WO2021037063A1 - 一种无取向电工钢板及其制造方法 - Google Patents
一种无取向电工钢板及其制造方法 Download PDFInfo
- Publication number
- WO2021037063A1 WO2021037063A1 PCT/CN2020/111404 CN2020111404W WO2021037063A1 WO 2021037063 A1 WO2021037063 A1 WO 2021037063A1 CN 2020111404 W CN2020111404 W CN 2020111404W WO 2021037063 A1 WO2021037063 A1 WO 2021037063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- electrical steel
- oriented electrical
- manufacturing
- inclusions
- Prior art date
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229910052742 iron Inorganic materials 0.000 claims abstract description 34
- 238000005097 cold rolling Methods 0.000 claims abstract description 15
- 238000000137 annealing Methods 0.000 claims abstract description 14
- 238000002791 soaking Methods 0.000 claims abstract description 14
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 7
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 7
- 238000005098 hot rolling Methods 0.000 claims abstract description 7
- 238000010606 normalization Methods 0.000 claims abstract description 7
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 238000003723 Smelting Methods 0.000 claims abstract description 5
- 238000005266 casting Methods 0.000 claims abstract description 5
- 229910052729 chemical element Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 46
- 239000010959 steel Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 23
- 230000006698 induction Effects 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 18
- 238000005096 rolling process Methods 0.000 claims description 15
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 239000002893 slag Substances 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000010079 rubber tapping Methods 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000004321 preservation Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the invention relates to a steel plate and a manufacturing method thereof, in particular to a non-oriented electrical steel plate and a manufacturing method thereof.
- the publication number is CN103290190A
- the publication date is September 11, 2013,
- the Chinese patent document entitled "Non-oriented silicon steel and its manufacturing method” discloses a non-oriented silicon steel with excellent magnetic properties.
- the Si content reaches 2.5-4.0%
- the Al content reaches 0.5-1.5%. In this way, as the Si and Al contents increase, the iron loss of the material decreases rapidly, but the magnetic induction of the material also decreases rapidly. .
- the technical solution disclosed in the patent document adopts rough rolling pass large reduction rolling and rough roll rolling, high temperature coiling, and optimizing the reduction ratio of each pass to obtain the ideal hot-rolled strip structure and improve
- the cold rolling reduction rate provides greater energy (deformation energy) for the grain growth during the final recrystallization annealing process; measures such as obtaining the ideal grain structure by controlling the recrystallization annealing temperature to obtain a high-quality surface with high magnetism It is most suitable for high-efficiency motor iron cores with inductive and low iron loss.
- the publication number is CN102453837A
- the publication date is May 16, 2012
- the Chinese patent document titled "A method for manufacturing high magnetic induction non-oriented silicon steel” discloses a method for manufacturing high magnetic induction non-oriented silicon steel .
- it includes the following steps: 1) smelting, casting, non-oriented silicon steel chemical composition weight percentage: Si: 0.1-1%, Al: 0.005-1%, C ⁇ 0.004%, Mn :0.10 ⁇ 1.50%, P ⁇ 0.2%, S ⁇ 0.005%, N ⁇ 0.002%, Nb+V+Ti ⁇ 0.006%; excess iron; steelmaking, secondary refining, and casting into billets; 2) hot rolling, The heating temperature is 1150°C ⁇ 1200°C, the final rolling temperature is 830 ⁇ 900°C, and the coiling is carried out at a temperature ⁇ 570°C; 3) Smooth, cold rolling with a reduction of 2% to 5%; 4) Normalization, the temperature is not lower than 950 °C, holding time 30 ⁇
- One of the objects of the present invention is to provide a non-oriented electrical steel sheet with small magnetic anisotropy, which has the characteristics of high frequency, low iron loss, and small magnetic anisotropy.
- the present invention proposes a non-oriented electrical steel sheet with small magnetic anisotropy, the mass percentage of chemical elements is:
- C In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, C strongly hinders the grain growth of the finished steel sheet, and easily combines with Nb, V, Ti, etc. to form fine precipitates, thereby causing increased loss and generation Magnetic aging, therefore, in the technical solution of the present invention, the mass percentage of C is controlled to be 0 ⁇ C ⁇ 0.005%.
