[go: up one dir, main page]

WO2021064901A1 - Quantum circuit system - Google Patents

Quantum circuit system Download PDF

Info

Publication number
WO2021064901A1
WO2021064901A1 PCT/JP2019/038936 JP2019038936W WO2021064901A1 WO 2021064901 A1 WO2021064901 A1 WO 2021064901A1 JP 2019038936 W JP2019038936 W JP 2019038936W WO 2021064901 A1 WO2021064901 A1 WO 2021064901A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum circuit
waveguide
quantum
shield
circuit
Prior art date
Application number
PCT/JP2019/038936
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 才田
Original Assignee
Mdr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mdr株式会社 filed Critical Mdr株式会社
Priority to PCT/JP2019/038936 priority Critical patent/WO2021064901A1/en
Priority to JP2020538738A priority patent/JP6986788B2/en
Publication of WO2021064901A1 publication Critical patent/WO2021064901A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices

Definitions

  • the present invention relates to a quantum circuit system.
  • Transmon is highly resistant to electrical noise and has a relatively long relaxation time.
  • Patent Document 1 describes a quantum information processing system including a waveguide having an aperture, a nonlinear quantum circuit arranged in the waveguide, and an electromagnetic field source coupled to the aperture.
  • Patent Document 2 describes an uninterrupted elongated thin film due to Josephson junction and a superconducting quantum interference device (SQUID) in electrical contact with the proximal end of the elongated thin film, with less than three Josephsons.
  • a superconducting quantum interference device (SQUID) with junctions and a ground plane that is coplanar with the elongated thin film and is in electrical contact with the distal end of the elongated thin film, the thin film, SQUID and ground plane are designed.
  • Quantum bit devices are described that include materials that are superconducting at the given operating temperature.
  • the quantum state of a quantum circuit such as Transmon may be manipulated by propagating high-frequency power to a waveguide connected to the quantum circuit. At this time, the electromagnetic field propagating in the waveguide may leak and power may propagate to other waveguides, and the quantum state of the quantum circuit connected to the other waveguide may change unintentionally. is there.
  • the present invention provides a quantum circuit system that can prevent unintended changes in the quantum state.
  • the quantum circuit system includes a first quantum circuit and a second quantum circuit capable of representing at least two quantum states, and a first waveguide and a first waveguide electromagnetically connected to the first quantum circuit.
  • the second waveguide electromagnetically connected to the two quantum circuits and the first waveguide in the normal direction of the main surface composed of a dielectric or a metal and forming the first quantum circuit and the second quantum circuit.
  • a shield that is higher than the height of the second waveguide.
  • the shield may extend along the first waveguide and the second waveguide.
  • the electromagnetic field spreading around the extending direction of the waveguide can be shielded more efficiently.
  • the first waveguide and the second waveguide include a ground line and a signal line, respectively, and the shield may be provided on the ground line.
  • the height of the shield can be made sufficiently higher than the signal line, and the electromagnetic field leaking from the signal line can be shielded.
  • the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed, and the shield is the first quantum circuit and the second quantum. It may be provided on the main surface on which the circuit is formed.
  • the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed, and the shield is the first quantum circuit and the second quantum. It may be provided on a surface separated from the main surface on which the circuit is formed.
  • the shield is provided at a position higher than the first coupling line in the normal direction of the main surface so as to cover the first coupling line that electromagnetically connects the first quantum circuit and the second quantum circuit. It may have been.
  • the shield is more than the second coupling line in the normal direction of the main surface so as to cover the second coupling line that electromagnetically connects the first quantum circuit, the second quantum circuit, and the reading circuit. It may be provided at a high position.
  • FIG. 1 is a diagram showing a network configuration of the quantum computing system 100 according to the first embodiment of the present invention.
  • the quantum computing system 100 includes a quantum circuit system 10 and a user terminal 20.
  • the quantum circuit system 10 and the user terminal 20 are communicably connected to each other via a communication network N such as the Internet, a local network, and a wired cable.
  • the user of the quantum calculation system 100 inputs data to the quantum circuit system 10 by using the user terminal 20 composed of a general-purpose classical computer, and acquires the result of the quantum calculation performed by the quantum circuit system 10. ..
  • FIG. 2 is a diagram showing an example of the configuration of the quantum circuit system 10 according to the present embodiment.
  • the quantum circuit system 10 includes a first quantum circuit 11a and a second quantum circuit 11b capable of representing at least two quantum states, and a first waveguide 12a and a second quantum electromagnetically connected to the first quantum circuit 11a.
  • a second waveguide 12b which is electromagnetically connected to the circuit 11b, is provided.
  • the quantum circuit system 10 propagates the high frequency power to the first waveguide 12a and propagates the high frequency power to the first high frequency power supply 13a and the second waveguide 12b that change the first quantum circuit 11a into a predetermined quantum state.
  • a second high frequency power supply 13b that changes the second quantum circuit 11b into a predetermined quantum state is provided.
  • the quantum circuit system 10 is composed of a dielectric or a metal, and has a first waveguide 12a and a second waveguide 12a in the normal direction of the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. It includes a first shield 15a and a second shield 15b that are higher than the height of 12b.
  • FIG. 2 shows a case where the first shield 15a and the second shield 15b are made of metal and are grounded.
  • the first shield 15a and the second shield 15b may be made of metal and formed on the ground plane, or may be made of a dielectric.
  • the first shield 15a and The second shield 15b is formed at a position higher than the upper surfaces (the surface extending along the main surface and exposed) of the first waveguide 12a and the second waveguide 12b in the normal direction of the main surface. It's okay.
  • the first shield 15a and the second shield 15a and the second are formed.
  • the shield 15b may be formed at a position higher than the upper surface (the surface extending along the main surface and exposed) of the first waveguide 12a and the second waveguide 12b in the normal direction of the main surface. ..
  • the quantum circuit system 10 has a third quantum circuit 11c and a fourth quantum circuit 11d that can represent at least two quantum states, and a third waveguide 12c and a third that are electromagnetically connected to the third quantum circuit 11c.
  • a fourth waveguide 12d which is electromagnetically connected to the four quantum circuits 11d, is provided.
  • the quantum circuit system 10 propagates the high frequency power to the third high frequency power supply 13c and the fourth waveguide 12d that propagate the high frequency power to the third waveguide 12c to change the third quantum circuit 11c to a predetermined quantum state.
  • a fourth high-frequency power source 13d that changes the fourth quantum circuit 11d into a predetermined quantum state is provided.
  • the quantum circuit system 10 is composed of a dielectric or a metal, and in the normal direction of the main surface on which the third quantum circuit 11c and the fourth quantum circuit 11d are formed, the third waveguide 12c and the fourth waveguide are formed. It includes a second shield 15b and a third shield 15c that are higher than the height of 12d. In this example, the case where the second shield 15b and the third shield 15c are made of metal and are grounded is shown. However, the second shield 15b and the third shield 15c may be made of metal and formed on the ground plane, or may be made of a dielectric.
  • the second shield 15b and The third shield 15c is formed at a position higher than the upper surfaces (the surface extending along the main surface and exposed) of the third waveguide 12c and the fourth waveguide 12d in the normal direction of the main surface. It's okay.
  • the second shield 15b and the third shield 15b and the third are formed.
  • the shield 15c may be formed at a position higher than the upper surface (the surface extending along the main surface and exposed) of the third waveguide 12c and the fourth waveguide 12d in the normal direction of the main surface. ..
  • the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d may each have the same configuration, and may be, for example, a quantum circuit containing Transmon.
  • the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d may each have the same configuration, and are, for example, a waveguide including a coplanar line, a microstrip line, and the like. Good.
  • the first high-frequency power supply 13a, the second high-frequency power supply 13b, the third high-frequency power supply 13c, and the fourth high-frequency power supply 13d may each have the same configuration, and may include, for example, a power supply that outputs a high-frequency pulse of several GHz.
  • a plurality of quantum circuits including the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are simply referred to as quantum circuits 11.
  • a plurality of waveguides including the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d are simply referred to as the waveguide 12, and the first high frequency power supply 13a and the second high frequency power supply 13b.
  • a plurality of high-frequency power supplies including the third high-frequency power supply 13c and the fourth high-frequency power supply 13d are simply referred to as high-frequency power supplies 13.
  • a plurality of shields including the first shield 15a, the second shield 15b, and the third shield 15c are simply referred to as the shield 15.
  • the quantum circuit system 10 is provided with a shield 15 having a height higher than the height of the waveguide 12, so that the leaked electromagnetic field can be shielded and an unintended change in the quantum state of the quantum circuit 11 is prevented. be able to.
  • the first shield 15a, the second shield 15b, and the third shield 15c extend along the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d, respectively. doing. As a result, the electromagnetic field spreading around the extending direction of the waveguide 12 can be shielded more efficiently.
  • FIG. 2 illustrates a quantum circuit system 10 including four quantum circuits 11, four waveguides 12, four high-frequency power supplies 13, and three shields 15, but the quantum circuit 11 and the waveguide 12 are illustrated.
  • the number of the high frequency power supply 13 and the shield 15 is arbitrary.
  • the number of high-frequency power supplies 13 may be smaller than the number of quantum circuits 11, and the structure may be connected to the quantum circuits 11 via a demultiplexer or the like.
  • FIG. 3 is an example of a circuit diagram of the quantum circuit 11 according to the present embodiment.
  • Quantum circuit 11 includes a Toranzumon 111 including Josephson junction JJ and capacitor C B, a resonator 112 includes an inductor L r and a capacitor C r.
  • the high frequency power supply 13 is connected to one end of the input capacitor C in , and the high frequency pulse output from the high frequency power supply 13 is input to the transmon 111 via the gate capacitor C g to change the quantum state of the transmon 111.
  • the number of Josephson junction JJs is not limited to one, and when two Josephson junction JJs are connected in parallel to form a dc-SQUID configuration, or when Josephson junction JJs of different sizes are connected in parallel (Flux qubit, etc.), There may be cases where multiple Josephson-joined JJs of different sizes are connected (Fluxonium, etc.). In this way, the energy potential of the system may be adjusted according to the purpose depending on the number and size of the Josephson junction JJ.
