[go: up one dir, main page]

WO2021052246A1 - 测量配置方法、终端及基站 - Google Patents

测量配置方法、终端及基站 Download PDF

Info

Publication number
WO2021052246A1
WO2021052246A1 PCT/CN2020/114697 CN2020114697W WO2021052246A1 WO 2021052246 A1 WO2021052246 A1 WO 2021052246A1 CN 2020114697 W CN2020114697 W CN 2020114697W WO 2021052246 A1 WO2021052246 A1 WO 2021052246A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
interference measurement
channel measurement
measurement
Prior art date
Application number
PCT/CN2020/114697
Other languages
English (en)
French (fr)
Inventor
李岩
王飞
金婧
王启星
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US17/641,583 priority Critical patent/US20220303801A1/en
Priority to JP2022517483A priority patent/JP7324367B2/ja
Priority to CA3151592A priority patent/CA3151592C/en
Priority to EP20865297.4A priority patent/EP4033800B1/en
Priority to AU2020348730A priority patent/AU2020348730B2/en
Publication of WO2021052246A1 publication Critical patent/WO2021052246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a measurement configuration method, terminal and base station.
  • the network side When performing downlink beam measurement, the network side usually sends channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or synchronization signal block (Synchronization Signal Block, SSB), and the user equipment (User Equipment, UE) passes different
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the receiving beam is received, so as to measure and obtain the layer 1 reference signal received power (Layer 1-Reference Signal Received Power, L1-RSRP) value of the CSI-RS/SSB under each receiving beam.
  • L1-RSRP Layer 1-Reference Signal Received Power
  • the current beam measurement only considers L1-RSRP, and the beam quality selected based on this does not reflect the interference situation of the beam and cannot meet the communication requirements.
  • At least one embodiment of the present disclosure provides a measurement configuration method, a terminal, and a network device to configure resources for channel measurement and interference measurement for the terminal, which can provide more measurement resources for beam quality measurement.
  • At least one embodiment provides a measurement configuration method applied to a terminal, including:
  • Receive resource configuration information for channel measurement and interference measurement sent by the base station where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both integers greater than or equal to 1.
  • the channel measurement resource is CSI-RS or SSB
  • the interference measurement resource is CSI-RS
  • the above method further includes:
  • the resource configuration information measure the channel measurement resource and the interference measurement resource, and calculate at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource.
  • the above method further includes:
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the above method further includes:
  • the L1-SINR is calculated from the measurement result of the channel measurement resource and the interference measurement resource using the same spatial filtering or QCL-Type D as the channel measurement resource.
  • the above method further includes:
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources correspond one-to-one in a predetermined order.
  • the calculating at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource includes:
  • At least one L1-SINR is calculated according to the measurement results of the channel measurement resources and interference measurement resources corresponding to each other in the same receiving direction.
  • reporting the identification ID of the L1-SINR and its corresponding channel measurement resource and/or the identification ID of the interference measurement resource to the base station includes:
  • Y L1-SINRs are selected from the at least one L1-SINR, and the selected Y L1-SINRs and their corresponding channel measurement resource identification IDs and/or interference measurement resource identification IDs are reported to the base station, so Said Y is an integer greater than or equal to 1.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • calculating at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource includes:
  • the at least one L1-SINR is calculated.
  • reporting the identification ID of the L1-SINR and its corresponding channel measurement resource and/or the identification ID of the interference measurement resource to the base station includes:
  • Z L1-SINRs are selected from the at least one L1-SINR, and the selected Z L1-SINRs and their corresponding channel measurement resource identification IDs and interference measurement resource identification IDs are reported to the base station. Is an integer greater than or equal to 1.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources and the N first interference measurement resources are in a predetermined order There is a one-to-one correspondence, and the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the calculating at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource includes:
  • the at least one L1-SINR is calculated.
  • reporting the identification ID of the L1-SINR and its corresponding channel measurement resource and/or the identification ID of the second interference measurement resource to the base station includes:
  • Select L L1-SINR from the at least one L1-SINR, and report the selected L L1-SINR and the identification ID of the corresponding channel measurement resource and the identification ID of the second interference measurement resource to the base station, so Said L is an integer greater than or equal to 1.
  • the embodiment of the present disclosure also provides a measurement configuration method, which is applied to a base station, and includes:
  • resource configuration information used for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both integers greater than or equal to 1.
  • the channel measurement resource is CSI-RS or SSB
  • the interference measurement resource is CSI-RS
  • the above method further includes:
  • the above method further includes:
  • first QCL configuration information is used to configure QCL-Type D information of channel measurement resources and QCL-Type D information of interference measurement resources;
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the above method further includes:
  • the L1-SINR is calculated from the measurement result of the channel measurement resource and the interference measurement resource using the same spatial filtering or QCL-Type D as the channel measurement resource.
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources correspond one-to-one in a predetermined order.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources and the N first interference measurement resources are in a predetermined order There is a one-to-one correspondence, and the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the embodiment of the present disclosure also provides a terminal, including:
  • the receiving module is configured to receive resource configuration information for channel measurement and interference measurement sent by the base station, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where both N and M are greater than or equal to An integer of 1.
  • the embodiment of the present disclosure also provides a terminal, including a transceiver and a processor, wherein:
  • the transceiver is configured to receive resource configuration information for channel measurement and interference measurement sent by a base station, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where both N and M are greater than Or an integer equal to 1.
  • the embodiment of the present disclosure also provides a terminal, including: a processor, a memory, and a program stored on the memory and capable of running on the processor, and when the program is executed by the processor, the above The steps of the measurement configuration method.
  • the embodiment of the present disclosure also provides a base station, including:
  • the sending module is used to send resource configuration information for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where both N and M are greater than or equal to 1. Integer.
  • the embodiment of the present disclosure also provides a base station, including a transceiver and a processor, wherein:
  • the transceiver is configured to send resource configuration information for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, and both N and M are greater than or An integer equal to 1.
  • the embodiments of the present disclosure also provide a base station, including: a processor, a memory, and a program stored on the memory and capable of running on the processor, and when the program is executed by the processor, the above The steps of the measurement configuration method.
  • At least one embodiment provides a computer-readable storage medium with a program stored on the computer-readable storage medium, and when the program is executed by a processor, it implements the method described above. step.
  • the measurement configuration method, terminal, and base station provided by the embodiments of the present disclosure can configure resources for channel measurement and interference measurement for the terminal, thereby providing more measurement resources for beam quality measurement.
  • the embodiment of the present disclosure may also measure and report the L1-SINR of the beam based on the above-mentioned measurement resources, so that the base station can select a more suitable beam based on the L1-SINR.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of Example 1 of resource configuration provided by an embodiment of the disclosure.
  • Example 4 is a schematic diagram of Example 1 of resource configuration provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of Example 1 of resource configuration provided by an embodiment of the disclosure.
  • FIG. 6 is a flowchart when the measurement configuration method provided by an embodiment of the disclosure is applied to the base station side;
  • FIG. 7 is a schematic structural diagram of a terminal provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of another structure of a terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of another structure of a network device provided by an embodiment of the disclosure.
  • the technology described in this article is not limited to NR systems and Long Time Evolution (LTE)/LTE-Advanced (LTE-A) systems, and can also be used in various wireless communication systems, such as code division multiple access.
  • Code Division Multiple Access CDMA
  • Time Division Multiple Access TDMA
  • Frequency Division Multiple Access FDMA
  • Orthogonal Frequency Division Multiple Access OFDMA
  • Single-carrier Frequency-Division Multiple Access SC-FDMA
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • the OFDMA system can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE802.21 (Wi-Fi), IEEE802.16 (WiMAX), IEEE802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • Evolved UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE802.21 Wi-Fi
