[go: up one dir, main page]

WO2021037063A1 - 一种无取向电工钢板及其制造方法 - Google Patents

一种无取向电工钢板及其制造方法 Download PDF

Info

Publication number
WO2021037063A1
WO2021037063A1 PCT/CN2020/111404 CN2020111404W WO2021037063A1 WO 2021037063 A1 WO2021037063 A1 WO 2021037063A1 CN 2020111404 W CN2020111404 W CN 2020111404W WO 2021037063 A1 WO2021037063 A1 WO 2021037063A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
oriented electrical
manufacturing
inclusions
Prior art date
Application number
PCT/CN2020/111404
Other languages
English (en)
French (fr)
Inventor
张峰
储双杰
王波
张文岳
沈侃毅
李国保
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP20858980.4A priority Critical patent/EP3992325A4/en
Priority to CA3149832A priority patent/CA3149832C/en
Priority to BR112022003288-9A priority patent/BR112022003288B1/pt
Priority to JP2022511032A priority patent/JP7378585B2/ja
Priority to US17/634,918 priority patent/US20220333226A1/en
Priority to MX2022001811A priority patent/MX2022001811A/es
Publication of WO2021037063A1 publication Critical patent/WO2021037063A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the invention relates to a steel plate and a manufacturing method thereof, in particular to a non-oriented electrical steel plate and a manufacturing method thereof.
  • the publication number is CN103290190A
  • the publication date is September 11, 2013,
  • the Chinese patent document entitled "Non-oriented silicon steel and its manufacturing method” discloses a non-oriented silicon steel with excellent magnetic properties.
  • the Si content reaches 2.5-4.0%
  • the Al content reaches 0.5-1.5%. In this way, as the Si and Al contents increase, the iron loss of the material decreases rapidly, but the magnetic induction of the material also decreases rapidly. .
  • the technical solution disclosed in the patent document adopts rough rolling pass large reduction rolling and rough roll rolling, high temperature coiling, and optimizing the reduction ratio of each pass to obtain the ideal hot-rolled strip structure and improve
  • the cold rolling reduction rate provides greater energy (deformation energy) for the grain growth during the final recrystallization annealing process; measures such as obtaining the ideal grain structure by controlling the recrystallization annealing temperature to obtain a high-quality surface with high magnetism It is most suitable for high-efficiency motor iron cores with inductive and low iron loss.
  • the publication number is CN102453837A
  • the publication date is May 16, 2012
  • the Chinese patent document titled "A method for manufacturing high magnetic induction non-oriented silicon steel” discloses a method for manufacturing high magnetic induction non-oriented silicon steel .
  • it includes the following steps: 1) smelting, casting, non-oriented silicon steel chemical composition weight percentage: Si: 0.1-1%, Al: 0.005-1%, C ⁇ 0.004%, Mn :0.10 ⁇ 1.50%, P ⁇ 0.2%, S ⁇ 0.005%, N ⁇ 0.002%, Nb+V+Ti ⁇ 0.006%; excess iron; steelmaking, secondary refining, and casting into billets; 2) hot rolling, The heating temperature is 1150°C ⁇ 1200°C, the final rolling temperature is 830 ⁇ 900°C, and the coiling is carried out at a temperature ⁇ 570°C; 3) Smooth, cold rolling with a reduction of 2% to 5%; 4) Normalization, the temperature is not lower than 950 °C, holding time 30 ⁇
  • One of the objects of the present invention is to provide a non-oriented electrical steel sheet with small magnetic anisotropy, which has the characteristics of high frequency, low iron loss, and small magnetic anisotropy.
  • the present invention proposes a non-oriented electrical steel sheet with small magnetic anisotropy, the mass percentage of chemical elements is:
  • C In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, C strongly hinders the grain growth of the finished steel sheet, and easily combines with Nb, V, Ti, etc. to form fine precipitates, thereby causing increased loss and generation Magnetic aging, therefore, in the technical solution of the present invention, the mass percentage of C is controlled to be 0 ⁇ C ⁇ 0.005%.
  • Si In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, Si increases the resistivity of the material and can effectively reduce the iron loss of the steel. When the mass percentage of Si is higher than 3.5%, the magnetic induction of the steel will be significantly reduced; and when the mass percentage of Si is lower than 2.0%, the iron loss cannot be effectively reduced. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Si to Si: 2.0-3.5%.
  • Mn In the technical scheme of the present invention, Mn combines with S to generate MnS, which can reduce the damage to the magnetic properties. When the mass percentage of Mn is less than 0.1%, the sulfur fixation effect is poor, and when the mass percentage of Mn is more than 2.0%, the recrystallization effect of the steel is inhibited. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Mn at Mn: 0.1-2.0%.
  • At least one of Sn and Sb In the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention, Sn and Sb can improve the crystal texture of the steel. Therefore, 0.003% or more of Sn should be added to the steel And/or Sb. However, adding more than 0.2% of Sn and/or Sb to steel will cause abnormal crystal grain refinement and deterioration of steel iron loss. Based on this, the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention controls the mass percentage of Sn and Sb at least one of Sn and Sb to be 0.003-0.2%.