- Si In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, Si increases the resistivity of the material and can effectively reduce the iron loss of the steel. When the mass percentage of Si is higher than 3.5%, the magnetic induction of the steel will be significantly reduced; and when the mass percentage of Si is lower than 2.0%, the iron loss cannot be effectively reduced. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Si to Si: 2.0-3.5%.
- Mn In the technical scheme of the present invention, Mn combines with S to generate MnS, which can reduce the damage to the magnetic properties. When the mass percentage of Mn is less than 0.1%, the sulfur fixation effect is poor, and when the mass percentage of Mn is more than 2.0%, the recrystallization effect of the steel is inhibited. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Mn at Mn: 0.1-2.0%.
- At least one of Sn and Sb In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, Sn and Sb can improve the crystal texture of the steel. Therefore, 0.003% or more of Sn should be added to the steel And/or Sb. However, adding more than 0.2% of Sn and/or Sb to steel will cause abnormal crystal grain refinement and deterioration of steel iron loss. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Sn and Sb at least one of Sn and Sb to be 0.003-0.2%.
- the non-oriented electrical steel sheet with low magnetic anisotropy according to the present invention controls the mass percentage of Al at: Al: 0.2-1.8%.
- the average crystal grain size is 90-140 ⁇ m.
- the average grain size is limited to 90-140 ⁇ m.
- the steel sheet’s hysteresis loss dominates due to the influence of inclusions pinning the grain boundaries and insufficient driving force for grain growth. Relatively high, eventually resulting in high iron loss.
- L and C anisotropy that is, the ratio of the difference between the electromagnetic properties of the steel plate perpendicular to the rolling direction and the sum is larger.
- the average grain size is higher than 130 ⁇ m, the harmful ⁇ 111 ⁇ plane texture will grow up quickly, which will swallow the favorable ⁇ 100 ⁇ plane texture ratio and cause the magnetic induction to deteriorate.
- non-oriented electrical steel sheet with small magnetic anisotropy among other inevitable impurities, P ⁇ 0.2%, S ⁇ 0.003%, N ⁇ 0.002%, O ⁇ 0.002%, Ti ⁇ 0.0015%.
- the less unavoidable impurities should be controlled, where P ⁇ 0.2% is controlled because when the mass percentage of P exceeds 0.2%, it is easy to cause cold brittleness and reduce the manufacturability of the cold rolling process.
- S ⁇ 0.003% because when the mass percentage of S exceeds 0.003%, it will greatly increase the number of harmful inclusions of MnS and Cu 2 S, destroy the favorable texture of the steel and hinder the grain growth of the finished product.
- Controlling N ⁇ 0.002% is because when the mass percentage of N exceeds 0.002%, the Nb, V, Ti, Al and other precipitates of N will greatly increase, which will strongly hinder the growth of crystal grains and deteriorate the magnetic properties of steel.
- the control of O ⁇ 0.002% is because when the mass percentage of O exceeds 0.002%, the number of oxide inclusions will be greatly increased, which is not conducive to adjusting the ratio of inclusions and deteriorating the magnetic properties of steel.
- the control of Ti ⁇ 0.0015% is because when the mass percentage of Ti exceeds 0.0015%, the precipitation of C and N of Ti will greatly increase, which will strongly hinder the growth of crystal grains and deteriorate the magnetic properties of steel;
- the non-oriented electrical steel sheet with small magnetic anisotropy of the present invention has inclusions MnS and Cu 2 S, and the size of the inclusions is 150 to 500 nm.
- the shape of the inclusions includes spherical or quasi-spherical, and the projection of the inclusions is circular or elliptical.
- the ratio of the major axis/minor axis diameter of the ellipse is ⁇ 4.0.
- the MnS and Cu 2 S inclusions in the precipitates have little difference in the external force of the liquid phase and are not easy to deform, and are easier to form spherical or quasi-spherical inclusions.
- the plane projection pattern is circular or elliptical, and The ratio of the diameter of the major axis/minor axis of the ellipse is ⁇ 4.0.
