影響を小さく抑える、比表面積を大きくする等の観点から、有機部11の粒径は、100μm以下、さらには50μm以下であることが好ましい。 From the viewpoint of suppressing the specific gravity of the filler 10 as a whole, the specific gravity of the organic portion 11 is preferably small, for example, 1.2 or less, preferably 1.0 or less. Although no lower limit is set for the specific gravity of the organic portion 11, the specific gravity of the organic polymer particles is approximately 0.8 or more. The organic portion 11 is in the form of particles, and its particle size (average particle size D50; the same applies hereinafter) is not particularly limited, but is not excessively small with respect to the thickness of the inorganic layer 12. By doing so, the specific gravity of the filler 10 as a whole can be suppressed to a small value, and the thickness is preferably 1 μm or more, more preferably 5 μm or more. On the other hand, the particle size of the organic portion 11 is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of suppressing the influence on the characteristics of the matrix material 2 to which the filler 10 is added to be small and increasing the specific surface area. ..
 上記のように、無機層12は、無機物質を含んでいる。好ましくは、無機層12は、無機物質を主成分として含んでいる。無機物質の種類は特に限定されるものではなく、金属、または無機化合物等の非金属のいずれであってもよい。有機部11の粒子の表面に、安定な無機層12を簡便に形成する等の観点から、好ましくは、無機層12は、無機物質として、無機化合物、特に金属化合物を含んでいるとよい。ここで、金属化合物を構成する金属元素には、B,Si等、半金属も含むものとする(以降においても同じ)。 As described above, the inorganic layer 12 contains an inorganic substance. Preferably, the inorganic layer 12 contains an inorganic substance as a main component. The type of the inorganic substance is not particularly limited, and may be either a metal or a non-metal such as an inorganic compound. From the viewpoint of easily forming a stable inorganic layer 12 on the surface of the particles of the organic portion 11, the inorganic layer 12 preferably contains an inorganic compound, particularly a metal compound, as an inorganic substance. Here, it is assumed that the metal elements constituting the metal compound also include metalloids such as B and Si (the same applies hereinafter).
 無機層12を構成する金属化合物としては、金属元素を含む酸化物、窒化物、炭化物、酸窒化物、炭窒化物、炭酸化物、水酸化物、ホウ化物等、また、金属のシリケート、アルミネート、チタネート等を例示することができる。熱伝導性に優れ、有機部11の表面に安定に膜状の無機層12を形成しやすい等の観点から、無機層12は、各種の金属化合物のうち、金属酸化物を含むことが好ましい。無機層12が、金属酸化物を主成分としてなっていれば、特に好ましい。金属酸化物は、金属窒化物や金属炭化物よりも比重が大きくなりやすいため、フィラー10において、有機部11と共存する無機層12として形成されることで、有機部11による比重低減の効果を、大きく享受することができる。 Examples of the metal compound constituting the inorganic layer 12 include oxides containing metal elements, nitrides, carbides, oxynitrides, carbonitrides, carbon oxides, hydroxides, borides, etc., and metal silicates and aluminates. , Titanate and the like can be exemplified. From the viewpoints of excellent thermal conductivity and easy formation of a film-like inorganic layer 12 on the surface of the organic portion 11, the inorganic layer 12 preferably contains a metal oxide among various metal compounds. It is particularly preferable that the inorganic layer 12 contains a metal oxide as a main component. Since the metal oxide tends to have a higher specific gravity than the metal nitride or the metal carbide, the filler 10 is formed as an inorganic layer 12 coexisting with the organic portion 11, so that the effect of reducing the specific gravity by the organic portion 11 can be obtained. You can enjoy it greatly.
 無機層12を構成する無機物質は、種々の金属化合物の中でも、AlおよびMgの少なくとも一方を含有する化合物を含んでいることが好ましい。特にAlを含んでいることが好ましい。また、AlやMgは、酸化物を構成していることが好ましい。酸化物をはじめとするAlやMgの化合物は、高い熱伝導性を示すとともに、市販の原料化合物を用いて、粒子状の有機部11の表面に、安定に、また強固に付着した膜状の無機層12として、形成しやすいからである。 The inorganic substance constituting the inorganic layer 12 preferably contains a compound containing at least one of Al and Mg among various metal compounds. In particular, it preferably contains Al. Further, Al and Mg preferably form an oxide. Al and Mg compounds such as oxides exhibit high thermal conductivity, and are in the form of a film that is stably and firmly adhered to the surface of the particulate organic portion 11 by using a commercially available raw material compound. This is because it is easy to form as the inorganic layer 12.
 無機層12を構成する無機物質は、1種であっても、複数であってもよい。また、複数の無機物質を用いる場合に、それらの無機物質は混在していても、さらには複合体を形成していてもよく、あるいは層状に積層されていてもよい。さらに、無機層12は、無機物質のみならず、各種添加剤や反応残渣等、有機物質をあわせて含むものであってもよい。また、マトリクス材料2が有機ポリマーを含む場合に、無機層12の表面に、マトリクス材料2との親和性を高める等の観点から、有機膜が設けられていてもよい。しかし、隣接するフィラー粒子10の間で、無機層12どうしの直接の接触によって、熱伝導性を高める観点からは、そのような有機膜は設けられない方が好ましい。無機層12は、有機部11の表面の少なくとも一部を被覆していればよいが、フィラー粒子10とマトリクス材料2の間、また隣接するフィラー粒子10の間で、無機層12を介した接触を十分に確保する観点から、無機層12は、少なくとも、有機部11の表面積の半分以上、さらには、不可避的な欠陥等を除いて、有機部11の表面全域を被覆していることが好ましい。 The inorganic substance constituting the inorganic layer 12 may be one kind or a plurality of kinds. Further, when a plurality of inorganic substances are used, the inorganic substances may be mixed, may form a complex, or may be laminated in layers. Further, the inorganic layer 12 may contain not only an inorganic substance but also an organic substance such as various additives and reaction residues. Further, when the matrix material 2 contains an organic polymer, an organic film may be provided on the surface of the inorganic layer 12 from the viewpoint of enhancing the affinity with the matrix material 2. However, from the viewpoint of enhancing the thermal conductivity by direct contact between the inorganic layers 12 between the adjacent filler particles 10, it is preferable not to provide such an organic film. The inorganic layer 12 may cover at least a part of the surface of the organic portion 11, but the contact between the filler particles 10 and the matrix material 2 and between the adjacent filler particles 10 via the inorganic layer 12 From the viewpoint of sufficiently securing the above, it is preferable that the inorganic layer 12 covers at least half of the surface area of the organic portion 11 and the entire surface of the organic portion 11 except for unavoidable defects and the like. ..
 フィラー10において、無機層12が占める割合は、特に限定されるものではないが、下記の式(1)で規定される無機層比重率Rが、5%以上であることが好ましい。
  R=(R2-R1)/R1   (1)
 ここで、R1は、有機部11のみの比重を指し、R2は、フィラー10全体としての比重を指す。無機層比重率Rが大きいほど、フィラー10において無機層12が占める領域の割合が大きいことを示す。なお、有機部11の状態は、無機層12の形成によって実質的に変化しないので、有機部11の比重R1は、フィラー10を製造する際に用いるポリマー粒子の比重で代用することができる。
The proportion of the inorganic layer 12 in the filler 10 is not particularly limited, but the inorganic layer specific weight ratio R defined by the following formula (1) is preferably 5% or more.
R = (R2-R1) / R1 (1)
Here, R1 refers to the specific gravity of only the organic portion 11, and R2 refers to the specific gravity of the filler 10 as a whole. The larger the specific gravity ratio R of the inorganic layer, the larger the proportion of the region occupied by the inorganic layer 12 in the filler 10. Since the state of the organic part 11 does not substantially change due to the formation of the inorganic layer 12, the specific gravity R1 of the organic part 11 can be replaced by the specific gravity of the polymer particles used in producing the filler 10.
 無機層比重率Rが5%以上であれば、フィラー10が十分な体積の無機層12を有することにより、フィラー10全体としての熱伝導性を十分に高めやすい。無機層比重率Rは、10%以上、また20%以上であれば、さらに好ましい。また、フィラー粒子10全体に対して、無機層12は、質量比で9質量%以上、また体積比で3体積%以上を占めることが好ましい。無機層12の厚さとしては、平均値で、フィラー粒子10の粒径の1%以上を占めることが好ましい。 When the specific gravity ratio R of the inorganic layer is 5% or more, the filler 10 has a sufficient volume of the inorganic layer 12, so that the thermal conductivity of the filler 10 as a whole can be sufficiently enhanced. The inorganic layer specific weight ratio R is more preferably 10% or more, more preferably 20% or more. Further, the inorganic layer 12 preferably occupies 9% by mass or more in terms of mass ratio and 3% by volume or more in volume ratio with respect to the entire filler particles 10. The thickness of the inorganic layer 12 preferably occupies 1% or more of the particle size of the filler particles 10 on average.
 一方、フィラー粒子10において、無機層12が占める割合を大きくしすぎても、フィラー10の熱伝導性の向上効果が飽和するとともに、有機部11の含有によってフィラー粒子10の比重を小さく抑える効果が、小さくなる。それらの現象を避ける観点から、無機層比重率Rを、50%以下、さらには40%以下としておくことが好ましい。なお、フィラー粒子10において、無機層12が占める領域は、有機部11の粒径に比べて薄いため、フィラー粒子10全体としての粒径は、有機部11の粒径と大きくは変わらず、1μm以上、さらには5μm以上、また100μm以下、さらには50μm以下であることが好ましい。 On the other hand, even if the proportion of the inorganic layer 12 in the filler particles 10 is made too large, the effect of improving the thermal conductivity of the filler 10 is saturated, and the inclusion of the organic portion 11 has the effect of suppressing the specific gravity of the filler particles 10 to a small value. , Become smaller. From the viewpoint of avoiding these phenomena, it is preferable that the specific weight ratio R of the inorganic layer is 50% or less, more preferably 40% or less. Since the region occupied by the inorganic layer 12 in the filler particles 10 is thinner than the particle size of the organic portion 11, the particle size of the filler particles 10 as a whole is not significantly different from the particle size of the organic portion 11 and is 1 μm. Above, more preferably 5 μm or more, 100 μm or less, and further preferably 50 μm or less.
