[go: up one dir, main page]

WO2021040130A1 - Air density control system equipped with air conditioner mounted on rooftop - Google Patents

Air density control system equipped with air conditioner mounted on rooftop Download PDF

Info

Publication number
WO2021040130A1
WO2021040130A1 PCT/KR2019/014347 KR2019014347W WO2021040130A1 WO 2021040130 A1 WO2021040130 A1 WO 2021040130A1 KR 2019014347 W KR2019014347 W KR 2019014347W WO 2021040130 A1 WO2021040130 A1 WO 2021040130A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling unit
condenser
ceiling
control system
Prior art date
Application number
PCT/KR2019/014347
Other languages
French (fr)
Korean (ko)
Inventor
이건홍
이도재
허수경
Original Assignee
주식회사 엔쓰컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔쓰컴퍼니 filed Critical 주식회사 엔쓰컴퍼니
Publication of WO2021040130A1 publication Critical patent/WO2021040130A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering

Definitions

  • the present invention relates to an air density control system that is installed outdoors and controls the air density of a surrounding space to form an air shield surrounding a certain surrounding space, and fill and maintain the space with clean air.
  • Fine dust is a fine dust with a particle diameter of 10 ⁇ m or less, and is also called PM10. If the particle is less than 2.5 ⁇ m, it is written as PM 2.5 and is also called'ultra-fine dust' or'extra-fine dust'. It is also called'ultra-fine dust' or'extra-fine dust'. In academic terms, it is called aerosol.
  • Fine dust is a major air pollutant because it contains sulfurous acid gas, nitrogen oxides, lead, ozone, and carbon monoxide, and it is small in mass and floats in the atmosphere for a long period of time and flows into the human respiratory system. Fine dust or ultra-fine dust introduced into the respiratory tract is known to be very harmful because it is not easily discharged, and it is the cause of extremely limiting the radius of action of people.
  • Fine dust is also caused by natural causes such as dust from sand breeze, volcanic ash, and forest fires, but also occurs in thermal power plants, exhaust gases from automobiles or factories, and heating appliances or gas appliances used in homes. Therefore, the concentration of fine dust in the atmosphere can be determined depending on what sources and how much are the sources of fine dust in our area. However, the cause of the increase in the concentration of fine dust in a specific area can be determined by more complex factors. On the other hand, vehicles running in urban areas are one of the major causes of air pollution because they emit nitrogen compounds in addition to tire dust and fine dust caused by road crushing.
  • Pagora is a facility that is installed outdoors and provides a space for users to sit and relax. Usually, a plurality of pillars are installed on the ground and a ceiling is mounted on the ground. Sun protection is the primary function of most Pagora.
  • Various technologies can be applied to the Pagora, such as energy-related technology using solar light, temperature control technology, and networking technology to which IT technology is applied.
  • An object of the present invention is to provide an air density control system that is installed outdoors and controls the air density of a surrounding space to form an air shied surrounding a certain surrounding space.
  • Another object of the present invention is to provide an air density control system including an air conditioner mounted on a rooftop to generate cooled high pressure air for forming an air film.
  • the present invention provides an air density control system installed outdoors and filled with high density air.
  • the present invention takes advantage of the fact that when the cooled air is continuously supplied to the outdoor space, a cold air mass having a higher density than the surrounding air is formed.
  • the cold air mass provided by the air density control system of the present invention is filled with high-density cold air at the same time while simultaneously receiving a horizontal force toward a relatively low density surrounding hot air and a vertical force due to gravity.
  • a certain space (air zone) is formed.
  • the air density control system of the present invention makes the space around the body including the body, the ceiling part cooling part, and the heater part into an air zone filled with cooled high-pressure air and prevents upper air from flowing into the air zone.
  • At least one external device through which air from the surrounding space is introduced is provided on the outer surface, and a first circulation port through which the introduced air is discharged is provided on the upper surface.
  • the ceiling part covers the surrounding space and blocks upper air from flowing into the surrounding space.
  • a cooling part is provided between the main body and the ceiling part to cool the air discharged from the first circulation port to discharge cold air to the side along the lower surface of the ceiling part.
  • a heater unit is provided on the ceiling unit and heats the air above the ceiling unit to discharge the air heated laterally along the upper surface of the ceiling unit. Accordingly, the air from the space around the main body flows into the main body and then cools down to fill the surrounding space again.
  • the cold air forms a downward airflow to make the space around the main body a high-density air zone
  • the heated air forms an upward airflow to block the upper air from flowing into the air zone along the downward airflow.
  • the cooling unit and the heater unit discharge the cold air and the heated air at a wind speed sufficient to proceed side by side to the outer room of the ceiling, so that a temperature reversal layer is created in the outer room of the ceiling.
  • an air density control system is provided at a front end of the cooling unit to guide the cold air to the side, but a cooling unit guide provided at a size smaller than the ceiling unit, and a cooling unit guide provided at the front end of the heater unit to guide the heated air to the side It may further include a heater guide provided in a size smaller than the ceiling portion.
  • the air density control system further includes another cooling unit guide provided between the cooling unit guide and the ceiling unit to guide cold air discharged from the cooling unit farther than the cooling unit guide. Cold, high-density air can be supplied directly.
  • the cooling unit and the heater unit are implemented as an air conditioning system including an evaporator, a compressor, a condenser, and an expansion valve to circulate the refrigerant and perform a phase change, and the cooling unit And an exhaust fan that blows to the side, and the heater unit includes the condenser and a condenser fan for blowing air heated in the condenser to the side.
  • the exhaust fan is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port along the entire outer circumference of the circular rotating vehicle, and the evaporator is a donut surrounding the exhaust fan. It can be provided in a shape.
  • the condenser fan may be implemented as a centrifugal fan that discharges the upper air flowing through the inlet along the entire outer circumference of the circular rotating vehicle, and the condenser may be provided in a donut shape surrounding the condenser fan.
  • the air conditioner of the present invention further includes an auxiliary evaporator disposed between the evaporator and the compressor to facilitate circulation of the refrigerant by evaporating the refrigerant remaining in a liquid state without evaporating in the evaporator in a low-temperature environment.
  • an auxiliary evaporator disposed between the evaporator and the compressor to facilitate circulation of the refrigerant by evaporating the refrigerant remaining in a liquid state without evaporating in the evaporator in a low-temperature environment.
  • the air density control system of the present invention can generate an air zone filled with clean air by discharging air from which fine dust or the like has been removed to the surrounding space.
  • Ambient air especially air containing fine dust on the upper side
  • the air density control system heats the air above the ceiling to a high temperature and discharges it to the side. , It is possible not only to block the inflow of the upper air into the downdraft, but also to prevent fine dust from the upper side of the ceiling from descending into the surrounding space (air zone).
  • the air density control system is installed at the edge of the pedestrian path in contact with the driveway, it is possible to block the introduction of fine dust or nitrogen compounds generated from the driveway into the surrounding space (air zone) of the air density control system.
  • Roadways in the middle of the day, where solar radiation occurs in urban areas, are relatively hotter and have low air density compared to pedestrian paths. Therefore, in the middle of the day, there is an air current from the pedestrian path to the driveway. Since the exhaust air discharged from the air density control system of the present invention has a relatively high density, the air zone is further strengthened while enhancing the airflow in the direction of the roadway.
  • the air density control system of the present invention is implemented in the form of a so-called'PAgora', so that a user can take a break in the air zone.
  • the air conditioner applied to the present invention is provided in the form of being mounted on the upper part of the main body, so that the components of the air conditioner may not interfere with the progress of pedestrians when installed outdoors, especially in urban areas.
  • FIG. 1 is a block diagram of an air density control system of the present invention
  • FIG. 3 is a block diagram of an air density control system to which the air conditioner of FIG. 2 is applied according to an embodiment of the present invention
  • FIG. 4 is a conceptual diagram of the air density control system of FIG. 3;
  • FIGS 5 and 6 are configuration diagrams of an air conditioner according to another embodiment of the present invention.
  • FIG. 7 is a view for explaining the air flow around the air density control system installed on the pedestrian path in contact with the driveway, and
  • FIG. 8 is a block diagram of an air density control system according to another embodiment of the present invention.
  • the air density control system 100 of the present invention is a structure installed outdoors, particularly in a square or pedestrian path accessible to people, and is clean and dense to remove dust after inhaling external air. By venting the air around, it is possible to create an air zone (x) filled with clean air in a certain range of surrounding spaces.
  • the air zone x is for expressing an ambient space mainly filled with air that has been purified and cooled by the air density control system 100 and may not be physically classified.
  • the air zone x may be specified by being separated from the outer space by a curtain, glass, or other structure.
  • the air density control system 100 includes a body 110, an air purification filter unit 130, a ceiling unit 150, a cooling unit 171, and a heater unit 173.
  • the air density control system 100 of the present invention has a columnar body 110, and an air zone x is formed around the body 110.
  • the ceiling portion 150 is disposed on the main body 110 to cover the upper portion of the air zone x.
  • the cooling unit 171 is also mounted on the main body 110, and the cooling unit 171 is provided between the main body 110 and the ceiling unit 150, and the heater unit 173 is mounted on the ceiling unit 150.
  • the main body 110 may be any type as long as it can form the inner space portion 110a.
  • the main body 110 is shown in a substantially cylindrical shape, but does not necessarily have to be cylindrical. However, in consideration of the fact that the air density control system 100 is installed on a pedestrian path or the like, a cylindrical shape that does not occupy much of the ground is good.
  • the outer surface of the pillar of the main body 110 is provided with an external device 111 for inhaling external air and a first circulation port 113 for discharging the air from the internal space 110a to the cooling unit 171.
  • the external device 111 is mainly provided on the outer surface of the main body 110 in the shape of a column, and the first circulation port 113 is mainly connected to the cooling unit 171 mounted on the upper side of the main body 110. 110) is provided on the upper surface (or the upper part of the outer surface).
  • the cooling unit 171 and the heater unit 173 are functionally provided on the upper portion of the main body 110, but in the actual implementation process, the cooling unit 171 is provided in the inner space unit 110a of the main body 110. ) And the heater unit 173 may be mounted.
  • the air purification filter unit 130 is provided in the inner space portion 110a of the main body 110, and is disposed to completely block the path of air between the outer device 111 and the first circulation port 113.
  • the air introduced through 111 and transferred to the first circulation port 113 is purified.
  • the air purification filter unit 130 may include a pre-filter and a HEPA filter for removing dust and the like, and various filters may be applied according to foreign substances to be filtered.
  • the air purification filter unit 130 does not necessarily need to be provided inside the main body 110, and may be provided between the main body 110 and the cooling unit 171, or may be provided inside the cooling unit 171. .
  • the ceiling part 150 is provided in a shape such as a roof or a parasol covering the upper part of the air zone x on the upper part of the main body 110 to block the air above the air zone x from directly entering the air zone x. .
  • the ceiling part 150 may be implemented with a transparent material to allow sunlight to enter the air zone x, or may cover the sunlight with an opaque material. Although it is good that the ceiling part 150 has a flat disk shape, it is not limited thereto.
  • the edge end of the ceiling part 150 is preferably inclined downward or bent vertically as if surrounding the air zone x to induce high-pressure cooling air discharged from the cooling part 171 into the air zone x.
  • the cooling unit 171 and the heater unit 173 are provided on the central axis of the main body 110.
  • the cooling part 171 is provided between the main body 110 and the ceiling part 150, and the heater part 173 is provided on the ceiling part 150.
  • the cooling unit 171 faces the first circulation port 113 on the lower surface, and an intake port through which air is introduced is provided, and the upper surface is sealed by the ceiling unit 150, and air is discharged to the side through the entire side 360°.
  • the heater unit 173 has a lower surface sealed by the ceiling unit 150, and an upper surface intake port 173b through which upper air is introduced is provided on the upper surface, and air is discharged laterally through the entire side 360°.
  • a cooling unit guide 171a for guiding discharged air is provided at a front end of the cooling unit 171, and a heater unit guide 173a for guiding discharged air is provided at a front end of the heater unit 173.
  • the cooling unit guide 171a and the heater unit guide 173a have a disk shape corresponding to the ceiling unit 150.
  • the cooling unit guide 171a is implemented to operate as a case supporting the cooling unit 171, and the heater unit guide 173a is in the form of an upper cover covering the heater unit 173.
  • the cooling portion 171 and the heater portion 173 also preferably have a flat disk shape as shown in FIG. 3, and the side of the disk is not a type that discharges air in a specific direction, but 360° It is good to exhaust air through the whole. Accordingly, the direction in which air is discharged from the cooling unit 171 and the heater unit 173 is a direction perpendicular to the vertical central axis of the main body 110.
  • the cooling unit 171 discharges the cooled air toward the upper side of the air zone x in a horizontal direction on the ground, and the heater unit 173 also discharges the heated air to the side along the upper surface of the ceiling unit 150 do.
  • the cooling unit guide 171a is disposed in parallel with the ceiling unit 150 along the lower surface of the ceiling unit 150 to guide cold air discharged from the cooling unit 171 to the side
  • the heater unit guide 173a is the ceiling unit 150 ) Is arranged in parallel with the ceiling part 150 along the upper surface of the) to guide the heated air discharged from the heater part 173 to the side.
  • the cooling unit guide 171a and the heater unit guide 173a discharge air of different temperatures from above and below the ceiling unit 150 to the side, thereby forming a temperature reversal layer in the outer room of the ceiling unit 150.
