[go: up one dir, main page]

WO2021060187A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2021060187A1
WO2021060187A1 PCT/JP2020/035473 JP2020035473W WO2021060187A1 WO 2021060187 A1 WO2021060187 A1 WO 2021060187A1 JP 2020035473 W JP2020035473 W JP 2020035473W WO 2021060187 A1 WO2021060187 A1 WO 2021060187A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
gradient
weight
unit
control unit
Prior art date
Application number
PCT/JP2020/035473
Other languages
English (en)
French (fr)
Inventor
慎一郎 深沢
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US17/763,143 priority Critical patent/US11981314B2/en
Priority to DE112020004500.5T priority patent/DE112020004500T5/de
Priority to CN202080067482.6A priority patent/CN114450210B/zh
Publication of WO2021060187A1 publication Critical patent/WO2021060187A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass

Definitions

  • the present disclosure relates to a vehicle control device for controlling a vehicle.
  • Patent Document 1 discloses a control device that determines the rate of increase in braking force based on the magnitude of the slope of the road surface in order to suppress the sliding down of the vehicle and reduce the stop shock even when the road surface has a slope. Has been done.
  • the rate of increase in braking force is determined based on the magnitude of the slope of the road surface at the current position of the vehicle.
  • the magnitude of the gradient at the position where the vehicle is traveling at the time when the braking operation is performed is not always the same as the magnitude of the gradient at the position where the vehicle is expected to stop. In such a case, there has been a problem that the rate of increase in braking force is not set to an appropriate value.
  • an object of the present disclosure is to provide a vehicle control device capable of reducing a shock when a vehicle is stopped.
  • the vehicle control device of the present disclosure includes a prediction unit that predicts the stop position of the vehicle, a gradient identification unit that specifies the amount of slope of the road surface at the stop position predicted by the prediction unit, and a weight specification that specifies the weight of the vehicle. It has a unit and a braking control unit that brakes the vehicle by changing the brake pressure of the vehicle at a change speed determined based on the gradient amount specified by the gradient specifying unit and the weight of the vehicle.
  • the braking control unit increases the rate of change as the amount of the gradient specified by the gradient specifying unit increases.
  • the braking control unit may increase the rate of change as the weight specified by the weight specifying unit increases.
  • the gradient specifying unit identifies a plurality of gradient amounts at a plurality of points from the current position of the vehicle to the stopped position at the time when the vehicle is detected to be stopped, and the braking control unit specifies the plurality of gradients.
  • the rate of change may be determined based on the amount.
  • FIG. 1 is a diagram for explaining an outline of the vehicle.
  • FIG. 2 is a diagram showing the configuration of the vehicle T.
  • FIG. 3 is a diagram for explaining the operation of the braking control unit 125.
  • FIG. 4 is an operation flowchart of the vehicle control device 1.
  • FIG. 1 is a diagram for explaining an outline of a vehicle T (own vehicle) according to the present embodiment.
  • FIG. 1 shows a state in which the vehicle T, which is a commercial vehicle, is traveling behind the preceding vehicle V.
  • the vehicle T has an ACC (Adaptive Cruise Control) function, and travels while following the speed of the preceding vehicle V and controlling the speed of the own vehicle.
  • ACC Adaptive Cruise Control
  • the vehicle T detects that the preceding vehicle V has stopped, and starts decelerating in order to stop the vehicle T. At this time, the vehicle T predicts the position where the vehicle T stops.
  • the vehicle T In order to predict the stop position, the vehicle T first calculates the distance required for the preceding vehicle V to stop based on the vehicle speed and deceleration of the preceding vehicle V, so that the time when the preceding vehicle V stops. Predict the position of the rear end of the preceding vehicle V at. It is assumed that the vehicle T is the position of the tip of the vehicle T when the vehicle T stops at a position in front of the predicted position of the rear end of the preceding vehicle V when the vehicle is stopped by the target inter-vehicle distance when the vehicle is stopped. Based on the position, the position of a predetermined portion (for example, the center of gravity) of the vehicle T is predicted as the stop position.
  • a predetermined portion for example, the center of gravity
  • the vehicle T specifies the amount of slope of the road at the predicted stop position by referring to the map information including the slope information of the road.
  • the stop position of the vehicle T is not limited to the position of the center of gravity of the vehicle T when the vehicle is stopped, and may be the position of another part such as the center of the vehicle T.
  • FIG. 1B is a diagram showing the stop positions of the preceding vehicle V and the vehicle T predicted by the vehicle T.
