[go: up one dir, main page]

WO2021056536A1 - 显示基板母板及其制备方法、显示基板及其制备方法 - Google Patents

显示基板母板及其制备方法、显示基板及其制备方法 Download PDF

Info

Publication number
WO2021056536A1
WO2021056536A1 PCT/CN2019/109032 CN2019109032W WO2021056536A1 WO 2021056536 A1 WO2021056536 A1 WO 2021056536A1 CN 2019109032 W CN2019109032 W CN 2019109032W WO 2021056536 A1 WO2021056536 A1 WO 2021056536A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible organic
organic layer
base substrate
inorganic
Prior art date
Application number
PCT/CN2019/109032
Other languages
English (en)
French (fr)
Inventor
于俊
陆忠
范真瑞
陈硕华
宋朝阳
尹陈林
唐永杰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201990000138.8U priority Critical patent/CN212392267U/zh
Priority to PCT/CN2019/109032 priority patent/WO2021056536A1/zh
Priority to US16/964,423 priority patent/US11818922B2/en
Publication of WO2021056536A1 publication Critical patent/WO2021056536A1/zh
Priority to US18/473,538 priority patent/US12232370B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the embodiment of the present disclosure relates to a display substrate mother board and a preparation method thereof, a display substrate and a preparation method thereof.
  • Organic light-emitting diode (OLED) display panels have a series of advantages such as self-luminescence, high contrast, high definition, wide viewing angle, low power consumption, fast response speed, and low manufacturing cost, and have become one of the key development directions of the new generation of display devices. First, it has received more and more attention.
  • the organic light-emitting diode display panel can be formed by a large-scale manufacturing process, that is, the functional structure of multiple display substrates is formed on a motherboard substrate, and then multiple individual display substrates are formed by cutting the motherboard substrate, and then each A separate display substrate is subjected to subsequent preparation processes.
  • the display substrate motherboard includes a base substrate, a first flexible organic layer on the base substrate, and a first flexible organic layer on the first flexible organic layer.
  • An inorganic layer, a second flexible organic layer on the first inorganic layer, and a pixel drive circuit layer on the second flexible organic layer, the pixel drive circuit layer including a plurality of The pixel driving circuit part, the plurality of pixel driving circuit parts are insulated from each other; wherein the orthographic projection of the second flexible organic layer on the base substrate is located on the first inorganic layer on the base substrate Inside the orthographic projection, the orthographic projection of each pixel driving circuit part on the base substrate is located inside the orthographic projection of the second flexible organic layer on the base substrate.
  • the orthographic projection of the second flexible organic layer on the base substrate is also located on the first flexible organic layer on the base substrate. Inside the orthographic projection.
  • At least one side of the orthographic projection of the second flexible organic layer on the base substrate and the corresponding first flexible organic layer are in the same position.
  • the distance between the sides of the orthographic projection on the base substrate is greater than or equal to 0.2 mm.
  • the orthographic projection of the first flexible organic layer on the base substrate is the orthographic projection of the first inorganic layer on the base substrate internal.
  • the materials of the first flexible organic layer and the second flexible organic layer both include polyimide.
  • the thickness of the first flexible organic layer is 5 ⁇ m-20 ⁇ m
  • the thickness of the first inorganic layer is 0.4 ⁇ m-2 ⁇ m
  • the second flexible organic layer The thickness of the layer is 5 ⁇ m-20 ⁇ m.
  • the first inorganic layer includes a first inorganic sublayer and a second inorganic sublayer sequentially stacked on the first flexible organic layer, wherein:
  • the material of the first inorganic sublayer includes one or more of silicon oxide, silicon nitride and silicon oxynitride, and the material of the second inorganic sublayer includes amorphous silicon.
  • the total thickness of the first inorganic layer is 0.4 ⁇ m-2 ⁇ m, and the thickness of the second inorganic sub-layer is 1 nm-50 nm.
  • the display substrate mother board provided by at least one embodiment of the present disclosure further includes: a second inorganic layer on the second flexible organic layer, and a third flexible organic layer on the second inorganic layer; wherein, The orthographic projection of the third flexible organic layer on the base substrate is located inside the orthographic projection of the second flexible organic layer on the base substrate.
  • the base substrate is a rigid substrate.
  • the display substrate mother board provided by at least one embodiment of the present disclosure further includes a light emitting device layer on the pixel driving circuit layer, and the light emitting device layer includes a plurality of light emitting device portions respectively used for the plurality of display substrates.
  • the plurality of light-emitting device parts are respectively located on the plurality of pixel driving circuit parts.
  • At least one embodiment of the present disclosure provides a display substrate comprising: a first flexible organic layer, a first inorganic layer on the first flexible organic layer, and a second flexible organic layer on the first inorganic layer An organic layer, a pixel drive circuit layer on the second flexible organic layer, and a light emitting device layer on the pixel drive circuit layer; wherein the thickness of the first flexible organic layer is 5 ⁇ m-20 ⁇ m, and the The thickness of the first inorganic layer is 0.4 ⁇ m-2 ⁇ m, and the thickness of the second flexible organic layer is 5 ⁇ m-20 ⁇ m.
  • At least one embodiment of the present disclosure provides a method for preparing a display substrate mother board, including: providing a base substrate, forming a first flexible organic layer on the base substrate, and forming a first flexible organic layer on the first flexible organic layer.
  • An inorganic layer, forming a second flexible organic layer on the first inorganic layer and forming a pixel drive circuit layer on the second flexible organic layer, the pixel drive circuit layer including a plurality of The pixel driving circuit part, the plurality of pixel driving circuit parts are insulated from each other; wherein the orthographic projection of the second flexible organic layer on the base substrate is located on the first inorganic layer on the base substrate Inside the orthographic projection, the orthographic projection of each pixel driving circuit part on the base substrate is located inside the orthographic projection of the second flexible organic layer on the base substrate.
  • the orthographic projection of the second flexible organic layer on the base substrate is also located on the first flexible organic layer on the substrate. Inside the orthographic projection on the substrate.
  • At least one side edge of the orthographic projection of the second flexible organic layer on the base substrate corresponds to the first flexible organic layer.
  • the interval between the sides of the orthographic projection of the layer on the base substrate is formed to be greater than or equal to 0.2 mm.
  • the orthographic projection of the first flexible organic layer on the base substrate is on the first inorganic layer on the base substrate The interior of the orthographic projection.
  • the materials of the first flexible organic layer and the second flexible organic layer both include polyimide.
  • the first flexible organic layer is formed with a thickness of 5 ⁇ m-20 ⁇ m
  • the first inorganic layer is formed with a thickness of 0.4 ⁇ m-2 ⁇ m.
  • the formation thickness of the second flexible organic layer is 5 ⁇ m-20 ⁇ m.
  • forming the first inorganic layer includes sequentially forming a first inorganic sublayer and a second inorganic sublayer on the first flexible organic layer, wherein, the material of the first inorganic sublayer includes one or more of silicon oxide, silicon nitride and silicon oxynitride, and the material of the second inorganic sublayer includes amorphous silicon.
  • the total thickness of the first inorganic sub-layer is 0.4 ⁇ m-2 ⁇ m, and the formation thickness of the second inorganic sub-layer is 1 nm-50 nm.
  • At least one embodiment of the present disclosure provides a method for preparing a display substrate, including: obtaining a display substrate mother board by using any one of the above-mentioned preparation methods, separating the first flexible organic layer from the base substrate, and cutting all The display substrate mother board is used to form a plurality of independent display substrates.
  • the base substrate is separated from the first flexible organic layer by means of laser lift-off.
  • Figure 1A is a schematic plan view of a motherboard substrate
  • FIG. 1B is a schematic cross-sectional view of the mother board substrate in FIG. 1A along the line A-A;
  • FIG. 2 is a schematic diagram of the flexible organic material layer in the mother board substrate in FIG. 1A being peeled off from the base substrate;
  • 3A is a schematic plan view of a display substrate motherboard provided by at least one embodiment of the present disclosure
  • 3B is a schematic cross-sectional view of the display substrate mother board in FIG. 3A along the line B-B;
  • FIG. 4A is a partially enlarged schematic diagram of the display substrate mother board in FIG. 3B;
  • FIG. 4B is an enlarged schematic view of another part of the display substrate motherboard in FIG. 3B;
  • FIG. 5 is a schematic cross-sectional view of another display substrate motherboard provided by at least one embodiment of the present disclosure.
  • 6A is a schematic plan view of a display substrate motherboard provided by at least one embodiment of the present disclosure.
  • FIG. 6B is a schematic cross-sectional view of the display substrate motherboard in FIG. 6A along the line C-C;
  • 6C is another schematic cross-sectional view of the display substrate mother board in FIG. 6A along the line C-C;
  • FIG. 7 is a preparation flow chart of a display substrate mother board provided by at least one embodiment of the present disclosure.
  • FIG. 8 is a preparation flow chart of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the flexible organic layer in the display substrate mother board of FIG. 6A being peeled off from the base substrate;
  • 10A is a schematic plan view of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 10B is a schematic cross-sectional view of the display substrate in FIG. 10A along the line D-D.
  • FIG. 1A shows a schematic plan view of a motherboard substrate
  • FIG. 1B shows a schematic cross-sectional view of the motherboard substrate shown in FIG. 1A along the line A-A.
  • the motherboard substrate includes a first flexible organic material layer 11 formed on a base substrate 10, a first inorganic material layer 12 formed on the first flexible organic material layer 11, and a A second flexible organic material layer 13 formed on an inorganic material layer 12.
  • the motherboard substrate can be used to prepare a flexible display panel.
  • the base substrate 10 is, for example, a rigid substrate such as glass, which can play a supporting role.
  • the first inorganic material layer 12 completely covers the first flexible organic material layer 11, so that impurities such as water and oxygen can be isolated, and the first flexible organic material layer 11 can be protected.
  • the second flexible organic material layer 13 extends beyond the first flexible organic material layer 11 on one or more sides (shown as the left and lower sides in FIG. 1A), that is, one or more sides of the second flexible organic material layer 13
  • the orthographic projection of the edge on the base substrate 10 is outside the orthographic projection of the second flexible organic material layer 13 on the base substrate 10. For example, in the example of FIGS.
  • the second flexible organic material layer 13 extends beyond the first flexible organic material layer 11 and the first flexible organic material layer 11 on one or more sides (shown as the left side and the lower side in FIG. 1A).
  • the inorganic material layer 12 is in contact with the base substrate 10.
  • the above-mentioned motherboard substrate is used to prepare a display substrate
  • functional structures such as pixel driving circuits and light-emitting device layers for multiple display substrates can be formed on the above-mentioned motherboard substrate, and then the first flexible organic material layer 11 and its The above functional structure is separated from the base substrate 10, and then the mother substrate is cut to form a plurality of individual display substrates.
  • the first flexible organic material layer 11 and the functional structure thereon when peeled off from the base substrate 10, the first flexible organic material layer can be irradiated from the side of the base substrate 10 by laser irradiation. 11. At this time, the organic material of the first flexible organic material layer 11 will be denatured, so that the bonding force between the first flexible organic material layer 11 and the base substrate 10 is reduced, and it is easy to connect the first flexible organic material layer 11 to the substrate 10 The substrate 10 is separated. However, since the second flexible organic material layer 13 has a portion that extends beyond the side of the second flexible organic material layer 13, that is, the portion with a width D shown in FIG.
  • the first inorganic material layer 12 includes The material may absorb part of the energy irradiated by the laser, so that the part of the second flexible organic material layer 13 cannot absorb enough laser energy, so that after the laser is irradiated, the part of the second flexible organic material layer 13 and the first inorganic material layer 12 serve as The whole is difficult to peel off from the base substrate 10, if it is forcibly peeled off by applying a large force, it will cause wrinkles of the flexible organic material layer and damage the display substrate.
