WO2021035760A1 - 散热装置、设备、机架和系统 - Google Patents
散热装置、设备、机架和系统 Download PDFInfo
- Publication number
- WO2021035760A1 WO2021035760A1 PCT/CN2019/103899 CN2019103899W WO2021035760A1 WO 2021035760 A1 WO2021035760 A1 WO 2021035760A1 CN 2019103899 W CN2019103899 W CN 2019103899W WO 2021035760 A1 WO2021035760 A1 WO 2021035760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- liquid
- heat dissipation
- mounting base
- pressure plate
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 134
- 239000007788 liquid Substances 0.000 claims abstract description 298
- 238000005057 refrigeration Methods 0.000 claims description 47
- 238000003825 pressing Methods 0.000 claims description 41
- 238000009434 installation Methods 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 32
- 238000007789 sealing Methods 0.000 claims description 17
- 210000004907 gland Anatomy 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 11
- 238000007667 floating Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 33
- 238000013461 design Methods 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20254—Cold plates transferring heat from heat source to coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0217—Mechanical details of casings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20763—Liquid cooling without phase change
- H05K7/20772—Liquid cooling without phase change within server blades for removing heat from heat source
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
- H01L23/4006—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20536—Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
- H05K7/20627—Liquid coolant without phase change
- H05K7/20636—Liquid coolant without phase change within sub-racks for removing heat from electronic boards
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- This application relates to the field of heat dissipation technology, and in particular to a heat dissipation device, equipment, rack, and system.
- This application provides a heat dissipation device, equipment, rack, and system to improve the adaptability of the heat dissipation device.
- a heat dissipation device is provided, and the heat dissipation device is used to dissipate heat for a chip.
- the heat dissipating device adopts a split structure and mainly includes a heat conducting plate, a mounting base and a pressing plate, and the mounting base, the heat conducting plate and the pressing plate are arranged in a sandwich manner, and the heat conducting plate is located between the mounting base and the pressing plate.
- the heat-conducting plate includes a first surface and a second surface that are arranged oppositely
- the mounting base is used to carry the heat-conducting plate
- the mounting base is provided with a receiving cavity for accommodating a part of the heat-conducting plate including the second surface
- the heat-conducting plate serves
- the first surface of the heat conducting plate is provided with a liquid channel for the circulation of liquid.
- the pressure plate is used to fix the heat conducting plate in the receiving cavity of the installation base.
- the pressure plate is detachably connected with the mounting base, and a sealed cavity is formed between the pressure plate and the first surface of the heat conducting plate, and the sealed cavity is used for accommodating the liquid channel.
- the heat conducting plate includes a substrate for being clamped in the containing cavity, and a heat dissipation structure fixedly arranged on the substrate, and the heat dissipation structure is the liquid channel. Through the cooperation of the substrate and the accommodating groove, the relative fixation of the substrate and the accommodating groove is realized.
- the pressure plate is provided with a receiving groove for receiving the heat dissipation structure.
- the accommodating groove is used to cover the liquid channel and seal the liquid channel.
- the pressure plate and the base plate are hermetically connected through a sealing gasket.
- the pressure plate and the liquid channel are sealed by the gasket.
- a placing groove is provided on the substrate, and the sealing gasket is provided in the placing groove.
- a third limiting protrusion is provided on the substrate, and the third limiting protrusion is pressed against the surface of the mounting base. Through the cooperation of the third limiting protrusion and the mounting base, the pressure plate can press the heat conducting plate on the mounting base.
- the heat dissipation device further includes a pressure cover, which is detachably fixedly connected to the mounting base, and presses the pressure plate on the heat conducting plate.
- At least one of the liquid inlet joint and the liquid outlet joint is rotatably connected with the pressure plate.
- the connection direction of the inlet and outlet joints can be adjusted, so that the connection positions of the inlet and outlet joints and the external pipeline can be adjusted according to the needs of the specific implementation, and the radiator can be lowered.
- the space requirement improves the adaptability of the radiator.
- both the inlet and outlet connectors are inverted L-shaped connectors.
- the gland presses the liquid outlet connector and the liquid inlet connector on the pressure plate.
- the position of the liquid outlet connector and the liquid inlet connector is defined by a gland.
- the pressure plate has bosses corresponding to the liquid inlet connector and the liquid outlet connector one-to-one, and each boss has an installation groove; the liquid inlet connector or the liquid outlet connector The joint has a shoulder fitted in the installation groove, and the gland presses the shoulder in the installation groove.
- the pressure plate is rectangular, and the liquid inlet joint and the liquid outlet joint are arranged diagonally.
- the liquid inlet connector and the liquid outlet connector are also possible to use the same side of the pressure plate.
- the second surface of the heat conducting plate is at least greater than or equal to the surface area of the chip to be dissipated, wherein the second surface is the surface of the chip for thermally connecting with the heat conducting plate.
- the sealed cavity is filled with liquid, and the liquid circulates in the liquid channel.
- a device which includes a motherboard, a chip provided on the motherboard, and the heat dissipation device of any one of the above that is fixedly connected to the motherboard and used to dissipate heat to the chip.
- the entire heat dissipation device adopts a modular and standard split structure, in which the pressure plate and the mounting base can be made into standard parts. When dissipating the chips with different heat dissipation requirements, only the corresponding heat conducting plate needs to be selected.
- a refrigeration system is further included.
- the refrigeration system includes a liquid inlet pipe and a liquid outlet pipe.
- the liquid inlet pipe and the liquid inlet joint are hermetically connected, and the liquid outlet pipe is connected to the liquid outlet joint. Sealed connection.
- a circulating loop is formed through the cooperation of the refrigeration system and the heat sink to dissipate the chip.
- a rack in a third aspect, includes the above-mentioned heat dissipation device or the above-mentioned equipment.
- FIG. 7 is a schematic diagram of the cooperation between the second installation base and the heat conducting plate provided by this application.
- FIG. 9 is a cross-sectional view of the third type of mounting base provided by this application when matched with the chip.
- Figure 16 is a cross-sectional view at A-A in Figure 15;
- Figure 22 is a schematic diagram of the cooperation between the pressure plate and the pressure cover provided by this application.
- FIG. 25 is a schematic diagram of the connection between the heat dissipation device and the refrigeration system provided by this application.
- FIG. 1 is a schematic structural diagram of a device provided by this application. As shown in the figure, the device includes a heat sink 10, a chip 20, a motherboard 30, and a connector 40. During the assembly process of the device, the chip 20 is carried by the main board 30 (also called a printed circuit board (PCB) of the device), and the heat sink 10 and the main board 30 carrying the chip 20 are fixedly connected by a connector 40.
- the fixed connection Removable.
- the heat dissipating device 10 can dissipate heat to the chip 20.
- the area of the effective heat dissipation surface of the heat dissipation device may be greater than or equal to the area of the contact surface of the chip to be dissipated and the heat dissipation device to ensure effective heat dissipation of the chip to be dissipated.
- the effective heat dissipation surface of the heat dissipation device refers to the area of the surface of the heat dissipation device used to connect with the chip to be dissipated.
- This part is used to conduct the heat generated by the chip to be dissipated to the heat dissipation device 10, and then the heat dissipation device 10 conducts the heat To the outside of the device, realize the heat dissipation function of the chip.
- the heat dissipating device 10 shown in FIG. 1 may only dissipate heat for one chip 20, or may dissipate heat for multiple chips 20 at the same time.
- FIG. 2 is a schematic structural diagram of a heat dissipation device provided by this application
- FIG. 3 is an exploded schematic diagram of a heat dissipation device provided by this application.
- the heat dissipation device mainly includes a mounting base 12, a heat conducting plate 13 and a pressing plate 11.
- the mounting base 12 is used to fix the main board 30 through the connector 40 in FIG. 1
- the heat conducting plate 13 is used to conduct heat conduction to the chip 20
- the pressing plate 11 is used to fix the heat conducting plate 13 to the mounting base 12.
- the mounting base 12, the heat conducting plate 13 and the pressing plate 11 are stacked in a sandwich-like manner, and the heat conducting plate 13 is located between the mounting base 12 and the pressing plate 11.
- the pressing plate 11 and the mounting base 12 are connected in a detachable manner. As shown in FIG. 3, the pressing plate 11 and the mounting base 12 press the heat conducting plate 13 to the mounting base 12 through threaded connectors 14 (such as bolts or screws).
- the pressing plate 11 may be made of metal materials such as aluminum, iron, steel, alloy, or the like, or may be made of plastic or plastic materials.
- the size of the pressure plate 11 is adapted to the heat conduction plate 13, and the area of the pressure plate 11 can be greater than or equal to the area of the heat conduction plate 13 to ensure that the pressure plate 11 has a sufficient size to cover the surface of the heat conduction plate 13.