  • WiMAX IEEE802.16
  • IEEE802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the following description, although these techniques can also be applied to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be called a user terminal or a user equipment (UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • vehicle-mounted device it should be noted that the specific type of terminal 11 is not limited in the embodiments of the present disclosure .
  • the network device 12 may be a base station and/or a core network element, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN Access point, or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or As long as some other suitable terminology in the field achieves the same technical effect, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of the present disclosure, only the base station in the NR system is taken as an example, but not The specific
  • the base station may communicate with the terminal 11 under the control of the base station controller.
  • the base station controller may be a part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may directly or indirectly communicate with each other through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on these multiple carriers. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a micro base station, or a pico base station).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (UL) transmission (for example, from the terminal 11 to the network device 12), or for carrying a downlink (DL) Transmission (e.g., from the network device 12 to the terminal 11) downlink.
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • L1-RSRP Low-Reliable and Low-Reliable NR
  • L1-SINR Layer 1-Signal to Interference plus Noise Ratio
  • a measurement configuration method provided by an embodiment of the present disclosure when applied to the terminal side, includes:
  • Step 21 Receive resource configuration information for channel measurement and interference measurement sent by the base station, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where both N and M are greater than or equal to 1. Integer.
  • the channel measurement resource may be CSI-RS or SSB, and the interference measurement resource may be CSI-RS.
  • the interference measurement resource may be a non-zero power (NZP) CSI-RS or a zero power (ZP) CSI-RS.
  • the embodiment of the present disclosure configures the terminal with channel measurement resources for channel measurement and interference measurement resources for interference measurement.
  • the terminal can measure and report the L1-SINR of the beam based on the above measurement resources.
  • a more suitable beam can be selected based on the L1-SINR.
  • the terminal may also measure the channel measurement resources and interference measurement resources according to the resource configuration information, and calculate at least one L1 according to the measurement results of the channel measurement resources and interference measurement resources. -SINR.
  • the terminal may also receive first Quasi Co-Location (QCL) configuration information sent by the base station, where the first QCL configuration information is used to configure channel measurement resources.
  • QCL-Type D information and QCL-Type D information of interference measurement resources are calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • QCL refers to the quasi co-location relationship.
  • the quasi co-location of antenna ports is a state assumption between antenna ports. If one antenna port is quasi-co-located with another antenna port, it means that the terminal can assume that the large-scale characteristics of the signal received from one of the antenna ports (or the radio channel corresponding to the antenna port) are wholly or partially different from the other antenna port. The large-scale characteristics of the signal received by the port (or the radio channel corresponding to the antenna port) are the same. In other words, the channel characteristics on a certain antenna port symbol can be derived from another antenna port, and it is considered that the channel estimation results obtained from one port of the two port QCLs can be used for the other port.
  • QCL defines the following types, namely QCL-Type A, QCL-Type B, QCL-Type C, and QCL-Type D.
  • QCL-Type D is the quasi co-location relationship of spatial receiving parameters.
  • the terminal may also receive second QCL configuration information sent by the base station, where the second QCL configuration information is used to configure QCL-Type D information of the channel measurement resource; the L1- The SINR is calculated from the measurement result of the channel measurement resource and the interference measurement resource using the same spatial filtering or QCL-Type D as the channel measurement resource.
  • the terminal may report the identification (ID) of the L1-SINR and its corresponding channel measurement resource and/or the ID of the interference measurement resource to the base station. Specifically, the ID of the channel measurement resource corresponding to L1-SINR and L1-SINR can be reported, the ID of the interference measurement resource corresponding to L1-SINR and L1-SINR can also be reported, and the L1-SINR and L1-SINR can also be reported. The ID of the corresponding channel measurement resource and the ID of the interference measurement resource. In addition, the L1-SINR reported here may be all or part of the calculated L1-SINR of the at least one L1-SINR. When reporting part of L1-SINR, the terminal may select part of L1-SINR for reporting according to the order of L1-SINR from large to small.
  • Example 1 The M is equal to N, and the N channel measurement resources and the N interference measurement resources are in a one-to-one correspondence in a predetermined order.
  • the terminal when the terminal obtains at least one L1-SINR according to the measurement results of the channel measurement resource and the interference measurement resource, it can specifically use the same receiving direction to measure the channel measurement resources and interference measurement resources corresponding to each other. Perform measurement, where different channel measurement resources use different receiving directions; and, according to the measurement results of the channel measurement resources and interference measurement resources corresponding to each other in the same receiving direction, at least one L1-SINR is calculated.
  • the terminal may select Y L1-SINRs from the at least one L1-SINR, and set the selected The Y L1-SINR and the ID of the corresponding channel measurement resource and/or the ID of the interference measurement resource are reported to the base station, and the Y is an integer greater than or equal to 1. For example, according to the order of L1-SINR from large to small, the first Y L1-SINRs are selected.
  • Y can be a predetermined value or a value configured by the base station.
  • the base station configures N channel measurement resources and N interference measurement resources, and the channel measurement resources and interference measurement resources correspond to each other in a certain order to calculate the L1-SINR, and the terminal receives each pair of channels The same receiving beam is used for measurement resources and interference measurement resources.
  • the beneficial effects of this example 1 are at least: it is used for the base station to determine the optimal receiving beam, especially after the base station has certain prior information, it is hoped that the terminal will perform a more accurate L1-SINR measurement again, so as to determine the best one.
  • the receive beam For example, the base station already has some measurement results of the beam (such as CQI/RSRP, etc.). Based on this, the base station hopes to make more accurate pairing, and can configure the above channel measurement resources and interference measurement resources for the terminal.
  • Figure 3 shows a specific resource configuration scheme of this example 1, where the base station configures 4 channel measurement resources (CMR) for the terminal, the IDs of which are CMR 0 ⁇ CMR 3) and 4 interference measurement resources IMR.
  • the IDs are IMR 0 ⁇ IMR 3.
  • Figure 3 shows the positional relationship of the above-mentioned resources in the time domain. It can be seen that the time domain positions of the channel measurement resource and the interference measurement resource of the same ID are the same.
  • the terminal determines the one-to-one correspondence between CMR and IMR in the order of the resource IDs of CMR and IMR. Specifically, CMR 0 corresponds to IMR 0, CMR 1 corresponds to IMR 1, CMR 2 corresponds to IMR 2, and CMR 3 corresponds to IMR 3.
  • the embodiments of the present disclosure may also define the corresponding relationship in other ways, and it is only necessary that the terminal and the base station determine the above-mentioned corresponding relationship in the same way.
  • the terminal can use different receiving beams, such as Beam 0 ⁇ Beam 3, to measure the above-mentioned channel measurement resources and interference measurement resources. Among them, the channel measurement resources and interference measurement resources corresponding to each other will be measured using the same receiving beam. In this way, the terminal The L1-SINR corresponding to the 4 pairs of CMR and IMR can be measured and calculated, which represents the L1-SINR of the 4 receiving beam directions.
  • the reporting format 1 that the terminal can use includes:
  • L1-SINR L1-SINR and its corresponding channel measurement resource ID and interference measurement resource ID.
  • the L1-SINR reported by the terminal may be the L1-SINR with the largest value, or may report Y channel measurement resource IDs and their corresponding Y L1-SINRs.
  • the format of differential reporting can be adopted.
  • Example 2 The N channel measurement resources are located before the M interference measurement resources in the time domain.
  • Example 2 when the terminal obtains at least one L1-SINR according to the measurement results of the channel measurement resource and the interference measurement resource, it may specifically use different receiving directions to measure the N channel measurement resources.
  • Obtain the first measurement result which may be the received signal strength
  • select X channel measurement resources according to the obtained first measurement result for example, select the X channel measurement resources in descending order of the received signal strength X receive beams.
  • the at least one L1-SINR is calculated.
  • the terminal may select Z L1-SINR from the at least one L1-SINR, and set the selected The Z L1-SINRs and the identification ID of the corresponding channel measurement resource and the identification ID of the interference measurement resource are reported to the base station, and the Z is an integer greater than or equal to 1. For example, according to the order of L1-SINR from large to small, the first Z L1-SINRs are selected.