  • the vehicle T is stopped at a position having an uphill slope, and the vehicle T specifies the amount of the slope of the vehicle T shown in FIG. 1 (b) at the stopped position.
  • the vehicle T determines the rate of change of the brake pressure (hereinafter referred to as "brake pressure") immediately before the vehicle stops, based on the specified gradient amount and the weight of the vehicle T. Specifically, the vehicle T increases the rate of change (that is, the rate of increase) that increases the brake pressure as the amount of gradient increases. Further, the heavier the weight of the vehicle T, the larger the change speed at which the brake pressure is increased.
  • FIG. 2 is a diagram showing the configuration of the vehicle T.
  • the vehicle T includes a vehicle control device 1, a peripheral sensor unit 2, a weight sensor 3, and an engine 4.
  • the vehicle control device 1 is a device that controls each part of the vehicle T in order to realize the various operations described above, and is, for example, an ECU (Electronic Control Unit).
  • the vehicle control device 1 has a storage unit 11 and a control unit 12.
  • the control unit 12 includes a travel control unit 121, a prediction unit 122, a gradient specifying unit 123, a weight specifying unit 124, and a braking control unit 125. The details of the vehicle control device 1 will be described later.
  • the peripheral sensor unit 2 has, for example, a radar or a camera, and detects the situation around the vehicle T.
  • the peripheral sensor unit 2 detects, for example, the speed, acceleration, and deceleration of the preceding vehicle V.
  • the peripheral sensor unit 2 may detect other situations that affect the running of the vehicle T, such as traffic lights, stop lines, pedestrians, obstacles, and the like.
  • the peripheral sensor unit 2 inputs data indicating the detected situation to the travel control unit 121 and the prediction unit 122.
  • the weight sensor 3 detects the weight of the vehicle T.
  • the weight sensor 3 inputs data indicating the detected weight to the weight identification unit 124.
  • the storage unit 11 has a storage medium such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 11 stores, for example, a program executed by the control unit 12.
  • the storage unit 11 may temporarily store various data input from the peripheral sensor unit 2 and the weight sensor 3. Further, the storage unit 11 stores related data such as a look-up table in which a plurality of gradient amounts are associated with the change speed of the brake pressure.
  • the storage unit 11 may store the change speed of the brake pressure corresponding to each of the weights of the plurality of vehicles T.
  • the storage unit 11 may store the change speed of the brake pressure corresponding to each of the plurality of combinations of the gradient amount and the weight of the vehicle T.
  • the control unit 12 has, for example, a CPU (Central Processing Unit), and by executing a program stored in the storage unit 11, the travel control unit 121, the prediction unit 122, the gradient specifying unit 123, and the weight specifying unit 124 And functions as a braking control unit 125.
  • a CPU Central Processing Unit
  • the travel control unit 121 controls the vehicle speed of the vehicle T by controlling the engine 4.
  • the travel control unit 121 determines the target vehicle speed of the vehicle T based on, for example, the speed, acceleration, and deceleration of the preceding vehicle V notified from the peripheral sensor unit 2, and sets the engine 4 so that the vehicle T travels at the target vehicle speed. Control.
  • the travel control unit 121 may determine the target vehicle speed based on information indicating an external situation other than the speed, acceleration, and deceleration of the preceding vehicle V.
  • the travel control unit 121 targets, for example, so that when the peripheral sensor unit 2 detects a traffic light, a stop line, a pedestrian, an obstacle, etc., the vehicle can stop at a position in front of the traffic light, the stop line, a pedestrian, an obstacle, or the like. Determine the vehicle speed.
  • the prediction unit 122 predicts the stop position of the vehicle T.
  • the prediction unit 122 predicts the position where the preceding vehicle V will stop based on the speed, acceleration, and deceleration of the preceding vehicle V notified from, for example, the peripheral sensor unit 2, and stops at the predicted stop position of the preceding vehicle V.
  • the stop position of the vehicle T is predicted by specifying the position in front of the target vehicle distance at the time.
  • the peripheral sensor unit 2 detects a traffic light, a stop line, a pedestrian, an obstacle, etc.
  • the prediction unit 122 predicts a position in front of the traffic light, the stop line, a pedestrian, an obstacle, etc. as a stop position. Good.
  • the slope specifying unit 123 specifies the amount of slope of the road surface at the stop position predicted by the prediction unit 122.
  • the gradient specifying unit 123 specifies the amount of the gradient of the predicted stop position by referring to the map information including the information indicating the slope of the road stored in the storage unit 11, for example.
  • the gradient specifying unit 123 may specify the amount of gradient at the predicted stop position based on the data indicating the surrounding conditions input from the peripheral sensor unit 2.
