WO2021056222A1 - 一种资源调度方法及装置 - Google Patents
一种资源调度方法及装置 Download PDFInfo
- Publication number
- WO2021056222A1 WO2021056222A1 PCT/CN2019/107611 CN2019107611W WO2021056222A1 WO 2021056222 A1 WO2021056222 A1 WO 2021056222A1 CN 2019107611 W CN2019107611 W CN 2019107611W WO 2021056222 A1 WO2021056222 A1 WO 2021056222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- terminal device
- sub
- subchannels
- subchannel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
Definitions
- This application relates to the field of communication technology, and in particular to a resource scheduling method and device.
- V2X vehicle-to-everything
- vehicle-to-everything vehicle-to-everything
- V2X vehicle networking technology
- V2X communication refers to the communication between the vehicle and the outside world, including vehicle-to-vehicle communication (V2V), vehicle-to-pedestrian communication (V2P), and vehicle-to-infrastructure communication (vehicle to infrastructure, V2I), vehicle to network communication (vehicle to network, V2N).
- V2V vehicle-to-vehicle communication
- V2P vehicle-to-pedestrian communication
- V2I vehicle-to-infrastructure communication
- V2N vehicle to network communication
- a terminal device can send a scheduling request (SR) to a network device, and the network device sends a transmission resource for a buffer state report (buffer state report, BSR) to the terminal device, Then the terminal device sends the BSR to the network device, and the network device sends the transmission resource for SL transmission to the terminal device.
- SR scheduling request
- BSR buffer state report
- the terminal device before the terminal device uses the transmission resource for SL to transmit control information and/or data information, the terminal device also needs to detect the transmission resource to determine whether the transmission resource is available. In this case, the transmission resource may be unavailable, causing the terminal device to need to send the SR and the BSR again.
- the embodiments of the present application provide a resource scheduling method and device, which can be applied to communication systems, such as vehicle-to-everything (V2X), workshop information interaction (long term evolution-vehicle, LTE-V), Internet of Vehicles, machine type communication (eMTC), Internet of Things (LOT), inter-machine information interaction (long term evolution-machine, LTE-M), machine to machine communication (machine to machine, M2M) ), etc., in the scheduling mode based on network equipment, to avoid the waste of signaling resources caused by the need for terminal equipment to send SR and BSR multiple times.
- V2X vehicle-to-everything
- workshop information interaction long term evolution-vehicle, LTE-V
- eMTC machine type communication
- LOT Internet of Things
- inter-machine information interaction long term evolution-machine, LTE-M
- machine to machine communication machine to machine, M2M
- an embodiment of the present application provides a resource scheduling method.
- the method includes: a first terminal device determines a first set of subchannels, and the first set of subchannels is used to transmit data and information on the side link SL. /Or control information, and the first set of subchannels is the set of available subchannels detected by the first terminal device on the SL; the first terminal device sends first information to the network device, and the first The information includes the information of the first set of subchannels.
- the first terminal device first determines the first sub-channel set, so that the network device can allocate sub-channels to the first terminal device according to the first sub-channel set. After a terminal device allocates sub-channel 1 for SL transmission, the first terminal device fails to detect the sub-channel 1, and the first terminal device needs to send SR and BSR to the network device again, which causes a waste of resources; The resource utilization rate is improved, and the first terminal device does not need to send SR and BSR multiple times, which reduces the scheduling delay and ensures the effective transmission of data information and/or control information on the SL.
- the failure of the first terminal device to detect the sub-channel can be understood as the energy threshold of the first terminal device detecting the sub-channel is lower than the threshold threshold, or it can also be understood as the first terminal device detecting the sub-channel.
- the sub-channel is busy, etc.
- the embodiment of the present application does not limit the method of detecting the sub-channel failure.
- detecting the sub-channel by the first terminal device can also be understood as the first terminal device monitoring the sub-channel.
- the first information further includes information used to indicate the location of the first terminal device.
- the location of the first terminal device can be understood as the absolute geographic location of the first terminal device, or can also be understood as the area identification of the first terminal device, etc.
- the expression method of the device location is not limited.
- the first information further includes a target identifier, and the target identifier is used to indicate at least one of a unicast service, a multicast service, or a broadcast service.
- the target identifier can be used to enable the network device to perform corresponding scheduling processing, for example, the sub-channel set A corresponding to unicast services, the sub-channel set B corresponding to multicast services, and the sub-channel set C corresponding to broadcast services. Improve the efficiency of network equipment scheduling.
- the first set of subchannels includes one or more subchannels
- the information of the first set of subchannels includes indexes of the one or more subchannels.
- the index (index) may also be understood as an identifier, that is, the information of the first subchannel set includes the identifier of the one or more subchannels.
- the index of the one or more sub-channels allows the network device to know which sub-channels the first terminal device determines are the available sub-channels, which improves the efficiency of the network device to interpret information, so that the first terminal device and the network device maintain information Consistency.
- the information of the first sub-channel set further includes the priority of the one or more sub-channels.
- the priority of the one or more sub-channels allows the network device to allocate available sub-channels to the first terminal device according to actual conditions; for example, the information of the first sub-channel set includes the priorities of multiple sub-channels .
- the network device can allocate sub-channels to the first terminal device according to the priorities of the multiple sub-channels, avoiding allocating low-priority sub-channels to the first terminal device, and wasting high-priority sub-channels. The efficiency of sub-channel allocation is improved.
- the first information is a buffer status report BSR media access layer control element (medium access control control element, MAC CE), and the BSR MAC CE is used to report the amount of data to be transmitted in the SL .
- BSR media access layer control element medium access control control element, MAC CE
- the amount of data to be transmitted is the amount of data transmitted by the first terminal device to other terminal devices, that is, the amount of data to be transmitted is the amount of data transmitted by the first terminal device through SL The amount of data.
- the method further includes: the first terminal device sends second information to the second terminal device, where the second information is used to indicate that the first subchannel is reserved.
- the first terminal device sends the second information to the second terminal device, so that the second terminal device can avoid using the sub-channels in the first sub-channel set; avoiding the first terminal device to determine When the sub-channels in the first sub-channel set can be used, the sub-channels in the first sub-channel set are used by the second terminal device; thereby improving the efficiency of the first terminal device in using the first sub-channel set.
- the second information is sidelink control information (sidelink control information, SCI).
- the SCI can be understood as the second SCI, and the second SCI does not include the MCS.
- the SCI is also used to indicate the duration information for reserving the first set of subchannels.
- the second terminal device can know in time how long the first sub-channel set needs to be reserved, so that the first sub-channel set can be reserved.
- the second terminal device can use the first subchannel set in time, which improves the first subchannel set. The utilization rate of a set of sub-channels.
- the second information is a sounding reference signal (SRS) or a preamble code.
- SRS sounding reference signal
- an embodiment of the present application provides a resource scheduling method.
- the method includes: a network device receives first information sent by a first terminal device, where the first information includes information about a first set of subchannels, and the first The sub-channel set is the set of available sub-channels detected by the first terminal device on the side link SL; the network device allocates target sub-channels to the first terminal device according to the information of the first sub-channel set A channel set, where the target sub-channel set is used by the first terminal device to transmit data information and/or control information on the SL.
- the first information further includes information for indicating the location of the first terminal device; the network device serves the first terminal device according to the information of the first subchannel set Allocating the target sub-channel set includes: the network device allocates the target sub-channel set to the first terminal device according to the information of the first sub-channel set and the information of the location of the first terminal device.
- the first information further includes a target identifier, and the target identifier is used to indicate at least one of a unicast service, a multicast service, or a broadcast service;
- Allocating a target subchannel set for the first terminal device with the information of a subchannel set includes: the network device assigns the first subchannel set to the first subchannel set according to the information of the first subchannel set and the subchannel set corresponding to the target identifier. The terminal device allocates the target sub-channel set.
- the first set of subchannels includes one or more subchannels
- the information of the first set of subchannels includes indexes of the one or more subchannels.
- the first information is a buffer status report BSR media access layer control element MAC CE
- the BSR MAC CE is used to report the amount of data to be transmitted by the SL.
- an embodiment of the present application provides a resource scheduling method.
- the method includes: a first terminal device detects whether a first set of sub-channels is available, wherein the first set of sub-channels passes through the first set of sub-channels corresponding to the first reference resource.
- a scheduling request SR is obtained, and the first sub-channel set is used to transmit data information and/or control information on the side link SL; when the first sub-channel set is not available, the first terminal device is 2.
- the second uplink information is sent to the network device on the reference resource, the second uplink information is used to request the network device to allocate a second set of subchannels, and the second set of subchannels is used for transmission on the side link SL Data information and/or control information, where the second uplink information includes: a second scheduling request SR, or a second buffer status report BSR.
- the first terminal device may apply to the network device for the second sub-channel set through the second uplink information; that is to say, The first terminal device can reapply for the sub-channel set through the second uplink information, thereby increasing the speed of the first terminal device re-acquiring the sub-channel set, and reducing the scheduling delay as much as possible.
- the method further includes: the first terminal device sends to the network device through the first reference resource The first SR.
- the second reference resource is predefined, or the second reference resource is configured by the network device through signaling.
- an embodiment of the present application provides a resource scheduling method, including: a network device receives second uplink information sent by a first terminal device through a second reference resource, and the second uplink information is used to request the network device to allocate A second set of subchannels, where the second set of subchannels is used to transmit data information and/or control information on the side link SL, and the second uplink information includes: a second scheduling request SR, or a second buffer Status report BSR; the network device allocates the second set of subchannels to the first terminal device.
- the method before the network device receives the second uplink information sent by the first terminal device through the second reference resource, the method further includes: the network device receives the first terminal device through the second reference resource. A first SR sent with reference to a resource; the network device allocates a first set of subchannels to the first terminal device.
- an embodiment of the present application provides a resource scheduling method, including: a first terminal device receives fourth downlink control information DCI sent by a network device, where the fourth DCI includes information about one or more candidate subchannel sets; The first terminal device determines a third sub-channel set from the one or more candidate sub-channel sets according to the monitoring result; the first terminal device transmits on the third sub-channel set transmission side uplink SL Data information and/or control information.
- the first terminal device receives information including one or more candidate subchannel sets, so that the first terminal device can determine the available subchannel set from the one or more subsequent subchannel sets. Therefore, through one or more candidate subchannel sets, the efficiency of determining the subchannel set by the first terminal device is improved, the efficiency of data information and/or control information transmission is further improved, and the transmission delay is reduced.
- the method further includes: the first terminal device sends feedback information to the network device, where the feedback information includes information of the third subchannel set.
- the feedback information can be used to make the network device know which sub-channel set is used by the first terminal device, so that the network device can release the unused sub-channel set to prevent other terminal devices from being unable to use the sub-channel set.
- the unused sub-channel set avoids waste of resources, thereby improving the utilization rate of the sub-channel set.
- the information of the third subchannel set includes an identifier of the third subchannel set.
- the fourth DCI further includes feedback reference resource information
- sending, by the first terminal device, the feedback information to the network device includes: the first terminal device uses the feedback reference resource Sending the feedback information to the network device.
- the feedback reference resource can be understood as a time-frequency resource used to transmit feedback information.
- an embodiment of the present application provides a resource scheduling method, including: a network device receives a first buffer status report BSR sent by a first terminal device; the network device sends fourth downlink control information to the first terminal device DCI, the fourth DCI includes information of one or more candidate subchannel sets.
- the method further includes: the network device receives feedback information sent by the first terminal device, where the feedback information includes information of the third subchannel set.
- the information of the third subchannel set includes an identifier of the third subchannel set.
- an embodiment of the present application provides a terminal device.
- the terminal device includes a processing unit and a transceiving unit, and the processing unit is configured to perform the corresponding operations shown in the first, third, or fifth aspects.
- Method, the transceiving unit is used to execute the corresponding method as shown in the first aspect, the third aspect or the fifth aspect.
- an embodiment of the present application provides a network device.
- the network device includes a processing unit and a transceiving unit.
- the processing unit is configured to perform the corresponding operations shown in the second, fourth, or sixth aspects.
- Method, the transceiving unit is used to execute the corresponding method as shown in the second aspect, the fourth aspect or the sixth aspect.
- an embodiment of the present application provides a communication device.
- the communication device includes a processor and a memory.
- the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory. So that the communication device executes the corresponding method as shown in the first aspect, the third aspect or the fifth aspect.
- an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, So that the communication device executes the corresponding method as shown in the second aspect, the fourth aspect or the sixth aspect.
- an embodiment of the present application provides a communication device.
- the communication device includes a processor and an interface circuit.
- the interface circuit is configured to receive and transmit code instructions to the processor;
- the code instructions are used to perform the corresponding method as shown in the first aspect, the third aspect, or the fifth aspect.
- an embodiment of the present application provides a communication device.
- the communication device includes a processor and an interface circuit.
- the interface circuit is configured to receive code instructions and transmit them to the processor;
- the code instructions are used to perform the corresponding method as shown in the second aspect, the fourth aspect, or the sixth aspect.
- an embodiment of the present application provides a communication system.
- the communication system includes a terminal device and a network device.
- the terminal device is used to perform the corresponding operations shown in the first aspect, the third aspect, or the fifth aspect.
- Method The network device is used to perform the corresponding method shown in the second aspect, the fourth aspect or the sixth aspect.
- an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, the first aspect, the third aspect, or the fifth aspect The method is implemented.
- an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, the second aspect, the fourth aspect, or the sixth aspect The method is implemented.
- embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the first, third, or fifth aspect to be implemented.
- embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the second, fourth, or sixth aspect to be implemented.
- FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
- Fig. 2a is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- FIG. 2b is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- Figure 2c is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- Figure 2d is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- Figure 2e is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- 2f is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- 2g is a schematic diagram of a side link communication scenario provided by an embodiment of the present application.
- FIG. 3 is a schematic flowchart of a resource scheduling process provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of a resource scheduling process provided by an embodiment of the present application.
- FIG. 5 is a schematic flowchart of a resource scheduling method provided by an embodiment of the present application.
- FIG. 6 is a flowchart of an interaction method provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of the format of a BSR provided by an embodiment of the present application.
- FIG. 8 is a schematic diagram of a BSR format provided by an embodiment of the present application.
- FIG. 9 is a schematic flowchart of a resource scheduling method provided by an embodiment of the present application.
- FIG. 10 is a schematic flowchart of a resource scheduling method provided by an embodiment of the present application.
- FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
- FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of the present application.
- At least one (item) refers to one or more
- “multiple” refers to two or more than two
- “at least two (item)” refers to two or three And three or more
- "and/or” is used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: there is only A, only B and A at the same time And B three cases, where A, B can be singular or plural.
- the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
- At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
- at least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
- the communication system used in this application may be understood as a wireless cellular communication system, or as a wireless communication system based on a cellular network architecture, or may also be other types of communication systems in the future, and so on.
- Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
- the communication system may include at least one network device, and only one is shown, such as the next generation Node B (gNB) in the figure; and one or more terminal devices connected to the network device, as shown in the figure Terminal device 1 and terminal device 2.
- gNB next generation Node B
- the network device may be a device that can communicate with a terminal device.
- the network device can be any device with wireless transceiver functions, including but not limited to a base station.
- the base station may be a gNB, or the base station may be a base station in a future communication system.
- the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
- the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
- the network device may also be a wearable device or a vehicle-mounted device.
- the network device may also be a small station, a transmission reference point (TRP), etc.
- TRP transmission reference point
- Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
- a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
- Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
- VR virtual reality
- AR augmented reality
- industrial control industrial control
- Wireless terminals in wireless terminals in self-driving
- wireless terminals in remote medical wireless terminals in smart grid
- wireless terminals in transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, etc.
- the communication system shown in FIG. 1 includes a network device (gNB) and a terminal device 1 and a terminal device 2.
- the terminal device 1 and the terminal device 2 can also use device-to-device (device to device, D2D) technology or vehicle-to-device Any thing communication (vehicle-to-everything, V2X) technology for communication.
- D2D device to device
- V2X vehicle-to-device Any thing communication
- the following will take the terminal device 1 and the terminal device 2 in NR-V2X as an example to specifically describe the communication scenario of the corresponding resource scheduling method provided in the embodiment of the present application.
- FIG. 1 can be applied to communication scenarios of other embodiments of the present application, and details are not described herein again. For example, it can be applied to the resource scheduling method embodiments shown in FIG. 5, FIG. 9, and FIG. 10.