  • FIG. 4a is a diagram showing the first step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • resists 41, 42, and 43 are patterned on the metal layer 30.
  • FIG. 4b is a diagram showing a second step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • the metal layer 30 is etched by ion beam etching, reactive ion etching, chemical etching, or the like to obtain the first ground wire 31, the signal wire 32, and the second ground wire 33. It is formed and the resists 41, 42, and 43 are removed.
  • FIG. 4c is a diagram showing a third step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • a metal such as aluminum is vapor-deposited on the signal line 32 by diagonal vapor deposition using the mask 60.
  • FIG. 4d is a diagram showing a fourth step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • the obliquely vapor-deposited aluminum layer 50 is naturally oxidized to form the aluminum oxide layer 51.
  • the aluminum oxide layer 51 is an insulating layer.
  • FIG. 4e is a diagram showing a fifth step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • a metal such as aluminum is vapor-deposited on the aluminum oxide layer 51 and the signal line 32 by diagonal vapor deposition using the mask 61.
  • FIG. 4f is a diagram showing a sixth step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • the aluminum layer 52 is formed on the aluminum oxide layer 51 to form a Josephson junction.
  • FIG. 4g is a diagram showing the seventh step of the manufacturing process of the quantum circuit 11 according to the present embodiment.
  • an insulating layer or a metal layer is deposited on the first ground wire 31 and the second ground wire 33 by a sputtering method or the like using a mask 62, and the first shield 15a is deposited.
  • the second shield 15b is formed.
  • a chemical vapor deposition method or the like may be used.
  • the waveguide 12 includes the ground lines 31 and 33 and the signal line 32, respectively, and the shield 15 may be provided on the ground lines 31 and 33, respectively.
  • the shield 15 By providing the shield 15 on the ground lines 31 and 33, the height of the shield 15 can be made sufficiently higher than the signal line 32, and the electromagnetic field leaking from the signal line 32 can be shielded.
  • the width of the signal line 32 is expressed as s and the distance between the signal line 32 and the ground line 31 (distance between the signal line 32 and the ground line 33) is expressed as g, the width of the ground lines 31 and 33 is s + g or more. Therefore, by providing the shield 15 on the ground wires 31 and 33, the electromagnetic field can be shielded more efficiently.
  • the electromagnetic field can be shielded more efficiently.
  • FIG. 5a is a perspective view showing an example of the configuration of the quantum circuit system 10a according to the second embodiment of the present invention. Further, FIG. 5b is a diagram showing details of the configuration of the quantum circuit system 10a according to the present embodiment.
  • the quantum circuit system 10a according to the present embodiment includes a first quantum circuit 11a, a second quantum circuit 11b, a third quantum circuit 11c, and a fourth quantum circuit 11d. Further, the quantum circuit system 10a includes a read circuit 14 for reading the quantum states of the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d.
  • the quantum circuit system 10a includes a first coaxial cable 113a electrically connected to the first quantum circuit 11a and a read coaxial cable 14a electrically connected to the read circuit 14. Similarly, the quantum circuit system 10a is electrically connected to the second coaxial cable electrically connected to the second quantum circuit 11b, the third coaxial cable electrically connected to the third quantum circuit 11c, and the fourth quantum circuit 11d. A fourth coaxial cable is provided (not shown).
  • the first coaxial cable 113a is electrically connected to a first high-frequency power source that propagates high-frequency power to change the first quantum circuit 11a into a predetermined quantum state.
  • the second coaxial cable, the third coaxial cable, and the fourth coaxial cable propagate high-frequency power to change the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d into predetermined quantum states, respectively. It is electrically connected to the second high frequency power supply, the third high frequency power supply, and the fourth high frequency power supply.
  • the first coaxial cable 113a, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable are used in the first waveguide, the second waveguide, the third waveguide, and the fourth coaxial cable of the present invention.
  • the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. More specifically, the first waveguide and the second waveguide extend in a direction substantially orthogonal to the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed.
  • the quantum circuit system 10a includes a first shield 15a and a second shield provided on the main surface on which the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are formed.
  • the object 15b, the third shield 15c, and the fourth shield 15d are provided. With such a configuration, it is possible to suppress the interference of a plurality of lines when reading the quantum state of the quantum circuit 11, and to suppress the interference of the interaction between the quantum circuits 11.
  • the first shield 15a, the second shield 15b, the third shield 15c, and the fourth shield 15d may be provided in the arrangement shown by the broken line instead of the arrangement shown by the solid line in FIG. 5a, or the solid line. It may be provided in both the arrangement shown by and the arrangement shown by the broken line.
  • FIG. 6a is a top view showing an example of the configuration of the quantum circuit system 10b according to the third embodiment of the present invention. Further, FIG. 6b is a top view showing the configuration of the quantum circuit system 10b according to the present embodiment, and FIG. 6c is a cross-sectional view showing the configuration of the quantum circuit system 10b according to the present embodiment. Note that FIG. 6a does not show the third metal layer 153, but shows the first coupling line 17 and the second coupling line 18 covered by the third metal layer 153. Further, FIG. 6c is a cross-sectional view taken along the line VIc-VIc shown in FIG. 6b.
  • the quantum circuit system 10a includes a first quantum circuit 11a, a second quantum circuit 11b, a third quantum circuit 11c, and a fourth quantum circuit 11d. Further, the quantum circuit system 10a includes a read circuit 14 for reading the quantum states of the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d.
  • the quantum circuit system 10a includes a first coaxial cable electrically connected to the first quantum circuit 11a and a read coaxial cable electrically connected to the read circuit 14 (not shown). Similarly, the quantum circuit system 10a is electrically connected to the second coaxial cable electrically connected to the second quantum circuit 11b, the third coaxial cable electrically connected to the third quantum circuit 11c, and the fourth quantum circuit 11d. A fourth coaxial cable is provided (not shown).
  • the first coaxial cable is electrically connected to a first high-frequency power source that propagates high-frequency power to change the first quantum circuit 11a into a predetermined quantum state.
  • the second coaxial cable, the third coaxial cable, and the fourth coaxial cable propagate high-frequency power to change the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d into predetermined quantum states, respectively. It is electrically connected to the second high frequency power supply, the third high frequency power supply, and the fourth high frequency power supply.
  • the first coaxial cable, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable correspond to the first waveguide, the second waveguide, the third waveguide, and the fourth coaxial cable of the present invention.
  • the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. More specifically, the first waveguide and the second waveguide extend in a direction substantially orthogonal to the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed.
  • the quantum circuit system 10b includes a shield provided on a surface separated from the main surface on which the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are formed. .. More specifically, the quantum circuit system 10b includes a third metal layer 153 provided on a surface separated from the main surface on which the quantum circuit 11 is formed. With such a configuration, it is possible to shield the leaking electromagnetic field generated on the main surface on which the quantum circuit 11 is formed and prevent interference.
  • the shield covers the first coupling line 17 that electromagnetically connects the first quantum circuit 11a and the second quantum circuit 11b so as to cover the first coupling line 17 in the normal direction of the main surface. It is provided at a position higher than 17.
  • the first coupling line 17 includes the first quantum circuit 11a and the second quantum circuit 11b, the second quantum circuit 11b and the third quantum circuit 11c, and the third quantum circuit 11c and the fourth quantum circuit 11d.
  • the fourth quantum circuit 11d and the first quantum circuit 11a are electrically connected to each other.
  • the third metal layer 153 which is a shield, is provided so as to cover the first coupling line 17. With such a configuration, it is possible to shield the leaking electromagnetic field generated in the first coupling line 17 and prevent interference with other circuits.
  • the shield covers the second coupling line 18 that electromagnetically connects the first quantum circuit 11a and the second quantum circuit 11b and the reading circuit 14, in the normal direction of the main surface. , Is provided at a position higher than the second coupling line 18.
  • the second coupling line 18 includes a first quantum circuit 11a and a read circuit 14, a second quantum circuit 11b and a read circuit 14, a third quantum circuit 11c and a read circuit 14, and a fourth quantum circuit 11d.
  • the read circuit 14 are electromagnetically connected to each other.
  • the third metal layer 153 which is a shield, is provided so as to cover the second coupling line 18. With such a configuration, it is possible to shield the leaking electromagnetic field generated in the second coupling line 18 and prevent interference with other circuits.
  • the shield of the present embodiment includes the first metal layer 151, the second metal layer 152, and the third metal layer 153.
  • the first metal layer 151 is formed in a rectangular shape so as to surround the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d.
  • the second metal layer 152 is formed in a triangular shape in a triangular region formed by the two quantum circuits 11 and the read circuit 14.
  • the third metal layer 153 includes a portion that straddles the first metal layer 151 and the second metal layer 152, and a portion that straddles the second metal layer 152. The portion of the third metal layer 153 that straddles the first metal layer 151 and the second metal layer 152 covers the first coupling line 17.
  • the second metal layer 152 may be provided in an arrangement shown by a broken line instead of the arrangement shown by the solid line in FIG. 6a, or may be provided in both the arrangement shown by the solid line and the arrangement shown by the broken line.
  • 10 ... Quantum circuit system 10a ... Quantum circuit system according to the second embodiment, 10b ... Quantum circuit system according to the third embodiment, 11a ... First quantum circuit, 11b ... Second quantum circuit, 11c ... Third quantum circuit , 11d ... 4th quantum circuit, 12a ... 1st waveguide, 12b ... 2nd waveguide, 12c ... 3rd waveguide, 12d ... 4th waveguide, 14 ... Read circuit, 14a ... Read coaxial cable, 13a ... 1 high frequency power supply, 13b ... second high frequency power supply, 13c ... third high frequency power supply, 13d ... fourth high frequency power supply, 14 ... reading circuit, 15a ... first shield, 15b ... second shield, 15c ...
  • third shield 17 ... 1st coupling line, 18 ... 2nd coupling line, 20 ... user terminal, 30 ... metal layer, 31 ... 1st ground line, 32 ... signal line, 33 ... 2nd ground line, 41, 42, 43 ... Resist, 50, 52 ... Aluminum layer, 51 ... Aluminum oxide layer, 60, 61, 62 ... Mask, 100 ... Quantum computing system, 111 ... Transmon, 112 ... Resonator, 113a ... First coaxial cable, 151 ... First metal Layer, 152 ... 2nd metal layer, 153 ... 3rd metal layer