  • the gradient specifying unit 123 notifies the braking control unit 125 of the specified gradient amount.
  • the weight specifying unit 124 specifies the weight of the vehicle T based on the data input from the weight sensor 3.
  • the weight specifying unit 124 notifies the braking control unit 125 of the specified weight.
  • the braking control unit 125 brakes the vehicle T by controlling the brake 5.
  • the braking control unit 125 brakes the vehicle T by changing the pressure of the brake 5 at a change speed determined based on the gradient amount specified by the gradient specifying unit 123.
  • the braking control unit 125 may increase the rate of change of the brake pressure as the weight specified by the weight specifying unit 124 increases.
  • the braking control unit 125 brakes the vehicle T by changing the pressure of the brake 5 at a change speed determined based on the gradient amount specified by the gradient specifying unit 123 and the weight of the vehicle T specified by the weight specifying unit 124. You may.
  • FIG. 3 is a diagram for explaining the operation of the braking control unit 125.
  • the horizontal axis of FIG. 3 shows time, and the vertical axis shows brake pressure.
  • the broken line in FIG. 3 shows the change in the brake pressure in the case of the first gradient amount, and the alternate long and short dash line in FIG. 3 shows the change in the brake pressure in the case of the second gradient amount larger than the first gradient amount. There is.
  • the braking control unit 125 refers to the relationship data indicating the relationship between the gradient amount stored in the storage unit 11 and the change speed of the brake pressure as shown in FIG. 3, for example, and the gradient amount specified by the gradient specifying unit 123. The larger the value, the larger the rate of change of the brake pressure. For example, the braking control unit 125 increases the rate of change of the brake pressure as the absolute value of the gradient amount increases. The braking control unit 125 may increase the rate of change of the brake pressure as the weight of the vehicle T increases. By operating the braking control unit 125 in this way, it is possible to suppress the swing back while stopping the vehicle T at an appropriate position on a sloped road.
  • the braking control unit 125 may change the braking pressure at a changing speed corresponding to the combination of the absolute value of the gradient amount and the weight of the vehicle T. For example, the braking control unit 125 increases the rate of change of the brake pressure as the value obtained by multiplying or adding the gradient amount and the weight is larger. The braking control unit 125 may give different weights to the gradient amount and the weight when multiplying or adding the gradient amount and the weight based on an instruction input from the outside. By operating the braking control unit 125 in this way, the brake pressure can be changed, for example, at a changing speed according to the driver's preference.
  • FIG. 4 is an operation flowchart of the vehicle control device 1.
  • the operation flowchart shown in FIG. 4 starts from the time when the prediction unit 122 predicts the stop position of the vehicle T (step S1).
  • the gradient specifying unit 123 specifies the amount of the gradient at the predicted stop position (step S2).
  • the weight specifying unit 124 specifies the weight of the vehicle T (step S3).
  • the order of the processing in step S2 and the processing in step S3 is arbitrary.
  • the braking control unit 125 determines the change speed of the brake pressure based on the gradient amount specified in step S2 and the weight specified in step S3 (step S4).
  • the braking control unit 125 stops the vehicle T by operating the brake 5 by changing the brake pressure at a determined speed of change.
  • the gradient specifying unit 123 specifies, for example, a plurality of gradient amounts in a predetermined range before and after the predicted stop position, and the braking control unit 125 determines the change speed based on the average value of the specified plurality of gradient amounts.
  • the predetermined range is, for example, a range determined based on the prediction accuracy of the predicted stop position by the prediction unit 122, from the position closest to the current position where the vehicle T is predicted to stop to the position farthest from the current position. The range.
  • the braking control unit 125 weights the gradient amount at a position close to the predicted stop position among a plurality of gradient amounts larger than the gradient amount at a position far from the predicted stop position, and sets the change speed based on an average value calculated. You may decide. By operating the gradient specifying unit 123 and the braking control unit 125 in this way, it is possible to reduce the influence when there is an error in the prediction by the prediction unit 122.
  • the prediction unit 122 predicts the stop position of the vehicle T
  • the braking control unit 125 predicts the vehicle T based on the amount of gradient at the predicted stop position and the weight of the vehicle T.
  • the rate of change of the brake pressure when the T is stopped is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両制御装置1は、車両Tの停車位置を予測する予測部122と、予測部122が予測した停車位置における路面の勾配量を特定する勾配特定部123と、車両Tの重量を特定する重量特定部124と、勾配特定部123が特定した勾配量と車両Tの重量とに基づいて決定した変化速度で車両Tのブレーキの圧力を変化させることにより車両Tを制動する制動制御部125と、を有する。