- FIG. 2a to FIG. 2g respectively are schematic diagrams of a sidelink communication scenario provided by an embodiment of the application.
- both the terminal device 1 and the terminal device 2 are outside the cell coverage.
- the terminal device 1 is within the coverage area of the cell, and the terminal device 2 is outside the coverage area of the cell.
- the terminal device 1 and the terminal device 2 are both in the coverage of the same cell, and are in a public land mobile network (PLMN), such as PLMN1.
- PLMN public land mobile network
- the terminal device 1 and the terminal device 2 are in a PLMN such as PLMN1, but are in different cell coverage areas.
- the terminal device 1 and the terminal device 2 are in different PLMNs and different cells, and the terminal device 1 and the terminal device 2 are respectively in the common coverage area of the two cells.
- terminal device 1 is in PLMN1
- terminal device 2 is in PLMN2.
- the terminal device 1 and the terminal device 2 are in different PLMNs and different cells respectively, and the terminal device 1 is in the common coverage area of the two cells, and the terminal device 2 is in the coverage area of the serving cell.
- the terminal device 1 and the terminal device 2 are in different PLMNs and different cells, and the terminal device 1 and the terminal device 2 are respectively in the coverage of their respective serving cells.
- V2X vehicle-to-everything
- D2D technology it can be applied to social applications based on proximity characteristics, such as content sharing, interactive games and other nearby terminal devices using D2D for data transmission. It can also solve the problem of damage to the communication infrastructure caused by natural disasters and interruption of communication and obstacles to rescue. For example, in this scenario, through D2D, wireless communication can still be established between two neighboring terminal devices. For another example, it is also possible to push information such as product discounts, promotions, theater previews, etc., to users based on D2D.
- the embodiment of the present application does not uniquely limit the scenes to which D2D is applied.
- SL sidelink
- a terminal device sends a scheduling request (SR) to the network device, and the network device sends a buffer state report (buffer state report) to the terminal device. , BSR), and then the terminal device sends the BSR to the network device, and the network device sends the resource for SL transmission to the terminal device.
- SR scheduling request
- BSR buffer state report
- the terminal equipment can perform resource scheduling based on the resources determined by the network equipment.
- LBT LBT
- the terminal device still needs to listen before talk before transmitting. , LBT operation to determine whether the allocated resources are available. If the terminal device determines that the allocated resources are not available, the SR and BSR sent by the terminal device and the scheduling decision and resource allocation of the network device will all be wasted. It can be understood that the above unlicensed spectrum is only an example, and there may be other scenarios in actual applications that require terminal devices to perform LBT operations.
- FIG. 4 is an interaction flow corresponding to FIG. 3, and FIG. 4 is a flowchart of how terminal device 1 interacts with network devices in mode1, and how terminal device 1 interacts with terminal device 2 .
- the terminal device 1 can send an SR to the network device, and the network device issues downlink control information (DCI), and the DCI can be used to indicate the data to be transmitted on the SL
- DCI downlink control information
- the transmission resource of the buffer state report (buffer state report, BSR) (also referred to as the buffer state report) of the amount of data; then the terminal device 1 uses the indicated transmission resource of the BSR to transmit the amount of data to be transmitted on the SL
- BSR buffer state report
- the upper sends the BSR to the network device, and the network device issues DCI again.
- the DCI is used to indicate the transmission resource for the data to be transmitted on the SL; wherein the transmission resource for the data to be transmitted on the SL is usually performed through sub-channels Indicates that the transmission resource usually includes at least one of resources used for the physical sidelink control channel (PSCCH) and resources used for the physical sidelink shared channel (PSSCH) ;
- the terminal device 1 can communicate with the terminal device 2 through the PSCCH for control information, and/or communicate with the terminal device 2 through the PSSCH for data information.
- the terminal device 1 In the unlicensed spectrum, after the terminal device 1 receives the set of sub-channels issued by the network device for transmitting data information and/or control information, the terminal device 1 also needs to detect whether the set of sub-channels is available. If the set is unavailable, the terminal device 1 also needs to re-send the SR and BSR to the network device to apply for the sub-channel set from the network device again; in this case, the sub-channel set applied for by the terminal device 1 may still be unavailable. Therefore, the present application provides a resource scheduling method, which can effectively prevent the terminal device 1 from sending SR, BSR, etc. multiple times, and avoid resource waste.
- scheduling process shown above is only an example, and the background of the resource scheduling method provided in the embodiment of the present application is not limited to the scheduling process shown above.
- Listen before talk also known as listen before talk
- CSMA carrier sense multiple access
- LAA licensed spectrum assisted access
- eLAA enhanced licensed spectrum in version 13 (release13) and version 14 (release14) respectively.
- the enhanced LAA (eLAA) technology that is, the non-independent deployment of the LTE/LTE-A system on the unlicensed spectrum, and the maximum possible use of unlicensed spectrum resources with the assistance of the licensed spectrum.
- the communication equipment in the communication system deployed on the unlicensed spectrum uses the wireless resources in a competitive manner, that is, the communication device first monitors the unlicensed spectrum before sending a signal Whether it is idle, for example, judge the busy or idle state of the channel by the received power on the unlicensed spectrum. If the received power is less than or equal to a certain threshold, the channel in the unlicensed spectrum is considered to be in an idle state and can be sent on the unlicensed spectrum Signal, otherwise no signal is sent. This mechanism of listening first and sending it later is called the LBT mechanism.
- the LBT mechanism is currently used to monitor idle channels. When the unlicensed band channels are monitored, the channels are occupied. When it indicates that the LBT fails, no signal is sent. Only when the unlicensed frequency band channel is monitored to be free, it indicates that the LBT is successful, and the communication device will then send the signal.
- the sending device can send a channel occupation signal to other surrounding devices.
- the channel occupation signal can be called channel reservation in different embodiments. Signal or channel utilization (utilization) signal.
- the channel occupancy signal is used to indicate to other devices the transmission time that the sending device needs to occupy on the competing channel, that is, the channel occupancy time, so as to avoid collisions caused by other devices transmitting data on the channel to improve communication reliability And communication efficiency.
- the sending device is the aforementioned communication device capable of LBT, which may be a terminal device. Specifically, if the device that initiates the LBT process is a terminal device, then the sending device is a terminal device.
- the channel occupancy time can be in microseconds ( ⁇ s) as a unit, or orthogonal frequency division multiplexing (OFDM) symbols can be used as a unit, a slot can also be used as a unit, or it can be Take mini-slot as the unit, and so on.
- the aforementioned sub-carrier interval corresponding to the OFDM symbol or slot may be the sub-carrier interval pre-defined by the standard, or may be the same as the sub-carrier interval of the channel-occupied signal.
- a set of sub-channels can be understood as one or more sub-channels. That is to say, the sub-channel set can be understood as one sub-channel or multiple sub-channels.
- the embodiment of the present application does not limit the number of sub-channels included in the sub-channel set.
- N physical resource blocks (PRBs) may be divided into one subchannel, where the N PRBs may be continuous PRBs or discontinuous PRBs, etc., which is not limited in the embodiment of the present application.
- N is a positive integer.
- a physical subchannel can be composed of a time-frequency two-dimensional structure of 12 subcarriers ⁇ 1 slot (slot), and one slot can be 14 orthogonal frequency division multiplexing (OFDM).
- the time domain can be a slot, or a mini-slot, or M symbols, etc., where M is a positive integer greater than or equal to 1 and less than or equal to 14.
- N can be any integer less than or equal to 12. It can be understood that the continuous PRB can be understood as a continuous layer from PRB(M) to PRB(N), the M is less than N, and M and N are positive integers.
- the terminal device can detect whether the subchannel is available according to the signal energy received on the subchannel or the signal energy detected/monitored.
- the signal energy includes any one of received signal strength indication (RSSI), reference signal receiving power (RSRP), or signal to interference plus noise ratio (SINR) .
- RSSI received signal strength indication
- RSRP reference signal receiving power
- SINR signal to interference plus noise ratio
- a terminal device when a terminal device detects sub-channel 1, it can first interpret the quality of service (QoS) information contained in the control information from the control information sent by the detected surrounding terminal devices, and according to the QoS of the data to be transmitted. The information is compared with the QoS information of the data to be transmitted on the detected subchannel 1, and the threshold threshold is determined according to the above two QoS information.
- QoS quality of service
- the QoS information contained in the control information is the QoS information of the to-be-sent data of the surrounding terminal equipment.
- meeting the corresponding threshold threshold can be understood as the detected signal energy is less than or equal to the threshold threshold.
- the detected signal energy can be judged based on any one or more of the above RSSI, RSRP, or SINR, or based on the signal strength of the detected SCI, or the signal strength of the detected PSSCH. And so on, the embodiment of the present application does not limit it.
- the signal energy received on the subchannel is the detected/monitored signal strength of the PSSCH, which may specifically be: detecting the PSSCH obtained from the SCI using the subchannel to obtain the PSSCH using the subchannel Signal strength.
- the QoS information in this application may also be referred to as QoS level information, or may also be referred to as service priority information, etc.
- the specific name of the QoS information is not limited in the embodiment of this application.
- the QoS information includes at least one of priority (prose per-packet priority, PPPP), or N quality index (quality index, QI), and other related parameters used to indicate QoS.
- the threshold value is a threshold value determined according to the QoS information of both the detected terminal device and the detected terminal device.
- the threshold value may be pre-configured or configured by the network device to the terminal device through RRC signaling. . It can be understood that in the embodiments of the present application, detection, reception, or monitoring can be interchanged.
- the above method for detecting whether a subchannel is available can also be applied to a subchannel set, for example, averaging the detected signal energy of all subchannels included in the subchannel set. That is, the linear average or weighted average of the detected signal energy of all sub-channels included in the sub-channel set will be regarded as the final detected signal energy of the sub-channel set. For example, when the set of sub-channels includes sub-channels 1, 3, and 5, the average value of the signal energy detected by the three sub-channels is obtained.
- FIG. 5 is a schematic flowchart of a resource scheduling method provided by an embodiment of the present application. As shown in FIG. 5, the resource scheduling method includes:
- the terminal device 1 Before a terminal device 1 detects an unlicensed spectrum and applies for a set of sub-channels for transmitting SL data from a network device, the terminal device 1 determines a first set of sub-channels.
- the first set of sub-channels can be understood as the available sub-channels monitored or detected by the terminal device 1 on the side link SL (or directly connected link), and the available sub-channels are idle sub-channels. . That is, the first set of subchannels can be understood as the current detected energy on the subchannels included in the first set of subchannels is less than a preset threshold.
- terminal device 1 and terminal device 2 can use the first set of subchannels to transmit data information, or use the first set of subchannels to transmit control information, or use the The first set of subchannels transmits data information and control information.
- the control information can be understood as PSCCH, and the PSCCH carries sidelink control information (SCI).
- the first subchannel set includes one or more subchannels, and the multiple subchannels may be consecutive multiple subchannels, or may be discontinuous multiple subchannels, which is not limited in the embodiment of the present application.
- the method for the terminal device 1 to detect the first subchannel set can refer to the foregoing embodiment, which will not be described in detail here.
- the terminal device 1 sends a channel occupation notification or a channel reservation notification.
- the terminal device 1 can send a channel occupation notification or a channel reservation notification to any one or more of the surrounding terminal devices, such as the terminal device 2, or the terminal device 3, or the terminal device 4, so that the surrounding The terminal device avoids using the first set of subchannels. For example, terminal device 1 determines the first sub-channel set in slot 1, but detects that terminal device 3 is periodically using the first sub-channel set and will use the first sub-channel set in slot 3. Even if the network device allocates the first sub-channel set to the terminal device 1, the terminal device 1 still cannot use the first sub-channel set.
- the terminal device 3 can know that the terminal device 1 wants to use the first sub-channel set after receiving the channel occupation notification.
- the terminal device 3 can avoid using the first set of subchannels.
- terminal device 1 determines the first sub-channel set in slot 1, but surrounding terminal devices are also detecting at the same time. Therefore, once terminal device 1 determines the first channel set and immediately sends a channel occupancy notification, the surrounding terminal devices For example, after receiving the channel occupation notification, the terminal device 3 can know that the terminal device 1 wants to use the first subchannel set, so the terminal device 3 can avoid using the first subchannel set.
- the channel reservation notification means that the terminal device 1 has reserved and will occupy the first set of subchannels, and surrounding terminal devices need to reserve the first set of subchannels for the terminal device 1, and the channel occupancy notification may indicate that the terminal device 1 Device 1 will occupy the first set of sub-channels.
- the expressions are inconsistent, the essence of the channel reservation notification and the channel occupancy notification are the same.
- the form of the terminal device 1 sending the channel occupation notification or the channel reservation notification may include: the terminal device 1 sends second information to surrounding terminal devices such as the terminal device 2, and the second information may be used to indicate the first sub-channel set Is reserved, or the second information can be used to indicate that the first subchannel set is occupied.
- the second information indicates that the first subchannel set is reserved, it may indicate that the terminal device 2 needs to reserve the first subchannel set, and when the second information indicates that the first subchannel set is occupied, it may Indicates that the terminal device needs to occupy the first set of subchannels.
- the embodiment of the present application provides two examples to illustrate the specific form of the second information, as follows:
- the second information is a sounding reference signal (SRS) or a preamble code.
- SRS sounding reference signal
- the terminal device 1 may send the second information on the first subchannel set determined above.
- the preamble code or SRS can be sent in the form of broadcast, the preamble code and the SRS can be generated according to a root sequence.
- the terminal device 1 may stop sending the above-mentioned preamble code or SRS after receiving the DCI from the network device (the second DCI in FIG. 4), and the terminal device 1 sends the first SCI to the terminal device according to the DCI 2. And the data information transmission on the side link with the terminal device 2.
- the first SCI is used to schedule data information on the side uplink.
- the second information shown in FIG. 6 is that the second information is sent to the terminal device 2 after the terminal device 1 sends the BSR, but the embodiment of the present application does not make any difference as to when the second information is sent. limited.
- Example 2 The second information is sidelink control information (SCI).
- SCI sidelink control information
- the terminal device 1 Before the terminal device 1 receives the DCI sent from the network device, the terminal device 1 may periodically send the second SCI.
- the second SCI may also be used to indicate the reserved duration information of the first subchannel set, and the reserved duration information of the first subchannel set may be a channel utilization indicator (CUI).
- the CUI may be used to indicate the length of time that the first sub-channel set will be occupied, or it may also be understood as the reserved time length of the first sub-channel set.
- the duration indicated by the CUI may be any duration divided according to the unit of the time domain resource.
- the unit of the time domain resource can be any one or a combination of OFDM symbols, mini-slots, or slots.
- the CUI may indicate 10 slots or 5 slots, and so on.
- the CUI can be continuous or discontinuous.
- the second SCI does not include data scheduling information, for example, the second SCI does not include a modulation and coding scheme (MCS). Therefore, after the terminal device 2 receives the second SCI, it can not only quickly know that the terminal device 1 needs to occupy the first sub-channel set, but also reduces the signaling overhead.
- MCS modulation and coding scheme
- the subchannel used for transmitting the second SCI may be defined in a specific search space.
- the subchannel used by the terminal device 1 to send the second SCI may be one or more subchannels in the specific search space.
- the subchannel where the control channel element (CCE)/control resource set (CORSET) used by the terminal device 1 to send the second SCI is located can be a subchannel set x in a specific search space,
- the set of subchannels x includes one or more subchannels.
- the terminal device 1 sends a scheduling request (scheduling request, SR) to the network device on the first reference resource.
- SR scheduling request
- the SR can be used to request the network device to issue the reference resource for transmitting the BSR, that is, the SR can be used to request the network device to issue the transmission resource for transmitting the BSR, or the SR can be used to request the network device to issue the reference resource for transmission Time-frequency resources of the BSR.
- steps 502 and 503 are not limited and can be interchanged.
- the network device receives the SR from the terminal device 1, and the network device sends a first DCI to the terminal device 1, where the first DCI may be used to indicate a third reference resource, and the third reference resource is used to transmit the BSR.
- the terminal device 1 receives the first DCI from the network device, and sends a BSR medium access control control element (MAC CE) to the network device through the third reference resource.
- the BSR MAC CE includes the first DCI.
- the first set of subchannels is the set of available subchannels detected by the terminal device 1.
- the information of the first subchannel set may include an index included in the first subchannel set.