  • the temperature reversal layer serves to block the inflow of the upper air into the air zone (x) together with the ceiling part 150, and the outside air flows into the air zone (x) along the downward airflow of the cold air discharged from the cooling part 171. Block the inflow. Since the cooling unit guide 171a is smaller than the ceiling unit 150, the cold air discharged from the cooling unit 171 starts to fall downward before leaving the ceiling unit 150, and some of them go down beyond the ceiling unit 150.
  • the heater part guide 173a is also smaller than the ceiling part 150, but is disposed above the ceiling part 150, so the heated air discharged from the heater part 173 rises out of the ceiling part 150, but some of it escapes the ceiling part 150. You can ascend upwards before.
  • the heated air discharged from the heater unit 173 does not fall downward until it leaves the ceiling unit 150 at least. Therefore, the cold air discharged from the cooling unit 171 flows into the air zone, and the heated air discharged from the heater unit 173 protects the air zone together with the ceiling unit 150.
  • the cooling unit 171 and the heater unit 173 discharge air at a sufficient wind speed to form a temperature reversal layer in the outer room of the ceiling unit 150 and to push the air existing in the outer room of the ceiling unit 150 good.
  • the cooling unit 171 is preferably made to sufficiently increase the wind speed of the discharged air so that the cold air can proceed to the outside of the ceiling unit 150. It is good to increase the wind speed of the discharged air sufficiently so that the heated air can proceed to the outside of the ceiling part 150 as well as the heater part 173.
  • the purified and cold air discharged from the cooling unit 171 is supplied to the vicinity of the main body 110 to form an air zone x filled with high-pressure cold and clean air around the main unit 110.
  • air zone (x) area high-density clean air discharged from the cooling unit 171 is filled and then flows back into the air density control system 100 through the external device 111.
  • External air may naturally be introduced into the air zone (x), but external contaminated air is introduced into the air density control system 100 through the external device 111 and is purified.
  • air or fine dust outside the air zone (x) may flow into the air zone (x) along the downward airflow. Exhaust air blocks this inflow above the downdraft.
  • the heater part 173 forms a hot air blocking film on the upper side of the air zone x and creates an upward airflow of hot air, thereby forming airflows in opposite directions on the upper side of the air zone x. Blocks air (especially upper air) or fine dust from outside the zone (x) from flowing into the air zone (x) along the downdraft.
  • This characteristic is that even if the ceiling part 150 is not large enough, the temperature reversal layer formed by air of different temperatures discharged from the cooling part 171 and the heater part 173 serves to block the inflow of air from the upper part. In other words, even when the ceiling part 150 cannot be sufficiently large structurally, the cooling part 171 and the heater part 173 can create an air zone larger than the ceiling part 150.
  • the cooling unit 171 is provided with a means for cooling air and a means for blowing the cooled air to the side
  • the heater unit 173 is provided with a means for heating the air and a means for blowing the heated air to the side.
  • the cooling unit 171 and the heater unit 173 may be implemented in the form of a single air conditioner that cools and heats the surrounding air through a phase change while circulating a refrigerant. It is shown in Figure 2.
  • the air density control system 100 of the present invention may include an air conditioner 200 in place of the cooling unit 171 and the heater unit 173.
  • the air density control system 300 of FIGS. 3 and 4 is the same system as the air density control system 100 of FIG. 1, and the cooling unit 171 and the heater unit 173 are combined with the air conditioner 200 of FIG. 2. This is an example implementation. In the following, the same configuration is indicated and described with the same identification number.
  • the air conditioner 200 of the present invention includes a receiver drier 201, an expansion valve 203, an evaporator 205, a compressor 207, a condenser 209, and an exhaust fan. 211) and a condenser fan 213 are provided to cool and warm the surrounding air by circulating the refrigerant while converting the phase.
  • the air conditioner 200 includes a control unit 230 that controls the overall operation of the air conditioner 200.
  • the controller 230 may control the overall operation of the air density control system 300 together with the operation control of the air conditioner 200.
  • the air conditioner 200 is the same as the cooling method of a general air conditioner widely used in the related art.
  • the refrigerant compressed in the compressor 207 passes through the condenser 209 and is condensed into a high-temperature and high-pressure liquid phase, and the condensed refrigerant passes through the expansion valve 203 and the evaporator 205 and vaporizes to change into a low-temperature and low-pressure gas. It flows back into the compressor 207.
  • the receiver dryer 201 stores an appropriate amount of refrigerant to respond to changes in the refrigerant circulation amount in response to changes in the load of the refrigeration cycle, and absorbs and removes moisture in the refrigerant. Therefore, detailed individual operations of the receiver dryer 201, the expansion valve 203, the evaporator 205, the compressor 207, and the condenser 209 are not separately described.
  • Air introduced into the inner space portion 110a of the main body 110 through the external port 111 is cooled and exhausted while flowing into the evaporator 205 through the air purification filter unit 130 and the first circulation port 113 It is blown to the side by the fan 211, and the air above the ceiling part 150 is heated by the condenser 209 and blown to the side by the condenser fan 213.
  • the evaporator 205 and the exhaust fan 211 correspond to the cooling unit 171 and are provided below the ceiling unit 150
  • the condenser 209 and the condenser fan 213 correspond to the heater unit 173.
  • it is provided above the ceiling part 150.
  • the cooling unit 171 Since the air zone (x) is formed in the entire direction surrounding the body 110 by 360°, the cooling unit 171 must discharge the cooled air in the entire direction of the side 360° to create a descending airflow, and the heater unit 173 ), the heated air must be discharged in a full 360° lateral direction to create an updraft corresponding to the downdraft. Referring to FIG. 3, the cooled air and the heated air are discharged side by side, and then the cooled air forms a downward airflow, and the heated air forms an upward airflow. In conclusion, the heater unit 173 and the cooling unit 171 must be capable of discharging air in the lateral direction, but discharging in the entire direction of the side 360°.
  • cooling unit guide 171a and the heater unit guide 173a support and cover the cooling unit 171 and the heater unit 173 together, the air discharged from the evaporator 205 and the condenser 209 is In order to guide it to the side, it is preferable that the cooling unit guide 171a and the heater unit guide 173a have a larger disk shape than the evaporator 205 and the condenser 209.
  • the exhaust fan 211 is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port 113 along the entire outer circumference of the circular rotating vehicle.
  • the evaporator 205 is provided in a donut shape surrounding the exhaust fan 211. The air that has passed through the air purification filter unit 130 is blown toward the evaporator 205 by the exhaust fan 211. The evaporator 205 cools the air blown by the exhaust fan 211 and discharges it to the outside.
  • the condenser fan 213 is implemented as a centrifugal fan that discharges upper air introduced through the upper intake port 173b along the entire outer circumference of the circular rotating vehicle.
  • the condenser 209 is provided in a donut shape surrounding the condenser fan 213.
  • the condenser 209 heats the upper air blown by the condenser fan 213 and discharges it to the outside.
  • the difference in rotation used for the exhaust fan 211 and the condenser fan 213 can take various forms.
  • a backward fan inclined in the direction opposite to the rotation direction or a forward fan inclined in the rotation direction can be used.
  • a backward fan in which air is discharged in a direction perpendicular to the rotation axis is preferable.
  • a radial fan in which the blades of the rotating vehicle are perpendicular to the rotating axis can be used.
  • the air density control system 100 of the present invention When the air conditioner 200 is operated by the control unit 230, the air density control system 100 of the present invention also performs a circulation operation.
  • the air density control system 300 of the present invention since the air density control system 300 of the present invention is installed outdoors, it can operate in the evening or early morning when the temperature of the outside air decreases, and can operate in a low temperature environment in winter. At this time, the refrigerant is not completely evaporated in the evaporator 205 and may be sucked into the compressor 207 in a liquid state. The problem is that the compressor 207 may burn out in the process of compressing the liquid refrigerant.
  • the air conditioner 200 of the present invention may further include a'secondary evaporator' between the evaporator 205 and the compressor 207.
  • the auxiliary evaporator is a separate evaporator, but by creating a constant temperature condition outside, the evaporator 205 does not evaporate in a low-temperature environment and completely evaporates the refrigerant remaining in the liquid phase.
  • the auxiliary evaporator 510 is mounted on the pipe 511 between the evaporator 205 and the compressor 207 to heat the pipes 511 and 514, and heaters 512 and 515 to protect them. Insulation materials 513 and 516 may be included.
  • the auxiliary evaporator device 610 includes auxiliary evaporators 611 and 614 for vaporizing the remaining liquid phase vaporized in the evaporator 205 into a low-pressure gas, and the auxiliary evaporators 611 and 614.
  • a cooling water chamber (612, 615) to support the vaporization operation.
  • the insides of the cooling water chambers 612 and 615 are filled with cooling water, and the cooling water is maintained at a constant temperature by heaters 613 and 616.
  • 6A is an example in which the auxiliary evaporator 611 is provided outside the cooling water chamber 612
  • FIG. 6B is an example in which the auxiliary evaporator 614 is provided inside the cooling water chamber 615.
  • the air density control systems 100 and 300 of the present invention operate.
  • the exhaust fan 211 is operated, the external air is transferred to the inside of the main body 110 through the external device 111 by the negative pressure that the exhaust fan 211 forms in the inner space portion 110a of the main body 110. It flows into the space part 110a.
  • the introduced air is purified by passing through the air purification filter unit 130 and then introduced into the exhaust fan 211 through the first circulation port 113.
  • the exhaust fan 211 blows the purified air into the evaporator 205 disposed along the outer circumference, and the purified air passes through the evaporator 205 and is cooled by heat exchange, and then the lower surface of the ceiling 150 and the cooling unit It is discharged to the outside while moving to the side along the guide (171a).
  • the evaporator 205 is preferably installed to discharge air in all directions by 360°.
  • the external device 111 is not necessarily so, but, like the cooling unit 171, it is good to suck in external air from the entire direction surrounding the main body 110.
  • exhaust air Since the air cooled while passing through the evaporator 205 is compressed to a considerable level, the air discharged from the evaporator 205 (hereinafter, referred to as “exhaust air”) becomes high-density cold air. According to Charles' law, the density of air changes according to the temperature of the air, and can be expressed by Equation 1 below.
  • t is the temperature of the gas
  • Vo is the volume of the gas at 0 degrees
  • Vt is the volume of the gas at the temperature t.
  • the high-density cold exhaust air As the high-density cold exhaust air is discharged through the evaporator 205, it forms a downward airflow by gravity, and at the same time, a horizontal force toward the surrounding hot air with relatively low density acts to push out the hot air.
  • An air zone (x) filled with high-density cold air is formed.
  • An air film is formed on the surface where the high-density cold air and the surrounding hot air meet to create an air zone (x). Since the inside of the air zone x is denser than the outside, there is an outflow of air to the outside, but there is an effect of blocking air inflow from the outside into the air zone x, that is, the air membrane.
  • the air zone x is further strengthened while enhancing the airflow in the direction of the roadway. Accordingly, the air density control system 300 of the present invention can create an air zone x filled with clean air in the pedestrian path 30 in contact with the roadway 20 in the city.
  • the condenser fan 213 sucks in the upper air and blows it toward the condenser 209.
  • the condenser 209 heats the air blown by the condenser fan 213 to a high temperature.
  • the air heated in the condenser 209 is guided along the upper surface of the heater guide 173a and the ceiling 150 and discharged to the side.
  • the air above the ceiling part is discharged to the side and then forms an ascending airflow, thereby preventing the air above the ceiling 150 or the air from the side from flowing into the air zone (x) along the descending airflow by the cooling part 171 do.
  • the air discharged from the condenser 209 since the air discharged from the condenser 209 is in a warmed state, it is discharged to the side and then diffuses, resulting in a lower density. Accordingly, due to the difference in air density between the air zone x and the upper atmosphere, circulation between the air zone x and the upper atmosphere of the ceiling 150 does not occur.
  • the cold air discharged from the cooling unit 171 forms a downward airflow forming the edge of the air zone by the cooling unit guide 171a and fills the inside of the air zone (x).
  • cold air may be supplied directly into the air zone x.
  • an air density control system 800 has the same configuration as the air density control system 300 of FIG. 3, but
  • the cooling unit guide 171a serving as a guide is doubled as the first cooling unit guide 801 and the second cooling unit guide 803 to separately supply cold air into the air zone x.
  • the first cooling unit guide 801 and the second cooling unit guide 803 guide air discharged from the cooling unit 171 to the side, and are basically described in the same manner as the cooling unit guide 171a. However, based on the vertical center line of the main body 110, the first cooling unit guide 801 guides the cold air farther than the second cooling unit guide 803, thereby reducing the point at which the cold air descends. 2 It is farther from the main body 110 than the cooling part guide 803. Therefore, the first cooling unit guide 801 is disposed on the second cooling unit guide 803 in a larger size. In the example of FIG. 8, the cold air discharged by the evaporator 205 in the entire 360° direction is discharged in multiple stages by the first cooling unit guide 801 and the second cooling unit guide 803 arranged in two stages.
  • the first cooling unit guide 801 guides cold air discharged from the cooling unit 171 to form an outer periphery of the air zone x like the cooling unit guide 171a of FIG. 1.
  • the cold air guided and discharged by the first cooling unit guide 801 forms a descending airflow af1 forming an edge of the air zone x while descending.
  • the second cooling unit guide 803 supplies cold air into the air zone x so that the inside of the air zone x is cooled more quickly.
  • the cold air that is guided and discharged by the second cooling unit guide 803 descends and forms a descending airflow af2 flowing into the air zone x.
  • the air density control device 800 of FIG. 8 can efficiently maintain a cold, high-density space inside the air zone (x).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Disclosed is an air density control system equipped with an air conditioner mounted on a rooftop. The air density control system of the present invention can generate an air zone filled with clean air in the surrounding space by means of discharging clean air from which fine dust has been removed using moss. The air density control system can be implemented in the form of a so-called "pergola." The air conditioner is used to generate a cooled high pressure air and the air conditioner is placed at the top of a pillar-shaped body.