Description

車両制御装置
 本開示は、車両を制御するための車両制御装置に関する。
 従来、車両が停車する際のショックを低減するために、制動力の低減制御を行う制御装置が知られている。特許文献1には、路面が勾配を有する場合でも車両のずり下がりを抑制するとともに停車ショックを低減するために、路面の勾配の大きさに基づいて制動力の増加率を決定する制御装置が開示されている。
日本国特開2008-94246号公報
 従来の制御装置においては、車両の現在位置における路面の勾配の大きさに基づいて制動力の増加率を決定している。しかしながら、ブレーキ操作が行われた時点で車両が走行している位置における勾配の大きさと、車両が停車することが見込まれる位置における勾配の大きさとが同一であるとは限らない。このような場合、制動力の増加率が適切な値に設定されないという問題が生じていた。
 そこで、本開示はこれらの点に鑑みてなされたものであり、車両が停車する際のショックを低減させることが可能な車両制御装置を提供することを目的とする。
 本開示の車両制御装置は、車両の停車位置を予測する予測部と、前記予測部が予測した前記停車位置における路面の勾配量を特定する勾配特定部と、前記車両の重量を特定する重量特定部と、前記勾配特定部が特定した勾配量と前記車両の重量とに基づいて決定した変化速度で前記車両のブレーキの圧力を変化させることにより前記車両を制動する制動制御部と、を有する。
 前記制動制御部は、例えば、前記勾配特定部が特定した前記勾配量が大きければ大きいほど前記変化速度を大きくする。
 前記制動制御部は、前記重量特定部が特定した重量が大きければ大きいほど前記変化速度を大きくしてもよい。
 前記勾配特定部は、前記車両が停車することを検出した時点における前記車両の現在位置から前記停車位置までの複数の地点における複数の勾配量を特定し、前記制動制御部は、前記複数の勾配量に基づいて前記変化速度を決定してもよい。
 本開示によれば、車両が停車する際のショックを低減させることができるという効果を奏する。
図1は、車両の概要を説明するための図である。 図2は、車両Tの構成を示す図である。 図3は、制動制御部125の動作を説明するための図である。 図4は、車両制御装置1の動作フローチャートである。
[車両Tの概要]
 図1は、本実施形態に係る車両T(自車両)の概要を説明するための図である。図1においては、商用車である車両Tが、先行車両Vの後方を走行している状態を示している。車両Tは、ACC(Adaptive Cruise Control)機能を有しており、先行車両Vの速度に追従して自車両の速度を制御しながら走行する。
 図1(a)に示す状態において、先行車両Vが停車のための減速を開始したとする。車両Tは、先行車両Vが停車することを検出し、車両Tを停車させるために減速を開始する。この際、車両Tは、車両Tが停車する位置を予測する。
 車両Tは、停車する位置を予測するために、まず、先行車両Vの車速及び減速度に基づいて、先行車両Vが停車するまでに要する距離を算出することにより、先行車両Vが停車する時点での先行車両Vの後端の位置を予測する。車両Tは、予測した先行車両Vの停車時の後端の位置に対して停車時の目標車間距離だけ手前の位置を車両Tが停車する時の車両Tの先端の位置であると仮定し、当該位置に基づいて、車両Tの所定の部位(例えば重心)の位置を停車位置として予測する。車両Tは、道路の勾配情報を含む地図情報を参照することにより、予測した停車位置における道路の勾配量を特定する。なお、車両Tの停車位置は、停車時に車両Tの重心の位置に限らず、車両Tの中央等の他の部位の位置であってもよい。
 図1(b)は、車両Tが予測した先行車両V及び車両Tの停車位置を示す図である。図1(b)に示す例においては、車両Tが上り勾配がある位置で停車しており、車両Tは、図1(b)に示す車両Tの停車位置における勾配量を特定する。
 車両Tは、特定した勾配量と車両Tの重量とに基づいて、停車する直前のブレーキの圧力(以下、「ブレーキ圧」という。)の変化速度を決定する。具体的には、車両Tは、勾配量が大きければ大きいほどブレーキ圧を大きくする変化速度(すなわち増加率)を大きくする。また、車両Tは、重量が大きければ大きいほどブレーキ圧を大きくする変化速度を大きくする。
 車両Tがこのように動作することで、車両Tが停車する位置に勾配があり、かつ重量が大きい場合に、車両Tが停車する位置が平坦であり、かつ重量が小さい場合よりも、ブレーキ圧の変化速度が大きくなりブレーキが強く作動する。その結果、車両Tが停車する位置に勾配があり、かつ重量が大きい場合に、車両Tが確実に停車することができるとともに、車両Tが停車する位置が平坦であり、かつ重量が小さい場合に、ブレーキの作動に伴う揺り戻しを抑制することができる。