- FIG. 4 is a schematic structural diagram of the first type of mounting base provided by this application
- FIG. 5 is a cross-sectional view of a mounting base and a heat conducting plate provided by this application
- FIG. 5 is taken along the line in FIG. 2
- a cross-sectional view of the mounting base is cut through the stacking direction of the pressure plate, the heat-conducting plate and the mounting base shown.
- the mounting base 12 is a hollow frame-shaped structure, the frame-shaped structure has two opposite surfaces: a surface 121 and a surface 126; wherein, the surface 121 is a surface for attaching the heat conducting plate, and the surface 126 is for connecting with the chip. s surface.
- the mounting base 12 is also provided with a plurality of mounting holes 124.
- the mounting holes 124 are used to allow threaded connectors (bolts or screws) to pass through the mounting holes to achieve the effect of fixing the pressure plate, and the mounting bases 124 surround the mounting base.
- the hollow part of 12 is set.
- Figure 4 only shows one arrangement of mounting holes 125 and mounting holes 124.
- the number of mounting holes 125 and mounting holes 124 does not constitute a limitation on the application, and can be installed on the mounting base according to actual installation needs.
- the number and positions of mounting holes 125 and assembly holes 124 are set on 12.
- the hollow part of the mounting base 12 is the accommodating cavity 122 where the heat conducting plate is placed.
- the hollow part of the mounting base 12 refers to a hole formed in an area based on the center point of the mounting base 12.
- the cross section of the area is It can be rectangular, square, round or other shapes, and the specific shape matches the shape of the part of the heat conducting plate placed in the accommodating cavity.
- the center point refers to the position of the center of the installation base. Illustratively, when the installation base 12 has a rectangular structure, the center point is the intersection of diagonal lines. Referring to FIG. 5, when assembling the heat conducting plate 13, the heat conducting plate 13 is partially inserted into the accommodating cavity 122 shown in FIG. 4. As shown in FIG. 5, the structure of the heat conducting plate 13 is also explained.
- the limiting protrusion 123 in the mounting base 12 may also be referred to as a first limiting protrusion
- the limiting protrusion 126 of the heat conducting plate 13 may also be referred to as a second limiting protrusion.
- the volume of the accommodating cavity 122 may be greater than or equal to the volume of the inserted portion of the heat conducting plate 13 to ensure that the base 12 and the heat conducting plate 13 can be combined smoothly.
- the limiting protrusion 123 in FIG. 5 is only an example, and a structure in which a plurality of limiting protrusions 123 are provided may also be adopted, and the plurality of limiting protrusions 123 are arranged at intervals and arranged around the side wall of the receiving groove, or Other limiting structures can also be used to limit the insertion depth of the heat conducting plate.
- Figure 7 shows a cross-sectional view of the mounting base 12 and the heat conducting plate 13 when matched
- Figure 7 is a cross-sectional view of the mounting base cut along the stacking direction of the pressure plate, the heat conducting plate and the mounting base shown in Figure 2;
- the heat-conducting plate 12 is provided with a limiting protrusion 132, by which the limiting protrusion 132 is pressed against the surface 121 of the mounting base to limit the insertion depth of the heat-conducting plate.
- the limiting protrusion 132 may also be referred to as a second limiting protrusion.
- the base plate 133 of the heat-conducting plate 13 is inserted into the accommodating cavity 122, and the heat-conducting plate 13 defines the depth of the heat-conducting plate 13 inserted into the mounting base 12 through the limiting protrusion 132.
- the surface 136 of the heat conducting plate 13 connected to the chip to be dissipated and the surface 126 of the mounting base 12 may be located on the same horizontal plane or close to the same horizontal plane, and the heat conducting plate 13 may be directly thermally connected to the chip.
- FIG. 8 is a schematic structural diagram of the third type of mounting base provided by this application
- FIG. 9 is a cross-sectional view of the third type of mounting base provided by this application when mated with the chip
- FIG. The laminating direction of the pressing plate, the heat-conducting plate and the mounting base shown in FIG. 9 is a cross-sectional view of the mounting base; the parts with the same numbers in FIG. 9 as those in FIG. 5 can be referred to the description of FIG. 5.
- the difference between the third mounting base and the first and second mounting bases is that the accommodating cavity of the first and second mounting bases is a hollow frame structure, while the third mounting base is a groove structure.
- the heat-conducting plate 13 When assembling, the heat-conducting plate 13 is fixed in the groove, and when the heat-conducting plate 13 is inserted into the groove, the heat-conducting plate 13 is connected to the bottom wall of the groove.
- the heat sink When the heat sink is combined with the chip, the heat generated by the chip is transferred to the bottom wall of the mounting base 12 and then conducted to the heat conducting plate 13 through the bottom wall of the mounting base 12.
- the mounting base provided by the present application can be implemented in different structural forms. It is only necessary that the mounting base has an accommodating cavity for accommodating the heat conducting plate, and the specific accommodating cavity on the mounting base The structure and the matching relationship between the mounting base and the heat conducting plate can be set according to business needs.
- the structure of the mounting base provided by the present application is described above in conjunction with FIGS. 2 to 9. Next, the structure of the heat conducting plate provided by the embodiment of the present application is further described in conjunction with FIGS. 10 to 21.
- the heat conduction plate provided by the present application has a first surface and a second surface opposite to each other.
- the first surface of the heat conduction plate is provided with a liquid channel
- the second surface of the heat conduction plate is used for connecting with the chip.
- the heat conducting plate 13 includes a substrate 133 and a heat dissipation structure 135 fixedly arranged on the substrate.
- the heat dissipation structure 135 may be a liquid channel, a capillary structure, or a pipe.
- the first surface and the second surface are two opposite surfaces 136 and 137 of the substrate 13.
- the thickness of the substrate 133 can be set according to the requirements of the specific implementation, and this application does not limit it. In order to improve the heat conduction effect, the substrate may be as thin as possible.
- FIG. 10 is a schematic structural diagram of a heat conducting plate provided by this application.
- the base plate 133 of the heat conducting plate 13 can be all or partly clamped in the receiving cavity 122 of the mounting base 12.
- the shape and structure of the part where the heat conducting plate 13 is clamped in the receiving cavity 122 is consistent with the shape and structure of the receiving cavity of the mounting base 12.
- FIG. 10 is a schematic structural diagram of the first heat conducting plate provided in this application.
- FIG. 5 shows a cross-sectional view of the first type of heat-conducting plate cut along the stacking direction of the pressure plate, the heat-conducting plate and the mounting base in FIG. 2.
- the substrate 133 on the heat conducting plate 13 adopts a rectangular plate-like structure.
- the substrate 133 has opposite surfaces 136 and 137.
- the surface 136 may also be referred to as the second surface of the heat conducting plate 13
- the surface 137 is the first surface of the heat conducting plate 13.
- the side wall of the substrate 133 is correspondingly provided with the above-mentioned limiting protrusion 131.
- the heat dissipation structure 135 of the heat conducting plate 13 may be a capillary structure 1351, and the capillary structure 1351 has a plurality of communicating holes inside, and the plurality of holes are used to form a liquid channel through which the liquid flows.
- the capillary structure 1351 of the heat-conducting plate 13 is located on the surface 137 of the heat-conducting plate 13 and above the mounting base 12.
- the so-called “above” refers to the heat-conducting plate 13 shown in FIG.
- the placement direction of is the reference direction.
- a porous structure for example, a porous structure formed by sintering metal powder or metal mesh.
- the metal mesh is woven by metal wires, has a porous structure, and is welded together with the substrate 133 through a single-layer or multi-layer mesh to form a communicating liquid channel (not shown in the figure) ).
- the metal powder sintered capillary structure 1351 the metal powder is sintered into a spherical granular structure, a gap is formed between the spherical granular structures, and the gap is connected to form a liquid channel.
- FIG. 12 is a cross-sectional view of a heat dissipation device provided by this application, wherein FIG. 12 is a schematic view taken along the direction in which the pressure plate, the heat conducting plate, and the mounting base in FIG. 2 are stacked.
- FIG. 12 is a schematic view taken along the direction in which the pressure plate, the heat conducting plate, and the mounting base in FIG. 2 are stacked.
- the pressing plate 11 when the pressing plate 11 is covered on the mounting base 12, the pressing plate 11 and the base plate 133 are sealed and connected by a gasket 134, and the capillary structure 1351 is sealed in the sealed cavity enclosed by the base plate 133 and the pressing plate 11.
- a placement groove can also be provided on the pressure plate 11, and the sealing gasket 134 is fixed in the placement groove of the pressure plate 11, and a sealed connection between the pressure plate 11 and the substrate 133 can also be achieved.
- FIG. 13 is a schematic diagram of the second type of heat conducting plate 13 provided by this application, and the parts in FIG. 13 with the same reference numerals as those in FIG. 4 or FIG. 5 can refer to the structure of the heat conducting plate shown in FIG. 11 description.