  • Z can be a predetermined value or a value configured by the base station.
  • the base station configures N channel measurement resources and M interference measurement resources, and the channel measurement resources and interference measurement resources can be transmitted staggered in the time domain in a time division multiplexing (TDM) manner.
  • the terminal first measures the channel measurement resources, determines X receive beam directions according to the measurement results of the channel measurement resources, and then uses the determined X receive beam directions to receive M interference measurement resources. Since there are M interference measurement resources, it can be calculated Get M L1-SINR.
  • the base station can select the CMR corresponding to a certain L1-SINR among the selected M L1-SINRs
  • the receiving beam direction of the L1-SINR is configured to UE1
  • the receiving beam direction of the IMR corresponding to the L1-SINR is configured to UE2
  • UE1 and UE2 are used as MUs, so that the interference between UE1 and UE2 can be small.
  • Figure 4 shows a specific resource configuration scheme of this example 2, where the base station configures 4 channel measurement resources (CMR) for the terminal, the IDs of which are CMR 0 ⁇ CMR 3) and 2 interference measurement resources IMR.
  • the IDs are IMR 0 ⁇ IMR 1.
  • Figure 4 shows the positional relationship of the above-mentioned resources in the time domain. It can be seen that the time domain positions of the channel measurement resources and the interference measurement resources are different.
  • the terminal can use different receiving beams, such as Beam 0 ⁇ Beam 3, to measure the above-mentioned channel measurement resources respectively, and then, according to the order of RSRP size, select the largest X (assuming 1 here) receiving beams corresponding to the RSRP ( Assuming Beam 1), use the receiving beam Beam 1 to receive interference measurement resources IMR 0 to IMR 1, and then use the channel measurement resources measured by the receiving beam and the measurement results of the interference measurement resources to calculate the M L1-SINRs (Here are 2 L1-SINR).
  • the reporting format 2 that the terminal can use includes:
  • L1-SINR L1-SINR and its corresponding channel measurement resource ID and interference measurement resource ID.
  • the L1-SINR reported by the terminal may be the L1-SINR with the largest value, or it may report Z channel measurement resource IDs and their corresponding channel measurement resource IDs and interference measurement resource IDs.
  • the format of differential reporting can be adopted.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources correspond to the N first interference measurement resources one-to-one in a predetermined order, and , The N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the terminal when it obtains at least one L1-SINR according to the measurement results of the channel measurement resource and the interference measurement resource, it may specifically: adopt the same receiving direction, and perform the corresponding channel measurement resource and the first L1-SINR.
  • Interference measurement resources are used for measurement, where different channel measurement resources use different receiving directions. According to the measurement results of the channel measurement resource and the first interference measurement resource corresponding to each other in the same receiving direction, more than one L1-SINR is calculated.
  • P L1-SINRs are selected from the one or more L1-SINRs, and P receiving directions corresponding to the P L1-SINRs are determined, where P is an integer greater than or equal to 1, for example, according to LI-SINR Select P L1-SINRs in order from the largest to the smallest.
  • the P receiving directions are used to measure the S second interference measurement resources; according to the measurement results of the channel measurement resources and the second interference measurement resources in the same receiving direction, the at least one L1- SINR.
  • the terminal may select L L1-SINR from the at least one L1-SINR, and set the selected The L L1-SINR and the identification ID of the corresponding channel measurement resource and the identification ID of the second interference measurement resource are reported to the base station, and the L is an integer greater than or equal to 1. For example, according to the order of L1-SINR from large to small, the first L L1-SINRs are selected.
  • L can be a predetermined value or a value configured by the base station.
  • the base station configures N CMRs, N first IMRs, and S second IMRs.
  • the N CMRs and N first IMRs are in a one-to-one correspondence with the N first IMRs in a certain order, and the CMRs and the second IMRs Need to stagger the transmission of TDM in the time domain.
  • the terminal first performs measurement based on the N CMRs and the N first IMRs, calculates the N first L1-SINRs based on the measurement results of the corresponding CMRs and the first IMRs, and selects P according to the N first L1-SINRs First L1-SINR, and determine the P receiving directions corresponding to the P first L1-SINR, and then use the P receiving directions to measure the S second IMRs, and according to the same receiving direction Next, the measurement results of the CMR and the second IMR are calculated to obtain S L1-SINRs.
  • Figure 5 shows a specific resource configuration scheme of this example 3.
  • the base station configures 4 channel measurement resources (CMR) for the terminal, the IDs of which are CMR 0 ⁇ CMR 3) and 6 interference measurement resources IMR.
  • the IDs are IMR 0 ⁇ IMR 5.
  • Figure 5 shows the positional relationship of the above resources in the time domain. It can be seen that the channel measurement resources are different from the time domain positions of IMR 4 to IMR 5.
  • the terminal can use different receiving beams, such as Beam 0 ⁇ Beam 3 to measure the aforementioned CMR 0 ⁇ CMR 3 and IMR 0 ⁇ IMR 3 respectively. Among them, the channel measurement resources and interference measurement resources corresponding to each other will be performed using the same receiving beam. Measurement.
  • the terminal can measure and calculate the L1-SINR corresponding to the 4 pairs of CMR and IMR, which represents the L1-SINR of the 4 receive beam directions. Then, according to the order of L1-SINR size, select the largest P (assuming one here) receiving beam (assuming Beam 1) corresponding to the RSRP, and use the receiving beam Beam 1 to receive interference measurement resources IMR4 ⁇ IMR5 Then, the measurement results of the channel measurement resource CMR 1 and the interference measurement resources IMR 4 to IMR 5 measured by the receiving beam are used to calculate the two L1-SINRs.
  • the reporting format 3 that the terminal can adopt is similar to the reporting format 2 of Example 2.
  • Figure 6 shows the flow of a measurement configuration method provided by an embodiment of the present disclosure when applied to the base station side, including:
  • Step 61 Send resource configuration information for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both integers greater than or equal to 1. .
  • the channel measurement resource may be CSI-RS or SSB, and the interference measurement resource may be CSI-RS.
  • the interference measurement resource may be a non-zero power (NZP) CSI-RS or a zero power (ZP) CSI-RS.
  • the base station in the embodiment of the present disclosure configures the terminal with channel measurement resources for channel measurement and interference measurement resources for interference measurement.
  • the terminal can measure the L1-SINR of the beam based on the above measurement resources. For reporting, a more suitable beam can be selected based on the L1-SINR.
  • the base station may also receive the L1-SINR and the ID of the corresponding channel measurement resource and/or the ID of the interference measurement resource reported by the terminal.
  • the base station may configure a receiving beam for the terminal based on the L1-SINR reported by the terminal and the ID of the corresponding channel measurement resource and/or the ID of the interference measurement resource, for example, set the maximum L1-SINR
  • the corresponding terminal receiving beam is configured as the receiving beam of the terminal.
  • the base station may also send first quasi co-location (Quasi Co-Location, QCL) configuration information to the terminal, where the first QCL configuration information is used to configure the QCL of the channel measurement resource -Type D information and QCL-Type D information of interference measurement resources.
  • QCL quasi co-location
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the base station may also send second QCL configuration information to the terminal, where the second QCL configuration information is used to configure QCL-Type D information of the channel measurement resource; the L1-SINR It is calculated from the measurement result of the channel measurement resource and the interference measurement resource using the same spatial filtering or QCL-Type D as the channel measurement resource.
  • the M is equal to N
  • the N channel measurement resources and the N interference measurement resources are in one-to-one correspondence in a predetermined order.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources are related to the N first interference measurement resources.
  • the measurement resources correspond one-to-one in a predetermined order, and the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the base station when it performs multi-user pairing for multi-user-multiple-input-multiple-output (MU-MIMO), it can be based on the L1-SINR reported by the terminal and its corresponding channel measurement resource ID and/or interference measurement resource ID, configure the receive beam direction of the CMR corresponding to the same L1-SINR in the reported L1-SINR to the terminal, and configure the receive beam direction of the IMR corresponding to the L1-SINR to another terminal.
  • the other terminal and the terminal belong to the same multi-user pair (MU).
  • the embodiments of the present disclosure also provide a device for implementing the above method.
  • an embodiment of the present disclosure provides a terminal 70, including:
  • the receiving module 70 is configured to receive resource configuration information for channel measurement and interference measurement sent by the base station, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both greater than or An integer equal to 1.
  • the terminal further includes:
  • the measurement unit is configured to measure the channel measurement resource and the interference measurement resource according to the resource configuration information, and calculate at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource.