 以下、車両Tの構成及び動作について詳細に説明する。
[車両Tの構成]
 図2は、車両Tの構成を示す図である。車両Tは、車両制御装置1と、周辺センサ部2と、重量センサ3と、エンジン4とを有する。
 車両制御装置1は、上述の各種の動作を実現するために車両Tの各部を制御する装置であり、例えばECU(Electronic Control Unit)である。車両制御装置1は、記憶部11と制御部12とを有する。制御部12は、走行制御部121と、予測部122と、勾配特定部123と、重量特定部124と、制動制御部125とを有する。車両制御装置1の詳細については後述する。
 周辺センサ部2は、例えばレーダー又はカメラを有しており、車両Tの周辺の状況を検出する。周辺センサ部2は、例えば先行車両Vの速度、加速度及び減速度を検出する。周辺センサ部2は、信号機、停止線、歩行者又は障害物等のように、車両Tの走行に影響を与える他の状況を検出してもよい。周辺センサ部2は、検出した状況を示すデータを走行制御部121及び予測部122に入力する。
 重量センサ3は、車両Tの重量を検出する。重量センサ3は、検出した重量を示すデータを重量特定部124に入力する。
[車両制御装置1の構成]
 記憶部11は、ROM(Read Only Memory)及びRAM(Random Access Memory)等の記憶媒体を有する。記憶部11は、例えば制御部12が実行するプログラムを記憶している。記憶部11は、周辺センサ部2及び重量センサ3から入力された各種のデータを一時的に記憶してもよい。また、記憶部11は、例えば複数の勾配量とブレーキ圧の変化速度とを関連付けたルックアップテーブル等の関係データを記憶する。記憶部11は、複数の車両Tの重量それぞれに対応するブレーキ圧の変化速度を記憶してもよい。記憶部11は、勾配量と車両Tの重量との複数の組み合わせそれぞれに対応するブレーキ圧の変化速度を記憶してもよい。
 制御部12は、例えばCPU(Central Processing Unit)を有しており、記憶部11に記憶されたプログラムを実行することにより、走行制御部121、予測部122、勾配特定部123、重量特定部124及び制動制御部125として機能する。
 走行制御部121は、エンジン4を制御することにより車両Tの車速を制御する。走行制御部121は、例えば周辺センサ部2から通知された先行車両Vの速度、加速度及び減速度に基づいて車両Tの目標車速を決定し、目標車速で車両Tが走行するようにエンジン4を制御する。走行制御部121は、先行車両Vの速度、加速度及び減速度以外の外部の状況を示す情報にさらに基づいて目標車速を決定してもよい。走行制御部121は、例えば周辺センサ部2が信号機、停止線、歩行者又は障害物等を検出した場合に、信号機、停止線、歩行者又は障害物等の手前の位置で停止できるように目標車速を決定する。
 予測部122は、車両Tの停車位置を予測する。予測部122は、例えば周辺センサ部2から通知された先行車両Vの速度、加速度及び減速度に基づいて先行車両Vが停車する位置を予測し、予測した先行車両Vの停車位置に対して停止時の目標車間距離だけ手前の位置を特定することにより、車両Tの停車位置を予測する。予測部122は、周辺センサ部2が信号機、停止線、歩行者又は障害物等を検出した場合に、信号機、停止線、歩行者又は障害物等の手前の位置を停車位置として予測してもよい。
 勾配特定部123は、予測部122が予測した停車位置における路面の勾配量を特定する。勾配特定部123は、例えば記憶部11に記憶された、道路の勾配を示す情報を含む地図情報を参照することにより、予測停車位置の勾配量を特定する。勾配特定部123は、周辺センサ部2から入力された周辺の状況を示すデータに基づいて予測停車位置の勾配量を特定してもよい。勾配特定部123は、特定した勾配量を制動制御部125に通知する。
 重量特定部124は、重量センサ3から入力されたデータに基づいて車両Tの重量を特定する。重量特定部124は、特定した重量を制動制御部125に通知する。
 制動制御部125は、ブレーキ5を制御することにより車両Tを制動する。制動制御部125は、車両Tが停止する際に、勾配特定部123が特定した勾配量に基づいて決定した変化速度でブレーキ5の圧力を変化させることにより車両Tを制動する。制動制御部125は、重量特定部124が特定した重量が大きければ大きいほどブレーキ圧の変化速度を大きくしてもよい。制動制御部125は、勾配特定部123が特定した勾配量と重量特定部124が特定した車両Tの重量とに基づいて決定した変化速度でブレーキ5の圧力を変化させることにより車両Tを制動してもよい。
 図3は、制動制御部125の動作を説明するための図である。図3の横軸は時間を示しており、縦軸はブレーキ圧を示している。図3における破線は、第1勾配量の場合のブレーキ圧の変化を示しており、図3における一点鎖線は、第1勾配量よりも大きな第2勾配量の場合のブレーキ圧の変化を示している。