- the difference between the heat conducting plate 13 shown in FIG. 13 and FIG. 11 is that the liquid channel of the heat conducting plate 13 is different.
- a plurality of metal sheets 1352 are provided on the substrate 133, and the plurality of metal sheets 1352 are arranged at intervals to form a connected liquid channel (not shown in the figure).
- a protrusion can be provided on the heat conducting plate 13, and an S-shaped groove is provided in the protrusion as the liquid channel.
- FIG. 15 shows a schematic diagram of the structure of the pressing plate 11.
- the pressing plate 11 is used to be fixedly connected to the mounting base 12, refer to FIG. 15 and FIG. 16, which is a cross-sectional view along the line A-A in FIG.
- the pressure plate 11 is provided with a receiving groove 111 for accommodating a plurality of capillary structures (shown in a dashed frame in FIG. 15, and the dashed frame indicates that the accommodating cavity is the internal structure of the pressure plate 11 ).
- the base plate 133 of the heat conducting plate 13 is located in the accommodating cavity, and the capillary structure 1351 of the heat conducting plate 13 is located in the accommodating groove of the pressure plate 11, and the groove wall of the accommodating groove It is sealed with the substrate 133 by a sealing gasket 134, thereby forming a sealed cavity between the pressing plate 11 and the heat conducting plate 13, and the liquid channel (capillary structure 1351) of the heat conducting plate 13 is located in the sealed cavity.
- the sealed cavity is filled with liquid, so that the pressure plate 11 and the substrate 133 seal the capillary structure 1351, ensuring that the liquid filled in the liquid channel does not leak.
- the liquid can be common liquids such as water and oil.
- a coordinate system xyz is established for the aspect expression, in which the x-axis direction and the y-axis direction are respectively parallel to the two sides of the pressure plate, and the z-axis direction is perpendicular to the x-axis and y-axis directions.
- the connection manner of the liquid inlet connector 113 and the pressure plate 11 is the same as the connection manner of the liquid outlet connector 112 and the pressure plate 11.
- the liquid inlet connector 113 is taken as an example for description.
- the pressure plate 11 is provided with a boss 115 corresponding to the liquid inlet connector 113, the boss 115 has a mounting groove 1152, and the boss 115 has a through hole (not shown in the figure) communicating with the receiving groove of the pressure plate 11.
- the groove 1152 communicates.
- the liquid inlet connector 113 is an inverted L-shape.
- the liquid inlet connector 113 includes a horizontal part and a vertical part connected to the horizontal part. As shown in FIG. 17, the horizontal part is parallel to the x-axis direction, and the vertical part is parallel to the z-axis direction. .
- the horizontal part of the liquid inlet connector 113 includes a plurality of raised structures 1131 arranged along the length of the horizontal part.
- the raised structures 1131 are used for clamping the liquid inlet pipe.
- the raised structures 1131 locks the liquid inlet pipe on the liquid inlet joint 113.
- the vertical part of the liquid inlet connector 113 has a shoulder 1132.
- the shoulder 1132 is assembled in the installation groove 1152, the shoulder 1132 is directly inserted into the installation groove 1152, and the liquid inlet connector 113 is connected to the through hole in the installation groove 1152.
- the receiving grooves of the pressing plate 11 communicate with each other.
- a sealing ring 114 is provided between the liquid inlet joint 113 and the pressure plate 11, and the liquid inlet joint 113 and the pressure plate 11 are sealed by the sealing ring 114.
- the liquid inlet connector 113 When the liquid inlet connector 113 is connected to the pressure plate 11, the cavity in the liquid inlet connector 113 communicates with the containing groove through the through hole, and after the pressure plate 11 and the substrate are sealed to the liquid channel, the liquid inlet connector 113 communicates with the liquid channel. After the liquid outlet connector 112 is connected to the pressure plate 11, the liquid outlet connector 112 also communicates with the liquid channel.
- the shape of the pressing plate 11 matches the shape and size of the mounting base.
- the shape of the corresponding pressing plate 11 is also rectangular.
- the shape of the pressing plate 11 is the same. Matching shape.
- the liquid inlet connector 113 and the liquid outlet connector 112 are arranged diagonally, so that when the liquid inlet connector 113 and the liquid outlet connector 112 are in communication with the liquid channel, the liquid inlet connector 113 and the liquid outlet connector 112 can be connected to the liquid.
- the two ends of the channel are respectively connected, so that the liquid can flow a relatively long distance in the liquid channel, and the area of the device to be dissipated that the liquid medium can conduct is enlarged, thereby improving the heat dissipation effect of the chip when the liquid flows.
- the liquid inlet connector 113 and the liquid outlet connector 112 may also be located on the same side of the pressure plate 11.
- the specific setting method can be set correspondingly according to the setting method of the liquid channel. If the two ends of the liquid channel are on the same side, the liquid inlet connector 113 and the liquid outlet connector 112 are also on the same side. If the two ends of the liquid channel are arranged diagonally, the liquid inlet connector 113 and the liquid outlet connector 112 are also arranged diagonally.
- the mounting groove 1152 may adopt a cylindrical groove, and the corresponding shoulder 1132 also adopts a cylindrical structure, thereby realizing the rotation of the shoulder 1132 in the mounting groove 1152.
- a plurality of limiting protrusions 1151 are provided on the side wall of the installation groove 1152, and a plurality of limiting protrusions 1151 are provided on the shoulder 1132 to cooperate with each limiting protrusion 1151.
- Limit groove 1133 When the shoulder 1132 is inserted into the mounting groove 1152, the limiting protrusion 1151 and the limiting groove 1133 are matched in a one-to-one correspondence to limit the rotation of the shoulder 1132.
- the number of the limiting protrusions 1151 can be set according to needs, such as four, eight, or ten different numbers.
- the side wall of the mounting groove may have a plurality of limiting grooves, and the shoulder has a limiting protrusion that cooperates with each limiting groove.
- the mounting groove may be in the shape of a polyhedral prism, and the corresponding shoulder may also be in the shape of a matching polyhedral prism.
- the angles of the inlet connector 113 and the outlet connector 112 are selected, they can be fixed by the shoulder 1132 and the mounting groove 1152, avoiding equipment shock or other collisions causing the inlet connector 113 and the outlet connector 112 to be fixed.
- the angle change affects the circulating flow of the liquid in the liquid channel.
- both the liquid inlet connector 113 and the liquid outlet connector 112 can realize the rotation based on the pressure plate, that is, the orientation of the liquid inlet connector 113 and the liquid outlet connector 112 can be changed, and through the limiting protrusion 1151
- the limit groove 1133 ensures that the liquid inlet connector 113 and the liquid outlet connector 112 after rotation can be stably connected with the pressure plate.
- an x-y coordinate system is established, in which the x-axis direction is parallel to the long side of the pressure plate 11, and the y-axis direction is parallel to the short side of the pressure plate 11.
- the liquid inlet connector 113 is along the x-axis direction (taking the placement direction of the pressure plate 11 in FIG. 18 as the reference direction), and the liquid outlet connector 112 points obliquely upward and forms an angle of 60° with the x-axis direction.
- the shoulder is inserted into the installation groove again, and the limit groove on the shoulder cooperates with the limit protrusion in the installation groove to limit the liquid inlet connector 113 to be unable to rotate.
- the direction of the liquid inlet connector 113 is as shown in Fig. 19, the liquid outlet The joint 112 rotates to the Y-axis direction.
- the liquid outlet connector 112 rotates to the state of FIG. 20, and the liquid outlet connector 112 rotates to an angle of 120° with the x-axis direction.
- you need to adjust again in the direction shown by the arrow in Figure 20 repeat the above operation.
- the outlet connector 112 rotates to the state shown in Figure 21.
- FIG. 22 is a schematic structural diagram of a pressing plate and a pressing cover provided by this application.
- FIG. 22 reference may be made to the description of the structure of the pressing plate 11 shown in FIG. 17.
- the pressure cover 14 is used to fix the inlet connector 113 and the outlet connector 112 with the pressure plate 11.
- the pressure cover 14 is stacked on the side of the pressure plate 11 facing away from the containing groove 111, and the pressure cover 14 is provided with a through hole 141 that is matched with the liquid inlet connector 113 and the liquid outlet connector 112.
- the pressing cover 14 is used to be fixedly connected to the mounting base, and the fixed connection can be detached, and the pressing plate 14 can be pressed tightly on the heat conducting plate.
- the gland 14 and the mounting base are connected by threaded connectors (bolts or screws), and the pressure plate 11 is pressed against the mounting base. At the same time, the gland 14 also presses the liquid outlet connector and the liquid inlet connector on the pressure plate 11.