Description

루프탑에 장착한 공기조화장치를 구비한 공기 밀도 제어시스템Air density control system with air conditioner mounted on rooftop
본 발명은 옥외에 설치되어 주변 공간의 공기 밀도를 제어함으로써 주변의 일정한 공간을 둘러싸는 공기막(Air Shied)를 형성하여 그 공간을 깨끗한 공기로 채우고 유지하기 위한 공기 밀도 제어시스템에 관한 것이다.The present invention relates to an air density control system that is installed outdoors and controls the air density of a surrounding space to form an air shield surrounding a certain surrounding space, and fill and maintain the space with clean air.
미세먼지(Fine Dust)는 눈에 보이지 않을 정도로 입자가 작은 먼지로 입경 10μm 이하의 미세한 먼지이며, PM10이라고도 한다. 입자가 2.5μm 이하이면 PM 2.5라고 쓰며 '초미세먼지' 또는 '극미세먼지' 라고도 부른다. '초미세먼지' 또는 '극미세먼지' 라고도 부른다. 학술적으로는 에어로졸(Aerosol)이라고 부른다. Fine dust is a fine dust with a particle diameter of 10 μm or less, and is also called PM10. If the particle is less than 2.5μm, it is written as PM 2.5 and is also called'ultra-fine dust' or'extra-fine dust'. It is also called'ultra-fine dust' or'extra-fine dust'. In academic terms, it is called aerosol.
미세먼지에는 아황산가스, 질소 산화물, 납, 오존, 일산화탄소 등이 포함되어 있기 때문에 주요한 대기오염 물질이며, 질량이 작아 장기간 대기 중에 떠다니면서 인간의 호흡기로 유입된다. 호흡기로 유입된 미세먼지나 초미세먼지는 쉽게 배출되는 것이 아니기 때문에 매우 유해한 것으로 알려져 있고, 사람들의 행동반경을 극히 제한하는 원인이 된다. Fine dust is a major air pollutant because it contains sulfurous acid gas, nitrogen oxides, lead, ozone, and carbon monoxide, and it is small in mass and floats in the atmosphere for a long period of time and flows into the human respiratory system. Fine dust or ultra-fine dust introduced into the respiratory tract is known to be very harmful because it is not easily discharged, and it is the cause of extremely limiting the radius of action of people.
미세먼지는 모래바람의 먼지, 화산재, 산불과 같은 자연발생적 원인에 의해서도 생기지만, 화력발전소, 자동차 또는 공장의 배출가스, 가정에서 사용하는 난방기구나 가스기구 등에서도 많이 발생한다. 따라서 우리가 사는 지역에 미세먼지 발생원으로 어떤 것이 있고 얼마나 많이 있는가에 따라 대기의 미세먼지 농도가 결정될 수 있다. 그러나 특정 지역에 미세먼지 농도가 높아지는 원인은 좀 더 복잡한 인자들에 의해 결정될 수 있다. 한편, 도심에서의 운행하는 차량은 타이어 분진, 도로 파쇄에 따른 미세먼지 외에도 질소 화합물 등을 배출하기 때문에 공기 오염의 주요한 원인 중 하나다. Fine dust is also caused by natural causes such as dust from sand breeze, volcanic ash, and forest fires, but also occurs in thermal power plants, exhaust gases from automobiles or factories, and heating appliances or gas appliances used in homes. Therefore, the concentration of fine dust in the atmosphere can be determined depending on what sources and how much are the sources of fine dust in our area. However, the cause of the increase in the concentration of fine dust in a specific area can be determined by more complex factors. On the other hand, vehicles running in urban areas are one of the major causes of air pollution because they emit nitrogen compounds in addition to tire dust and fine dust caused by road crushing.
현재까지 미세먼지 문제에 대한 해결책으로 제시된 것은 발전소 운행 제한이나 차량 운행 제한처럼 미세먼지의 발생 자체를 줄이는 것과 병행해서, 마스크를 착용하거나 건물 내에서 공기청정기를 가동하는 정도이다. 한국에 영향을 주는 미세먼지의 70%는 중국에서 유입된다는 전문가의 견해가 있다. 상층 대기로부터 유입되는 미세먼지가 상당히 영향을 준다는 것이다. So far, the solution to the problem of fine dust has been suggested to reduce the generation of fine dust, such as limiting the operation of a power plant or limiting vehicle operation, and wearing a mask or operating an air purifier inside the building. There is an expert opinion that 70% of fine dust that affects Korea comes from China. It is that fine dust introduced from the upper atmosphere has a significant effect.
옥외의 공기를 정화하는 장치로는 집진형 필터를 구비한 일명 스모그 프리 타워(Smog Free Tower)가 있는데 정화한 만큼 몰려드는 미세먼지 때문에 정화된 공기와 몰려드는 미세먼지가 혼합되어 그 효과가 미미하거나, 체감하여 느낄 정도로 효과적이지 않다.As a device that purifies the outdoor air, there is a so-called Smog Free Tower equipped with a dust-collecting filter, but the effect is insignificant due to the mixture of the purified air and the collected fine dust because of the fine dust that collects as much as it is purified. , It is not effective enough to feel it.
한편, 소위 파고라(Pagora)라고 하는 것은 옥외에 설치되어 이용자들이 앉아 쉴 수 있는 공간을 제공하는 시설물로서, 통상 지면에 복수 개의 기둥을 설치하고 천장부을 얹어 설치한다. 대부분의 파고라는 햇빛 차단이 주된 기능이다. 파고라에는 태양광을 이용한 에너지 관련 기술, 온도제어 기술 등, 아이티(IT) 기술이 적용된 네트워킹 기술 등 다양한 기술이 적용될 수 있다.Meanwhile, a so-called Pagora is a facility that is installed outdoors and provides a space for users to sit and relax. Usually, a plurality of pillars are installed on the ground and a ceiling is mounted on the ground. Sun protection is the primary function of most Pagora. Various technologies can be applied to the Pagora, such as energy-related technology using solar light, temperature control technology, and networking technology to which IT technology is applied.
본 발명의 목적은 옥외에 설치되어 주변 공간의 공기 밀도를 제어함으로써 주변의 일정한 공간을 둘러싸는 공기막(Air Shied)를 형성하는 공기 밀도 제어 시스템을 제공함에 있다. An object of the present invention is to provide an air density control system that is installed outdoors and controls the air density of a surrounding space to form an air shied surrounding a certain surrounding space.
본 발명의 다른 목적은 루프탑에 장착한 공기조화장치를 구비하여 공기 막을 형성하기 위한 냉각된 고압의 공기를 생성하는 공기 밀도 제어시스템을 제공함에 있다.Another object of the present invention is to provide an air density control system including an air conditioner mounted on a rooftop to generate cooled high pressure air for forming an air film.
이상의 목적을 달성하기 위해, 본 발명은 옥외에 설치하여 차고 밀도가 높은 공기로 채워지는 공기 밀도 제어시스템을 제시한다. 본 발명은 옥외 공간에 냉각된 공기를 지속적으로 공급할 경우에, 주위 공기보다 밀도가 높은 찬 공기 덩어리가 형성되는 점을 이용한다. In order to achieve the above object, the present invention provides an air density control system installed outdoors and filled with high density air. The present invention takes advantage of the fact that when the cooled air is continuously supplied to the outdoor space, a cold air mass having a higher density than the surrounding air is formed.
본 발명의 공기 밀도 제어 시스템이 제공하는 찬 공기 덩어리는 상대적으로 밀도가 낮은 주변의 더운 공기 쪽을 향하는 수평 방향의 힘과 중력에 의한 수직 방향의 힘을 동시에 받으면서 주위에 고밀도의 찬 공기로 채워지는 일정 공간(에어 존)을 형성한다. The cold air mass provided by the air density control system of the present invention is filled with high-density cold air at the same time while simultaneously receiving a horizontal force toward a relatively low density surrounding hot air and a vertical force due to gravity. A certain space (air zone) is formed.
본 발명의 공기 밀도 제어 시스템은 본체, 천장부 냉각부 및 히터부를 포함하여 본체 주변 공간을 냉각된 고압의 공기로 채워진 에어존으로 만들고 상측 공기가 상기 에어 존으로 유입되지 않도록 한다. The air density control system of the present invention makes the space around the body including the body, the ceiling part cooling part, and the heater part into an air zone filled with cooled high-pressure air and prevents upper air from flowing into the air zone.
기둥 형상의 본체는 주변 공간의 공기가 유입되는 적어도 하나의 외기구가 외측면에 마련되고 상기 유입된 공기를 배출하는 제1 순환구가 상면에 마련된다. 천장부는 상기 주변 공간을 덮어서 상측 공기가 상기 주변 공간으로 유입되지 않도록 차단한다. 냉각부는 상기 본체와 천장부 사이에 마련되어 상기 제1 순환구로부터 배출되는 공기를 냉각하여 상기 천장부의 아랫면을 따라 측방으로 차가운 공기를 배출한다. 히터부는 상기 천장부 위에 마련되어, 천장부 상측 공기를 가열하여 상기 천장부의 상면을 따라 측방으로 데워진 공기를 배출한다. 따라서 본체 주변공간의 공기가 본체로 유입된 다음 냉각되어 다시 주변 공간을 채우는 흐름이 생긴다. 상기 차가운 공기는 하강 기류를 형성하여 상기 본체의 주변 공간을 고밀도의 에어존으로 만들고, 상기 데워진 공기는 상승기류를 형성하여 상기 상측 공기가 상기 하강 기류를 따라 상기 에어존으로 유입되는 것을 차단한다. In the columnar body, at least one external device through which air from the surrounding space is introduced is provided on the outer surface, and a first circulation port through which the introduced air is discharged is provided on the upper surface. The ceiling part covers the surrounding space and blocks upper air from flowing into the surrounding space. A cooling part is provided between the main body and the ceiling part to cool the air discharged from the first circulation port to discharge cold air to the side along the lower surface of the ceiling part. A heater unit is provided on the ceiling unit and heats the air above the ceiling unit to discharge the air heated laterally along the upper surface of the ceiling unit. Accordingly, the air from the space around the main body flows into the main body and then cools down to fill the surrounding space again. The cold air forms a downward airflow to make the space around the main body a high-density air zone, and the heated air forms an upward airflow to block the upper air from flowing into the air zone along the downward airflow.
한편, 상기 냉각부와 히터부는 상기 차가운 공기와 데워진 공기를 상기 천장부의 외측방까지 나란하게 진행할 정도의 풍속으로 배출함으로써 상기 천장부의 외측방에서 기온역전층이 생기도록 하는 것이 좋다. On the other hand, it is preferable that the cooling unit and the heater unit discharge the cold air and the heated air at a wind speed sufficient to proceed side by side to the outer room of the ceiling, so that a temperature reversal layer is created in the outer room of the ceiling.
실시 예에 따라, 공기 밀도 제어 시스템은 상기 냉각부의 전단에 마련되어 상기 차가운 공기를 측방으로 안내하되 상기 천장부보다 작은 크기로 마련된 냉각부 가이드와, 상기 히터부의 전단에 마련되어 상기 데워진 공기를 측방으로 안내하되 상기 천장부보다 작은 크기로 마련된 히터부 가이드를 더 포함할 수 있다. According to an embodiment, an air density control system is provided at a front end of the cooling unit to guide the cold air to the side, but a cooling unit guide provided at a size smaller than the ceiling unit, and a cooling unit guide provided at the front end of the heater unit to guide the heated air to the side It may further include a heater guide provided in a size smaller than the ceiling portion.
다른 실시 예에 따라, 공기 밀도 제어 시스템은 상기 냉각부 가이드와 천장부 사이에 마련되어 상기 냉각부에서 배출되는 차가운 공기를 상기 냉각부 가이드보다 더 멀리까지 안내하는 다른 냉각부 가이드를 더 포함함으로써 에어존에 차가운 고밀도의 공기를 직접 공급할 수 있다. According to another embodiment, the air density control system further includes another cooling unit guide provided between the cooling unit guide and the ceiling unit to guide cold air discharged from the cooling unit farther than the cooling unit guide. Cold, high-density air can be supplied directly.
실시 예에 따라, 상기 냉각부와 히터부는 증발기, 압축기, 응축기 및 팽창밸브를 포함하여 냉매를 순환시키며 상 변화를 수행하는 공기조화장치(Air Conditioning System)로 구현되고, 상기 냉각부는 상기 증발기와 공기를 측방으로 불어내는 배기 팬을 포함하고, 상기 히터부는 상기 응축기와 상기 응축기에서 가열된 공기를 측방으로 불어내는 응축기용 팬을 포함한다. According to an embodiment, the cooling unit and the heater unit are implemented as an air conditioning system including an evaporator, a compressor, a condenser, and an expansion valve to circulate the refrigerant and perform a phase change, and the cooling unit And an exhaust fan that blows to the side, and the heater unit includes the condenser and a condenser fan for blowing air heated in the condenser to the side.
다른 실시 예에 따라, 상기 배기 팬은 상기 제1 순환구와 마주하는 흡입구를 통해 유입되는 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되며, 상기 증발기는 상기 배기 팬을 둘러싸는 도우넛 형상으로 마련될 수 있다. According to another embodiment, the exhaust fan is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port along the entire outer circumference of the circular rotating vehicle, and the evaporator is a donut surrounding the exhaust fan. It can be provided in a shape.
마찬가지로, 상기 응축기용 팬은 흡입구를 통해 유입되는 상기 상측 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되고, 상기 응축기는 상기 응축기용 팬을 둘러싸는 도우넛 형상으로 마련될 수 있다. Likewise, the condenser fan may be implemented as a centrifugal fan that discharges the upper air flowing through the inlet along the entire outer circumference of the circular rotating vehicle, and the condenser may be provided in a donut shape surrounding the condenser fan.
또 다른 실시 예에 따라, 본 발명의 공기조화장치는 상기 증발기와 압축기 사이에 배치된 보조 증발기를 더 포함함으로써 저온 환경에서 상기 증발기에서 증발되지 않고 액상으로 남은 냉매를 증발시켜 냉매의 순환을 원할히 할 수 있다.According to another embodiment, the air conditioner of the present invention further includes an auxiliary evaporator disposed between the evaporator and the compressor to facilitate circulation of the refrigerant by evaporating the refrigerant remaining in a liquid state without evaporating in the evaporator in a low-temperature environment. I can.
본 발명의 공기 밀도 제어 시스템은 주위 공간에 미세먼지 등이 제거된 공기를 배출함으로써 깨끗한 공기로 채워진 에어존을 생성할 수 있다. The air density control system of the present invention can generate an air zone filled with clean air by discharging air from which fine dust or the like has been removed to the surrounding space.
냉각부에서 배출되는 공기에 의해 형성되는 하강 기류를 따라 주위 공기(특히 상측의 미세먼지가 포함된 공기)가 유입될 수 있는데, 공기 밀도 제어 시스템은 천장부 상측의 공기를 고온으로 데워 측방으로 배출함으로써, 상측의 공기가 하강 기류에 유입되는 것을 차단할 뿐만 아니라, 천장부 상측의 미세먼지가 주위 공간(에어 존)으로 내려오지 않도록 할 수 있다. Ambient air (especially air containing fine dust on the upper side) can be introduced along the downdraft formed by the air discharged from the cooling unit.The air density control system heats the air above the ceiling to a high temperature and discharges it to the side. , It is possible not only to block the inflow of the upper air into the downdraft, but also to prevent fine dust from the upper side of the ceiling from descending into the surrounding space (air zone).
공기 밀도 제어 시스템이 차도와 접한 보행로 가장자리에 설치되면, 차도에서 발생하는 미세먼지나 질소 화합물이 공기 밀도 제어 시스템의 주위 공간(에어 존)으로 유입되는 것을 차단할 수 있다. 도심에 태양 복사가 일어나는 한낮의 차도는 보행로에 비해 상대적으로 온도가 높고 공기 밀도가 낮다. 따라서 한낮의 도심에서는 보행로에서 차도로 향하는 기류가 있다. 본 발명의 공기 밀도 제어 시스템이 배출하는 배출공기는 상대적으로 밀도가 높기 때문에 차도 방향으로의 기류를 강화시키면서 에어존을 더욱 강화시키게 된다. If the air density control system is installed at the edge of the pedestrian path in contact with the driveway, it is possible to block the introduction of fine dust or nitrogen compounds generated from the driveway into the surrounding space (air zone) of the air density control system. Roadways in the middle of the day, where solar radiation occurs in urban areas, are relatively hotter and have low air density compared to pedestrian paths. Therefore, in the middle of the day, there is an air current from the pedestrian path to the driveway. Since the exhaust air discharged from the air density control system of the present invention has a relatively high density, the air zone is further strengthened while enhancing the airflow in the direction of the roadway.