 以上のように、本実施形態にかかる熱伝導性フィラー10は、有機部11の表面に無機層12が形成された二重構造を有することにより、熱伝導性を高く保ちながら、フィラーが無機物質のみよりなる場合よりも、比重が低減されたものとなる。よって、後に説明する熱伝導性複合材料のように、他の物質と組み合わせて複合材料とすることで、複合材料全体としての比重を著しく増大させることなく、複合材料の熱伝導性を高めるものとなる。 As described above, the thermally conductive filler 10 according to the present embodiment has a double structure in which the inorganic layer 12 is formed on the surface of the organic portion 11, so that the filler is an inorganic substance while maintaining high thermal conductivity. The specific gravity is reduced as compared with the case where only the material is used. Therefore, as in the case of the thermally conductive composite material described later, by combining the composite material with other substances to form the composite material, the thermal conductivity of the composite material is enhanced without significantly increasing the specific gravity of the composite material as a whole. Become.
<熱伝導性フィラーの製造方法>
 次に、上記の熱伝導性フィラー10を製造することができる、本開示の一実施形態にかかる熱伝導性フィラーの製造方法について説明する。熱伝導性フィラー10は、有機部準備工程と、無機層形成工程とを実施することで、製造することができる。
<Manufacturing method of thermally conductive filler>
Next, a method for producing the thermally conductive filler according to the embodiment of the present disclosure, which can produce the above-mentioned thermally conductive filler 10, will be described. The thermally conductive filler 10 can be produced by carrying out the organic part preparation step and the inorganic layer forming step.
 有機部準備工程においては、製造されるフィラー10において有機部11となる、有機ポリマーを含んだポリマー粒子を準備する。ポリマー粒子は、液相合成等の化学的方法や、粉砕等の物理的方法によって、所望の化学組成を有する有機ポリマー材料を、所望の粒径を有する粒状体とすればよい。好ましくは、有機ポリマーとして酸性基を有するものを用いれば、次の無機層形成工程において、無機化合物を含む無機層12を、簡便に形成することができる。 In the organic part preparation step, polymer particles containing an organic polymer, which will be the organic part 11 in the manufactured filler 10, are prepared. As the polymer particles, an organic polymer material having a desired chemical composition may be made into granules having a desired particle size by a chemical method such as liquid phase synthesis or a physical method such as pulverization. Preferably, if an organic polymer having an acidic group is used, the inorganic layer 12 containing the inorganic compound can be easily formed in the next inorganic layer forming step.
 次に、無機層形成工程において、ポリマー粒子の表面に、無機層12を形成する。この際、製造されるフィラー10において無機層12を構成する無機物質そのものを、原料物質としてポリマー粒子の表面に配置する直接形成法をとっても、あるいは、適宜化学反応を経ることで無機層12を構成する無機物質となる原料物質を、ポリマー粒子の表面に配置する間接形成法をとってもよい。直接形成法をとる場合には、ポリマー粒子の表面に配置した原料物質が、そのままの状態で、無機層12となる。直接形成法としては、蒸着、析出等を例示することができる。一方、間接形成法をとる場合には、原料物質をポリマー粒子の表面に配置した後、化学反応を起こすことで、無機層12を形成することになる。間接形成法としては、原料物質をポリマー粒子の表面に、静電的相互作用(イオン結合)等の相互作用により、または化学反応を経て、結合させたうえで、その結合した原料物質に対して化学反応を行うことで、所望の組成の無機層12を形成する方法を挙げることができる。特に、ポリマー粒子が酸性基を有する有機ポリマーを含み、表面に酸性基を露出させている場合には、相互作用または化学反応を介した原料化合物の結合を、簡便に、また強固に達成しやすい。 Next, in the inorganic layer forming step, the inorganic layer 12 is formed on the surface of the polymer particles. At this time, the inorganic layer 12 is formed by a direct forming method in which the inorganic substance itself constituting the inorganic layer 12 in the produced filler 10 is arranged on the surface of the polymer particles as a raw material, or by appropriately undergoing a chemical reaction. An indirect forming method may be adopted in which the raw material to be the inorganic substance to be used is placed on the surface of the polymer particles. When the direct forming method is adopted, the raw material material arranged on the surface of the polymer particles becomes the inorganic layer 12 as it is. Examples of the direct forming method include thin film deposition and precipitation. On the other hand, when the indirect forming method is adopted, the inorganic layer 12 is formed by arranging the raw material on the surface of the polymer particles and then causing a chemical reaction. As an indirect forming method, a raw material is bonded to the surface of polymer particles by an interaction such as electrostatic interaction (ionic bonding) or through a chemical reaction, and then the raw material is bonded to the bonded raw material. A method of forming the inorganic layer 12 having a desired composition by carrying out a chemical reaction can be mentioned. In particular, when the polymer particles contain an organic polymer having an acidic group and the acidic group is exposed on the surface, it is easy to easily and firmly achieve the binding of the raw material compound through an interaction or a chemical reaction. ..
 酸性基を表面に有するポリマー粒子に対して、原料化合物の結合を経て無機層形成工程を実施する場合には、まず、分散媒(溶媒)中にポリマー粒子の構成材料と、無機層12を構成する無機物質となる原料化合物の両方が含有された原料液を調製すればよい。原料液中において、ポリマー粒子は、固体粒子の状態で分散されていても、溶解していてもよい。また、原料液中において、無機層を構成する無機物質となる原料化合物は、液状で存在している必要があり、分散媒(溶媒)に溶解した状態のほか、溶融状態にあってもよい。あるいは微分散した状態にあってもよい。以下に、原料液中において、ポリマー粒子が固体粒子の状態で分散され、無機層を構成する原料化合物が溶解した状態にある形態について、説明する。この場合に、原料溶液を構成する分散媒(溶媒)は、ポリマー粒子を溶解させることなく分散させるとともに、無機層12を形成するための原料化合物を溶解させることができるものであれば、特に限定されず、トルエン、テトラヒドロフラン(THF)等の有機溶媒、イソブチルアルコール等のアルコール類を例示することができる。 When the step of forming an inorganic layer is carried out on a polymer particle having an acidic group on its surface through bonding of a raw material compound, first, a constituent material of the polymer particle and an inorganic layer 12 are formed in a dispersion medium (solvent). A raw material solution containing both of the raw material compounds as the inorganic substances to be used may be prepared. In the raw material liquid, the polymer particles may be dispersed or dissolved in the state of solid particles. Further, in the raw material liquid, the raw material compound which is an inorganic substance constituting the inorganic layer needs to be present in a liquid state, and may be in a molten state as well as in a state of being dissolved in a dispersion medium (solvent). Alternatively, it may be in a finely dispersed state. Hereinafter, a form in which the polymer particles are dispersed in the raw material liquid in the state of solid particles and the raw material compound constituting the inorganic layer is dissolved will be described. In this case, the dispersion medium (solvent) constituting the raw material solution is particularly limited as long as it can disperse the polymer particles without dissolving them and dissolve the raw material compound for forming the inorganic layer 12. However, organic solvents such as toluene and tetrahydrofuran (THF), and alcohols such as isobutyl alcohol can be exemplified.
 原料液を調製するに際し、例えば、最初に分散媒中にポリマー粒子を添加して十分に撹拌し、ポリマー粒子を分散させればよい。次に、ポリマー粒子の分散液に無機層12となる原料化合物を添加し、撹拌等により、溶解させればよい。この操作で、ポリマー粒子の表面の酸性基に、静電的相互作用(イオン結合)等の相互作用により、あるいは化学反応を経て、原料化合物を結合させる。原料化合物を、ポリマー粒子の酸性基に結合可能な状態とするために、原料化合物の分解等が必要な場合や、原料化合物とポリマー粒子の酸性基の間で、化学反応を経て結合を形成する場合に、それら分解や化学反応に、加熱や反応剤の添加が必要であれば、適宜、撹拌と合わせて、それらの操作を行えばよい。 When preparing the raw material liquid, for example, the polymer particles may be first added to the dispersion medium and sufficiently stirred to disperse the polymer particles. Next, the raw material compound to be the inorganic layer 12 may be added to the dispersion liquid of the polymer particles and dissolved by stirring or the like. In this operation, the raw material compound is bonded to the acidic group on the surface of the polymer particles by an interaction such as an electrostatic interaction (ionic bond) or through a chemical reaction. When it is necessary to decompose the raw material compound in order to make the raw material compound bondable to the acidic group of the polymer particles, or to form a bond between the raw material compound and the acidic group of the polymer particles through a chemical reaction. In some cases, if heating or addition of a reactant is required for the decomposition or chemical reaction, these operations may be carried out in combination with stirring as appropriate.
 原料化合物をポリマー粒子の表面に結合させると、次に、原料化合物に対して、化学反応を起こし、無機層12を構成する所望の無機物質への変換を行えばよい。この際、必要な化学反応の種類に応じた操作を行えばよく、例えば、撹拌に加えて、加熱、反応剤の添加、酸素等の気体分子との接触等を行えばよい。撹拌以外に、加熱または大気との接触、またはそれら両方のみで、原料化合物からの変換を完了することができれば、簡便に無機層12を形成することができ、好ましい。 When the raw material compound is bonded to the surface of the polymer particles, the raw material compound may then undergo a chemical reaction to be converted into a desired inorganic substance constituting the inorganic layer 12. At this time, an operation may be performed according to the type of required chemical reaction. For example, in addition to stirring, heating, addition of a reactant, contact with gas molecules such as oxygen, and the like may be performed. It is preferable that the inorganic layer 12 can be easily formed if the conversion from the raw material compound can be completed only by heating, contact with the atmosphere, or both, in addition to stirring.
 無機層形成工程において、有機部11の表面に無機層12を形成した後、適宜、濾過等によって生成物を単離すればよい。さらに、加熱乾燥や真空乾燥を行って、揮発成分を除去することで、熱伝導性フィラー10を得ることができる。 In the inorganic layer forming step, after forming the inorganic layer 12 on the surface of the organic part 11, the product may be appropriately isolated by filtration or the like. Further, the thermally conductive filler 10 can be obtained by removing the volatile components by performing heat drying or vacuum drying.