- the gland 14 When connecting, the threaded connection piece passes through the pressure cover 14, the pressure plate 11 and the mounting base in sequence, and the pressure cover 14 and the pressure plate 11 are fixed on the mounting base.
- the gland 14 can be removed first, and then the liquid inlet or outlet joints can be rotated to the required angle, and then the gland 14 can be fixedly connected to the mounting base. And press the liquid inlet joint and the liquid outlet joint on the pressure plate 11 tightly.
- the gland 14 may be made of materials with relatively strong rigidity such as stainless steel, iron, aluminum alloy, and the pressing plate 11 may be made of plastic or other materials with relatively low rigidity.
- the pressure cover 14 described above increases the pressure strength of the entire pressure plate 11 on the heat conducting plate and the mounting base.
- the pressure plate 11 and the pressure cover 14 can be used to jointly assume the role of fixing the heat conducting plate.
- the gland 14 can assist the pressure plate 11 to realize the fixing effect of the heat conducting plate and the mounting base, and prevent the liquid from the heat sink from flowing out and affect the heat dissipation effect of the heat sink.
- the liquid inlet connector 113 and the pressure plate can also be rotationally connected, and the liquid outlet connector 112 and the pressure plate can be rotationally connected, for example, the liquid inlet connector 113 and the pressure plate.
- the liquid outlet connector 112 is rotatably connected with the pressure plate 11. Specifically, it includes any of the following methods:
- the liquid inlet connector 113 and the pressure plate 11 can also be fixedly connected, and the liquid outlet connector 112 and the pressure plate 11 are rotationally connected.
- the inlet connector 113 is rotatably connected with the pressure plate 11, and the outlet connector 112 is fixedly connected with the pressure plate 11.
- the liquid inlet connector 113 is rotatably connected with the pressure plate 11, and the liquid outlet connector 112 is also rotatably connected with the pressure plate 11.
- the liquid inlet connector 113 and the liquid outlet connector 112 can also be directly connected to the pressure plate 11 in a snap-fit manner.
- a gland can be used to ensure that the liquid inlet connector 113 and the liquid outlet connector 112 are connected to the pressure plate 11 directly. Reliable connection.
- the pressing plate 11 has a certain strength. When the pressing plate 11 is fixedly connected to the mounting base, the pressing plate 11 must have sufficient rigidity to ensure the sealing effect between the pressing plate 11 and the substrate.
- the pressure plate 11 When the pressure plate 11 is connected to the installation base, the pressure plate 11 is connected to the installation base through a threaded connection (such as a bolt or a screw), such as a bolt or a screw.
- a threaded connection such as a bolt or a screw
- a waterproof sealing ring is sleeved on the threaded connection.
- the waterproof sealing ring seals the gap between the screw connection and the pressure plate, thereby improving the sealing effect.
- liquid inlet connector 113 and the liquid outlet connector 112 can also be fixedly connected to the pressure plate 11 respectively. At this time, the liquid inlet connector 113 and the liquid outlet connector 112 cannot rotate relative to the pressure plate 11.
- the liquid inlet connector 113, the liquid outlet connector 112, and the pressure plate 11 can be prepared and molded by an integrated manufacturing process, so as to ensure the tightness between the liquid inlet connector 113, the liquid outlet connector 112, and the pressure plate 11.
- the liquid circulates in the circulation loop, as shown by the arrow in Figure 23, the liquid flows in a clockwise direction.
- the cold liquid in the refrigeration device 50 is driven by the power device 70 into the liquid inlet pipe 51, and flows through the liquid inlet connector 113 into the sealed cavity of the heat sink 10, and the heat generated by the chip passes through the heat conducting plate Transfer to the liquid, the temperature of the liquid rises after absorbing heat, and the high-temperature liquid flows back to the refrigeration device 50 through the liquid outlet connector 112 and the liquid outlet pipe 52 for cooling, and the cooled liquid passes through the liquid inlet pipe 51 and the liquid inlet connector 113 again. It flows into the heat sink 10 to circulate heat to the chip.
- the power device 70 may be a plunger pump or other pumps, and the refrigeration device may be a condenser or other devices that can provide refrigeration.
- the power device 70 is arranged on the liquid inlet pipe 51, but it should be understood that the power device 70 in FIG. 23 is only an example, and the power device 70 may also be arranged on the liquid outlet pipe 52.
- FIG. 23 only illustrates the manner in which the refrigeration system is connected to one heat sink 10.
- the multiple heat sinks can be arranged in parallel or in series.
- the parallel arrangement is adopted, the liquid flowing out of the refrigeration device 50 flows into the multiple heat dissipation devices 10 at the same time; when the series arrangement is adopted, the liquid flowing out of the refrigeration device 50 flows through the multiple heat dissipation devices 10 in sequence.
- the heat conducting plates corresponding to the first chip and the second chip are respectively selected, and then the unified pressing plates are respectively assembled on the corresponding mounting bases.
- the first surface of the heat conducting plate is at least not smaller than the surface area of the second surface of the chip, wherein the first surface is the surface of the heat conducting plate for thermal contact with the chip, and the second surface is the surface of the chip for The surface that is thermally connected to the thermal conductive plate. That is, the area of the accommodating cavity should be at least not smaller than the second surface of the chip during use, so the area of the mounting seat should be larger than the area of the corresponding chip.
- adopting the modular standard requires only the heat-conducting plate to select different molds according to the corresponding needs of the chip, and the mounting base and the pressing plate can be prepared by a unified mold, which reduces the production difficulty of the heat dissipation device and reduces the preparation cost of the heat dissipation device.
- liquid inlet joint and the liquid outlet joint connected to the pressure plate can also be prepared as standard parts, which facilitates the connection with the pipeline of the refrigeration system.
- the device may be a server, a memory, a router, or a switch.
- the chip 20 is carried by the main board 30 of the device, and the heat dissipation device is detachably fixedly connected to the main board 30 carrying the chip 20.
- the heat sink 10 When the heat sink 10 is in use, you can refer to Figure 23.
- the equipment When the heat sink 10 is in use, the equipment has a refrigerating device 50 in use.
- the inlet pipe 51 of the refrigerating device 50 communicates with the inlet connector 113, and the outlet pipe 52 is connected to the outlet.
- the joint 112 is connected to form a circulation loop.
- the present application also provides a rack, as shown in Figs. 24 and 25, wherein Fig. 24 is a schematic diagram of the rack.
- Figure 25 is a schematic diagram of the connection between the heat sink and the refrigeration system.
- the device When in use, the device is assembled in the rack 60, and there may be multiple devices in the rack, or only one device, and the device may be a server, a storage device, a router, or a switch.
- storage devices include devices that store data such as storage arrays or backup devices.
- the rack is provided with a refrigeration system (not shown in the figure).
- the refrigeration system is connected with a liquid inlet pipe 61 and a liquid outlet pipe 62, the liquid inlet pipe 61 is connected with the liquid inlet joint of the heat sink 10, and the liquid outlet pipe 62 is connected with the heat sink The outlet connector is connected.
- the present application also provides a heat dissipation system.
- the structure of the heat dissipation system is similar to the structure of FIG. 23 or FIG. 24, and includes a heat dissipation device and a refrigeration system.
- the heat dissipation device has the structure shown in FIG.
- the power device and the refrigeration device for cooling the liquid, so that the refrigeration system and the heat dissipation device form a circulation loop.
- the liquid flows in a clockwise or counterclockwise direction, and the heat of the chip to be dissipated is conducted to the liquid through the flow of the liquid in the liquid channel.
- the refrigerating device cools the liquid by the refrigerating device, thereby realizing the heat dissipation of the chip to be dissipated.
- connection should be understood in a broad sense.