  • the non-oriented electrical steel sheet with low magnetic anisotropy according to the present invention controls the mass percentage of Al at: Al: 0.2-1.8%.
  • the average crystal grain size is 90-140 ⁇ m.
  • the average grain size is limited to 90-140 ⁇ m.
  • the steel sheet’s hysteresis loss dominates due to the influence of inclusions pinning the grain boundaries and insufficient driving force for grain growth. Relatively high, eventually resulting in high iron loss.
  • L and C anisotropy that is, the ratio of the difference between the electromagnetic properties of the steel plate perpendicular to the rolling direction and the sum is larger.
  • the average grain size is higher than 130 ⁇ m, the harmful ⁇ 111 ⁇ plane texture will grow up quickly, which will swallow the favorable ⁇ 100 ⁇ plane texture ratio and cause the magnetic induction to deteriorate.
  • non-oriented electrical steel sheet with small magnetic anisotropy among other inevitable impurities, P ⁇ 0.2%, S ⁇ 0.003%, N ⁇ 0.002%, O ⁇ 0.002%, Ti ⁇ 0.0015%.
  • the less unavoidable impurities should be controlled, where P ⁇ 0.2% is controlled because when the mass percentage of P exceeds 0.2%, it is easy to cause cold brittleness and reduce the manufacturability of the cold rolling process.
  • S ⁇ 0.003% because when the mass percentage of S exceeds 0.003%, it will greatly increase the number of harmful inclusions of MnS and Cu 2 S, destroy the favorable texture of the steel and hinder the grain growth of the finished product.
  • Controlling N ⁇ 0.002% is because when the mass percentage of N exceeds 0.002%, the Nb, V, Ti, Al and other precipitates of N will greatly increase, which will strongly hinder the growth of crystal grains and deteriorate the magnetic properties of steel.
  • the control of O ⁇ 0.002% is because when the mass percentage of O exceeds 0.002%, the number of oxide inclusions will be greatly increased, which is not conducive to adjusting the ratio of inclusions and deteriorating the magnetic properties of steel.
  • the control of Ti ⁇ 0.0015% is because when the mass percentage of Ti exceeds 0.0015%, the precipitation of C and N of Ti will greatly increase, which will strongly hinder the growth of crystal grains and deteriorate the magnetic properties of steel;
  • the non-oriented electrical steel sheet with small magnetic anisotropy of the present invention has inclusions MnS and Cu 2 S, and the size of the inclusions is 150 to 500 nm.
  • the shape of the inclusions includes spherical or quasi-spherical, and the projection of the inclusions is circular or elliptical.
  • the ratio of the major axis/minor axis diameter of the ellipse is ⁇ 4.0.
  • the MnS and Cu 2 S inclusions in the precipitates have little difference in the external force of the liquid phase and are not easy to deform, and are easier to form spherical or quasi-spherical inclusions.
  • the plane projection pattern is circular or elliptical, and The ratio of the diameter of the major axis/minor axis of the ellipse is ⁇ 4.0.
  • the iron loss P 10/400 ⁇ 11.0 W/kg, the magnetic induction B 50 ⁇ 1.66 T, and the magnetic anisotropy of the electrical steel sheet is Refers to the ratio of the difference between the iron loss P 10/400L parallel to the rolling direction and the iron loss P 10/400C perpendicular to the rolling direction to the sum.
  • the magnetic anisotropy of the electrical steel sheet of the present invention is ⁇ 10%, indicating that Electrical steel sheet has low magnetic anisotropy.
  • the electromagnetic performance measurement method is based on the Epstein square circle method (GB 10129-1988), and the German Brockhaus magnetic measurement equipment is used for measurement. Among them, P 10/400 represents the iron loss value tested under the conditions of 1.0T and 400Hz, and B 50 represents the magnetic induction value tested under the conditions of 5000A/m.
  • another object of the present invention is to provide a method for manufacturing the above-mentioned non-oriented electrical steel sheet with small magnetic anisotropy, by which a non-oriented electrical steel sheet with high frequency, low iron loss and small magnetic anisotropy can be obtained.
  • Steel plate
  • the present invention proposes a method for manufacturing the above-mentioned non-oriented electrical steel sheet with small magnetic anisotropy, which comprises the following steps:
  • the cold-rolled steel sheet is quickly heated from the initial temperature of 350°C-750°C to the soaking temperature at a temperature rise rate of 50-800°C/s, and the soaking temperature is performed, so that the cold-rolled steel sheet is continuously annealed.
  • step (1) includes a converter tapping process, and the ladle top slag is modified during the converter tapping process, and the requirements are as follows: (CaO)/(Al 2 O 3 ) ⁇ 0.85, and T Fe ⁇ 13%, where (CaO) and (Al 2 O 3 ) represent the mass percentage of CaO and Al 2 O 3 respectively, and T Fe represents the total mass percentage of Fe element.
  • the above scheme mainly considers increasing the content of T Fe in the slag, which can effectively avoid the reduction reaction of the harmful element Ti between the slag and steel, and increasing the ratio of (CaO)/(Al 2 O 3 ) is beneficial to the absorption of steel