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Provided is a quantum circuit system capable of preventing an unintended change in quantum state. A quantum circuit system 10 comprises: a first quantum circuit 11a and a second quantum circuit 11b which are capable of representing at least two quantum states; a first waveguide 12a electromagnetically connected to the first quantum circuit 11a and a second waveguide 12b electromagnetically connected to the second quantum circuit 11b; and a shield 15 which is composed of a dielectric or a metal, and which is higher than the heights of the first waveguide 12a and the second waveguide 12b in a direction normal to a major surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed.

Description

量子回路システムQuantum circuit system
 本発明は、量子回路システムに関する。 The present invention relates to a quantum circuit system.
 近年、量子コンピュータの実用化に向けて研究が進められている。例えば、下記非特許文献1では、トランズモンと呼ばれる量子回路が提案された。トランズモンは、電気的ノイズ耐性が高く、比較的長い緩和時間を有する。 In recent years, research has been carried out toward the practical application of quantum computers. For example, in Non-Patent Document 1 below, a quantum circuit called Transmon was proposed. Transmon is highly resistant to electrical noise and has a relatively long relaxation time.
 また、下記特許文献1には、開口を有する導波路と、導波路内に配設される非線形量子回路と、開口に結合される電磁場源とを備える量子情報処理システムが記載されている。 Further, Patent Document 1 below describes a quantum information processing system including a waveguide having an aperture, a nonlinear quantum circuit arranged in the waveguide, and an electromagnetic field source coupled to the aperture.
 さらに、下記特許文献2には、ジョセフソン接合による中断のない細長い薄膜と、細長い薄膜の近位端と電気接触している超伝導量子干渉デバイス(SQUID)であって、3つより少ないジョセフソン接合を有する、超伝導量子干渉デバイス(SQUID)と、細長い薄膜と同一平面内にあり、細長い薄膜の遠位端と電気接触している接地面とを備え、薄膜、SQUID及び接地面が、設計された動作温度において超伝導状態になる材料を含む、量子ビットデバイスが記載されている。 Further, Patent Document 2 below describes an uninterrupted elongated thin film due to Josephson junction and a superconducting quantum interference device (SQUID) in electrical contact with the proximal end of the elongated thin film, with less than three Josephsons. A superconducting quantum interference device (SQUID) with junctions and a ground plane that is coplanar with the elongated thin film and is in electrical contact with the distal end of the elongated thin film, the thin film, SQUID and ground plane are designed. Quantum bit devices are described that include materials that are superconducting at the given operating temperature.
特開2016-510497号公報Japanese Unexamined Patent Publication No. 2016-510497 特開2018-524795号公報JP-A-2018-524795
 トランズモン等の量子回路の量子状態は、量子回路に接続された導波路に高周波電力を伝搬させることで操作されることがある。このとき、導波路を伝搬する電磁場が漏れて、他の導波路にも電力が伝搬することがあり、他の導波路に接続された量子回路の量子状態が意図せず変化してしまうことがある。 The quantum state of a quantum circuit such as Transmon may be manipulated by propagating high-frequency power to a waveguide connected to the quantum circuit. At this time, the electromagnetic field propagating in the waveguide may leak and power may propagate to other waveguides, and the quantum state of the quantum circuit connected to the other waveguide may change unintentionally. is there.
 このような意図しない量子状態の変化を訂正するために、量子エラー訂正の技術を用いることが検討されている。しかしながら、量子エラー訂正を実装するためには余分な量子回路を設ける必要があり、回路の大規模化が必要となる。 In order to correct such unintended changes in the quantum state, it is being considered to use quantum error correction technology. However, in order to implement quantum error correction, it is necessary to provide an extra quantum circuit, and it is necessary to increase the scale of the circuit.
 そこで、本発明は、意図しない量子状態の変化を防止することができる量子回路システムを提供する。 Therefore, the present invention provides a quantum circuit system that can prevent unintended changes in the quantum state.
 本発明の一態様に係る量子回路システムは、少なくとも2つの量子状態を表すことができる第1量子回路及び第2量子回路と、第1量子回路に電磁気的に接続された第1導波路及び第2量子回路に電磁気的に接続された第2導波路と、誘電体又は金属で構成され、第1量子回路及び第2量子回路が形成されている主面の法線方向において、第1導波路及び第2導波路の高さよりも高い遮蔽物と、を備える。 The quantum circuit system according to one aspect of the present invention includes a first quantum circuit and a second quantum circuit capable of representing at least two quantum states, and a first waveguide and a first waveguide electromagnetically connected to the first quantum circuit. The second waveguide electromagnetically connected to the two quantum circuits and the first waveguide in the normal direction of the main surface composed of a dielectric or a metal and forming the first quantum circuit and the second quantum circuit. And a shield that is higher than the height of the second waveguide.
 この態様によれば、導波路の高さよりも高い遮蔽物を備えることで、漏れた電磁場を遮蔽することができ、量子回路について意図しない量子状態の変化を防止することができる。 According to this aspect, by providing a shield higher than the height of the waveguide, it is possible to shield the leaked electromagnetic field and prevent an unintended change in the quantum state of the quantum circuit.
 上記態様において、遮蔽物は、第1導波路及び第2導波路に沿って延伸していてもよい。 In the above aspect, the shield may extend along the first waveguide and the second waveguide.
 この態様によれば、導波路の延伸方向を中心として広がる電磁場をより効率的に遮蔽することができる。 According to this aspect, the electromagnetic field spreading around the extending direction of the waveguide can be shielded more efficiently.
 上記態様において、第1導波路及び第2導波路は、それぞれグランド線及びシグナル線を含み、遮蔽物は、グランド線上に設けられていてもよい。 In the above aspect, the first waveguide and the second waveguide include a ground line and a signal line, respectively, and the shield may be provided on the ground line.
 この態様によれば、遮蔽物をグランド線上に設けることで、遮蔽物の高さをシグナル線より十分に高くし、シグナル線から漏れる電磁場を遮蔽することができる。 According to this aspect, by providing the shield on the ground line, the height of the shield can be made sufficiently higher than the signal line, and the electromagnetic field leaking from the signal line can be shielded.
 上記態様において、第1導波路及び第2導波路は、第1量子回路及び第2量子回路が形成される主面と交差する方向に延伸し、遮蔽物は、第1量子回路及び第2量子回路が形成される主面に設けられていてもよい。 In the above embodiment, the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed, and the shield is the first quantum circuit and the second quantum. It may be provided on the main surface on which the circuit is formed.
 この態様によれば、量子回路の量子状態を読み出す場合における複数の線路の干渉を抑えたり、量子回路間の相互作用の干渉を抑えたりすることができる。 According to this aspect, it is possible to suppress the interference of a plurality of lines when reading the quantum state of the quantum circuit, and to suppress the interference of the interaction between the quantum circuits.
 上記態様において、第1導波路及び第2導波路は、第1量子回路及び第2量子回路が形成される主面と交差する方向に延伸し、遮蔽物は、第1量子回路及び第2量子回路が形成される主面から離間した面に設けられていてもよい。 In the above embodiment, the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed, and the shield is the first quantum circuit and the second quantum. It may be provided on a surface separated from the main surface on which the circuit is formed.
 この態様によれば、量子回路が形成される主面において生じた漏れ電磁場を遮蔽し、干渉を防ぐことができる。 According to this aspect, it is possible to shield the leaking electromagnetic field generated on the main surface on which the quantum circuit is formed and prevent interference.
 上記態様において、遮蔽物は、第1量子回路及び第2量子回路を電磁気的に接続する第1結合線路を覆うように、主面の法線方向において、第1結合線路よりも高い位置に設けられていてもよい。 In the above embodiment, the shield is provided at a position higher than the first coupling line in the normal direction of the main surface so as to cover the first coupling line that electromagnetically connects the first quantum circuit and the second quantum circuit. It may have been.
 この態様によれば、第1結合線路において生じた漏れ電磁場を遮蔽し、他の回路との干渉を防ぐことができる。 According to this aspect, it is possible to shield the leaking electromagnetic field generated in the first coupling line and prevent interference with other circuits.
 上記態様において、遮蔽物は、第1量子回路及び第2量子回路と読出回路とを電磁気的に接続する第2結合線路を覆うように、主面の法線方向において、第2結合線路よりも高い位置に設けられていてもよい。 In the above aspect, the shield is more than the second coupling line in the normal direction of the main surface so as to cover the second coupling line that electromagnetically connects the first quantum circuit, the second quantum circuit, and the reading circuit. It may be provided at a high position.
 この態様によれば、第2結合線路において生じた漏れ電磁場を遮蔽し、他の回路との干渉を防ぐことができる。 According to this aspect, it is possible to shield the leaking electromagnetic field generated in the second coupling line and prevent interference with other circuits.
 本発明によれば、意図しない量子状態の変化を防止することができる量子回路システムを提供することができる。 According to the present invention, it is possible to provide a quantum circuit system capable of preventing an unintended change in the quantum state.
本発明の第1実施形態に係る量子回路システムのネットワーク構成を示す図である。It is a figure which shows the network structure of the quantum circuit system which concerns on 1st Embodiment of this invention. 本実施形態に係る量子回路システムの構成の一例を示す図である。It is a figure which shows an example of the structure of the quantum circuit system which concerns on this embodiment. 本実施形態に係る量子回路の回路図の一例である。This is an example of a circuit diagram of a quantum circuit according to this embodiment. 本実施形態に係る量子回路の製造プロセスの第1ステップを示す図である。It is a figure which shows the 1st step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第2ステップを示す図である。It is a figure which shows the 2nd step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第3ステップを示す図である。It is a figure which shows the 3rd step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第4ステップを示す図である。It is a figure which shows the 4th step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第5ステップを示す図である。It is a figure which shows the 5th step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第6ステップを示す図である。It is a figure which shows the 6th step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本実施形態に係る量子回路の製造プロセスの第7ステップを示す図である。It is a figure which shows the 7th step of the manufacturing process of the quantum circuit which concerns on this embodiment. 本発明の第2実施形態に係る量子回路システムの構成の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the quantum circuit system which concerns on 2nd Embodiment of this invention. 本実施形態に係る量子回路システムの構成の詳細を示す図である。It is a figure which shows the detail of the structure of the quantum circuit system which concerns on this embodiment. 本発明の第3実施形態に係る量子回路システムの構成の一例を示す上面図である。It is a top view which shows an example of the structure of the quantum circuit system which concerns on 3rd Embodiment of this invention. 本実施形態に係る量子回路システムの構成を示す上面図である。It is a top view which shows the structure of the quantum circuit system which concerns on this embodiment. 本実施形態に係る量子回路システムの構成を示す断面図である。It is sectional drawing which shows the structure of the quantum circuit system which concerns on this embodiment.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals have the same or similar configurations.
[第1実施形態]
 図1は、本発明の第1実施形態に係る量子計算システム100のネットワーク構成を示す図である。量子計算システム100は、量子回路システム10と、ユーザ端末20とを含む。量子回路システム10及びユーザ端末20は、インターネット、ローカルネットワーク、有線ケーブル等の通信ネットワークNを介して互いに通信可能に接続される。量子計算システム100のユーザは、汎用の古典コンピュータで構成されるユーザ端末20を用いて量子回路システム10にデータを入力したり、量子回路システム10によって行われた量子計算の結果を取得したりする。
[First Embodiment]