  • the terminal further includes:
  • the receiving unit is further configured to receive quasi-co-located QCL configuration information sent by the base station, where the quasi-co-located QCL configuration information is used to configure channel measurement resources and interference measurement resources with a QCL-Type D relationship;
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the terminal further includes:
  • the reporting unit is configured to report the identification ID of the L1-SINR and its corresponding channel measurement resource and/or the identification ID of the interference measurement resource to the base station.
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources are in a one-to-one correspondence in a predetermined order.
  • the measurement unit is further configured to use the same receiving direction to measure the channel measurement resources and interference measurement resources corresponding to each other, where different channel measurement resources use different receiving directions; according to the same receiving direction At least one L1-SINR is calculated for the measurement results of the channel measurement resources and interference measurement resources corresponding to each other.
  • the reporting unit is further configured to select Y L1-SINRs from the at least one L1-SINR, and combine the selected Y L1-SINRs and the identification IDs and/or corresponding channel measurement resources of the Y L1-SINRs. Or the identification ID of the interference measurement resource is reported to the base station, and the Y is an integer greater than or equal to 1.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the measurement unit is further configured to use different receiving directions to measure the N channel measurement resources, and select X channel measurement resources according to the obtained first measurement result; use the X The channel measurement resource corresponds to the receiving direction, the M interference measurement resources are measured to obtain the second measurement result; the at least one measurement result is calculated according to the measurement results of the channel measurement resource and the interference measurement resource in the same receiving direction L1-SINR.
  • the reporting unit is further configured to select Z L1-SINRs from the at least one L1-SINR, and combine the selected Z L1-SINRs and the identification IDs and interferences of the corresponding channel measurement resources.
  • the identification ID of the measurement resource is reported to the base station, and the Z is an integer greater than or equal to 1.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources are in a one-to-one correspondence with the N first interference measurement resources in a predetermined order, Moreover, the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the measurement unit is further configured to use the same receiving direction to measure the channel measurement resource and the first interference measurement resource corresponding to each other, where different channel measurement resources use different receiving directions; For the measurement results of the corresponding channel measurement resource and the first interference measurement resource in the direction, calculate more than one L1-SINR; select P L1-SINRs from the one or more L1-SINRs, and determine the P The P receiving directions corresponding to L1-SINR, where P is an integer greater than or equal to 1; the P receiving directions are used to measure the S second interference measurement resources; and all the second interference measurement resources are measured according to the same receiving direction. The measurement results of the channel measurement resource and the second interference measurement resource are calculated to obtain the at least one L1-SINR.
  • the reporting unit is further configured to select L L1-SINR from the at least one L1-SINR, and combine the selected L L1-SINR and the identification ID of the corresponding channel measurement resource with the first L1-SINR. 2.
  • the identification ID of the interference measurement resource is reported to the base station, and the L is an integer greater than or equal to 1.
  • the terminal 800 includes a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface, where:
  • the terminal 800 further includes: a program that is stored in the memory 803 and can run on the processor 801.
  • a program that is stored in the memory 803 and can run on the processor 801.
  • Receive resource configuration information for channel measurement and interference measurement sent by the base station where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both integers greater than or equal to 1.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • the resource configuration information measure the channel measurement resource and the interference measurement resource, and calculate at least one L1-SINR according to the measurement result of the channel measurement resource and the interference measurement resource.
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources are in a one-to-one correspondence in a predetermined order.
  • At least one L1-SINR is calculated according to the measurement results of the channel measurement resources and interference measurement resources corresponding to each other in the same receiving direction.
  • Y L1-SINRs are selected from the at least one L1-SINR, and the selected Y L1-SINRs and their corresponding channel measurement resource identification IDs and/or interference measurement resource identification IDs are reported to the base station, so Said Y is an integer greater than or equal to 1.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the at least one L1-SINR is calculated.
  • Z L1-SINRs are selected from the at least one L1-SINR, and the selected Z L1-SINRs and their corresponding channel measurement resource identification IDs and interference measurement resource identification IDs are reported to the base station. Is an integer greater than or equal to 1.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources are in a one-to-one correspondence with the N first interference measurement resources in a predetermined order, Moreover, the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the at least one L1-SINR is calculated.
  • Select L L1-SINR from the at least one L1-SINR, and report the selected L L1-SINR and the identification ID of the corresponding channel measurement resource and the identification ID of the second interference measurement resource to the base station, so Said L is an integer greater than or equal to 1.
  • an embodiment of the present disclosure provides a schematic structural diagram of a base station 90, and the base station 90 includes:
  • the sending module 91 is configured to send resource configuration information for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both greater than or equal to An integer of 1.
  • the base station further includes:
  • the receiving module is configured to receive the L1-SINR reported by the terminal and the identification ID of the corresponding channel measurement resource and/or the identification ID of the interference measurement resource.
  • the sending module 91 is further configured to send quasi-co-located QCL configuration information to the terminal, where the quasi-co-located QCL configuration information is used to configure channel measurement resources and interference measurement resources with a QCL-Type D relationship;
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources are in a one-to-one correspondence in a predetermined order.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources are in a one-to-one correspondence with the N first interference measurement resources in a predetermined order, Moreover, the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the base station further includes:
  • the configuration module is used to perform multi-user pairing for multi-user-multiple-input multiple-output (MU-MIMO), according to the L1-SINR reported by the terminal and the ID of the corresponding channel measurement resource and/or interference measurement resource ID, configure the receive beam direction of the CMR corresponding to the same L1-SINR in the reported L1-SINR to the terminal, and configure the receive beam direction of the IMR corresponding to the L1-SINR to another terminal.
  • the other terminal and the terminal belong to the same multi-user pair (MU).
  • an embodiment of the present disclosure provides another schematic structural diagram of a base station, including: a processor 1001, a transceiver 1002, a memory 1003, and a bus interface, where:
  • the base station 1000 further includes: a program that is stored in the memory 1003 and can be run on the processor 1001, and when the program is executed by the processor 1001, the following steps are implemented:
  • resource configuration information used for channel measurement and interference measurement to the terminal, where the resource configuration information includes N channel measurement resources and M interference measurement resources, where N and M are both integers greater than or equal to 1.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1002 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • the L1-SINR is calculated from the measurement results of the channel measurement resource and the interference measurement resource with the QCL-Type D relationship.
  • the M is equal to N, and the N channel measurement resources and the N interference measurement resources are in a one-to-one correspondence in a predetermined order.
  • the N channel measurement resources are located before the M interference measurement resources in the time domain.
  • the M interference measurement resources include N first interference measurement resources and S second interference measurement resources, and the N channel measurement resources are in a one-to-one correspondence with the N first interference measurement resources in a predetermined order, Moreover, the N channel measurement resources are located before the S second interference measurement resources in the time domain.
  • the reported L1-SINR and the ID of the corresponding channel measurement resource and/or the ID of the interference measurement resource reported by the terminal -Configure the receive beam direction of the CMR corresponding to the same L1-SINR in the SINR to the terminal, and configure the receive beam direction of the IMR corresponding to the L1-SINR to another terminal.
  • the other terminal is The terminals belong to the same multi-user pair (MU).
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present disclosure.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a base station, etc.) execute all or part of the steps of the measurement configuration method described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量配置方法、终端及基站,该方法包括:接收基站发送的用于信道测量与干扰测量的资源配置信息,资源配置信息包括有N个信道测量资源和M个干扰测量资源,N和M均为大于或等于1的整数。