  • At least one embodiment of the present disclosure provides a display substrate mother board and a preparation method thereof, a display substrate and a preparation method thereof.
  • the display substrate mother board includes a base substrate, a first flexible organic layer on the base substrate, a first inorganic layer on the first flexible organic layer, a second flexible organic layer on the first inorganic layer, and a second flexible organic layer on the first inorganic layer. Two pixel drive circuit layers on the flexible organic layer.
  • the pixel drive circuit layer includes multiple pixel drive circuit parts for multiple display substrates, and the multiple pixel drive circuit parts are insulated from each other; wherein, the second flexible organic layer is on the substrate
  • the orthographic projection on the substrate is located inside the orthographic projection of the first inorganic layer on the base substrate, and the orthographic projection of each pixel driving circuit part on the base substrate is located inside the orthographic projection of the second flexible organic layer on the base substrate.
  • the laminated structure of the flexible organic layer and the inorganic layer of the display substrate mother board is easily peeled from the base substrate.
  • FIG. 3A shows a schematic plan view of the display substrate motherboard
  • FIG. 3B is a schematic cross-sectional view of the display substrate motherboard in FIG. 3A along the line B-B.
  • the display substrate mother board includes a base substrate 100, a first flexible organic layer 101 on the base substrate 100, a first inorganic layer 102 on the first flexible organic layer 101, A second flexible organic layer 103 on the first inorganic layer 102 and a pixel driving circuit layer 104 on the second flexible organic layer 103.
  • the pixel driving circuit layer 104 includes a plurality of pixel driving circuit portions 1041 for a plurality of display substrates, respectively , The plurality of pixel driving circuit parts 1041 are insulated from each other.
  • the orthographic projection of the second flexible organic layer 103 on the base substrate 100 is located inside the orthographic projection of the first inorganic layer 102 on the base substrate 100.
  • the orthographic projection of each pixel driving circuit part 104 on the base substrate 100 is located inside the orthographic projection of the second flexible organic layer 103 on the base substrate 100.
  • the orthographic projection of the second flexible organic layer 103 on the base substrate 100 is also located inside the orthographic projection of the first flexible organic layer 101 on the base substrate 100.
  • the orthographic projection of the second flexible organic layer 103 on the base substrate 100 does not exceed the orthographic projection of the first inorganic layer 102 on the base substrate 100.
  • the second flexible organic layer 103 The orthographic projection on the base substrate 100 will not exceed the orthographic projection of the first flexible organic layer 101 on the base substrate 100.
  • the orthographic projection of the second flexible organic layer 103 on the base substrate 100 and the corresponding first flexible organic layer 101 on the base substrate 100 The side of the orthographic projection (that is, the side of the orthographic projection of the first flexible organic layer 101 on the base substrate 100 adjacent to at least one side of the orthographic projection of the second flexible organic layer 103 on the base substrate 100)
  • the interval L is greater than or equal to 0.2 mm, such as 0.3 mm, 0.4 mm, or 0.5 mm.
  • the distance L between all sides of the orthographic projection of the second flexible organic layer 103 on the base substrate 100 and the side of the corresponding orthographic projection of the first flexible organic layer 101 on the base substrate 100 is greater than or equal to 0.2 mm . Therefore, it is ensured that the orthographic projection of the second flexible organic layer 103 on the base substrate 100 is located inside the orthographic projection of the first flexible organic layer 101 on the base substrate 100, so as to avoid the second flexible organic layer due to preparation errors in the preparation process. 103 has a portion beyond the first flexible organic layer 101.
  • the orthographic projection of the first flexible organic layer 101 on the base substrate 100 is inside the orthographic projection of the first inorganic layer 102 on the base substrate 100.
  • the first inorganic layer 102 completely covers the first flexible organic layer 101, and the first inorganic layer 102 can isolate impurities such as water and oxygen, so as to achieve a protective effect on the first flexible organic layer 101.
  • the base substrate 100 is a rigid substrate, such as a glass substrate or the like.
  • the first flexible organic layer and the second flexible organic layer are made of the same material, and both include organic flexible materials such as polyimide (PI).
  • Fig. 4A is an enlarged schematic diagram of a part of the structure (that is, the first flexible organic layer 101, the first inorganic layer 102, and the second flexible organic layer 103) within the dashed frame in Fig. 3B.
  • the thickness T1 of the first flexible organic layer 101 may be 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the thickness T2 of the first inorganic layer 102 may be 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, or 1.5 ⁇ m.
  • the thickness T3 of the second flexible organic layer 103 may be 5 ⁇ m-20 ⁇ m, for example, 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the thickness of the first flexible organic layer 101 and the thickness of the second flexible organic layer 103 may be the same or different.
  • the embodiment of the present disclosure does not specifically limit the thickness of the first flexible organic layer 101, the first inorganic layer 102, and the second flexible organic layer 103.
  • the first inorganic layer 102 may include a stack of multiple inorganic sub-layers.
  • FIG. 4B is another enlarged schematic diagram of a part of the structure (that is, the first flexible organic layer 101, the first inorganic layer 102, and the second flexible organic layer 103) within the dashed frame in FIG. 3B.
  • the first inorganic layer 102 includes a first inorganic sub-layer 1021 and a second inorganic sub-layer 1022 that are sequentially stacked on the first flexible organic layer 101.
  • the material of the first inorganic sub-layer 1021 includes oxide Inorganic materials such as silicon, silicon nitride or silicon oxynitride, and the material of the second inorganic sub-layer 1022 includes inorganic materials such as amorphous silicon.
  • the first inorganic sub-layer 1021 can realize the function of isolating impurities such as water and oxygen, and the second inorganic sub-layer 1022 can realize the functions of improving the adhesion of the first inorganic layer 102 and so on, so as to enhance the first inorganic layer 102 and the second inorganic layer formed thereon.
  • the bonding force of the two flexible organic layers 103 includes oxide Inorganic materials such as silicon, silicon nitride or silicon oxynitride
  • the material of the second inorganic sub-layer 1022 includes inorganic materials such as amorphous silicon.
  • the first inorganic sub-layer 1021 can realize the function of isolating impurities such as water and oxygen
  • the thickness of the second inorganic sub-layer 1022 may be 1 nm-50 nm, such as 1-30 nm, such as 1-10 nm, such as 1.5 nm, 3 nm, or 5 nm.
  • the thickness of the first inorganic sublayer 1021 is the thickness of the first inorganic layer 102 minus the thickness of the second inorganic sublayer 1022.
  • the thickness of the first inorganic layer 102 is 0.5 ⁇ m
  • the thickness of the second inorganic sub-layer 1022 is 30 nm
  • the thickness of the first inorganic sub-layer 1021 is 0.47 ⁇ m.
  • the thickness of the first inorganic sub-layer 1021 and the second inorganic sub-layer 1022 can also be selected to other suitable values according to specific requirements, which are not specifically limited in the embodiments of the present disclosure.
  • the laminated structure of the flexible organic layer and the inorganic layer can be completely peeled off from the base substrate 100, and there is no need for the first flexible organic layer 101 to fully absorb the energy of the laser irradiation.
  • the inorganic layer 102 absorbs the energy of laser irradiation, it is difficult for the laminated structure of the flexible organic layer and the inorganic layer to peel off from the base substrate 100.
  • the first inorganic layer 102 such as the second inorganic layer in the first inorganic layer 102
  • the thickness of the layer 1022 can be made thicker than that of ordinary technology, that is, the thickness of the second inorganic sub-layer 1022 can be 1nm-50nm to enhance the bonding force between the first inorganic layer 102 and the second flexible organic layer 103 formed thereon Therefore, the bonding force of the stacked structure of the organic layer and the inorganic layer on the base substrate 100 is improved as a whole.
  • the display substrate mother board may further include more flexible organic layers, for example, including three or four flexible organic layers.
  • the display substrate mother board includes three flexible organic layers.
  • the display substrate mother board includes: a base substrate 200, a first flexible organic layer 201 on the base substrate 200, a first inorganic layer 202 on the first flexible organic layer 201, and a first inorganic layer 202 on the On the second flexible organic layer 203.
  • the orthographic projection of the second flexible organic layer 203 on the base substrate 200 is located inside the orthographic projection of the first inorganic layer 202 on the base substrate 200.
  • the orthographic projection of the second flexible organic layer 203 on the base substrate 200 is also located inside the orthographic projection of the first flexible organic layer 201 on the base substrate 200.
  • the display substrate mother board further includes: a second inorganic layer 204 on the second flexible organic layer 203 and a third flexible organic layer 205 on the second inorganic layer 204.
  • the orthographic projection of the third flexible organic layer 205 on the base substrate 200 is located inside the orthographic projection of the second flexible organic layer 203 on the base substrate 200.
  • the display substrate mother board further includes a pixel drive circuit layer (not shown in the figure) on the third flexible organic layer 205.
  • the structure and arrangement of the pixel drive circuit layer can be referred to the above-mentioned embodiments, and will not be repeated here. .
  • the orthographic projection of the second flexible organic layer 203 on the base substrate 200 is inside the orthographic projection of the second inorganic layer 204 on the base substrate 200.
  • the second inorganic layer 204 completely covers the second flexible organic layer 203, and the second inorganic layer 204 can isolate impurities such as water and oxygen, so as to achieve a protective effect on the second flexible organic layer 203.
  • the thickness of the first flexible organic layer 201 may be 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the thickness of the first inorganic layer 202 may be 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, or 1.5 ⁇ m.
  • the thickness of the second flexible organic layer 203 may be 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the thickness of the second inorganic layer 204 may be 1 nm-50 nm, such as 15 nm, 30 nm, or 40 nm.
  • the thickness of the third flexible organic layer 205 may be 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the thickness of the first inorganic sub-layer 202 and the second inorganic layer 204 may be the same or different.
  • the thickness of the first flexible organic layer 201, the second flexible organic layer 203, and the third flexible organic layer 205 may be the same or different.
  • the embodiment does not specifically limit the thickness of each layer in the display substrate motherboard.
  • the second inorganic layer 204 may also include multiple inorganic sub-layers, and the materials and thicknesses of the multiple inorganic sub-layers can be referred to the above-mentioned embodiments, which will not be repeated here.
  • the materials and positional relationship of the first flexible organic layer 201, the first inorganic layer 202, and the second flexible organic layer 203 can also be referred to the above-mentioned embodiments, which will not be repeated here.
  • the master substrate may include more than three flexible organic layers, such as four flexible organic layers, five flexible organic layers, or six flexible organic layers.
  • the material, thickness and combination position of these flexible organic layers can be referred to the above-mentioned embodiments, which will not be repeated here.
  • FIG. 6A is a schematic plan view of the display substrate motherboard
  • FIG. 6B is a schematic cross-sectional view of the display substrate motherboard in FIG. 6A along the line C-C.
  • the display substrate mother board also includes a light-emitting device layer 105 on the pixel drive circuit layer 104.
  • the light-emitting device layer 105 includes The multiple light-emitting device portions 1051 of a display substrate, and the multiple light-emitting device portions 1051 are respectively located on the multiple pixel driving circuit portions 1041.
  • the plurality of light-emitting device parts 1051 and the plurality of pixel driving circuit parts 1041 are in one-to-one correspondence and are arranged in layers.
  • the distance between the outer side 1041A of the pixel driving circuit portion at the edge of the display substrate mother board and the corresponding side 103A of the second flexible organic layer 103 is greater than or equal to 9 mm, such as 10 mm, 12 mm, or 15 mm. Therefore, a cutting margin is reserved in the display substrate mother board, so that multiple display substrates can be formed by cutting the display substrate mother board later.