- the iron loss P 10/400 ⁇ 11.0 W/kg, the magnetic induction B 50 ⁇ 1.66 T, and the magnetic anisotropy of the electrical steel sheet is Refers to the ratio of the difference between the iron loss P 10/400L parallel to the rolling direction and the iron loss P 10/400C perpendicular to the rolling direction to the sum.
- the magnetic anisotropy of the electrical steel sheet of the present invention is ⁇ 10%, indicating that Electrical steel sheet has low magnetic anisotropy.
- the electromagnetic performance measurement method is based on the Epstein square circle method (GB 10129-1988), and the German Brockhaus magnetic measurement equipment is used for measurement. Among them, P 10/400 represents the iron loss value tested under the conditions of 1.0T and 400Hz, and B 50 represents the magnetic induction value tested under the conditions of 5000A/m.
- another object of the present invention is to provide a method for manufacturing the above-mentioned non-oriented electrical steel sheet with small magnetic anisotropy, by which a non-oriented electrical steel sheet with high frequency, low iron loss and small magnetic anisotropy can be obtained.
- Steel plate
- the present invention proposes a method for manufacturing the above-mentioned non-oriented electrical steel sheet with small magnetic anisotropy, which comprises the following steps:
- the cold-rolled steel sheet is quickly heated from the initial temperature of 350°C-750°C to the soaking temperature at a temperature rise rate of 50-800°C/s, and the soaking temperature is performed, so that the cold-rolled steel sheet is continuously annealed.
- step (1) includes a converter tapping process, and the ladle top slag is modified during the converter tapping process, and the requirements are as follows: (CaO)/(Al 2 O 3 ) ⁇ 0.85, and T Fe ⁇ 13%, where (CaO) and (Al 2 O 3 ) represent the mass percentage of CaO and Al 2 O 3 respectively, and T Fe represents the total mass percentage of Fe element.
- the above scheme mainly considers increasing the content of T Fe in the slag, which can effectively avoid the reduction reaction of the harmful element Ti between the slag and steel, and increasing the ratio of (CaO)/(Al 2 O 3 ) is beneficial to the absorption of steel
- the harmful inclusions CaO and Al 2 O 3 promote the desulfurization reaction and inhibit the precipitation of sulfide inclusions during continuous casting and hot rolling.
- step (4) the steel plate is directly rolled to the thickness of the finished product from 0.10 to 0.30 mm by the one-time cold rolling method.
- the heating rate is 100-600°C/s.
- the non-oriented electrical steel sheet with small magnetic anisotropy and its manufacturing method according to the present invention have the following advantages and beneficial effects:
- the non-oriented electrical steel sheet of the present invention has the characteristics of high frequency, low iron loss and small magnetic anisotropy through effective design of each component in the steel sheet.
- the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.
- Figure 1 shows the distribution of harmful inclusions in the conventional steel plate of Comparative Example A4.
- Figure 2 shows the type and size distribution of harmful inclusions of the non-oriented electrical steel sheet with small magnetic anisotropy of Example A16.
- Fig. 3 schematically shows the relationship between different (CaO)/(Al 2 O 3 ) and T Fe used .
- Fig. 4 schematically shows that the relationship between (CaO)/(Al 2 O 3 ) and (CaO)/(SiO 2 ) is adopted.
- FIG 5 schematically shows the relationship between the 50 use different grain sizes and magnetic induction B.
- Figure 6 schematically shows the relationship between the use of different grain sizes and the iron loss P 10/400 .
- Hot rolling After the continuous casting slab undergoes rough rolling and finishing rolling in sequence, a hot rolled steel sheet is obtained.
- the thickness of the hot rolled steel plate is 1.5 ⁇ 2.8mm.
- Insulating coating to obtain a finished non-oriented electrical steel sheet with a thickness of 0.10 to 0.30 mm.
- the temperature increase rate is 100 to 600°C/s.
- the top slag of the ladle is modified during the converter tapping process, and it is required to meet: (CaO)/(Al 2 O 3 ) ⁇ 0.85, and T Fe ⁇ 13%, where (CaO ) And (Al 2 O 3 ) respectively indicate its mass percentage.