Description

测量配置方法、终端及基站
相关申请的交叉引用
本申请主张在2019年9月18日在中国提交的中国专利申请号No.201910881926.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种测量配置方法、终端及基站。
背景技术
在进行下行波束测量时,网络侧通常发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或同步信号块(Synchronization Signal Block,SSB),用户设备(User Equipment,UE)通过不同的接收波束进行接收,从而测量得到每个接收波束下所述CSI-RS/SSB的层一的参考信号接收功率(Layer 1-Reference Signal Received Power,L1-RSRP)值。
相关技术在当前的波束质量上报中仅定义了UE如何进行L1-RSRP上报,例如,在参数nrofReportedRS=1时,上报1个CRI/SSBRI和对应的L1-RSRP值,在nrofReportedRS>1时,可以通过差分方式上报1/2/4个CRI/SSBRI和对应的L1-RSRP值。当前波束测量仅考虑L1-RSRP,据此选出的波束质量并不能反应该波束所受到的干扰的情况,无法满足通信需求。
发明内容
本公开的至少一个实施例提供了一种测量配置方法、终端及网络设备,为终端配置用于信道测量和干扰测量的资源,可以为波束质量测量提供更多的测量资源。
根据本公开的另一方面,至少一个实施例提供了一种测量配置方法,应用于终端,包括:
接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
可选的,上述方法中,所述信道测量资源为CSI-RS或SSB,所述干扰测量资源为CSI-RS。
可选的,上述方法还包括:
根据所述资源配置信息,对所述信道测量资源和干扰测量资源进行测量,并根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,上述方法还包括:
接收基站发送的第一准共址QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
可选的,上述方法还包括:
接收基站发送的第二QCL配置信息,其中,第二QCL配置信息用于配置信道测量资源的QCL-Type D信息;
所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
可选的,上述方法还包括:
向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,上述方法中,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,上述方法中,所述根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR,包括:
采用同一接收方向,对相互对应的信道测量资源和干扰测量资源进行测量,以及,采用不同的接收方向,对不同的信道测量资源进行测量,其中,;
根据同一接收方向下对相互对应的信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,上述方法中,向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID,包括:
从所述至少一个L1-SINR中选择出Y个L1-SINR,将所选择的Y个L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID上报给基站,所述Y为大于或等于1的整数。
可选的,上述方法中,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,上述方法中,根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR,包括:
采用不同接收方向,对所述N个信道测量资源进行测量,并根据所得到的第一测量结果选择出X个信道测量资源;
利用所述X个信道测量资源对应的接收方向,对所述M个干扰测量资源进行测量,得到第二测量结果;
根据同一接收方向下对所述信道测量资源和干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,上述方法中,向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID,包括:
从所述至少一个L1-SINR中选择出Z个L1-SINR,将所选择的Z个L1-SINR及其对应的信道测量资源的标识ID和干扰测量资源的标识ID上报给基站,所述Z为大于或等于1的整数。
可选的,上述方法中,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
可选的,上述方法中,所述根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR,包括:
采用同一接收方向,对相互对应的信道测量资源和第一干扰测量资源进 行测量,以及,采用不同的接收方向,对不同的信道测量资源进行测量,其中,;
根据同一接收方向下对相互对应的信道测量资源和第一干扰测量资源的测量结果,计算得到一个以上的L1-SINR;
从所述一个以上的L1-SINR中选择出P个L1-SINR,确定该P个L1-SINR所对应的P个接收方向,所述P为大于或等于1的整数;
采用所述P个接收方向,对所述S个第二干扰测量资源进行测量;
根据同一接收方向下对所述信道测量资源和第二干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,上述方法中,向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或第二干扰测量资源的标识ID,包括:
从所述至少一个L1-SINR中选择出L个L1-SINR,将所选择的L个L1-SINR及其对应的信道测量资源的标识ID和第二干扰测量资源的标识ID上报给基站,所述L为大于或等于1的整数。
本公开实施例还提供了一种测量配置方法,应用于基站,包括:
向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
可选的,上述方法中,所述信道测量资源为CSI-RS或SSB,所述干扰测量资源为CSI-RS。
可选的,上述方法还包括:
接收所述终端上报的L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,上述方法还包括:
向终端发送第一QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
可选的,上述方法还包括:
向终端发送第二QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息;
所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
可选的,上述方法中,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,上述方法中,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,上述方法中,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
本公开实施例还提供了一种终端,包括:
接收模块,用于接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
本公开实施例还提供了一种终端,包括收发机和处理器,其中,
所述收发机,用于接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
本公开实施例还提供了一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的测量配置方法的步骤。
本公开实施例还提供了一种基站,包括:
发送模块,用于向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
本公开实施例还提供了一种基站,包括收发机和处理器,其中,
所述收发机,用于向终端发送用于信道测量与干扰测量的资源配置信息, 所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
本公开实施例还提供了一种基站,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的测量配置方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时,实现如上所述的方法的步骤。
与相关技术相比,本公开实施例提供的测量配置方法、终端及基站,可以为终端配置用于信道测量和干扰测量的资源,从而为波束质量测量提供更多的测量资源。并且,本公开实施例还可以基于上述测量资源,测量波束的L1-SINR并进行上报,使得基站可以基于所述L1-SINR选择出更为合适的波束。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例的一种应用场景示意图;
图2为本公开实施例提供的测量配置方法应用于终端侧时的流程图;
图3为本公开实施例提供的资源配置的示例1的示意图;
图4为本公开实施例提供的资源配置的示例1的示意图;
图5为本公开实施例提供的资源配置的示例1的示意图;
图6为本公开实施例提供的测量配置方法应用于基站侧时的流程图;
图7为本公开实施例提供的终端的一种结构示意图;
图8为本公开实施例提供的终端的另一种结构示意图;
图9为本公开实施例提供的网络设备的一种结构示意图;
图10为本公开实施例提供的网络设备的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于NR系统以及长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、 Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作用户终端或用户设备(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站和/或核心网网元,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以 NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
如背景技术中所述的,相关技术中的波束测量通常仅考虑L1-RSRP,并未考虑到波束的受干扰问题,有可能存在选出的波束虽然波束L1-RSRP比较高,但是干扰也很大,导致该波束的层一的信号与干扰加噪声比(Layer 1-Signal to Interference plus Noise Ratio,L1-SINR)比较低的情况。相关技术中目前并没有对波束L1-SINR的测量机制,也没有网络侧配置信道测量资源和干扰测量资源的方案。另外,相关技术中也没有UE上报L1-SINR的格式 和方案。因此,本公开实施例考虑引入基于L1-SINR的波束测量和上报方案。
请参照图2,本公开实施例提供的一种测量配置方法,在应用于终端侧时,包括:
步骤21,接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
这里,可选的,所述信道测量资源可以是CSI-RS或SSB,所述干扰测量资源可以是CSI-RS。具体的,干扰测量资源可以是非零功率(NZP)的CSI-RS或零功率(ZP)的CSI-RS。
通过以上步骤,本公开实施例为终端配置了用于信道测量的信道测量资源,以及,用于干扰测量的干扰测量资源,这样,终端可以基于上述测量资源,测量波束的L1-SINR并进行上报,这样可以基于L1-SINR选择出更为合适的波束。
在上述步骤21之后,终端还可以根据所述资源配置信息,对所述信道测量资源和干扰测量资源进行测量,并根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
根据本公开的至少一个实施例,所述终端还可以接收基站发送的第一准共址(Quasi Co-Location,QCL)配置信息,其中,所述第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息。所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
这里,QCL是指准共址关系。例如,在LTE系统中,天线端口准共址是一种天线端口之间的状态假设。如果一个天线端口与另一个天线端口准共址,即意味着终端可以假设从天线端口之一(或者与天线端口对应的无线电信道)接收的信号的大规模特性整体或部分地与从另一个天线端口(或者对应于天线端口的无线电信道)接收的信号的大规模特性相同。也就是说,某个天线端口符号上的信道特性可以从另一个天线端口推导出,则认为这两个端口QCL,从一个端口获得的信道估计结果,可以用于另一个端口。目前QCL定义了以下类型,即QCL-Type A、QCL-Type B、QCL-Type C和QCL-Type D等类型, 其中,QCL-Type D则是空间接收参数的准共址关系。根据本公开的另一些实施例,所述终端还可以接收基站发送的第二QCL配置信息,其中,所述第二QCL配置信息用于配置信道测量资源的QCL-Type D信息;所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
在计算得到至少一个L1-SINR后,所述终端可以向基站上报所述L1-SINR及其对应的信道测量资源的标识(ID)和/或干扰测量资源的ID。具体的,可以上报L1-SINR及L1-SINR所对应的信道测量资源的ID,也可以上报L1-SINR及L1-SINR所对应的干扰测量资源的ID,还可以上报L1-SINR及L1-SINR所对应的信道测量资源的ID和干扰测量资源的ID。另外,这里上报的L1-SINR可以是计算得到的所述至少一个L1-SINR中的全部或部分L1-SINR。在上报部分L1-SINR时,所述终端可以根据L1-SINR从大到小的顺序,选择出部分L1-SINR进行上报。
下面将通过若干具体示例,对以上的测量配置方法作进一步的说明。
示例1:所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
在本示例1中,终端在根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR时,具体可以采用同一接收方向,对相互对应的信道测量资源和干扰测量资源进行测量,其中,不同的信道测量资源所采用的接收方向不同;以及,根据同一接收方向下对相互对应的信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