FIG. 1 is a diagram showing a network configuration of the quantum computing system 100 according to the first embodiment of the present invention. The quantum computing system 100 includes a quantum circuit system 10 and a user terminal 20. The quantum circuit system 10 and the user terminal 20 are communicably connected to each other via a communication network N such as the Internet, a local network, and a wired cable. The user of the quantum calculation system 100 inputs data to the quantum circuit system 10 by using the user terminal 20 composed of a general-purpose classical computer, and acquires the result of the quantum calculation performed by the quantum circuit system 10. ..
 図2は、本実施形態に係る量子回路システム10の構成の一例を示す図である。量子回路システム10は、少なくとも2つの量子状態を表すことができる第1量子回路11a及び第2量子回路11bと、第1量子回路11aに電磁気的に接続された第1導波路12a及び第2量子回路11bに電磁気的に接続された第2導波路12bと、を備える。また、量子回路システム10は、第1導波路12aに高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる第1高周波電源13a及び第2導波路12bに高周波電力を伝搬させて第2量子回路11bを所定の量子状態に変化させる第2高周波電源13bを備える。さらに、量子回路システム10は、誘電体又は金属で構成され、第1量子回路11a及び第2量子回路11bが形成されている主面の法線方向において、第1導波路12a及び第2導波路12bの高さよりも高い第1遮蔽物15a及び第2遮蔽物15bを備える。図2では、第1遮蔽物15a及び第2遮蔽物15bが金属で構成されており、接地されている場合を示している。もっとも、第1遮蔽物15a及び第2遮蔽物15bは、金属で構成されてグランドプレーン上に形成されていてもよいし、誘電体で構成されていてもよい。ここで、第1導波路12a及び第2導波路12bが、第1量子回路11a及び第2量子回路11bが形成されている主面に凸状に形成されている場合、第1遮蔽物15a及び第2遮蔽物15bは、主面の法線方向において、第1導波路12a及び第2導波路12bの上面(主面に沿って延伸し、露出している面)より高い位置に形成されていてよい。また、第1導波路12a及び第2導波路12bが、第1量子回路11a及び第2量子回路11bが形成されている主面に凹状に形成されている場合、第1遮蔽物15a及び第2遮蔽物15bは、主面の法線方向において、第1導波路12a及び第2導波路12bの上面(主面に沿って延伸し、露出している面)より高い位置に形成されていてよい。 FIG. 2 is a diagram showing an example of the configuration of the quantum circuit system 10 according to the present embodiment. The quantum circuit system 10 includes a first quantum circuit 11a and a second quantum circuit 11b capable of representing at least two quantum states, and a first waveguide 12a and a second quantum electromagnetically connected to the first quantum circuit 11a. A second waveguide 12b, which is electromagnetically connected to the circuit 11b, is provided. Further, the quantum circuit system 10 propagates the high frequency power to the first waveguide 12a and propagates the high frequency power to the first high frequency power supply 13a and the second waveguide 12b that change the first quantum circuit 11a into a predetermined quantum state. A second high frequency power supply 13b that changes the second quantum circuit 11b into a predetermined quantum state is provided. Further, the quantum circuit system 10 is composed of a dielectric or a metal, and has a first waveguide 12a and a second waveguide 12a in the normal direction of the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. It includes a first shield 15a and a second shield 15b that are higher than the height of 12b. FIG. 2 shows a case where the first shield 15a and the second shield 15b are made of metal and are grounded. However, the first shield 15a and the second shield 15b may be made of metal and formed on the ground plane, or may be made of a dielectric. Here, when the first waveguide 12a and the second waveguide 12b are formed in a convex shape on the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed, the first shield 15a and The second shield 15b is formed at a position higher than the upper surfaces (the surface extending along the main surface and exposed) of the first waveguide 12a and the second waveguide 12b in the normal direction of the main surface. It's okay. Further, when the first waveguide 12a and the second waveguide 12b are formed in a concave shape on the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed, the first shield 15a and the second shield 15a and the second are formed. The shield 15b may be formed at a position higher than the upper surface (the surface extending along the main surface and exposed) of the first waveguide 12a and the second waveguide 12b in the normal direction of the main surface. ..
 さらに、量子回路システム10は、少なくとも2つの量子状態を表すことができる第3量子回路11c及び第4量子回路11dと、第3量子回路11cに電磁気的に接続された第3導波路12c及び第4量子回路11dに電磁気的に接続された第4導波路12dと、を備える。また、量子回路システム10は、第3導波路12cに高周波電力を伝搬させて第3量子回路11cを所定の量子状態に変化させる第3高周波電源13c及び第4導波路12dに高周波電力を伝搬させて第4量子回路11dを所定の量子状態に変化させる第4高周波電源13dを備える。さらに、量子回路システム10は、誘電体又は金属で構成され、第3量子回路11c及び第4量子回路11dが形成されている主面の法線方向において、第3導波路12c及び第4導波路12dの高さよりも高い第2遮蔽物15b及び第3遮蔽物15cを備える。本例では、第2遮蔽物15b及び第3遮蔽物15cが金属で構成されており、接地されている場合を示している。もっとも、第2遮蔽物15b及び第3遮蔽物15cは、金属で構成されてグランドプレーン上に形成されていてもよいし、誘電体で構成されていてもよい。ここで、第3導波路12c及び第4導波路12dが、第3量子回路11c及び第4量子回路11dが形成されている主面に凸状に形成されている場合、第2遮蔽物15b及び第3遮蔽物15cは、主面の法線方向において、第3導波路12c及び第4導波路12dの上面(主面に沿って延伸し、露出している面)より高い位置に形成されていてよい。また、第3導波路12c及び第4導波路12dが、第3量子回路11c及び第4量子回路11dが形成されている主面に凹状に形成されている場合、第2遮蔽物15b及び第3遮蔽物15cは、主面の法線方向において、第3導波路12c及び第4導波路12dの上面(主面に沿って延伸し、露出している面)より高い位置に形成されていてよい。 Further, the quantum circuit system 10 has a third quantum circuit 11c and a fourth quantum circuit 11d that can represent at least two quantum states, and a third waveguide 12c and a third that are electromagnetically connected to the third quantum circuit 11c. A fourth waveguide 12d, which is electromagnetically connected to the four quantum circuits 11d, is provided. Further, the quantum circuit system 10 propagates the high frequency power to the third high frequency power supply 13c and the fourth waveguide 12d that propagate the high frequency power to the third waveguide 12c to change the third quantum circuit 11c to a predetermined quantum state. A fourth high-frequency power source 13d that changes the fourth quantum circuit 11d into a predetermined quantum state is provided. Further, the quantum circuit system 10 is composed of a dielectric or a metal, and in the normal direction of the main surface on which the third quantum circuit 11c and the fourth quantum circuit 11d are formed, the third waveguide 12c and the fourth waveguide are formed. It includes a second shield 15b and a third shield 15c that are higher than the height of 12d. In this example, the case where the second shield 15b and the third shield 15c are made of metal and are grounded is shown. However, the second shield 15b and the third shield 15c may be made of metal and formed on the ground plane, or may be made of a dielectric. Here, when the third waveguide 12c and the fourth waveguide 12d are formed in a convex shape on the main surface on which the third quantum circuit 11c and the fourth quantum circuit 11d are formed, the second shield 15b and The third shield 15c is formed at a position higher than the upper surfaces (the surface extending along the main surface and exposed) of the third waveguide 12c and the fourth waveguide 12d in the normal direction of the main surface. It's okay. Further, when the third waveguide 12c and the fourth waveguide 12d are formed in a concave shape on the main surface on which the third quantum circuit 11c and the fourth quantum circuit 11d are formed, the second shield 15b and the third shield 15b and the third are formed. The shield 15c may be formed at a position higher than the upper surface (the surface extending along the main surface and exposed) of the third waveguide 12c and the fourth waveguide 12d in the normal direction of the main surface. ..
 第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dは、それぞれ同様の構成を有してよく、例えばトランズモンを含む量子回路であってよい。第1導波路12a、第2導波路12b、第3導波路12c及び第4導波路12dは、それぞれ同様の構成を有してよく、例えばコプレナー線路やマイクロストリップ線路等を含む導波路であってよい。第1高周波電源13a、第2高周波電源13b、第3高周波電源13c及び第4高周波電源13dは、それぞれ同様の構成を有してよく、例えば数GHzの高周波パルスを出力する電源を含んでよい。 The first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d may each have the same configuration, and may be, for example, a quantum circuit containing Transmon. The first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d may each have the same configuration, and are, for example, a waveguide including a coplanar line, a microstrip line, and the like. Good. The first high-frequency power supply 13a, the second high-frequency power supply 13b, the third high-frequency power supply 13c, and the fourth high-frequency power supply 13d may each have the same configuration, and may include, for example, a power supply that outputs a high-frequency pulse of several GHz.
 本明細書では、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dを含む複数の量子回路を単に量子回路11と呼ぶ。また、第1導波路12a、第2導波路12b、第3導波路12c及び第4導波路12dを含む複数の導波路を単に導波路12と呼び、第1高周波電源13a、第2高周波電源13b、第3高周波電源13c及び第4高周波電源13dを含む複数の高周波電源を単に高周波電源13と呼ぶ。さらに、第1遮蔽物15a、第2遮蔽物15b及び第3遮蔽物15cを含む複数の遮蔽物を単に遮蔽物15と呼ぶ。 In this specification, a plurality of quantum circuits including the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are simply referred to as quantum circuits 11. Further, a plurality of waveguides including the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d are simply referred to as the waveguide 12, and the first high frequency power supply 13a and the second high frequency power supply 13b. A plurality of high-frequency power supplies including the third high-frequency power supply 13c and the fourth high-frequency power supply 13d are simply referred to as high-frequency power supplies 13. Further, a plurality of shields including the first shield 15a, the second shield 15b, and the third shield 15c are simply referred to as the shield 15.
 第1導波路12aに高周波電力を伝搬させると、少なからず電磁場が漏れて、隣接する第2導波路12bに誘導電力が伝搬し、第2量子回路11bの量子状態に意図しない変化を加えてしまうおそれがある。同様に、第2導波路12bに高周波電力を伝搬させると、少なからず電磁場が漏れて、隣接する第1導波路12a及び第3導波路12cに誘導電力が伝搬し、第1量子回路11a及び第3量子回路11cの量子状態に意図しない変化を加えてしまうおそれがある。本実施形態に係る量子回路システム10は、導波路12の高さよりも高い遮蔽物15を備えることで、漏れた電磁場を遮蔽することができ、量子回路11について意図しない量子状態の変化を防止することができる。 When high-frequency power is propagated to the first waveguide 12a, an electromagnetic field leaks to some extent, and the induced power propagates to the adjacent second waveguide 12b, causing an unintended change in the quantum state of the second quantum circuit 11b. There is a risk. Similarly, when high-frequency power is propagated to the second waveguide 12b, not a little electromagnetic field leaks, and the induced power propagates to the adjacent first waveguide 12a and third waveguide 12c, and the first quantum circuit 11a and the first quantum circuit 11a and the first. 3 There is a risk of unintentionally changing the quantum state of the quantum circuit 11c. The quantum circuit system 10 according to the present embodiment is provided with a shield 15 having a height higher than the height of the waveguide 12, so that the leaked electromagnetic field can be shielded and an unintended change in the quantum state of the quantum circuit 11 is prevented. be able to.
 ここで、第1遮蔽物15a、第2遮蔽物15b及び第3遮蔽物15cは、それぞれ第1導波路12a、第2導波路12b、第3導波路12c及び第4導波路12dに沿って延伸している。これにより、導波路12の延伸方向を中心として広がる電磁場をより効率的に遮蔽することができる。 Here, the first shield 15a, the second shield 15b, and the third shield 15c extend along the first waveguide 12a, the second waveguide 12b, the third waveguide 12c, and the fourth waveguide 12d, respectively. doing. As a result, the electromagnetic field spreading around the extending direction of the waveguide 12 can be shielded more efficiently.