  • the harmful inclusions CaO and Al 2 O 3 promote the desulfurization reaction and inhibit the precipitation of sulfide inclusions during continuous casting and hot rolling.
  • step (4) the steel plate is directly rolled to the thickness of the finished product from 0.10 to 0.30 mm by the one-time cold rolling method.
  • the heating rate is 100-600°C/s.
  • the non-oriented electrical steel sheet with small magnetic anisotropy and its manufacturing method according to the present invention have the following advantages and beneficial effects:
  • the non-oriented electrical steel sheet of the present invention has the characteristics of high frequency, low iron loss and small magnetic anisotropy through effective design of each component in the steel sheet.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.
  • Figure 1 shows the distribution of harmful inclusions in the conventional steel plate of Comparative Example A4.
  • Figure 2 shows the type and size distribution of harmful inclusions of the non-oriented electrical steel sheet with small magnetic anisotropy of Example A16.
  • Fig. 3 schematically shows the relationship between different (CaO)/(Al 2 O 3 ) and T Fe used .
  • Fig. 4 schematically shows that the relationship between (CaO)/(Al 2 O 3 ) and (CaO)/(SiO 2 ) is adopted.
  • FIG 5 schematically shows the relationship between the 50 use different grain sizes and magnetic induction B.
  • Figure 6 schematically shows the relationship between the use of different grain sizes and the iron loss P 10/400 .
  • Hot rolling After the continuous casting slab undergoes rough rolling and finishing rolling in sequence, a hot rolled steel sheet is obtained.
  • the thickness of the hot rolled steel plate is 1.5 ⁇ 2.8mm.
  • Insulating coating to obtain a finished non-oriented electrical steel sheet with a thickness of 0.10 to 0.30 mm.
  • the temperature increase rate is 100 to 600°C/s.
  • the top slag of the ladle is modified during the converter tapping process, and it is required to meet: (CaO)/(Al 2 O 3 ) ⁇ 0.85, and T Fe ⁇ 13%, where (CaO ) And (Al 2 O 3 ) respectively indicate its mass percentage.
  • Table 1 lists the mass percentages of the chemical elements of the non-oriented electrical steel sheets of Examples A9-A21 and the conventional steel sheets of Comparative Examples A1-A8.
  • Table 2 lists the specific process parameters of the non-oriented electrical steel plates of Examples A9-A21 and the conventional steel plates of Comparative Examples A1-A8.
  • the non-oriented electrical steel sheets of the examples of this case have inclusions mainly composed of MnS and Cu 2 S, and the size of the inclusions is 150-500 nm.
  • the shape of inclusions includes spherical or quasi-spherical.
  • the planar projection of the inclusions is circular or elliptical, and when the planar projection of the inclusions is elliptical, the ratio of the major axis/minor axis diameter of the ellipse is ⁇ 4.0.
  • the iron loss P 10/400 ⁇ 11.0W/kg, the magnetic induction B 50 ⁇ 1.66T of the non-oriented electrical steel sheets of the various examples of this case , the iron loss P 10/400L parallel to the rolling direction and the iron loss P 10/400L perpendicular to the rolling direction
  • the ratio of the difference between the iron loss P 10/400C and the sum of the iron loss in the manufacturing direction is less than or equal to 10%.
  • the conventional steel plates of each comparative example did not achieve the technical effects of the embodiments of the present case, and the magnetic induction and iron loss control effects were poor, and the magnetic anisotropy was large.
  • the mass percentage of Si did not fall within the range defined in this case, Sn and/or Sb were not added, and (CaO)/(Al 2 O 3 ) was only 0.21, resulting in corresponding
  • the size of the inclusions MnS and Cu 2 S is only 95nm, and the continuous annealing process in this case is not used. Therefore, the iron loss of the final steel plate is higher and the magnetic induction is lower, respectively, 12.7W/kg and 1.64T.
  • the anisotropy reached 11.2%.
  • Figure 1 shows the distribution of harmful inclusions in the conventional steel plate of Comparative Example A4.
  • Figure 2 shows the type and size distribution of harmful inclusions of the non-oriented electrical steel sheet with small magnetic anisotropy of Example A16.
  • FIG. 3 schematically shows the relationship between the ratio of different (CaO)/(Al 2 O 3 ) mass percentages and T Fe
  • Fig. 4 schematically The relationship between (CaO)/(Al 2 O 3 ) mass percentage ratio and (CaO)/(SiO 2 ) is shown.
  • FIG 5 schematically shows the relationship between the 50 use different grain sizes and magnetic induction B.
  • Figure 6 schematically shows the relationship between the use of different grain sizes and the iron loss P 10/400 .
  • the non-oriented electrical steel sheet with small magnetic anisotropy according to the present invention has the characteristics of high frequency, low iron loss, and small magnetic anisotropy through effective design of each component in the steel sheet.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种磁各向异性小的无取向电工钢板,其化学元素质量百分比为:0<C≤0.005%;Si:2.0-3.5%;Mn:0.1-2.0%;Sn和Sb的至少其中之一:0.003-0.2%;Al:0.2-1.8%;余量为Fe及其他不可避免的杂质。该磁各向异性小的无取向电工钢板的制造方法,包括:(1)冶炼和铸造;(2)热轧;(3)常化;(4)冷轧;(5)连续退火:以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温;(6)绝缘涂层,以得到成品无取向电工钢板。该无取向电工钢板具有高频低铁损、磁各向异性小的特点。