在向基站上报所述L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID时,终端可以从所述至少一个L1-SINR中选择出Y个L1-SINR,将所选择的Y个L1-SINR及其对应信道测量资源的ID和/或干扰测量资源的ID上报给基站,所述Y为大于或等于1的整数。例如,按照L1-SINR从大到小的顺序,选择前Y个L1-SINR。这里,Y可以是一个预先约定或者基站配置的数值。
本示例1中,基站配置N个信道测量资源与N个干扰测量资源,且按照一定的顺序使得信道测量资源和干扰测量资源一一对应,以计算得到 L1-SINR,另外终端接收每一对信道测量资源和干扰测量资源时采用相同的接收波束。
该示例1的有益效果至少有:用于基站确定针对最优的接收波束,尤其是对于基站拥有一定先验信息后,希望终端再做一次更加精准的L1-SINR测量,以便于确定一个最好的接收波束。例如,基站已经有了对波束的一些测量结果(比如CQI/RSRP等),在此基础上,基站希望做更准确的配对,可以为终端配置以上的信道测量资源和干扰测量资源。
图3给出了该示例1的一个具体的资源配置方案,其中,基站为终端配置4个信道测量资源(CMR),其ID分别为CMR 0~CMR 3)和4个干扰测量资源IMR,其ID分别为IMR 0~IMR 3。图3给出了上述资源在时域上的位置关系,可以看出,同一ID的信道测量资源和干扰测量资源的时域位置相同。终端按照CMR和IMR的资源ID的顺序,确定CMR和IMR的一一对应关系,具体的,CMR 0对应于IMR 0,CMR 1对应于IMR 1,CMR 2对应于IMR 2,CMR 3对应于IMR 3。当然,本公开实施例也可以定义其他方式的对应关系,只需要终端和基站均按照同一方式确定上述对应关系即可。终端可以采用不同的接收波束,如Beam 0~Beam 3,测量上述信道测量资源和干扰测量资源,其中,针对相互对应的信道测量资源和干扰测量资源,将采用同一接收波束进行测量,这样,终端可以测量并计算得到4对CMR和IMR所对应的L1-SINR,代表了4个接收波束方向的L1-SINR。
在进行L1-SINR上报时,终端可以采用的上报格式1包括:
L1-SINR及其对应的信道测量资源的ID;
L1-SINR及其对应的干扰测量资源的ID;
L1-SINR及其对应的信道测量资源的ID和干扰测量资源的ID。
另外,终端所上报的L1-SINR,可以是值最大的L1-SINR,也可以上报Y个信道测量资源ID及其对应的Y个L1-SINR。在上报多个L1-SINR时,可以采用差分上报的格式。
示例2:所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
在本示例2中,终端在根据对所述信道测量资源和干扰测量资源的测量 结果,计算得到至少一个L1-SINR时,具体可以采用不同接收方向,对所述N个信道测量资源进行测量,得到第一测量结果,所述第一测量结果可以是接收信号强度,然后,根据所得到的第一测量结果选择出X个信道测量资源,例如,按照接收信号强度从大到小的顺序选择出X个接收波束。然后,利用所述X个信道测量资源对应的接收方向,对所述M个干扰测量资源进行测量,得到第二测量结果;以及,根据同一接收方向下对所述信道测量资源和干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
在向基站上报所述L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID时,终端可以从所述至少一个L1-SINR中选择出Z个L1-SINR,将所选择的Z个L1-SINR及其对应信道测量资源的标识ID和干扰测量资源的标识ID上报给基站,所述Z为大于或等于1的整数。例如,按照L1-SINR从大到小的顺序,选择前Z个L1-SINR。这里,Z可以是一个预先约定或者基站配置的数值。
本示例2中,基站配置N个信道测量资源与M个干扰测量资源,且信道测量资源和干扰测量资源可以在时域上以时分复用(TDM)方式错开发送。终端先测量信道测量资源,根据信道测量资源的测量结果确定X个接收波束方向,然后,用所确定的X个接收波束方向接收M个干扰测量资源,由于存在M个干扰测量资源,因此可以计算得到M个L1-SINR。
该示例2的有益效果至少有:确定多用户-多入多出(MU-MIMO)的多用户配对时,例如基站可以将所选的M个L1-SINR中的某个L1-SINR对应的CMR的接收波束方向配置给UE1,该L1-SINR所对应的IMR的接收波束方向配置给UE2,并让UE1和UE2做MU,从而可以使得UE1和UE2间的干扰较小。
图4给出了该示例2的一个具体的资源配置方案,其中,基站为终端配置4个信道测量资源(CMR),其ID分别为CMR 0~CMR 3)和2个干扰测量资源IMR,其ID分别为IMR 0~IMR 1。图4给出了上述资源在时域上的位置关系,可以看出,信道测量资源和干扰测量资源的时域位置不同。终端可以采用不同的接收波束,如Beam 0~Beam 3,分别测量上述信道测量资源,然后,按照RSRP大小顺序,选择出最大的X个(假设这里为1个)的RSRP 所对应的接收波束(假设为Beam 1),利用该接收波束Beam 1接收干扰测量资源IMR 0~IMR 1,进而利用该接收波束测量到的信道测量资源和干扰测量资源的测量结果,计算得到所述M个L1-SINR(这里为2个L1-SINR)。
在进行L1-SINR上报时,终端可以采用的上报格式2包括:
L1-SINR及其对应的信道测量资源的ID和干扰测量资源的ID。
另外,终端所上报的L1-SINR,可以是值最大的L1-SINR,也可以上报Z个信道测量资源ID及其对应的信道测量资源的ID和干扰测量资源的ID。在上报多个L1-SINR时,可以采用差分上报的格式。
示例3:所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
在本示例3中,终端在根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR时,具体可以:采用同一接收方向,对相互对应的信道测量资源和第一干扰测量资源进行测量,其中,不同的信道测量资源所采用的接收方向不同。根据同一接收方向下对相互对应的信道测量资源和第一干扰测量资源的测量结果,计算得到一个以上的L1-SINR。从所述一个以上的L1-SINR中选择出P个L1-SINR,确定该P个L1-SINR所对应的P个接收方向,所述P为大于或等于1的整数,例如,按照LI-SINR从大到小的顺序选择出P个L1-SINR。采用所述P个接收方向,对所述S个第二干扰测量资源进行测量;根据同一接收方向下对所述信道测量资源和第二干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
在向基站上报所述L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID时,终端可以从所述至少一个L1-SINR中选择出L个L1-SINR,将所选择的L个L1-SINR及其对应信道测量资源的标识ID和第二干扰测量资源的标识ID上报给基站,所述L为大于或等于1的整数。例如,按照L1-SINR从大到小的顺序,选择前L个L1-SINR。这里,L可以是一个预先约定或者基站配置的数值。
本示例3中,基站配置N个CMR与N个第一IMR和S个第二IMR, 所述N个CMR与N个第一IMR按照一定的顺序一一对应,且CMR和所述第二IMR需要在时域上TDM错开发送。终端先基于N个CMR和所述N个第一IMR进行测量,根据相互对应的CMR和第一IMR的测量结果,计算得到N个第一L1-SINR,根据N个第一L1-SINR选择P个第一L1-SINR,并确定该P个第一L1-SINR所对应的P个接收方向,进而采用所述P个接收方向,对所述S个第二IMR进行测量,并根据同一接收方向下对所述CMR和第二IMR的测量结果,计算得到S个L1-SINR。
图5给出了该示例3的一个具体的资源配置方案,其中,基站为终端配置4个信道测量资源(CMR),其ID分别为CMR 0~CMR 3)和6个干扰测量资源IMR,其ID分别为IMR 0~IMR 5。图5给出了上述资源在时域上的位置关系,可以看出,信道测量资源和IMR 4~IMR 5的时域位置不同。终端可以采用不同的接收波束,如Beam 0~Beam 3,分别测量上述CMR 0~CMR 3和IMR 0~IMR 3,其中,针对相互对应的信道测量资源和干扰测量资源,将采用同一接收波束进行测量,这样,终端可以测量并计算得到4对CMR和IMR所对应的L1-SINR,代表了4个接收波束方向的L1-SINR。然后,按照L1-SINR大小顺序,选择出最大的P个(假设这里为1个)的RSRP所对应的接收波束(假设为Beam 1),利用该接收波束Beam 1接收干扰测量资源IMR4~IMR 5,进而利用该接收波束测量到的信道测量资源CMR 1和干扰测量资源IMR 4~IMR 5的测量结果,计算得到所述2个L1-SINR。
在进行L1-SINR上报时,终端可以采用的上报格式3与示例2的上报格式2类似。
图6给出了本公开实施例提供的一种测量配置方法在应用于基站侧时的流程,包括:
步骤61,向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
这里,可选的,所述信道测量资源可以是CSI-RS或SSB,所述干扰测量资源可以是CSI-RS。具体的,干扰测量资源可以是非零功率(NZP)的CSI-RS或零功率(ZP)的CSI-RS。
通过以上步骤,本公开实施例的基站为终端配置了用于信道测量的信道测量资源,以及,用于干扰测量的干扰测量资源,这样,终端可以基于上述测量资源,测量波束的L1-SINR并进行上报,这样可以基于L1-SINR选择出更为合适的波束。
本公开实施例中,在上述步骤62之后,所述基站还可以接收所述终端上报的L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID。
更进一步的,所述基站可以基于所述终端上报的L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID,为所述终端配置接收波束,例如,将最大L1-SINR所对应的终端接收波束,配置为所述终端的接收波束。
根据本公开的至少一个实施例,所述基站还可以向终端发送第一准共址(Quasi Co-Location,QCL)配置信息,其中,所述第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息。所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
根据本公开的另一些实施例,所述基站还可以向终端发送第二QCL配置信息,其中,所述第二QCL配置信息用于配置信道测量资源的QCL-Type D信息;所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
可选的,与前文的示例1相对应的,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,与前文的示例2相对应的,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,与前文的示例3相对应的,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
可选的,基站为多用户-多入多出(MU-MIMO)进行多用户配对时,可以根据所述终端上报的L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID,将上报的L1-SINR中的同一个L1-SINR对应的CMR的接收波 束方向配置给所述终端,将该L1-SINR所对应的IMR的接收波束方向配置给另一终端,这里,所述另一终端与所述终端属于同一个多用户配对(MU)。
基于以上方法,本公开实施例还提供了实施上述方法的设备。
请参照图7,本公开实施例提供了一种终端70,包括:
接收模块70,用于接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
可选的,所述终端还包括:
测量单元,用于根据所述资源配置信息,对所述信道测量资源和干扰测量资源进行测量,并根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,所述终端还包括:
所述接收单元,还用于接收基站发送的准共址QCL配置信息,其中,准共址QCL配置信息用于配置具备QCL-Type D关系的信道测量资源和干扰测量资源;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
可选的,所述终端还包括:
上报单元,用于向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,所述测量单元,还用于采用同一接收方向,对相互对应的信道测量资源和干扰测量资源进行测量,其中,不同的信道测量资源所采用的接收方向不同;根据同一接收方向下对相互对应的信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,所述上报单元,还用于从所述至少一个L1-SINR中选择出Y个L1-SINR,将所选择的Y个L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID上报给基站,所述Y为大于或等于1的整数。
可选的,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,所述测量单元,还用于采用不同接收方向,对所述N个信道测量资源进行测量,并根据所得到的第一测量结果选择出X个信道测量资源;利用所述X个信道测量资源对应的接收方向,对所述M个干扰测量资源进行测量,得到第二测量结果;根据同一接收方向下对所述信道测量资源和干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,所述上报单元,还用于从所述至少一个L1-SINR中选择出Z个L1-SINR,将所选择的Z个L1-SINR及其对应的信道测量资源的标识ID和干扰测量资源的标识ID上报给基站,所述Z为大于或等于1的整数。
可选的,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