 図2では、4つの量子回路11と、4つの導波路12と、4つの高周波電源13と、3つの遮蔽物15を備える量子回路システム10を例示しているが、量子回路11、導波路12、高周波電源13及び遮蔽物15の数は任意である。高周波電源13の数が量子回路11の数より少なく、分波器等を介して量子回路11に接続される構造であってもよい。 FIG. 2 illustrates a quantum circuit system 10 including four quantum circuits 11, four waveguides 12, four high-frequency power supplies 13, and three shields 15, but the quantum circuit 11 and the waveguide 12 are illustrated. The number of the high frequency power supply 13 and the shield 15 is arbitrary. The number of high-frequency power supplies 13 may be smaller than the number of quantum circuits 11, and the structure may be connected to the quantum circuits 11 via a demultiplexer or the like.
 図3は、本実施形態に係る量子回路11の回路図の一例である。量子回路11は、ジョセフソン接合JJ及びキャパシタCを含むトランズモン111と、インダクタL及びキャパシタCを含む共振器112とを有する。高周波電源13は、入力キャパシタCinの一端に接続され、高周波電源13から出力される高周波パルスは、ゲートキャパシタCを介してトランズモン111に入力され、トランズモン111の量子状態を変化させる。ジョセフソン接合JJの数は1つとは限らず、並列に2つ接続されdc-SQUIDの構成とする場合や、サイズが異なるジョセフソン接合JJが並列に接続される場合(Flux qubit等)や、サイズが異なるジョセフソン接合JJが複数接続される場合(Fluxonium等)があり得る。このようにジョセフソン接合JJの数やサイズにより、系のエネルギーポテンシャルが目的に応じて調整されることがある。 FIG. 3 is an example of a circuit diagram of the quantum circuit 11 according to the present embodiment. Quantum circuit 11 includes a Toranzumon 111 including Josephson junction JJ and capacitor C B, a resonator 112 includes an inductor L r and a capacitor C r. The high frequency power supply 13 is connected to one end of the input capacitor C in , and the high frequency pulse output from the high frequency power supply 13 is input to the transmon 111 via the gate capacitor C g to change the quantum state of the transmon 111. The number of Josephson junction JJs is not limited to one, and when two Josephson junction JJs are connected in parallel to form a dc-SQUID configuration, or when Josephson junction JJs of different sizes are connected in parallel (Flux qubit, etc.), There may be cases where multiple Josephson-joined JJs of different sizes are connected (Fluxonium, etc.). In this way, the energy potential of the system may be adjusted according to the purpose depending on the number and size of the Josephson junction JJ.
 図4aは、本実施形態に係る量子回路11の製造プロセスの第1ステップを示す図である。量子回路11の製造プロセスの第1ステップでは、金属層30の上にレジスト41,42,43がパターニングされる。 FIG. 4a is a diagram showing the first step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the first step of the manufacturing process of the quantum circuit 11, resists 41, 42, and 43 are patterned on the metal layer 30.
 図4bは、本実施形態に係る量子回路11の製造プロセスの第2ステップを示す図である。量子回路11の製造プロセスの第2ステップでは、イオンビームエッチング、反応性イオンエッチング又は化学エッチング等により、金属層30をエッチングして、第1グランド線31、シグナル線32及び第2グランド線33を形成し、レジスト41,42,43を除去する。 FIG. 4b is a diagram showing a second step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the second step of the manufacturing process of the quantum circuit 11, the metal layer 30 is etched by ion beam etching, reactive ion etching, chemical etching, or the like to obtain the first ground wire 31, the signal wire 32, and the second ground wire 33. It is formed and the resists 41, 42, and 43 are removed.
 図4cは、本実施形態に係る量子回路11の製造プロセスの第3ステップを示す図である。量子回路11の製造プロセスの第3ステップでは、マスク60を用いた斜め蒸着により、アルミニウム等の金属をシグナル線32に蒸着する。 FIG. 4c is a diagram showing a third step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the third step of the manufacturing process of the quantum circuit 11, a metal such as aluminum is vapor-deposited on the signal line 32 by diagonal vapor deposition using the mask 60.
 図4dは、本実施形態に係る量子回路11の製造プロセスの第4ステップを示す図である。量子回路11の製造プロセスの第4ステップでは、斜め蒸着されたアルミニウム層50を自然酸化させ、酸化アルミニウム層51を形成する。ここで、酸化アルミニウム層51は絶縁層である。 FIG. 4d is a diagram showing a fourth step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the fourth step of the manufacturing process of the quantum circuit 11, the obliquely vapor-deposited aluminum layer 50 is naturally oxidized to form the aluminum oxide layer 51. Here, the aluminum oxide layer 51 is an insulating layer.
 図4eは、本実施形態に係る量子回路11の製造プロセスの第5ステップを示す図である。量子回路11の製造プロセスの第5ステップでは、マスク61を用いた斜め蒸着により、アルミニウム等の金属を酸化アルミニウム層51及びシグナル線32に蒸着する。 FIG. 4e is a diagram showing a fifth step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the fifth step of the manufacturing process of the quantum circuit 11, a metal such as aluminum is vapor-deposited on the aluminum oxide layer 51 and the signal line 32 by diagonal vapor deposition using the mask 61.
 図4fは、本実施形態に係る量子回路11の製造プロセスの第6ステップを示す図である。量子回路11の製造プロセスの第6ステップでは、アルミニウム層52が酸化アルミニウム層51の上に形成され、ジョセフソン接合が形成される。 FIG. 4f is a diagram showing a sixth step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the sixth step of the manufacturing process of the quantum circuit 11, the aluminum layer 52 is formed on the aluminum oxide layer 51 to form a Josephson junction.
 図4gは、本実施形態に係る量子回路11の製造プロセスの第7ステップを示す図である。量子回路11の製造プロセスの第7ステップでは、マスク62を用いたスパッタ法等によって、第1グランド線31及び第2グランド線33の上に絶縁層又は金属層を堆積させ、第1遮蔽物15a及び第2遮蔽物15bを形成する。他、化学気相成長法等を用いてもよい。 FIG. 4g is a diagram showing the seventh step of the manufacturing process of the quantum circuit 11 according to the present embodiment. In the seventh step of the manufacturing process of the quantum circuit 11, an insulating layer or a metal layer is deposited on the first ground wire 31 and the second ground wire 33 by a sputtering method or the like using a mask 62, and the first shield 15a is deposited. And the second shield 15b is formed. Alternatively, a chemical vapor deposition method or the like may be used.
 このように、導波路12は、それぞれグランド線31,33及びシグナル線32を含み、遮蔽物15は、グランド線31,33上に設けられていてよい。遮蔽物15をグランド線31,33上に設けることで、遮蔽物15の高さをシグナル線32より十分に高くし、シグナル線32から漏れる電磁場を遮蔽することができる。 As described above, the waveguide 12 includes the ground lines 31 and 33 and the signal line 32, respectively, and the shield 15 may be provided on the ground lines 31 and 33, respectively. By providing the shield 15 on the ground lines 31 and 33, the height of the shield 15 can be made sufficiently higher than the signal line 32, and the electromagnetic field leaking from the signal line 32 can be shielded.
 シグナル線32の幅をsと表し、シグナル線32とグランド線31の間の距離(シグナル線32とグランド線33の間の距離)をgと表すとき、グランド線31,33の幅をs+g以上として、グランド線31,33上に遮蔽物15を設けることで、電磁場をより効率的に遮蔽することができる。 When the width of the signal line 32 is expressed as s and the distance between the signal line 32 and the ground line 31 (distance between the signal line 32 and the ground line 33) is expressed as g, the width of the ground lines 31 and 33 is s + g or more. Therefore, by providing the shield 15 on the ground wires 31 and 33, the electromagnetic field can be shielded more efficiently.
 また、シグナル線32の中央に中心を有する半径s+gの仮想円と交差するように遮蔽物15を設けることで、電磁場をより効率的に遮蔽することができる。 Further, by providing the shield 15 so as to intersect the virtual circle having a radius s + g having a center at the center of the signal line 32, the electromagnetic field can be shielded more efficiently.
[第2実施形態]
 図5aは、本発明の第2実施形態に係る量子回路システム10aの構成の一例を示す斜視図である。また、図5bは、本実施形態に係る量子回路システム10aの構成の詳細を示す図である。本実施形態に係る量子回路システム10aは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dを備える。また、量子回路システム10aは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dの量子状態を読み出すための読出回路14を備える。
[Second Embodiment]
FIG. 5a is a perspective view showing an example of the configuration of the quantum circuit system 10a according to the second embodiment of the present invention. Further, FIG. 5b is a diagram showing details of the configuration of the quantum circuit system 10a according to the present embodiment. The quantum circuit system 10a according to the present embodiment includes a first quantum circuit 11a, a second quantum circuit 11b, a third quantum circuit 11c, and a fourth quantum circuit 11d. Further, the quantum circuit system 10a includes a read circuit 14 for reading the quantum states of the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d.
 量子回路システム10aは、第1量子回路11aに電気的に接続された第1同軸ケーブル113aと、読出回路14に電気的に接続された読出同軸ケーブル14aとを備える。同様に、量子回路システム10aは、第2量子回路11bに電気的に接続された第2同軸ケーブル、第3量子回路11cに電気的に接続された第3同軸ケーブル及び第4量子回路11dに電気的に接続された第4同軸ケーブルを備える(不図示)。ここで、第1同軸ケーブル113aは、高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる第1高周波電源に電気的に接続される。また、第2同軸ケーブル、第3同軸ケーブル及び第4同軸ケーブルは、それぞれ、高周波電力を伝搬させて第2量子回路11b、第3量子回路11c及び第4量子回路11dを所定の量子状態に変化させる第2高周波電源、第3高周波電源及び第4高周波電源に電気的に接続される。 The quantum circuit system 10a includes a first coaxial cable 113a electrically connected to the first quantum circuit 11a and a read coaxial cable 14a electrically connected to the read circuit 14. Similarly, the quantum circuit system 10a is electrically connected to the second coaxial cable electrically connected to the second quantum circuit 11b, the third coaxial cable electrically connected to the third quantum circuit 11c, and the fourth quantum circuit 11d. A fourth coaxial cable is provided (not shown). Here, the first coaxial cable 113a is electrically connected to a first high-frequency power source that propagates high-frequency power to change the first quantum circuit 11a into a predetermined quantum state. Further, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable propagate high-frequency power to change the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d into predetermined quantum states, respectively. It is electrically connected to the second high frequency power supply, the third high frequency power supply, and the fourth high frequency power supply.
 本実施形態において、第1同軸ケーブル113a、第2同軸ケーブル、第3同軸ケーブル及び第4同軸ケーブルは、本発明の第1導波路、第2導波路、第3導波路及び第4導波路に相当する。本実施形態において、第1導波路及び第2導波路は、第1量子回路11a及び第2量子回路11bが形成される主面と交差する方向に延伸している。より具体的には、第1導波路及び第2導波路は、第1量子回路11a及び第2量子回路11bが形成される主面と略直行する方向に延伸している。 In the present embodiment, the first coaxial cable 113a, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable are used in the first waveguide, the second waveguide, the third waveguide, and the fourth coaxial cable of the present invention. Equivalent to. In the present embodiment, the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. More specifically, the first waveguide and the second waveguide extend in a direction substantially orthogonal to the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed.
 また、量子回路システム10aは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dが形成される主面に設けられた第1遮蔽物15a、第2遮蔽物15b、第3遮蔽物15c及び第4遮蔽物15dを備える。このような構成により、量子回路11の量子状態を読み出す場合における複数の線路の干渉を抑えたり、量子回路11間の相互作用の干渉を抑えたりすることができる。なお、第1遮蔽物15a、第2遮蔽物15b、第3遮蔽物15c及び第4遮蔽物15dは、図5aに実線で示す配置ではなく、破線で示す配置で設けられてもよいし、実線で示す配置と破線で示す配置の両方で設けられてもよい。 Further, the quantum circuit system 10a includes a first shield 15a and a second shield provided on the main surface on which the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are formed. The object 15b, the third shield 15c, and the fourth shield 15d are provided. With such a configuration, it is possible to suppress the interference of a plurality of lines when reading the quantum state of the quantum circuit 11, and to suppress the interference of the interaction between the quantum circuits 11. The first shield 15a, the second shield 15b, the third shield 15c, and the fourth shield 15d may be provided in the arrangement shown by the broken line instead of the arrangement shown by the solid line in FIG. 5a, or the solid line. It may be provided in both the arrangement shown by and the arrangement shown by the broken line.