  • a second inorganic layer 1031 may be further provided between the second flexible organic layer 103 and the pixel driving circuit layer 104.
  • the second inorganic layer 1031 may include, for example, an inorganic material, such as One or more of silicon oxide, silicon nitride, and silicon oxynitride.
  • the thickness of the second inorganic layer may be 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 0.8 ⁇ m, or 1.2 ⁇ m.
  • the display substrate mother board after the laminate of the flexible organic layer and the inorganic layer is peeled from the base substrate, the display substrate mother board may be cut to form a plurality of individual flexible display substrates.
  • the display substrate includes a first flexible organic layer 101, a first inorganic layer 102 on the first flexible organic layer 101, and a first inorganic layer
  • the thickness of the first flexible organic layer 101 is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m
  • the thickness of the first inorganic layer 102 is 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, or 1.5 ⁇ m.
  • the thickness is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the display substrate may be obtained from the above-mentioned display substrate mother board, for example, obtained by a peeling process and a cutting process.
  • the display substrate may be an organic light emitting diode (OLED) display substrate or a quantum dot light emitting diode (QLED) display substrate in any form, which is not limited in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure also provides a method for preparing a display substrate motherboard, and FIG. 7 shows a flow chart of the method. As shown in Fig. 7, the preparation method includes step S101-step S105.
  • Step S101 Provide a base substrate.
  • the provided base substrate 100 may be a rigid substrate, such as a glass substrate.
  • Step S102 forming a first flexible organic layer on the base substrate.
  • the material of the first flexible organic layer 102 may include polyimide (PI).
  • the first flexible organic layer 102 may be formed on the base substrate 100 by coating or the like.
  • the formation thickness of the first flexible organic layer 201 is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • Step S103 forming a first inorganic layer on the first flexible organic layer.
  • the material of the first inorganic layer 102 may be an inorganic material such as silicon oxide, silicon nitride, or silicon oxynitride.
  • the first inorganic layer 102 may be formed on the first flexible organic layer 102 by deposition or the like, and the formed first inorganic layer 102 completely covers the first flexible organic layer 102.
  • the orthographic projection of the first flexible organic layer 101 on the base substrate 100 is inside the orthographic projection of the first inorganic layer 102 on the base substrate 100.
  • the formation thickness T2 of the first inorganic layer 102 is 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, or 1.5 ⁇ m.
  • forming the first inorganic layer 102 includes sequentially forming a first inorganic sublayer 1021 and a second inorganic sublayer 1022 on the first flexible organic layer 101.
  • the material of the first inorganic sub-layer 1021 includes silicon oxide, silicon nitride or silicon oxynitride
  • the material of the second inorganic sub-layer 1022 includes amorphous silicon.
  • the formation thickness of the first inorganic layer 102 is 0.4 ⁇ m-2 ⁇ m
  • the formation thickness of the second inorganic sub-layer 1022 is 1 nm-50 nm
  • the formation thickness of the first inorganic sub-layer 1021 is equal to the thickness minus the thickness of the first inorganic layer 102.
  • the thickness of the second inorganic sub-layer 1022 is removed.
  • Step S104 forming a second flexible organic layer on the first inorganic layer.
  • the material of the second flexible organic layer 103 may include polyimide (PI).
  • the second flexible organic layer 103 can be formed on the first inorganic layer 102 by coating or the like, and the orthographic projection of the formed second flexible organic layer 103 on the base substrate 100 is located on the first inorganic layer 102 on the substrate. Inside the orthographic projection on the substrate 100.
  • the formed orthographic projection of the second flexible organic layer 103 on the base substrate 100 is also located inside the orthographic projection of the first flexible organic layer 101 on the base substrate 100.
  • the formation thickness of the second flexible organic layer 103 is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the side of the orthographic projection of the second flexible organic layer 103 on the base substrate 100 and the side of the orthographic projection of the corresponding first flexible organic layer 101 on the base substrate 100 The distance between the sides is formed to be greater than or equal to 0.2 mm, for example, 0.3 mm, 0.4 mm, or 0.5 mm.
  • the pattern of the second flexible organic layer 103 may be formed by a patterning process. That is, a PI material layer is coated on the first inorganic layer 102, and then the PI material layer is exposed and developed to form the second flexible organic layer 103 to ensure that the orthographic projection of the second flexible organic layer 103 on the base substrate 100 is located
  • the first flexible organic layer 101 is inside the orthographic projection on the base substrate 100, and the side of the orthographic projection of the second flexible organic layer 103 on the base substrate 100 and the corresponding first flexible organic layer 101 are on the base substrate 100.
  • the sides of the orthographic projection on have a certain interval.
  • Step S105 a pixel driving circuit layer on the second flexible organic layer.
  • the formed pixel driving circuit layer 104 includes a plurality of pixel driving circuit parts 1041 for a plurality of display substrates, respectively, and the plurality of pixel driving circuit parts 1041 are insulated from each other.
  • the orthographic projection of each pixel driving circuit part 104 on the base substrate 100 is located inside the orthographic projection of the second flexible organic layer 103 on the base substrate 100.
  • each pixel driving circuit part 1041 includes a plurality of circuit components such as thin film transistors, capacitors, and signal lines for driving the light emitting device to be formed thereon.
  • the specific formation method of the pixel driving circuit layer can refer to the prior art, which is not limited in the embodiment of the present disclosure.
  • the orthographic projection of the second flexible organic layer 103 on the base substrate 100 is smaller than the orthographic projection of the first inorganic layer 102 on the base substrate 100.
  • the second flexible organic layer 103 is on the base substrate 100.
  • the orthographic projection on the substrate 100 is still smaller than the orthographic projection of the first flexible organic layer 101 on the base substrate 100, that is, the orthographic projection of the second flexible organic layer 103 on the base substrate 100 will not exceed the first flexible organic layer 101. Orthographic projection on the base substrate 100.
  • the laminated structure of the flexible organic layer and the inorganic layer is peeled from the base substrate 100 by means of laser irradiation, only the first flexible organic layer 101 is required to fully absorb the energy of the laser irradiation to realize the integration of the flexible organic layer and the inorganic layer.
  • the laminated structure is completely peeled off from the base substrate 100, and the peeling process is easier to perform, which can avoid undesirable phenomena such as wrinkles in the flexible organic layer.
  • the method for preparing the display substrate mother board may further include step S106.
  • Step S106 forming a light emitting device layer on the pixel driving circuit layer.
  • a light emitting device layer 105 is formed on the pixel driving circuit layer 104.
  • the light emitting device layer 105 includes a plurality of light emitting device portions 1051 for a plurality of display substrates, and a plurality of light emitting device portions 1051 are respectively formed On the plurality of pixel drive circuit parts 1041.
  • the plurality of light-emitting device portions 1051 and the plurality of pixel driving circuit portions 1041 are in one-to-one correspondence and are formed in layers.
  • the light emitting device layer 105 includes light emitting devices for a plurality of display substrates 100.
  • the light emitting device may be an organic light emitting diode (OLED), a quantum dot light emitting diode (QLED), or the like.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • the manner of forming the light-emitting device layer 105 can be referred to related technologies, and the embodiment of the present disclosure does not specifically limit the manner of forming the light-emitting device layer.
  • an encapsulation layer (not shown in the figure) may be formed on the light-emitting device layer 105.
  • the encapsulation layer may include, for example, a stack of multiple organic encapsulation layers and inorganic encapsulation layers, and the specific structure of the display substrate is not limited in the embodiments of the present disclosure.
  • the embodiment of the present disclosure provides a method for preparing a display substrate.
  • the preparation method includes: adopting the method for preparing a display substrate mother board to obtain a display substrate mother board, separating the base substrate from the first flexible organic layer, and cutting the display substrate mother board. Plate to form independent multiple display substrates.
  • Figure 8 shows a partial flow chart of the preparation method.
  • the preparation method includes step S101 to step S108.
  • Step S101 to step S106 are the process steps of preparing the display substrate mother board.
  • FIG. 7 please refer to the above-mentioned embodiment and FIG. 7, which will not be repeated here.
  • the following focuses on the preparation steps after the display substrate mother board is formed, that is, step S107 to step S108 shown in FIG. 8.
  • Step S107 separating the first flexible organic layer from the base substrate.
  • the first flexible organic layer 101 is separated from the base substrate 100.
  • a laser lift-off method may be used to separate the base substrate 100 from the first flexible organic layer.
  • a laser is used to irradiate the bottom of the base substrate.
  • the first flexible organic layer 101 can absorb the energy of the laser, thereby causing denaturation, thereby weakening the bonding force between the first flexible organic layer 101 and the base substrate 100.
  • a tool such as a blade
  • a tool may be used to slide between the first flexible organic layer 101 and the base substrate 100, thereby separating the first flexible organic layer 101 from the base substrate 100.
  • due to the first inorganic layer The thickness of 102 is thin and the contact area with the base substrate is small. Therefore, when the first flexible organic layer 101 is separated from the base substrate 100, the first inorganic layer 102 is also easily separated from the base substrate 100.
  • Step S108 cutting the display substrate mother board to form a plurality of independent display substrates.
  • the display substrate mother board can be cut by laser cutting or the like.
  • the display substrate mother board is cut according to a predetermined edge (such as a dashed frame) of the display substrate. , Thereby forming a single plurality of display substrates 110, as shown in FIG. 10A.
  • the display substrate is, for example, a flexible display substrate.
  • FIG. 10B is a schematic cross-sectional view of the display substrate in FIG. 10A along the line D-D. As shown in FIG. 10B, in a separate display substrate 110 formed by cutting, each functional layer has flat sides, thereby having a regular shape.
  • the display substrate includes a first flexible organic layer 101, a first inorganic layer 102 on the first flexible organic layer 101, a second flexible organic layer 103 on the first inorganic layer 102, The pixel driving circuit layer 104 on the second flexible organic layer 103, and the light emitting device layer 105 on the pixel driving circuit layer 104.
  • the thickness of the first flexible organic layer 101 is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m
  • the thickness of the first inorganic layer 102 is 0.4 ⁇ m-2 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, or 1.5 ⁇ m.
  • the thickness is 5 ⁇ m-20 ⁇ m, such as 8 ⁇ m, 10 ⁇ m, or 15 ⁇ m.
  • the display substrate 110 may also undergo subsequent manufacturing processes, such as covering a transparent cover plate for packaging, etc.
  • subsequent manufacturing processes such as covering a transparent cover plate for packaging, etc.
  • the embodiments of the present disclosure do not specifically limit the subsequent manufacturing process of the display substrate 110.
  • the process of preparing the display substrate by the above-mentioned preparation method since the first flexible organic layer 101 and the functional layers thereon are easily peeled off from the base substrate 100, it is possible to avoid the first flexible organic layer 101 and other defects such as wrinkles. Therefore, the quality of the first flexible organic layer 101 and the functional layers thereon can be ensured, and defects such as the display substrate scrapping can be avoided, and the yield can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板母板及其制备方法、显示基板及其制备方法。该显示基板母板包括衬底基板(100/200)、在衬底基板(100/200)上的第一柔性有机层(101/201)、在第一柔性有机层(101/201)上的第一无机层(102/202)、在第一无机层(102/202)上的第二柔性有机层(103/203)以及在第二柔性有机层(103/203)上的像素驱动电路层(104)。像素驱动电路层(104)包括分别用于多个显示基板的多个像素驱动电路部分(1041),多个像素驱动电路部分(1041)相互绝缘。第二柔性有机层(103/203)在衬底基板(100/200)上的正投影位于第一无机层(102/202)在衬底基板(100/200)上的正投影内部。每个像素驱动电路部分(1041)在衬底基板(100/200)上的正投影位于第二柔性有机层(103/203)在衬底基板(100/200)上的正投影内部。该显示基板母板的柔性有机层容易从衬底基板(100/200)上剥离。