- the information of the first set of subchannels may also be a bitmap (bitmap), and the part marked with 1 in the bitmap is the selected one or more subchannels.
- the bitmap length is the number of all sub-channels available for SL.
- FIG. 7 is a schematic diagram of the format of a BSR MAC CE provided by an embodiment of the present application.
- the terminal device 1 can use the first sub-channel set obtained by detection as the available sub-channel ID1 and/ Or the subchannel ID2 can be used to fill in the BSR MAC CE.
- the first set of sub-channels determined by terminal device 1 is sub-channel 1 to sub-channel 5, and sub-channel 7 to sub-channel 9, then sub-channel 1 to sub-channel 5 can be filled in the available sub-channel ID1, Subchannel 7 to subchannel 9 are filled in the available subchannel ID2.
- the first set of subchannels determined by the terminal device 1 may be continuous subchannels or discontinuous subchannels, whether the subchannels carried in the available subchannel ID1 and the available subchannel ID2 are continuous
- the embodiment is not limited. It can be understood that sub-channel 1 to sub-channel 5, and sub-channel 7 to sub-channel 9 are the indexes of the multiple sub-channels included in the first sub-channel set.
- the target ID (target ID) shown in FIG. 7 can also be called the destination ID (destination ID), which can be used to carry the ID of the terminal device 2; it can also be used to implicitly represent the service sent by the terminal device 1 to the terminal device 2.
- the buffer size can be used to carry the amount of data to be transmitted, and the logical channel group (logic channel group, LCG) ID can be used to carry the logical channel or logical channel group ID of the data to be transmitted, and indicates the QoS information of the data to be transmitted.
- the ID in this application can also be called an index. That is to say, the specific name of the target ID is not limited in the embodiment of this application. In other applications, it may also include other names, which will not be listed here. .
- the BAR MAC CE may also include information for indicating the location of the terminal device 1.
- the location of the terminal device 1 may be the absolute geographic coordinates of the terminal device 1 or the zone ID (zone ID) of the terminal device 1.
- the absolute geographic coordinates may be complete coordinates, or may also be the last few digits of the complete coordinates, or may also be the coordinates obtained after processing the complete coordinates.
- the area identification can be understood as a geographic relative identification, such as marking each adjacent area within a range to obtain the area identification. It is understandable that the labels that are farther apart can be reused when making labels.
- the location information shown in FIG. 8 may be used to carry the location information of the terminal device 1.
- the network device can determine whether the same idle sub-channel can be allocated to different terminal devices at the same time according to the location information of the terminal device 1.
- the network device can allocate a sub-channel set (for example, a target sub-channel set) to the terminal device 1 according to the index of the first sub-channel set and the location information of the terminal device 1. For example, if the BSR MAC CE reported by terminal device 1 and terminal device 3 contains the same idle sub-channel, the network device obtains the location information reported by terminal device 1 and the location information reported by terminal device 3. The mutual interference situation can be judged according to the positions of the terminal device 1 and the terminal device 3. If there is less interference, the idle sub-channels can be allocated to different terminal devices at the same time.
- a sub-channel set for example, a target sub-channel set
- the BSR MAC CE may also include a target ID (targetID) or a destination ID (destination ID).
- the target ID is used to indicate at least one of unicast service, multicast service or broadcast service. That is, the target ID is used to indicate which one or more of the unicast service, the groupcast service or the broadcast service is the data communication on the side link. That is, the target ID has an explicit correspondence or an implicit correspondence with at least one of a unicast service, a multicast service, or a broadcast service.
- the correspondence may be pre-configured or configured by the network device to the terminal device through RRC signaling.
- the network device may allocate the sub-channel set to the terminal device 1 according to the target ID and the index of the first sub-channel set.
- the network device can allocate resources on the corresponding resource pool according to the targetID, that is, unicast service, multicast service or broadcast service can respectively correspond to different sub-channel sets, such as unicast service corresponding to sub-channel set A, multicast Service corresponding sub-channel set B, broadcast service corresponding sub-channel set C, the target ID indicates that the data communication on the side link is a unicast service, then the network device can select sub-channels from the idle sub-channels (that is, the first sub-channel set) The sub-channels included in the channel set A are allocated to the terminal device 1.
- the network device can allocate sub-channel 5 to sub-channel 10 to the terminal device 1 use.
- the network device can perform different scheduling processing according to the different target identifiers.
- the scheduling processing can be different scheduling schemes, different scheduling resources, and so on.
- network devices can perform corresponding scheduling distinctions based on the difference between unicast services, multicast services, or broadcast services indicated by the targetID, such as different modulation and coding schemes (MCS), or different resource allocation sizes, etc. .
- the MCS allocated and used by the network device for unicast may be different from the MCS used for multicast.
- an MCS with a lower coding rate such as 16QAM
- 16QAM an MCS with a lower coding rate
- 64QAM a higher coding rate
- the size of the resource allocated and used by the network device may be different from the size of the resource used for multicast.
- the allocated resources are relatively large, such as 3 PRBs, while for multicast, the allocated resources are relatively small, such as 2 PRBs.
- the BSR MAC CE may also include the priority of multiple sub-channels included in the first sub-channel set.
- the terminal device 1 may determine the priority of the first sub-channel set according to any one of RSSI, SINR, or RSRP. The priority of each sub-channel.
- the terminal device 1 can sort the determined sub-channels by detecting the RSSI of the sub-channels to determine the priority.
- the network device may allocate a sub-channel set to the terminal device 1 according to the priority of the one or more sub-channels. Through the priority of the one or more neutron sub-channels, the network device can allocate the idle sub-channel set (that is, the target sub-channel set) to the terminal device 1 according to the actual situation.
- BSR MAC CE includes two sub-channel indexes, such as sub-channel 1 and sub-channel 2.
- the network device finds that sub-channel 1 with high priority is occupied by other terminal devices or is occupied by other terminals. The device determines that it is an available sub-channel, then the network device can allocate the terminal device 1 with the sub-channel 2 with the second highest priority.
- the network device receives the BSR MAC CE sent by the terminal device 1, and allocates a target subchannel set for the terminal device 1 according to the information included in the BSR MAC CE.
- the target sub-channel set may include one or more sub-channels.
- the target subchannel set is the set of subchannels determined from the first set of subchannels.
- the network device sends a second DCI to the terminal device 1, where the second DCI includes the information of the target subchannel set.
- the target sub-channel set is a selected sub-channel set from the available sub-channel 1 and/or the available sub-channel 2 reported from the terminal device 1.
- the terminal device 1 receives the second DCI sent by the network device, and the terminal device 1 transmits data information and/or control information to the terminal device 2 in the target subchannel set.
- the terminal device 1 can transmit data information on the SL with the terminal device 2 on one or more subchannels included in the target subchannel set, can also be used for the transmission of control information on the SL, and can also be used for Transmission of data information and control information on SL.
- the terminal device 1 may transmit control information to the second terminal device 2 through the first SCI, and the first SCI includes the MCS.
- the implementation of the embodiments of this application can make it possible to obtain the first sub-channel in time when the terminal device fails to monitor in the unlicensed spectrum based on the network device scheduling mode, avoiding the terminal device from sending SR and BSR multiple times Etc., effectively avoiding the waste of resources and avoiding the terminal equipment from re-applying for the first sub-channel, thereby also reducing the scheduling delay, and effectively ensuring the effective transmission of data in the side link.
- the monitoring/detection in this application is performed by listening before talk (LBT).
- the reference resources in this application are time-frequency resources.
- BSR is used in this application.
- BSR is usually transmitted on MAC CE, it can also be called BSR MAC CE. Therefore, it should not be used in the embodiments of this application.
- the BSR MAC CE is understood as a restriction on BSR.
- the embodiments of the present application in order to prevent the terminal device from sending the SR and the BSR again after the monitoring fails, also provide a resource scheduling method. For example, when the first terminal device needs to resend the SR-reapply after the LBT fails on the first sub-channel set, the first terminal device can use the second reference resource to resend the SR-reapply, so that the network device can quickly allocate The second set of subchannels.
- the resource scheduling method includes:
- the terminal device 1 sends the first SR to the network device through the first reference resource.
- the first reference resource is a resource used for transmission of the first SR.
- the first reference resource may be a time-frequency resource.
- the first reference resource may be configured by the network device through radio resource control (Radiore Source Control, RRC) signaling.
- RRC Radio Resource Control
- the network device receives the first SR sent by the terminal device 1, and sends the first DCI to the terminal device 1, where the first DCI can be used for a third reference resource, and the third reference resource can be used for transmitting a BSR.
- the first SR may also be referred to as first uplink information, etc., and the specific name of the SR is not limited in the embodiment of the present application.
- the terminal device 1 receives the first DCI sent by the network device, and sends the first BSR to the network device on the third reference resource.
- the network device receives the first BSR sent by the terminal device 1, and allocates the first subchannel set to the terminal device 1.
- the network device sends a second DCI to the terminal device 1, where the second DCI may be used to indicate the first set of subchannels.
- the first set of subchannels may be used to transmit data information and/or control information on the SL.
- the terminal device 1 receives the second DCI sent by the network device, and detects whether the first subchannel set is available.
- the method for the terminal device 1 to detect whether the first sub-channel set is available can refer to the foregoing embodiment, which will not be described in detail here.
- the terminal device 1 sends second uplink information to the network device on the second reference resource.
- the second uplink information is used to request the network device to allocate the second subchannel set.
- the channel set is used to transmit data information and/or control information on the SL.
- the second uplink information may include a second SR or a second BSR.
- the difference between the second SR and the first SR is not that the time of transmission is different, but that the purpose is different.
- the first SR is when the terminal device 1 initially applies for the network device to issue the first sub-channel set.
- the sent SR and the second SR is the SR sent when the terminal device 1 detects that the first sub-channel set is unavailable and needs to request the network device to deliver the second sub-channel set again.
- the difference between the first BSR and the second BSR can refer to the difference between the first SR and the second SR.
- the first BSR is the BSR sent when the terminal device 1 first applies for the network device to issue the first sub-channel set
- the second BSR is the terminal device 1 when it detects that the first sub-channel set is unavailable, and it needs to request the network device to issue the first sub-channel set again.
- the second reference resource may be predefined, for example, the second reference resource is preset in a network device or a terminal device.
- the second reference resource may also be configured by a network device through signaling, and the signaling may include at least one of RRC signaling, MAC signaling, or physical layer signaling, etc., which is not limited in the embodiment of the present application.
- the second reference resource may be understood as a resource used for quickly applying for a new scheduling request for SL resources or a part of a resource used for quickly applying for a new scheduling request for SL resources.
- the second reference resource can be used to detect that the first sub-channel set is unavailable in the terminal device 1, and re-send the SR to the network device on the second reference resource when the SR is re-initiated to the network device; or, the second reference resource
- the second reference resource can be used to detect that the first sub-channel set is unavailable in the terminal device 1, and when the BSR is re-sent to the network device, the BSR is re-sent to the network device on the second reference resource.
- the embodiment of the present application does not limit the time for the network device to configure through signaling. It may be before or after the terminal device 1 sends the first SR, or at the terminal Before or after the device 1 sends the first BSR, or before the terminal device 1 detects whether the first subchannel set is available, etc., as long as it can be configured before the terminal device 1 needs to send the SR or BSR to the network device again.
- the network device receives the second uplink information sent by the terminal device 1, and sends a third DCI to the terminal device 1, where the third DCI includes information of the second subchannel set.
- the terminal device 1 receives the third DCI, and transmits data information and/or control information with the terminal device 2 on the second subchannel set.
- the first terminal device may apply to the network device for the second sub-channel set through the second uplink information; that is to say, The first terminal device can reapply for the sub-channel set through the second uplink information, thereby increasing the speed of the first terminal device re-acquiring the sub-channel set, and reducing the scheduling delay as much as possible.
- FIG. 10 is a schematic scenario diagram of a resource scheduling method proposed in an embodiment of the present application. , The method can be shown in Figure 10, including:
- the terminal device 1 sends a first SR to a network device in a first reference resource.
- the network device receives the first SR sent by the terminal device 1 through the first reference resource, and sends the first DCI to the terminal device 1, where the first DCI may be used to indicate a third reference resource, and the third reference resource is used for transmission BSR.
- the terminal device 1 sends the BSR to the network device on the third reference resource.
- the network device receives the BSR sent by the terminal device 1 through the third reference resource, and determines one or more candidate subchannel sets.
- the method for the network device to determine one or more candidate subchannel sets may include the network device itself monitoring the subchannel, and determining whether the subchannel is available according to the monitoring result. Whether the sub-channel can be used as the monitored signal energy is less than or equal to a threshold threshold.
- the threshold threshold may be the same as or different from the foregoing threshold threshold. There are no restrictions in this application. That is, any threshold threshold in this application may be specific, and any threshold threshold may be different.
- the network device sends a fourth DCI to the terminal device 1, where the fourth DCI includes information about one or more candidate subchannel sets.
- the information of the one or more candidate subchannel sets includes the index of the one or more candidate subchannel sets.
- the information of the one or more candidate subchannel sets may also be a bitmap, where the part marked as 1 or 0 in the bitmap is an available subchannel or subchannel set allocated to the terminal device 1.
- the terminal device 1 receives the fourth DCI sent by the network device, and detects the available subchannel set in the one or more candidate subchannel sets, for example, the detected available subchannel set is the third subchannel set.
- the terminal device 1 transmits data information and/or control information with the terminal device 2 on the third subchannel set.
- the terminal device 1 sends feedback information to the network device on the feedback reference resource, where the feedback information includes the information of the third subchannel set.
- the fourth DCI further includes feedback reference resource information
- the feedback reference resource may be used to transmit feedback information
- the feedback information may be used to feed back that the terminal device 1 transmits data information and/or control information to the third subchannel set.
- Terminal equipment 2 That is, the feedback information can be used to feed back which sub-channel set of one or more candidate sub-channel sets is used by the terminal device 1.
- the fourth DCI includes indexes of three candidate subchannel sets, such as candidate subchannel set 1, candidate subchannel set 2, and candidate subchannel set 3; the third subchannel set is candidate subchannel set 1, then feedback Information can only be fed back to index 1 of candidate subchannel set 1.
- the feedback information may also be fed back in the order of the candidate subchannel sets included in the fourth DCI.
- the order of the three candidate subchannel sets included in the fourth DCI is the candidate subchannel set 1, the candidate subchannel set.
- the feedback information can be 100 (one bit represents the information of a candidate sub-channel set), or it can also be 110000, etc., Among them, 1 indicates that the candidate subchannel set 1 is the third subchannel set, 0 indicates that the candidate subchannel set 2 is not the third subchannel set, and the candidate subchannel set 3 is not the third subchannel set. It can be understood that the embodiment of the present application does not limit how many bits are used to represent the index of the candidate subchannel set.
- the network device receives the feedback information sent by the terminal device 1, and releases the set of candidate subchannels not used by the terminal device 1.
- the network device receives the feedback information to enable the network device to release the undetermined candidate subchannel set of the terminal device 1 in time, thereby avoiding the situation that other terminal devices cannot use the undetermined candidate subchannel set of the terminal device 1 in time .
- the first terminal device receives information including one or more candidate subchannel sets, so that the first terminal device can determine the available subchannel set from the one or more subsequent subchannel sets. Therefore, through one or more candidate subchannel sets, the efficiency of determining the subchannel set by the first terminal device is improved, the efficiency of data information and/or control information transmission is further improved, and the transmission delay is reduced.
- FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device may be a terminal device or a chip.
- the communication device is used to execute the resource scheduling method described in the embodiment of the present application.
- the communication device includes:
- the processing unit 1101 is configured to determine a first set of subchannels, where the first set of subchannels is used to transmit data information and/or control information on the side link SL, and the first set of subchannels is the first terminal device The set of available sub-channels detected on the SL;
- the sending unit 1102 is configured to output first information, where the first information includes information of the first subchannel set.
- the processing unit 1101 may be one or more processors, and the sending unit 1102 may It is a transmitter, for example, the transmitter can be used to send the first information to a network device.
- the processing unit 1101 may be one or more processors, and the sending unit 1102 may be an output interface, or may be called a communication interface or an interface circuit, etc., for example, the output interface obtains the first data from the processor. A message, thereby outputting the first message.
- the first information further includes information used to indicate the location of the first terminal device.
- the first information further includes a target identifier, and the target identifier is used to indicate at least one of a unicast service, a multicast service, or a broadcast service.