 制動制御部125は、例えば図3に示すような記憶部11に記憶された勾配量とブレーキ圧の変化速度との関係を示す関係データを参照することにより、勾配特定部123が特定した勾配量が大きければ大きいほどブレーキ圧の変化速度を大きくする。制動制御部125は、例えば、勾配量の絶対値が大きければ大きいほどブレーキ圧の変化速度を大きくする。制動制御部125は、車両Tの重量が大きければ大きいほどブレーキ圧の変化速度を大きくしてもよい。制動制御部125がこのように動作することで、勾配がある道路において車両Tが適切な位置で停止しつつ、揺り戻しを抑制することができる。
 また、制動制御部125は、勾配量の絶対値と車両Tの重量との組み合わせに対応する変化速度でブレーキ圧を変化させてもよい。制動制御部125は、例えば勾配量と重量とを乗算又は加算した値が大きければ大きいほどブレーキ圧の変化速度を大きくする。制動制御部125は、外部から入力された指示に基づいて、勾配量と重量とを乗算又は加算する際に勾配量及び重量にそれぞれ異なる重み付けをしてもよい。制動制御部125がこのように動作することで、例えば運転者の好みに応じた変化速度でブレーキ圧を変化させることができる。
[車両制御装置1の動作フローチャート]
 図4は、車両制御装置1の動作フローチャートである。図4に示す動作フローチャートは、予測部122が車両Tの停車位置を予測した時点から開始している(ステップS1)。予測部122が停車位置を予測すると、勾配特定部123は、予測停車位置における勾配量を特定する(ステップS2)。また、重量特定部124は、車両Tの重量を特定する(ステップS3)。ステップS2の処理とステップS3の処理の順序は任意である。
 続いて、制動制御部125は、ステップS2において特定された勾配量と、ステップS3において特定された重量とに基づいて、ブレーキ圧の変化速度を決定する(ステップS4)。制動制御部125は、決定した変化速度でブレーキ圧を変化させてブレーキ5を作動させることにより車両Tを停車させる。
[変形例]
 以上の説明においては、車両Tが停車する予定の位置における道路の勾配量にのみ基づいてブレーキ圧の変化速度を決定するという場合を例示した。これに対して、車両Tにおいては、勾配特定部123が、車両T又は先行車両Vが停車することを検出した時点における車両Tの現在位置から予測停車位置までの複数の地点における複数の勾配量を特定し、制動制御部125が、勾配特定部123が特定した複数の勾配量に基づいて変化速度を決定してもよい。
 勾配特定部123は、例えば予測停車位置の前後の所定の範囲における複数の勾配量を特定し、制動制御部125は、特定された複数の勾配量の平均値に基づいて変化速度を決定する。所定の範囲は、例えば、予測部122による予測停車位置の予測精度に基づいて決定される範囲であり、車両Tが停車すると予測される最も現在位置に近い位置から最も現在位置から遠い位置までの範囲である。制動制御部125は、複数の勾配量のうち、予測停車位置に近い位置の勾配量に、予測停車位置から遠い位置の勾配量よりも大きく重み付けをして算出した平均値に基づいて変化速度を決定してもよい。勾配特定部123及び制動制御部125がこのように動作することで、予測部122による予測に誤差がある場合の影響を軽減することが可能になる。
[車両制御装置1による効果]
 以上説明したように、車両制御装置1においては、予測部122が車両Tの停車位置を予測し、制動制御部125は予測された停車位置における勾配量と車両Tの重量とに基づいて、車両Tを停車させる際のブレーキ圧の変化速度を決定する。車両制御装置1がこのように動作することで、勾配量が大きい場合又は車両Tの重量が大きい場合に確実に車両Tを停車させるとともに、勾配量が小さくかつ車両Tの重量が小さい場合の揺り戻しを抑制することが可能になる。
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本開示の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
 本出願は、2019年09月24日付で出願された日本国特許出願(特願2019-173072)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示によれば、車両が停車する際のショックを低減させることが可能な車両制御装置を提供できる点において有用である。
1 車両制御装置
2 周辺センサ部
3 重量センサ
4 エンジン
5 ブレーキ
11 記憶部
12 制御部
121 走行制御部
122 予測部
123 勾配特定部
124 重量特定部
125 制動制御部