 無機層形成工程において用いる原料化合物としては、ポリマー粒子の分散液中、あるいはポリマー粒子の表面で、含金属イオンを形成しうるものを用いることが好ましい。具体的な化合物の種類は特に限定されず、そのような原料化合物の好適な例として、金属アルコキシドおよび金属炭酸塩を挙げることができる。原料化合物として金属アルコキシドを用いる場合には、ポリマー粒子の分散液に金属アルコキシドを添加し、加熱しながら撹拌を行えばよい。金属アルコキシドは、加水分解を起こし、アルコールの発生を伴いながら、金属水和物を形成する。特に、ポリマー粒子の表面や分散媒中に微量の酸性基が存在すると、その周辺で金属水和物の生成速度が速くなる。生じた金属水和物は、ポリマー粒子表面の酸性基との間に、イオン結合を形成し、膜の状態で、ポリマー表面に強固に結合することになる。その後、適宜反応液を加熱し、分散媒を乾燥させることで、大気中の酸素による酸化を経て、金属水酸化物および金属酸化物の少なくとも一方を含んだ無機層12を有する、熱伝導性フィラー10が得られる。多くの場合、無機層12における酸化は、金属酸化物の状態まで進む。金属アルコキシドの種類は、特に限定されるものではなく、メトキシド、エトキシド、イソプロポキシド等を例示することができるが、アルミニウムイソプロポキシドやマグネシウムエトキシドが、安全性や入手容易性において、利用しやすい。 As the raw material compound used in the inorganic layer forming step, it is preferable to use a compound capable of forming metal-containing ions in the dispersion liquid of the polymer particles or on the surface of the polymer particles. The specific type of the compound is not particularly limited, and suitable examples of such a raw material compound include metal alkoxides and metal carbonates. When a metal alkoxide is used as the raw material compound, the metal alkoxide may be added to the dispersion liquid of the polymer particles, and the mixture may be stirred while heating. The metal alkoxide hydrolyzes to form a metal hydrate with the generation of alcohol. In particular, the presence of a trace amount of acidic groups on the surface of the polymer particles or in the dispersion medium increases the rate of formation of metal hydrates around them. The resulting metal hydrate forms an ionic bond with the acidic group on the surface of the polymer particles, and in the state of a film, firmly bonds to the surface of the polymer. Then, the reaction solution is appropriately heated and the dispersion medium is dried, so that the heat conductive filler has an inorganic layer 12 containing at least one of a metal hydroxide and a metal oxide after being oxidized by oxygen in the atmosphere. 10 is obtained. In many cases, oxidation in the inorganic layer 12 proceeds to the state of metal oxides. The type of metal alkoxide is not particularly limited, and methoxide, ethoxide, isopropoxide and the like can be exemplified, but aluminum isopropoxide and magnesium ethoxide are used in terms of safety and availability. Cheap.
 原料化合物として金属炭酸塩を用いる場合には、塩基性炭酸塩をポリマー粒子の分散液に添加すると、金属水酸化物が、ポリマー粒子の表面で形成され、ポリマー粒子の表面に強固に結合して、膜を構成する。その後、上記アルコキシドの場合と同様に、適宜反応液を加熱し、分散媒を乾燥させることで、大気中の酸素による酸化を経て、金属水酸化物および金属酸化物の少なくとも一方を含んだ無機層12を有する熱伝導性フィラー10が得られる。多くの場合、無機層12における酸化は、金属酸化物の状態まで進む。 When a metal carbonate is used as the raw material compound, when the basic carbonate is added to the dispersion liquid of the polymer particles, the metal hydroxide is formed on the surface of the polymer particles and is firmly bonded to the surface of the polymer particles. , Consists of the membrane. Then, as in the case of the above alkoxide, the reaction solution is appropriately heated and the dispersion medium is dried, so that the inorganic layer containing at least one of the metal hydroxide and the metal oxide is oxidized by oxygen in the atmosphere. A thermally conductive filler 10 having 12 is obtained. In many cases, oxidation in the inorganic layer 12 proceeds to the state of metal oxides.
<熱伝導性複合材料>
 次に、本開示の一実施形態にかかる熱伝導性複合材料(以下、単に複合材料と称する場合がある)について説明する。本実施形態にかかる熱伝導性複合材料1は、図1に示すように、上記で説明した本開示の実施形態にかかる熱伝導性フィラー10と、マトリクス材料2とを含んでいる。マトリクス材料2の中に、フィラー10が分散されている。
<Thermal conductive composite material>
Next, a thermally conductive composite material (hereinafter, may be simply referred to as a composite material) according to an embodiment of the present disclosure will be described. As shown in FIG. 1, the heat conductive composite material 1 according to the present embodiment includes the heat conductive filler 10 according to the embodiment of the present disclosure described above and the matrix material 2. The filler 10 is dispersed in the matrix material 2.
 本実施形態にかかる複合材料1は、上記で説明した有機部11の表面に無機層12を有する熱伝導性フィラー10を含んでいるため、無機層12によって付与される高熱伝導性により、複合材料1全体として、高い熱伝導性を示し、放熱性に優れたものとなる。同時に、有機部11による熱伝導性フィラー10の低比重化の効果により、複合材料1全体として、比重の小さいものとなる。 Since the composite material 1 according to the present embodiment contains the thermally conductive filler 10 having the inorganic layer 12 on the surface of the organic portion 11 described above, the composite material is provided by the high thermal conductivity imparted by the inorganic layer 12. 1 As a whole, it exhibits high thermal conductivity and excellent heat dissipation. At the same time, due to the effect of lowering the specific gravity of the heat conductive filler 10 by the organic portion 11, the specific gravity of the composite material 1 as a whole becomes small.
 マトリクス材料2の種類は、特に限定されるものではないが、マトリクス材料2は、有機ポリマーを含むことが好ましく、有機ポリマーを主成分とするものであれば、より好ましい。マトリクス材料2を構成する具体的な有機ポリマーは、特に限定されるものではなく、フィラー10の有機部11を構成する有機ポリマーと同じものであっても、異なるものであってもよいが、有機部11は、ポリマー粒子の入手可能性や無機層12の形成可能性から、構成材料の選択における自由度が限られるのに対し、マトリクス材料2はそのような制約を受けないので、有機部11とは異なる材料から、所望の特性を有するものを選択することが好ましい。 The type of the matrix material 2 is not particularly limited, but the matrix material 2 preferably contains an organic polymer, and more preferably contains an organic polymer as a main component. The specific organic polymer constituting the matrix material 2 is not particularly limited, and may be the same as or different from the organic polymer constituting the organic portion 11 of the filler 10, but is organic. The part 11 has a limited degree of freedom in selecting a constituent material due to the availability of polymer particles and the possibility of forming the inorganic layer 12, whereas the matrix material 2 is not subject to such restrictions. It is preferable to select a material having desired properties from materials different from the above.
 マトリクス材料2を構成する有機ポリマーの具体例としては、各種樹脂、熱可塑性エラストマー、ゴム等を挙げることができる。有機ポリマーとして樹脂材料を用いる場合には、所望の用途に応じて、硬化性樹脂でも、熱可塑性樹脂、溶剤に溶解可能なプラスチックでもよい。マトリクス材料2を構成する樹脂の種類としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル、ポリ乳酸、ポリスチレン系樹脂、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、ポリビニルアルコール、ポリイミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル(PPE)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、およびエポキシ樹脂、またはこれらの樹脂同士の共重合体やポリマーアロイが挙げられる。マトリクス材料2は、有機ポリマーを1種のみ含むものであっても、複数含むものであってもよい。また、マトリクス材料2は、有機ポリマーの他に、難燃剤、充填剤、着色剤等の添加剤を適宜含んでいてもよい。 Specific examples of the organic polymer constituting the matrix material 2 include various resins, thermoplastic elastomers, rubber and the like. When a resin material is used as the organic polymer, it may be a curable resin, a thermoplastic resin, or a solvent-soluble plastic, depending on the desired application. Examples of the types of resins constituting the matrix material 2 include polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polylactic acid, polystyrene-based resins, polyvinyl acetate, ABS resin, AS resin, acrylic resin, methacrylic resin, and polyamide. Resins, urethane resins, silicone resins, fluororesins, polyvinyl alcohols, polyimides, polyacetals, polycarbonates, modified polyphenylene ethers (PPE), polyethylene terephthalates, polybutylene terephthalates, polyphenylene sulfides, and epoxy resins, or copolymers of these resins. And polymer alloys. The matrix material 2 may contain only one type of organic polymer or may contain a plurality of organic polymers. Further, the matrix material 2 may appropriately contain additives such as a flame retardant, a filler, and a colorant in addition to the organic polymer.
 マトリクス材料2自体の比重も、特に限定されるものではないが、フィラー10を添加した複合材料1全体としての比重を小さく抑える観点から、1.5以下に抑えておくことが好ましい。マトリクス材料2の比重に特に下限は設けられないが、マトリクス材料2として有機ポリマーを用いる場合に、その比重は、おおむね0.8以上となる。また、マトリクス材料2自体の熱伝導率も特に限定されるものではないが、フィラー10を添加した複合材料1全体として、高い熱伝導率を確保する観点から、0.1W/(m・K)以上としておくことが好ましい。マトリクス材料2の熱伝導率に特に上限は設けられないが、マトリクス材料2として有機ポリマーを用いる場合に、その熱伝導率は、おおむね0.6W/(m・K)以下となる。なお、マトリクス材料2や複合材料1の比重は、水置換法等によって測定することができる。また、それらの材料の熱伝導率は、レーザーフラッシュ法、熱線法等により、測定することができる。 The specific gravity of the matrix material 2 itself is not particularly limited, but it is preferably suppressed to 1.5 or less from the viewpoint of suppressing the specific gravity of the composite material 1 to which the filler 10 is added as a whole. The specific gravity of the matrix material 2 is not particularly limited, but when an organic polymer is used as the matrix material 2, the specific gravity is about 0.8 or more. Further, the thermal conductivity of the matrix material 2 itself is not particularly limited, but 0.1 W / (m · K) from the viewpoint of ensuring high thermal conductivity of the composite material 1 to which the filler 10 is added as a whole. It is preferable to keep the above. The thermal conductivity of the matrix material 2 is not particularly limited, but when an organic polymer is used as the matrix material 2, the thermal conductivity is approximately 0.6 W / (m · K) or less. The specific gravity of the matrix material 2 and the composite material 1 can be measured by a water substitution method or the like. Further, the thermal conductivity of these materials can be measured by a laser flash method, a hot wire method, or the like.