Description

一种无取向电工钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种无取向电工钢板及其制造方法。
背景技术
随着节能、环保、高效需求的日益提高,制作电动汽车驱动电机用无取向电工钢板,正逐渐向薄规格、高磁感、低铁损、高强度方向发展,以满足其制作铁芯的小型化、高效化。通常,为了满足钢板高强度的需求,会向钢中加入大量的硅、铝含量。
例如:公开号为CN103290190A,公开日为2013年9月11日,名称为“无取向硅钢及其制造方法”的中国专利文献公开了一种磁性优异的无取向硅钢。在该专利文献所公开的技术方案中,Si含量达到2.5-4.0%,Al含量达到0.5-1.5%,这样,随着Si、Al含量增加,材料铁损迅速降低,但材料磁感也迅速降低。
又例如:为了有效改善成品带钢的磁感,公开号为CN1888112,公开日为2007年1月3日,名称为“具有高磁感的高牌号无取向电工钢及其制造方法”的中国专利文献公开了一种电工钢及其制造方法。在该专利文献所公开的技术方案中,其通过粗轧道次大压下轧制和粗糙辊轧制,高温卷取,优化各道次压下率来获得理想的热轧带钢组织,提高冷轧压下率为最终再结晶退火过程中晶粒长大提供更大的能量(变形能);通过控制再结晶退火温度来获得理想的晶粒组织等措施来获得表面质量优良的具有高磁感、低铁损的最能适用于高效电机铁芯。
研究表明,采用电磁感应加热方式,对冷轧带钢进行快速连续退火,可以大幅增加晶粒长大的驱动力,减少不利织构的形成,从而可以大大改善成品带钢的电磁性能。
再例如:公开号为CN102453837A,公开日为2012年5月16日,名称为 “一种高磁感无取向硅钢的制造方法”的中国专利文献公开了一种高磁感无取向硅钢的制造方法。在该专利文献所公开的技术方案中,其包括如下步骤:1)冶炼、浇铸,无取向硅钢化学成分重量百分比:Si:0.1~1%,Al:0.005~1%,C≤0.004%,Mn:0.10~1.50%,P≤0.2%,S≤0.005%,N≤0.002%,Nb+V+Ti≤0.006%;余铁;炼钢、二次精炼,浇铸成铸坯;2)热轧,加热温度1150℃~1200℃,终轧温度830~900℃,≥570℃温度下进行卷取;3)平整,压下量2~5%的冷轧;4)常化,温度不低于950℃,保温时间30~180s;5)酸洗,冷轧,酸洗后进行累计压下量70~80%的冷轧;6)退火,升温速率≥100℃/s,到800~1000℃保温,保温时间5~60s,后以3~15℃/s缓冷至600~750℃。
发明内容
本发明的目的之一在于提供一种磁各向异性小的无取向电工钢板,该无取向电工钢板具有高频低铁损、磁各向异性小的特点。
为了实现上述目的,本发明提出了一种磁各向异性小的无取向电工钢板,其化学元素质量百分比为:
0<C≤0.005%;Si:2.0-3.5%;Mn:0.1-2.0%;Sn和Sb的至少其中之一:0.003-0.2%;Al:0.2-1.8%;余量为Fe及其他不可避免的杂质。
在本发明所述的磁各向异性小的无取向电工钢板中,各化学元素的设计原理如下所述:
C:在本发明所述的磁各向异性小的无取向电工钢板中,C强烈阻碍成品钢板晶粒长大,容易与Nb、V、Ti等结合形成细小析出物,从而引起损耗增加并产生磁时效,因此,在本发明所述的技术方案中控制C的质量百分比在0<C≤0.005%。
Si:在本发明所述的磁各向异性小的无取向电工钢板中,Si提高材料的电阻率,能有效降低钢的铁损。Si的质量百分比高于3.5%时,会显著降低钢的磁感;而Si的质量百分比低于2.0%时,又起不到有效降低铁损的作用。基于此,本发明所述的磁各向异性小的无取向电工钢板将Si的质量百分比控制在Si:2.0-3.5%。
Mn:在本发明所述的技术方案中,Mn与S结合生成MnS,可以减少对磁性能的危害。Mn的质量百分比低于0.1%时,固硫效果差,而Mn的质量百 分比高于2.0%以上时,会抑制钢的再结晶效果。基于此,本发明所述的磁各向异性小的无取向电工钢板将Mn的质量百分比控制在Mn:0.1-2.0%。
Sn和Sb的至少其中之一:在本发明所述的磁各向异性小的无取向电工钢板中,Sn、Sb可以改善钢的晶体织构,因此,要向钢中加入0.003%以上的Sn和/或Sb。但向钢中加入超过0.2%的Sn和/或Sb之后,会导致晶粒异常细化和钢的铁损劣化。基于此,本发明所述的磁各向异性小的无取向电工钢板将Sn和Sb的质量百分比控制在:Sn和Sb的至少其中之一为0.003-0.2%。
Al:在本发明所述的磁各向异性小的无取向电工钢板中,Al的质量百分比低于0.2%时,起不到良好的脱氧效果,而Al的质量百分比超过1.8%时,会造成连铸浇铸困难,劣化冷轧的加工性。基于此,本发明所述的磁各向异性小的无取向电工钢板将Al的质量百分比控制在:Al:0.2-1.8%。
进一步地,在本发明所述的磁各向异性小的无取向电工钢板中,其平均晶粒尺寸为90~140μm。
上述方案中,将平均晶粒尺寸限定为90~140μm,平均晶粒尺寸低于90μm时,受夹杂物钉扎晶界和晶粒成长驱动力不足的影响,钢板的磁滞损耗为主,且相对较高,最终造成铁损偏高,同时,由于晶粒取向控制稳定性差,还会导致L、C各向异性超标,即垂直轧制方向的钢板电磁性能之差与其之和的比值较大。此外,晶粒平均尺寸高于130μm时,有害的{111}面织构会迅速长大,从而会吞噬有利的{100}面织构比例,导致磁感劣化。
进一步地,在本发明所述的磁各向异性小的无取向电工钢板中,在其他不可避免的杂质中,P≤0.2%,S≤0.003%,N≤0.002%,O≤0.002%,Ti≤0.0015%。
上述方案中,不可避免的杂质应当控制得越少,其中,控制P≤0.2%,是因为P的质量百分比超过0.2%时,容易导致冷脆现象发生,降低冷轧加工过程的可制造性。而S≤0.003%,是因为S的质量百分比超过0.003%时,将使MnS、Cu 2S的有害夹杂物数量大大增加,破坏钢的有利织构和阻碍成品晶粒长大。控制N≤0.002%,是因为当N的质量百分比超过0.002%时,将使N的Nb、V、Ti、Al等析出物大大增加,强烈阻碍晶粒长大,恶化钢的磁。而控制O≤0.002%,是因为O的质量百分比超过0.002%时,将使氧化物夹杂物数量大大增加,不利于调整有利于夹杂物的比例,恶化钢的磁性能。而控制Ti≤0.0015%,是因为Ti的质量百分比超过0.0015%时,将使Ti的C、N的析出物 大大增加,强烈阻碍晶粒长大,恶化钢的磁性;
进一步地,在本发明的磁各向异性小的无取向电工钢板中,具有夹杂物MnS、Cu 2S,夹杂物的尺寸为150~500nm。
进一步地,在本发明所述的磁各向异性小的无取向电工钢板中,夹杂物的形状包括球形或者类球形,夹杂物平面投影为圆形或者椭圆形。
上述方案中,由于本发明所述的无取向电工钢板对C、N、Ti元素的设计限制,因而,在连铸坯冷却过程中,该期间会优先析出尺寸粗大的MnS夹杂物,同时可以避免后续低熔点、小尺寸的Ti、C和N化物析出,并且在缓冷条件下,MnS夹杂物也更容易粗化、长大,使得其最终保持良好的球形或者类球形。而球形或者类球形的夹杂物不容易形成更为有害的楔形畴,因此,磁化更容易,所获得的无取向电工钢板磁性能优良。