- the first set of subchannels includes one or more subchannels
- the information of the first set of subchannels includes indexes of the one or more subchannels.
- the information of the first set of subchannels further includes the priority of the one or more subchannels.
- the first information is a buffer status report BSR media access layer control element MAC CE
- the BSR MAC CE is used to report the amount of data to be transmitted by the SL.
- the sending unit 1102 may also output second information, where the second information is used to indicate that the first set of subchannels is reserved.
- the sending unit 1102 may send the second information to the second terminal device, or the sending unit 1102 may also output the second information through an output interface after acquiring the second information.
- the embodiments of the present application do not limit specific implementation manners.
- the second information is side link control information SCI.
- the SCI is also used to indicate the duration information for reserving the first set of subchannels.
- the second information is a sounding reference signal SRS or a preamble.
- the first terminal device first determines the first sub-channel set, so that the network device can allocate sub-channels to the first terminal device according to the first sub-channel set. After a terminal device allocates sub-channel 1 for SL transmission, the first terminal device fails to detect the sub-channel 1, and the first terminal device needs to send SR and BSR to the network device again, which causes a waste of resources; The resource utilization rate is improved, and the first terminal device does not need to send SR and BSR multiple times, which reduces the scheduling delay and ensures the effective transmission of data information and/or control information on the SL.
- FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device may be a network device, or a chip, etc., as shown in FIG. 12, the communication device includes:
- the receiving unit 1201 is configured to receive first information sent by a first terminal device, where the first information includes information of a first sub-channel set, and the first sub-channel set is detected by the first terminal device on the side link SL.
- the processing unit 1202 is configured to allocate a target subchannel set to the first terminal device according to the information of the first subchannel set, where the target subchannel set is used by the first terminal device to transmit data information and/or control information on the SL .
- the first information further includes information for indicating the location of the first terminal device; the processing unit 1202 is specifically configured to use the information of the first subchannel set and the first terminal device The location information allocates the target subchannel set to the first terminal device.
- the first information further includes a target identifier, and the target identifier is used to indicate at least one of a unicast service, a multicast service, or a broadcast service;
- the processing unit 1202 is specifically configured to Allocate a target subchannel set to the first terminal device according to the information of the first subchannel set and the subchannel set corresponding to the target identifier.
- the first set of subchannels includes one or more subchannels
- the information of the first set of subchannels includes indexes of the one or more subchannels.
- the first information is a buffer status report BSR media access layer control element MAC CE
- the BSR MAC CE is used to report the amount of data to be transmitted by the SL.
- the processing unit 1202 when the foregoing communication device is a component that implements the foregoing functions in a network device, the processing unit 1202 may be one or more processors, and the receiving unit 1201 may be a receiver.
- the processing unit 1202 when the above-mentioned communication device is a chip, the processing unit 1202 may be one or more processors, and the receiving unit 1201 may be an input interface, or may be called a communication interface or an interface circuit or the like.
- FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device may be a terminal device or a chip. As shown in Figure 13, the communication device includes:
- the processing unit 1301 is configured to detect whether the first set of subchannels is available, where the first set of subchannels is obtained through a first scheduling request SR corresponding to the first reference resource, and the first set of subchannels is used for the side row chain Transmission of data information and/or control information on the road SL;
- the sending unit 1302 when the first set of subchannels is not available, outputs second uplink information.
- the second uplink information is used to request the network device to allocate a second set of subchannels.
- Data information and/or control information are transmitted on the road SL, where the second uplink information includes: a second scheduling request SR, or a second buffer status report BSR.
- the sending unit 1302 is further configured to output the first SR.
- the second reference resource is predefined, or the second reference resource is configured by the network device through signaling.
- the first terminal device may apply to the network device for the second sub-channel set through the second uplink information; that is to say, The first terminal device can reapply for the sub-channel set through the second uplink information, thereby increasing the speed of the first terminal device re-acquiring the sub-channel set, and reducing the scheduling delay as much as possible.
- the processing unit 1301 may be one or more processors, and the sending unit 1302 may It is a transmitter, for example, the transmitter can be used to send the second uplink information to the network device on the second reference resource.
- the transmitter may be used to send the first SR to the network device through the first reference resource.
- the processing unit 1301 may be one or more processors, and the sending unit 1302 may be an output interface, or may be called a communication interface or an interface circuit, etc., for example, the output interface obtains the first data from the processor. Second uplink information, thereby outputting the second uplink information to the outside.
- the output interface may obtain the first SR from the processor, and output the first SR externally.
- FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device may be a network device or a chip. As shown in FIG. 14, the communication device includes:
- the receiving unit 1401 is configured to receive second uplink information sent by a first terminal device through a second reference resource, where the second uplink information is used to request the network device to allocate a second set of sub-channels, and the second set of sub-channels is used to Data information and/or control information are transmitted on the side link SL, where the second uplink information includes: a second scheduling request SR, or a second buffer status report BSR;
- the processing unit 1402 is configured to allocate the second set of subchannels to the first terminal device.
- the receiving unit 1401 is further configured to receive the first SR sent by the first terminal device through the first reference resource;
- the processing unit 1402 is further configured to allocate a first set of subchannels to the first terminal device.
- Fig. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device can be a terminal device or a chip. As shown in Fig. 15, the communication device includes:
- the receiving unit 1501 is configured to obtain fourth downlink control information DCI, where the fourth DCI includes information about one or more candidate subchannel sets;
- the processing unit 1502 is configured to determine a third sub-channel set from the one or more candidate sub-channel sets according to the monitoring result;
- the sending unit 1503 is used to output data information and/or control information.
- the processing unit 1502 may be one or more processors, and the sending unit 1503 may be a transmitter.
- the receiving unit 1501 may be a receiver, or the sending unit 1503 and the receiving unit 1501 are integrated into one device, such as a transceiver.
- the receiving unit 1501 may receive the fourth DCI sent by the network device, and the sending unit 1503 may send control information and/or data information to the second terminal device.
- the processing unit 1502 can be one or more processors, the sending unit 1503 can be an output interface, and the receiving unit 1501 can be an input interface, or the sending unit 1503 and the receiving unit 1501 are integrated into one unit, for example Input and output interface.
- the receiving unit 1501 may obtain the fourth DCI, and the sending unit 1503 may obtain data information and/or control information from the processing unit 1502, and output the data information and/or control information.
- the sending unit 1503 is further configured to output feedback information, and the feedback information includes information of the first subchannel set.
- the information of the first subchannel set includes an identifier of the first subchannel set.
- the DCI also includes feedback reference resource information.
- the sending unit 1503 may specifically send the feedback information to the network device, or may send the feedback information to the network device through the feedback reference resource.
- the first terminal device receives information including one or more candidate subchannel sets, so that the first terminal device can determine the available subchannel set from the one or more subsequent subchannel sets. Therefore, through one or more candidate subchannel sets, the efficiency of determining the subchannel set by the first terminal device is improved, the efficiency of data information and/or control information transmission is further improved, and the transmission delay is reduced.
- FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device may be a network device or a chip. As shown in FIG. 16, the communication device includes:
- the receiving unit 1601 is configured to receive a buffer status report first BSR sent by a first terminal device
- the sending unit 1602 is configured to send fourth downlink control information DCI to the first terminal device, where the fourth DCI includes information about one or more candidate subchannel sets.