[第3実施形態]
 図6aは、本発明の第3実施形態に係る量子回路システム10bの構成の一例を示す上面図である。また、図6bは、本実施形態に係る量子回路システム10bの構成を示す上面図であり、図6cは、本実施形態に係る量子回路システム10bの構成を示す断面図である。なお、図6aでは、第3金属層153を図示せず、第3金属層153に覆われている第1結合線路17及び第2結合線路18を図示している。また、図6cは、図6bに示すVIc-VIc線における断面図である。
[Third Embodiment]
FIG. 6a is a top view showing an example of the configuration of the quantum circuit system 10b according to the third embodiment of the present invention. Further, FIG. 6b is a top view showing the configuration of the quantum circuit system 10b according to the present embodiment, and FIG. 6c is a cross-sectional view showing the configuration of the quantum circuit system 10b according to the present embodiment. Note that FIG. 6a does not show the third metal layer 153, but shows the first coupling line 17 and the second coupling line 18 covered by the third metal layer 153. Further, FIG. 6c is a cross-sectional view taken along the line VIc-VIc shown in FIG. 6b.
 本実施形態に係る量子回路システム10aは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dを備える。また、量子回路システム10aは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dの量子状態を読み出すための読出回路14を備える。 The quantum circuit system 10a according to the present embodiment includes a first quantum circuit 11a, a second quantum circuit 11b, a third quantum circuit 11c, and a fourth quantum circuit 11d. Further, the quantum circuit system 10a includes a read circuit 14 for reading the quantum states of the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d.
 量子回路システム10aは、第1量子回路11aに電気的に接続された第1同軸ケーブルと、読出回路14に電気的に接続された読出同軸ケーブルとを備える(不図示)。同様に、量子回路システム10aは、第2量子回路11bに電気的に接続された第2同軸ケーブル、第3量子回路11cに電気的に接続された第3同軸ケーブル及び第4量子回路11dに電気的に接続された第4同軸ケーブルを備える(不図示)。ここで、第1同軸ケーブルは、高周波電力を伝搬させて第1量子回路11aを所定の量子状態に変化させる第1高周波電源に電気的に接続される。また、第2同軸ケーブル、第3同軸ケーブル及び第4同軸ケーブルは、それぞれ、高周波電力を伝搬させて第2量子回路11b、第3量子回路11c及び第4量子回路11dを所定の量子状態に変化させる第2高周波電源、第3高周波電源及び第4高周波電源に電気的に接続される。 The quantum circuit system 10a includes a first coaxial cable electrically connected to the first quantum circuit 11a and a read coaxial cable electrically connected to the read circuit 14 (not shown). Similarly, the quantum circuit system 10a is electrically connected to the second coaxial cable electrically connected to the second quantum circuit 11b, the third coaxial cable electrically connected to the third quantum circuit 11c, and the fourth quantum circuit 11d. A fourth coaxial cable is provided (not shown). Here, the first coaxial cable is electrically connected to a first high-frequency power source that propagates high-frequency power to change the first quantum circuit 11a into a predetermined quantum state. Further, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable propagate high-frequency power to change the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d into predetermined quantum states, respectively. It is electrically connected to the second high frequency power supply, the third high frequency power supply, and the fourth high frequency power supply.
 本実施形態において、第1同軸ケーブル、第2同軸ケーブル、第3同軸ケーブル及び第4同軸ケーブルは、本発明の第1導波路、第2導波路、第3導波路及び第4導波路に相当する。本実施形態において、第1導波路及び第2導波路は、第1量子回路11a及び第2量子回路11bが形成される主面と交差する方向に延伸している。より具体的には、第1導波路及び第2導波路は、第1量子回路11a及び第2量子回路11bが形成される主面と略直行する方向に延伸している。 In the present embodiment, the first coaxial cable, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable correspond to the first waveguide, the second waveguide, the third waveguide, and the fourth coaxial cable of the present invention. To do. In the present embodiment, the first waveguide and the second waveguide extend in a direction intersecting the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed. More specifically, the first waveguide and the second waveguide extend in a direction substantially orthogonal to the main surface on which the first quantum circuit 11a and the second quantum circuit 11b are formed.
 また、量子回路システム10bは、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dが形成される主面から離間した面に設けられている遮蔽物を備える。より具体的には、量子回路システム10bは、量子回路11が形成される主面から離間した面に設けられている第3金属層153を備える。このような構成により、量子回路11が形成される主面において生じた漏れ電磁場を遮蔽し、干渉を防ぐことができる。 Further, the quantum circuit system 10b includes a shield provided on a surface separated from the main surface on which the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d are formed. .. More specifically, the quantum circuit system 10b includes a third metal layer 153 provided on a surface separated from the main surface on which the quantum circuit 11 is formed. With such a configuration, it is possible to shield the leaking electromagnetic field generated on the main surface on which the quantum circuit 11 is formed and prevent interference.
 また、本実施形態において、遮蔽物は、第1量子回路11a及び第2量子回路11bを電磁気的に接続する第1結合線路17を覆うように、主面の法線方向において、第1結合線路17よりも高い位置に設けられている。本実施形態では、第1結合線路17は、第1量子回路11a及び第2量子回路11bと、第2量子回路11b及び第3量子回路11cと、第3量子回路11c及び第4量子回路11dと、第4量子回路11d及び第1量子回路11aと、をそれぞれ電磁気的に接続する。そして、遮蔽物である第3金属層153は、第1結合線路17を覆うように設けられている。このような構成により、第1結合線路17において生じた漏れ電磁場を遮蔽し、他の回路との干渉を防ぐことができる。 Further, in the present embodiment, the shield covers the first coupling line 17 that electromagnetically connects the first quantum circuit 11a and the second quantum circuit 11b so as to cover the first coupling line 17 in the normal direction of the main surface. It is provided at a position higher than 17. In the present embodiment, the first coupling line 17 includes the first quantum circuit 11a and the second quantum circuit 11b, the second quantum circuit 11b and the third quantum circuit 11c, and the third quantum circuit 11c and the fourth quantum circuit 11d. , The fourth quantum circuit 11d and the first quantum circuit 11a are electrically connected to each other. The third metal layer 153, which is a shield, is provided so as to cover the first coupling line 17. With such a configuration, it is possible to shield the leaking electromagnetic field generated in the first coupling line 17 and prevent interference with other circuits.
 また、本実施形態において、遮蔽物は、第1量子回路11a及び第2量子回路11bと読出回路14とを電磁気的に接続する第2結合線路18を覆うように、主面の法線方向において、第2結合線路18よりも高い位置に設けられている。本実施形態では、第2結合線路18は、第1量子回路11a及び読出回路14と、第2量子回路11b及び読出回路14と、第3量子回路11c及び読出回路14と、第4量子回路11d及び読出回路14と、をそれぞれ電磁気的に接続する。そして、遮蔽物である第3金属層153は、第2結合線路18を覆うように設けられている。このような構成により、第2結合線路18において生じた漏れ電磁場を遮蔽し、他の回路との干渉を防ぐことができる。 Further, in the present embodiment, the shield covers the second coupling line 18 that electromagnetically connects the first quantum circuit 11a and the second quantum circuit 11b and the reading circuit 14, in the normal direction of the main surface. , Is provided at a position higher than the second coupling line 18. In the present embodiment, the second coupling line 18 includes a first quantum circuit 11a and a read circuit 14, a second quantum circuit 11b and a read circuit 14, a third quantum circuit 11c and a read circuit 14, and a fourth quantum circuit 11d. And the read circuit 14 are electromagnetically connected to each other. The third metal layer 153, which is a shield, is provided so as to cover the second coupling line 18. With such a configuration, it is possible to shield the leaking electromagnetic field generated in the second coupling line 18 and prevent interference with other circuits.
 本実施形態の遮蔽物は、第1金属層151、第2金属層152及び第3金属層153を含む。第1金属層151は、第1量子回路11a、第2量子回路11b、第3量子回路11c及び第4量子回路11dを囲むように矩形状に形成されている。また、第2金属層152は、2つの量子回路11と読出回路14とで形成される三角領域に三角形状に形成されている。第3金属層153は、第1金属層151と第2金属層152にまたがる部分と、第2金属層152にまたがる部分とを含む。第3金属層153のうち第1金属層151と第2金属層152にまたがる部分は、第1結合線路17を覆う。また、第3金属層153のうち第2金属層152にまたがる部分は、第2結合線路18を覆う。なお、第2金属層152は、図6aに実線で示す配置ではなく、破線で示す配置で設けられてもよいし、実線で示す配置と破線で示す配置の両方で設けられてもよい。 The shield of the present embodiment includes the first metal layer 151, the second metal layer 152, and the third metal layer 153. The first metal layer 151 is formed in a rectangular shape so as to surround the first quantum circuit 11a, the second quantum circuit 11b, the third quantum circuit 11c, and the fourth quantum circuit 11d. Further, the second metal layer 152 is formed in a triangular shape in a triangular region formed by the two quantum circuits 11 and the read circuit 14. The third metal layer 153 includes a portion that straddles the first metal layer 151 and the second metal layer 152, and a portion that straddles the second metal layer 152. The portion of the third metal layer 153 that straddles the first metal layer 151 and the second metal layer 152 covers the first coupling line 17. Further, the portion of the third metal layer 153 that straddles the second metal layer 152 covers the second coupling line 18. The second metal layer 152 may be provided in an arrangement shown by a broken line instead of the arrangement shown by the solid line in FIG. 6a, or may be provided in both the arrangement shown by the solid line and the arrangement shown by the broken line.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be changed as appropriate. In addition, the configurations shown in different embodiments can be partially replaced or combined.
 10…量子回路システム、10a…第2実施形態に係る量子回路システム、10b…第3実施形態に係る量子回路システム、11a…第1量子回路、11b…第2量子回路、11c…第3量子回路、11d…第4量子回路、12a…第1導波路、12b…第2導波路、12c…第3導波路、12d…第4導波路、14…読出回路、14a…読出同軸ケーブル、13a…第1高周波電源、13b…第2高周波電源、13c…第3高周波電源、13d…第4高周波電源、14…読出回路、15a…第1遮蔽物、15b…第2遮蔽物、15c…第3遮蔽物、17…第1結合線路、18…第2結合線路、20…ユーザ端末、30…金属層、31…第1グランド線、32…シグナル線、33…第2グランド線、41,42,43…レジスト、50,52…アルミニウム層、51…酸化アルミニウム層、60,61,62…マスク、100…量子計算システム、111…トランズモン、112…共振器、113a…第1同軸ケーブル、151…第1金属層、152…第2金属層、153…第3金属層 10 ... Quantum circuit system, 10a ... Quantum circuit system according to the second embodiment, 10b ... Quantum circuit system according to the third embodiment, 11a ... First quantum circuit, 11b ... Second quantum circuit, 11c ... Third quantum circuit , 11d ... 4th quantum circuit, 12a ... 1st waveguide, 12b ... 2nd waveguide, 12c ... 3rd waveguide, 12d ... 4th waveguide, 14 ... Read circuit, 14a ... Read coaxial cable, 13a ... 1 high frequency power supply, 13b ... second high frequency power supply, 13c ... third high frequency power supply, 13d ... fourth high frequency power supply, 14 ... reading circuit, 15a ... first shield, 15b ... second shield, 15c ... third shield , 17 ... 1st coupling line, 18 ... 2nd coupling line, 20 ... user terminal, 30 ... metal layer, 31 ... 1st ground line, 32 ... signal line, 33 ... 2nd ground line, 41, 42, 43 ... Resist, 50, 52 ... Aluminum layer, 51 ... Aluminum oxide layer, 60, 61, 62 ... Mask, 100 ... Quantum computing system, 111 ... Transmon, 112 ... Resonator, 113a ... First coaxial cable, 151 ... First metal Layer, 152 ... 2nd metal layer, 153 ... 3rd metal layer