 本実施形態にかかる複合材料1において、フィラー10の含有量は、複合材料1全体として、所望の比重と熱伝導性が得られるように、適宜定めればよい。フィラー10の含有量を多くするほど、複合材料1の熱伝導性が高くなるので、所望の熱伝導性が得られる含有量を下限として、フィラー10の含有量を定めればよい。例えば、複合材料1の熱伝導率が、フィラー10を添加しないマトリクス材料2の熱伝導率の5倍以上、さらには6倍以上となるように、フィラー10の含有量を定めればよい。あるいは、複合材料1の熱伝導率が、1.0W/(m・K)以上、さらには1.2W/(m・K)以上となるように、フィラー10の含有量を定めればよい。なお、複合材料1の熱伝導率は高いほど好ましいものではあるが、フィラー10の過剰な添加による比重の増大を避ける観点から、マトリクス材料2の熱伝導率の50倍以下、さらには30倍以下、また8.0W/(m・K)以下、さらには5.0W/(m・K)以下に留めておくとよい。 In the composite material 1 according to the present embodiment, the content of the filler 10 may be appropriately determined so that the desired specific gravity and thermal conductivity can be obtained for the composite material 1 as a whole. As the content of the filler 10 increases, the thermal conductivity of the composite material 1 increases. Therefore, the content of the filler 10 may be determined with the content at which the desired thermal conductivity can be obtained as the lower limit. For example, the content of the filler 10 may be determined so that the thermal conductivity of the composite material 1 is 5 times or more, more 6 times or more, the thermal conductivity of the matrix material 2 to which the filler 10 is not added. Alternatively, the content of the filler 10 may be determined so that the thermal conductivity of the composite material 1 is 1.0 W / (m · K) or more, further 1.2 W / (m · K) or more. The higher the thermal conductivity of the composite material 1, the more preferable it is. However, from the viewpoint of avoiding an increase in specific gravity due to excessive addition of the filler 10, the thermal conductivity of the matrix material 2 is 50 times or less, further 30 times or less. In addition, it is preferable to keep it at 8.0 W / (m · K) or less, and further at 5.0 W / (m · K) or less.
 一方、複合材料1において、フィラー10の含有量を多くするほど、複合材料1全体としての比重が大きくなる場合は、フィラー10の含有量の上限を、所望の範囲に複合材料1の比重を抑えられる含有量として、定めればよい。例えば、複合材料1の比重が、フィラー10を添加しないマトリクス材料2の比重の1.3倍以下、さらには1.2倍以下に抑えられるように、フィラー10の含有量を定めればよい。あるいは、複合材料1の比重の値が、1.5以下、さらには1.4以下に抑えられるように、フィラー10の含有量を定めればよい。なお、複合材料1の比重は、小さいほど好ましいものであり、下限は特に定められない。 On the other hand, in the composite material 1, when the specific gravity of the composite material 1 as a whole increases as the content of the filler 10 increases, the upper limit of the content of the filler 10 is suppressed to a desired range. It may be determined as the content to be obtained. For example, the content of the filler 10 may be determined so that the specific gravity of the composite material 1 can be suppressed to 1.3 times or less, further 1.2 times or less, the specific gravity of the matrix material 2 to which the filler 10 is not added. Alternatively, the content of the filler 10 may be determined so that the specific gravity value of the composite material 1 can be suppressed to 1.5 or less, further 1.4 or less. The smaller the specific gravity of the composite material 1, the more preferable it is, and the lower limit is not particularly set.
 フィラー10の含有量を、複合材料1全体にフィラー10が占める割合で規定する場合には、フィラー10の含有量は、複合材料1の熱伝導性の十分な向上を図る観点から、おおむね、40体積%以上とすればよい。一方、複合材料1の比重の増大を抑える観点から、60体積%以下とすればよい。また、フィラー10の含有量は、図1に示すように、隣接するフィラー粒子10の無機層12が接触し、熱伝導経路が形成されるように選択することが好ましい。 When the content of the filler 10 is defined by the ratio of the filler 10 to the entire composite material 1, the content of the filler 10 is generally 40 from the viewpoint of sufficiently improving the thermal conductivity of the composite material 1. The volume may be% or more. On the other hand, from the viewpoint of suppressing an increase in the specific gravity of the composite material 1, it may be 60% by volume or less. Further, as shown in FIG. 1, the content of the filler 10 is preferably selected so that the inorganic layers 12 of the adjacent filler particles 10 come into contact with each other to form a heat conduction path.
 以上のように、本実施形態にかかる複合材料1は、高熱伝導性と低比重を両立するものである。よって、本複合材料1は、次に説明するワイヤーハーネスのように、軽量性と放熱性の両方が求められる部材を構成する材料として、好適に用いることができる。本実施形態にかかる複合材料1は、上記で説明した製造方法で製造した粉末状のフィラー10を、所定の配合比でマトリクス材料2に混合することにより、製造することができる。 As described above, the composite material 1 according to the present embodiment has both high thermal conductivity and low specific gravity. Therefore, the composite material 1 can be suitably used as a material for constituting a member that is required to have both light weight and heat dissipation, such as a wire harness described below. The composite material 1 according to the present embodiment can be produced by mixing the powdery filler 10 produced by the production method described above with the matrix material 2 at a predetermined blending ratio.
<ワイヤーハーネス>
 最後に、本開示の実施形態にかかるワイヤーハーネスについて説明する。本実施形態にかかるワイヤーハーネスは、上記で説明した本開示の実施形態にかかる熱伝導性複合材料1を含むものである。図2に示すように、ワイヤーハーネス5は、電線導体の外周に絶縁被覆を設けた絶縁電線51の端末部に、接続端子(不図示)を含んだコネクタ52が設けられたものである。ワイヤーハーネス5において、絶縁電線51が複数束ねられていてもよく、この場合に、絶縁電線51を束ねる外装材として、テープ53が用いられる。
<Wire harness>
Finally, the wire harness according to the embodiment of the present disclosure will be described. The wire harness according to the present embodiment includes the heat conductive composite material 1 according to the embodiment of the present disclosure described above. As shown in FIG. 2, the wire harness 5 is provided with a connector 52 including a connection terminal (not shown) at the terminal portion of the insulated wire 51 having an insulating coating on the outer periphery of the wire conductor. In the wire harness 5, a plurality of insulated wires 51 may be bundled, and in this case, the tape 53 is used as an exterior material for bundling the insulated wires 51.
 本実施形態にかかるワイヤーハーネス5において、上記で説明した本開示の実施形態にかかる複合材料1は、放熱性が求められる種々の部材を構成することができる。主に、マトリクス材料2としての有機ポリマーにフィラー10が添加された複合材料1を、絶縁性の部材として用いることが好ましい。そのような絶縁性の部材として、絶縁電線51を構成する絶縁被覆、絶縁電線51の外側に配置されるテープ53や保護管等の外装材、構成部材間の固定や止水に用いられる接着剤、コネクタ52を構成するコネクタハウジング等を例示することができる。 In the wire harness 5 according to the present embodiment, the composite material 1 according to the embodiment of the present disclosure described above can constitute various members that are required to have heat dissipation. Mainly, it is preferable to use the composite material 1 in which the filler 10 is added to the organic polymer as the matrix material 2 as the insulating member. As such an insulating member, an insulating coating constituting the insulated wire 51, an exterior material such as a tape 53 or a protective tube arranged outside the insulated wire 51, and an adhesive used for fixing or stopping water between the constituent members. , The connector housing and the like constituting the connector 52 can be exemplified.
 近年、自動車分野において、中でも電気自動車やハイブリッド車において、電線に流される電流が大きくなり、それに伴って、電線から発生する熱量が大きくなる傾向がある。また、多数の電線や電気接続部材が近接して配置されるようになってきている。これらの場合に、ワイヤーハーネス5を構成する各種部材が、高い放熱性を有することが、電線や電気接続部材からの放熱の影響を小さく抑える観点から、重要である。ワイヤーハーネス5において、そのように放熱の影響を受ける可能性のある部材を、高い熱伝導性を有する上記複合材料1を用いて構成することにより、効率的に放熱を行うことが可能となる。また、自動車分野において、構成部材の軽量化は重要な課題であり、比重が小さく抑えられた上記複合材料1を用いることで、ワイヤーハーネス5の軽量化にも貢献することができる。 In recent years, in the automobile field, especially in electric vehicles and hybrid vehicles, the current flowing through the electric wire tends to increase, and the amount of heat generated from the electric wire tends to increase accordingly. In addition, a large number of electric wires and electrical connection members are being arranged in close proximity to each other. In these cases, it is important that the various members constituting the wire harness 5 have high heat dissipation from the viewpoint of minimizing the influence of heat dissipation from the electric wires and the electrical connection members. In the wire harness 5, by forming such a member that may be affected by heat dissipation by using the composite material 1 having high thermal conductivity, it is possible to efficiently dissipate heat. Further, in the field of automobiles, weight reduction of constituent members is an important issue, and by using the composite material 1 having a small specific gravity, it is possible to contribute to weight reduction of the wire harness 5.
 以下、実施例を示す。本発明はこれら実施例によって限定されるものではない。以下、特記しない限り、試料の作製および評価は、大気中、室温にて行っている。 Examples are shown below. The present invention is not limited to these examples. Hereinafter, unless otherwise specified, samples are prepared and evaluated in the air at room temperature.
[1]フィラーの構造と特性
 まず、本開示の実施形態にかかるフィラーの構造を確認するとともに、フィラーを添加した複合材料において、どのような比重と熱伝導性が得られるかを確認した。
[1] Structure and characteristics of filler First, the structure of the filler according to the embodiment of the present disclosure was confirmed, and what kind of specific gravity and thermal conductivity could be obtained in the composite material to which the filler was added was confirmed.
[試験方法]
(1)フィラーの準備
 まず、有機部を構成する樹脂の種類を変化させて、F1~F3の3種のフィラーを合成した。以下、各フィラーの合成方法について説明する。
[Test method]
(1) Preparation of filler First, three types of fillers, F1 to F3, were synthesized by changing the type of resin constituting the organic part. Hereinafter, a method for synthesizing each filler will be described.