- the receiving unit 1601 is further configured to receive feedback information sent by the first terminal device, where the feedback information includes information of the third subchannel set.
- FIG. 17 is a schematic structural diagram of a terminal device 1700 according to an embodiment of the application.
- the terminal device can perform operations of the first terminal device (terminal device 1) in the methods shown in Figures 5, 9 and 10, or the terminal device can also perform operations as shown in Figures 11, 13 and 15 Shows the operation of the communication device.
- FIG. 17 only shows the main components of the terminal device.
- the terminal equipment 1700 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
- the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the processes described in Figures 5, 9 and 10 .
- the memory is mainly used to store software programs and data.
- the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
- the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- the terminal device 1700 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
- the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
- FIG. 17 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
- the processor may include a baseband processor and a central processing unit (CPU).
- the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
- the equipment controls, executes the software program, and processes the data of the software program.
- the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
- the processor may further include a hardware chip.
- the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
- the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
- the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory may also include a combination of the above types of memory.
- the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit 1701 of the terminal device 1700, and the processor with the processing function can be regarded as the processing unit 1702 of the terminal device 1700.
- the terminal device 1700 may include a transceiving unit 1701 and a processing unit 1702.
- the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
- the device for implementing the receiving function in the transceiving unit 1701 can be regarded as the receiving unit
- the device for implementing the sending function in the transceiving unit 1701 can be regarded as the sending unit, that is, the transceiving unit 1701 includes a receiving unit and a sending unit.
- the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
- the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
- the transceiver unit 1701 and the processing unit 1702 may be integrated into one device or separated into different devices.
- the processor and the memory may also be integrated into one device or separate into different devices.
- FIG. 18 is a schematic structural diagram of a network device 1800 provided by an embodiment of this application.
- the network device may perform the operations of the network device in the methods shown in FIGS. 5, 9 and 10, or the network device may also perform the operations of the communication device shown in FIGS. 11, 13 and 15.
- the network device 1800 includes one or more remote radio units (RRU) 1801 and one or more baseband units (BBU) 1802.
- the above-mentioned RRU 1801 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1811 and a radio frequency unit 1812.
- the above-mentioned RRU1801 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
- the above-mentioned BBU1802 part is mainly used for baseband processing and control of network equipment.
- the above-mentioned RRU 1801 and BBU 1802 may be physically arranged together, or may be physically separated, that is, distributed network equipment.
- the above-mentioned BBU 1802 is the control center of the network equipment, and can also be called the processing unit, which is mainly used to complete the baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
- the above-mentioned BBU 1802 may be composed of one or more single boards, and multiple single boards may jointly support a single access standard radio access network (such as an LTE network), or can respectively support wireless access networks of different access standards. Access to the network.
- the aforementioned BBU 1802 further includes a memory 1821 and a processor 1822.
- the aforementioned memory 1821 is used to store necessary messages and data.
- the above-mentioned processor 1822 is used to control the network device to perform necessary actions, for example, to control the network device to perform the corresponding operation shown in FIG. 18.
- the aforementioned memory 1821 and processor 1822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board.
- the processor may be a CPU, NP, or a combination of CPU and NP.
- the processor may further include a hardware chip.
- the above-mentioned hardware chip may be ASIC, PLD or a combination thereof.
- the above-mentioned PLD can be CPLD, FPGA, GAL or any combination thereof.
- the memory may include volatile memory, such as RAM; the memory may also include non-volatile memory, such as flash memory, hard disk, or solid-state hard disk; the memory may also include a combination of the foregoing types of memory.
- the network device shown in FIG. 18 is only an example. In specific implementation, there may be other types of network devices. Therefore, the network device shown in FIG. 18 should not be understood as a limitation to the embodiments of the present application. .
- the process can be completed by a computer program instructing relevant hardware.
- the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
- the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本实施例提供一种资源调度方法及装置,可应用于通信系统如V2X、LTE-V、MTC、IoT、LTE-M、M2M等,可在基于网络设备的调度模式下避免终端设备需要多次发送SR和BSR浪费信令资源。包括:第一终端设备确定第一子信道集合,该第一子信道集合用于在SL上传输数据信息和/或控制信息,且该第一子信道集合为该第一终端设备在SL上检测到的可用的子信道集合;即该第一终端设备可事先确定其可用的子信道集合;该第一终端设备向网络设备发送第一信息,该第一信息包括该第一子信道集合的信息;即该第一终端设备通过向网络设备发送包括第一子信道集合的信息,可使得网络设备为该第一终端设备分配可用的子信道集合。
Description
本申请涉及通信技术领域,尤其涉及一种资源调度方法及装置。
第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)。
同时,在资源调度过程中,如终端设备可以向网络设备发送调度请求(scheduling request,SR),该网络设备向该终端设备发送用于传输缓冲状态报告(buffer state report,BSR)的传输资源,然后该终端设备再向该网络设备发送BSR,该网络设备再向该终端设备发送用于SL传输的传输资源。然而,在实际应用中,终端设备在利用该用于SL的传输资源来传输控制信息和/或数据信息之前,该终端设备还需要对该传输资源进行检测,以确定该传输资源是否可用。该情况下,该传输资源可能存在不可用的情况,导致终端设备需要再次发送SR以及BSR。
因此,如何进行资源调度是本领域技术人员正在研究的问题。
发明内容
本申请实施例提供一种资源调度方法及装置,可以应用于通信系统,例如车与任何事物通信(vehicle-to-everything,V2X)、车间信息交互(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,eMTC)、物联网(nternet of things,LOT)、机器间信息交互(long term evolution-machine,LTE-M),机器到机器通信(machine to machine,M2M)等,在基于网络设备的调度模式下,避免终端设备需要多次发送SR和BSR而造成信令资源的浪费。
第一方面,本申请实施例提供一种资源调度方法,该方法包括:第一终端设备确定第一子信道集合,所述第一子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,且所述第一子信道集合为所述第一终端设备在SL上检测到的可用的子信道集合;所述第一终端设备向网络设备发送第一信息,所述第一信息包括所述第一子信道集合的信息。
本申请实施例中,第一终端设备通过先确定第一子信道集合,从而可使得网络设备根据该第一子信道集合来为该第一终端设备分配子信道,避免了在网络设备在为第一终端设备分配用于SL传输的子信道1后,该第一终端设备检测该子信道1失败,以及第一终端设备需要再次向网络设备发送SR以及BSR而导致的资源浪费的情况;从而不仅提高了资源利 用率,而且第一终端设备不需要多次发送SR和BSR,降低了调度时延,保证了SL上数据信息和/或控制信息的有效传输。
可理解,本申请实施例中,第一终端设备检测子信道失败可理解为该第一终端设备检测子信道的能量门限值低于门限阈值,或者,还可理解为该第一终端设备检测子信道繁忙等等,本申请实施例对于检测子信道失败的方法不作限定。其中,第一终端设备检测子信道也可理解为该第一终端设备监听该子信道。
在一种可能的实现方式中,所述第一信息还包括用于指示所述第一终端设备位置的信息。
本申请实施例中,该第一终端设备位置可理解为该第一终端设备的绝对地理位置,或者也可理解为该第一终端设备的区域标识等等,本申请实施例对于该第一终端设备位置的表达方法不作限定。
在一种可能的实现方式中,所述第一信息还包括目标标识,所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项。
本申请实施例中,通过该目标标识,可使得网络设备进行相应的调度处理,例如单播业务对应子信道集合A、组播业务对应子信道集合B、广播业务对应子信道集合C,从而可提高网络设备调度的效率。
在一种可能的实现方式中,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
本申请实施例中,该索引(index)也可以理解为标识,即该第一子信道集合的信息包括该一个或多个子信道的标识。通过该一个或多个子信道的索引可使得网络设备得知第一终端设备所确定的可用子信道是哪些子信道,提高网络设备解读信息的效率,使得该第一终端设备和该网络设备保持信息的一致性。
在一种可能的实现方式中,所述第一子信道集合的信息还包括所述一个或多个子信道的优先级。
本申请实施例中,通过该一个或多个子信道的优先级,可使得网络设备根据实际情况为第一终端设备分配可用的子信道;如第一子信道集合的信息包括多个子信道的优先级,则该网络设备可以根据该多个子信道的优先级来为该第一终端设备分配子信道,避免了分配优先级低的子信道给第一终端设备,而浪费优先级高的子信道,提高了子信道分配的效率。
在一种可能的实现方式中,所述第一信息为缓冲状态报告BSR媒体接入层控制元素(medium access control control element,MAC CE),所述BSR MAC CE用于上报SL的待传输数据量。
本申请实施例中,该待传输数据量即为该第一终端设备向其他终端设备所传输的数据的数据量,也就是说,该待传输数据量即为第一终端设备通过SL所传输的数据的数据量。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备向第二终端设备发送第二信息,所述第二信息用于指示所述第一子信道被预留。
本申请实施例中,第一终端设备通过向第二终端设备发送第二信息,可使得该第二终端设备避开使用该第一子信道集合中的子信道;避免了在第一终端设备确定可以使用该第 一子信道集合中的子信道时,该第一子信道集合中的子信道被第二终端设备使用的情况;从而提高了第一终端设备使用该第一子信道集合的效率。
在一种可能的实现方式中,所述第二信息为侧行链路控制信息(sidelinkcontrolinformation,SCI)。
本申请实施例中,该SCI可理解为第二SCI,该第二SCI中不包括MCS。
在一种可能的实现方式中,所述SCI还用于指示预留所述第一子信道集合的时长信息。
本申请实施例中,通过进一步指示该第一子信道集合所被预留的时长,可使得第二终端设备及时得知该第一子信道集合需要被预留多长时间,从而可使得第一终端设备在不使用该第一子信道集合时,而在第二终端设备仍然需要使用第一子信道集合的情况下,该第二终端设备能够及时使用该第一子信道集合,提高了该第一子信道集合的利用率。
在一种可能的实现方式中,所述第二信息为探测参考信号(sounding reference signal,SRS)或前导(preamble)码。
第二方面,本申请实施例提供一种资源调度方法,该方法包括:网络设备接收第一终端设备发送的第一信息,所述第一信息包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合,所述目标子信道集合用于所述第一终端设备在SL上传输数据信息和/或控制信息。
在一种可能的实现方式中,所述第一信息还包括用于指示所述第一终端设备位置的信息;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合包括:所述网络设备根据所述第一子信道集合的信息以及所述第一终端设备位置的信息为所述第一终端设备分配所述目标子信道集合。
在一种可能的实现方式中,所述第一信息还包括目标标识,所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合包括:所述网络设备根据所述第一子信道集合的信息以及与所述目标标识对应的子信道集合为所述第一终端设备分配目标子信道集合。
在一种可能的实现方式中,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
在一种可能的实现方式中,所述第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,所述BSR MAC CE用于上报SL的待传输数据量。
第三方面,本申请实施例提供一种资源调度方法,该方法包括:第一终端设备检测第一子信道集合是否可用,其中,所述第一子信道集合通过与第一参考资源对应的第一调度请求SR获取,且所述第一子信道集合用于侧行链路SL上传输数据信息和/或控制信息;当所述第一子信道集合不可用时,所述第一终端设备在第二参考资源上向网络设备发送第二上行信息,所述第二上行信息用于请求所述网络设备分配第二子信道集合,所述第二子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,其中所述第二上行信息包括:第二调度请求SR,或者,第二缓冲状态报告BSR。
本申请实施例中,在第一终端设备通过第一SR获取到的第一子信道集合不可用时,该第一终端设备可通过第二上行信息向网络设备申请第二子信道集合;也就是说,该第一终 端设备通过第二上行信息即可重新申请到子信道集合,由此提高了第一终端设备重新获取子信道集合的速度,尽可能的降低了调度时延。
在一种可能的实现方式中,所述第一终端设备检测第一子信道集合是否可用之前,所述方法还包括:所述第一终端设备通过所述第一参考资源向所述网络设备发送所述第一SR。
在一种可能的实现方式中,所述第二参考资源为预定义的,或者,所述第二参考资源为所述网络设备通过信令配置的。
第四方面,本申请实施例提供一种资源调度方法,包括:网络设备接收第一终端设备通过第二参考资源发送的第二上行信息,所述第二上行信息用于请求所述网络设备分配第二子信道集合,所述第二子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,所述第二上行信息包括:第二调度请求SR,或者,第二缓冲状态报告BSR;所述网络设备为所述第一终端设备分配所述第二子信道集合。
在一种可能的实现方式中,所述网络设备接收第一终端设备通过第二参考资源发送的第二上行信息之前,所述方法还包括:所述网络设备接收所述第一终端设备通过第一参考资源发送的第一SR;所述网络设备为所述第一终端设备分配第一子信道集合。
第五方面,本申请实施例提供一种资源调度方法,包括:第一终端设备接收网络设备发送的第四下行控制信息DCI,所述第四DCI包括一个或多个候选子信道集合的信息;所述第一终端设备根据监听结果从所述一个或多个候选子信道集合中确定第三子信道集合;所述第一终端设备在所述第三子信道集合传输侧行链路SL上的数据信息和/或控制信息。
本申请实施例中,第一终端设备通过接收包括一个或多个候选子信道集合的信息,可使得该第一终端设备从该一个或多个后续子信道集合中确定出可用的子信道集合,从而通过一个或多个候选子信道集合,提高了第一终端设备确定子信道集合的效率,进一步提高了数据信息和/或控制信息传输的效率,降低了传输时延。