- “connected” can be a fixed connection, a detachable connection, or a whole; it can be a direct connection, or It can be connected indirectly through an intermediary.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
一种散热装置(10)、设备、机架(60)和系统,散热装置(10)主要包括导热板(13),导热板(13)的第一表面(121)设置有液体通道;安装底座(12),安装底座(12)设置有用于容纳导热板(13)中包括第二表面(126)在内的部分区域的容纳腔(122),第一表面(121)和第二表面(126)相对设置;压板(11),用于将导热板(13)固定于容纳腔(122)内;其中,压板(11)与安装底座(12)可拆卸的固定连接,压板(11)与导热板(13)的第一表面(121)之间形成密封腔,密封腔用于容纳液体通道,压板(11)上设置有与液体通道连通的进液接头(113)和出液接头(112)。在上述结构中,整个散热装置(10)采用模块化的标准的分体式结构,且压板(11)及安装底座(12)可以做成标准件,在对不同散热要求的芯片进行散热时,只需要根据需要选择对应的导热板(13)即可,安装底座(12)以及压板(11)还可以继续使用,提高了散热装置(10)的适应性。
Description
本申请涉及散热技术领域,尤其涉及到一种散热装置、设备、机架和系统。
随着信息技术(internet technology,IT)领域的快速发展,设备(例如,服务器和存储设备)中芯片的运算速度越来越快。而随着芯片处理能力的提升,其产生的热量也随之增加,传统设备多采用液冷散热的方式对芯片进行散热。
液冷散热的方式需要在芯片上安装液冷散热装置,通过散热装置内部循环流动的液体对芯片进行散热。在装配液体散热装置时,液体散热装置往往采用一个整体结构,通过浮动螺丝与芯片固定连接。但是,采用整体结构的散热装置,在针对不同规格的芯片进行散热时,需要根据每种芯片的规格作相应的适配,而且,还需要考虑芯片所在设备中器件布局情况,这就导致散热装置规格繁多。
发明内容
本申请提供了一种散热装置、设备、机架和系统,用以提高散热装置的适应性。
第一方面,提供了一种散热装置,该散热装置用于给芯片进行散热。该散热装置采用分体式结构,主要包括导热板、安装底座以及压板,并且安装底座、导热板以及压板呈三明治式的层叠方式设置,导热板位于安装底座与压板之间。其中,导热板包括相对设置的第一表面和第二表面,安装底座用于承载导热板,该安装底座上设置有用于容纳包括第二表面的导热板的部分区域的容纳腔,而导热板作为散热装置的主体结构,该导热板的第一表面设置有液体通道,用于液体的流通。该压板用于将导热板固定在安装底座的容纳腔内。压板与安装底座可拆卸的连接,压板与导热板的第一表面之间形成密封腔,该密封腔用于容纳液体通道。此外,压板上设置有与所述液体通道连通的进液接头和出液接头。在使用时,进液接头和出液接头分别连接外部管道。液体通过进液接头流入到液体通道中对芯片进行散热,之后通过出液接头流出到外部管道并形成一个循环。在上述结构中,整个散热装置采用模块化的标准的分体式结构,其中压板以及安装底座可以做成标准件,在对不同散热要求的芯片进行散热时,只需要根据需要选择对应的导热板即可,安装底座以及压板还可以继续使用;相比于整体式液体散热装置,不需要针对不同的芯片时需要选择不同的液体散热装置,通用性更强,提高了散热装置的适应性。此外,采用模块化的标准,降低了散热装置的生产难度,制作工艺更简单。
在一个可能的设计中,所述导热板包括用于卡装在所述容纳腔内的基板,以及固定设置在所述基板上的散热结构,且所述散热结构为所述液体通道。通过基板与容纳槽的配合,实现基板与容纳槽的相对固定。
在另一个可能的设计中,所述压板上设置有容纳所述散热结构的容纳槽。通过容纳槽盖合在液体通道上并对液体通道进行密封。
在另一个可能的设计中,所述散热结构可以为管道、沟槽或者毛细结构。即可以采用不同的结构形成液体通道。
在另一个可能的设计中,所述压板与所述基板通过密封垫密封连接。通过密封垫实现 压板与液体通道的密封。
在另一个可能的设计中,基板上设置有放置槽,所述密封垫设置在该放置槽中。
在另一个可能的设计中,安装底座的容纳腔内设置有第一限位凸起;所述基板上设置有与所述第一限位凸起卡合的第二限位凸起。通过第一限位凸起与第二限位凸起的配合使得压板可以将导热板压紧在安装底座上。安装底座采用框形中空结构,可以使得导热板直接通过导热胶或者其他导热介质与芯片连接,提高了导热板对芯片的热传递效果。
在另一个可能的设计中,所述基板上设置有第三限位凸起,所述第三限位凸起抵压在所述安装底座的表面。通过第三限位凸起与安装底座的配合使得压板可以将导热板压紧在安装底座上。
在另一个可能的设计中,所述散热装置还包括压盖,所述压盖与所述安装底座可拆卸的固定连接,并将所述压板压在所述导热板。
在另一个可能的设计中,所述压盖的刚度大于所述压板的刚度。通过压盖可以进一步固定压板和导热板之间的液体通道,避免散热装置中液体流出。另一方面,当液体通道中液体流动过快时,压板需要承担较大的作用力,容易造成压板膨胀,通过压盖的加固结构也可以辅助压盖承担一定作用,避免出现压板膨胀、液体流程等问题。
在另一个可能的设计中,所述进液接头和所述出液接头中至少一个与所述压板转动连接。在进液接头或出液接头转动设置时,可以调整进液接头与出液接头的连接方向,从而可以根据具体实施的需要调整进液接头和出液接口与外部管道连接的位置,降低散热器对空间的要求,提升散热器的适应性。
在另一个可能的设计中,所述进液接头和所述出液接头均与所述压板固定连接。
在另一个可能的设计中,进液接头及出液接头均为倒置的L形接头。
在另一个可能的设计中,所述进液接头和所述出液接头分别通过密封圈与所述压板密封连接,从而保证连接的密封性。
在另一个可能的设计中,所述压盖将所述出液接头及所述进液接头压紧在所述压板。通过压盖将所述出液接头及所述进液接头进行位置限定。
在另一个可能的设计中,所述压板上具有与所述进液接头及所述出液接头一一对应的凸台,每个凸台具有安装槽;所述进液接头或所述出液接头具有装配在所述安装槽内的凸肩,所述压盖将所述凸肩压紧在所述安装槽内。
在另一个可能的设计中,在所述压盖未将所述凸肩压紧在所述安装槽内时,所述凸肩可相对所述安装槽转动。
在另一个可能的设计中,所述安装槽的侧壁设置有多个限位凸起;且所述凸肩上设置有与每个限位凸起配合的限位凹槽;或,所述安装槽的侧壁设置有多个限位凹槽,且所述凸肩上设置有与每个限位凹槽配合的限位凸起。
在另一个可能的设计中,所述压板为矩形,所述进液接头和所述出液接头呈对角线设置。当然也可以采用进液接头和出液接头位于压板的同一侧。
在另一个可能的设计中,所述安装底座上设置有用于与芯片连接的浮动螺丝。保证与芯片连接时的足够压力。
在另一个可能的设计中,所述导热板的第二表面至少大于或等于待散热的芯片的表面积,其中,所述第二表面为所述芯片用于与所述导热板导热连接的表面。
在另一个可能的设计中,所述密封腔内填充有液体,所述液体在所述液体通道中流通。
在另一个可能的设计中,所述散热装置用于与制冷系统连接;所述制冷系统中冷的液体进入到散热装置的密封腔中,芯片产生的热量通过导热板传递到液体,液体吸收热量后温度升高,且高温的液体回流到所述制冷系统中进行冷却。
第二方面,提供了一种设备,该设备包括主板,设置在所述主板上的芯片,以及与所述主板固定连接并用于给所述芯片散热的上述任一项所述的散热装置。在上述结构中,整个散热装置采用模块化的标准的分体式结构,其中压板以及安装底座可以做成标准件,在对具有不同散热要求的芯片进行散热时,只需要根据需要选择对应的导热板即可,安装底座以及压板还可以继续使用;相比与现有技术中的整体式液体散热装置需要针对不同的芯片时需要选择不同的液体散热装置来说,提高了散热装置的适应性。此外,采用模块化的标准,降低了散热装置的生产难度,方便加工。
在一个可能的设计中,还包括制冷系统,所述制冷系统包括进液管以及出液管,所述进液管与所述进液接头密封连接,所述出液管与所述出液接头密封连接。通过制冷系统与散热装置的配合形成一个循环回路对芯片进行散热。
第三方面,提供了一种机架,所述机架内包括上述的散热装置,或上述的设备。
第四方面,提供一种系统,包括所述第一方面或第一方面任意一种可能的实现方式中所述的散热装置和制冷系统,所述制冷系统包括用于实现所述散热装置中液体通道中液体流动的动力装置和用于对所述散热装置中液体进行冷却的制冷装置。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
图1为本申请提供的一种设备的结构示意图;