・フィラーF1
 ポリアクリル酸粒子(平均分子量1,000,000;富士フイルム和光純薬社製)5gを、トルエン100mLに懸濁した。その懸濁液を撹拌しながら、アルミニウムイソプロポキシド(東京化成工業社製)10gを加え、110℃に加熱して還流撹拌した。さらに、加熱還流撹拌を続けながら、純水を10mL加え、40時間加熱還流撹拌を続けた。その後、反応液を室温に戻して濾過し、得られた固形成分を、100℃で48時間乾燥して、フィラーF1を得た。なお、用いたポリアクリル酸粒子の平均粒径は、40μmであった。
・ Filler F1
5 g of polyacrylic acid particles (average molecular weight 1,000,000; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were suspended in 100 mL of toluene. While stirring the suspension, 10 g of aluminum isopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the suspension was heated to 110 ° C. and stirred under reflux. Further, while continuing the heating / reflux stirring, 10 mL of pure water was added, and the heating / reflux stirring was continued for 40 hours. Then, the reaction solution was returned to room temperature and filtered, and the obtained solid component was dried at 100 ° C. for 48 hours to obtain filler F1. The average particle size of the polyacrylic acid particles used was 40 μm.
・フィラーF2
 カルボン酸変性ポリプロピレン(PP)(アディバント社製「ポリボンド 1001」)の凍結粉砕品5gを、イソブチルアルコール100mLに懸濁した。その懸濁液を撹拌しながら、アルミニウムイソプロポキシド(東京化成工業社製)10gを加え、110℃に加熱して還流撹拌した。さらに、加熱還流撹拌を続けながら、純水を10mL加え、40時間加熱還流撹拌を続けた。その後、反応液を室温に戻して濾過し、得られた固形成分を、100℃で48時間乾燥して、フィラーF2を得た。なお、用いたカルボン酸変性PP粉砕品の平均粒径は、35μmであった。
・ Filler F2
5 g of a freeze-milled product of carboxylic acid-modified polypropylene (PP) (“Polybond 1001” manufactured by Adivant Co., Ltd.) was suspended in 100 mL of isobutyl alcohol. While stirring the suspension, 10 g of aluminum isopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the suspension was heated to 110 ° C. and stirred under reflux. Further, while continuing the heating / reflux stirring, 10 mL of pure water was added, and the heating / reflux stirring was continued for 40 hours. Then, the reaction solution was returned to room temperature and filtered, and the obtained solid component was dried at 100 ° C. for 48 hours to obtain filler F2. The average particle size of the carboxylic acid-modified PP pulverized product used was 35 μm.
・フィラーF3
 無水マレイン酸変性SEBS(MAH-SEBS;旭化成社製「タフテック M1911」)5gを、200mLのTHFに溶解し、撹拌しながらアルミニウムイソプロポキシド(東京化成工社製)10gを加えた。その溶液を80℃に加熱して2時間還流撹拌した。さらに、反応液に純水20mLを加えて乳濁させた後、撹拌を続けながら、100℃に加熱してTHFを留去した。その後さらに、110℃での加熱還流撹拌を40時間続けた。得られた反応液を室温に戻して濾過し、固形成分を、100℃で48時間乾燥して、フィラーF3を得た。一連の反応を経た後、MAH-SEBSは、平均粒径40μmの粒子状となっていた。
・ Filler F3
5 g of maleic anhydride-modified SEBS (MAH-SEBS; "Tuftec M1911" manufactured by Asahi Kasei Corporation) was dissolved in 200 mL of THF, and 10 g of aluminum isopropoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added with stirring. The solution was heated to 80 ° C. and refluxed and stirred for 2 hours. Further, 20 mL of pure water was added to the reaction solution to make it emulsion, and then the mixture was heated to 100 ° C. while continuing stirring to distill off THF. After that, heating under reflux stirring at 110 ° C. was continued for 40 hours. The obtained reaction solution was returned to room temperature and filtered, and the solid component was dried at 100 ° C. for 48 hours to obtain filler F3. After undergoing a series of reactions, MAH-SEBS was in the form of particles having an average particle size of 40 μm.
 上記フィラーF1~F3に加えて、参照用に、以下3種のフィラーを準備した。
・PAA:ポリアクリル酸粒子(平均分子量1,000,000;富士フイルム和光純薬社製)-フィラーF1の合成に用いたのと同じもの
・CA-PP:カルボン酸変性PP(アディバント社製「ポリボンド 1001」)の凍結粉砕品-フィラーF2の合成に用いたのと同じもの
・アルミナ:昭和電工社製 充填用丸み状アルミナ(1~80μm径;平均粒径40μm)
In addition to the fillers F1 to F3, the following three types of fillers were prepared for reference.
-PAA: Polyacrylic acid particles (average molecular weight 1,000,000; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)-Same as used for the synthesis of filler F1-CA-PP: Carboxylic acid-modified PP (manufactured by Adivant Co., Ltd.) Polybond 1001 ”) freeze-crushed product-the same as used for the synthesis of filler F2 ・ Alumina: Showa Denko Co., Ltd. Rounded alumina for filling (1-80 μm diameter; average particle size 40 μm)
(2)複合材料の調製
 上記で準備した各フィラーをマトリクス材料に分散させ、試料A1~A3および試料B1~B5にかかる複合材料を調製した。ここで、複合材料を構成するマトリクス材料は、以下の2液系エポキシ樹脂の硬化物とした。
・エポキシ主剤:ビスフェノールAのグリシジルエーテル(三菱化学社製「jER828」;エポキシ当量:190g/eq.)
・エポキシ硬化剤:アミンタイプ(三菱化学社製「ST12」;アミン価:345~385KOHmg/g)
(2) Preparation of Composite Material Each filler prepared above was dispersed in a matrix material to prepare a composite material for Samples A1 to A3 and Samples B1 to B5. Here, the matrix material constituting the composite material was a cured product of the following two-component epoxy resin.
-Epoxy main agent: glycidyl ether of bisphenol A ("jER828" manufactured by Mitsubishi Chemical Corporation; epoxy equivalent: 190 g / eq.)
-Epoxy curing agent: amine type (Mitsubishi Chemical Corporation "ST12"; amine value: 345 to 385 KOHmg / g)
 後の表2に示す質量比で、各種フィラーとエポキシ主剤、エポキシ硬化剤を、常温にてメノウ乳鉢で混合し、常温真空下で1分間脱泡した。そして、混合物を、熱プレス成形機により、100℃にて10分間加熱し、硬化させた。硬化体のうち、目視にて気泡が確認されない部分を切り出して、樹脂硬化物試験片(10mm×10mm×1mm)を作製した。なお、表2に示したフィラーの添加量は、下記のように測定された比重に基づいて、容量当たりの配合量が50体積%(試料B5のみ31体積%)となるように、設定したものである。試料B1については、フィラーを添加せず、エポキシ樹脂のみから樹脂硬化物試験片を作製した。 Various fillers, epoxy main agent, and epoxy curing agent were mixed in an agate mortar at room temperature at the mass ratio shown in Table 2 below, and defoamed for 1 minute under normal temperature vacuum. Then, the mixture was heated by a hot press molding machine at 100 ° C. for 10 minutes to be cured. A resin cured product test piece (10 mm × 10 mm × 1 mm) was prepared by cutting out a portion of the cured product in which no bubbles were visually confirmed. The amount of the filler added shown in Table 2 was set so that the blending amount per volume was 50% by volume (31% by volume only for sample B5) based on the specific gravity measured as shown below. Is. For sample B1, a cured resin test piece was prepared from only the epoxy resin without adding a filler.
(3)フィラーの構造の評価
 フィラーF1~F3について、走査電子顕微鏡(SEM)による観察を行い、構造を評価した。具体的には、フィラー粒子を樹脂に包埋して切断し、断面をSEMにて観察した。また、SEM観察と合わせて、エネルギー分散型X線分析(EDX)による測定も行い、断面におけるCおよびAlの分布を評価した。
(3) Evaluation of filler structure The structures of fillers F1 to F3 were evaluated by observing them with a scanning electron microscope (SEM). Specifically, the filler particles were embedded in a resin and cut, and the cross section was observed by SEM. In addition to SEM observation, measurement by energy dispersive X-ray analysis (EDX) was also performed to evaluate the distribution of C and Al in the cross section.
 さらに、各フィラーについて、電子比重計(アルファーミラージュ社製)を用いて、比重(真密度)を測定した。各フィラーを構成するポリマー粒子およびアルミナフィラーについても、同様に比重を測定した。 Furthermore, the specific gravity (true density) of each filler was measured using an electronic hydrometer (manufactured by Alpha Mirage). The specific gravities of the polymer particles and alumina fillers constituting each filler were measured in the same manner.
(4)複合材料の特性評価
 上記で作製した各樹脂硬化物試験片に対して、密度および熱伝導率を測定した。密度は水中置換法によって測定した。熱伝導率は、熱伝導装置(NETZSCH社製「LFA447」)を用い、レーザーフラッシュ法にて測定した。
(4) Evaluation of characteristics of composite material The density and thermal conductivity of each of the cured resin test pieces prepared above were measured. Density was measured by the underwater substitution method. The thermal conductivity was measured by a laser flash method using a heat conductive device (“LFA447” manufactured by NETZSCH).
[試験結果]
(フィラーの構造)
 図3Aに、フィラーF1の断面のSEM観察像(二次電子像)を示す。明るい箇所ほど、二次電子の検出量が多くなっており、帯電が大きいことを示している。また、図3B~3Dに、それぞれ、図3AのSEM観察に対応するEDX測定によって得られた、C,Al,Oの分布像を示す。明るい箇所ほど、各元素の濃度が高くなっている。なお、像を掲載したフィラーは、直径約40μmのものである。
[Test results]
(Filler structure)
FIG. 3A shows an SEM observation image (secondary electron image) of the cross section of the filler F1. The brighter the part, the larger the amount of secondary electrons detected, indicating that the charge is large. Further, FIGS. 3B to 3D show distribution images of C, Al, and O obtained by EDX measurement corresponding to the SEM observation of FIG. 3A, respectively. The brighter the area, the higher the concentration of each element. The filler on which the image is posted has a diameter of about 40 μm.