在一种可能的实现方式中,所述方法还包括:所述第一终端设备向所述网络设备发送反馈信息,所述反馈信息包括所述第三子信道集合的信息。
本申请实施例中,通过该反馈信息,可使得网络设备得知第一终端设备使用了哪个子信道集合,从而使得该网络设备可以释放未使用的子信道集合,以避免其他终端设备无法使用该未使用的子信道集合,避免了资源浪费,进而提高了子信道集合的利用率。
在一种可能的实现方式中,所述第三子信道集合的信息包括所述第三子信道集合的标识。
在一种可能的实现方式中,所述第四DCI还包括反馈参考资源的信息,所述第一终端设备向所述网络设备发送反馈信息包括:所述第一终端设备通过所述反馈参考资源向所述网络设备发送所述反馈信息。
本申请实施例中,该反馈参考资源可理解为用于传输反馈信息的时频资源。
第六方面,本申请实施例提供一种资源调度方法,包括:网络设备接收第一终端设备发送的第一缓冲状态报告BSR;所述网络设备向所述第一终端设备发送第四下行控制信息DCI,所述第四DCI包括一个或多个候选子信道集合的信息。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述第一终端设备发送的反馈信息,所述反馈信息包括所述第三子信道集合的信息。
在一种可能的实现方式中,所述第三子信道集合的信息包括所述第三子信道集合的标识。
第七方面,本申请实施例提供一种终端设备,所述终端设备包括处理单元和收发单元,所述处理单元用于执行如第一方面、第三方面或第五方面中所示的相应的方法,所述收发单元用于执行如第一方面、第三方面或第五方面中所示的相应的方法。
第八方面,本申请实施例提供一种网络设备,所述网络设备包括处理单元和收发单元,所述处理单元用于执行如第二方面、第四方面或第六方面中所示的相应的方法,所述收发单元用于执行如第二方面、第四方面或第六方面中所示的相应的方法。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面、第三方面或第五方面中所示的相应的方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第二方面、第四方面或第六方面中所示的相应的方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面、第三方面或第五方面中所示的相应的方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第二方面、第四方面或第六方面中所示的相应的方法。
第十三方面,本申请实施例提供一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备用于执行第一方面、第三方面或第五方面中所示的相应的方法;所述网络设备用于执行第二方面、第四方面或第六方面所示的相应的方法。
第十四方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得第一方面、第三方面或第五方面所述的方法被实现。
第十五方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得第二方面、第四方面或第六方面所述的方法被实现。
第十六方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面、第三方面或第五方面所述的方法被实现。
第十七方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第二方面、第四方面或第六方面所述的方法被实现。
图1是本申请实施例提供的一种通信系统的示意图;
图2a是本申请实施例提供的一种侧行链路通信的场景示意图;
图2b是本申请实施例提供的一种侧行链路通信的场景示意图;
图2c是本申请实施例提供的一种侧行链路通信的场景示意图;
图2d是本申请实施例提供的一种侧行链路通信的场景示意图;
图2e是本申请实施例提供的一种侧行链路通信的场景示意图;
图2f是本申请实施例提供的一种侧行链路通信的场景示意图;
图2g是本申请实施例提供的一种侧行链路通信的场景示意图;
图3是本申请实施例提供的一种资源调度过程的流程示意图;
图4是本申请实施例提供的一种资源调度过程的流程示意图;
图5是本申请实施例提供的一种资源调度方法的流程示意图;
图6是本申请实施例提供的一种交互方法的流程图;
图7是本申请实施例提供的一种BSR的格式示意图;
图8是本申请实施例提供的一种BSR的格式示意图;
图9是本申请实施例提供的一种资源调度方法的流程示意图;
图10是本申请实施例提供的一种资源调度方法的流程示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的一种通信装置的结构示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的一种通信装置的结构示意图;
图17是本申请实施例提供的一种终端设备的结构示意图;
图18是本申请实施例提供的一种网络设备的结构示意图。
下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统,又或者还可为未来其他类型的通信系统等等。例如第五代移动通信 (5th-generation,5G)系统以及下一代移动通信等等。图1是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图中的下一代基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图中的终端设备1和终端设备2。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
可理解,图1所示的通信系统中包括网络设备(gNB)和终端设备1和终端设备2,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)技术或车与任何事物通信(vehicle-to-everything,V2X)技术进行通信。
以下将以NR-V2X中的终端设备1和终端设备2为例,来具体说明本申请实施例所提供的相应的资源调度方法的通信场景。
需要说明的是,图1涉及的通信系统可以应用于本申请其他实施例的通信场景,在此不再赘述。例如,可应用于图5、图9、图10所示的资源调度方法实施例中。
如图2a至图2g所示,分别为本申请实施例提供的一种侧行链路(sidelink)通信的场景示意图。
图2a所示的场景中终端设备1和终端设备2均处于小区覆盖范围外。
图2b所示的场景中终端设备1处于小区覆盖范围内,终端设备2处于小区覆盖范围外。
图2c所示的场景中终端设备1和终端设备2均处于同一个小区的覆盖范围内,且在一个公共陆地移动网络(public land mobile network,PLMN)中,如PLMN1。
图2d所示的场景中终端设备1和终端设备2在一个PLMN中如PLMN1,但处于不同的小区覆盖范围。
图2e所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于两个小区的共同覆盖范围内。如终端设备1在PLMN1中,而终端设备2在PLMN2中。
图2f所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1处于两个小区的共同覆盖范围内,终端设备2处于服务小区的覆盖范围内。
图2g所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于各自的服务小区的覆盖范围内。
可理解,以上所示的场景可适用于车联万物(vehicle-to-everything,V2X),也可称为V2X中。对于具体的应用场景如对于D2D技术来说,可应用于基于邻近特性的社交应用,如通过D2D进行内容分享、互动游戏等邻近终端设备之间数据的传输。还可解决自然灾害引起通信基础设施损坏导致通信中断而给救援带来障碍的问题,如在该场景下,通过D2D,两个邻近的终端设备之间仍然能够建立无线通信。又如还可基于D2D向用户推送商品打折促销、影院预告等信息等等,本申请实施例对于D2D所应用的场景不作唯一性限定。
在V2X通信中,通过侧行链路(sidelink,SL)进行资源传输时,通常包括两种模式,一种是基于网络设备的调度模式,通常称为mode1,另一种是基于竞争的调度模式,通常称为mode2。作为示例,如图3所示的基于网络设备的调度过程中,终端设备向网络设备发送调度请求(scheduling request,SR),该网络设备向该终端设备发送用于传输缓冲状态报告(buffer state report,BSR)的传输资源,然后该终端设备再向该网络设备发送BSR,该网络设备再向该终端设备发送用于SL传输的资源。其中,在授权频谱中,终端设备可以基于网络设备确定的资源进行资源调度。然而,在某些场景中,如在非授权频谱(非授权频段,unlicensed)中,即使网络设备已为终端设备确定好资源,该终端设备在传输前仍需要做先听后说(listen before talk,LBT)操作,从而确定分配的资源是否可用。如果该终端设备确定分配的资源不可用,则终端设备所发送的SR,BSR以及网络设备的调度决定及资源分配都将被浪费。可理解,以上非授权频谱仅为示例,在实际应用中可能还存在其他场景来需要终端设备执行LBT操作。
进一步的,如图4所示,图4为与图3对应的交互流程,图4是在mode1下终端设备1如何与网络设备进行交互,以及终端设备1如何与终端设备2进行交互的流程图。其中,在终端设备1需要发送数据时,该终端设备1可以向网络设备发送SR,该网络设备下发下行控制信息(downlink control information,DCI),该DCI可用于指示用于传输SL上待传输数据量的缓冲状态报告(buffer state report,BSR)(也可以称为缓存区状态报告)的传输资源;然后该终端设备1在所指示的用于传输SL上待传输数据量的BSR的传输资源上向该网络设备发送BSR,该网络设备再次下发DCI,该DCI用于指示用于SL上待传输数据的传输资源;其中,用于SL上待传输数据的传输资源通常通过子信道来进行指示,该传输资源通常包括用于物理侧行链路控制信道(physical sidelink control channel,PSCCH)的资源和用于物理侧行链路共享信道(physical sidelink shared channel,PSSCH)的资源中至少一项;进而该终端设备1可通过PSCCH与终端设备2进控制信息的通信,和/或,通过PSSCH与终端设备2进行数据信息的通信。
在非授权频谱中,终端设备1接收到网络设备下发的用于传输数据信息和/或控制信息的子信道集合后,该终端设备1还需要检测该子信道集合是否可用,若该子信道集合不可用,则该终端设备1还需要重新向网络设备发送SR、BSR以便再次向网络设备申请子信道 集合;该情况下,终端设备1申请到的子信道集合可能存在仍然不可用的情况。因此,本申请提供了一种资源调度方法,可有效避免终端设备1多次发送SR、BSR等,避免资源浪费。
可理解,以上所示的调度过程仅为示例,本申请实施例所提供的资源调度方法的背景不限于以上所示的调度过程。
首先,在介绍本申请实施例所提供的资源调度方法之前,以下将详细介绍本申请实施例中的术语或方法。
先听后说(listen before talk,LBT),又称说前先听,是一种载波监听多路访问(carrier sense multiple access,CSMA)技术,LBT机制可以避免在使用非授权频谱资源时的冲突。
随着无线数据业务量的急剧增大,授权频谱可能无法满足通信所需的频谱要求,而抢占非授权频谱传输信息可以提高无线通信网络中的数据吞吐量,进而能够更好地满足用户的需求。基于此,第三代合作伙伴计划(3rd generation partnership project,3GPP)分别在版本13(release13)和版本14(release14)中引入了授权频谱辅助接入(license assisted access,LAA)和增强的授权频谱辅助接入(enhanced LAA,eLAA)技术,即在非授权频谱上非独立的部署LTE/LTE-A系统,通过授权频谱的辅助来最大可能的利用非授权频谱资源。
一般,在非授权频谱上部署的通信系统中的通信设备(包括前述的网络设备和终端设备)采用竞争的方式来使用无线资源,也就是说,通信设备在发送信号之前首先会监听非授权频谱是否空闲,比如通过非授权频谱上的接收功率的大小来判断信道的忙闲状态,如果接收功率小于或等于一定门限,则认为非授权频谱中的信道处于空闲状态,可以在非授权频谱上发送信号,否则不发送信号,这种先监听后发送的机制即被称作LBT机制。换言之,为使多个非授权频段设备公平使用非授权频段信道,并避免非授权频段设备之间的相互干扰,目前采用LBT机制来实现对空闲信道的监听,在监听到非授权频段信道被占用时,表明LBT失败,则不发送信号,只有当监听到非授权频段信道空闲时,表明LBT成功,通信设备进而才会发送信号。
若LBT成功,即表明发送设备竞争到了可用信道,所以在LBT成功之后,发送设备可以向周边其它设备发送信道占用信号,该信道占用信号在不同的实施例中可以被称为信道保留(reservation)信号或信道使用(utilization)信号。该信道占用信号用于向其它设备指示发送设备在竞争到的信道上需要占用的传输时长,即信道占用时长,从而可以避免其它设备再在该信道上传输数据而导致碰撞,以提高通信可靠性和通信效率。其中,发送设备即前述的能够进行LBT的通信设备,可以是终端设备,具体而言,若发起LBT流程的设备是终端设备,则发送设备是终端设备。
其中,信道占用时长可以以微秒(μs)为单位,还可以以正交频分复用(orthogonal frequency division multiplexing,OFDM)符号为单位,还可以以时隙(slot)为单位,或者还可以以微时隙(mini-slot)为单位,等等。前述的OFDM符号或者slot对应的子载波间隔可以是标准预先规定的子载波间隔,也可以与信道占用信号的子载波间隔相同。
子信道集合,可理解为一个或多个子信道。也就是说,该子信道集合可理解为一个子 信道,还可理解为多个子信道,本申请实施例对于该子信道集合中所包括的子信道数量不作限定。作为示例,可以将N个物理资源块(physical resource block,PRB)分为一个子信道,其中N个PRB可以是连续的PRB或者不连续的PRB等,本申请实施例不作限定。其中,N为正整数。例如,N=12,则一个物理子信道可以由12个子载波×1个时隙(slot)的时频二维结构组成,其中,一个slot可以为14个正交频分复用(orthogonalfrequencydivisionmultiplexing,OFDM)符号或者13个OFDM符号。此外,时域上可以为一个时隙(slot),或者一个mini-slot,或者M个符号等等,其中,M为大于等于1且小于等于14的正整数。作为另一个示例,N可以为小于等于12的任何整数。可理解,该连续的PRB可理解为从PRB(M)到PRB(N),中间不断层,该M小于N,且M与N为正整数。
具体的,检测子信道是否可用的方法:如终端设备可以根据在所述子信道上接收的信号能量或检测/监听到的信号能量来检测子信道是否可用。所述信号能量包括信号指示强度(received signal strength indication,RSSI)、参考信号接收功率(reference signal receiving power,RSRP)或信号加干扰噪声比(signal to interference plus noise ratio,SINR)中的任意一项。举例来说,终端设备检测子信道1时,可以先从检测到的周围终端设备发送的控制信息中解读该控制信息所包含的服务质量(qualityofservice,QoS)信息,并且根据自身待传输数据的QoS信息与被检测到的子信道1上的待传输数据的QoS信息进行比较,根据上述两个Qos信息确定门限阈值,如果在所述子信道上接收的信号能量满足对应的门限阈值,则可以使用该子信道1,否则不能使用该子信道1。其中,该控制信息所包含的QoS信息是周围终端设备的待发送数据的QoS信息。其中,满足对应的门限阈值可以理解为检测到的信号能量小于或等于门限阈值。其中,检测到的信号能量可以是根据上述RSSI、RSRP或者SINR中任意一种或多种来进行判断,还可以是根据检测到的SCI的信号强度,或者检测到的PSSCH的信号强度来进行判断等等,本申请实施例不作限定。其中,所述子信道上接收的信号能量为检测/监听到的PSSCH的信号强度具体可以为:对从SCI中获取的使用所述子信道的PSSCH进行检测,得到使用所述子信道的PSSCH的信号强度。可理解,本申请中QoS信息也可以称之为QoS级别信息,也可以称为业务优先级信息等等,本申请实施例对于该QoS信息的具体名称不作限定。该QoS信息包括优先级(prose per-packet priority,PPPP),或N质量指标(quality index,QI)等中至少一种用于表示QoS的相关参数。可理解,该门限阈值为根据检测终端设备与被检测终端设备两者的QoS信息确定的门限值,所述门限值可以是预先配置的,或者网络设备通过RRC信令配置给终端设备的。可理解,本申请实施例中,检测,接收,或监听可以互换。
进一步的,上述检测子信道是否可用的方法还可应用于子信道集合,例如对于该子信道集合中包含的所有子信道的检测到的信号能量作平均。即,该子信道集合中包含的所有子信道的检测到的信号能量的线性平均值或加权平均值将被视为最终的该子信道集合的检测到的信号能量。例如,当该子信道集合包含子信道1,3,5时,对这三个子信道分别检测到的信号能量获取平均值。
接着,以下将以终端设备1与终端设备2进行交互,以及终端设备1与网络设备(如gNB)进行交互为例来说明本申请实施例所提供的资源调度方法。然而在实际应用中,终端 设备1不仅可以与终端设备2进行交互,还可以与终端设备3、终端设备4等等进行交互,因此,不应将以下所示出的例子理解为对本申请的限定。图5是本申请实施例提供的一种资源调度方法的流程示意图,如图5所示,该资源调度方法包括:
501、在终端设备1检测非授权频谱,从网络设备申请用于传输SL数据的子信道集合之前,该终端设备1确定第一子信道集合。
本申请实施例中,该第一子信道集合可理解为终端设备1在侧行链路SL(或直连链路)上监听或检测到的可用子信道,该可用子信道为空闲的子信道。即该第一子信道集合可理解为当前在该第一子信道集合所包含的子信道上检测到的能量小于预设阈值。具体的,在侧行链路传输中,终端设备1与终端设备2可使用该第一子信道集合进行数据信息的传输,或者,使用该第一子信道集合进行控制信息的传输,或者使用该第一子信道集合进行数据信息和控制信息的传输。该控制信息可理解为PSCCH,该PSCCH上承载的是侧行链路控制信息(sidelink control information,SCI)。
其中,该第一子信道集合包括一个或多个子信道,该多个子信道可以是连续的多个子信道,也可以是不连续的多个子信道,本申请实施例不作限定。
本申请实施例中,该终端设备1检测第一子信道集合的方法可参考前述实施例,这里不再一一详述。
502、该终端设备1发送信道占用通知或信道预留通知。
本申请实施例中,该终端设备1可以向周围终端设备如终端设备2,或终端设备3,或终端设备4等中任何一个或多个发送信道占用通知或信道预留通知,从而使得该周围终端设备避开使用该第一子信道集合。举例来说,终端设备1在slot 1确定该第一子信道集合,但检测出终端设备3在周期性的使用该第一子信道集合并将在slot 3使用该第一子信道集合,由此即使网络设备为该终端设备1分配该第一子信道集合,该终端设备1仍无法使用该第一子信道集合。但是如果终端设备1确定该第一子信道集合后,立即发出信道占用通知,则终端设备3接收到该信道占用通知后,便可得知终端设备1要使用该第一子信道集合,由此该终端设备3可避开使用该第一子信道集合。又举例来说,终端设备1在slot 1确定该第一子信道集合,但周围终端设备也在同时检测,所以一旦终端设备1确定该第一信道集合,立即发出信道占用通知,则周围终端设备,如终端设备3,接收到该信道占用通知后,便可得知终端设备1要使用该第一子信道集合,由此该终端设备3可避开使用该第一子信道集合。
可理解,该信道预留通知即表示该终端设备1已经预留将占用该第一子信道集合,周围终端设备需要预留第一子信道集合给终端设备1,而信道占用通知可表示该终端设备1将要占用该第一子信道集合,尽管表述不一致,但是该信道预留通知和该信道占用通知所要表示的本质一致。
具体的,该终端设备1发送信道占用通知或信道预留通知的形式可包括:该终端设备1向周围终端设备如终端设备2发送第二信息,该第二信息可用于指示第一子信道集合被预留,或者该第二信息可用于指示第一子信道集合被占用。其中,在该第二信息指示第一子信道集合被预留时,可表示终端设备2需要预留该第一子信道集合,而在该第二信息指示第一子信道集合被占用时,可表示终端设备需要占用该第一子信道集合。
可选的,本申请实施例提供了两种示例来说明该第二信息的具体形式,如下所示:
示例一、该第二信息为探测参考信号(sounding reference signal,SRS)或前导码(preamblecode)。
具体的,终端设备1可以在上述确定的第一子信道集合上发送第二信息。如可以以广播的形式发送preamble码或SRS,该preamble码和该SRS可以根据根序列(root sequence)产生。
可选的,如果是终端设备1发送数据的形式为周期性发送,即终端设备1以一定周期发送数据,则该preamble码或SRS可以被以该一定周期进行发送。进一步的,终端设备1可以在接收到来自网络设备的DCI(如图4中的第二个DCI)后停止发送上述preamble码或SRS,并且终端设备1根据该DCI来发送第一SCI给终端设备2,以及与终端设备2进行侧行链路上的数据信息的传输。其中,第一SCI用来调度侧行链路上的数据信息。如图6所示,其中图6所示的第二信息是从终端设备1发送BSR之后开始向终端设备2发送该第二信息,但是本申请实施例对于该第二信息从何时开始发送不作限定。
示例二、第二信息为侧行链路控制信息(sidelinkcontrolinformation,SCI)。
终端设备1未接收到来自网络设备发送的DCI之前,终端设备1可以周期性的发送第二SCI。
可选的,该第二SCI还可用于指示预留第一子信道集合的时长信息,该预留第一子信道集合的时长信息可以为信道占用指示(channel utilization indicator,CUI)。该CUI可用于指示该第一子信道集合将要被占用的时长,或者也可以理解为该第一子信道集合的预留时长。作为示例,该CUI所指示的时长可以是任何根据时域资源的单位划分所得的时长。如该时域资源的单位可以为OFDM符号,mini-slot,或slot中任意一个或多个的组合。例如,该CUI可以指示10个时隙(slot)或5个slot等等。该CUI可以为连续的,或者非连续的。
本申请实施例中,该第二SCI中不包括数据的调度信息,如该第二SCI中不包括调制与编码策略(modulation and coding scheme,MCS)。由此终端设备2接收到该第二SCI后,不仅可快速得知终端设备1需要占用该第一子信道集合,而且减少了信令开销。
可选的,鉴于只用于非授权频谱下的SL上的资源占用通知或资源预留通知,因此传输该第二SCI所使用的子信道可以被定义位于特定的搜索空间。也就是说,终端设备1发送该第二SCI所使用的子信道可以是该特定的搜索空间中的一个或多个子信道。如终端设备1发送该第二SCI所使用的控制信道元素(control channel element,CCE)/控制资源集(control resource set,CORSET)所在的子信道可以为特定的搜索空间中的子信道集合x,该子信道集合x中包括一个或多个子信道。
可理解,以上仅为本申请实施例提供的两种示例,不应将其理解为对本申请的限定。
503、终端设备1在第一参考资源上向网络设备发送调度请求(scheduling request,SR)。
其中,该SR可用于请求网络设备下发用于传输BSR的参考资源,即该SR可用于请求网络设备下发用于传输BSR的传输资源,或者该SR可用于请求网络设备下发用于传输BSR的时频资源。
需要注意的是,步骤502与503顺序不受限制,可以互换。
504、网络设备接收来自终端设备1的SR,该网络设备向该终端设备1发送第一DCI,该第一DCI可用于指示第三参考资源,该第三参考资源用于传输BSR。