- Table 1 lists the mass percentages of the chemical elements of the non-oriented electrical steel sheets of Examples A9-A21 and the conventional steel sheets of Comparative Examples A1-A8.
- Table 2 lists the specific process parameters of the non-oriented electrical steel plates of Examples A9-A21 and the conventional steel plates of Comparative Examples A1-A8.
- the non-oriented electrical steel sheets of the examples of this case have inclusions mainly composed of MnS and Cu 2 S, and the size of the inclusions is 150-500 nm.
- the shape of inclusions includes spherical or quasi-spherical.
- the planar projection of the inclusions is circular or elliptical, and when the planar projection of the inclusions is elliptical, the ratio of the major axis/minor axis diameter of the ellipse is ⁇ 4.0.
- the iron loss P 10/400 ⁇ 11.0W/kg, the magnetic induction B 50 ⁇ 1.66T of the non-oriented electrical steel sheets of the various examples of this case , the iron loss P 10/400L parallel to the rolling direction and the iron loss P 10/400L perpendicular to the rolling direction
- the ratio of the difference between the iron loss P 10/400C and the sum of the iron loss in the manufacturing direction is less than or equal to 10%.
- the conventional steel plates of each comparative example did not achieve the technical effects of the embodiments of the present case, and the magnetic induction and iron loss control effects were poor, and the magnetic anisotropy was large.
- the mass percentage of Si did not fall within the range defined in this case, Sn and/or Sb were not added, and (CaO)/(Al 2 O 3 ) was only 0.21, resulting in corresponding
- the size of the inclusions MnS and Cu 2 S is only 95nm, and the continuous annealing process in this case is not used. Therefore, the iron loss of the final steel plate is higher and the magnetic induction is lower, respectively, 12.7W/kg and 1.64T.
- the anisotropy reached 11.2%.
- Figure 1 shows the distribution of harmful inclusions in the conventional steel plate of Comparative Example A4.
- Figure 2 shows the type and size distribution of harmful inclusions of the non-oriented electrical steel sheet with small magnetic anisotropy of Example A16.
- FIG. 3 schematically shows the relationship between the ratio of different (CaO)/(Al 2 O 3 ) mass percentages and T Fe
- Fig. 4 schematically The relationship between (CaO)/(Al 2 O 3 ) mass percentage ratio and (CaO)/(SiO 2 ) is shown.
- FIG 5 schematically shows the relationship between the 50 use different grain sizes and magnetic induction B.
- Figure 6 schematically shows the relationship between the use of different grain sizes and the iron loss P 10/400 .