 図3AのSEM像によると、明るく観察される粒状部の表面に、比較的暗く観察される層状の領域が観察されている。層の厚さは、約2μmとなっており、樹脂粒子の粒径の約5%に対応する。明るく観察されている粒状部は、帯電が大きくなっており、有機物であるポリマー粒子に由来する部位に、対応づけることができる。一方、層状の部位は、帯電が小さく、無機物質より構成されていると考えられる。 According to the SEM image of FIG. 3A, a layered region observed relatively dark is observed on the surface of the granular portion observed brightly. The thickness of the layer is about 2 μm, which corresponds to about 5% of the particle size of the resin particles. The brightly observed granular portion has a large charge and can be associated with a portion derived from the polymer particles which are organic substances. On the other hand, the layered portion has a small charge and is considered to be composed of an inorganic substance.
 さらに、図3BのC(炭素)の分布像を見ると、SEMで観察された粒状部において高密度となっており、表面の層状部では、その密度はかなり低くなっている。一方、図3CのAl(アルミニウム)の分布像を見ると、表面の層状部では高密度のAlが観測されているのに対し、内部の粒状部では、Alはほぼ検出されていない。また、図3DのO(酸素)の分布像を見ると、おおむね、図3CでAlが多く分布している箇所に、Oも多く分布している。 Furthermore, looking at the distribution image of C (carbon) in FIG. 3B, the density is high in the granular portion observed by SEM, and the density is considerably low in the layered portion on the surface. On the other hand, looking at the distribution image of Al (aluminum) in FIG. 3C, high-density Al is observed in the layered portion on the surface, whereas Al is hardly detected in the granular portion inside. Further, looking at the distribution image of O (oxygen) in FIG. 3D, in general, a large amount of O is distributed in the place where a large amount of Al is distributed in FIG. 3C.
 これらの観察結果から、内部の粒状部を、ポリマー粒子に由来する有機部に対応づけることができる。一方、表面の層状部を、アルミニウムプロポキシドを原料として形成されたAl酸化物(あるいは水酸化物)より構成される、無機層に対応付けることができる。また、有機部には、Al化合物の侵入等、無機層の形成による影響が実質的に及んでいないことが分かる。以上より、フィラーが、有機部の表面を無機層が被覆した二重構造を有する粒状体として形成されていることが、確認された。結果の掲載は省略するが、フィラーF2,F3についても、同様の二重構造が観察された。 From these observation results, the granular part inside can be associated with the organic part derived from the polymer particles. On the other hand, the layered portion of the surface can be associated with an inorganic layer composed of Al oxide (or hydroxide) formed from aluminum propoxide as a raw material. Further, it can be seen that the organic portion is substantially not affected by the formation of the inorganic layer such as the invasion of the Al compound. From the above, it was confirmed that the filler was formed as a granular material having a double structure in which the surface of the organic portion was coated with an inorganic layer. Although the results are omitted, the same double structure was observed for the fillers F2 and F3.
 次に、各フィラーについて、フィラー全体、およびフィラーを構成するポリマー粒子の比重の計測結果を、表1に示す。それらの比重をもとに式(1)によって算出した無機層比重率Rについても、表中に合わせて示す。
Figure JPOXMLDOC01-appb-T000001
Next, for each filler, Table 1 shows the measurement results of the specific gravity of the entire filler and the polymer particles constituting the filler. The inorganic layer specific gravity ratio R calculated by the formula (1) based on those specific gravities is also shown in the table.
Figure JPOXMLDOC01-appb-T000001
 表1によると、フィラーF1~F3のいずれにおいても、ポリマー粒子より構成される有機部の表面に無機層を形成したことにより、比重が、ポリマー粒子のみの場合よりも増加している。しかし、それらフィラーの比重は、いずれも、1.5以下となっており、4.0とのアルミナフィラーの比重よりも、かなり小さく抑えられている。このように、フィラーを、無機物質のみから構成するのではなく、有機部の表面に無機物質を層状に有する二重構造とすることにより、フィラー全体としての比重を、大きく低減することができる。 According to Table 1, in each of the fillers F1 to F3, the specific gravity is increased as compared with the case where only the polymer particles are used, because the inorganic layer is formed on the surface of the organic portion composed of the polymer particles. However, the specific gravity of each of these fillers is 1.5 or less, which is considerably smaller than the specific gravity of the alumina filler of 4.0. As described above, the specific gravity of the filler as a whole can be significantly reduced by forming the filler into a double structure in which the inorganic substances are layered on the surface of the organic portion instead of being composed of only the inorganic substances.
(複合材料の特性)
 表2に、試料A1~A3および試料B1~B5にかかる複合材料ついて、フィラーおよびマトリクス材料の配合比(単位:質量%)、およびフィラーの配合量(単位:体積%)とともに、比重および熱伝導率の計測結果をまとめる。
(Characteristics of composite material)
Table 2 shows the specific gravity and thermal conductivity of the composite materials for Samples A1 to A3 and Samples B1 to B5, along with the blending ratio (unit: mass%) of the filler and matrix material and the blending amount (unit: volume%) of the filler. Summarize the measurement results of the rate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2によると、汎用的に熱伝導性フィラーとして用いられているアルミナフィラーを50体積%添加した試料B4においては、フィラーを添加していない試料B1と比較して、熱伝導率が大幅に向上しているものの、比重が、2倍以上に大きくなっている。試料B5において、フィラーの添加量を、熱伝導率が1.0W/(m・K)を下回る31体積%まで低下させてもなお、比重は、試料B1の1.7倍程度となっている。このように、フィラーとして、無機物質のみを用いると、複合材料の比重が大きくなってしまう。 According to Table 2, in sample B4 to which 50% by volume of alumina filler, which is generally used as a thermally conductive filler, is added, the thermal conductivity is significantly improved as compared with sample B1 to which no filler is added. However, the specific gravity is more than doubled. In sample B5, even if the amount of filler added is reduced to 31% by volume, which is less than 1.0 W / (m · K) in thermal conductivity, the specific gravity is still about 1.7 times that of sample B1. .. As described above, if only an inorganic substance is used as the filler, the specific gravity of the composite material becomes large.
 一方で、試料B2,B3では、マトリクス材料に、ポリマー粒子そのものを添加しており、試料B1と比べて、比重の増大は見られない。しかし、アルミニウム化合物のように、高熱伝導性を示す無機物質を含んでいないため、熱伝導率は、試料B1とほぼ変わらない低値を示している。このように、ポリマー粒子そのものは、熱伝導性フィラーとして利用することはできない。 On the other hand, in the samples B2 and B3, the polymer particles themselves are added to the matrix material, and no increase in specific gravity is observed as compared with the sample B1. However, unlike the aluminum compound, it does not contain an inorganic substance exhibiting high thermal conductivity, so that the thermal conductivity shows a low value that is almost the same as that of sample B1. As described above, the polymer particles themselves cannot be used as a thermally conductive filler.
 それら試料B2~B5とは異なり、有機部と無機層の二重構造を有するフィラーF1~F3をマトリクス材料に添加した試料A1~A3においては、フィラーを50体積%も添加しているにもかかわらず、フィラーを添加した複合材料の比重が、1.5以下に抑えられている。フィラーを添加していない試料B1の比重からの増加率にして、25%以下である。特に、試料A2,A3では、マトリクス材料よりもフィラーの方が比重が小さいことに対応して、フィラーを添加することで、比重がむしろ低下している。 Unlike the samples B2 to B5, in the samples A1 to A3 in which the fillers F1 to F3 having a double structure of an organic part and an inorganic layer were added to the matrix material, even though the filler was added in an amount of 50% by volume. However, the specific gravity of the composite material to which the filler is added is suppressed to 1.5 or less. The rate of increase from the specific gravity of sample B1 to which no filler is added is 25% or less. In particular, in the samples A2 and A3, the specific gravity is rather lowered by adding the filler in response to the fact that the filler has a smaller specific gravity than the matrix material.
 そして、試料A1~A3では、いずれも、熱伝導率が、1.0W/(m・K)以上となっている。これらの値は、フィラーを添加していない試料B1の熱伝導率と比較して、5倍以上に相当する。この結果から、有機部の表面に無機層を形成したフィラーF1~F3を用いた試料A1~A3においては、フィラーが、低比重の有機部を含んでいることにより、フィラーを添加した複合材料全体として、比重を小さく抑えながら、高い熱伝導率が得られることが分かる。 And, in each of the samples A1 to A3, the thermal conductivity is 1.0 W / (m · K) or more. These values correspond to 5 times or more the thermal conductivity of the sample B1 to which the filler is not added. From this result, in the samples A1 to A3 using the fillers F1 to F3 having the inorganic layer formed on the surface of the organic part, the filler contains the organic part having a low specific gravity, so that the entire composite material to which the filler is added is added. As a result, it can be seen that high thermal conductivity can be obtained while keeping the specific gravity small.
[2]無機層の量と特性の関係
 次に、本開示の実施形態にかかるフィラーにおいて、無機層が占める割合を変化させた際に、フィラー自体、またフィラーを添加した複合材料の特性がどのように変化するのかを調査した。
[2] Relationship between Amount and Characteristics of Inorganic Layer Next, in the filler according to the embodiment of the present disclosure, when the ratio occupied by the inorganic layer is changed, what are the characteristics of the filler itself and the composite material to which the filler is added? I investigated how it would change.
[試験方法]
(1)試料の作製
 上記試験[1]でフィラーF1を合成したのと同様にして、フィラーF1-1~F1-7を合成した。ただし、各フィラーの合成において、原料として、ポリアクリル酸5gに対して添加するアルミニウムイソプロポキシドの量を、表3のように変化させた。フィラーF1-3は、試験[1]で合成したフィラーF1と同じものとなっている。
[Test method]
(1) Preparation of sample Fillers F1-1 to F1-7 were synthesized in the same manner as in which the filler F1 was synthesized in the above test [1]. However, in the synthesis of each filler, the amount of aluminum isopropoxide added to 5 g of polyacrylic acid as a raw material was changed as shown in Table 3. The filler F1-3 is the same as the filler F1 synthesized in the test [1].
 得られた各フィラーをエポキシ樹脂に添加して、試料C1~C7にかかる複合材料を調製した。複合材料の調製および樹脂硬化物試験片の作製は、試験[1]と同様に行った。フィラーの添加量は、容量当たりの配合量が50体積%となるようにした。 Each of the obtained fillers was added to the epoxy resin to prepare a composite material for Samples C1 to C7. The preparation of the composite material and the preparation of the cured resin test piece were carried out in the same manner as in the test [1]. The amount of the filler added was such that the blending amount per volume was 50% by volume.