505、该终端设备1接收来自网络设备的第一DCI,并通过第三参考资源向网络设备发送BSR媒体接入层控制元素(medium access control control element,MAC CE),该BSR MAC CE包括第一子信道集合的信息,该第一子信道集合即为终端设备1检测所得的可用子信道集合。
本申请实施例中,该第一子信道集合的信息可包括该第一子信道集合所包括的的索引(index)。可选的,该第一子信道集合的信息也可以为一个比特位图(bitmap),该bitmap中标注为1的部分为选定的一个或多个子信道。所述bitmap长度为所有可用于SL的子信道的个数。
图7是本申请实施例提供的一种BSR MAC CE的格式示意图,如图7所示,终端设备1可将检测所得的第一子信道集合作为可用子信道(available sub-channel)ID1和/或可用子信道ID2,填充于BSR MAC CE中。举例来说,终端设备1确定的第一子信道集合为子信道1至子信道5,以及子信道7至子信道9,则可将子信道1至子信道5填充于可用子信道ID1中,子信道7至子信道9填充于可用子信道ID2中。可理解,由于终端设备1确定的第一子信道集合可以为连续的子信道,也可以为不连续的子信道,因此可用子信道ID1和可用子信道ID2中所承载的子信道是否连续本申请实施例不作限定。可理解,子信道1至子信道5,子信道7至子信道9即为该第一子信道集合所包括的多个子信道的索引。
其中,图7所示的目标ID(target ID)也可以称为目的ID(destination ID)可用于承载终端设备2的ID;也可以用于隐性的表示终端设备1向终端设备2发送的业务数据的类型。缓存大小可用于承载待传输数据的数据量,逻辑信道组(logic channel group,LCG)ID可用于承载待传输数据的逻辑信道或逻辑信道组ID,表示了待传输数据的QoS信息。可理解,本申请中ID也可以称为索引(index),也就是说,本申请实施例对于该目标ID的具体名称不作限定,在其他应用中,也可能包括其他名称,这里不作一一列举。
可理解,以上是本申请示出的一种BSR MAC CE的例子,不应将其理解为对本申请实施例的限定。
可选的,该BAR MAC CE中还可包括用于指示终端设备1位置的信息。作为示例,该终端设备1位置可以是终端设备1的绝对地理坐标,还可以是终端设备1的区域标识(zone ID)。其中,绝对地理坐标可以是完整的坐标,或者还可以是完整坐标的后几位,或者还可以是对完整坐标进行处理后得到的坐标。该区域标识可理解为地理相对标识,如在一个范围内对各相邻区域做标号,由此得到区域标识。可理解,在做标号时距离较远的标号可以复用。可选的,如图8所示,图8中所示的位置信息可用于承载终端设备1的位置信息。可理解,以上所示的位置信息的形式仅为示例,在具体实现中,还可以包括更多种位置信息的表达信息,这里不再一一详述。具体的,网络设备根据该终端设备1位置的信息可以确定是否相同的空闲子信道可以被同时分配给不同的终端设备。也就是说,该网络设备可以根据第一子信道集合的索引以及终端设备1的位置信息来为该终端设备1分配子信道集合(如为目标子信道集合)。举例来说,终端设备1与终端设备3上报的BSR MAC CE中包含了相同 的空闲子信道,则网络设备获取到终端设备1上报的位置信息和终端设备3上报的位置信息后,该网络设备可以根据终端设备1与终端设备3的位置判断相互间的干扰情形,如果干扰较少,则可以将空闲子信道同时分配给不同的终端设备。
可选的,该BSR MAC CE中还可以包括目标标识(targetID)或目的标识(destination ID)。该target ID用于指示单播业务、组播业务或广播业务中的至少一项。即该target ID用于指示侧行链路上的数据通信是单播(unicast)业务、组播(groupcast)业务或广播(broadcast)业务中的哪一个或几个。即,该target ID与单播业务、组播业务或广播业务中的至少一项有显性的对应关系,或,隐性的对应关系。当该target ID与单播业务、组播业务或广播业务中的至少一项有隐性的对应关系时,所述对应关系可以被预先配置或者被网络设备通过RRC信令配置给终端设备。具体的,网络设备可以根据该target ID以及第一子信道集合的索引为终端设备1分配子信道集合。作为示例,网络设备可根据targetID在对应资源池上分配资源,也就是说,单播业务、组播业务或广播业务可分别对应不同的子信道集合,如单播业务对应子信道集合A、组播业务对应子信道集合B、广播业务对应子信道集合C,target ID指示侧行链路上的数据通信为单播业务,则网络设备可以从空闲子信道(即第一子信道集合)中选择子信道集合A所包含的子信道分配给终端设备1。如空闲子信道(即第一子信道集合)为子信道1至子信道10,子信道集合A为子信道5至子信道20,则网络设备可以将子信道5至子信道10分配给终端设备1使用。也就是说,网络设备可以根据该不同的目标标识,进行不同的调度处理。其中,调度处理可以是调度方案的不同,调度资源的不同等。又例如,网络设备可以根据targetID所指示的单播业务、组播业务或广播业务的区别进行相应的调度区分,如调制解调方案(modulation and coding scheme,MCS)不同,或者资源分配大小不同等。例如,网络设备对于单播所分配使用的MCS可以不同于用于组播的MCS。例如,对于单播,分配编码率更低的MCS,如16QAM,而对于组播,分为编码率更高的MCS,如64QAM。又例如,在通过DCI调度终端设备进行SL的传输时,对于单播,网络设备所分配使用的资源大小可以不同于用于组播的资源大小。对于单播,分配资源较大,如3个PRB,而对于组播,分配资源较小,如2个PRB。
可选的,该BSR MAC CE中还可包括第一子信道集合所包括的多个子信道的优先级,如终端设备1可以根据RSSI、SINR或RSRP中的任意一个来确定第一子信道集合中每个子信道的优先级。如终端设备1可以通过检测子信道的RSSI来对所确定的每个子信道进行排序,从而来确定优先级。具体的,网络设备可以根据该一个或多个子信道的优先级为终端设备1分配子信道集合。通过该一个或多个中子信道的优先级,可使得网络设备根据实际情况来为终端设备1分配空闲子信道集合(即目标子信道集合)。举例来说,BSR MAC CE中包括两个子信道的索引,如子信道1和子信道2,网络设备接收到该BSR MAC CE后发现优先级高的子信道1被其他终端设备占用了或者被其他终端设备确定为可用子信道,则该网络设备可为该终端设备1分配优先级次高的子信道2。
506、该网络设备接收终端设备1发送的BSR MAC CE,且根据该BSR MAC CE中所包括的信息为终端设备1分配目标子信道集合。
其中,该目标子信道集合可包括一个或多个子信道。该目标子信道集合即为从第一子信道集合中确定的子信道集合。对于该网络设备分配目标子信道集合的方法可参考前述实 施例,这里不再详述。
507、网络设备向终端设备1发送第二DCI,该第二DCI包括目标子信道集合的信息。
其中,该目标子信道集合为从终端设备1上报的可用子信道1和/或可用子信道2中所选的子信道集合。
508、终端设备1接收网络设备发送的第二DCI,终端设备1在目标子信道集合传输数据信息和/或控制信息给终端设备2。
本申请实施例中,该终端设备1可在目标子信道集合所包括的一个或多个子信道上与终端设备2进行SL上数据信息的传输,也可用于SL上控制信息的传输,还可用于SL上数据信息和控制信息的传输。本申请实施例中,终端设备1可通过第一SCI与第二终端设备2进行控制信息的传输,该第一SCI中包括MCS。
实施本申请实施例,可使得在非授权频谱中,在基于网络设备调度的模式下,在终端设备监听失败时,仍能及时获取到第一子信道,避免了终端设备多次发送SR、BSR等,有效避免了资源的浪费以及避免了终端设备再次申请第一子信道,从而还降低了调度时延,有效保证了侧行链路中数据的有效传输。
可理解,本申请中所述监听/检测为通过先听后说(listen before talk,LBT)进行。本申请中参考资源为时频资源。
可理解,从通用的角度上,本申请中使用了BSR这一名称,但是鉴于BSR通常被传输在MAC CE上,所以也可以称之为BSR MAC CE,因此,不应将本申请实施例中的BSR MAC CE理解为对BSR的限定。
在本申请的一些实施例中,为了避免终端设备监听失败后,再次发送SR和BSR,本申请实施例还提供了一种资源调度方法。例如,第一终端设备在第一子信道集合上LBT失败后需要重新发送SR-重新申请时,该第一终端设备可利用第二参考资源重新发送SR-重新申请,从而使得网络设备能快速分配第二子信道集合。即在第一终端设备确定第一子信道集合不可用后,该第一终端设备不需要重新发送BSR,即只需要利用第二参考资源重新发起SR-重新申请,网络设备可根据第一终端设备之前上报的BSR(也可为最近接收到的BSR)作参考进行子信道集合的重新分配。由此,第一终端设备不需要重新上报BSR,减少了时延,避免资源浪费,且加速了网络设备重新为终端设备1分配子信道集合的速度。具体的实施方式可参考图9,图9是本申请提供的另一种资源调度方法的流程示意图,该资源调度方法包括:
901、终端设备1通过第一参考资源向网络设备发送第一SR。
本申请实施例中,该第一参考资源即为用于第一SR传输的资源,如该第一参考资源可以为时频资源。该第一参考资源可由网络设备通过无线资源控制(radioresourcecontrol,RRC)信令配置。
902、网络设备接收终端设备1发送的第一SR,向该终端设备1发送第一DCI,该第一DCI可用于第三参考资源,该第三参考资源可用于传输BSR。
本申请实施例中,该第一SR还可称为第一上行信息等,本申请实施例对于该SR的具体名称不作限定。
903、终端设备1接收网络设备发送的第一DCI,并在第三参考资源上向网络设备发送第一BSR。
904、网络设备接收终端设备1发送的第一BSR,为该终端设备1分配第一子信道集合。
905、网络设备向终端设备1发送第二DCI,该第二DCI可用于指示第一子信道集合。
本申请实施例中,该第一子信道集合可用于SL上传输数据信息和/或控制信息。
906、终端设备1接收网络设备发送的第二DCI,检测第一子信道集合是否可用。
本申请实施例中,该终端设备1检测第一子信道集合是否可用的方法可参考前述实施例,这里不再一一详述。
907、当第一子信道集合不可用时,终端设备1在第二参考资源上向网络设备发送第二上行信息,该第二上行信息用于请求网络设备分配第二子信道集合,该第二子信道集合用于SL上传输数据信息和/或控制信息。
可选的,该第二上行信息可包括第二SR,或第二BSR。可理解,该第二SR与第一SR的区别并不在于所发送的时间不一样,而在于用途不一样,如第一SR为终端设备1初次申请网络设备下发第一子信道集合时所发送的SR,而第二SR为终端设备1检测第一子信道集合不可用时,需要再次请求网络设备下发第二子信道集合时所发送的SR。同样的,第一BSR和第二BSR的区别可参考第一SR与第二SR的区别。如第一BSR为终端设备1初次申请网络设备下发第一子信道集合时所发送的BSR,而第二BSR为终端设备1检测第一子信道集合不可用时,需要再次请求网络设备下发第二子信道集合时所发送的BSR。发送第二BSR之前不需要再发送调度请求。即,在第一子信道集合中所包含的子信道不可用时,终端设备1只发送第二SR和第二BSR中任何一者,而不需要参照之前的第一SR和第一BSR两者都发送,因此减少了申请资源的控制信令成本以及申请时延。
本申请实施例中,该第二参考资源可为预定义的,如该第二参考资源被预先设置在网络设备或终端设备。或者,该第二参考资源还可由网络设备通过信令配置,该信令可包括RRC信令,MAC信令或物理层信令中的至少一种等等,本申请实施例不作限定。具体的,该第二参考资源可理解为用于快速申请SL资源的新的调度请求的资源或者用于快速申请SL资源的新的调度请求的资源中的部分。也就是说,该第二参考资源可用于在终端设备1检测第一子信道集合不可用,重新向网络设备发起SR时,在该第二参考资源上向网络设备重新发送SR;或者,该第二参考资源可用于在终端设备1检测第一子信道集合不可用,重新向网络设备发送BSR时,在该第二参考资源上向网络设备重新发送BSR。
可理解,在第二参考资源由网络设备通过信令配置时,本申请实施例对于网络设备通过信令配置的时间不作限定,可以在终端设备1发送第一SR之前或之后,还可以在终端设备1发送第一BSR之前或之后,还可以在终端设备1检测第一子信道集合是否可用之前等等,只要能在终端设备1需要再次向网络设备发送SR或BSR之前配置即可。
908、网络设备接收终端设备1发送的第二上行信息,并向该终端设备1发送第三DCI,该第三DCI包括第二子信道集合的信息。
909、终端设备1接收该第三DCI,并在第二子信道集合上与终端设备2进行数据信息和/或控制信息的传输。
本申请实施例中,在第一终端设备通过第一SR获取到的第一子信道集合不可用时,该 第一终端设备可通过第二上行信息向网络设备申请第二子信道集合;也就是说,该第一终端设备通过第二上行信息即可重新申请到子信道集合,由此提高了第一终端设备重新获取子信道集合的速度,尽可能的降低了调度时延。
在本申请的一些实施例中,为了提高终端设备检测子信道可用的效率,本申请实施例还提供了一种资源调度方法,图10是本申请实施例提出的一种资源调度方法的场景示意图,该方法可如图10所示,包括:
1001、终端设备1在第一参考资源向网络设备发送第一SR。
1002、网络设备接收终端设备1通过该第一参考资源发送的第一SR,向该终端设备1发送第一DCI,该第一DCI可用于指示第三参考资源,该第三参考资源用于传输BSR。
1003、终端设备1在该第三参考资源上向网络设备发送BSR。
1004、网络设备接收终端设备1通过第三参考资源发送的BSR,并确定一个或多个候选子信道集合。
本申请实施例中,网络设备确定一个或多个候选子信道集合的方法可包括网络设备自身对于子信道进行监听,并根据监听结果确定该子信道是否可用。所述该子信道是否可用为监听到的信号能量小于或等于门限阈值。该门限阈值与前述门限阈值可以相同,也可以不相同。本申请中不限制。即,本申请中任何门限阈值可以是特定的,任何门限阈值可以不同。
1005、网络设备向终端设备1发送第四DCI,该第四DCI包括一个或多个候选子信道集合的信息。
其中,该一个或多个候选子信道集合的信息包括该一个或多个候选子信道集合的索引。该一个或多个候选子信道集合的信息也可以是一个bitmap,其中,该bitmap中标记为1或者0的部分为分配给终端设备1的可用的子信道或子信道集合。
1006、终端设备1接收网络设备发送的第四DCI,检测该一个或多个候选子信道集合中可用的子信道集合,如检测的可用的子信道集合为第三子信道集合。
1007、终端设备1在该第三子信道集合上与终端设备2进行数据信息和/或控制信息的传输。
1008、终端设备1在反馈参考资源上向网络设备发送反馈信息,该反馈信息包括第三子信道集合的信息。
可选的,该第四DCI还包括反馈参考资源的信息,该反馈参考资源可用于传输反馈信息,该反馈信息可用于反馈终端设备1在第三子信道集合传输数据信息和/或控制信息给终端设备2。也就是说,该反馈信息可用于反馈终端设备1使用了一个或多个候选子信道集合中的哪个子信道集合。
作为示例,如第四DCI包括三个候选子信道集合的索引,如候选子信道集合1、候选子信道集合2和候选子信道集合3;第三子信道集合为候选子信道集合1,则反馈信息可以只反馈候选子信道集合1的索引1。可选的,该反馈信息还可按照第四DCI中所包括的候选子信道集合的顺序来反馈,如第四DCI所包括的三个候选子信道集合的顺序为候选子信道集合1、候选子信道集合2和候选子信道集合3,由于第三子信道集合为候选子信道集合 1,则反馈信息可以为100(一比特代表一个候选子信道集合的信息),或者还可以为110000等等,其中,1表示候选子信道集合1为第三子信道集合,0表示候选子信道集合2不为第三子信道集合,以及候选子信道集合3不为第三子信道集合。可理解,本申请实施例对于以多少比特表示候选子信道集合的索引不作限定。
可理解,以上所示的反馈信息仅为示例,不应理解为对本申请实施例的限定。
1009、网络设备接收终端设备1发送的反馈信息,释放终端设备1未使用的候选子信道集合。
本申请实施例中,网络设备通过接收反馈信息,可使得网络设备及时释放终端设备1未确定的候选子信道集合,从而避免其他终端设备不能及时使用终端设备1未确定的候选子信道集合的情况。
本申请实施例中,第一终端设备通过接收包括一个或多个候选子信道集合的信息,可使得该第一终端设备从该一个或多个后续子信道集合中确定出可用的子信道集合,从而通过一个或多个候选子信道集合,提高了第一终端设备确定子信道集合的效率,进一步提高了数据信息和/或控制信息传输的效率,降低了传输时延。
可理解,以上各个实施例各有侧重,其中一个实施例未详尽描述的实现方式,可参考其他实施例,这里不再一一详述。
最后,将详细描述本申请实施例所提供的通信装置。
参见图11,图11是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备,也可以为芯片。该通信装置用于执行本申请实施例所描述的资源调度方法,如图11所示,该通信装置包括:
处理单元1101,用于确定第一子信道集合,该第一子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,且该第一子信道集合为该第一终端设备在SL上检测到的可用的子信道集合;
发送单元1102,用于输出第一信息,该第一信息包括第一子信道集合的信息。
可理解,本申请实施例中,当上述通信装置是终端设备或终端设备(如第一终端设备)中实现上述功能的部件时,处理单元1101可以是一个或多个处理器,发送单元1102可以是发送器,例如该发送器可用于向网络设备发送该第一信息。当上述通信装置是芯片时,处理单元1101可以是一个或多个处理器,发送单元1102可以是输出接口,又或者可以称为通信接口或接口电路等等,例如该输出接口从处理器获取第一信息,从而输出该第一信息。
在一种可能的实现方式中,该第一信息还包括用于指示该第一终端设备位置的信息。
在一种可能的实现方式中,该第一信息还包括目标标识,该目标标识用于指示单播业务、组播业务或广播业务中的至少一项。
在一种可能的实现方式中,该第一子信道集合包括一个或多个子信道,该第一子信道集合的信息包括该一个或多个子信道的索引。
在一种可能的实现方式中,该第一子信道集合的信息还包括该一个或多个子信道的优先级。
在一种可能的实现方式中,该第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,该BSR MAC CE用于上报SL的待传输数据量。
在一种可能的实现方式中,该发送单元1102,还可以输出第二信息,该第二信息用于指示第一子信道集合被预留。
本申请实施例中,发送单元1102可以向第二终端设备发送第二信息,或者,该发送单元1102还可以在获取到第二信息后,通过输出接口输出该第二信息。本申请实施例对于具体的实现方式不作限定。
在一种可能的实现方式中,该第二信息为侧行链路控制信息SCI。
在一种可能的实现方式中,该SCI还用于指示预留该第一子信道集合的时长信息。
在一种可能的实现方式中,该第二信息为探测参考信号SRS或前导码。
本申请实施例中,第一终端设备通过先确定第一子信道集合,从而可使得网络设备根据该第一子信道集合来为该第一终端设备分配子信道,避免了在网络设备在为第一终端设备分配用于SL传输的子信道1后,该第一终端设备检测该子信道1失败,以及第一终端设备需要再次向网络设备发送SR以及BSR而导致的资源浪费的情况;从而不仅提高了资源利用率,而且第一终端设备不需要多次发送SR和BSR,降低了调度时延,保证了SL上数据信息和/或控制信息的有效传输。
参见图12,图12是本申请实施例提供的一种通信装置的结构示意图,该通信装置可为网络设备,还可为芯片等,如图12所示,该通信装置包括:
接收单元1201,用于接收第一终端设备发送的第一信息,该第一信息包括第一子信道集合的信息,该第一子信道集合为该第一终端设备在侧行链路SL上检测到的可用的子信道集合;
处理单元1202,用于根据该第一子信道集合的信息为该第一终端设备分配目标子信道集合,该目标子信道集合用于该第一终端设备在SL上传输数据信息和/或控制信息。
在一种可能的实现方式中,该第一信息还包括用于指示该第一终端设备位置的信息;该处理单元1202,具体用于根据该第一子信道集合的信息以及该第一终端设备位置的信息为该第一终端设备分配该目标子信道集合。
在一种可能的实现方式中,在于,该第一信息还包括目标标识,该目标标识用于指示单播业务、组播业务或广播业务中的至少一项;该处理单元1202,具体用于根据该第一子信道集合的信息以及与该目标标识对应的子信道集合为该第一终端设备分配目标子信道集合。
在一种可能的实现方式中,该第一子信道集合包括一个或多个子信道,该第一子信道集合的信息包括该一个或多个子信道的索引。
在一种可能的实现方式中,该第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,该BSR MAC CE用于上报SL的待传输数据量。
可理解,本申请实施例中,当上述通信装置是网络设备中实现上述功能的部件时,处理单元1202可以是一个或多个处理器,接收单元1201可以是接收器。当上述通信装置是芯片时,处理单元1202可以是一个或多个处理器,接收单元1201可以是输入接口,又或者可以称为通信接口或接口电路等等。
可理解,对于图11和图12所示的各个单元的实现还可以对应参照图5所示的方法实施例的相应描述。
参见图13,图13是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备,也可以为芯片。如图13所示,该通信装置包括:
处理单元1301,用于检测第一子信道集合是否可用,其中,该第一子信道集合通过与第一参考资源对应的第一调度请求SR获取,且该第一子信道集合用于侧行链路SL上传输数据信息和/或控制信息;
发送单元1302,当该第一子信道集合不可用时,输出第二上行信息,该第二上行信息用于请求该网络设备分配第二子信道集合,该第二子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,其中该第二上行信息包括:第二调度请求SR,或者,第二缓冲状态报告BSR。
在一种可能的实现方式中,该发送单元1302,还用于输出第一SR。
在一种可能的实现方式中,该第二参考资源为预定义的,或者,该第二参考资源为该网络设备通过信令配置的。
本申请实施例中,在第一终端设备通过第一SR获取到的第一子信道集合不可用时,该第一终端设备可通过第二上行信息向网络设备申请第二子信道集合;也就是说,该第一终端设备通过第二上行信息即可重新申请到子信道集合,由此提高了第一终端设备重新获取子信道集合的速度,尽可能的降低了调度时延。
可理解,本申请实施例中,当上述通信装置是终端设备或终端设备(如第一终端设备)中实现上述功能的部件时,处理单元1301可以是一个或多个处理器,发送单元1302可以是发送器,例如该发送器可用于在第二参考资源上向网络设备发送该第二上行信息。又例如该发送器可用于通过第一参考资源向该网络设备发送第一SR。当上述通信装置是芯片时,处理单元1301可以是一个或多个处理器,发送单元1302可以是输出接口,又或者可以称为通信接口或接口电路等等,例如该输出接口从处理器获取第二上行信息,从而向外输出该第二上行信息。又例如该输出接口可从处理器获取第一SR,以及向外输出该第一SR。
参见图14,图14是本申请实施例提供的一种通信装置的结构示意图,该通信装置可为网络设备,还可为芯片,如图14所示,该通信装置包括:
接收单元1401,用于接收第一终端设备通过第二参考资源发送的第二上行信息,该第二上行信息用于请求该网络设备分配第二子信道集合,该第二子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,该第二上行信息包括:第二调度请求SR,或者,第二缓冲状态报告BSR;
处理单元1402,用于为该第一终端设备分配该第二子信道集合。
在一种可能的实现方式中,该接收单元1401,还用于接收该第一终端设备通过第一参考资源发送的第一SR;
该处理单元1402,还用于为该第一终端设备分配第一子信道集合。
可理解,对于图13和图14所示的各个单元的实现还可以对应参照图9所示的方法实施例的相应描述。
参见图15,图15是本申请实施例提供的一种通信装置的结构示意图,该通信装置可 以为终端设备,也可以为芯片,如图15所示,该通信装置包括:
接收单元1501,用于获取第四下行控制信息DCI,该第四DCI包括一个或多个候选子信道集合的信息;
处理单元1502,用于根据监听结果从该一个或多个候选子信道集合中确定第三子信道集合;