본 발명이 공기 밀도 제어 시스템은 소위 '파고라(PAgora)'의 형태로 구현됨으로써, 이용자가 에어존 내에서 휴식을 취할 수 있다. The air density control system of the present invention is implemented in the form of a so-called'PAgora', so that a user can take a break in the air zone.
한편, 본 발명에 적용된 공기조화장치는 본체의 상부에 장착하는 형태로 마련됨으로써 옥외 중에서도 특히 도심 등에 설치될 때 공기조화장치 구성품이 보행자의 진행을 방해하지 않도록 설치할 수 있다.On the other hand, the air conditioner applied to the present invention is provided in the form of being mounted on the upper part of the main body, so that the components of the air conditioner may not interfere with the progress of pedestrians when installed outdoors, especially in urban areas.
도 1은 본 발명의 공기 밀도 제어 시스템의 구성도, 1 is a block diagram of an air density control system of the present invention,
도 2는 본 발명에 적용되는 공기조화장치의 구성도, 2 is a configuration diagram of an air conditioner applied to the present invention,
도 3은 본 발명의 일 실시 예에 따라 도 2의 공기조화장치가 적용된 공기 밀도 제어 시스템의 구성도,3 is a block diagram of an air density control system to which the air conditioner of FIG. 2 is applied according to an embodiment of the present invention;
도 4는 도 3의 공기 밀도 제어 시스템의 개념도, 4 is a conceptual diagram of the air density control system of FIG. 3;
도 5 및 도 6은 본 발명의 다른 실시 예에 따른 공기조화장치의 구성도, 그리고 5 and 6 are configuration diagrams of an air conditioner according to another embodiment of the present invention, and
도 7는 차도에 접한 보행로에 설치된 공기 밀도 제어 시스템 주변의 공기 흐름을 설명하기 위한 도면, 그리고 7 is a view for explaining the air flow around the air density control system installed on the pedestrian path in contact with the driveway, and
도 8은 본 발명의 다른 실시 예에 따른 공기 밀도 제어 시스템의 구성도이다. 8 is a block diagram of an air density control system according to another embodiment of the present invention.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1을 참조하면, 본 발명의 공기 밀도 제어 시스템(100)은 옥외, 특히 사람들이 접근할 수 있는 광장이나 보행로 등에 설치되는 구조물로서, 외부의 공기를 흡입한 다음 먼지를 제거한 깨끗하고 밀도가 높은 공기를 주위에 배출함으로써, 일정한 범위의 주위 공간에 깨끗한 공기로 채워지는 에어 존(Air Zone)(x)을 만들 수 있다. Referring to FIG. 1, the air density control system 100 of the present invention is a structure installed outdoors, particularly in a square or pedestrian path accessible to people, and is clean and dense to remove dust after inhaling external air. By venting the air around, it is possible to create an air zone (x) filled with clean air in a certain range of surrounding spaces.
여기서, 에어 존(x)은 공기 밀도 제어 시스템(100)에 의해 정화되고 냉각된 공기가 주로 채워지는 주위 공간을 표현하기 위한 것으로서 물리적으로 구분되지 않을 수 있다. 실시 예에 따라서는 에어 존(x)이 커튼, 유리 또는 기타 구조물에 의해 그 외부 공간과 구분됨으로써 특정될 수 있다. Here, the air zone x is for expressing an ambient space mainly filled with air that has been purified and cooled by the air density control system 100 and may not be physically classified. Depending on the embodiment, the air zone x may be specified by being separated from the outer space by a curtain, glass, or other structure.
도 1을 참조하면, 공기 밀도 제어 시스템(100)은 본체(110), 공기정화필터부(130), 천장부(150), 냉각부(171) 및 히터부(173)를 포함한다. 본 발명의 공기 밀도 제어 시스템(100)은 기둥 형상의 본체(110)가 있고, 에어 존(x)이 본체(110) 주변에 만들어진다. 에어 존(x)의 상부를 덮기 위해 본체(110) 위에 천장부(150)가 배치된다. 냉각부(171)도 본체(110) 위에 올려지면서 본체(110)와 천장부(150) 사이에 냉각부(171)가 마련되고, 천장부(150) 위에 히터부(173)가 탑재된 형태이다.Referring to FIG. 1, the air density control system 100 includes a body 110, an air purification filter unit 130, a ceiling unit 150, a cooling unit 171, and a heater unit 173. The air density control system 100 of the present invention has a columnar body 110, and an air zone x is formed around the body 110. The ceiling portion 150 is disposed on the main body 110 to cover the upper portion of the air zone x. The cooling unit 171 is also mounted on the main body 110, and the cooling unit 171 is provided between the main body 110 and the ceiling unit 150, and the heater unit 173 is mounted on the ceiling unit 150.
본체(110)는 내부공간부(110a)를 형성할 수 있는 형태이면 어떠한 것이어도 무방하다. 도 4의 예에서 본체(110)는 대략 원통형의 형상으로 도시되어 있으나, 반드시 원통형일 필요는 없다. 다만, 공기 밀도 제어 시스템(100)이 보행로 등에 설치되는 점을 고려하면, 지면을 많이 차지하지 않는 원기둥 형상이 좋다. The main body 110 may be any type as long as it can form the inner space portion 110a. In the example of FIG. 4, the main body 110 is shown in a substantially cylindrical shape, but does not necessarily have to be cylindrical. However, in consideration of the fact that the air density control system 100 is installed on a pedestrian path or the like, a cylindrical shape that does not occupy much of the ground is good.
본체(110)의 기둥 외면에는 외부 공기를 흡입하기 위한 외기구(111)와 내부공간부(110a)의 공기를 냉각부(171)로 배출하는 제1 순환구(113)가 마련된다. 외기구(111)는 주로 기둥 형상의 본체(110)의 외측면에 마련되고, 제1 순환구(113)는 본체(110)의 상측에 탑재된 냉각부(171)와 연결되기 위하여 주로 본체(110)의 상면(또는 외측면 중 상부)에 마련된다. 본 발명에서 냉각부(171)와 히터부(173)가 기능적으로 본체(110)의 상부에 마련되는 것으로 설명되고 있지만, 실제 구현과정에서 본체(110) 내부 공간부(110a)에 냉각부(171)와 히터부(173)가 장착될 수도 있다. The outer surface of the pillar of the main body 110 is provided with an external device 111 for inhaling external air and a first circulation port 113 for discharging the air from the internal space 110a to the cooling unit 171. The external device 111 is mainly provided on the outer surface of the main body 110 in the shape of a column, and the first circulation port 113 is mainly connected to the cooling unit 171 mounted on the upper side of the main body 110. 110) is provided on the upper surface (or the upper part of the outer surface). In the present invention, it is described that the cooling unit 171 and the heater unit 173 are functionally provided on the upper portion of the main body 110, but in the actual implementation process, the cooling unit 171 is provided in the inner space unit 110a of the main body 110. ) And the heater unit 173 may be mounted.
공기정화필터부(130)는 본체(110)의 내부공간부(110a)에 마련되며, 외기구(111)와 제1 순환구(113) 사이의 공기의 경로를 전면적으로 차단하도록 배치되어 외기구(111)로 유입되어 제1 순환구(113)로 이송되는 공기를 정화한다. 공기정화필터부(130)는 먼지 등을 제거하기 위한 프리 필터(Pre-Filter), 헤파(HEPA) 필터 등을 구비할 수도 있고, 필터링할 이물질에 맞추어 다양한 필터를 적용할 수 있다. 다만 공기정화필터부(130)는 반드시 본체(110) 내부에 마련될 필요는 없고, 본체(110)와 냉각부(171)사이에 마련될 수도 있고, 냉각부(171) 내부에 마련될 수도 있다.The air purification filter unit 130 is provided in the inner space portion 110a of the main body 110, and is disposed to completely block the path of air between the outer device 111 and the first circulation port 113. The air introduced through 111 and transferred to the first circulation port 113 is purified. The air purification filter unit 130 may include a pre-filter and a HEPA filter for removing dust and the like, and various filters may be applied according to foreign substances to be filtered. However, the air purification filter unit 130 does not necessarily need to be provided inside the main body 110, and may be provided between the main body 110 and the cooling unit 171, or may be provided inside the cooling unit 171. .
천장부(150)는 본체(110)의 상부에 에어 존(x)의 상부를 덮는 지붕이나 파라솔과 같은 형상으로 마련되어 에어 존(x) 상측의 공기가 에어 존(x)으로 직접 유입되는 것을 차단한다. The ceiling part 150 is provided in a shape such as a roof or a parasol covering the upper part of the air zone x on the upper part of the main body 110 to block the air above the air zone x from directly entering the air zone x. .
천장부(150)는 투명한 소재로 구현되어 태양광이 에어 존(x)으로 입사되도록 할 수도 있고, 불투명 소재로 태양광을 가릴 수도 있다. 천장부(150)는 평평한 원반 형상인 것이 좋지만 이에 한정되지 않는다. 천장부(150)의 가장자리 단부는 에어 존(x)을 감싸듯이 아래쪽으로 경사지거나 수직하게 절곡됨으로써 냉각부(171)에서 배출되는 고압의 냉각공기를 에어 존(x) 내부로 유도하는 것이 좋다. The ceiling part 150 may be implemented with a transparent material to allow sunlight to enter the air zone x, or may cover the sunlight with an opaque material. Although it is good that the ceiling part 150 has a flat disk shape, it is not limited thereto. The edge end of the ceiling part 150 is preferably inclined downward or bent vertically as if surrounding the air zone x to induce high-pressure cooling air discharged from the cooling part 171 into the air zone x.
냉각부(171)와 히터부(173)는 본체(110)의 중심축 상에 마련된다. 냉각부(171)는 본체(110)와 천장부(150) 사이에 마련되며, 히터부(173)는 천장부(150) 위에 마련된다. 냉각부(171)는 아랫면에 제1 순환구(113)와 마주하여 공기가 유입되는 흡기구가 마련되고 상면은 천장부(150)에 의해 밀폐되며, 측면 360° 전체를 통해 공기가 측방으로 배출된다. 히터부(173)는 아랫면이 천장부(150)에 의해 밀폐되고, 윗면에는 상측 공기가 유입되는 상면흡기구(173b)가 마련되며, 측면 360° 전체를 통해 공기가 측방으로 배출된다. 냉각부(171)의 전단에는 배출되는 공기를 안내하는 냉각부 가이드(171a)가 마련되고, 히터부(173)의 전단에는 배출되는 공기를 안내하는 히터부 가이드(173a)가 마련된다. 냉각부 가이드(171a)와 히터부 가이드(173a)는 천장부(150)에 대응하여 원판 형상이다. 도 3 및 도 4의 예에서, 냉각부 가이드(171a)는 냉각부(171)를 지지하는 케이스로도 동작하게 구현되었고, 히터부 가이드(173a)는 히터부(173)를 덮는 상부 덮개 형태로 구현되었다. The cooling unit 171 and the heater unit 173 are provided on the central axis of the main body 110. The cooling part 171 is provided between the main body 110 and the ceiling part 150, and the heater part 173 is provided on the ceiling part 150. The cooling unit 171 faces the first circulation port 113 on the lower surface, and an intake port through which air is introduced is provided, and the upper surface is sealed by the ceiling unit 150, and air is discharged to the side through the entire side 360°. The heater unit 173 has a lower surface sealed by the ceiling unit 150, and an upper surface intake port 173b through which upper air is introduced is provided on the upper surface, and air is discharged laterally through the entire side 360°. A cooling unit guide 171a for guiding discharged air is provided at a front end of the cooling unit 171, and a heater unit guide 173a for guiding discharged air is provided at a front end of the heater unit 173. The cooling unit guide 171a and the heater unit guide 173a have a disk shape corresponding to the ceiling unit 150. In the example of FIGS. 3 and 4, the cooling unit guide 171a is implemented to operate as a case supporting the cooling unit 171, and the heater unit guide 173a is in the form of an upper cover covering the heater unit 173. Was implemented.
천장부(150)가 평평한 원반 형상인 것에 대응하여, 냉각부(171)와 히터부(173)도 도 3에서처럼 평평한 원반 형상이 바람직하고, 특정한 방향으로 공기를 배출하는 형태가 아니라 원반의 측면 360° 전체를 통해 공기를 배출하는 것이 좋다. 따라서 냉각부(171)와 히터부(173)에서 공기가 배출되는 방향은 본체(110)의 세로 중심축에 수직한 방향이 된다. 냉각부(171)는 냉각된 공기를 에어 존(x)의 상측을 향해 지면에 수평한 방향으로 측방으로 배출하고, 히터부(173)도 데워진 공기를 천장부(150)의 상면을 따라 측방으로 배출한다. In response to the ceiling portion 150 having a flat disk shape, the cooling portion 171 and the heater portion 173 also preferably have a flat disk shape as shown in FIG. 3, and the side of the disk is not a type that discharges air in a specific direction, but 360° It is good to exhaust air through the whole. Accordingly, the direction in which air is discharged from the cooling unit 171 and the heater unit 173 is a direction perpendicular to the vertical central axis of the main body 110. The cooling unit 171 discharges the cooled air toward the upper side of the air zone x in a horizontal direction on the ground, and the heater unit 173 also discharges the heated air to the side along the upper surface of the ceiling unit 150 do.
냉각부 가이드(171a)는 천장부(150)의 아랫면을 따라 천장부(150)와 나란하게 배치되어 냉각부(171)에서 배출되는 차가운 공기를 측방으로 안내하고, 히터부 가이드(173a)는 천장부(150)의 윗면을 따라 천장부(150)와 나란하게 배치되어 히터부(173)에서 배출되는 데워진 공기를 측방으로 안내한다. 냉각부 가이드(171a)와 히터부 가이드(173a)가 천장부(150)의 위 아래에서 다른 온도의 공기를 측방으로 배출함으로써 천장부(150)의 외측방에 기온역전층을 형성한다. 기온역전층은 천장부(150)와 함께 상부 공기가 에어존(x)으로 유입되는 것을 차단하는 역할을 하고, 냉각부(171)에서 배출되는 차가운 공기의 하강 기류를 따라 외기가 에어존(x)으로 유입되는 것을 차단한다. 냉각부 가이드(171a)가 천장부(150)보다 작기 때문에 냉각부(171)에서 배출되는 차가운 공기는 천장부(150)를 벗어나기 전에 아래쪽으로 떨어지기 시작하고 일부는 천장부(150)를 벗어나서 하강한다. 히터부 가이드(173a)도 천장부(150)보다 작지만 천장부(150) 위에 배치되어 있으므로, 히터부(173)에서 배출되는 데워진 공기는 천장부(150)를 벗어나서 상승하지만, 일부는 천장부(150)를 벗어나기 전에 위쪽으로 상승할 수는 있다. 다만, 히터부(173)에서 배출되는 데워진 공기가 적어도 천장부(150)를 벗어나기 전에는 아래쪽으로 떨어지는 일이 생기지 않는다. 따라서 냉각부(171)에서 배출되는 차가운 공기는 에어존으로 유입되고 히터부(173)에서 배출되는 데워진 공기는 천장부(150)와 더불어 에어존을 보호한다. 바람직하게는 냉각부(171)와 히터부(173)가 충분한 풍속으로 공기를 배출함으로써 천장부(150)의 외측방에서 기온역전층을 형성하고 천장부(150)의 외측방에 존재하는 공기들을 밀어내는 것이 좋다. The cooling unit guide 171a is disposed in parallel with the ceiling unit 150 along the lower surface of the ceiling unit 150 to guide cold air discharged from the cooling unit 171 to the side, and the heater unit guide 173a is the ceiling unit 150 ) Is arranged in parallel with the ceiling part 150 along the upper surface of the) to guide the heated air discharged from the heater part 173 to the side. The cooling unit guide 171a and the heater unit guide 173a discharge air of different temperatures from above and below the ceiling unit 150 to the side, thereby forming a temperature reversal layer in the outer room of the ceiling unit 150. The temperature reversal layer serves to block the inflow of the upper air into the air zone (x) together with the ceiling part 150, and the outside air flows into the air zone (x) along the downward airflow of the cold air discharged from the cooling part 171. Block the inflow. Since the cooling unit guide 171a is smaller than the ceiling unit 150, the cold air discharged from the cooling unit 171 starts to fall downward before leaving the ceiling unit 150, and some of them go down beyond the ceiling unit 150. The heater part guide 173a is also smaller than the ceiling part 150, but is disposed above the ceiling part 150, so the heated air discharged from the heater part 173 rises out of the ceiling part 150, but some of it escapes the ceiling part 150. You can ascend upwards before. However, the heated air discharged from the heater unit 173 does not fall downward until it leaves the ceiling unit 150 at least. Therefore, the cold air discharged from the cooling unit 171 flows into the air zone, and the heated air discharged from the heater unit 173 protects the air zone together with the ceiling unit 150. Preferably, the cooling unit 171 and the heater unit 173 discharge air at a sufficient wind speed to form a temperature reversal layer in the outer room of the ceiling unit 150 and to push the air existing in the outer room of the ceiling unit 150 good.