- the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention has the characteristics of high frequency, low iron loss, and small magnetic anisotropy through effective design of each component in the steel sheet.
- the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
编号 | C | Si | Mn | P | S | Al | O | N | Sn | Sb | Ti | 备注 |
A1 | 0.0011 | 1.22 | 1.85 | 0.11 | 0.0021 | 0.83 | 0.0006 | 0.0011 | / | / | 0.0011 | 对比例 |
A2 | 0.0021 | 1.85 | 2.52 | 0.06 | 0.0012 | 0.19 | 0.0011 | 0.0015 | 0 | 0.008 | 0.0017 | 对比例 |
A3 | 0.0035 | 2.14 | 0.89 | 0.04 | 0.0009 | 1.16 | 0.0008 | 0.0029 | 0.11 | 0.04 | 0.0015 | 对比例 |
A4 | 0.0028 | 2.29 | 0.25 | 0.18 | 0.0011 | 0.002 | 0.0019 | 0.0008 | 0.03 | 0.02 | 0.0008 | 对比例 |
A5 | 0.0008 | 2.85 | 1.47 | 0.02 | 0.0005 | 1.89 | 0.0008 | 0.0017 | 0.001 | 0 | 0.0011 | 对比例 |
A6 | 0.0044 | 3.15 | 0.58 | 0.13 | 0.0030 | 0.78 | 0.0017 | 0.0010 | 0.02 | 0.07 | 0.0014 | 对比例 |
A7 | 0.0031 | 3.27 | 0.71 | 0.07 | 0.0008 | 2.25 | 0.0013 | 0.0012 | 0.04 | 0 | 0.0005 | 对比例 |
A8 | 0.0016 | 3.62 | 0.16 | 0.03 | 0.0005 | 0.14 | 0.0008 | 0.0009 | 0 | 0.08 | 0.0025 | 对比例 |
A9 | 0.0018 | 2.00 | 2.00 | 0.20 | 0.0030 | 0.20 | 0.0011 | 0.0014 | 0.008 | 0.003 | 0.0002 | 实施例 |
A10 | 0.0041 | 2.11 | 0.55 | 0.16 | 0.0021 | 1.80 | 0.0013 | 0.0007 | 0 | 0.005 | 0.0011 | 实施例 |
A11 | 0.0028 | 2.38 | 1.32 | 0.02 | 0.0026 | 0.93 | 0.0020 | 0.0006 | 0.008 | 0 | 0.0008 | 实施例 |
A12 | 0.0019 | 2.54 | 0.96 | 0.04 | 0.0022 | 0.92 | 0.0011 | 0.0008 | 0.002 | 0.011 | 0.0007 | 实施例 |
A13 | 0.0043 | 2.61 | 0.75 | 0.03 | 0.0011 | 0.55 | 0.0013 | 0.0016 | 0.005 | 0.005 | 0.0015 | 实施例 |
A14 | 0.0035 | 2.05 | 0.10 | 0.05 | 0.0015 | 1.27 | 0.0008 | 0.0020 | 0.15 | 0.05 | 0.0013 | 实施例 |
A15 | 0.0031 | 2.92 | 0.50 | 0.02 | 0.0008 | 0.82 | 0.0005 | 0.0008 | 0.02 | 0.09 | 0.0010 | 实施例 |
A16 | 0.0012 | 3.01 | 0.31 | 0.03 | 0.0008 | 0.42 | 0.0007 | 0.0005 | 0.04 | 0.02 | 0.0012 | 实施例 |
A17 | 0.0020 | 3.24 | 1.62 | 0.05 | 0.0016 | 0.81 | 0.0003 | 0.0013 | 0.05 | 0.12 | 0.0013 | 实施例 |
A18 | 0.0033 | 3.18 | 0.22 | 0.11 | 0.0002 | 0.60 | 0.0007 | 0.0007 | 0.07 | 0.01 | 0.0005 | 实施例 |
A19 | 0.0021 | 3.35 | 1.17 | 0.02 | 0.0008 | 0.22 | 0.0009 | 0.0011 | 0.05 | 0 | 0.0011 | 实施例 |
A20 | 0.0015 | 3.42 | 0.45 | 0.04 | 0.0011 | 0.45 | 0.0012 | 0.0014 | 0.03 | 0.08 | 0.0009 | 实施例 |
A21 | 0.0050 | 3.50 | 0.17 | 0.03 | 0.0015 | 1.00 | 0.0011 | 0.0006 | 0 | 0.003 | 0.0005 | 实施例 |
Claims (11)
- 一种无取向电工钢板,其特征在于,其化学元素质量百分比为:0<C≤0.005%;Si:2.0-3.5%;Mn:0.1-2.0%;Sn和Sb的至少其中之一:0.003-0.2%;Al:0.2-1.8%;余量为Fe及其他不可避免的杂质。
- 如权利要求1所述的无取向电工钢板,其特征在于,所述电工钢板的平均晶粒尺寸为90~140μm。
- 如权利要求1所述的无取向电工钢板,其特征在于,在其他不可避免的杂质中,P≤0.2%,S≤0.003%,N≤0.002%,O≤0.002%,Ti≤0.0015%。
- 如权利要求1所述的无取向电工钢板,其特征在于,所述电工钢板具有夹杂物MnS、Cu 2S,所述夹杂物的尺寸为150~500nm。
- 如权利要求4所述的无取向电工钢板,其特征在于,所述夹杂物的形状包括球形或者类球形,所述夹杂物的平面投影为圆形或者椭圆形。
- 如权利要求5所述的无取向电工钢板,其特征在于,当夹杂物的平面投影为椭圆形时,所述椭圆形的长轴/短轴直径之比≤4.0。