(2)特性評価
 試験[1]と同様にして、各フィラーに対して、比重を計測した。また、各樹脂硬化物試験片について、比重と熱伝導率を計測した。
(2) Characteristic evaluation The specific gravity of each filler was measured in the same manner as in the test [1]. In addition, the specific gravity and thermal conductivity of each cured resin test piece were measured.
[試験結果]
 表3に、各フィラーを添加した試料C1~C7について、各成分の配合比(単位:質量%)およびフィラーの配合量(単位:体積%)とともに、比重および熱伝導率の測定結果を示す。左欄には、各フィラーについて、合成時に用いたアルミニウムイソプロポキシドの量とともに、比重および無機層比重率Rを示している。無機層比重率Rは、有機部の比重を、PAAの値である1.20として、算出したものである。
[Test results]
Table 3 shows the measurement results of the specific gravity and thermal conductivity of the samples C1 to C7 to which each filler was added, along with the compounding ratio (unit: mass%) of each component and the compounding amount (unit: volume%) of the filler. The left column shows the specific gravity and the specific gravity ratio R of the inorganic layer, as well as the amount of aluminum isopropoxide used in the synthesis for each filler. The specific gravity ratio R of the inorganic layer is calculated by setting the specific gravity of the organic part to 1.20, which is the value of PAA.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 まず、表3の左欄によると、フィラーF1-1~F1~7において、合成時に使用するアルミニウムプロポキシドの量が多くなるほど、フィラーの比重が大きくなり、それにともなって、無機層比重率も大きくなっている。このことから、フィラー合成時に使用する無機層の原料化合物の濃度によって、ポリマー粒子の表面に形成する無機層の厚さを制御でき、原料化合物の濃度を高くするほど、厚い無機層が形成されることが分かる。フィラーF1-1において、用いたアルミニウムプロポキシドが全て、アルミナ(Al)となって無機層を構成すると仮定すると、フィラーに占める無機層の割合は、質量比で9質量%、体積比で3体積%と見積もられる。また、ポリマー粒子の粒径に対する無機層の厚さは、約1%と見積もられる。 First, according to the left column of Table 3, in the fillers F1-1 to F1 to 7, the larger the amount of aluminum isopropoxide used at the time of synthesis, the higher the specific gravity of the filler, and accordingly, the higher the specific gravity of the inorganic layer. It has become. From this, the thickness of the inorganic layer formed on the surface of the polymer particles can be controlled by the concentration of the raw material compound of the inorganic layer used at the time of filler synthesis, and the higher the concentration of the raw material compound, the thicker the inorganic layer is formed. You can see that. Assuming that all the aluminum propoxides used in the filler F1-1 are alumina (Al 2 O 3 ) to form an inorganic layer, the ratio of the inorganic layer to the filler is 9% by mass in terms of mass ratio and volume ratio. Is estimated to be 3% by mass. The thickness of the inorganic layer with respect to the particle size of the polymer particles is estimated to be about 1%.
 表3によると、それぞれフィラーF1-1~F1-7を添加した試料C1~C7において、添加したフィラーの無機層比重率が大きくなるほど、複合材料全体としての比重も大きくなっている。熱伝導率については、比較的フィラーの無機層比重率が小さい領域においては、添加したフィラーの無機層比重率が大きくなるほど、熱伝導率が高くなる傾向が見られている。無機層比重率が最も小さいフィラーを用いた試料C1では、熱伝導率は、フィラーを添加しない場合の値である0.18W/(m・K)と比較して(表2の試料B1参照)、それほど向上していないのに対し、試料C2~C7で、フィラーの無機層比重率を5%以上とすると、熱伝導率が大きく向上し、1.0W/(m・K)を超えている。 According to Table 3, in the samples C1 to C7 to which the fillers F1-1 to F1-7 were added, the greater the specific gravity of the inorganic layer of the added filler, the greater the specific gravity of the composite material as a whole. Regarding the thermal conductivity, in the region where the specific weight of the inorganic layer of the filler is relatively small, the higher the specific weight of the inorganic layer of the added filler, the higher the thermal conductivity tends to be. In sample C1 using the filler having the smallest inorganic layer specific gravity, the thermal conductivity was 0.18 W / (m · K), which is the value when no filler was added (see sample B1 in Table 2). However, when the inorganic layer specific gravity ratio of the filler is 5% or more in the samples C2 to C7, the thermal conductivity is greatly improved and exceeds 1.0 W / (m · K). ..
 しかし、試料C5~C7のように、フィラーの無機層比重率を40%を超えて大きくした場合には、熱伝導率の向上は飽和している。つまり、フィラーの無機層比重率を高め、フィラーにおいて無機層が占める割合を大きくしすぎても、熱伝導率を効率的に向上させられないにもかかわらず、フィラーおよび複合材料の比重ばかりが大きくなる。 However, when the specific gravity of the inorganic layer of the filler is increased to more than 40% as in the samples C5 to C7, the improvement in thermal conductivity is saturated. That is, even if the specific gravity of the inorganic layer of the filler is increased and the proportion of the inorganic layer in the filler is increased too much, the thermal conductivity cannot be improved efficiently, but the specific gravity of the filler and the composite material is large. Become.
 以上の結果から、熱伝導率の向上と比重の低減を高度に両立する観点から、フィラーの無機層比重率は、5%以上、また40%以下程度の範囲としておくことが好ましいと言える。表1に示すように、フィラーF2,F3についても、無機層比重率Rは、5%以上40%以下の範囲に収まっている。 From the above results, it can be said that the inorganic layer specific gravity of the filler is preferably in the range of 5% or more and 40% or less from the viewpoint of achieving both improvement of thermal conductivity and reduction of specific gravity. As shown in Table 1, the inorganic layer specific weight ratio R of the fillers F2 and F3 is also within the range of 5% or more and 40% or less.
[3]フィラーの添加量と特性の関係
 最後に、複合材料におけるフィラーの添加量と、特性との関係について調査した。
[3] Relationship between the amount of filler added and its properties Finally, the relationship between the amount of filler added in the composite material and its properties was investigated.
[試験方法]
(1)試料の作製
 上記試験[1]で作製したフィラーF1を、エポキシ樹脂に添加して、試料D1~D7にかかる複合材料を調製した。複合材料の調製および樹脂硬化物試験片の作製は、試験[1]と同様に行った。ただし、各試料において、フィラーの添加量は、表4に示すように、変化させた。フィラーの配合量が50体積%である試料D6は、表2の試料A1と同じものである。
[Test method]
(1) Preparation of sample The filler F1 prepared in the above test [1] was added to the epoxy resin to prepare a composite material for samples D1 to D7. The preparation of the composite material and the preparation of the cured resin test piece were carried out in the same manner as in the test [1]. However, in each sample, the amount of filler added was changed as shown in Table 4. The sample D6 in which the blending amount of the filler is 50% by volume is the same as that of the sample A1 in Table 2.
(2)特性評価
 試験[1]と同様にして、各樹脂硬化物試験片について、比重と熱伝導率を計測した。
(2) Characteristic evaluation In the same manner as in the test [1], the specific gravity and thermal conductivity of each cured resin test piece were measured.
[試験結果]
 表4に、各試料について、各成分の配合比(単位:質量%)、およびフィラーの配合量(単位:体積%)とともに、比重および熱伝導率の測定結果を示す。
[Test results]
Table 4 shows the measurement results of specific gravity and thermal conductivity together with the compounding ratio (unit: mass%) of each component and the compounding amount (unit: volume%) of the filler for each sample.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4によると、フィラーの配合量を多くするほど、熱伝導率が高くなっている。しかも、フィラー配合量が多い領域ほど、フィラー配合量の増加に対する熱伝導率の上昇幅が大きくなっている。この挙動は、従来一般の無機化合物よりなるフィラーについて、配合量を増やした際の熱伝導率の挙動と類似したものである。この結果から、有機部の表面に無機層が形成された本開示の実施形態にかかるフィラーにおいても、従来一般の無機化合物よりなるフィラーと同様に、隣接するフィラーが接触することで、マトリクス材料中に熱伝導パスが形成されるという機構によって、熱伝導率の向上が達成されていることが分かる。 According to Table 4, the larger the amount of filler blended, the higher the thermal conductivity. Moreover, the larger the filler compounding amount, the larger the increase in thermal conductivity with respect to the increase in the filler compounding amount. This behavior is similar to the behavior of the thermal conductivity when the blending amount is increased for a filler made of a conventional general inorganic compound. From this result, even in the filler according to the embodiment of the present disclosure in which an inorganic layer is formed on the surface of the organic portion, the adjacent fillers come into contact with each other in the matrix material as in the case of the filler made of a conventional general inorganic compound. It can be seen that the improvement of the thermal conductivity is achieved by the mechanism that the heat conduction path is formed in.
 表4の結果によると、複合材料の熱伝導率を1.0W/(m・K)以上に向上させる観点からは、フィラーの配合量を40体積%以上とすることが好ましいと言える。一方、複合材料の比重は、フィラーの配合量を70体積%としても、1.5以下に抑えられているが、さらに比重を1.3以下に抑えたい場合には、フィラーの配合量を60体積%以下とすればよい。 According to the results in Table 4, from the viewpoint of improving the thermal conductivity of the composite material to 1.0 W / (m · K) or more, it can be said that the blending amount of the filler is preferably 40% by volume or more. On the other hand, the specific gravity of the composite material is suppressed to 1.5 or less even if the compounding amount of the filler is 70% by volume, but if it is desired to further suppress the specific gravity to 1.3 or less, the compounding amount of the filler is 60. The volume may be% or less.
 以上、本開示の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the embodiments of the present disclosure have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
1     (熱伝導性)複合材料
10    (熱伝導性)フィラー
11    有機部
12    無機層
2     マトリクス材料
5     ワイヤーハーネス
51    絶縁電線
52    コネクタ
53    テープ

 
1 (heat conductivity) Composite material 10 (heat conductivity) Filler 11 Organic part 12 Inorganic layer 2 Matrix material 5 Wire harness 51 Insulated wire 52 Connector 53 Tape

Claims (15)

  1.  有機ポリマーを含んだ有機部と、
     前記有機部の表面を被覆する、無機物質を含んだ無機層と、を有し、
     粒子状となっている、熱伝導性フィラー。
    The organic part containing the organic polymer and
    It has an inorganic layer containing an inorganic substance that covers the surface of the organic portion, and has.