可选的,所述测量单元,还用于采用同一接收方向,对相互对应的信道测量资源和第一干扰测量资源进行测量,其中,不同的信道测量资源所采用的接收方向不同;根据同一接收方向下对相互对应的信道测量资源和第一干扰测量资源的测量结果,计算得到一个以上的L1-SINR;从所述一个以上的L1-SINR中选择出P个L1-SINR,确定该P个L1-SINR所对应的P个接收方向,所述P为大于或等于1的整数;采用所述P个接收方向,对所述S个第二干扰测量资源进行测量;根据同一接收方向下对所述信道测量资源和第二干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,所述上报单元,还用于从所述至少一个L1-SINR中选择出L个L1-SINR,将所选择的L个L1-SINR及其对应的信道测量资源的标识ID和第二干扰测量资源的标识ID上报给基站,所述L为大于或等于1的整数。
请参照图8,本公开实施例提供的终端的另一结构,该终端800包括:处理器801、收发机802、存储器803、用户接口804和总线接口,其中:
在本公开实施例中,终端800还包括:存储在存储器上803并可在处理器801上运行的程序,程序被处理器801执行时实现如下步骤:
接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据所述资源配置信息,对所述信道测量资源和干扰测量资源进行测量,并根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,所述程序被处理器803执行时还可实现如下步骤:
接收基站发送的准共址QCL配置信息,其中,准共址QCL配置信息用于配置具备QCL-Type D关系的信道测量资源和干扰测量资源;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
可选的,所述程序被处理器803执行时还可实现如下步骤:
向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,所述程序被处理器803执行时还可实现如下步骤:
采用同一接收方向,对相互对应的信道测量资源和干扰测量资源进行测 量,其中,不同的信道测量资源所采用的接收方向不同;
根据同一接收方向下对相互对应的信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
可选的,所述程序被处理器803执行时还可实现如下步骤:
从所述至少一个L1-SINR中选择出Y个L1-SINR,将所选择的Y个L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID上报给基站,所述Y为大于或等于1的整数。
可选的,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,所述程序被处理器803执行时还可实现如下步骤:
采用不同接收方向,对所述N个信道测量资源进行测量,并根据所得到的第一测量结果选择出X个信道测量资源;
利用所述X个信道测量资源对应的接收方向,对所述M个干扰测量资源进行测量,得到第二测量结果;
根据同一接收方向下对所述信道测量资源和干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,所述程序被处理器803执行时还可实现如下步骤:
从所述至少一个L1-SINR中选择出Z个L1-SINR,将所选择的Z个L1-SINR及其对应的信道测量资源的标识ID和干扰测量资源的标识ID上报给基站,所述Z为大于或等于1的整数。
可选的,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
可选的,所述程序被处理器803执行时还可实现如下步骤:
采用同一接收方向,对相互对应的信道测量资源和第一干扰测量资源进行测量,其中,不同的信道测量资源所采用的接收方向不同;
根据同一接收方向下对相互对应的信道测量资源和第一干扰测量资源的测量结果,计算得到一个以上的L1-SINR;
从所述一个以上的L1-SINR中选择出P个L1-SINR,确定该P个L1-SINR所对应的P个接收方向,所述P为大于或等于1的整数;
采用所述P个接收方向,对所述S个第二干扰测量资源进行测量;
根据同一接收方向下对所述信道测量资源和第二干扰测量资源的测量结果,计算得到所述至少一个L1-SINR。
可选的,所述程序被处理器803执行时还可实现如下步骤:
从所述至少一个L1-SINR中选择出L个L1-SINR,将所选择的L个L1-SINR及其对应的信道测量资源的标识ID和第二干扰测量资源的标识ID上报给基站,所述L为大于或等于1的整数。
请参考图9,本公开实施例提供了基站90的一结构示意图,该基站90包括:
发送模块91,用于向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
可选的,所述基站还包括:
接收模块,用于接收所述终端上报的L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,所述发送模块91,还用于向终端发送准共址QCL配置信息,其中,准共址QCL配置信息用于配置具备QCL-Type D关系的信道测量资源和干扰测量资源;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
可选的,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测 量资源之前。
可选的,所述基站还包括:
配置模块,用于在为多用户-多入多出(MU-MIMO)进行多用户配对时,根据所述终端上报的L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID,将上报的L1-SINR中的同一个L1-SINR对应的CMR的接收波束方向配置给所述终端,将该L1-SINR所对应的IMR的接收波束方向配置给另一终端,这里,所述另一终端与所述终端属于同一个多用户配对(MU)。
请参考图10,本公开实施例提供了基站的另一结构示意图,包括:处理器1001、收发机1002、存储器1003和总线接口,其中:
在本公开实施例中,基站1000还包括:存储在存储器上1003并可在处理器1001上运行的程序,所述程序被处理器1001执行时实现如下步骤:
向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
可选的,所述程序被处理器1001执行时还可实现如下步骤:
接收所述终端上报的L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
可选的,所述程序被处理器1001执行时还可实现如下步骤:
向终端发送准共址QCL配置信息,其中,准共址QCL配置信息用于配置具备QCL-Type D关系的信道测量资源和干扰测量资源;
所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资 源的测量结果计算得到的。
可选的,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
可选的,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
可选的,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
可选的,所述程序被处理器1001执行时还可实现如下步骤:
为多用户-多入多出(MU-MIMO)进行多用户配对时,根据所述终端上报的L1-SINR及其对应的信道测量资源的ID和/或干扰测量资源的ID,将上报的L1-SINR中的同一个L1-SINR对应的CMR的接收波束方向配置给所述终端,将该L1-SINR所对应的IMR的接收波束方向配置给另一终端,这里,所述另一终端与所述终端属于同一个多用户配对(MU)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者基站等)执行本公开各个实施例所述测量配置方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种测量配置方法,应用于终端,包括:
    接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  2. 如权利要求1所述的方法,其中,
    所述信道测量资源为CSI-RS或SSB,所述干扰测量资源为CSI-RS。
  3. 如权利要求1所述的方法,还包括:
    根据所述资源配置信息,对所述信道测量资源和干扰测量资源进行测量,并根据对所述信道测量资源和干扰测量资源的测量结果,计算得到至少一个L1-SINR。
  4. 如权利要求3所述的方法,还包括:
    接收基站发送的第一准共址QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息;
    所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
  5. 如权利要求3所述的方法,还包括:
    接收基站发送的第二QCL配置信息,其中,第二QCL配置信息用于配置信道测量资源的QCL-Type D信息;
    所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
  6. 如权利要求3所述的方法,还包括:
    向基站上报所述L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
  7. 如权利要求1至6任一项所述的方法,其中,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
  8. 如权利要求1至6任一项所述的方法,其中,所述N个信道测量资源 在时域上位于所述M个干扰测量资源之前。
  9. 如权利要求1至6任一项所述的方法,其中,所述M个干扰测量资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
  10. 一种测量配置方法,应用于基站,包括:
    向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  11. 如权利要求10所述的方法,其中,
    所述信道测量资源为CSI-RS或SSB,所述干扰测量资源为CSI-RS。
  12. 如权利要求10所述的方法,还包括:
    接收所述终端上报的L1-SINR及其对应的信道测量资源的标识ID和/或干扰测量资源的标识ID。
  13. 如权利要求10所述的方法,还包括:
    向终端发送第一QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息和干扰测量资源的QCL-Type D信息;
    所述L1-SINR是由具备QCL-Type D关系的信道测量资源和干扰测量资源的测量结果计算得到的。
  14. 如权利要求10所述的方法,还包括:
    向终端发送第二QCL配置信息,其中,第一QCL配置信息用于配置信道测量资源的QCL-Type D信息;
    所述L1-SINR是由所述信道测量资源和与该信道测量资源采用相同空间滤波或QCL-Type D的干扰测量资源的测量结果计算得到的。
  15. 如权利要求10至14任一项所述的方法,其中,所述M等于N,且N个信道测量资源与N个干扰测量资源按照预定顺序一一对应。
  16. 如权利要求10至14任一项所述的方法,其中,所述N个信道测量资源在时域上位于所述M个干扰测量资源之前。
  17. 如权利要求10至14任一项所述的方法,其中,所述M个干扰测量 资源包括N个第一干扰测量资源和S个第二干扰测量资源,所述N个信道测量资源与N个第一干扰测量资源按照预定顺序一一对应,且,所述N个信道测量资源在时域上位于所述S个第二干扰测量资源之前。
  18. 一种终端,包括:
    接收模块,用于接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  19. 一种终端,包括收发机和处理器,其中,
    所述收发机,用于接收基站发送的用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  20. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至9任一项所述的测量配置方法的步骤。
  21. 一种基站,包括:
    发送模块,用于向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  22. 一种基站,包括收发机和处理器,其中,
    所述收发机,用于向终端发送用于信道测量与干扰测量的资源配置信息,所述资源配置信息包括有N个信道测量资源和M个干扰测量资源,所述N和M均为大于或等于1的整数。
  23. 一种基站,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求10至17任一项所述的测量配置方法的步骤。
  24. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至17任一项所述的测量配置方法的步骤。
PCT/CN2020/114697 2019-09-18 2020-09-11 测量配置方法、终端及基站 WO2021052246A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/641,583 US20220303801A1 (en) 2019-09-18 2020-09-11 Measurement configuration method, terminal and base station
JP2022517483A JP7324367B2 (ja) 2019-09-18 2020-09-11 測定構成方法、端末及び基地局
CA3151592A CA3151592C (en) 2019-09-18 2020-09-11 Measurement configuration method, terminal, and base station
EP20865297.4A EP4033800B1 (en) 2019-09-18 2020-09-11 Measurement configuration method, terminal, and base station
AU2020348730A AU2020348730B2 (en) 2019-09-18 2020-09-11 Measurement configuration method, terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910881926.9 2019-09-18
CN201910881926.9A CN112533230B (zh) 2019-09-18 2019-09-18 一种测量配置方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2021052246A1 true WO2021052246A1 (zh) 2021-03-25