- 如权利要求1-6中任意一项所述的无取向电工钢板,其特征在于,所述电工钢板的铁损P 10/400≤11.0W/kg,磁感B 50≥1.66T,所述电工钢板的磁各向异性,即平行于轧制方向和垂直于轧制方向的铁损P 10/400之差与之和的比值≤10%。
- 一种如权利要求1-7中任意一项所述的无取向电工钢板的制造方法,其特征在于,包括步骤:(1)冶炼和铸造;(2)热轧;(3)常化;(4)冷轧;(5)连续退火:以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温;(6)绝缘涂层,以得到成品无取向电工钢板。
- 如权利要求8所述的制造方法,其特征在于,步骤(1)包括转炉出钢过程,在所述转炉出钢过程中对钢包顶渣进行改性处理,要求满足:(CaO) /(Al 2O 3)≥0.85,且T Fe≥13%,其中(CaO)、(Al 2O 3)分别表示CaO、Al 2O 3质量百分含量。
- 如权利要求8所述的制造方法,其特征在于,在步骤(4)中采用一次冷轧法将钢板直接轧制到成品厚度0.10~0.30mm。
- 如权利要求8所述的制造方法,其特征在于,在步骤(5)中,所述升温速度为100~600℃/s。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20858980.4A EP3992325A4 (en) | 2019-08-26 | 2020-08-26 | NON-ORIENTED ELECTROSTEEL SHEET AND METHOD OF MANUFACTURE THEREOF |
CA3149832A CA3149832C (en) | 2019-08-26 | 2020-08-26 | Non-oriented electrical steel plate and manufacturing method therefor |
BR112022003288-9A BR112022003288B1 (pt) | 2019-08-26 | 2020-08-26 | Chapa de aço elétrico não orientado e método de fabricação desta |
JP2022511032A JP7378585B2 (ja) | 2019-08-26 | 2020-08-26 | 無方向性電磁鋼板及びその製造方法 |
US17/634,918 US20220333226A1 (en) | 2019-08-26 | 2020-08-26 | Non-oriented electrical steel sheet and manufacturing method therefor |
MX2022001811A MX2022001811A (es) | 2019-08-26 | 2020-08-26 | Placa de acero electrico no orientado y metodo de fabricacion de la misma. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910790431.5 | 2019-08-26 | ||
CN201910790431.5A CN112430776B (zh) | 2019-08-26 | 2019-08-26 | 一种磁各向异性小的无取向电工钢板及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021037063A1 true WO2021037063A1 (zh) | 2021-03-04 |
Family
ID=74684539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/111404 WO2021037063A1 (zh) | 2019-08-26 | 2020-08-26 | 一种无取向电工钢板及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220333226A1 (zh) |
EP (1) | EP3992325A4 (zh) |
JP (1) | JP7378585B2 (zh) |
CN (1) | CN112430776B (zh) |
CA (1) | CA3149832C (zh) |
MX (1) | MX2022001811A (zh) |
WO (1) | WO2021037063A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686645A (zh) * | 2022-06-01 | 2022-07-01 | 河北科技大学 | 一种通过rh精炼工艺细化取向硅钢晶粒组织的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118326247A (zh) * | 2023-01-10 | 2024-07-12 | 宝山钢铁股份有限公司 | 一种综合性能优异的无取向电工钢及其制造方法 |
CN118291852A (zh) * | 2024-03-25 | 2024-07-05 | 钢铁研究总院有限公司 | 一种利用平面流铸制备无取向硅钢超薄带的方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1888112A (zh) | 2005-06-30 | 2007-01-03 | 宝山钢铁股份有限公司 | 具有高磁感的高牌号无取向电工钢及其制造方法 |
CN1887512A (zh) * | 2005-06-30 | 2007-01-03 | 宝山钢铁股份有限公司 | 低铁损高磁感冷轧无取向电工钢板的生产方法 |
CN102453837A (zh) | 2010-10-25 | 2012-05-16 | 宝山钢铁股份有限公司 | 一种高磁感无取向硅钢的制造方法 |
CN102676916A (zh) * | 2012-05-09 | 2012-09-19 | 首钢总公司 | 一种高磁感变频压缩机用无取向硅钢及其制备方法 |
CN103173678A (zh) * | 2011-12-23 | 2013-06-26 | 宝山钢铁股份有限公司 | 一种转子用无取向硅钢及其制造方法 |