냉각부(171)는 천장부(150)의 외부에까지 차가운 공기가 진행할 수 있도록 배출하는 공기의 풍속을 충분히 크게 하는 것이 좋다. 히터부(173)도 천장부(150)의 외부에까지 데워진 공기가 진행할 수 있도록 배출하는 공기의 풍속을 충분히 크게 하는 것이 좋다. The cooling unit 171 is preferably made to sufficiently increase the wind speed of the discharged air so that the cold air can proceed to the outside of the ceiling unit 150. It is good to increase the wind speed of the discharged air sufficiently so that the heated air can proceed to the outside of the ceiling part 150 as well as the heater part 173.
냉각부(171)가 배출하는 정화되고 찬 공기는 본체(110) 주변으로 공급되어 본체(110) 주변에 고압의 차고 깨끗한 공기로 채워지는 에어 존(x)을 형성한다. 에어 존(x) 영역에서는 냉각부(171)에서 배출된 고밀도의 깨끗한 공기가 채워졌다가 다시 외기구(111)를 통해 공기 밀도 제어 시스템(100)로 유입되는 순환 구조가 생긴다. 에어 존(x)으로 그 외부의 공기가 당연히 유입될 수 있으나, 외부의 오염된 공기는 외기구(111)를 통해 공기 밀도 제어 시스템(100)로 유입되어 정화된다.The purified and cold air discharged from the cooling unit 171 is supplied to the vicinity of the main body 110 to form an air zone x filled with high-pressure cold and clean air around the main unit 110. In the air zone (x) area, high-density clean air discharged from the cooling unit 171 is filled and then flows back into the air density control system 100 through the external device 111. External air may naturally be introduced into the air zone (x), but external contaminated air is introduced into the air density control system 100 through the external device 111 and is purified.
한편, 냉각부(171)에서 배출되는 공기에 의해 하강 기류가 생기면 에어 존(x) 외부의 공기나 미세 먼지가 하강 기류를 따라 에어 존(x)으로 유입될 수 있는데, 히터부(173)가 배출하는 공기가 하강기류의 상측에서 이러한 유입을 차단한다. 히터부(173)는 에어 존(x)의 상측에 더운 공기의 차단막을 형성함과 동시에 더운 공기의 상승 기류를 만듦으로써, 에어 존(x)의 상부 측면에 상호 반대 방향의 기류를 형성하여 에어 존(x) 외부의 공기(특히 상측 공기)나 미세 먼지가 하강 기류를 따라 에어 존(x)으로 유입되지 않도록 차단한다. 이런 특징은 천장부(150)가 충분히 크지 않더라도, 냉각부(171)와 히터부(173)가 배출하는 서로 다른 온도의 공기에 의해 형성된 기온역전층이 상부의 공기 유입을 차단하는 역할을 한다. 다른 의미로는 천장부(150)를 구조적으로 충분히 크게 할 수 없는 경우에도 냉각부(171)와 히터부(173)가 천장부(150)보다 큰 에어존을 만들 수 있는 것이다. On the other hand, when a downward airflow is generated by the air discharged from the cooling unit 171, air or fine dust outside the air zone (x) may flow into the air zone (x) along the downward airflow. Exhaust air blocks this inflow above the downdraft. The heater part 173 forms a hot air blocking film on the upper side of the air zone x and creates an upward airflow of hot air, thereby forming airflows in opposite directions on the upper side of the air zone x. Blocks air (especially upper air) or fine dust from outside the zone (x) from flowing into the air zone (x) along the downdraft. This characteristic is that even if the ceiling part 150 is not large enough, the temperature reversal layer formed by air of different temperatures discharged from the cooling part 171 and the heater part 173 serves to block the inflow of air from the upper part. In other words, even when the ceiling part 150 cannot be sufficiently large structurally, the cooling part 171 and the heater part 173 can create an air zone larger than the ceiling part 150.
냉각부(171)는 공기를 냉각하는 수단과 냉각된 공기를 측방으로 송풍하는 수단을 구비하고, 히터부(173)는 공기를 가열하는 수단과 가열된 공기를 측방으로 송풍하는 수단을 구비하면 족하며, 종래에 알려진 어떠한 장치를 사용해도 무방하다. 예를 들어, 냉각부(171)와 히터부(173)는 냉매를 순환시키면서 상 변화를 통해 주위 공기를 냉각하고 데우는 하나의 공기조화장치(Air Conditioner)의 형태로 구현될 수 있으며, 그 일 예가 도 2에 도시되어 있다. 따라서 본 발명의 공기 밀도 제어 시스템(100)은 냉각부(171)와 히터부(173)를 대신하여 공기조화장치(200)를 구비할 수 있다. 도 3 및 도 4의 공기 밀도 제어 시스템(300)은 도 1의 공기 밀도 제어 시스템(100)과 동일한 시스템으로서, 냉각부(171)와 히터부(173)를 도 2의 공기조화장치(200)로 구현한 예이다. 이하에서는 동일한 구성은 동일한 식별번호로 표시하고 설명한다.The cooling unit 171 is provided with a means for cooling air and a means for blowing the cooled air to the side, and the heater unit 173 is provided with a means for heating the air and a means for blowing the heated air to the side. And, you can use any device known in the art. For example, the cooling unit 171 and the heater unit 173 may be implemented in the form of a single air conditioner that cools and heats the surrounding air through a phase change while circulating a refrigerant. It is shown in Figure 2. Accordingly, the air density control system 100 of the present invention may include an air conditioner 200 in place of the cooling unit 171 and the heater unit 173. The air density control system 300 of FIGS. 3 and 4 is the same system as the air density control system 100 of FIG. 1, and the cooling unit 171 and the heater unit 173 are combined with the air conditioner 200 of FIG. 2. This is an example implementation. In the following, the same configuration is indicated and described with the same identification number.
도 2를 참조하면, 본 발명의 공기조화장치(200)는 리시버드라이어(Receiver Drier)(201), 팽창밸브(203), 증발기(205), 압축기(207), 응축기(209), 배기 팬(211) 및 응축기용 팬(213)을 구비하여, 냉매를 상 변환하면서 순환시킴으로써 주위 공기를 냉각하고 덥히는 방식을 사용한다. 공기조화장치(200)는 공기조화장치(200)의 전체 동작을 제어하는 제어부(230)를 구비한다. 제어부(230)는 공기조화장치(200)의 동작 제어와 함께 공기 밀도 제어 시스템(300)의 전체 동작을 제어할 수도 있다. Referring to FIG. 2, the air conditioner 200 of the present invention includes a receiver drier 201, an expansion valve 203, an evaporator 205, a compressor 207, a condenser 209, and an exhaust fan. 211) and a condenser fan 213 are provided to cool and warm the surrounding air by circulating the refrigerant while converting the phase. The air conditioner 200 includes a control unit 230 that controls the overall operation of the air conditioner 200. The controller 230 may control the overall operation of the air density control system 300 together with the operation control of the air conditioner 200.
냉각 방식의 측면에서, 공기조화장치(200)는 종래에 널리 사용되는 일반적인 공기조화장치의 냉각 방식과 동일하다. 압축기(207)에서 압축된 냉매가 응축기(209)를 통과하면서 고온고압의 액상으로 응축이 되고 응축된 냉매는 팽창밸브(203)와 증발기(205)를 통과하여 기화되어 저온 및 저압의 기체로 변하여 다시 압축기(207)로 유입된다. 리시버드라이어(201)는 적절한 양의 냉매를 저장함으로써 냉동사이클의 부하변동에 대응하여 냉매 순환량도 변동되는 것에 대응하며, 냉매 내의 수분을 흡수하여 제거한다. 따라서 리시버드라이어(201), 팽창밸브(203), 증발기(205), 압축기(207) 및 응축기(209)의 세부적인 개별 동작은 따로 설명하지 않는다. In terms of the cooling method, the air conditioner 200 is the same as the cooling method of a general air conditioner widely used in the related art. The refrigerant compressed in the compressor 207 passes through the condenser 209 and is condensed into a high-temperature and high-pressure liquid phase, and the condensed refrigerant passes through the expansion valve 203 and the evaporator 205 and vaporizes to change into a low-temperature and low-pressure gas. It flows back into the compressor 207. The receiver dryer 201 stores an appropriate amount of refrigerant to respond to changes in the refrigerant circulation amount in response to changes in the load of the refrigeration cycle, and absorbs and removes moisture in the refrigerant. Therefore, detailed individual operations of the receiver dryer 201, the expansion valve 203, the evaporator 205, the compressor 207, and the condenser 209 are not separately described.
외기구(111)를 통해 본체(110)의 내부공간부(110a)로 유입된 공기는 공기정화필터부(130)와 제1 순환구(113)를 통해 증발기(205) 쪽으로 유입되면서 냉각되고 배기 팬(211)에 의해 측방으로 송풍되고, 천장부(150) 상측 공기는 응축기(209)에 의해 데워지고 응축기용 팬(213)에 의해 측방으로 송풍된다. 따라서, 증발기(205)와 배기 팬(211)은 냉각부(171)에 해당하여 천장부(150)의 아래쪽에 마련되고, 응축기(209)와 응축기용 팬(213)은 히터부(173)에 해당하여 천장부(150)의 위쪽에 마련된다. Air introduced into the inner space portion 110a of the main body 110 through the external port 111 is cooled and exhausted while flowing into the evaporator 205 through the air purification filter unit 130 and the first circulation port 113 It is blown to the side by the fan 211, and the air above the ceiling part 150 is heated by the condenser 209 and blown to the side by the condenser fan 213. Accordingly, the evaporator 205 and the exhaust fan 211 correspond to the cooling unit 171 and are provided below the ceiling unit 150, and the condenser 209 and the condenser fan 213 correspond to the heater unit 173. Thus, it is provided above the ceiling part 150.
에어 존(x)은 본체(110)를 360°둘러싸는 전체 방향에 형성되기 때문에, 냉각부(171)는 측면 360° 전체 방향으로 냉각된 공기를 배출하여 하강 기류를 만들어야 하고, 히터부(173)도 하강 기류에 상응하는 상승 기류를 만들기 위해 데워진 공기를 측면 360° 전체 방향으로 배출해야 한다. 도 3을 참조하면, 냉각된 공기와 데워진 공기는 나란하게 측방으로 배출된 다음에, 냉각된 공기는 아래쪽으로 하강 기류를 형성하고 데워진 공기는 위쪽으로 상승기류를 형성한다. 결론적으로, 히터부(173)와 냉각부(171)는 측방으로 공기를 배출하되 측면 360° 전체 방향으로 배출할 수 있어야 한다. Since the air zone (x) is formed in the entire direction surrounding the body 110 by 360°, the cooling unit 171 must discharge the cooled air in the entire direction of the side 360° to create a descending airflow, and the heater unit 173 ), the heated air must be discharged in a full 360° lateral direction to create an updraft corresponding to the downdraft. Referring to FIG. 3, the cooled air and the heated air are discharged side by side, and then the cooled air forms a downward airflow, and the heated air forms an upward airflow. In conclusion, the heater unit 173 and the cooling unit 171 must be capable of discharging air in the lateral direction, but discharging in the entire direction of the side 360°.
냉각부 가이드(171a)와 히터부 가이드(173a)가 냉각부(171)와 히터부(173)를 지지하고 덮는 역할을 함께 하는 경우라면, 증발기(205)와 응축기(209)에서 배출되는 공기를 측방으로 유도하기 위해, 냉각부 가이드(171a)와 히터부 가이드(173a)는 증발기(205)와 응축기(209)보다 큰 원판 형상인 것이 좋다. If the cooling unit guide 171a and the heater unit guide 173a support and cover the cooling unit 171 and the heater unit 173 together, the air discharged from the evaporator 205 and the condenser 209 is In order to guide it to the side, it is preferable that the cooling unit guide 171a and the heater unit guide 173a have a larger disk shape than the evaporator 205 and the condenser 209.
증발기, 배기 팬, 응축기 및 응축기용 팬의 구조Structure of evaporator, exhaust fan, condenser and fan for condenser
도 3 및 도 4의 예에서, 배기 팬(211)은 제1 순환구(113)와 마주하는 흡입구를 통해 유입되는 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현된다. 증발기(205)는 배기 팬(211)을 둘러싸는 도우넛 형상으로 마련된다. 공기정화필터부(130)를 통과한 공기는 배기 팬(211)에 의해 증발기(205)쪽으로 송풍된다. 증발기(205)는 배기 팬(211)이 송풍하는 공기를 냉각하여 외부로 배출한다. 마찬가지로, 응축기용 팬(213)은 상면흡기구(173b)를 통해 유입되는 상측 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현된다. 응축기(209)는 응축기용 팬(213)을 둘러싸는 도우넛 형상으로 마련된다. 응축기용 팬(213)이 동작하여 상측의 공기를 응축기(209) 쪽으로 불어내면, 응축기(209)가 응축기용 팬(213)이 송풍하는 상측 공기를 데워서 외부로 배출한다.In the examples of FIGS. 3 and 4, the exhaust fan 211 is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port 113 along the entire outer circumference of the circular rotating vehicle. The evaporator 205 is provided in a donut shape surrounding the exhaust fan 211. The air that has passed through the air purification filter unit 130 is blown toward the evaporator 205 by the exhaust fan 211. The evaporator 205 cools the air blown by the exhaust fan 211 and discharges it to the outside. Likewise, the condenser fan 213 is implemented as a centrifugal fan that discharges upper air introduced through the upper intake port 173b along the entire outer circumference of the circular rotating vehicle. The condenser 209 is provided in a donut shape surrounding the condenser fan 213. When the condenser fan 213 operates and blows the upper air toward the condenser 209, the condenser 209 heats the upper air blown by the condenser fan 213 and discharges it to the outside.
배기 팬(211)과 응축기용 팬(213)에 사용되는 회전차는 다양한 형태가 가능하다. 회전차가 회전방향에 대해 반대방향으로 기울어진 백워드 팬(Backward Fan)이나 회전방향으로 기울어진 포워드 팬(Forward Fan)을 사용할 수 있다. 다만, 회전차의 회전 법선방향으로 공기가 배출되는 포워드 팬에 비해, 회전축에 대해 수직한 방향으로 공기가 배출되는 백워드 팬이 바람직하다. 그 밖에도, 회전차의 날개가 회전축에 수직한 래디얼 팬(Radial Fan)도 사용할 수 있다. The difference in rotation used for the exhaust fan 211 and the condenser fan 213 can take various forms. A backward fan inclined in the direction opposite to the rotation direction or a forward fan inclined in the rotation direction can be used. However, compared to a forward fan in which air is discharged in a direction normal to the rotation of the rotating vehicle, a backward fan in which air is discharged in a direction perpendicular to the rotation axis is preferable. In addition, a radial fan in which the blades of the rotating vehicle are perpendicular to the rotating axis can be used.
제어부(230)에 의해 공기조화장치(200)가 동작하면 본 발명의 공기 밀도 제어 시스템(100)도 순환 동작을 수행하게 된다. When the air conditioner 200 is operated by the control unit 230, the air density control system 100 of the present invention also performs a circulation operation.
공기조화장치의 실시 예 (보조 증발기)Example of an air conditioner (auxiliary evaporator)