更进一步地,在本发明所述的磁各向异性小的无取向电工钢板中,其中当夹杂物的平面投影为椭圆形时,椭圆形的长轴/短轴直径之比≤4.0。
上述方案中,析出物中的MnS、Cu 2S夹杂物受到的液相外力差异小、不容易变形,比较容易形成球形或者类球形的夹杂物,其平面投影图形为圆形或者椭圆形,且椭圆形长轴/短轴直径之比≤4.0。
进一步地,在本发明所述的磁各向异性小的无取向电工钢板中,其铁损P 10/400≤11.0W/kg,磁感B 50≥1.66T,电工钢板的磁各向异性是指平行于轧制方向的铁损P 10/400L和垂直于轧制方向的铁损P 10/400C之差与之和的比值,本发明的电工钢板的磁各向异性≤10%,表明该电工钢板磁各向异性小。这里,电磁性能的测量方法是,基于爱波斯坦方圈法(GB 10129-1988),并且采用了德国Brockhaus磁性测量设备进行测量。其中,P 10/400代表在1.0T、400Hz条件下测试的铁损值,B 50代表在5000A/m条件下测试的磁感值。
相应地,本发明的另一目的在于提供一种上述的磁各向异性小的无取向电工钢板的制造方法,通过该制造方法可以获得高频低铁损、磁各向异性小的无取向电工钢板。
为了实现上述目的,本发明提出了一种上述的磁各向异性小的无取向电工钢板的制造方法,其包括步骤:
(1)冶炼和铸造;
(2)热轧;
(3)常化;
(4)冷轧;
(5)连续退火:以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温;
(6)绝缘涂层,以得到成品无取向电工钢板。
在本发明所述的制造方法中,由于冷轧中较大的冷轧压下率,冷轧钢板内部储能高、位错多,因此,在后续的连续退火过程中,有利于有害{111}面织构生长,以及吞噬尺寸相对细小的有利高斯织构和{110}面织构。因此,采用以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温,从而对冷轧钢板进行连续退火。这是因为:采用该连续退火工艺之后,可以有效抑制晶体回复,并会增加再结晶之前的剩余形变储能,因而,形核驱动力增加,<111>//ND再结晶织构组分强度降低,有利于电磁性能的提高和改善。另一方面,连续退火的起始温度低于350℃时,再结晶之前的剩余形变储能太高,后续容易形成细晶和偏聚,增加连退均热温度和均热时间才能达到均匀化,而但若连续退火的起始温度高于750℃时,则晶粒取向控制稳定性差,会大幅降低有利的{100}面织构比例,导致磁感劣化。其中,电磁感应快速加热时,当升温速度低于50℃/s时,不能有效控制再结晶过程,以形成充足的储能便于后续控制晶粒取向,而当升温速度高于800℃/s时,容易形成细晶以及再结晶组织不均匀,同时,会对设备功能提出更高的要求,增加设备投资和运行费用。
进一步地,在本发明所述的制造方法中,步骤(1)包括转炉出钢过程,在转炉出钢过程中对钢包顶渣进行改性处理,要求满足:(CaO)/(Al 2O 3)≥0.85,且T Fe≥13%,其中(CaO)、(Al 2O 3)分别表示CaO、Al 2O 3的质量百分含量,T Fe表示Fe元素的总质量百分含量。
上述方案,主要是考虑到提高渣中的T Fe含量,可以有效的避免渣、钢间有害元素Ti的还原反应,而提高(CaO)/(Al 2O 3)的比值,则有利于吸收钢中的有害夹杂物CaO、Al 2O 3,促进脱硫反应的进行和抑制连铸、热轧过程中,硫化物夹杂物的析出。
进一步地,在本发明所述的制造方法中,在步骤(4)中采用一次冷轧法将钢板直接轧制到成品厚度0.10~0.30mm。
进一步地,在本发明所述的制造方法中,在步骤(5)中,升温速度为100~600℃/s。
本发明所述的磁各向异性小的无取向电工钢板及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的无取向电工钢板通过对钢板中各成分的有效设计使得其具有高频低铁损、磁各向异性小的特点。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
附图说明
图1显示了对比例A4的常规钢板的有害夹杂物分布情况。
图2显示了实施例A16的磁各向异性小的无取向电工钢板的有害夹杂物种类及尺寸分布情况。
图3示意性地显示了采用了不同的(CaO)/(Al 2O 3)与T Fe之间的关系。
图4示意性地显示了采用了不同的(CaO)/(Al 2O 3)与(CaO)/(SiO 2)之间的关系。
图5示意性地显示了采用了不同的晶粒尺寸与磁感B 50之间的关系。
图6示意性地显示了采用了不同的晶粒尺寸与铁损P 10/400之间的关系。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的磁各向异性小的无取向电工钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A9-A21以及对比例A1-A8
实施例A9-A21的无取向电工钢板以及对比例A1-A8的常规钢板采用以下步骤制得:
(1)铁水、废钢按照表1所示的组分配比进行搭配,经转炉冶炼之后,对钢包顶渣进行改性,在RH精炼进行脱碳、合金化后,钢液经连铸浇铸后,得到120~250mm厚,800~1400mm宽的连铸坯。
(2)热轧:连铸坯依次经过粗轧、精轧之后,获得热轧钢板。热轧钢板厚度为1.5~2.8mm。
(3)常化:热轧钢板进行常化处理,常化均热温度为800~1000℃,均热时间为1~180s。
(4)冷轧:采用一次冷轧法将钢板直接轧制到厚度为0.10~0.30mm。
(5)连续退火:以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温。
(6)绝缘涂层,以得到成品无取向电工钢板,厚度为0.10~0.30mm。
需要说明的是,在一些优选的实施方式中,升温速度为100~600℃/s。
此外,在一些优选的实施方式中,转炉出钢过程中对钢包顶渣进行改性处理,要求满足:(CaO)/(Al 2O 3)≥0.85,且T Fe≥13%,其中(CaO)、(Al 2O 3)分别表示其质量百分含量。
表1列出了实施例A9-A21的无取向电工钢板以及对比例A1-A8的常规钢板的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和除了P、S、N、O以及Ti以外的其他不可避免的杂质)
编号 C Si Mn P S Al O N Sn Sb Ti 备注
A1 0.0011 1.22 1.85 0.11 0.0021 0.83 0.0006 0.0011 / / 0.0011 对比例
A2 0.0021 1.85 2.52 0.06 0.0012 0.19 0.0011 0.0015 0 0.008 0.0017 对比例