Claims (4)

  1.  車両の停車位置を予測する予測部と、
     前記予測部が予測した前記停車位置における路面の勾配量を特定する勾配特定部と、
     前記車両の重量を特定する重量特定部と、
     前記勾配特定部が特定した勾配量と前記車両の重量とに基づいて決定した変化速度で前記車両のブレーキの圧力を変化させることにより前記車両を制動する制動制御部と、
     を有する車両制御装置。
  2.  前記制動制御部は、前記勾配特定部が特定した前記勾配量が大きければ大きいほど前記変化速度を大きくする、
     請求項1に記載の車両制御装置。
  3.  前記制動制御部は、前記重量特定部が特定した重量が大きければ大きいほど前記変化速度を大きくする、
     請求項1又は2に記載の車両制御装置。
  4.  前記勾配特定部は、前記車両が停車することを検出した時点における前記車両の現在位置から前記停車位置までの複数の地点における複数の勾配量を特定し、
     前記制動制御部は、前記複数の勾配量に基づいて前記変化速度を決定する、
     請求項1から3のいずれか一項に記載の車両制御装置。
PCT/JP2020/035473 2019-09-24 2020-09-18 車両制御装置 WO2021060187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/763,143 US11981314B2 (en) 2019-09-24 2020-09-18 Vehicle control device
DE112020004500.5T DE112020004500T5 (de) 2019-09-24 2020-09-18 Fahrzeugsteuervorrichtung
CN202080067482.6A CN114450210B (zh) 2019-09-24 2020-09-18 车辆控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173072 2019-09-24
JP2019173072A JP7172934B2 (ja) 2019-09-24 2019-09-24 車両制御装置

Publications (1)

Publication Number Publication Date
WO2021060187A1 true WO2021060187A1 (ja) 2021-04-01

Family

ID=75156796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035473 WO2021060187A1 (ja) 2019-09-24 2020-09-18 車両制御装置

Country Status (5)