한편, 본 발명의 공기 밀도 제어시스템(300)은 실외에 설치되기 때문에 외기의 온도가 내려가는 저녁이나 새벽에 동작할 수 있고 겨울철의 저온 환경에서도 동작할 수 있다. 이때, 증발기(205)에서 냉매가 완전히 증발되지 않고 일부 액체 상태로 압축기(207)로 흡입이 될 수 있다. 문제는 압축기(207)가 액상의 냉매를 압축하는 과정에서 소손될 수 있다는 것이다. 이러한 문제를 방지하기 위하여, 본 발명의 공기조화장치(200)는 증발기(205)와 압축기(207) 사이에 '보조 증발기'를 더 포함할 수 있다. 보조 증발기는 별도의 증발기이되, 외부에 일정한 온도 조건을 만들어 줌으로써, 저온 환경에서 증발기(205)가 미처 증발시키지 못하고 액상으로 남은 냉매를 완전히 증발시킨다. Meanwhile, since the air density control system 300 of the present invention is installed outdoors, it can operate in the evening or early morning when the temperature of the outside air decreases, and can operate in a low temperature environment in winter. At this time, the refrigerant is not completely evaporated in the evaporator 205 and may be sucked into the compressor 207 in a liquid state. The problem is that the compressor 207 may burn out in the process of compressing the liquid refrigerant. In order to prevent this problem, the air conditioner 200 of the present invention may further include a'secondary evaporator' between the evaporator 205 and the compressor 207. The auxiliary evaporator is a separate evaporator, but by creating a constant temperature condition outside, the evaporator 205 does not evaporate in a low-temperature environment and completely evaporates the refrigerant remaining in the liquid phase.
도 5를 참조하면, 보조 증발기(510)는 증발기(205)와 압축기(207) 사이의 배관(511)에 장착되어 배관(511, 514)을 가열하는 히터(512, 515)와, 이들을 보호하는 단열재(513, 516)를 포함할 수도 있다. 5, the auxiliary evaporator 510 is mounted on the pipe 511 between the evaporator 205 and the compressor 207 to heat the pipes 511 and 514, and heaters 512 and 515 to protect them. Insulation materials 513 and 516 may be included.
다른 방법으로, 도 6을 참조하면, 보조 증발기 장치(610)는 증발기(205)에서 기화되고 남은 액상을 냉매를 저압의 기체로 기화시키는 보조 증발기(611, 614)와, 보조 증발기(611, 614)의 기화 동작을 지원하는 냉각수 챔버(612, 615)를 포함한다. 냉각수 챔버(612, 615)의 내부는 냉각수로 채워지고, 냉각수는 히터(613, 616)에 의해 일정한 온도로 유지된다. 도 6의 (a)는 보조 증발기(611)가 냉각수 챔버(612)의 외부에 마련된 예이고, 도 6의 (b)는 보조 증발기(614)가 냉각수 챔버(615)의 내부에 마련된 예이다. Alternatively, referring to FIG. 6, the auxiliary evaporator device 610 includes auxiliary evaporators 611 and 614 for vaporizing the remaining liquid phase vaporized in the evaporator 205 into a low-pressure gas, and the auxiliary evaporators 611 and 614. ) And a cooling water chamber (612, 615) to support the vaporization operation. The insides of the cooling water chambers 612 and 615 are filled with cooling water, and the cooling water is maintained at a constant temperature by heaters 613 and 616. 6A is an example in which the auxiliary evaporator 611 is provided outside the cooling water chamber 612, and FIG. 6B is an example in which the auxiliary evaporator 614 is provided inside the cooling water chamber 615.
본 발명의 공기밀도 제어시스템의 동작 (도 7)Operation of the air density control system of the present invention (Fig. 7)
앞서 설명한 것처럼, 제어부(230)가 공기조화장치(200)를 동작시키면 본 발명의 공기 밀도 제어 시스템(100, 300)이 동작한다. 우선, 배기 팬(211)이 동작하면, 배기 팬(211)이 본체(110)의 내부공간부(110a)에 형성하는 음압에 의해 외부 공기가 외기구(111)를 통해 본체(110)의 내부공간부(110a)로 유입된다. 유입된 공기는 공기정화필터부(130)를 통과하여 정화된 다음, 제1 순환구(113)를 통해 배기 팬(211)으로 유입된다. 배기 팬(211)은 정화된 공기를 외주를 따라 배치된 증발기(205)로 불어내고, 정화된 공기는 증발기(205)를 통과하면서 열교환에 의해 냉각된 다음 천장부(150)의 아랫 면과 냉각부 가이드(171a)를 따라 측방으로 이동하면서 외부로 배출된다. As described above, when the control unit 230 operates the air conditioner 200, the air density control systems 100 and 300 of the present invention operate. First, when the exhaust fan 211 is operated, the external air is transferred to the inside of the main body 110 through the external device 111 by the negative pressure that the exhaust fan 211 forms in the inner space portion 110a of the main body 110. It flows into the space part 110a. The introduced air is purified by passing through the air purification filter unit 130 and then introduced into the exhaust fan 211 through the first circulation port 113. The exhaust fan 211 blows the purified air into the evaporator 205 disposed along the outer circumference, and the purified air passes through the evaporator 205 and is cooled by heat exchange, and then the lower surface of the ceiling 150 and the cooling unit It is discharged to the outside while moving to the side along the guide (171a).
에어 존(x)의 공기 밀도를 균일하게 유지하기 위해, 증발기(205)는 측면 360° 모든 방향으로 공기를 배출하도록 설치되는 것이 좋다. 외기구(111)는 반드시 그럴 필요는 없지만, 냉각부(171)와 마찬가지로 본체(110)를 둘러싸는 전체 방향에서 외부 공기를 빨아들이는 것이 좋다. In order to keep the air density of the air zone (x) uniform, the evaporator 205 is preferably installed to discharge air in all directions by 360°. The external device 111 is not necessarily so, but, like the cooling unit 171, it is good to suck in external air from the entire direction surrounding the main body 110.
증발기(205)를 통과하면서 냉각된 공기는 상당한 수준으로 압축되기 때문에, 증발기(205)에서 배출되는 공기(이하, '배출공기'라 함)는 고밀도의 찬 공기가 된다. 샤를의 법칙에 따르면 공기의 밀도는 공기의 온도에 따라 변하며, 다음의 수학식 1로 표현할 수 있다.Since the air cooled while passing through the evaporator 205 is compressed to a considerable level, the air discharged from the evaporator 205 (hereinafter, referred to as “exhaust air”) becomes high-density cold air. According to Charles' law, the density of air changes according to the temperature of the air, and can be expressed by Equation 1 below.
Figure PCTKR2019014347-appb-img-000001
Figure PCTKR2019014347-appb-img-000001
여기서, t는 기체의 온도이고, Vo는 0도에서의 기체의 부피이고, Vt는 t 온도에서의 기체의 부피이다. 기체 분자의 수가 일정한 상태에서 공기의 온도가 올라서 부피가 늘어나면 밀도는 낮아진다. 동일한 압력에서 공기의 온도가 5도 오르면 약 2%의 공기 밀도가 감소하고, 온도가 5도 떨어지면 2%의 공기 밀도가 증가한다. Here, t is the temperature of the gas, Vo is the volume of the gas at 0 degrees, and Vt is the volume of the gas at the temperature t. With a constant number of gas molecules, the density decreases as the air temperature increases and the volume increases. At the same pressure, when the air temperature rises by 5 degrees, the air density decreases by about 2%, and when the temperature decreases by 5 degrees, the air density increases by 2%.
고밀도의 찬 배출공기는 증발기(205)를 통해 배출되면서 중력에 의해 아래쪽으로 하강 기류를 형성함과 동시에 상대적으로 밀도가 낮은 주변의 더운 공기 쪽을 향하는 수평 방향의 힘이 작용하면서 더운 공기를 밀어내고 고밀도의 찬 공기로 채워지는 에어 존(x)을 형성한다. 고밀도의 찬 공기와 주변의 더운 공기가 만나는 면에 공기막이 형성되어 에어 존(x)이 만들어진다. 에어 존(x)의 내부가 외부에 비해 밀도가 높기 때문에 외부로 향하는 공기의 유출은 있으나, 외부에서 에어 존(x) 즉 공기막 내부로의 공기 유입이 차단되는 효과가 있다.As the high-density cold exhaust air is discharged through the evaporator 205, it forms a downward airflow by gravity, and at the same time, a horizontal force toward the surrounding hot air with relatively low density acts to push out the hot air. An air zone (x) filled with high-density cold air is formed. An air film is formed on the surface where the high-density cold air and the surrounding hot air meet to create an air zone (x). Since the inside of the air zone x is denser than the outside, there is an outflow of air to the outside, but there is an effect of blocking air inflow from the outside into the air zone x, that is, the air membrane.
도 7에서처럼, 공기 밀도 제어 시스템(300)이 차도(20)와 접한 보행로(30) 가장자리에 설치되면 더욱 강력한 에어 존(x)을 만들어, 차도(20)에서 발생하는 미세먼지나 질소 화합물이 에어 존(x)으로 유입되는 것을 차단할 수 있다. 도심에서의 운행하는 차량은 배출가스, 타이어 분진, 도로 파쇄에 따른 미세먼지 외에도 질소 화합물 등을 배출하기 때문에 공기 오염의 주요한 원인 중 하나다. 도심에 태양 복사가 일어나는 한낮의 차도(20)는 보행로(30)에 비해 상대적으로 온도가 높고 공기 밀도가 낮다. 따라서 한낮의 도심에서는 보행로(30)에서 차도(20)로 향하는 기류가 있다. 본 발명의 공기 밀도 제어 시스템(300)이 배출하는 배출공기는 상대적으로 밀도가 높기 때문에 차도 방향으로의 기류를 강화시키면서 에어 존(x)을 더욱 강화한다. 따라서 본 발명의 공기 밀도 제어 시스템(300)은 도심의 차도(20)에 접한 보행로(30)에 깨끗한 공기로 채워지는 에어 존(x)을 만들 수 있다. As shown in FIG. 7, when the air density control system 300 is installed on the edge of the walkway 30 in contact with the driveway 20, a more powerful air zone x is created, and fine dust or nitrogen compounds generated in the driveway 20 It can be blocked from entering the zone (x). Vehicles running in urban areas are one of the major causes of air pollution because they emit nitrogen compounds, in addition to exhaust gases, tire dust, and fine dust from road crushing. The roadway 20 in the middle of the day in which solar radiation is generated in the city has a relatively high temperature and low air density compared to the pedestrian path 30. Therefore, in the city center at midday, there is an airflow from the pedestrian path 30 to the driveway 20. Since the exhaust air discharged from the air density control system 300 of the present invention has a relatively high density, the air zone x is further strengthened while enhancing the airflow in the direction of the roadway. Accordingly, the air density control system 300 of the present invention can create an air zone x filled with clean air in the pedestrian path 30 in contact with the roadway 20 in the city.
이러한 과정 중에, 응축기용 팬(213)은 상측 공기를 빨아들여 응축기(209)쪽으로 불어낸다. 응축기(209)는 응축기용 팬(213)이 송풍하는 공기를 고온으로 데운다. 응축기(209)에서 데워진 공기는 히터부 가이드(173a)와 천장부(150)의 상면을 따라 안내되어 측방으로 배출된다. 천장부 상측의 공기는 측방으로 배출된 후 상승하는 기류를 형성함으로써, 천장부(150) 상측의 공기나 측방의 공기가 냉각부(171)에 의한 하강 기류를 따라 에어존(x)으로 유입되는 것을 차단한다. 더불어, 응축기(209)가 배출하는 공기는 데워진 상태이므로 측방으로 배출된 다음 확산되면서 밀도가 낮아진다. 따라서 에어 존(x) 내부와 상층 대기 사이의 공기 밀도 차이로 인해, 에어 존(x)과 천장부(150) 상측 대기 사이의 순환이 발생하지 않게 된다. During this process, the condenser fan 213 sucks in the upper air and blows it toward the condenser 209. The condenser 209 heats the air blown by the condenser fan 213 to a high temperature. The air heated in the condenser 209 is guided along the upper surface of the heater guide 173a and the ceiling 150 and discharged to the side. The air above the ceiling part is discharged to the side and then forms an ascending airflow, thereby preventing the air above the ceiling 150 or the air from the side from flowing into the air zone (x) along the descending airflow by the cooling part 171 do. In addition, since the air discharged from the condenser 209 is in a warmed state, it is discharged to the side and then diffuses, resulting in a lower density. Accordingly, due to the difference in air density between the air zone x and the upper atmosphere, circulation between the air zone x and the upper atmosphere of the ceiling 150 does not occur.
다른 실시 예 (도 8)Another embodiment (Fig. 8)
이상의 예에서 냉각부(171)에서 배출되는 차가운 공기는 냉각부 가이드(171a)에 의해 에어존의 가장자리를 형성하는 하강기류를 형성하고 에어존(x) 내부를 채운다. 더해서, 에어존(x) 내부에 직접 차가운 공기를 공급할 수도 있다. In the above example, the cold air discharged from the cooling unit 171 forms a downward airflow forming the edge of the air zone by the cooling unit guide 171a and fills the inside of the air zone (x). In addition, cold air may be supplied directly into the air zone x.
도 8을 참조하면, 본 발명의 다른 실시 예에 따른 공기밀도제어시스템(800)은 도 3의 공기밀도제어시스템(300)과 동일한 구성을 가지되, 냉각부(171)에서 배출되는 차가운 공기의 가이드 역할을 하는 냉각부 가이드(171a)가 제1 냉각부 가이드(801)와 제2 냉각부 가이드(803)로 이중화하여 에어존(x) 내부에 별도로 차가운 공기를 공급한다. Referring to FIG. 8, an air density control system 800 according to another embodiment of the present invention has the same configuration as the air density control system 300 of FIG. 3, but The cooling unit guide 171a serving as a guide is doubled as the first cooling unit guide 801 and the second cooling unit guide 803 to separately supply cold air into the air zone x.
제1 냉각부 가이드(801)와 제2 냉각부 가이드(803)는 냉각부(171)에서 배출되는 공기를 측방으로 안내하며, 기본적으로 냉각부 가이드(171a)와 동일하게 설명된다. 다만, 본체(110)의 세로 중심선을 기준으로 할 때, 제1 냉각부 가이드(801)는 제2 냉각부 가이드(803)보다 더 멀리까지 차가운 공기를 안내함으로써, 차가운 공기가 하강하는 지점을 제2 냉각부 가이드(803)에 비해 본체(110)로부터 더 멀다. 따라서 제1 냉각부 가이드(801)는 제2 냉각부 가이드(803) 위에 더 큰 크기로 배치된다. 도 8의 예에서, 증발기(205)가 360°전체 방향으로 배출하는 차가운 공기는 2단으로 배치된 제1 냉각부 가이드(801)와 제2 냉각부 가이드(803)에 의해 다단으로 배출된다.The first cooling unit guide 801 and the second cooling unit guide 803 guide air discharged from the cooling unit 171 to the side, and are basically described in the same manner as the cooling unit guide 171a. However, based on the vertical center line of the main body 110, the first cooling unit guide 801 guides the cold air farther than the second cooling unit guide 803, thereby reducing the point at which the cold air descends. 2 It is farther from the main body 110 than the cooling part guide 803. Therefore, the first cooling unit guide 801 is disposed on the second cooling unit guide 803 in a larger size. In the example of FIG. 8, the cold air discharged by the evaporator 205 in the entire 360° direction is discharged in multiple stages by the first cooling unit guide 801 and the second cooling unit guide 803 arranged in two stages.
제1 냉각부 가이드(801)는 도 1의 냉각부 가이드(171a)처럼 에어존(x)을 외곽을 형성하기 위해 냉각부(171)가 배출하는 차가운 공기를 안내한다. 제1 냉각부 가이드(801)에 의해 안내되어 배출되는 차가운 공기는 하강하면서 에어존(x)의 가장자리를 형성하는 하강기류(af1)를 형성한다. 대신에, 제2 냉각부 가이드(803)는 에어존(x) 내부에 차가운 공기를 공급함으로써 에어존(x) 내부가 좀더 빠르게 냉각되도록 한다. 제2 냉각부 가이드(803)에 의해 안내되어 배출되는 차가운 공기는 하강하면서 에어존(x)의 내부로 유입되는 하강기류(af2)를 형성한다. 도 8의 공기밀도제어장치(800)는 에어존(x) 내부의 차가운 고밀도 공간을 효율적으로 유지할 수 있다. The first cooling unit guide 801 guides cold air discharged from the cooling unit 171 to form an outer periphery of the air zone x like the cooling unit guide 171a of FIG. 1. The cold air guided and discharged by the first cooling unit guide 801 forms a descending airflow af1 forming an edge of the air zone x while descending. Instead, the second cooling unit guide 803 supplies cold air into the air zone x so that the inside of the air zone x is cooled more quickly. The cold air that is guided and discharged by the second cooling unit guide 803 descends and forms a descending airflow af2 flowing into the air zone x. The air density control device 800 of FIG. 8 can efficiently maintain a cold, high-density space inside the air zone (x).
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and is generally used in the technical field to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Of course, various modifications may be made by those skilled in the art, and these modifications should not be understood individually from the technical idea or perspective of the present invention.