发送单元1503,用于输出数据信息和/或控制信息。
本申请实施例中,当上述通信装置是终端设备或终端设备(如第一终端设备)中实现上述功能的部件时,处理单元1502可以是一个或多个处理器,发送单元1503可以是发送器,接收单元1501可以是接收器,或者发送单元1503和接收单元1501集成于一个器件,例如收发器。例如接收单元1501可以接收网络设备发送的第四DCI,发送单元1503可以向第二终端设备发送控制信息和/或数据信息。当上述通信装置是芯片时,处理单元1502可以是一个或多个处理器,发送单元1503可以是输出接口,接收单元1501可以是输入接口,或者发送单元1503和接收单元1501集成于一个单元,例如输入输出接口。例如接收单元1501可获取第四DCI,发送单元1503可从处理单元1502获取数据信息和/或控制信息,并输出该数据信息和/或控制信息。
在一种可能的实现方式中,该发送单元1503,还用于输出反馈信息,该反馈信息包括第一子信道集合的信息。
在一种可能的实现方式中,该第一子信道集合的信息包括该第一子信道集合的标识。
在一种可能的实现方式中,该DCI还包括反馈参考资源的信息。
可理解,本申请实施例中,发送单元1503可以具体将反馈信息发送给网络设备,又或者可通过反馈参考资源向该网络设备发送该反馈信息等。
本申请实施例中,第一终端设备通过接收包括一个或多个候选子信道集合的信息,可使得该第一终端设备从该一个或多个后续子信道集合中确定出可用的子信道集合,从而通过一个或多个候选子信道集合,提高了第一终端设备确定子信道集合的效率,进一步提高了数据信息和/或控制信息传输的效率,降低了传输时延。
参见图16,图16是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为网络设备,也可以为芯片,如图16所示,该通信装置包括:
接收单元1601,用于接收第一终端设备发送的缓冲状态报告第一BSR;
发送单元1602,用于向该第一终端设备发送第四下行控制信息DCI,该第四DCI包括一个或多个候选子信道集合的信息。
在一种可能的实现方式中,接收单元1601,还用于接收该第一终端设备发送的反馈信息,该反馈信息包括该第三子信道集合的信息。
可理解,对于图15和图16所示的各个单元的实现还可以对应参照图10所示的方法实施例的相应描述。
图17为本申请实施例提供的一种终端设备1700的结构示意图。该终端设备可执行如图5、图9和10所示出的方法中的第一终端设备(终端设备1)的操作,或者,该终端设备也可执行如图11、图13和图15所示的通信装置的操作。
为了便于说明,图17仅示出了终端设备的主要部件。如图17所示,终端设备1700包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图5、图9和10所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1700还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图17仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备1700的收发单元1701,将具有处理功能的处理器视为终端设备1700的处理单元1702。
如图17所示,终端设备1700可以包括收发单元1701和处理单元1702。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1701中用于实现接收功能的器件视为接收单元,将收发单元1701中用于实现发送功能的器件视为发送单元,即收发单元1701包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1701、处理单元1702可能集成为一个器件,也可以分离 为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
图18为本申请实施例提供的一种网络设备1800的结构示意图。该网络设备可执行如图5、图9和10所示的方法中的网络设备的操作,或者该网络设备也可以执行图11、图13和图15所示的通信装置的操作。
网络设备1800包括一个或多个远端射频单元(remote radio unit,RRU)1801和一个或多个基带单元(baseband unit,BBU)1802。上述RRU1801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1811和射频单元1812。上述RRU1801部分主要用于射频信号的收发以及射频信号与基带信号的转换。上述BBU1802部分主要用于进行基带处理,对网络设备进行控制等。上述RRU1801与BBU1802可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
上述BBU1802为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个示例中,上述BBU1802可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。上述BBU1802还包括存储器1821和处理器1822。上述存储器1821用以存储必要的消息和数据。上述处理器1822用于控制网络设备进行必要的动作,例如控制网络设备执行图18所示的相应的操作。上述存储器1821和处理器1822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。可选的,处理器可以是CPU,NP或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。存储器可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器还可以包括上述种类的存储器的组合。
可理解的是,本申请实施例中的网络设备的实现方式,具体可参考前述各个实施例,这里不再详述。
可理解,图18所示的网络设备仅为一种示例,在具体实现中,可能还存在其他类型的网络设备,因此,不应将图18所示的网络设备理解为对本申请实施例的限定。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
Claims (36)
- 一种资源调度方法,其特征在于,所述方法包括:第一终端设备确定第一子信道集合,所述第一子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,且所述第一子信道集合为所述第一终端设备在SL上检测到的可用的子信道集合;所述第一终端设备向网络设备发送第一信息,所述第一信息包括所述第一子信道集合的信息。
- 根据权利要求1所述的方法,其特征在于,所述第一信息还包括用于指示所述第一终端设备位置的信息。
- 根据权利要求1或2所述的方法,其特征在于,所述第一信息还包括目标标识,所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项。
- 根据权利要求1-3任意一项所述的方法,其特征在于,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
- 根据权利要求4所述的方法,其特征在于,所述第一子信道集合的信息还包括所述一个或多个子信道的优先级。
- 根据权利要求1-5任意一项所述的方法,其特征在于,所述第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,所述BSR MAC CE用于上报SL的待传输数据量。
- 根据权利要求1-6任意一项所述的方法,其特征在于,所述方法还包括:所述第一终端设备向第二终端设备发送第二信息,所述第二信息用于指示所述第一子信道集合被预留。
- 根据权利要求7所述的方法,其特征在于,所述第二信息为侧行链路控制信息SCI。
- 根据权利要求8所述的方法,其特征在于,所述SCI还用于指示预留所述第一子信道集合的时长信息。
- 根据权利要求7所述的方法,其特征在于,所述第二信息为探测参考信号SRS或前导码。
- 一种资源调度方法,其特征在于,所述方法包括:网络设备接收第一终端设备发送的第一信息,所述第一信息包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合,所述目标子信道集合用于所述第一终端设备在SL上传输数据信息和/或控制信息。
- 根据权利要求11所述的方法,其特征在于,所述第一信息还包括用于指示所述第一终端设备位置的信息;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合包括:所述网络设备根据所述第一子信道集合的信息以及所述第一终端设备位置的信息为所述第一终端设备分配所述目标子信道集合。
- 根据权利要求11或12所述的方法,其特征在于,所述第一信息还包括目标标识, 所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项;所述网络设备根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合包括:所述网络设备根据所述第一子信道集合的信息以及与所述目标标识对应的子信道集合为所述第一终端设备分配目标子信道集合。
- 根据权利要求11-13任意一项所述的方法,其特征在于,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
- 根据权利要求11-14任意一项所述的方法,其特征在于,所述第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,所述BSR MAC CE用于上报SL的待传输数据量。
- 一种终端设备,其特征在于,所述终端设备包括:处理单元,用于确定第一子信道集合,所述第一子信道集合用于在侧行链路SL上传输数据信息和/或控制信息,且所述第一子信道集合为所述第一终端设备在SL上检测到的可用的子信道集合;收发单元,用于向网络设备发送第一信息,所述第一信息包括所述第一子信道集合的信息。
- 根据权利要求16所述的终端设备,其特征在于,所述第一信息还包括用于指示所述终端设备位置的信息。
- 根据权利要求16或17所述的终端设备,其特征在于,所述第一信息还包括目标标识,所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项。
- 根据权利要求16-18任意一项所述的终端设备,其特征在于,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
- 根据权利要求19所述的终端设备,其特征在于,所述第一子信道集合的信息还包括所述一个或多个子信道的优先级。
- 根据权利要求16-20任意一项所述的终端设备,其特征在于,所述第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,所述BSR MAC CE用于上报SL的待传输数据量。
- 根据权利要求16-21任意一项所述的终端设备,其特征在于,所述收发单元,还用于发送第二信息,所述第二信息用于指示所述第一子信道被预留。
- 根据权利要求22所述的终端设备,其特征在于,所述第二信息为侧行链路控制信息SCI。
- 根据权利要求23所述的终端设备,其特征在于,所述SCI还用于指示预留所述第一子信道集合的时长信息。
- 根据权利要求22所述的终端设备,其特征在于,所述第二信息为探测参考信号SRS或前导码。
- 一种网络设备,其特征在于,所述网络设备包括:收发单元,用于接收第一终端设备发送的第一信息,所述第一信息包括第一子信道集合的信息,所述第一子信道集合为所述第一终端设备在侧行链路SL上检测到的可用的子信道集合;处理单元,用于根据所述第一子信道集合的信息为所述第一终端设备分配目标子信道集合,所述目标子信道集合用于所述第一终端设备在SL上传输数据信息和/或控制信息。
- 根据权利要求26所述的网络设备,其特征在于,所述第一信息还包括用于指示所述第一终端设备位置的信息;所述处理单元,具体用于根据所述第一子信道集合的信息以及所述第一终端设备位置的信息为所述第一终端设备分配所述目标子信道集合。
- 根据权利要求26或27所述的网络设备,其特征在于,所述第一信息还包括目标标识,所述目标标识用于指示单播业务、组播业务或广播业务中的至少一项;所述处理单元,具体用于根据所述第一子信道集合的信息以及与所述目标标识对应的子信道集合为所述第一终端设备分配目标子信道集合。
- 根据权利要求26-28任意一项所述的网络设备,其特征在于,所述第一子信道集合包括一个或多个子信道,所述第一子信道集合的信息包括所述一个或多个子信道的索引。
- 根据权利要求26-29任意一项所述的网络设备,其特征在于,所述第一信息为缓冲状态报告BSR媒体接入层控制元素MAC CE,所述BSR MAC CE用于上报SL的待传输数据量。
- 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至10任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求11至15任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至10任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求11至15任一项所述的方法。
- 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-10中任一项所述的方法被实现。
- 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求11-15中任一项所述的方法被实现。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/107611 WO2021056222A1 (zh) | 2019-09-24 | 2019-09-24 | 一种资源调度方法及装置 |
CN201980100065.4A CN114342515A (zh) | 2019-09-24 | 2019-09-24 | 一种资源调度方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/107611 WO2021056222A1 (zh) | 2019-09-24 | 2019-09-24 | 一种资源调度方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021056222A1 true WO2021056222A1 (zh) | 2021-04-01 |
Family
ID=75165230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107611 WO2021056222A1 (zh) | 2019-09-24 | 2019-09-24 | 一种资源调度方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114342515A (zh) |
WO (1) | WO2021056222A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024098346A1 (zh) * | 2022-11-10 | 2024-05-16 | Oppo广东移动通信有限公司 | Sl通信方法、装置、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160142987A1 (en) * | 2014-11-14 | 2016-05-19 | Telefonaktiebolaget L M Ericsson (Publ) | Synchronization in communications networks |
CN107889161A (zh) * | 2016-09-30 | 2018-04-06 | 北京三星通信技术研究有限公司 | 传输控制信令和数据的方法及设备 |
CN109803400A (zh) * | 2017-11-17 | 2019-05-24 | 华为技术有限公司 | 信息上报方法、资源分配方法、用户设备及基站 |
CN110267227A (zh) * | 2018-03-12 | 2019-09-20 | 华为技术有限公司 | 一种数据传输方法、相关设备及系统 |
CN110268780A (zh) * | 2017-02-10 | 2019-09-20 | 高通股份有限公司 | 动态的资源共享 |
CN110392360A (zh) * | 2018-04-17 | 2019-10-29 | 普天信息技术有限公司 | 一种可用资源上报方法及装置 |
-
2019
- 2019-09-24 CN CN201980100065.4A patent/CN114342515A/zh active Pending
- 2019-09-24 WO PCT/CN2019/107611 patent/WO2021056222A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160142987A1 (en) * | 2014-11-14 | 2016-05-19 | Telefonaktiebolaget L M Ericsson (Publ) | Synchronization in communications networks |
CN107889161A (zh) * | 2016-09-30 | 2018-04-06 | 北京三星通信技术研究有限公司 | 传输控制信令和数据的方法及设备 |
CN110268780A (zh) * | 2017-02-10 | 2019-09-20 | 高通股份有限公司 | 动态的资源共享 |
CN109803400A (zh) * | 2017-11-17 | 2019-05-24 | 华为技术有限公司 | 信息上报方法、资源分配方法、用户设备及基站 |
CN110267227A (zh) * | 2018-03-12 | 2019-09-20 | 华为技术有限公司 | 一种数据传输方法、相关设备及系统 |
CN110392360A (zh) * | 2018-04-17 | 2019-10-29 | 普天信息技术有限公司 | 一种可用资源上报方法及装置 |
Non-Patent Citations (1)
Title |
---|
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Bearer and MAC CE mapping for eLAA", 3GPP DRAFT; R2-164053 BEARER AND MAC CE MAPPING FOR LAA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Nanjing, China; 20160523 - 20160527, 13 May 2016 (2016-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051095589 * |
Also Published As
Publication number | Publication date |
---|---|
CN114342515A (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11546827B2 (en) | Method and device for changing wireless path in wireless communication system | |
US11212774B2 (en) | V2X communication method and terminal | |
EP2995047B1 (en) | Systems and methods for traffic-aware medium access selection | |
JP2023515093A (ja) | V2xシステムで端末の間の協力を通じるリソース割り当て方法及び装置 | |
CN112997536B (zh) | 在无线通信系统中选择用于终端之间的直接通信的无线接入技术的装置和方法 | |
US20180092067A1 (en) | System and Method for D2D Communication | |
EP4135436A1 (en) | Method and device for allocating resource through carrier aggregation in v2x system | |
EP3878132B1 (en) | Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system | |
CN107852746A (zh) | 用于UL LAA的信道接入过程以及QoS配置 | |
EP3651519B1 (en) | V2x communication method and terminal | |
US11647418B2 (en) | Resource request method and device, method and device for processing resource request | |
US12219562B2 (en) | Method and apparatus for frequency and time resource allocation for data transmission in wireless communication system | |
WO2021244299A1 (zh) | 通信方法及通信设备 | |
US11963157B2 (en) | Method and apparatus for using unlicensed band in communication system | |
WO2021056222A1 (zh) | 一种资源调度方法及装置 | |
KR20210145562A (ko) | V2x 시스템에서 단말 간 협력을 통한 자원 할당 방법 및 장치 | |
US12238719B2 (en) | Information transmission method and apparatus | |
US20230199780A1 (en) | Ue scheduling grant based on a pro-ue implementation | |
KR20220133733A (ko) | 무선 통신 시스템에서 사이드링크 릴레이 탐색 메시지의 전송 자원 할당을 지원하는 방법 및 장치 | |
KR20210061845A (ko) | 무선 통신 시스템에서 사이드링크를 위한 exceptional 전송 자원 풀을 처리하는 장치 및 방법 | |
EP4106432A1 (en) | Apparatus and method for terminal to process sidelink transmission in wireless communication system | |
US12171008B2 (en) | UE scheduling grant based on a pro-scheduler implementation | |
US20240155686A1 (en) | Channel access priority class table for unlicensed sidelink | |
WO2024032565A1 (zh) | 资源排除方法和相关产品 | |
CN117041984A (zh) | 共享资源分配方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19946704 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19946704 Country of ref document: EP Kind code of ref document: A1 |