A3 0.0035 2.14 0.89 0.04 0.0009 1.16 0.0008 0.0029 0.11 0.04 0.0015 对比例
A4 0.0028 2.29 0.25 0.18 0.0011 0.002 0.0019 0.0008 0.03 0.02 0.0008 对比例
A5 0.0008 2.85 1.47 0.02 0.0005 1.89 0.0008 0.0017 0.001 0 0.0011 对比例
A6 0.0044 3.15 0.58 0.13 0.0030 0.78 0.0017 0.0010 0.02 0.07 0.0014 对比例
A7 0.0031 3.27 0.71 0.07 0.0008 2.25 0.0013 0.0012 0.04 0 0.0005 对比例
A8 0.0016 3.62 0.16 0.03 0.0005 0.14 0.0008 0.0009 0 0.08 0.0025 对比例
A9 0.0018 2.00 2.00 0.20 0.0030 0.20 0.0011 0.0014 0.008 0.003 0.0002 实施例
A10 0.0041 2.11 0.55 0.16 0.0021 1.80 0.0013 0.0007 0 0.005 0.0011 实施例
A11 0.0028 2.38 1.32 0.02 0.0026 0.93 0.0020 0.0006 0.008 0 0.0008 实施例
A12 0.0019 2.54 0.96 0.04 0.0022 0.92 0.0011 0.0008 0.002 0.011 0.0007 实施例
A13 0.0043 2.61 0.75 0.03 0.0011 0.55 0.0013 0.0016 0.005 0.005 0.0015 实施例
A14 0.0035 2.05 0.10 0.05 0.0015 1.27 0.0008 0.0020 0.15 0.05 0.0013 实施例
A15 0.0031 2.92 0.50 0.02 0.0008 0.82 0.0005 0.0008 0.02 0.09 0.0010 实施例
A16 0.0012 3.01 0.31 0.03 0.0008 0.42 0.0007 0.0005 0.04 0.02 0.0012 实施例
A17 0.0020 3.24 1.62 0.05 0.0016 0.81 0.0003 0.0013 0.05 0.12 0.0013 实施例
A18 0.0033 3.18 0.22 0.11 0.0002 0.60 0.0007 0.0007 0.07 0.01 0.0005 实施例
A19 0.0021 3.35 1.17 0.02 0.0008 0.22 0.0009 0.0011 0.05 0 0.0011 实施例
A20 0.0015 3.42 0.45 0.04 0.0011 0.45 0.0012 0.0014 0.03 0.08 0.0009 实施例
A21 0.0050 3.50 0.17 0.03 0.0015 1.00 0.0011 0.0006 0 0.003 0.0005 实施例
表2列出了实施例A9-A21的无取向电工钢板以及对比例A1-A8的常规钢板具体工艺参数。
表2.
Figure PCTCN2020111404-appb-000001
Figure PCTCN2020111404-appb-000002
结合表1、表2可以看出,本案各实施例的无取向电工钢板具有以MnS、Cu 2S为主的夹杂物,且夹杂物的尺寸为150~500nm。并且夹杂物的形状包括球形或者类球形,夹杂物平面投影为圆形或者椭圆形,并且当夹杂物的平面投影为椭圆形时,椭圆形长轴/短轴直径之比≤4.0。
另外,本案各实施例的无取向电工钢板的其铁损P 10/400≤11.0W/kg,磁感B 50≥1.66T,其平行于轧制方向的铁损P 10/400L和垂直于轧制方向的铁损P 10/400C之差与之和的比值≤10%。
而反观各个对比例的常规钢板,其均未达到本案各实施例的技术效果,磁感、铁损控制效果差,磁各向异性大。例如:对比例1的常规钢板,由于其Si的质量百分比未落在本案限定的范围内,且没有添加Sn和/或Sb,且(CaO)/(Al 2O 3)只有0.21,导致相应的夹杂物MnS和Cu 2S的尺寸只有95nm,加之没有采用本案的连续退火工艺,因此,最终成品钢板的铁损较高、磁感较低,分别为12.7W/kg、1.64T,而磁各向异性达到了11.2%。
图1显示了对比例A4的常规钢板的有害夹杂物分布情况。图2显示了实施例A16的磁各向异性小的无取向电工钢板的有害夹杂物种类及尺寸分布情况。
结合图1和图2可以看出,本案的实施例A16的无取向电工钢板的MnS(图2中I所示位置)的尺寸明显比对比例A4的常规钢板的MnS大,而外围的以MnS为核心析出的Cu 2S复合夹杂物(图2中II所示位置)的平均尺寸为300nm,相较于对比例而言,实施例A16的夹杂物尺寸大了2~3倍,因而危害大大减轻了。
在对钢包顶渣进行改性处理时,可以通过控制(CaO)/(Al 2O 3)≥0.85,且T Fe≥13%,以实现更好的控制效果,而图3和图4分别示意了钢包顶渣的控制效果,其中,图3示意性地显示了采用了不同的(CaO)/(Al 2O 3)质量百分含量的比值与T Fe之间的关系,图4示意性地显示了采用了不同的(CaO) /(Al 2O 3)质量百分含量的比值与(CaO)/(SiO 2)之间的关系。
结合图3和图4可以看出,提高渣中的T Fe含量,可以有效的避免渣、钢间有害元素Ti的还原反应,而提高(CaO)/(Al 2O 3)则有利于吸收钢中的有害夹杂物CaO、Al 2O 3等,促进脱硫反应的进行和抑制连铸、热轧过程中,硫化物夹杂物的析出。
图5示意性地显示了采用了不同的晶粒尺寸与磁感B 50之间的关系。图6示意性地显示了采用了不同的晶粒尺寸与铁损P 10/400之间的关系。
结合图5和图6可以看出,晶粒平均尺寸在90~140μm时,本案的无取向电工钢板的磁性能表现更为优良,其铁损P 10/400≤11.0W/kg,磁感B 50≥1.66T,这是因为:平均晶粒尺寸低于90μm时,受夹杂物钉扎晶界和晶粒成长驱动力不足的影响,钢板的磁滞损耗为主,且相对较高,最终造成铁损偏高,同时,由于晶粒取向控制稳定性差,还会导致L、C各向异性超标,即平行于轧制方向的铁损P 10/400L和垂直于轧制方向的铁损P 10/400C之差与之和的比值较大。此外,晶粒平均尺寸高于130μm时,有害的面织构{111}会迅速长大,从而会吞噬有利的{100}面织构比例,导致磁感劣化。
综上所述可以看出,本发明所述的磁各向异性小的无取向电工钢板通过对钢板中各成分的有效设计使得其具有高频低铁损、磁各向异性小的特点。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (11)