Claims (12)

  1. 옥외에 설치되는 공기 밀도 제어 시스템로서, As an outdoor air density control system,
    주변 공간의 공기가 유입되는 적어도 하나의 외기구가 외측면에 마련되고, 상기 유입된 공기를 배출하는 제1 순환구가 상면에 마련된 기둥 형상의 본체. ;At least one external device through which air from the surrounding space is introduced is provided on an outer surface, and a first circulation port through which the introduced air is discharged is provided on an upper surface. ;
    상기 주변 공간을 덮어서 상측 공기가 상기 주변 공간으로 유입되지 않도록 차단하는 천장부; A ceiling part covering the surrounding space to block upper air from flowing into the surrounding space;
    상기 본체와 천장부 사이에 마련되어 상기 제1 순환구로부터 배출되는 공기를 냉각하여 상기 천장부의 아랫면을 따라 측방으로 차가운 공기를 배출함으로써 차가운 공기의 하강 기류를 형성하여 상기 본체의 주변 공간을 고밀도의 에어존을 만드는 냉각부; 및It is provided between the main body and the ceiling part and cools the air discharged from the first circulation port to discharge cool air to the side along the lower surface of the ceiling part, thereby forming a downward airflow of the cool air, thereby creating a high-density air zone around the main body. A cooling unit to make it; And
    상기 천장부 위에 마련되어, 천장부 상측 공기를 가열하여 상기 천장부의 상면을 따라 측방으로 데워진 공기를 배출하는 히터부를 포함함으로써 상기 데워진 공기는 상승기류를 형성하여 상기 상측 공기가 상기 하강 기류를 따라 상기 에어존으로 유입되는 것을 차단하는 특징으로 하는 공기 밀도 제어 시스템. The heated air is provided on the ceiling and includes a heater to heat the air above the ceiling to discharge the air heated laterally along the upper surface of the ceiling, so that the heated air forms an upward airflow so that the upper air flows into the air zone along the downward airflow. Air density control system, characterized in that blocking the inflow.
  2. 제1항에 있어서, The method of claim 1,
    상기 냉각부의 전단에 마련되어 상기 차가운 공기를 측방으로 안내하되 상기 천장부보다 작은 크기로 마련된 냉각부 가이드; 및 A cooling unit guide provided at a front end of the cooling unit to guide the cold air to the side and having a size smaller than that of the ceiling unit; And
    상기 히터부의 전단에 마련되어 상기 데워진 공기를 측방으로 안내하되 상기 천장부보다 작은 크기로 마련된 히터부 가이드를 더 포함하는 것을 특징으로 하는 공기 밀도 제어 시스템. An air density control system, further comprising a heater guide provided at a front end of the heater to guide the heated air to the side, but having a size smaller than that of the ceiling.
  3. 제2항에 있어서,The method of claim 2,
    상기 냉각부 가이드와 천장부 사이에 마련되어 상기 냉각부에서 배출되는 차가운 공기를 상기 냉각부 가이드보다 더 멀리까지 안내하는 다른 냉각부 가이드를 더 포함하는 것을 특징으로 하는 공기 밀도 제어 시스템. And another cooling unit guide provided between the cooling unit guide and the ceiling unit to guide cold air discharged from the cooling unit farther than the cooling unit guide.
  4. 제2항에 있어서,The method of claim 2,
    상기 냉각부와 히터부는 증발기, 압축기, 응축기 및 팽창밸브를 포함하여 냉매를 순환시키며 상 변화를 수행하는 공기조화장치(Air Conditioning System)로 구현되고, The cooling unit and the heater unit are implemented as an air conditioning system that circulates a refrigerant including an evaporator, a compressor, a condenser, and an expansion valve and performs a phase change,
    상기 냉각부는 상기 증발기와 공기를 측방으로 불어내는 배기 팬을 포함하고, The cooling unit includes an exhaust fan that blows the evaporator and air to the side,
    상기 히터부는 상기 응축기와 상기 응축기에서 가열된 공기를 측방으로 불어내는 응축기용 팬을 포함하는 것을 특징으로 하는 공기 밀도 제어 시스템. And a fan for a condenser that blows the air heated by the condenser and the air heated in the condenser to the side.
  5. 제4항에 있어서,The method of claim 4,
    상기 배기 팬은 상기 제1 순환구와 마주하는 흡입구를 통해 유입되는 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되며, The exhaust fan is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port along the entire outer circumference of the circular rotating vehicle,
    상기 증발기는 상기 배기 팬을 둘러싸는 도우넛 형상으로 마련되는 것을 특징으로 하는 공기 밀도 제어 시스템. The evaporator is an air density control system, characterized in that provided in a donut shape surrounding the exhaust fan.
  6. 제4항에 있어서,The method of claim 4,
    상기 응축기용 팬은 흡입구를 통해 유입되는 상기 상측 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되고, 상기 응축기는 상기 응축기용 팬을 둘러싸는 도우넛 형상으로 마련되는 것을 특징으로 하는 공기 밀도 제어 시스템. The condenser fan is implemented as a centrifugal fan that discharges the upper air flowing through the inlet along the entire outer circumference of the circular rotating vehicle, and the condenser is provided in a donut shape surrounding the condenser fan. Density control system.
  7. 제1항에 있어서,The method of claim 1,
    상기 냉각부와 히터부는 증발기, 압축기, 응축기 및 팽창밸브를 포함하여 냉매를 순환시키며 상 변화를 수행하는 공기조화장치(Air Conditioning System)로 구현되고, The cooling unit and the heater unit are implemented as an air conditioning system that circulates a refrigerant including an evaporator, a compressor, a condenser, and an expansion valve and performs a phase change,
    상기 냉각부는 상기 증발기와 공기를 측방으로 불어내는 배기 팬을 포함하고, The cooling unit includes an exhaust fan that blows the evaporator and air to the side,
    상기 히터부는 상기 응축기와 상기 응축기에서 가열된 공기를 측방으로 불어내는 응축기용 팬을 포함하는 것을 특징으로 하는 공기 밀도 제어 시스템. And a fan for a condenser that blows the air heated by the condenser and the air heated in the condenser to the side.
  8. 제7항에 있어서,The method of claim 7,
    상기 배기 팬은 상기 제1 순환구와 마주하는 흡입구를 통해 유입되는 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되며, The exhaust fan is implemented as a centrifugal fan that discharges air introduced through an inlet facing the first circulation port along the entire outer circumference of the circular rotating vehicle,
    상기 증발기는 상기 배기 팬을 둘러싸는 도우넛 형상으로 마련되는 것을 특징으로 하는 공기 밀도 제어 시스템. The evaporator is an air density control system, characterized in that provided in a donut shape surrounding the exhaust fan.
  9. 제7항에 있어서,The method of claim 7,
    상기 응축기용 팬은 흡입구를 통해 유입되는 상기 상측 공기를 원형 회전차의 외주 전체를 따라 배출하는 원심 팬으로 구현되고, 상기 응축기는 상기 응축기용 팬을 둘러싸는 도우넛 형상으로 마련되는 것을 특징으로 하는 공기 밀도 제어 시스템. The condenser fan is implemented as a centrifugal fan that discharges the upper air flowing through the inlet along the entire outer circumference of the circular rotating vehicle, and the condenser is provided in a donut shape surrounding the condenser fan. Density control system.
  10. 제7항에 있어서,The method of claim 7,
    상기 증발기와 압축기 사이에 배치된 보조 증발기를 더 포함하여, 저온 환경에서 상기 증발기에서 증발되지 않고 액상으로 남은 냉매를 증발시키는 것을 특징으로 하는 공기 밀도 제어 시스템. An air density control system, further comprising an auxiliary evaporator disposed between the evaporator and the compressor, and evaporating the refrigerant remaining in a liquid state without being evaporated in the evaporator in a low temperature environment.
  11. 제1항에 있어서, The method of claim 1,
    상기 냉각부와 히터부는 상기 차가운 공기와 데워진 공기를 상기 천장부의 외측방까지 나란하게 진행할 정도의 풍속으로 배출함으로써 상기 천장부의 외측방에서 기온역전층이 생기도록 하는 것을 특징으로 하는 공기 밀도 제어 시스템. The cooling unit and the heater unit, by discharging the cold air and the heated air at a wind speed sufficient to proceed side by side to the outer room of the ceiling unit to generate a temperature reversal layer in the outer room of the ceiling.
  12. 제1항에 있어서,The method of claim 1,
    상기 본체의 내부 공간부 또는 상기 냉각부 내에 마련되거나 상기 본체와 냉각부 사이에 마련되어 상기 외기구를 통해 유입되는 외부공기를 정화하는 공기정화필터부를 더 포함하는 것을 특징으로 하는 공기 밀도 제어 시스템. An air density control system comprising: an air purification filter unit provided in the inner space of the main body or the cooling unit, or provided between the main body and the cooling unit to purify external air introduced through the external port.
PCT/KR2019/014347 2019-08-26 2019-10-29 Air density control system equipped with air conditioner mounted on rooftop WO2021040130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0104415 2019-08-26
KR1020190104415A KR102060823B1 (en) 2019-08-26 2019-08-26 Air Density Control System Including a Air Conditioner installed on the Roof Top

