WO2021036335A1 - 一种用于焊接机器人系统的远程实时监控系统 - Google Patents
一种用于焊接机器人系统的远程实时监控系统 Download PDFInfo
- Publication number
- WO2021036335A1 WO2021036335A1 PCT/CN2020/089505 CN2020089505W WO2021036335A1 WO 2021036335 A1 WO2021036335 A1 WO 2021036335A1 CN 2020089505 W CN2020089505 W CN 2020089505W WO 2021036335 A1 WO2021036335 A1 WO 2021036335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- capacitor
- processor
- pin
- welding robot
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 51
- 238000012544 monitoring process Methods 0.000 title claims abstract description 41
- 238000004891 communication Methods 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 230000003750 conditioning effect Effects 0.000 claims abstract description 5
- 239000003990 capacitor Substances 0.000 claims description 92
- 238000002955 isolation Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass
- B23K37/02—Carriages for supporting the welding or cutting element
- B23K37/0258—Electric supply or control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
Definitions
- the invention relates to the technical field of robot monitoring, in particular to a remote real-time monitoring system for a welding robot system.
- the technical task of the present invention is to address the above shortcomings and provide a remote real-time monitoring system for the welding robot system to solve the above problems.
- the output ends of the network monitoring module are respectively connected with the auxiliary module, the robot module, the management authority module, the system setting module, the main interface module, and the query and statistics module.
- the inside of the angular position detection module includes a photoelectric encoder module, an optocoupler isolation module, an angular position resolving module, a quadrature encoding module, an SCI communication interface module, and a level conversion module.
- the output terminal is connected to the input terminal of the optocoupler isolation module, the output terminal of the optocoupler isolation module is connected to the input terminal of the angular position solving module, and the output terminal of the angular position solving module is connected to the positive
- the input end of the cross-encoding module is connected, the output end of the quadrature encoding module is connected to the input end of the SCI communication interface module, and the output end of the SCI communication interface module is connected to the input end of the level conversion module.
- the circuit inside the optocoupler isolation module includes a processor U1, a resistor R1, a capacitor C1, a capacitor C2, and a capacitor C3.
- the pin A0 of the processor U1 is connected to one end of the capacitor C1, and the capacitor
- the other end of C1 is respectively connected to the pin A1 of the processor U1 and one end of the resistor R1 and grounded.
- the other end of the resistor R1 is respectively connected to one end of the capacitor C2, one end of the capacitor C3, and the lead of the processor U1.
- the pin A2 is connected and grounded, the other end of the capacitor C2 is connected to the pin A3 of the processor U1, and the other end of the capacitor C3 is connected to the pin A4 of the processor U1.
- the circuit inside the SCI communication interface module includes a processor U2, a processor U3, a resistor R2, a resistor R3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8, and the pins of the processor U2 B0 is connected to one end of the capacitor C4, the other end of the capacitor C4 is connected to the pin B1 of the processor U2, and the pin B2 of the processor U2 is connected to the pin A5 of the processor U3,
- the pin A6 of the processor U3 is respectively connected to one end of the resistor R2 and the resistor R3, the other end of the resistor R2 is grounded, and the other end of the resistor R3 is connected to the pin B3 of the processor U2.
- Fig. 1 is a system block diagram of a remote real-time monitoring system for a welding robot system according to an embodiment of the present invention
- Fig. 5 is a schematic circuit diagram of an optocoupler isolation module according to an embodiment of the present invention.
- a remote real-time monitoring system for a welding robot system includes an upper computer 1, a central control module 2, a welding robot module 3, and a network monitoring module 4 , Welding robot module 3 can directly communicate with peripheral equipment through its field bus card with PCI slot, signal transmission and I/O processing.
- Welding robot module 3 can directly communicate with peripheral equipment through its field bus card with PCI slot, signal transmission and I/O processing.
- a two-level field bus system is adopted.
- the output terminal is connected to the input terminal of the central control module 2.
- the output terminal of the central control module 2 is connected to the input terminal of the welding robot module 3 and the network monitoring module 4 respectively.
- the communication module 8 is used between the robot and the robot. For communication, the communication between the central control module 2 and all robots is realized through industrial Ethernet.
- Each robot is connected to the central control computer through its Ethernet interface and network switch.