  1. 一种无取向电工钢板,其特征在于,其化学元素质量百分比为:
    0<C≤0.005%;Si:2.0-3.5%;Mn:0.1-2.0%;Sn和Sb的至少其中之一:0.003-0.2%;Al:0.2-1.8%;余量为Fe及其他不可避免的杂质。
  2. 如权利要求1所述的无取向电工钢板,其特征在于,所述电工钢板的平均晶粒尺寸为90~140μm。
  3. 如权利要求1所述的无取向电工钢板,其特征在于,在其他不可避免的杂质中,P≤0.2%,S≤0.003%,N≤0.002%,O≤0.002%,Ti≤0.0015%。
  4. 如权利要求1所述的无取向电工钢板,其特征在于,所述电工钢板具有夹杂物MnS、Cu 2S,所述夹杂物的尺寸为150~500nm。
  5. 如权利要求4所述的无取向电工钢板,其特征在于,所述夹杂物的形状包括球形或者类球形,所述夹杂物的平面投影为圆形或者椭圆形。
  6. 如权利要求5所述的无取向电工钢板,其特征在于,当夹杂物的平面投影为椭圆形时,所述椭圆形的长轴/短轴直径之比≤4.0。
  7. 如权利要求1-6中任意一项所述的无取向电工钢板,其特征在于,所述电工钢板的铁损P 10/400≤11.0W/kg,磁感B 50≥1.66T,所述电工钢板的磁各向异性,即平行于轧制方向和垂直于轧制方向的铁损P 10/400之差与之和的比值≤10%。
  8. 一种如权利要求1-7中任意一项所述的无取向电工钢板的制造方法,其特征在于,包括步骤:
    (1)冶炼和铸造;
    (2)热轧;
    (3)常化;
    (4)冷轧;
    (5)连续退火:以50~800℃/s的升温速度将冷轧钢板从350℃~750℃的起始温度快速加热至均热温度,进行均热保温;
    (6)绝缘涂层,以得到成品无取向电工钢板。
  9. 如权利要求8所述的制造方法,其特征在于,步骤(1)包括转炉出钢过程,在所述转炉出钢过程中对钢包顶渣进行改性处理,要求满足:(CaO) /(Al 2O 3)≥0.85,且T Fe≥13%,其中(CaO)、(Al 2O 3)分别表示CaO、Al 2O 3质量百分含量。
  10. 如权利要求8所述的制造方法,其特征在于,在步骤(4)中采用一次冷轧法将钢板直接轧制到成品厚度0.10~0.30mm。
  11. 如权利要求8所述的制造方法,其特征在于,在步骤(5)中,所述升温速度为100~600℃/s。
PCT/CN2020/111404 2019-08-26 2020-08-26 一种无取向电工钢板及其制造方法 WO2021037063A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20858980.4A EP3992325A4 (en) 2019-08-26 2020-08-26 NON-ORIENTED ELECTROSTEEL SHEET AND METHOD OF MANUFACTURE THEREOF
CA3149832A CA3149832C (en) 2019-08-26 2020-08-26 Non-oriented electrical steel plate and manufacturing method therefor
BR112022003288-9A BR112022003288B1 (pt) 2019-08-26 2020-08-26 Chapa de aço elétrico não orientado e método de fabricação desta
JP2022511032A JP7378585B2 (ja) 2019-08-26 2020-08-26 無方向性電磁鋼板及びその製造方法
US17/634,918 US20220333226A1 (en) 2019-08-26 2020-08-26 Non-oriented electrical steel sheet and manufacturing method therefor
MX2022001811A MX2022001811A (es) 2019-08-26 2020-08-26 Placa de acero electrico no orientado y metodo de fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910790431.5 2019-08-26
CN201910790431.5A CN112430776B (zh) 2019-08-26 2019-08-26 一种磁各向异性小的无取向电工钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021037063A1 true WO2021037063A1 (zh) 2021-03-04