Publications (1)

Publication Number Publication Date
WO2021040130A1 true WO2021040130A1 (en) 2021-03-04

Family

ID=69051487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014347 WO2021040130A1 (en) 2019-08-26 2019-10-29 Air density control system equipped with air conditioner mounted on rooftop

Country Status (2)

Country Link
KR (1) KR102060823B1 (en)
WO (1) WO2021040130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024191366A1 (en) * 2023-03-10 2024-09-19 Enover Isi Si̇stemleri̇ Anoni̇m Şi̇rketi̇ Rooftop air conditioning system with heat transfer fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317042B1 (en) * 2020-09-03 2021-10-25 주식회사 엔쓰컴퍼니 Outdoor Booth filled Purified Air and Capable of Preventing Mouth Secretions Transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105898A1 (en) * 2003-11-19 2005-05-19 Bachinski Thomas J. Infrared heating system for patio umbrella
US20050247074A1 (en) * 2004-05-08 2005-11-10 Space Breeze, Llc Cooling apparatus
KR20090001604U (en) * 2009-01-14 2009-02-18 이상은 Expedient appatatus for smoking zone
KR20160015656A (en) * 2014-07-31 2016-02-15 김영대 Prasol with air conditioning and heating
KR101934379B1 (en) * 2018-04-09 2019-03-25 백보현 Multifunctional shelter device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105898A1 (en) * 2003-11-19 2005-05-19 Bachinski Thomas J. Infrared heating system for patio umbrella
US20050247074A1 (en) * 2004-05-08 2005-11-10 Space Breeze, Llc Cooling apparatus
KR20090001604U (en) * 2009-01-14 2009-02-18 이상은 Expedient appatatus for smoking zone
KR20160015656A (en) * 2014-07-31 2016-02-15 김영대 Prasol with air conditioning and heating
KR101934379B1 (en) * 2018-04-09 2019-03-25 백보현 Multifunctional shelter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024191366A1 (en) * 2023-03-10 2024-09-19 Enover Isi Si̇stemleri̇ Anoni̇m Şi̇rketi̇ Rooftop air conditioning system with heat transfer fluid

Also Published As

Publication number Publication date
KR102060823B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2020184770A1 (en) Air dome apparatus for forming temperature inversion layer in upper air, and generation method thereof
WO2021040130A1 (en) Air density control system equipped with air conditioner mounted on rooftop
CN109260914A (en) A kind of flue gas using air circulation takes off white system and technique
WO2012148111A2 (en) Apparatus and method for evaporation cooling a cooling fluid
CN106091166A (en) Air conditioner outdoor unit, air conditioner and defrosting method of air conditioner outdoor unit
WO2021085950A2 (en) Window-type heat exchange ventilation device
WO2014058099A1 (en) Water-evaporating cold air blower
CN107366995A (en) A kind of bathroom air exhaust waste heat recycling system
JP2007255780A (en) Desiccant air conditioning system utilizing solar energy
US3899553A (en) Cooling tower plume control
CN112406472A (en) Control system and control method for integrated-prevention and purification air conditioner
CN108144383A (en) Flue gas pollutant processing system and processing method, chimney
CN103480222B (en) Combined type electric oil-mist removing system of waste gas of printing, dyeing and finishing machine and filtering method
KR100329326B1 (en) Integrated air cooling and ventilation system
KR200290638Y1 (en) white plume phenomenon preventing system integral with a stack
CN203518008U (en) Dehumidification unit of air conditioner
CN105311895B (en) A kind of method and its device for dispelling solid content and pernicious gas in flue gas
JPH04504161A (en) air conditioner
KR102220113B1 (en) White plume reduction device
CN110118400A (en) Multifunctional air clarifying device and method based on cryogenic condensation
WO1990015291A1 (en) An efficient gas hot-air furnace and heating process
CN109453614A (en) Zeolite runner Adsorption Concentration device
CN104048306B (en) Energy-saving environmental-protection boiler exhaust emissions tower
EP2139583A1 (en) Collection of particulates
CN107560051A (en) A kind of distributed permanent oxygen VMC for preventing cross infection of disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943398

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943398

Country of ref document: EP

Kind code of ref document: A1