Claims (7)

  1.  少なくとも2つの量子状態を表すことができる第1量子回路及び第2量子回路と、
     前記第1量子回路に電磁気的に接続された第1導波路及び前記第2量子回路に電磁気的に接続された第2導波路と、
     誘電体又は金属で構成され、前記第1量子回路及び前記第2量子回路が形成されている主面の法線方向において、前記第1導波路及び前記第2導波路の高さよりも高い遮蔽物と、
     を備える量子回路システム。
    A first quantum circuit and a second quantum circuit that can represent at least two quantum states,
    A first waveguide electromagnetically connected to the first quantum circuit and a second waveguide electromagnetically connected to the second quantum circuit.
    A shield made of a dielectric or metal and higher than the height of the first waveguide and the second waveguide in the normal direction of the main surface on which the first quantum circuit and the second quantum circuit are formed. When,
    Quantum circuit system with.
  2.  前記遮蔽物は、前記第1導波路及び前記第2導波路に沿って延伸している、
     請求項1に記載の量子回路システム。
    The shield extends along the first waveguide and the second waveguide.
    The quantum circuit system according to claim 1.
  3.  前記第1導波路及び前記第2導波路は、それぞれグランド線及びシグナル線を含み、
     前記遮蔽物は、前記グランド線上に設けられている、
     請求項1又は2に記載の量子回路システム。
    The first waveguide and the second waveguide include a ground line and a signal line, respectively.
    The shield is provided on the ground line,
    The quantum circuit system according to claim 1 or 2.
  4.  前記第1導波路及び前記第2導波路は、前記第1量子回路及び前記第2量子回路が形成される主面と交差する方向に延伸し、
     前記遮蔽物は、前記第1量子回路及び前記第2量子回路が形成される主面に設けられている、
     請求項1に記載の量子回路システム。
    The first waveguide and the second waveguide are extended in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed.
    The shield is provided on the main surface on which the first quantum circuit and the second quantum circuit are formed.
    The quantum circuit system according to claim 1.
  5.  前記第1導波路及び前記第2導波路は、前記第1量子回路及び前記第2量子回路が形成される主面と交差する方向に延伸し、
     前記遮蔽物は、前記第1量子回路及び前記第2量子回路が形成される主面から離間した面に設けられている、
     請求項1に記載の量子回路システム。
    The first waveguide and the second waveguide are extended in a direction intersecting the main surface on which the first quantum circuit and the second quantum circuit are formed.
    The shield is provided on a surface separated from the main surface on which the first quantum circuit and the second quantum circuit are formed.
    The quantum circuit system according to claim 1.
  6.  前記遮蔽物は、前記第1量子回路及び前記第2量子回路を電磁気的に接続する第1結合線路を覆うように、前記主面の法線方向において、前記第1結合線路よりも高い位置に設けられている、
     請求項5に記載の量子回路システム。
    The shield is located higher than the first coupling line in the normal direction of the main surface so as to cover the first coupling line that electromagnetically connects the first quantum circuit and the second quantum circuit. Provided,
    The quantum circuit system according to claim 5.
  7.  前記遮蔽物は、前記第1量子回路及び前記第2量子回路と読出回路とを電磁気的に接続する第2結合線路を覆うように、前記主面の法線方向において、前記第2結合線路よりも高い位置に設けられている、
     請求項5又は6に記載の量子回路システム。
    The shield is provided from the second coupling line in the normal direction of the main surface so as to cover the first quantum circuit and the second coupling line that electromagnetically connects the second quantum circuit and the reading circuit. Is also installed at a high position,
    The quantum circuit system according to claim 5 or 6.
PCT/JP2019/038936 2019-10-02 2019-10-02 Quantum circuit system WO2021064901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/038936 WO2021064901A1 (en) 2019-10-02 2019-10-02 Quantum circuit system
JP2020538738A JP6986788B2 (en) 2019-10-02 2019-10-02 Quantum circuit system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038936 WO2021064901A1 (en) 2019-10-02 2019-10-02 Quantum circuit system