CN103290190A (zh) | 2012-03-02 | 2013-09-11 | 宝山钢铁股份有限公司 | 无取向硅钢及其制造方法 |
CN104789862A (zh) * | 2015-03-20 | 2015-07-22 | 宝山钢铁股份有限公司 | 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法 |
CN108474076A (zh) * | 2015-12-23 | 2018-08-31 | Posco公司 | 无取向电工钢板及其制造方法 |
WO2019125078A1 (ko) * | 2017-12-24 | 2019-06-27 | 주식회사 포스코 | 무방향성 전기강판용 열연강판, 무방향성 전기강판 및 그 제조방법 |
KR20190077984A (ko) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
CN110106447A (zh) * | 2019-04-28 | 2019-08-09 | 首钢智新迁安电磁材料有限公司 | 一种高磁感无取向电工钢及其制备方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02107719A (ja) * | 1988-10-18 | 1990-04-19 | Kawasaki Steel Corp | リング試料での磁束密度が高い無方向性電磁鋼板の製造方法 |
JP4331969B2 (ja) * | 2003-05-06 | 2009-09-16 | 新日本製鐵株式会社 | 無方向性電磁鋼板の製造方法 |
JP4568190B2 (ja) * | 2004-09-22 | 2010-10-27 | 新日本製鐵株式会社 | 無方向性電磁鋼板 |
CN100999050A (zh) * | 2006-01-11 | 2007-07-18 | 宝山钢铁股份有限公司 | 低铁损高磁感冷轧无取向电工钢板的生产方法 |
JP5338750B2 (ja) * | 2010-06-09 | 2013-11-13 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
KR20140133100A (ko) * | 2013-05-09 | 2014-11-19 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
EP3140430B1 (en) * | 2014-05-08 | 2020-12-23 | Rina Consulting - Centro Sviluppo Materiali S.p.A. | Process for the production of grain non- oriented electric steel strip, with a high degree of cold reduction |
KR101671692B1 (ko) * | 2014-12-19 | 2016-11-02 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
KR101728827B1 (ko) * | 2015-12-24 | 2017-04-20 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
US11114227B2 (en) * | 2015-12-28 | 2021-09-07 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
CN106756475B (zh) * | 2016-12-02 | 2019-04-30 | 武汉钢铁有限公司 | 中高频驱动电机用0.27mm厚无取向硅钢及生产方法 |
KR102026271B1 (ko) * | 2017-12-26 | 2019-09-27 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
-
2019
- 2019-08-26 CN CN201910790431.5A patent/CN112430776B/zh active Active
-
2020
- 2020-08-26 WO PCT/CN2020/111404 patent/WO2021037063A1/zh unknown
- 2020-08-26 US US17/634,918 patent/US20220333226A1/en active Pending
- 2020-08-26 CA CA3149832A patent/CA3149832C/en active Active
- 2020-08-26 EP EP20858980.4A patent/EP3992325A4/en active Pending
- 2020-08-26 MX MX2022001811A patent/MX2022001811A/es unknown
- 2020-08-26 JP JP2022511032A patent/JP7378585B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1888112A (zh) | 2005-06-30 | 2007-01-03 | 宝山钢铁股份有限公司 | 具有高磁感的高牌号无取向电工钢及其制造方法 |
CN1887512A (zh) * | 2005-06-30 | 2007-01-03 | 宝山钢铁股份有限公司 | 低铁损高磁感冷轧无取向电工钢板的生产方法 |
CN102453837A (zh) | 2010-10-25 | 2012-05-16 | 宝山钢铁股份有限公司 | 一种高磁感无取向硅钢的制造方法 |
CN103173678A (zh) * | 2011-12-23 | 2013-06-26 | 宝山钢铁股份有限公司 | 一种转子用无取向硅钢及其制造方法 |
CN103290190A (zh) | 2012-03-02 | 2013-09-11 | 宝山钢铁股份有限公司 | 无取向硅钢及其制造方法 |
CN102676916A (zh) * | 2012-05-09 | 2012-09-19 | 首钢总公司 | 一种高磁感变频压缩机用无取向硅钢及其制备方法 |