Description

显示基板母板及其制备方法、显示基板及其制备方法 技术领域
本公开的实施例涉及一种显示基板母板及其制备方法、显示基板及其制备方法。
背景技术
有机发光二极管(OLED)显示面板具有自发光、对比度高、清晰度高、视角宽、功耗低、响应速度快、以及制备成本低等一系列优势,已经成为新一代显示装置的重点发展方向之一,因此受到越来越多的关注。有机发光二极管显示面板可以采用大板制备工艺形成,即将多个显示基板的功能结构在一个母板基板上形成,然后通过切割母板基板的方式形成多个单独的显示基板,之后再对每个单独的显示基板进行后续制备工艺。
发明内容
本公开至少一实施例提供一种显示基板母板,该显示基板母板包括衬底基板、在所述衬底基板上的第一柔性有机层、在所述第一柔性有机层上的第一无机层、在所述第一无机层上的第二柔性有机层以及在所述第二柔性有机层上的像素驱动电路层,所述像素驱动电路层包括分别用于多个显示基板的多个像素驱动电路部分,所述多个像素驱动电路部分相互绝缘;其中,所述第二柔性有机层在所述衬底基板上的正投影位于所述第一无机层在所述衬底基板上的正投影内部,每个所述像素驱动电路部分在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板中,所述第二柔性有机层在所述衬底基板上的正投影还位于所述第一柔性有机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板中,所述第二柔性有机层在所述衬底基板上的正投影的至少一个侧边与相应的所述第一柔性有机层在所述衬底基板上的正投影的侧边的间隔大于或等于0.2mm。
例如,本公开至少一实施例提供的显示基板母板中,所述第一柔性有机 层在所述衬底基板上的正投影在所述第一无机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板中,所述第一柔性有机层和所述第二柔性有机层的材料均包括聚酰亚胺。
例如,本公开至少一实施例提供的显示基板母板中,所述第一柔性有机层的厚度为5μm-20μm,所述第一无机层的厚度为0.4μm-2μm,所述第二柔性有机层的厚度为5μm-20μm。
例如,本公开至少一实施例提供的显示基板母板中,所述第一无机层包括在所述第一柔性有机层上依次叠层的第一无机子层和第二无机子层,其中,所述第一无机子层的材料包括氧化硅、氮化硅和氮氧化硅中的一种或多种,所述第二无机子层的材料包括非晶硅。
例如,本公开至少一实施例提供的显示基板母板中,所述第一无机层的总厚度为0.4μm-2μm,所述第二无机子层的厚度为1nm-50nm。
例如,本公开至少一实施例提供的显示基板母板还包括:在所述第二柔性有机层上的第二无机层,以及在所述第二无机层上的第三柔性有机层;其中,所述第三柔性有机层在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板中,所述衬底基板为刚性基板。
例如,本公开至少一实施例提供的显示基板母板还包括在所述像素驱动电路层上的发光器件层,所述发光器件层包括分别用于所述多个显示基板的多个发光器件部分,所述多个发光器件部分分别位于所述多个像素驱动电路部分上。
本公开至少一实施例提供一种显示基板,该显示基板包括:第一柔性有机层、在所述第一柔性有机层上的第一无机层、在所述第一无机层上的第二柔性有机层、在所述第二柔性有机层上的像素驱动电路层,以及在所述像素驱动电路层上的发光器件层;其中,所述第一柔性有机层的厚度为5μm-20μm,所述第一无机层的厚度为0.4μm-2μm,所述第二柔性有机层的厚度为5μm-20μm。
本公开至少一实施例提供一种显示基板母板的制备方法,包括:提供衬底基板,在所述衬底基板上形成第一柔性有机层,在所述第一柔性有机层上 形成第一无机层,在所述第一无机层上形成第二柔性有机层以及在所述第二柔性有机层上形成像素驱动电路层,所述像素驱动电路层包括分别用于多个显示基板的多个像素驱动电路部分,所述多个像素驱动电路部分相互绝缘;其中,所述第二柔性有机层在所述衬底基板上的正投影位于所述第一无机层在所述衬底基板上的正投影内部,每个所述像素驱动电路部分在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,所述第二柔性有机层在所述衬底基板上的正投影还位于所述第一柔性有机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,所述第二柔性有机层在所述衬底基板上的正投影的至少一个侧边与相应的所述第一柔性有机层在所述衬底基板上的正投影的侧边的间隔形成为大于或等于0.2mm。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,所述第一柔性有机层在所述衬底基板上的正投影在所述第一无机层在所述衬底基板上的正投影内部。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,第一柔性有机层和第二柔性有机层的材料均包括聚酰亚胺。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,所述第一柔性有机层的形成厚度为5μm-20μm,所述第一无机层的形成厚度为0.4μm-2μm,所述第二柔性有机层的形成厚度为5μm-20μm。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,形成所述第一无机层包括在所述第一柔性有机层上依次形成第一无机子层和第二无机子层,其中,所述第一无机子层的材料包括氧化硅、氮化硅和氮氧化硅中的一种或多种,所述第二无机子层的材料包括非晶硅。
例如,本公开至少一实施例提供的显示基板母板的制备方法中,所述第一无机子层的总厚度为0.4μm-2μm,所述第二无机子层的形成厚度为1nm-50nm。
本公开至少一实施例提供一种显示基板的制备方法,包括:采用上述任一的制备方法得到显示基板母板,将所述第一柔性有机层从所述衬底基板上分离,以及切割所述显示基板母板以形成独立的多个显示基板。
例如,本公开至少一实施例提供的的显示基板的制备方法中,采用激光剥离的方式将所述衬底基板与所述第一柔性有机层分离。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种母板基板的平面示意图;
图1B为图1A中的母板基板沿A-A线的截面示意图;
图2为图1A中的母板基板中柔性有机材料层从衬底基板上剥离的示意图;
图3A为本公开至少一实施例提供的一种显示基板母板的平面示意图;
图3B为图3A中的显示基板母板沿B-B线的截面示意图;
图4A为图3B中的显示基板母板的部分放大示意图;
图4B为图3B中的显示基板母板的另一部分放大示意图;
图5为本公开至少一实施例提供的另一种显示基板母板的截面示意图;
图6A为本公开至少一实施例提供的一种显示基板母板的平面示意图;
图6B为图6A中的显示基板母板沿C-C线的截面示意图;
图6C为图6A中的显示基板母板沿C-C线的另一截面示意图;
图7为本公开至少一实施例提供的一种显示基板母板的制备流程图;
图8为本公开至少一实施例提供的一种显示基板的制备流程图;
图9为图6A中的显示基板母板中柔性有机层从衬底基板上剥离的示意图;
图10A为本公开至少一实施例提供的一种显示基板的平面示意图;
图10B为图10A中的显示基板沿D-D线的截面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描 述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在一种有机发光二极管显示装置的制备工艺中,可以将多个显示基板的功能结构在一个母板基板上形成而获得显示基板母板,然后通过切割显示基板母板的方式形成多个单独的显示基板。该方式也可以用于制备柔性显示面板。图1A示出了一种母板基板的平面示意图,图1B示出了图1A所示的母板基板沿A-A线的截面示意图。
如图1A和图1B所示,该母板基板包括在衬底基板10上形成的第一柔性有机材料层11,在第一柔性有机材料层11上形成的第一无机材料层12以及在第一无机材料层12上形成的第二柔性有机材料层13。该母板基板可以用于制备柔性显示面板。
在上述母板基板中,衬底基板10例如为玻璃等刚性基板,可以起到支撑作用。第一无机材料层12完全覆盖第一柔性有机材料层11,从而可以隔绝水、氧等杂质,实现对第一柔性有机材料层11的保护作用等。第二柔性有机材料层13在一个或多个侧边(图1A中示出为左侧和下侧)超出第一柔性有机材料层11,即第二柔性有机材料层13的一个或多个侧边在衬底基板10上的正投影位于第二柔性有机材料层13在衬底基板10上的正投影的外侧。例如,在图1A和图1B的示例中,第二柔性有机材料层13在一个或多个侧边(图1A中示出为左侧和下侧)超出第一柔性有机材料层11和第一无机材料层12,并与衬底基板10接触。
例如,在上述母板基板用于制备显示基板时,上述母板基板上可形成用于多个显示基板的像素驱动电路和发光器件层等功能结构,之后将第一柔性 有机材料层11及其上的功能结构从衬底基板10上分离,再对母板基板进行切割以形成单独的多个显示基板。