- the output terminal of the network monitoring module 4 is connected with The input terminal of the welding robot module 3 is connected, and the output terminal of the welding robot module 3 is connected to the input terminals of the acquisition module 5, the control module 6, the motor drive module 7, the communication module 8 and the alarm module 9 respectively.
- the output end of the module 5 is connected to the input end of the signal conditioning module 10, the angular position detection module 11 and the interface module 12; through the monitoring system, the welding robots scattered in different locations can be monitored and controlled to realize data collection, status control, Measurement, parameter adjustment and various fault signal alarms.
- the output ends of the network monitoring module 4 are respectively connected to the auxiliary module 13, the robot module 14, the management authority module 15, the system setting module 16, the main interface module 17, and the query and statistics module 18. .
- the auxiliary module 13 includes interlocking, alarm and vehicle type
- the robot module 14 includes uploading files, downloading files and information display
- the management authority module 15 includes adding users and deleting users.
- the system setting module 16 includes parameter setting and operating parameter setting
- the main interface module 17 includes power-on inspection, fixture information and parameter query
- the query and statistics module 18 includes fault statistics, historical data query and year. Monthly report.
- the information After measuring the angular position and speed of multiple joints, the information is The protocol format is encoded and transmitted to the host computer 1 through the SCI communication interface for real-time display and other processing. After the angular position information is collected by the photoelectric encoder, it needs to be uploaded to the digital signal processor for calculation. The digital signal processor performs calculations on different joints. After calculating the angular position, the code is uploaded to the upper computer 1 for detection through the SCI communication interface according to a certain protocol to realize the real-time display and detection of the angular position. In order to enable the digital signal processor to recognize the signal of the photoelectric encoder, The signal output by the photoelectric encoder needs to be level-converted.
- the optocoupler uses different power supply voltages at the input and output terminals to make the input and output signals have different levels. At the same time, since the signal propagation of the optocoupler uses light-emitting devices and optical sensitive devices, there is no electrical connection for the output signal, which realizes the electrical isolation of the signal.
- the capacitance values of the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all 0.1 ⁇ F
- the resistance value of the resistor R2 is 2K ⁇
- the resistance value of the resistor R3 is 1K ⁇ .
- the host computer 1 is a window for monitoring the production process, which can provide users with a simulation process display screen of the production process, and can dynamically display one or more process data in real time.