图2为本申请提供的一种散热装置的结构示意图;
图3为本申请提供的一种散热装置的分解示意图;
图4为本申请提供的第一种安装底座的结构示意图;
图5为本申请提供的第一种安装底座与导热板的配合示意图;
图6为本申请提供的第二种安装底座的结构示意图;
图7为本申请提供的第二种安装底座与导热板的配合示意图;
图8为本申请提供的第三种安装底座的示意图;
图9为本申请提供的第三种安装底座与芯片配合时的剖视图;
图10为本申请提供的第一种导热板的结构示意图;
图11为本申请提供的第一种导热板的分解示意图;
图12为本申请提供的一种散热装置的剖视图;
图13为本申请提供的第二种导热板的结构示意图;
图14为本申请提供的第三种导热板的结构示意图;
图15为本申请提供的一种压板的结构示意图;
图16为图15中A-A处的剖视图;
图17为本申请提供的压板的分解示意图;
图18-图21为本申请提供的出液接头的转动示意图;
图22为本申请提供的压板与压盖的配合示意图;
图23为本申请提供的散热装置的应用示意图;
图24为本申请提供的机架的示意图;
图25为本申请提供的散热装置与制冷系统的连接示意图。
附图标记:
10-散热装置 11-压板 111-容纳槽 112-出液接头
113-进液接头 1131-凸起结构 1132-凸肩 1133-限位凹槽
114-密封圈 115-凸台 1151-限位凸起 1152-安装槽
12-安装底座 121-表面 122-容纳腔 123-限位凸起
124-装配孔 125-安装孔 126-表面 13-导热板
131-限位凸起 132-限位凸起 133-基板 1331-放置槽
134-密封垫 135-散热结构 1351-毛细结构 1352-金属片
1353-管道 136-表面 137-表面 14-压盖
141-通孔 20-芯片 30-主板 40-连接件
50-制冷装置 51-进液管 52-出液管 60-机架
61-进液管 62-出液管 70-动力装置
为了方便理解,首先,说明本申请提供的散热装置的应用场景。
本申请提供的散热装置用于给设备中的芯片进行散热。该设备可以为服务器、存储设备、路由器或交换机等。其中,存储设备包括存储阵列或备份设备等存储数据的设备。图1为本申请提供的一种设备的结构示意图,如图所示,该设备包括散热装置10、芯片20、主板30和连接件40。设备的装配过程中,芯片20通过设备的主板30(也可以称为印刷电路板(print circuit board,PCB)承载,散热装置10与承载芯片20的主板30通过连接件40固定连接,该固定连接可拆卸。
应当理解的是,上述通过主板30承载芯片仅仅为一个示例,该芯片20还可以通过设备的其他部分承载,本申请对此不作限定。
散热装置10可以对芯片20进行散热。散热装置的有效散热面的面积可以大于或等于待散热的芯片与散热装置接触的表面的面积,以保证对待散热芯片的有效散热。其中,散热装置的有效散热面是指散热装置中用于与待散热芯片连接的表面的面积,该部分用于将待散热芯片产生的热量传导至散热装置10,再由散热装置10将热量传导至设备外部,实现对芯片的散热功能。图1所示的散热装置10可以仅对一个芯片20进行散热,也可以同时对多个芯片20进行散热。
可选地,当同一个散热装置对多个芯片进行散热时,为保证对多个芯片的有效散热,散热装置的有效散热面的面积可以大于或等于所有待散热的芯片与散热装置接触的表面的面积。为便于描述,本申请的以下实施例中,以图1所示的同一个散热装置仅对一个芯片进行散热为例进行说明。
图2为本申请提供的一种散热装置的结构示意图,图3为本申请提供的一种散热装置的分解示意图。如图2及图3所示,散热装置主要包括安装底座12、导热板13以及压板11。其中,安装底座12用于通过图1中的连接件40与主板30固定,而导热板13用于对 芯片20导热,压板11用于将导热板13固定在安装底座12上。在组装时,安装底座12、导热板13和压板11以类似三明治的形式层叠设置,导热板13位于安装底座12与压板11之间。压板11与安装底座12之间采用可拆卸的连接方式,如图3中所示的压板11与安装底座12通过螺纹连接件14(如螺栓或螺钉)将导热板13压紧在安装底座12。其中,压板11可以采用铝、铁、钢、合金等金属材料制备而成,或者也可以采用塑料或者塑胶材料制备而成。压板11的尺寸与导热板13相适配,压板11的面积可以大于或等于导热板13的面积,以此保证压板11具有足够的尺寸覆盖在导热板13表面。
参考图4及图5,图4为本申请提供的第一种安装底座的结构示意图,图5为本申请提供的一种安装底座与导热板组合时的剖视图,图5为沿图2中所示的压板、导热板及安装底座的层叠方向切开安装底座的剖视图。安装底座12为一个中空的框形结构,该框形结构具有相对的两个表面:表面121和表面126;其中,表面121为用于贴合导热板的表面,表面126为用于与芯片连接的表面。为方便描述,也可以将表面121称为第一表面,将表面126称为第二表面。参考图4,安装底座12作为散热装置与芯片配合的连接结构,安装底座12的边沿设置有多个安装孔125,在将散热装置固定在芯片上时,通过穿设在安装孔125的螺纹连接件(螺栓或螺钉)与承载芯片的主板连接,该连接结构可以拆卸。在图4所示的安装底座12中,安装孔125的个数为四个,且四个安装孔125位于框形边角区域。另外,安装底座12上还设置有多个装配孔124,装配孔124用于使螺纹连接件(螺栓或螺钉)穿设于装配孔,实现固定压板的效果,且多个装配孔124环绕安装底座12的中空部分设置。图4仅示出了一种安装孔125及装配孔124的排布方式,具体实施时,安装孔125及装配孔124的个数不构成对本申请的限定,可以根据实际的安装需要在安装底座12上设置安装孔125及装配孔124的个数以及位置。
参考图4,安装底座12的中空部分为放置导热板的容纳腔122,其中,安装底座12的中空部分是指在安装底座12的中心点为准的区域内形成一个孔,该区域的横截面可以为长方形、正方形、圆形或其他形状,具体形状与导热板中放置在容纳腔的部分的形状相匹配。中心点是指安装底座中心的位置,示例地,当安装底座12为长方形结构时,中心点为对角线的交点。参考图5,在装配导热板13时,将导热板13部分插入到图4所示的容纳腔122中,如图5中所示,一并说明一下导热板13的结构,该导热板13包括基板133及设置在基板上的散热结构135,其中基板133插入到容纳腔内。在具体配合时,如图5中所示,容纳腔122内设置有限位凸起123,限位凸起123绕容纳腔122的内壁环绕一圈设置,其设置位置靠近安装底座12的表面126。导热板13的基板133具有与限位凸起123卡合的限位凸起131。其中,安装底座12中的限位凸起123也可以称为第一限位凸起,导热板13的限位凸起126也可以称为第二限位凸起。容纳腔122的体积可以大于或等于导热板13插入部分的体积,以保证底座12和导热板13可以顺利组合。
在导热板13插入到容纳腔122内时,限位凸起131与限位凸起123接触并限定了导热板13的插入深度,使得导热板13中与待散热芯片连接的表面136外露在安装底座12的表面121。其中,导热板13的表面136即为上述内容中描述的散热装置的有效散热面积,为方面描述,可将其称为第二表面,且第二表面的面积至少大于或等于待散热的芯片的表面积。在导热板和安装底座装配完成后,导热板13的表面136与安装底座12的表面126可以位于同一水平面,使得导热板13可以直接通过导热胶或者其他导热介质与芯片连接。
可选地,图5中限位凸起123仅为一个示例,还可以采用设置多个限位凸起123的结 构,多个限位凸起123间隔排列环绕容纳槽的侧壁方式设置,或者还可以采用其他的限位结构限定导热板的插入深度。
作为一种可能的实施例,图6示出了本申请提供的第二种安装底座的结构,图6所示的安装底座中与图4或图5具有相同的标号的部分可以参考图4或图5。如图6所示,安装底座12采用框形结构,与图4所示的安装底座12的区别在于图6中所示的框形结构的容纳腔122中没有限位凸起,而是在导热板13上设置限位结构。如图7所示,图7示出了安装底座12与导热板13配合时的剖视图,图7为沿图2中所示的压板、导热板及安装底座的层叠方向切开安装底座的剖视图;图7中与图5相同标号的部分可以参考图5的描述。导热板12上设置有限位凸起132,通过该限位凸起132抵压在安装底座的表面121限定导热板的插入深度。为了便于描述,以及区分图7所示的限位凸起132和图4至图5中所述的第一限位凸起和第二限位凸起,限位凸起132也可以称为第三限位凸起。在装配时,导热板13的基板133插入到容纳腔122中,并且导热板13通过限位凸起132限定导热板13的插入安装底座12的深度。装配完成后,导热板13中与待散热芯片连接的表面136与安装底座12的表面126可以位于同一水平面或接近同一水平面,并且导热板13可直接与芯片导热连接。