    A thermally conductive filler in the form of particles.
  2.  前記有機ポリマーは、酸性基を有する、請求項1に記載の熱伝導性フィラー。 The heat conductive filler according to claim 1, wherein the organic polymer has an acidic group.
  3.  前記有機ポリマーは、ポリアクリル酸、アクリル酸共重合物、無水マレイン酸変性ポリマーの少なくとも1種を含有する、請求項1または請求項2に記載の熱伝導性フィラー。 The thermally conductive filler according to claim 1 or 2, wherein the organic polymer contains at least one of polyacrylic acid, an acrylic acid copolymer, and a maleic anhydride-modified polymer.
  4.  前記無機物質は、金属酸化物を含む、請求項1から請求項3のいずれか1項に記載の熱伝導性フィラー。 The thermally conductive filler according to any one of claims 1 to 3, wherein the inorganic substance contains a metal oxide.
  5.  前記無機物質は、AlおよびMgの少なくとも一方を含有する化合物を含む、請求項1から請求項4のいずれか1項に記載の熱伝導性フィラー。 The thermally conductive filler according to any one of claims 1 to 4, wherein the inorganic substance contains a compound containing at least one of Al and Mg.
  6.  前記有機部のみの比重をR1、前記熱伝導性フィラー全体としての比重をR2とし、無機層比重率RをR=(R2-R1)/R1として、
     前記無機層比重率Rは、5%以上である、請求項1から請求項5のいずれか1項に記載の熱伝導性フィラー。
    The specific gravity of only the organic part is R1, the specific gravity of the heat conductive filler as a whole is R2, and the specific gravity of the inorganic layer R is R = (R2-R1) / R1.
    The heat conductive filler according to any one of claims 1 to 5, wherein the inorganic layer specific weight R is 5% or more.
  7.  前記有機部のみの比重をR1、前記熱伝導性フィラー全体としての比重をR2とし、無機層比重率RをR=(R2-R1)/R1として、
     前記無機層比重率Rは、40%以下である、請求項1から請求項6のいずれか1項に記載の熱伝導性フィラー。
    The specific gravity of only the organic part is R1, the specific gravity of the heat conductive filler as a whole is R2, and the specific gravity of the inorganic layer R is R = (R2-R1) / R1.
    The heat conductive filler according to any one of claims 1 to 6, wherein the inorganic layer specific weight R is 40% or less.
  8.  前記熱伝導性フィラー全体としての比重R2は、1.5以下である、請求項1から請求項7のいずれか1項に記載の熱伝導性フィラー。 The heat conductive filler according to any one of claims 1 to 7, wherein the specific gravity R2 of the heat conductive filler as a whole is 1.5 or less.
  9.  請求項1から請求項8のいずれか1項に記載の熱伝導性フィラーと、マトリクス材料と、を含み、
     前記熱伝導性フィラーが前記マトリクス材料中に分散されている、熱伝導性複合材料。
    The thermally conductive filler according to any one of claims 1 to 8 and a matrix material are included.
    A thermally conductive composite material in which the thermally conductive filler is dispersed in the matrix material.
  10.  前記マトリクス材料は、有機ポリマーである、請求項9に記載の熱伝導性複合材料。 The heat conductive composite material according to claim 9, wherein the matrix material is an organic polymer.
  11.  比重が1.5以下である、請求項9または請求項10に記載の熱伝導性複合材料。 The thermally conductive composite material according to claim 9 or 10, wherein the specific gravity is 1.5 or less.
  12.  室温における熱伝導率が、1.0W/(m・K)以上である、請求項9から請求項11のいずれか1項に記載の熱伝導性複合材料。 The heat conductive composite material according to any one of claims 9 to 11, wherein the heat conductivity at room temperature is 1.0 W / (m · K) or more.
  13.  請求項9から請求項12のいずれか1項に記載の熱伝導性複合材料を含む、ワイヤーハーネス。 A wire harness comprising the thermally conductive composite material according to any one of claims 9 to 12.
  14.  そのままの状態で、または化学反応を経て、前記無機層を構成する原料物質を用い、
     酸性基を有する有機ポリマーを含んだポリマー粒子に対し、表面の前記酸性基に、前記原料物質を結合させる工程を含んで、
     請求項1から請求項8のいずれか1項に記載の熱伝導性フィラーを製造する、熱伝導性フィラーの製造方法。
    Using the raw material that constitutes the inorganic layer as it is or through a chemical reaction,
    A step of binding the raw material to the acidic group on the surface of the polymer particles containing the organic polymer having an acidic group is included.
    A method for producing a thermally conductive filler according to any one of claims 1 to 8.
  15.  前記原料物質は、金属アルコキシドおよび金属炭酸塩の少なくとも一方である、請求項14に記載の熱伝導性フィラーの製造方法。

     
    The method for producing a thermally conductive filler according to claim 14, wherein the raw material is at least one of a metal alkoxide and a metal carbonate.

PCT/JP2020/031805 2019-10-02 2020-08-24 Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler WO2021065248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182442A JP2021059614A (en) 2019-10-02 2019-10-02 Thermally conductive filler, thermally conductive composite material, wire harness and method for producing thermally conductive filler
JP2019-182442 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065248A1 true WO2021065248A1 (en) 2021-04-08

Family

ID=75337854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031805 WO2021065248A1 (en) 2019-10-02 2020-08-24 Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler

Country Status (2)

Country Link
JP (1) JP2021059614A (en)
WO (1) WO2021065248A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223739A (en) * 1995-02-08 1996-08-30 Sumitomo Wiring Syst Ltd Junction box
JPH08235940A (en) * 1995-02-24 1996-09-13 Sumitomo Wiring Syst Ltd Heat radiating wire
JP2010116455A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Organic-inorganic composite molded product
JP2010144152A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Organic-inorganic composite molded article
JP2010189600A (en) * 2009-02-20 2010-09-02 Toyota Motor Corp Thermally conductive and insulative resin molding
WO2014167993A1 (en) * 2013-04-11 2014-10-16 東洋紡株式会社 Thermally conductive resin composition and thermally conductive sealing body using same
WO2015030098A1 (en) * 2013-08-29 2015-03-05 熊本県 Heat-conductive composite particle and resin molded article
US20150275062A1 (en) * 2012-10-05 2015-10-01 Lms Co., Ltd. Thermally conductive composition and sheet
JP2017066267A (en) * 2015-09-30 2017-04-06 三菱マテリアル株式会社 Thermally conductive composition
JP2017071659A (en) * 2015-10-05 2017-04-13 三菱マテリアル株式会社 Heat dissipation sheet
WO2017073393A1 (en) * 2015-10-29 2017-05-04 三菱マテリアル株式会社 Resin composition, bonded body and semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223739A (en) * 1995-02-08 1996-08-30 Sumitomo Wiring Syst Ltd Junction box
JPH08235940A (en) * 1995-02-24 1996-09-13 Sumitomo Wiring Syst Ltd Heat radiating wire
JP2010116455A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Organic-inorganic composite molded product
JP2010144152A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Organic-inorganic composite molded article
JP2010189600A (en) * 2009-02-20 2010-09-02 Toyota Motor Corp Thermally conductive and insulative resin molding
US20150275062A1 (en) * 2012-10-05 2015-10-01 Lms Co., Ltd. Thermally conductive composition and sheet
WO2014167993A1 (en) * 2013-04-11 2014-10-16 東洋紡株式会社 Thermally conductive resin composition and thermally conductive sealing body using same
WO2015030098A1 (en) * 2013-08-29 2015-03-05 熊本県 Heat-conductive composite particle and resin molded article
JP2017066267A (en) * 2015-09-30 2017-04-06 三菱マテリアル株式会社 Thermally conductive composition
JP2017071659A (en) * 2015-10-05 2017-04-13 三菱マテリアル株式会社 Heat dissipation sheet
WO2017073393A1 (en) * 2015-10-29 2017-05-04 三菱マテリアル株式会社 Resin composition, bonded body and semiconductor device

Also Published As

Publication number Publication date
JP2021059614A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
JP6515030B2 (en) Composition comprising exfoliated boron nitride and method of forming the composition
CN111164047B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
JP5920011B2 (en) Thermally diffusible resin composition and varnish containing the composition
US12195667B2 (en) Boron nitride nanomaterial and resin composition
JP2024050865A (en) Method for producing aluminum nitride particles coated with silicon-containing oxide and aluminum nitride particles coated with silicon-containing oxide
EP2945169B1 (en) Insulation tape, method for producing same and stator coil
US20160376487A1 (en) High thermal conductivity graphite and graphene-containing composites
CN103068875A (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
Wang et al. Enhanced flame retardancy of polyethylene/magnesium hydroxide with polycarbosilane
JP2018030752A (en) Boron nitride particle agglomerate, method for producing the same, composition and resin sheet
JP6786047B2 (en) Method of manufacturing heat conductive sheet
WO2021065248A1 (en) Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler
JP7657873B2 (en) Thermally conductive filler, thermally conductive composite material, wire harness, and method for manufacturing thermally conductive filler
WO2022085477A1 (en) Heat-conductive filler, heat-conductive composite material, wire harness, and production method for heat-conductive filler
JP6508508B2 (en) Resin composition, thermally conductive adhesive and laminate
WO2022085490A1 (en) Thermally conductive additive, thermally conductive composite material, and wire harness
JP7717216B2 (en) Thermally conductive filler, thermally conductive composite material, wire harness, and method for manufacturing thermally conductive filler
JP2015108058A (en) Modified heat conductive filler, heat conductive material and heat conductive member
JP2025065941A (en) Thermally conductive resin composition
JP2024106987A (en) Thermally conductive resin composition
JP5759860B2 (en) Composite copper powder
KR20240142303A (en) Composition for Heat Dissipation Adhesive Sheet of Vehicle Electronic Components
JP2024106988A (en) Silica-coated diamond particles and composite particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870465

Country of ref document: EP

Kind code of ref document: A1