如图2所示,在将第一柔性有机材料层11及其上的功能结构从衬底基板10上剥离时,可以采用激光照射的方法从衬底基板10一侧照射第一柔性有机材料层11,此时,第一柔性有机材料层11的有机材料会发生变性,使得第一柔性有机材料层11与衬底基板10的结合力降低,进而易于将第一柔性有机材料层11与衬底基板10分离。但是,由于第二柔性有机材料层13具有超出第二柔性有机材料层13的侧边的部分,即图2示出的宽度为D的部分,在激光照射时,第一无机材料层12包括的材料可能会吸收激光照射的部分能量,使得该部分第二柔性有机材料层13不能吸收足够的激光能量,从而在激光照射后,该部分第二柔性有机材料层13以及第一无机材料层12作为一个整体难以从衬底基板10上剥离,若以通过施加较大作用力的方式强行剥离,则会引起柔性有机材料层的褶皱,损坏显示基板。
本公开至少一实施例提供一种显示基板母板及其制备方法、显示基板及其制备方法。该显示基板母板包括衬底基板、在衬底基板上的第一柔性有机层、在第一柔性有机层上的第一无机层、在第一无机层上的第二柔性有机层以及在第二柔性有机层上的像素驱动电路层,像素驱动电路层包括分别用于多个显示基板的多个像素驱动电路部分,多个像素驱动电路部分相互绝缘;其中,第二柔性有机层在衬底基板上的正投影位于第一无机层在衬底基板上的正投影内部,每个像素驱动电路部分在衬底基板上的正投影位于第二柔性有机层在衬底基板上的正投影内部。该显示基板母板的柔性有机层和无机层的叠层结构容易从衬底基板上剥离。
下面通过几个具体的实施例对本公开实施例提供的显示基板母板及其制备方法、显示基板及其制备方法进行说明。
本公开至少一实施例提供一种显示基板母板,图3A示出了该显示基板母板的平面示意图,图3B为图3A中的显示基板母板沿B-B线的截面示意图。如图3A和图3B所示,该显示基板母板包括衬底基板100、在衬底基板100上的第一柔性有机层101、在第一柔性有机层101上的第一无机层102、在第一无机层102上的第二柔性有机层103以及在第二柔性有机层103上的像素驱动电路层104,像素驱动电路层104包括分别用于多个显示基板的多个像素驱动电路部分1041,多个像素驱动电路部分1041相互绝缘。第二柔 性有机层103在衬底基板100上的正投影位于第一无机层102在衬底基板100上的正投影内部。每个像素驱动电路部分104在衬底基板上100的正投影位于第二柔性有机层103在衬底基板上100的正投影内部。
例如,在一些实施例中,第二柔性有机层103在衬底基板100上的正投影还位于第一柔性有机层101在衬底基板100上的正投影内部。
由此,第二柔性有机层103在衬底基板100上的正投影不会超出第一无机层102在衬底基板100上的正投影,例如,在一些实施例中,第二柔性有机层103在衬底基板100上的正投影也不会超出第一柔性有机层101在衬底基板100上的正投影。当通过激光照射的方式将柔性有机层和无机层的叠层结构从衬底基板100上剥离时,只需要第一柔性有机层101充分吸收激光照射的能量即可实现将柔性有机层和无机层的叠层结构从衬底基板100上完全剥离,并且该剥离过程更容易进行,可以避免柔性有机层出现褶皱等不良现象。
例如,在一些实施例中,如图3B所示,第二柔性有机层103在衬底基板100上的正投影的至少一个侧边与相应的第一柔性有机层101在衬底基板100上的正投影的侧边(即与第二柔性有机层103在衬底基板100上的正投影的至少一个侧边相邻的第一柔性有机层101在衬底基板100上的正投影的侧边)的间隔L大于或等于0.2mm,例如0.3mm、0.4mm或者0.5mm等。例如,第二柔性有机层103在衬底基板100上的正投影的所有侧边与相应的第一柔性有机层101在衬底基板100上的正投影的侧边的间隔L大于或等于0.2mm。由此保证第二柔性有机层103在衬底基板100上的正投影位于第一柔性有机层101在衬底基板100上的正投影内部,避免在制备工艺中由于制备误差导致第二柔性有机层103具有超出第一柔性有机层101的部分。
例如,在一些实施例中,如图3B所示,第一柔性有机层101在衬底基板100上的正投影在第一无机层102在衬底基板100上的正投影内部。由此,第一无机层102完全覆盖第一柔性有机层101,第一无机层102可以隔绝水、氧等杂质,从而实现对第一柔性有机层101的保护作用等。
例如,在一些实施例中,衬底基板100为刚性基板,例如玻璃基板等。第一柔性有机层和第二柔性有机层的材料相同,均包括聚酰亚胺(PI)等有机柔性材料。
图4A为图3B中虚线框内部分结构(即第一柔性有机层101、第一无机 层102和第二柔性有机层103)的放大示意图。如图4A所示,在一些实施例中,例如,第一柔性有机层101的厚度T1可以为5μm-20μm,例如8μm、10μm或者15μm等。第一无机层102的厚度T2可以为0.4μm-2μm,例如0.5μm、1μm或者1.5μm等。第二柔性有机层103的厚度T3可以为5μm-20μm,例如8μm、10μm或者15μm等。第一柔性有机层101的厚度与第二柔性有机层103的厚度可以相同也可以不同。本公开的实施例对第一柔性有机层101、第一无机层102以及第二柔性有机层103的厚度不作具体限定。
例如,在一些实施例中,第一无机层102可以包括多个无机子层的叠层。例如,图4B为图3B中虚线框内部分结构(即第一柔性有机层101、第一无机层102和第二柔性有机层103)的另一放大示意图。如图4B所示,第一无机层102包括在第一柔性有机层101上依次叠层的第一无机子层1021和第二无机子层1022,例如,第一无机子层1021的材料包括氧化硅、氮化硅或者氮氧化硅等无机材料,第二无机子层1022的材料包括非晶硅等无机材料。第一无机子层1021可以实现隔绝水、氧等杂质的功能,第二无机子层1022可以实现提高第一无机层102的粘附力等作用,以增强第一无机层102与其上形成的第二柔性有机层103的结合力。
例如,在第一无机层102的厚度为0.4μm-2μm时,第二无机子层1022的厚度可以为1nm-50nm,例如1-30nm,例如1-10nm,例如1.5nm、3nm或者5nm等。此时,第一无机子层1021的厚度即为第一无机层102的厚度减去第二无机子层1022的厚度。例如,在一个示例中,第一无机层102的厚度为0.5μm,第二无机子层1022的厚度为30nm,则第一无机子层1021的厚度为0.47μm。在其他实施例中,第一无机子层1021和第二无机子层1022的厚度也可以根据具体需求选择为其他合适的数值,本公开的实施例对此不作具体限定。
本实施例中,由于只需要第一柔性有机层101充分吸收激光照射的能量即可实现将柔性有机层和无机层的叠层结构从衬底基板100上完全剥离,而不会存在由于第一无机层102吸收激光照射的能量而使柔性有机层和无机层的叠层结构难以从衬底基板100上剥离的情况,因此第一无机层102,例如第一无机层102中的第二无机子层1022的厚度相对于普通技术可以做的更厚,即第二无机子层1022的厚度可以做到1nm-50nm,以增强第一无机层 102与其上形成的第二柔性有机层103的结合力,从而整体提高有机层和无机层的叠层结构在衬底基板100上的结合力。
例如,在一些实施例中,根据需求,显示基板母板还可以包括更多层柔性有机层,例如包括三层或者四层柔性有机层等。
例如,如图5所示,在一些实施例中,显示基板母板包括三层柔性有机层。此时,该显示基板母板包括:衬底基板200、在衬底基板200上的第一柔性有机层201、在第一柔性有机层201上的第一无机层202以及在第一无机层202上的第二柔性有机层203。第二柔性有机层203在衬底基板200上的正投影位于第一无机层202在衬底基板200上的正投影内部。例如,第二柔性有机层203在衬底基板200上的正投影还位于第一柔性有机层201在衬底基板200上的正投影内部。此外,显示基板母板还包括:在第二柔性有机层203上的第二无机层204,以及在第二无机层204上的第三柔性有机层205。第三柔性有机层205在衬底基板200上的正投影位于第二柔性有机层203在衬底基板200上的正投影内部。例如,显示基板母板还包括在第三柔性有机层205上的像素驱动电路层(图中未示出),该像素驱动电路层的结构与设置方式可参见上述实施例,在此不再赘述。
例如,第二柔性有机层203在衬底基板200上的正投影在第二无机层204在衬底基板200上的正投影内部。由此,第二无机层204完全覆盖第二柔性有机层203,第二无机层204可以隔绝水、氧等杂质,从而实现对第二柔性有机层203的保护作用等。
例如,第一柔性有机层201的厚度可以为5μm-20μm,例如8μm、10μm或者15μm等。第一无机层202的厚度可以为0.4μm-2μm,例如0.5μm、1μm或者1.5μm等。第二柔性有机层203的厚度可以为5μm-20μm,例如8μm、10μm或者15μm等。第二无机层204的厚度可以为1nm-50nm,例如15nm、30nm或者40nm等。第三柔性有机层205的厚度可以为5μm-20μm,例如8μm、10μm或者15μm等。第一无机子层202和第二无机层204的厚度可以相同也可以不同,第一柔性有机层201、第二柔性有机层203以及第三柔性有机层205的厚度可以相同也可以不同,本公开的实施例对显示基板母板中各层的厚度不作具体限定。