Family

ID=74883676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114697 WO2021052246A1 (zh) 2019-09-18 2020-09-11 测量配置方法、终端及基站

Country Status (7)

Country Link
US (1) US20220303801A1 (zh)
EP (1) EP4033800B1 (zh)
JP (1) JP7324367B2 (zh)
CN (1) CN112533230B (zh)
AU (1) AU2020348730B2 (zh)
CA (1) CA3151592C (zh)
WO (1) WO2021052246A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190508A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 一种测量上报方法及装置
TWI835088B (zh) * 2021-04-02 2024-03-11 大陸商大唐移動通信設備有限公司 一種測量上報方法及裝置
WO2024061241A1 (en) * 2022-09-23 2024-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and methods of inter-ue interference beam measurement and reporting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204322A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
CN115967973A (zh) * 2021-10-11 2023-04-14 中兴通讯股份有限公司 多用户设备调度方法、装置、基站及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462664A1 (en) * 2017-07-21 2019-04-03 LG Electronics Inc. -1- Method for transmitting and receiving channel state information reference signal in wireless communication system and apparatus therefor
CN110034872A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 资源与qcl的关联关系指示方法、确定方法及相关设备
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的系统和方法
CN111432428A (zh) * 2019-01-10 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备
CN111432427A (zh) * 2019-01-09 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991231B (zh) * 2015-02-28 2021-07-30 中兴通讯股份有限公司 获取信道状态信息csi的方法及装置
CN106559232B (zh) * 2015-09-25 2020-09-11 中兴通讯股份有限公司 信息通知方法及信道状态信息csi进程的执行方法
CN107294583B (zh) * 2016-03-31 2020-10-16 华为技术有限公司 一种信道状态测量方法、装置及存储介质
US10911204B2 (en) * 2016-09-30 2021-02-02 Motorola Mobility Llc Method and apparatus for reporting channel state information
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和系统
CN108810932A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 信道状态信息处理方法及其装置
CN108111278B (zh) * 2017-08-11 2020-09-18 中兴通讯股份有限公司 信息上报方法及装置、信息传输的方法及装置
WO2019047190A1 (zh) * 2017-09-08 2019-03-14 Oppo广东移动通信有限公司 干扰测量的方法、终端设备和网络设备
CN109586446A (zh) * 2017-09-29 2019-04-05 比亚迪股份有限公司 导体段及定子组件、电机
US10812202B2 (en) * 2017-10-02 2020-10-20 Qualcomm Incorporated Resources for channel measurements
US11723049B2 (en) * 2017-11-15 2023-08-08 Interdigital Patent Holdings, Inc. Beam management in a wireless network
US10873966B2 (en) * 2018-01-02 2020-12-22 Samsung Electronics Co., Ltd. Signaling of control information in a communication system
US10651900B2 (en) * 2018-05-18 2020-05-12 Futurewei Technologies, Inc. System and method for communications system training
KR102697137B1 (ko) * 2019-01-09 2024-08-22 후지쯔 가부시끼가이샤 채널 상태 정보의 측정 목적을 표시하기 위한 방법 및 디바이스와 시스템
WO2020198977A1 (en) * 2019-03-29 2020-10-08 Qualcomm Incorporated Reporting configurations for channel and interference measurement
WO2020118322A2 (en) * 2019-06-17 2020-06-11 Futurewei Technologies, Inc. Methods and apparatus for operating in a wideband communication system
CN113596861B (zh) * 2019-06-28 2023-02-28 Oppo广东移动通信有限公司 用于波束报告的方法和设备
US12063677B2 (en) * 2020-10-19 2024-08-13 Qualcomm Incorporated Channel and interference measurement using semi-persistent scheduled resources in wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462664A1 (en) * 2017-07-21 2019-04-03 LG Electronics Inc. -1- Method for transmitting and receiving channel state information reference signal in wireless communication system and apparatus therefor
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的系统和方法
CN110034872A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 资源与qcl的关联关系指示方法、确定方法及相关设备
CN111432427A (zh) * 2019-01-09 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备
CN111432428A (zh) * 2019-01-10 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues for CSI framework", 3GPP DRAFT; R1-1800529, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051384907 *
See also references of EP4033800A4 *
VIVO: "Discussion on beam measurement, beam reporting and beam indication", 3GPP DRAFT; R1-1717472_DISCUSSION ON BEAM MEASUREMENT, BEAM REPORTING AND BEAM INDICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051340660 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190508A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 一种测量上报方法及装置
TWI835088B (zh) * 2021-04-02 2024-03-11 大陸商大唐移動通信設備有限公司 一種測量上報方法及裝置
CN115190508B (zh) * 2021-04-02 2025-03-28 大唐移动通信设备有限公司 一种测量上报方法及装置
WO2024061241A1 (en) * 2022-09-23 2024-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and methods of inter-ue interference beam measurement and reporting

Also Published As

Publication number Publication date
EP4033800A4 (en) 2022-10-26
US20220303801A1 (en) 2022-09-22
EP4033800B1 (en) 2024-06-12
CA3151592C (en) 2024-02-27
EP4033800A1 (en) 2022-07-27
CA3151592A1 (en) 2021-03-25
CN112533230A (zh) 2021-03-19
AU2020348730A1 (en) 2022-05-12
JP2022548927A (ja) 2022-11-22
JP7324367B2 (ja) 2023-08-09
AU2020348730B2 (en) 2023-04-20
CN112533230B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2021052246A1 (zh) 测量配置方法、终端及基站
CN103053196B (zh) 协同多点传输的节点关联方法
WO2019214383A1 (zh) 准共址信息的配置方法、网络设备及用户设备
US11146372B2 (en) Reference signal transmission method and apparatus
CN106465167A (zh) 用于在无线电通信网络中启用设备到设备(d2d)通信的用户设备、网络节点以及其中的方法
US12149969B2 (en) Method for CSI and beam report enhancement for multi-TRP full duplex
WO2022001241A1 (zh) 一种波束管理方法及装置
CN116391445A (zh) 基于ue能力的csi报告配置
US20240196247A1 (en) Method for group based l1-sinr measurement and report
EP3202187B1 (en) Transmission of wlan access parameters for a group of wlan ap
CN111464218B (zh) 下行波束管理的方法及设备
EP2880875A1 (en) System and apparatus for measurement report in coordinated multipoint transmission system
EP2829099B1 (en) Transmission point selection
US20240196246A1 (en) Ncsg for deactivated serving cell measurement
WO2021233430A1 (zh) 物理上行控制信道资源的配置方法及设备
WO2024031513A1 (en) Multi-dci based simultaneous pusch transmission
US11985661B2 (en) Systems and methods for PDSCH based CSI measurement
CN113890702B (zh) 波束指示方法、装置、终端及网络侧设备
CN118945770A (zh) 上行信道或上行信号配置方法、终端、网络设备及介质
CN119790681A (zh) 用于测量间隙使用信令增强的系统和方法
CN115866660A (zh) 相邻小区上的上行链路波束训练
CN115514427A (zh) 校准信号的传输方法、基站及计算机可读存储介质
CN119452694A (zh) 用户装备(ue)对由ue在活动带宽部分之外接收的层1(l1)参考信号执行l1测量操作

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517483

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3151592

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865297

Country of ref document: EP

Effective date: 20220419

ENP Entry into the national phase

Ref document number: 2020348730

Country of ref document: AU

Date of ref document: 20200911

Kind code of ref document: A