Publications (1)

Publication Number Publication Date
WO2021064901A1 true WO2021064901A1 (en) 2021-04-08

Family

ID=75336845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038936 WO2021064901A1 (en) 2019-10-02 2019-10-02 Quantum circuit system

Country Status (2)

Country Link
JP (1) JP6986788B2 (en)
WO (1) WO2021064901A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509800A (en) * 2013-01-18 2016-03-31 イェール ユニバーシティーYale University Superconducting device having at least one enclosure
US20160292586A1 (en) * 2014-02-28 2016-10-06 Rigetti & Co., Inc. Operating a multi-dimensional array of qubit devices
US20180232653A1 (en) * 2016-03-11 2018-08-16 Rigetti & Co., Inc. Impedance-Matched Microwave Quantum Circuit Systems
US20180247974A1 (en) * 2015-07-23 2018-08-30 Massachusetts Institute Of Technology Superconducting Integrated Circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509800A (en) * 2013-01-18 2016-03-31 イェール ユニバーシティーYale University Superconducting device having at least one enclosure
US20160292586A1 (en) * 2014-02-28 2016-10-06 Rigetti & Co., Inc. Operating a multi-dimensional array of qubit devices
US20180247974A1 (en) * 2015-07-23 2018-08-30 Massachusetts Institute Of Technology Superconducting Integrated Circuit
US20180232653A1 (en) * 2016-03-11 2018-08-16 Rigetti & Co., Inc. Impedance-Matched Microwave Quantum Circuit Systems

Also Published As

Publication number Publication date
JPWO2021064901A1 (en) 2021-11-25
JP6986788B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
US12086684B2 (en) Co-planar waveguide flux qubits
JP6802383B2 (en) Devices and methods to reduce parasitic capacitance and bind to inductive coupler mode
EP3574455B1 (en) A qubit apparatus and a qubit system
CN110235150B (en) Selective coverage to reduce qubit dephasing
JP7035169B2 (en) Hybrid dynamic inductance device for superconducting quantum computing
CN111868757B (en) Reducing parasitic capacitance in qubit systems
JP2021504936A (en) Rear coupling for transmon cubits using superconducting TSV
US10819281B2 (en) Electronic circuit, oscillator, and calculating device
AU2017443043B2 (en) Transmission line resonator coupling
JPH03286601A (en) microwave resonator
US11251355B2 (en) Resonance frequency adjustment for fixed-frequency qubits
Ma et al. Design of absorptive superconducting filter
EP4256485A1 (en) Parametric amplification in a quantum computing system
Cheng et al. SIW filter with broadband stopband by suppressing the coupling of higher‐order resonant modes
JP4426931B2 (en) Coplanar filter and method for forming the same
JP6986788B2 (en) Quantum circuit system
Jin et al. Fabrication of Al air-bridge on coplanar waveguide
Benson et al. Structure related beam propagation
Kumar et al. Miniaturisation of branch line couplers with a compact transmission line topology based on coupled line section
JP7317180B2 (en) Reducing Parasitic Capacitance in Qubit Systems
Boutejdar et al. A miniature 3.1 GHz microstrip bandpass filter with suppression of spurious harmonics using multilayer technique and defected ground structure open-loop ring
Codecasa et al. Exact conic section arc elements in 2D and 2.5 D FEM using a coordinate transformation
JP6651213B1 (en) Quantum circuit system
US12231103B2 (en) Electronic circuit and calculator
US20250200415A1 (en) Qubit device and qubit device fabrication method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538738

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19947466

Country of ref document: EP

Kind code of ref document: A1