- the screen can be used Flashing, sound prompts, changes in the status text color, and print output remind the operator to deal with faults in time.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manipulator (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- General Factory Administration (AREA)
Abstract
Description
Claims (9)
- 一种用于焊接机器人系统的远程实时监控系统,其特征在于,包括上位机(1)、中央控制模块(2)、焊接机器人模块(3)和网络监视模块(4),所述上位机(1)的输出端与所述中央控制模块(2)的输入端连接,所述中央控制模块(2)的输出端分别与所述焊接机器人模块(3)和网络监视模块(4)的输入端连接,所述网络监视模块(4)的输出端与所述焊接机器人模块(3)的输入端连接,所述焊接机器人模块(3)的输出端分别与采集模块(5)、控制模块(6)、电机驱动模块(7)、通信模块(8)和警报模块(9)的输入端连接,所述采集模块(5)的输出端与信号调理模块(10)、角位置检测模块(11)和接口模块(12)的输入端连接。
- 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述网络监视模块(4)的输出端分别与辅助模块(13)、机器人模块(14)、管理权限模块(15)、系统设置模块(16)、主界面模块(17)和查询与统计模块(18)连接。
- 根据权利要求2所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述辅助模块(13)包括联锁、报警和车型,所述机器人模块(14)包括上传文件、下载文件和信息显示,所述管理权限模块(15)包括添加用户、删除用户和修改密码,所述系统设置模块(16)包括参数设置和运行参数设置,所述主界面模块(17)包括开机检查、夹具信息和参数查询,所述查询与统计模块(18)包括故障统计、历史数据查询和年月日报表。
- 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述接口模块(12)的输出端分别与摄像头模块(19)、传感器模块(20)和GPRS模块(21)连接。
- 根据权利要求1所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述角位置检测模块(11)的内部包括光电编码器模块(22)、光耦隔离模块(23)、角位置解算模块(24)、正交编码模块(25)、SCI通信接口模块(26)和电平转换模块(27),所述光电编码器模块(22)的输出端与所述光耦隔离模块(23)的输入端连接,所述光耦隔离模块(23)的输出端与所述角位置解算模块(24)的输入端连接,所述角位置解算模块(24)的输出端与所述正交编码模块(25)的输入端连接,所述正交编码模块(25)的输出端与所述SCI通信接口模块(26)的输入端连接,所述SCI通信接口模块(26)的输出端与所述电平转换模块(27)的输入端连接。
- 根据权利要求5所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述光耦隔离模块(23)内部的电路包括处理器U1、电阻R1、电容C1、电容C2和电容C3,所述处理器U1的引脚A0与所述电容C1的一端连接,所述电容C1的另一端分别与所述处理器U1的引脚A1和电阻R1的一端连接并接地,所述电阻R1的另一端分别与所述电容C2的一端、电容C3的一端、处理器U1的引脚A2连接并接地,所述电容C2的另一端与所述处理器U1的引脚A3连接,所述电容C3的另一端与所述处理器U1的引脚A4连接。
- 根据权利要求6所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述电容C1、电容C2和电容C3的值均为0.01μF。
- 根据权利要求5所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述SCI通信接口模块(26)内部的电路包括处理器U2、处理器U3、电阻R2、电阻R3、电容C4、电容C5、电容C6、电容C7和电容C8,所述处理器U2的引脚B0与所述电容C4的一端连接,所述电容C4的另一端与所述处理器U2的引脚B1连接,所述处理器U2的引脚B2与所述处理器U3的引脚A5连接,所述处理器U3的引脚A6分别与所述电阻R2和所述电阻R3的一端连接,所述电阻R2的另一端接地,所述电阻R3的另一端与所述处理器U2的引脚B3连接,所述处理器U2的引脚B4与所述电容C5的一端连接,所述电容C5的另一端与所述处理器U2的引脚B5连接,所述处理器U2的引脚B6与所述分别与所述电容C6和电容C8的一端连接并接地,所述电容C6的另一端与所述处理器U2的引脚B7连接,所述电容C8的另一端分别与电源连接、电容C7的一端和处理器U2的引脚B9连接,所述电容C7的另一端与所述处理器U2的引脚B8连接。
- 根据权利要求8所述的一种用于焊接机器人系统的远程实时监控系统,其特征在于,所述电容C4、电容C5、电容C6、电容C7和电容C8的电容值均为0.1μF,所述电阻R2的阻值为2KΩ,所述电阻R3的阻值为1KΩ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910794157.9 | 2019-08-27 | ||
CN201910794157.9A CN110524155B (zh) | 2019-08-27 | 2019-08-27 | 一种用于焊接机器人系统的远程实时监控系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036335A1 true WO2021036335A1 (zh) | 2021-03-04 |
Family
ID=68664334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089505 WO2021036335A1 (zh) | 2019-08-27 | 2020-05-10 | 一种用于焊接机器人系统的远程实时监控系统 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN111872609A (zh) |
WO (1) | WO2021036335A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111872609A (zh) * | 2019-08-27 | 2020-11-03 | 南京涵曦月自动化科技有限公司 | 一种用于焊接机器人系统的远程实时监控系统 |
CN114161050B (zh) * | 2021-11-03 | 2024-09-20 | 北京星航机电装备有限公司 | 一种焊接辅助工装的控制系统及定位焊接方法 |