例如,在一些实施例中,第二无机层204也可以包括多个无机子层,多个无机子层的材料以及厚度等可以参见上述实施例,在此不再赘述。另外, 第一柔性有机层201、第一无机层202以及第二柔性有机层203的材料以及位置关系等也可以参照上述实施例,在此不再赘述。
例如,在其他实施例中,母版基板可以包括三层以上柔性有机层,例如四层柔性有机层、五层柔性有机层或者六层柔性有机层等。这些柔性有机层的材料、厚度以及组合位置方式可以参考上述实施例,在此不再赘述。
本公开至少一实施例提供一种显示基板母板,图6A为该显示基板母板的平面示意图,图6B为图6A中的显示基板母板沿C-C线的截面示意图。
如图6A和图6B所示,该显示基板母板除了图3A和图3B示出的结构外,还包括在像素驱动电路层104上的发光器件层105,发光器件层105包括分别用于多个显示基板的多个发光器件部分1051,多个发光器件部分1051分别位于多个像素驱动电路部分1041上。例如,多个发光器件部分1051与多个像素驱动电路部分1041一一对应且叠层设置。
例如,位于显示基板母板边缘的像素驱动电路部分的外侧边1041A与相应的第二柔性有机层103的侧边103A的间隔大于或等于9mm,例如10mm、12mm或者15mm等。由此在显示基板母板中预留切割余量,以便于后续通过对显示基板母板的切割而形成多个显示基板。
例如,在一些实施例中,如图6C所示,第二柔性有机层103与像素驱动电路层104之间还可以设置第二无机层1031,该第二无机层1031例如可以包括无机材料,例如氧化硅、氮化硅和氮氧化硅中的一种或多种。该第二无机层的厚度可以为0.4μm-2μm,例如0.5μm、0.8μm或者1.2μm等。
例如,在上述显示基板母板中,在柔性有机层和无机层的叠层从衬底基板上剥离后,该显示基板母板可以通过切割形成单独的多个柔性显示基板。
例如,本公开至少一实施例还提供一种显示基板,参考图10B,该显示基板包括第一柔性有机层101、在第一柔性有机层101上的第一无机层102、在第一无机层102上的第二柔性有机层103、在第二柔性有机层103上的像素驱动电路层104,以及在像素驱动电路层104上的发光器件层105。第一柔性有机层101的厚度为5μm-20μm,例如8μm、10μm或者15μm等,第一无机层102的厚度为0.4μm-2μm,例如0.5μm、1μm或者1.5μm等,第二柔性有机层的厚度为5μm-20μm,例如8μm、10μm或者15μm等。
例如,该显示基板可以由上述的显示基板母板得到,例如通过剥离工艺和切割工艺得到。该显示基板可以是有机发光二极管(OLED)显示基板或 者量子点发光二极管(QLED)显示基板等任意形式的显示基板,本公开的实施例对此不做限定。
本公开至少一实施例还提供一种显示基板母板的制备方法,图7示出了该制备方法的流程图。如图7所示,该制备方法包括步骤S101-步骤S105。
步骤S101:提供衬底基板。
例如,参照图3A和图3B,提供的衬底基板100可以为刚性基板,例如玻璃基板等。
步骤S102:在衬底基板上形成第一柔性有机层。
例如,参照图3A和图3B,第一柔性有机层102的材料可以包括聚酰亚胺(PI)。例如,可以通过涂覆等方式在衬底基板100上形成第一柔性有机层102。例如,第一柔性有机层201的形成厚度为5μm-20μm,例如8μm、10μm或者15μm等。
步骤S103:在第一柔性有机层上形成第一无机层。
例如,参照图3A和图3B,第一无机层102的材料可以为氧化硅、氮化硅或者氮氧化硅等无机材料。例如,可以通过沉积等方式在第一柔性有机层102上形成第一无机层102,并且形成的第一无机层102完全覆盖第一柔性有机层102。例如,第一柔性有机层101在衬底基板100上的正投影在第一无机层102在衬底基板100上的正投影内部。例如,第一无机层102的形成厚度T2为0.4μm-2μm,例如0.5μm、1μm或者1.5μm等。
例如,在一些实施例中,参见图4B,形成第一无机层102包括在第一柔性有机层101上依次形成第一无机子层1021和第二无机子层1022。例如,第一无机子层1021的材料包括氧化硅、氮化硅或者氮氧化硅,第二无机子层1022的材料包括非晶硅。例如,在第一无机层102的形成厚度为0.4μm-2μm时,第二无机子层1022的形成厚度为1nm-50nm,第一无机子层1021的形成厚度等于第一无机层102的厚度减去第二无机子层1022的厚度。
步骤S104:在第一无机层上形成第二柔性有机层。
例如,参照图3A和图3B,第二柔性有机层103的材料可以包括聚酰亚胺(PI)。例如,可以通过涂覆等方式在第一无机层102上形成第二柔性有机层103,并且形成的第二柔性有机层103在衬底基板100上的正投影位于第一无机层102在衬底基板100上的正投影内部。例如,在一些实施例中,形成的第二柔性有机层103在衬底基板100上的正投影还位于第一柔性有机 层101在衬底基板100上的正投影内部。例如,第二柔性有机层103的形成厚度为5μm-20μm,例如8μm、10μm或者15μm等。
例如,在一个实施例中,参见图3B,第二柔性有机层103在衬底基板100上的正投影的侧边与相应的第一柔性有机层101在衬底基板100上的正投影的侧边的间隔形成为大于或等于0.2mm,例如0.3mm、0.4mm或者0.5mm等。
例如,在一个实施例中,可以通过构图工艺形成第二柔性有机层103的图案。即在第一无机层102上涂覆PI材料层,然后通过对PI材料层进行曝光和显影形成第二柔性有机层103,以保证第二柔性有机层103在衬底基板100上的正投影位于第一柔性有机层101在衬底基板100上的正投影内部,并且第二柔性有机层103在衬底基板100上的正投影的侧边与相应的第一柔性有机层101在衬底基板100上的正投影的侧边具有一定的间隔。
步骤S105:在第二柔性有机层上像素驱动电路层。
例如,参见图6A和图6B,形成的像素驱动电路层104包括分别用于多个显示基板的多个像素驱动电路部分1041,多个像素驱动电路部分1041相互绝缘。每个像素驱动电路部分104在衬底基板上100的正投影位于第二柔性有机层103在衬底基板上100的正投影内部。
例如,每个像素驱动电路部分1041包括多个薄膜晶体管、电容、信号线等电路部件,用于驱动其上将要形成的发光器件。该像素驱动电路层的具体形成方式可参照现有技术,本公开的实施例对此不做限定。
在上述显示基板母板中,第二柔性有机层103在衬底基板100上的正投影小于第一无机层102在衬底基板100上的正投影,例如,第二柔性有机层103在衬底基板100上的正投影还小于第一柔性有机层101在衬底基板100上的正投影,即第二柔性有机层103在衬底基板100上的正投影不会超出第一柔性有机层101在衬底基板100上的正投影。当通过激光照射的方式将柔性有机层和无机层的叠层结构从衬底基板100上剥离时,只需要第一柔性有机层101充分吸收激光照射的能量即可实现将柔性有机层和无机层的叠层结构从衬底基板100上完全剥离,并且该剥离过程更容易进行,可以避免柔性有机层出现褶皱等不良现象。
例如,在一些实施例中,如图7所示,显示基板母板的制备方法还可以包括步骤S106。
步骤S106:在像素驱动电路层上形成发光器件层。
例如,参见图6A和图6B,在像素驱动电路层104上形成发光器件层105,发光器件层105包括分别用于多个显示基板的多个发光器件部分1051,多个发光器件部分1051分别形成在多个像素驱动电路部分1041上。例如,多个发光器件部分1051与多个像素驱动电路部分1041一一对应且叠层形成。
例如,发光器件层105包括用于多个显示基板100的发光器件。例如,发光器件可以为有机发光二极管(OLED)、量子点发光二极管(QLED)等。发光器件层105的形成方式可参见相关技术,本公开的实施例对发光器件层的形成方式不做具体限定。
例如,在发光器件层105形成后,例如还可以在发光器件层105上形成封装层(图中未示出)。该封装层例如可以包括多个有机封装层和无机封装层的叠层,本公开的实施例对显示基板的具体结构不做限定。
本公开实施例提供一种显示基板的制备方法,该制备方法包括:采用上述显示基板母板的制备方法得到显示基板母板,将衬底基板与第一柔性有机层分离,以及切割显示基板母板以形成独立的多个显示基板。
例如,图8示出了该制备方法的部分流程图。例如,该制备方法包括步骤S101-步骤S108。步骤S101-步骤S106为制备显示基板母板的流程步骤,具体可参见上述实施例以及图7,在此不再赘述。下面着重介绍显示基板母板形成后的制备步骤,即图8中示出的步骤S107-步骤S108。
步骤S107:将第一柔性有机层从衬底基板上分离。
例如,在像素驱动电路层和发光器件层等用于显示基板的功能部件形成好之后,将第一柔性有机层101从衬底基板100上分离。
例如,可以采用激光剥离的方式将衬底基板100与第一柔性有机层分离。例如,采用激光照射衬底基板的底部,此时,第一柔性有机层101可以吸收激光的能量,进而产生变性,从而减弱第一柔性有机层101与衬底基板100的结合力。此时,例如可以采用工具(例如刀片)在第一柔性有机层101与衬底基板100之间滑动,从而将第一柔性有机层101与衬底基板100分离,此时,由于第一无机层102的厚度较薄且与衬底基板的接触面积较小,因此在将第一柔性有机层101与衬底基板100分离时,第一无机层102也很容易与衬底基板100分离。
步骤S108:切割显示基板母板以形成独立的多个显示基板。