CN104789862A (zh) * | 2015-03-20 | 2015-07-22 | 宝山钢铁股份有限公司 | 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法 |
CN108474076A (zh) * | 2015-12-23 | 2018-08-31 | Posco公司 | 无取向电工钢板及其制造方法 |
WO2019125078A1 (ko) * | 2017-12-24 | 2019-06-27 | 주식회사 포스코 | 무방향성 전기강판용 열연강판, 무방향성 전기강판 및 그 제조방법 |
KR20190077984A (ko) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
CN110106447A (zh) * | 2019-04-28 | 2019-08-09 | 首钢智新迁安电磁材料有限公司 | 一种高磁感无取向电工钢及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686645A (zh) * | 2022-06-01 | 2022-07-01 | 河北科技大学 | 一种通过rh精炼工艺细化取向硅钢晶粒组织的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3992325A4 (en) | 2022-07-20 |
MX2022001811A (es) | 2022-03-11 |
CA3149832A1 (en) | 2021-03-04 |
CA3149832C (en) | 2023-11-07 |
EP3992325A1 (en) | 2022-05-04 |
BR112022003288A2 (pt) | 2022-05-24 |
CN112430776A (zh) | 2021-03-02 |
US20220333226A1 (en) | 2022-10-20 |
JP2022545793A (ja) | 2022-10-31 |
JP7378585B2 (ja) | 2023-11-13 |
CN112430776B (zh) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6580700B2 (ja) | 表面状態が良好な高磁束密度・低鉄損・無方向性電磁鋼板及びその製造方法 | |
JP6596016B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP5825494B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2021037063A1 (zh) | 一种无取向电工钢板及其制造方法 | |
WO2012055224A1 (zh) | 一种磁性优良的高效无取向硅钢制造方法 | |
JP7462737B2 (ja) | 600MPa級無方向性電磁鋼板及びその製造方法 | |
JP7350063B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
CN104480383B (zh) | 0.35mm厚高效电机用高磁感无取向硅钢的生产方法 | |
WO2019105041A1 (zh) | 磁性优良的无取向电工钢板及其制造方法 | |
CN112143964A (zh) | 一种极低铁损的无取向电工钢板及其连续退火工艺 | |
JP5824965B2 (ja) | 無方向性電磁鋼板の製造方法 | |
CN104328342A (zh) | 一种变频高效压缩机用无取向硅钢及生产方法 | |
CN115198199A (zh) | 高强度无取向硅钢生产方法、高强度无取向硅钢及应用 | |
WO2021037062A1 (zh) | 一种无取向电工钢板及其制造方法 | |
WO2021037064A1 (zh) | 一种含Cu无取向电工钢板及其制造方法 | |
CN110640104A (zh) | 一种磁性能优良的无取向电工钢板及其制造方法 | |
CN110747324B (zh) | 一种改善高牌号无取向硅钢磁各向异性的方法 | |
RU2792272C1 (ru) | Лист из нетекстурированной электротехнической стали и способ его изготовления | |
CN112430779A (zh) | 一种高频铁损优良的无取向电工钢板及其制造方法 | |
CN114616353B (zh) | 无方向性电磁钢板 | |
JP3951402B2 (ja) | 方向性電磁鋼板の製造方法 | |
BR112022003288B1 (pt) | Chapa de aço elétrico não orientado e método de fabricação desta | |
WO2023131223A1 (zh) | 一种磁性能优良的无取向电工钢板及其制造方法 | |
CN117355626A (zh) | 无取向电工钢板及其制造方法 | |
JPH1143722A (ja) | 一方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858980 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3149832 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020858980 Country of ref document: EP Effective date: 20220127 |
|
ENP | Entry into the national phase |
Ref document number: 2022511032 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022003288 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112022003288 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220221 |