Country Link
US (1) US11981314B2 (ja)
JP (1) JP7172934B2 (ja)
CN (1) CN114450210B (ja)
DE (1) DE112020004500T5 (ja)
WO (1) WO2021060187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268408A1 (de) * 2021-06-21 2022-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum steuern eines bremsmoments eines fahrzeugs während eines zumindest teilautomatisierten befahrens einer steigung und/oder eines gefälles, recheneinrichtung sowie assistenzsystem für ein fahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151678B2 (ja) * 2019-09-24 2022-10-12 いすゞ自動車株式会社 車両制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359147A (ja) * 2003-06-06 2004-12-24 Bosch Automotive Systems Corp ブレーキ圧力コントロールシステム
JP2005282453A (ja) * 2004-03-30 2005-10-13 Toyota Motor Corp 車両の制御装置
JP2007022376A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 車両制動装置、ショック軽減方法、制動制御装置
JP2007055410A (ja) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2008094246A (ja) * 2006-10-11 2008-04-24 Toyota Motor Corp 車両用制動制御装置
JP2018041264A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 車両制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610430B2 (ja) 2005-07-08 2011-01-12 日立オートモティブシステムズ株式会社 電動ブレーキ装置
JP6189128B2 (ja) * 2013-07-29 2017-08-30 日野自動車株式会社 車両の制御装置
JP2015182572A (ja) * 2014-03-24 2015-10-22 いすゞ自動車株式会社 ハイブリッド車両における路面勾配推定方法及びハイブリッド車両
JP2015196403A (ja) 2014-03-31 2015-11-09 株式会社デンソー 車両用表示制御装置
JP2016088146A (ja) * 2014-10-30 2016-05-23 ダイハツ工業株式会社 車両用ブレーキ制御装置
JP2017007505A (ja) * 2015-06-22 2017-01-12 トヨタ自動車株式会社 車両制御装置
JP6378139B2 (ja) * 2015-06-30 2018-08-22 株式会社デンソー 車両制御装置及び車両制御方法
DE102016222172B3 (de) 2016-11-11 2018-05-17 Ford Global Technologies, Llc Bremsverfahren zum Abbremsen eines Fahrzeugs mit anschließendem Stillstand an einer Steigungsstrecke und Brems-Assistenzsystem
JP6625148B2 (ja) * 2018-02-09 2019-12-25 本田技研工業株式会社 自動運転車両、及び車両制御方法
JP6971184B2 (ja) 2018-03-27 2021-11-24 日鉄ステンレス株式会社 フェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材
US10576839B2 (en) * 2018-08-01 2020-03-03 Toyota Motor Engineering & Manufacturing North America, Inc. Motor lock overheat mitigation control for autonomous vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359147A (ja) * 2003-06-06 2004-12-24 Bosch Automotive Systems Corp ブレーキ圧力コントロールシステム
JP2005282453A (ja) * 2004-03-30 2005-10-13 Toyota Motor Corp 車両の制御装置
JP2007022376A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 車両制動装置、ショック軽減方法、制動制御装置
JP2007055410A (ja) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2008094246A (ja) * 2006-10-11 2008-04-24 Toyota Motor Corp 車両用制動制御装置
JP2018041264A (ja) * 2016-09-07 2018-03-15 本田技研工業株式会社 車両制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268408A1 (de) * 2021-06-21 2022-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum steuern eines bremsmoments eines fahrzeugs während eines zumindest teilautomatisierten befahrens einer steigung und/oder eines gefälles, recheneinrichtung sowie assistenzsystem für ein fahrzeug

Also Published As

Publication number Publication date
JP2021049834A (ja) 2021-04-01
DE112020004500T5 (de) 2022-06-09
US11981314B2 (en) 2024-05-14
CN114450210A (zh) 2022-05-06
CN114450210B (zh) 2024-05-07
JP7172934B2 (ja) 2022-11-16
US20220348173A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
CN113147761B (zh) 车速控制方法以及系统
JP6092272B2 (ja) 車両用走行制御装置
JP4354998B2 (ja) 自動車の間隔制御システム
US9052713B2 (en) Method for operating a vehicle during coasting
JP6801116B2 (ja) 走行制御装置、車両および走行制御方法
JP6157412B2 (ja) 車両用走行制御装置
JP7004075B2 (ja) 走行支援方法および走行支援装置
US20140257665A1 (en) Method for the Cruise and/or Range Control of Motor Vehicles
JP6915578B2 (ja) 車両制御装置
JP6527070B2 (ja) 走行制御装置
CN109774714B (zh) 用于自动驾驶车辆的控制方法及装置
JP2016175636A (ja) 近接性に基づくエンジン制御システム
WO2021060187A1 (ja) 車両制御装置
JP2018090064A (ja) 走行制御装置、車両、走行制御装置の制御方法、プログラム
KR20160140053A (ko) 회생 제동 가변 제어 시스템 및 방법
US7228220B2 (en) Device for adaptive distance and speed control with having torque dampening
CN110040137B (zh) 一种自适应巡航控制方法及系统
JP2020199808A (ja) 車両制御装置、車両、車両制御装置の動作方法およびプログラム
KR20180067121A (ko) 예측정보 기반 통합제어방법 및 차량
US12036989B2 (en) Vehicle control device, vehicle control method, and vehicle control system
JP7151672B2 (ja) 車両制御装置
WO2021060184A1 (ja) 車両制御装置
JP2020199809A (ja) 車両制御装置、車両、車両制御装置の動作方法およびプログラム
KR20230017797A (ko) 적응형 순항 제어를 위한 가상 타깃을 갖는 운전자 보조 방법
US20240059291A1 (en) Vehicle anti-pitch operations during near stopped state conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869879

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20869879

Country of ref document: EP

Kind code of ref document: A1