例如,在第一柔性有机层101与衬底基板100分离后,可以采用激光切割等方式切割显示基板母板,例如在图8A中按照显示基板的预定边缘(例如虚线框)切割显示基板母板,从而形成单独的多个显示基板110,如图10A所示。该显示基板例如是柔性显示基板。
图10B为图10A中的显示基板沿D-D线的截面示意图。如图10B所示,在通过切割形成的单独的显示基板110中,各功能层具有平齐的侧边,从而具有规则的形状。
例如,如图10所示,该显示基板包括第一柔性有机层101、在第一柔性有机层101上的第一无机层102、在第一无机层102上的第二柔性有机层103、在第二柔性有机层103上的像素驱动电路层104,以及在像素驱动电路层104上的发光器件层105。第一柔性有机层101的厚度为5μm-20μm,例如8μm、10μm或者15μm等,第一无机层102的厚度为0.4μm-2μm,例如0.5μm、1μm或者1.5μm等,第二柔性有机层的厚度为5μm-20μm,例如8μm、10μm或者15μm等。
例如,显示基板110还可以进行后续制备工艺,例如覆盖透明盖板以进行封装等,本公开的实施例对显示基板110的后续制备工艺不做具体限定。
利用上述制备方法制备显示基板的过程中,由于第一柔性有机层101及其上的功能层容易从衬底基板100上完全剥离,由此可以避免第一柔性有机层101等发生褶皱等不良现象,进而可以保证第一柔性有机层101及其上的功能层的质量,避免出现显示基板报废等不良,提高产率。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种显示基板母板,包括:
    衬底基板,
    在所述衬底基板上的第一柔性有机层,
    在所述第一柔性有机层上的第一无机层,
    在所述第一无机层上的第二柔性有机层,以及
    在所述第二柔性有机层上的像素驱动电路层,所述像素驱动电路层包括分别用于多个显示基板的多个像素驱动电路部分,所述多个像素驱动电路部分相互绝缘;
    其中,所述第二柔性有机层在所述衬底基板上的正投影位于所述第一无机层在所述衬底基板上的正投影内部,每个所述像素驱动电路部分在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
  2. 根据权利要求1所述的显示基板母板,其中,所述第二柔性有机层在所述衬底基板上的正投影还位于所述第一柔性有机层在所述衬底基板上的正投影内部。
  3. 根据权利要求2所述的显示基板母板,其中,所述第二柔性有机层在所述衬底基板上的正投影的至少一个侧边与相应的所述第一柔性有机层在所述衬底基板上的正投影的侧边的间隔大于或等于0.2mm。
  4. 根据权利要求1-3任一所述的显示基板母板,其中,所述第一柔性有机层在所述衬底基板上的正投影在所述第一无机层在所述衬底基板上的正投影内部。
  5. 根据权利要求1-4任一所述的显示基板母板,其中,所述第一柔性有机层和所述第二柔性有机层的材料均包括聚酰亚胺。
  6. 根据权利要求1-5任一所述的显示基板母板,其中,所述第一柔性有机层的厚度为5μm-20μm,所述第一无机层的厚度为0.4μm-2μm,所述第二柔性有机层的厚度为5μm-20μm。
  7. 根据权利要求1-6任一所述的显示基板母板,其中,所述第一无机层包括在所述第一柔性有机层上依次叠层的第一无机子层和第二无机子层,其中,
    所述第一无机子层的材料包括氧化硅、氮化硅和氮氧化硅中的一种或者多种,
    所述第二无机子层的材料包括非晶硅。
  8. 根据权利要求7所述的显示基板母板,其中,所述第一无机层的总厚度为0.4μm-2μm,所述第二无机子层的厚度为1nm-50nm。
  9. 根据权利要求1-8任一所述的显示基板母板,还包括:
    在所述第二柔性有机层上的第二无机层,以及
    在所述第二无机层上的第三柔性有机层;
    其中,所述第三柔性有机层在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
  10. 根据权利要求1-9任一所述的显示基板母板,其中,所述衬底基板为刚性基板。
  11. 根据权利要求1-10任一所述的显示基板母板,还包括在所述像素驱动电路层上的发光器件层,
    所述发光器件层包括分别用于所述多个显示基板的多个发光器件部分,所述多个发光器件部分分别位于所述多个像素驱动电路部分上。
  12. 一种显示基板,包括:
    第一柔性有机层,
    在所述第一柔性有机层上的第一无机层,
    在所述第一无机层上的第二柔性有机层,
    在所述第二柔性有机层上的像素驱动电路层,以及
    在所述像素驱动电路层上的发光器件层;
    其中,所述第一柔性有机层的厚度为5μm-20μm,所述第一无机层的厚度为0.4μm-2μm,所述第二柔性有机层的厚度为5μm-20μm。
  13. 一种显示基板母板的制备方法,包括:
    提供衬底基板,
    在所述衬底基板上形成第一柔性有机层,
    在所述第一柔性有机层上形成第一无机层,
    在所述第一无机层上形成第二柔性有机层,以及
    在所述第二柔性有机层上形成像素驱动电路层,所述像素驱动电路层包括分别用于多个显示基板的多个像素驱动电路部分,所述多个像素驱动电路 部分相互绝缘;
    其中,所述第二柔性有机层在所述衬底基板上的正投影位于所述第一无机层在所述衬底基板上的正投影内部,每个所述像素驱动电路部分在所述衬底基板上的正投影位于所述第二柔性有机层在所述衬底基板上的正投影内部。
  14. 根据权利要求13所述的显示基板母板的制备方法,其中,所述第二柔性有机层在所述衬底基板上的正投影还位于所述第一柔性有机层在所述衬底基板上的正投影内部。
  15. 根据权利要求14所述的显示基板母板的制备方法,其中,所述第二柔性有机层在所述衬底基板上的正投影的至少一个侧边与相应的所述第一柔性有机层在所述衬底基板上的正投影的侧边的间隔形成为大于或等于0.2mm。
  16. 根据权利要求13-15任一所述的显示基板母板的制备方法,其中,所述第一柔性有机层的形成厚度为5μm-20μm,所述第一无机层的形成厚度为0.4μm-2μm,所述第二柔性有机层的形成厚度为5μm-20μm。
  17. 根据权利要求13-16任一所述的显示基板母板的制备方法,其中,形成所述第一无机层包括在所述第一柔性有机层上依次形成第一无机子层和第二无机子层,其中,
    所述第一无机子层的材料包括氧化硅、氮化硅和氮氧化硅中的一种或多种,
    所述第二无机子层的材料包括非晶硅。
  18. 根据权利要求17所述的显示基板母板的制备方法,其中,所述第一无机子层的总厚度为0.4μm-2μm,所述第二无机子层的形成厚度为1nm-50nm。
  19. 一种显示基板的制备方法,包括:
    采用权利要求13-18任一所述的制备方法得到显示基板母板,
    将所述第一柔性有机层从所述衬底基板上分离,以及
    切割所述显示基板母板以形成独立的多个显示基板。
  20. 根据权利要求19所述的显示基板的制备方法,其中,采用激光剥离的方式将所述衬底基板与所述第一柔性有机层分离。
PCT/CN2019/109032 2019-09-29 2019-09-29 显示基板母板及其制备方法、显示基板及其制备方法 WO2021056536A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201990000138.8U CN212392267U (zh) 2019-09-29 2019-09-29 显示基板母板以及显示基板
PCT/CN2019/109032 WO2021056536A1 (zh) 2019-09-29 2019-09-29 显示基板母板及其制备方法、显示基板及其制备方法
US16/964,423 US11818922B2 (en) 2019-09-29 2019-09-29 Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof
US18/473,538 US12232370B2 (en) 2019-09-29 2023-09-25 Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109032 WO2021056536A1 (zh) 2019-09-29 2019-09-29 显示基板母板及其制备方法、显示基板及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/964,423 A-371-Of-International US11818922B2 (en) 2019-09-29 2019-09-29 Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof
US18/473,538 Continuation US12232370B2 (en) 2019-09-29 2023-09-25 Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021056536A1 true WO2021056536A1 (zh) 2021-04-01