可选地,容纳腔122的边缘还可以设置密封垫,用于实现与导热板13的限位凸起132的进一步密封固定。
作为另一种可能的实施例,图8为本申请提供的第三种安装底座的结构示意图,图9为本申请提供的第三种安装底座与芯片配合时的剖视图,图9为沿图2中所示的压板、导热板及安装底座的层叠方向切开安装底座的剖视图;图9中与图5相同标号的部分可以参考图5的描述。第三种安装底座与第一种和第二种安装底座的区别在于,第一种和第二种安装底座的容纳腔为中空的框形结构,而第三种安装底座为凹槽结构,也就是说第三种安装底座的凹槽底部的厚度为第一值,第一值可以根据具体需求设置,以保证导热板可以通过该凹槽底部传导芯片的热量,进而对芯片进行有效散热。具体地,该安装底座12为一个板状结构,安装底座12具有相对的表面121及表面126,其中,表面121为用于贴合导热板13的表面,表面126为与芯片20连接的表面。表面121设置有凹槽,该凹槽的中空部分形成容纳导热板13的容纳腔122。在装配时,将导热板13固定在凹槽内,且在导热板13插入到凹槽内时,导热板13与凹槽的底壁连接。在散热装置与芯片组合时,芯片产生的热量传递到安装底座12的底壁上,之后再通过安装底座12的底壁传导至导热板13。
通过上述图4、图6及图8可知,本申请提供的安装底座可以采用不同的结构形式来实现,只需要安装底座具有容纳导热板的容纳腔即可,安装底座上的具体的容纳腔的结构以及安装底座与导热板之间的配合关系可以根据业务需要设置。
上文结合图2至9描述了本申请提供的安装底座的结构,接下来,结合图10至图21进一步介绍本申请实施例提供的导热板的结构。
本申请提供的导热板作为散热装置的主要部件,具有相对的第一表面及第二表面,其中,导热板的第一表面设置有液体通道,导热板的第二表面用于与芯片连接。在具体实施时,如图5所示,该导热板13包括基板133以及固定设置在基板上的散热结构135,散热结构135可以为液体通道、毛细结构或者管道等不同的结构。第一表面及第二表面为基板13两个相对的表面136及表面137。基板133的厚度可以根据具体实施时的需求设置,本申请对此不作限制,为了提升热量传导效果可以将基板尽量作薄。
如图10所示,图10为本申请提供的一种导热板的结构示意图。如图所示,导热板13的基板133可以全部或部分卡装在安装底座12的容纳腔122内。此外,导热板13卡装在容纳腔122中的部分的形状及结构与安装底座12的容纳腔的形状及结构相吻合。当安装底座12采用如图4、图6或图8等不同结构形式的安装底座12时,基板133可以采用对应的结构与安装底座12进行适配。为便于描述,以安装底座12采用如图4所示的结构为例,参考图5及图10,图10为本申请提供的第一种导热板的结构示意图。图5中示出了第一种导热板沿图2中压板、导热板及安装底座的层叠方向切割导热板的剖视图。首先参考图10,导热板13上的基板133采用矩形的板状结构,一并参考图5,基板133具有相对的表面136及表面137。为了便于描述,也可以将表面136称为导热板13的第二表面,表面137为导热板13的第一表面。继续参考图5,基板133的侧壁对应设置上述的限位凸起131。在基板133插入到容纳腔122内时,基板133的表面136外露在安装底座12外作为与芯片的接触面;限位凸起123与限位凸起131接触以限定导热板13插入到安装底座12内的位置。在安装底座12采用其他的结构形式时,导热板13的基板133可以相对设置相应的结构,使得基板133适配安装底座12的容纳腔即可。
参考图10,导热板13的散热结构135可以为毛细结构1351,毛细结构1351内部具有连通的多个孔,多个孔用于形成液体流通的液体通道。在导热板13与安装底座12配合时,导热板13的毛细结构1351位于导热板13的表面137,并位于安装底座12的上方,所谓的“上方”指以图5中所示的导热板13的放置方向为参考方向。继续参考图10,图10所示的毛细结构1351采用多孔结构,例如,采用金属粉或金属网烧结形成的多孔结构。在采用金属网形成毛细结构1351时,该金属网是通过金属丝编织而成,具有多孔结构,通过单层或多层网与基板133焊接在一起,形成相通的液体通道(图中未示出)。在采用金属粉烧结毛细结构1351时,金属粉被烧结为球形的颗粒状结构,球形的颗粒状结构之间形成间隙,且该间隙连通形成液体通道。但是无论采用金属粉或者金属网来制备毛细结构1351,该金属粉或者金属网均采用具有良好导热效果的金属、合金或其它高导热性能材质,如铜、铝或铁等不同的金属。
在导热板采用上述结构时,压板可以将导热板上的液体通道密封,避免液体外露。参考图10及图11,图11为本申请提供的一种导热板的分解示意图。基板133上设置有放置槽1331,该放置槽1331用于设置密封垫134,在设置放置槽1331时,放置槽1331环绕毛细结构1351,密封垫134设置在该放置槽1331中,并且在压板与导热板12接触时,通过密封垫134使得压板与导热板12密封。
图12为本申请提供的一种散热装置的剖视图,其中,图12为沿图2中压板、导热板及安装底座层叠的方向剖开的示意图。如图所示,在压板11盖合在安装底座12上时,压板11与基板133通过密封垫134密封连接,并将毛细结构1351密封在基板133与压板11围成的密封腔内。可选地,也可以在压板11上设置放置槽,将密封垫134固定在压板11的放置槽中,同样可以实现压板11与基板133之间的密封连接。
作为一个可能的实施例,图13为本申请提供的第二种导热板13的示意图,其中图13中与图4或图5具有相同标号的部分可以参考图11中所示的导热板结构的描述。图13与图11所示的导热板13的区别在于导热板13的液体通道不同。如图13所示,基板133上设置有多个金属片1352,且多个金属片1352之间间隔排列,形成连通的液体通道(图中未标示)。在导热板13与安装底座12及压板配合时,可以参考图12所示的示例的描述。 当然作为一种具体的可实施方案,还可采用在导热板13上设置一个凸起,在凸起内设置S形的沟槽作为液体通道。
作为另一个可能的实施例,图14为本申请提供的第三种导热板13,其中图14中与图11具有相同标号的部分可以参考图11所示的导热板结构的描述。图14所示的导热板13与图11所示的导热板13的区别在于导热板13的液体通道结构不同。如图14所示,导热板13的基板133上设置有S形的管道1353,管道1353形成液体通道。在导热板13与安装底座12及压板配合时,可以参考图12所示的示例的描述。
值得说明的是,上述导热板的不同液体通道的结构可以根据业务需求,和安装底座的各种实现方式组合使用,本申请对比不作限定。
参考图12及图15,图15示出了压板11的结构示意图。该压板11用于与安装底座12固定连接,参考图15及图16,图16为图15中沿A-A处的剖视图。该压板11上设置有容纳多个毛细结构的容纳槽111(在图15中以虚线框示出,该虚线框表示容纳腔为压板11的内部结构)。在压板11与安装底座固定连接时,如图12中所示,导热板13的基板133位于容纳腔内,而导热板13的毛细结构1351位于压板11的容纳槽内,且容纳槽的槽壁与基板133之间通过密封垫134密封,从而在压板11与导热板13之间形成密封腔,导热板13的液体通道(毛细结构1351)位于密封腔内。且该密封腔内填充有液体,从而使得压板11与基板133将毛细结构1351密封,保证填充在液体通道中的液体不会出现泄漏。其中该液体可以为水、油等常见的液体。
参考图15及图17,图17为图15所示的压板的分解示意图。该压板11上设置有与液体通道连通的进液接头113及出液接头112,其中进液接头113及出液接头112用于连接外部管道。
参考图17,为方面表述,建立了坐标系xyz,其中,x轴方向与y轴方向分别平行于压板的两个侧边,z轴方向垂直于x轴及y轴方向。如图17所示,进液接头113与压板11的连接方式,与出液接头112与压板11的连接方式相同,为了简洁,接下来以进液接头113为例进行说明。压板11上设置有与进液接头113对应的凸台115,凸台115具有安装槽1152,凸台115具有连通压板11的容纳槽连通的通孔(图中未标示),该通孔与安装槽1152连通。进液接头113为倒置的L形,该进液接头113包括水平部分以及与水平部分连接的竖直部分,如图17所示,水平部分平行于x轴方向,竖直部分平行于z轴方向。进液接头113的水平部分包括多个沿水平部分长度方向排列的凸起结构1131,该凸起结构1131用于卡装进液管,在进液管与进液接头113连接时,通过凸起结构1131将进液管锁紧在进液接头113上。进液接头113的竖直部分具有凸肩1132,在凸肩1132装配在安装槽1152内时,凸肩1132直接插入到安装槽1152中,且进液接头113通过安装槽1152内的通孔与压板11的容纳槽连通。进液接头113与压板11之间具有密封圈114,通过密封圈114将进液接头113与压板11密封。在进液接头113与压板11连接时,进液接头113内的腔体通过通孔与容纳槽连通,且在将压板11与基板将液体通道密封后,进液接头113与该液体通道连通。在出液接头112与压板11连接后,出液接头112也与液体通道连通。