CN114952844A (zh) * | 2022-05-30 | 2022-08-30 | 郑州大学 | 一种基于Unity3D的焊接机器人远程操控系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4767911A (en) * | 1987-02-26 | 1988-08-30 | Rockwell International Corporation | Optical weld contour monitor for penetration control |
JP2000334690A (ja) * | 1999-05-25 | 2000-12-05 | Fanuc Ltd | 作業の異常監視機能を備えたロボット制御装置 |
CN1715010A (zh) * | 2004-06-29 | 2006-01-04 | 发那科株式会社 | 机器人的待机位置复位程序生成装置 |
CN102451950A (zh) * | 2010-10-27 | 2012-05-16 | 西安扩力机电科技有限公司 | 一种点焊机用自动控制系统 |
CN205983161U (zh) * | 2016-08-30 | 2017-02-22 | 青岛思锐自动化工程有限公司 | 汽车总拼生产线控制系统 |
CN110524155A (zh) * | 2019-08-27 | 2019-12-03 | 南京涵曦月自动化科技有限公司 | 一种用于焊接机器人系统的远程实时监控系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103737591A (zh) * | 2013-12-23 | 2014-04-23 | 芜湖常瑞汽车部件有限公司 | 一种机器人焊接系统 |
CN105033520B (zh) * | 2015-08-05 | 2017-01-04 | 柳州职业技术学院 | 一种改进粒子群算法的多台焊接机器人协同控制系统 |
CN106064380A (zh) * | 2016-08-12 | 2016-11-02 | 刘玲 | 一种焊接机器人控制系统 |
CN205928661U (zh) * | 2016-08-12 | 2017-02-08 | 河南工业职业技术学院 | 一种焊接机器人控制系统 |
-
2019
- 2019-08-27 CN CN202010609089.7A patent/CN111872609A/zh not_active Withdrawn
- 2019-08-27 CN CN201910794157.9A patent/CN110524155B/zh active Active
-
2020
- 2020-05-10 WO PCT/CN2020/089505 patent/WO2021036335A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4767911A (en) * | 1987-02-26 | 1988-08-30 | Rockwell International Corporation | Optical weld contour monitor for penetration control |
JP2000334690A (ja) * | 1999-05-25 | 2000-12-05 | Fanuc Ltd | 作業の異常監視機能を備えたロボット制御装置 |
CN1715010A (zh) * | 2004-06-29 | 2006-01-04 | 发那科株式会社 | 机器人的待机位置复位程序生成装置 |
CN102451950A (zh) * | 2010-10-27 | 2012-05-16 | 西安扩力机电科技有限公司 | 一种点焊机用自动控制系统 |
CN205983161U (zh) * | 2016-08-30 | 2017-02-22 | 青岛思锐自动化工程有限公司 | 汽车总拼生产线控制系统 |
CN110524155A (zh) * | 2019-08-27 | 2019-12-03 | 南京涵曦月自动化科技有限公司 | 一种用于焊接机器人系统的远程实时监控系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110524155B (zh) | 2020-05-12 |
CN110524155A (zh) | 2019-12-03 |
CN111872609A (zh) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021036335A1 (zh) | 一种用于焊接机器人系统的远程实时监控系统 | |
CN111736064B (zh) | 一种针对pcb板的多种类型信号在线测试方法和系统 | |
CN102944426A (zh) | 一种x型航空发动机试车台测控系统和测控方法 | |
CN1964363B (zh) | 具有多种总线接口的可配置i/o模块 | |
CN105415374A (zh) | 基于协同测量的机械手传动单元在线故障诊断系统 | |
CN114301947A (zh) | 一种工业互联网实训考核系统 | |
CN103017812B (zh) | 汽车仪表网络化测试系统及该系统的测试方法 | |
CN208270992U (zh) | 智能网络传感器装置 | |
WO1990002366A1 (en) | System for diagnosing cnc | |
CN104656565A (zh) | 一种可自由配置的智能io装置 | |
CN108107398A (zh) | 一种测量设备的自动校验方法及系统 | |
CN205910582U (zh) | 全自动拉边机控制网络系统 | |
CN103970100A (zh) | 一种多协议可重构总线式仪表实验系统 | |
CN205301856U (zh) | 数控系统机床环境仿真仪 | |
CN206057793U (zh) | 一种直写式光刻机的电控装置及直写式光刻机 | |
Li et al. | Design and implementation of field bus device management system based on hart protocol | |
CN210895043U (zh) | Itcs系统车载设备接口仿真装置 | |
CN108055294A (zh) | 一种感应加热成套设备远程智能监控与诊断系统 | |
WO2021159582A1 (zh) | 一种多轴驱控系统 | |
CN108170108A (zh) | 一种基于虚拟现实的串联机器人远程监控系统 | |
CN105207837A (zh) | 网络型的信号采集与控制的装置 | |
CN204129510U (zh) | 具有分离式hart功能板的模拟量输入模块 | |
JP2021039570A (ja) | プログラム開発装置、プロジェクト作成方法およびプログラム開発装置を実現するためのプログラム | |
CN221926506U (zh) | 一种体外诊断设备的检测系统 | |
CN209858990U (zh) | 一种高度集成的运动与视觉综合控制器及控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856343 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856343 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856343 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 08.08.22. |