Family

ID=74248149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109032 WO2021056536A1 (zh) 2019-09-29 2019-09-29 显示基板母板及其制备方法、显示基板及其制备方法

Country Status (3)

Country Link
US (2) US11818922B2 (zh)
CN (1) CN212392267U (zh)
WO (1) WO2021056536A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11818922B2 (en) * 2019-09-29 2023-11-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof
CN118248047A (zh) * 2022-07-19 2024-06-25 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140051192A1 (en) * 2012-08-17 2014-02-20 Samsung Display Co., Ltd. Method and carrier substrate for manufacturing display device
CN103985823A (zh) * 2013-02-07 2014-08-13 三星显示有限公司 柔性显示装置以及用于制造柔性显示装置的方法
CN107681060A (zh) * 2017-09-19 2018-02-09 武汉华星光电半导体显示技术有限公司 一种柔性基板及柔性oled器件
CN109830621A (zh) * 2019-02-19 2019-05-31 成都京东方光电科技有限公司 柔性基板及其制造方法、柔性显示基板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113174B1 (ko) * 2013-04-30 2020-05-21 삼성디스플레이 주식회사 플렉시블 디스플레이 장치의 제조방법
KR102448325B1 (ko) * 2017-11-16 2022-09-30 삼성디스플레이 주식회사 표시패널 및 이를 포함하는 전자장치
JP6666530B2 (ja) * 2018-03-20 2020-03-13 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイス及びその製造方法並びに支持基板
KR102687808B1 (ko) * 2018-09-21 2024-07-25 삼성디스플레이 주식회사 표시 장치
US10360825B1 (en) * 2018-09-24 2019-07-23 Innolux Corporation Flexible electronic device
US11818922B2 (en) * 2019-09-29 2023-11-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140051192A1 (en) * 2012-08-17 2014-02-20 Samsung Display Co., Ltd. Method and carrier substrate for manufacturing display device
CN103985823A (zh) * 2013-02-07 2014-08-13 三星显示有限公司 柔性显示装置以及用于制造柔性显示装置的方法
CN107681060A (zh) * 2017-09-19 2018-02-09 武汉华星光电半导体显示技术有限公司 一种柔性基板及柔性oled器件
CN109830621A (zh) * 2019-02-19 2019-05-31 成都京东方光电科技有限公司 柔性基板及其制造方法、柔性显示基板及其制造方法

Also Published As

Publication number Publication date
US20240016008A1 (en) 2024-01-11
CN212392267U (zh) 2021-01-22
US11818922B2 (en) 2023-11-14
US12232370B2 (en) 2025-02-18
US20220376010A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP7168356B2 (ja) 有機発光表示装置及びこの製造方法
JP7048920B2 (ja) 表示装置
TWI527207B (zh) 可撓式有機發光裝置及其製作方法
CN104218188B (zh) 显示装置及其制造方法
US12232370B2 (en) Display substrate motherboard and preparation method thereof, display substrate and preparation method thereof
TW201440281A (zh) 可撓式顯示裝置及製造可撓式顯示裝置之方法
CN109830621B (zh) 柔性基板及其制造方法、柔性显示基板及其制造方法
WO2018152920A1 (zh) 有机发光触控显示屏
WO2019082355A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
US20240215430A1 (en) Stretchable display substrate and manufacturing method thereof
CN113314582B (zh) 一种柔性显示基板、其制作方法及显示面板
JP7509341B2 (ja) 表示基板およびその作製方法、表示装置、ならびに表示パネル
KR100699994B1 (ko) 라미네이션 장비 및 레이저 열전사 방법
WO2019082356A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
CN113826232B (zh) 显示面板及其制作方法、显示装置
CN112154712B (zh) 显示装置的制造方法
JP6409287B2 (ja) 有機エレクトロルミネッセンス発光装置および有機エレクトロルミネッセンス発光装置の製造方法、並びに画像形成装置
JP5407648B2 (ja) 電気光学装置の製造方法、電気光学装置、電子機器
WO2020237629A1 (zh) 显示背板及制作方法、显示面板及制作方法、显示装置
JP2010062399A (ja) 半導体装置、半導体装置の製造方法、および電子機器
CN109037134A (zh) 可挠式面板以及可挠式面板的制造方法
JP2019079785A (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6899477B2 (ja) フレキシブルoledデバイス、その製造方法及び支持基板
JP7240624B2 (ja) 表示装置形成用基板、表示装置及び表示装置の製造方法
WO2021068165A1 (zh) 显示基板母板的制作方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947375

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947375

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19947375

Country of ref document: EP

Kind code of ref document: A1