Family

ID=74684539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111404 WO2021037063A1 (zh) 2019-08-26 2020-08-26 一种无取向电工钢板及其制造方法

Country Status (7)

Country Link
US (1) US20220333226A1 (zh)
EP (1) EP3992325A4 (zh)
JP (1) JP7378585B2 (zh)
CN (1) CN112430776B (zh)
CA (1) CA3149832C (zh)
MX (1) MX2022001811A (zh)
WO (1) WO2021037063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686645A (zh) * 2022-06-01 2022-07-01 河北科技大学 一种通过rh精炼工艺细化取向硅钢晶粒组织的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118326247A (zh) * 2023-01-10 2024-07-12 宝山钢铁股份有限公司 一种综合性能优异的无取向电工钢及其制造方法
CN118291852A (zh) * 2024-03-25 2024-07-05 钢铁研究总院有限公司 一种利用平面流铸制备无取向硅钢超薄带的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888112A (zh) 2005-06-30 2007-01-03 宝山钢铁股份有限公司 具有高磁感的高牌号无取向电工钢及其制造方法
CN1887512A (zh) * 2005-06-30 2007-01-03 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN102453837A (zh) 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种高磁感无取向硅钢的制造方法
CN102676916A (zh) * 2012-05-09 2012-09-19 首钢总公司 一种高磁感变频压缩机用无取向硅钢及其制备方法
CN103173678A (zh) * 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
CN103290190A (zh) 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN108474076A (zh) * 2015-12-23 2018-08-31 Posco公司 无取向电工钢板及其制造方法
WO2019125078A1 (ko) * 2017-12-24 2019-06-27 주식회사 포스코 무방향성 전기강판용 열연강판, 무방향성 전기강판 및 그 제조방법
KR20190077984A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN110106447A (zh) * 2019-04-28 2019-08-09 首钢智新迁安电磁材料有限公司 一种高磁感无取向电工钢及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107719A (ja) * 1988-10-18 1990-04-19 Kawasaki Steel Corp リング試料での磁束密度が高い無方向性電磁鋼板の製造方法
JP4331969B2 (ja) * 2003-05-06 2009-09-16 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP4568190B2 (ja) * 2004-09-22 2010-10-27 新日本製鐵株式会社 無方向性電磁鋼板
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
JP5338750B2 (ja) * 2010-06-09 2013-11-13 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20140133100A (ko) * 2013-05-09 2014-11-19 주식회사 포스코 무방향성 전기강판 및 그 제조방법
EP3140430B1 (en) * 2014-05-08 2020-12-23 Rina Consulting - Centro Sviluppo Materiali S.p.A. Process for the production of grain non- oriented electric steel strip, with a high degree of cold reduction
KR101671692B1 (ko) * 2014-12-19 2016-11-02 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101728827B1 (ko) * 2015-12-24 2017-04-20 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US11114227B2 (en) * 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
CN106756475B (zh) * 2016-12-02 2019-04-30 武汉钢铁有限公司 中高频驱动电机用0.27mm厚无取向硅钢及生产方法
KR102026271B1 (ko) * 2017-12-26 2019-09-27 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888112A (zh) 2005-06-30 2007-01-03 宝山钢铁股份有限公司 具有高磁感的高牌号无取向电工钢及其制造方法
CN1887512A (zh) * 2005-06-30 2007-01-03 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN102453837A (zh) 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种高磁感无取向硅钢的制造方法
CN103173678A (zh) * 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
CN103290190A (zh) 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN102676916A (zh) * 2012-05-09 2012-09-19 首钢总公司 一种高磁感变频压缩机用无取向硅钢及其制备方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN108474076A (zh) * 2015-12-23 2018-08-31 Posco公司 无取向电工钢板及其制造方法
WO2019125078A1 (ko) * 2017-12-24 2019-06-27 주식회사 포스코 무방향성 전기강판용 열연강판, 무방향성 전기강판 및 그 제조방법
KR20190077984A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN110106447A (zh) * 2019-04-28 2019-08-09 首钢智新迁安电磁材料有限公司 一种高磁感无取向电工钢及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686645A (zh) * 2022-06-01 2022-07-01 河北科技大学 一种通过rh精炼工艺细化取向硅钢晶粒组织的方法

Also Published As

Publication number Publication date
EP3992325A4 (en) 2022-07-20
MX2022001811A (es) 2022-03-11
CA3149832A1 (en) 2021-03-04
CA3149832C (en) 2023-11-07
EP3992325A1 (en) 2022-05-04
BR112022003288A2 (pt) 2022-05-24
CN112430776A (zh) 2021-03-02
US20220333226A1 (en) 2022-10-20
JP2022545793A (ja) 2022-10-31
JP7378585B2 (ja) 2023-11-13
CN112430776B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
JP6580700B2 (ja) 表面状態が良好な高磁束密度・低鉄損・無方向性電磁鋼板及びその製造方法
JP6596016B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5825494B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2021037063A1 (zh) 一种无取向电工钢板及其制造方法
WO2012055224A1 (zh) 一种磁性优良的高效无取向硅钢制造方法
JP7462737B2 (ja) 600MPa級無方向性電磁鋼板及びその製造方法
JP7350063B2 (ja) 無方向性電磁鋼板およびその製造方法
CN104480383B (zh) 0.35mm厚高效电机用高磁感无取向硅钢的生产方法
WO2019105041A1 (zh) 磁性优良的无取向电工钢板及其制造方法
CN112143964A (zh) 一种极低铁损的无取向电工钢板及其连续退火工艺
JP5824965B2 (ja) 無方向性電磁鋼板の製造方法
CN104328342A (zh) 一种变频高效压缩机用无取向硅钢及生产方法
CN115198199A (zh) 高强度无取向硅钢生产方法、高强度无取向硅钢及应用
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN110640104A (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN110747324B (zh) 一种改善高牌号无取向硅钢磁各向异性的方法
RU2792272C1 (ru) Лист из нетекстурированной электротехнической стали и способ его изготовления
CN112430779A (zh) 一种高频铁损优良的无取向电工钢板及其制造方法
CN114616353B (zh) 无方向性电磁钢板
JP3951402B2 (ja) 方向性電磁鋼板の製造方法
BR112022003288B1 (pt) Chapa de aço elétrico não orientado e método de fabricação desta
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN117355626A (zh) 无取向电工钢板及其制造方法
JPH1143722A (ja) 一方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3149832

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020858980

Country of ref document: EP

Effective date: 20220127

ENP Entry into the national phase

Ref document number: 2022511032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003288

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022003288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220221