在图15中,压板11的形状与安装底座的形状及大小相匹配,在安装底座为矩形时,对应的压板11的形状也为矩形,在安装底座采用其他形状时,压板11的形状为相匹配的形状。以图11为例,进液接头113和出液接头112呈对角线设置,使得在进液接头113及出液接头112与液体通道连通时,进液接头113及出液接头112可以与液体通道的两端 分别连通,使得液体能够在液体通道中流经比较长的距离,扩大液体介质能够传导的待散热装置件的面积,进而提高液体在流动时对芯片的散热效果。
可选地,除了图15中所示的方式外,进液接头113和出液接头112也可以位于压板11的同一侧。具体的设置方式可以根据液体通道的设置方式来对应进行设置。如果液体通道的两端位于同一侧,则进液接头113和出液接头112也位于同一侧。如果液体通道的两端呈对角线设置,则进液接头113和出液接头112也呈对角线设置。
参考图17,安装槽1152可以采用圆柱形的凹槽,对应的凸肩1132也采用圆柱形结构,由此实现凸肩1132在安装槽1152中转动。可选地,为了限定凸肩1132在安装槽1152内的转动,在安装槽1152的侧壁具有多个限位凸起1151,并在凸肩1132上具有与每个限位凸起1151配合的限位凹槽1133。在凸肩1132插入到安装槽1152内时,限位凸起1151与限位凹槽1133之间一一对应配合,限定了凸肩1132的转动。其中,限位凸起1151的个数可以根据需要设定,如四个、八个或十个等不同的个数。可选地,除了图17所示的限位方式外,还可以采用安装槽的侧壁具有多个限位凹槽,且凸肩上具有与每个限位凹槽配合的限位凸起。或者也可以采用安装槽采用多面棱柱的形状,对应的凸肩也采用配合的多面棱柱的形状。通过所述结构,在选定进液接头113和出液接头112的角度后,可以通过凸肩1132和安装槽1152实现固定,避免设备震荡或其他碰撞导致进液接头113和出液接头112的角度变更影响液体通道中液体的循环流动。
在采用图17所示的结构时,进液接头113和出液接头112均可以实现基于压板的转动,即进液接头113及出液接头112的朝向均可以改变,并且通过限位凸起1151与限位凹槽1133保证了转动后的进液接头113和出液接头112能够与压板稳定的连接。一并参考图18-图21中所示,其中图18-图21示出了进液接头113以及出液接头112转动到不同状态时的示意图。首先参考图18,为方便描述,建立x-y坐标系,其中x轴方向平行于压板11的长侧边,y轴方向平行于压板11的短侧边。进液接头113沿x轴方向(以图18中压板11的放置方向为参考方向),出液接头112指向斜向上的方向,且与x轴方向成60°夹角。在需要调整出液接头112的朝向时,首先,将出液接头112的凸肩从安装槽中取出,然后将进液接头113沿图18中箭头指示的方向转动出,将进液接头113的凸肩再次插入到安装槽中,凸肩上的限位凹槽与安装槽内的限位凸起配合限定进液接头113无法转动,进液接头113的指向如图19中所示,出液接头112转动到Y轴方向。当需要沿图19中箭头指示方向再次调整时重复上述操作,出液接头112转动到图20状态,此时出液接头112转动到与x轴方向呈120°夹角。当需要沿图20箭头所示的方向再次调整时重复上述操作,出液接头112转动到图21所示状态,此时出液接头112转动到x轴方向,且出液接头112与进液接头113的指向相反。通过图18-图21所示的过程可以看出,出液接头112可以根据需要转动到不同的角度,在与制冷系统的出液管连通时,可以根据出液管的设置位置调整出液接头112的位置,方便了出液接头112与制冷系统连接。进液接头113的转动方式可以参考上述出液接头112的转动,在此不再赘述。
作为一个可能的实施例,在图18-图21的结构基础上,还可以通过压盖进一步固定上述散热装置,图22为本申请提供的一种压板与压盖的结构示意图。其中图22中与图17具有相同标号的部分可以参考图17所示的压板11的结构的描述。如图所示,在进液接头113与出液接头112采用上述方式与压板11连接时,采用压盖14将进液接头113及出液接头112与压板11固定。压盖14层叠设置在压板11背离容纳槽111的一面,并且压盖 14上设置有与进液接头113及出液接头112配合的通孔141。该压盖14用于与安装底座固定连接,该固定连接可以拆卸,并实现将压板14压紧在导热板上。如压盖14与安装底座之间通过螺纹连接件(螺栓或者螺钉)连接,并将压板11压紧在安装底座上。同时压盖14也将出液接头及进液接头压紧在压板11。在连接时,螺纹连接件依次穿过压盖14、压板11以及安装底座,并将压盖14及压板11固定在安装底座上。在调整上述的进液接头及出液接头的角度时,可以先将压盖14取下,之后转动进液接头或出液接头到所需的角度,再将压盖14与安装底座固定连接,并将进液接头及出液接头压紧在压板11上。可选地,压盖14可以采用不锈钢、铁、铝合金等刚度比较强的材质制备而成,而压板11可以采用塑料或者其他刚性比较低的材质制备而成。上述压盖14增强了整个压板11对导热板和安装底座的压力强度,当导热板中液体流动过程中,可以利用压板11和压盖14共同承担固定导热板的作用。另一方面,当设备出现跌落或设备倒置的情况,压盖14可以辅助压板11实现对导热板和安装底座的固定效果,避免散热装置中液体流出,影响散热装置的散热效果。
上述图17及图22仅为本申请提供的一种压板的示例,具体实施中还可以采用进液接头113和压板转动连接,以及出液接头112和压板转动连接,例如,进液接头113和/或出液接头112与压板11转动连接。具体包括以下几种方式中任意一种:
方式1,进液接头113与压板11还可以采用固定连接的方式,出液接头112与压板11转动连接。
方式2,进液接头113与压板11转动连接,出液接头112与压板11固定连接。
方式3,进液接头113与压板11转动连接,出液接头112也与压板11转动连接。
可选地,进液接头113及出液接头112还可以采用卡接的方式直接与压板11转动连接,此时无需采用压盖也可以保证进液接头113及出液接头112与压板11之间的可靠连接。但是在采用此种结构时,该压板11具有一定的强度,在压板11与安装底座固定连接时,压板11必须有足够的刚度保证压板11与基板之间的密封效果。
在压板11与安装底座连接时,压板11通过螺纹连接件(如螺栓或螺钉)与安装底座连接,如螺栓或者螺钉。此外,螺纹连接件上套装有防水密封圈。在压板11以及安装底座通过螺纹连接件连接时,该防水密封圈密封螺纹连接件与压板之间的间隙,提高了密封效果。
此外,进液接头113及出液接头112还可以分别与压板11固定连接,此时进液接头113及出液接头112均不可相对压板11转动。在具体制备时,可以采用一体成型的制备工艺将进液接头113、出液接头112及压板11制备成型,保证了进液接头113、出液接头112及压板11之间的密封性。
上述液体散热装置可以应用在设备中,设备中散热装置与制冷系统的连接方式如图23所示。其中,制冷系统包括用于实现液体通道中液体流动的动力装置70,以及用于对液体进行冷却的制冷装置50。如图23所示,制冷装置50的出液口连接了进液管51,进液管51与进液接头113密封连接,出液管52与出液接头112密封连接,且出液管52与制冷装置50的进液口连通,从而形成一个液体循环回路。在散热过程中,液体在循环回路中流通,如图23中的箭头所示,液体沿顺时针方向流动。且在流动的过程中,制冷装置50中冷的液体通过动力装置70驱动进入到进液管51,并流经进液接头113进入到散热装置10的密封腔中,芯片产生的热量通过导热板传递到液体,液体吸收热量后温度升高,且高温 的液体通过出液接头112及出液管52回流到制冷装置50中进行冷却,冷却后的液体再次通过进液管51和进液接头113流入到散热装置10,从而给芯片进行循环散热。其中,动力装置70可以为柱塞泵或者其他泵,制冷装置可以为冷凝器或者其他可以提供制冷的装置。此外在图23中,将动力装置70设置在了进液管51上,但是应当理解的是图23中的动力装置70仅仅为一个示例,也可以将动力装置70设置在出液管52上。
图23中仅示例出了制冷系统与一个散热装置10连接的方式,在散热装置为多个时,多个散热装置可并联设置,或者串联设置。在采用并联设置时,制冷装置50中流出的液体同时流入到多个散热装置10中;在采用串联设置时,制冷装置50中流出的液体依次流经多个散热装置10。
通过上述描述可以看出,在本申请实施例提供的散热装置采用三明治的方式层叠设置。且其中的安装底座、压板可以设置成标准件,对于不同散热要求的芯片,可以只需更换导热板即可。如在同一设备中具有第一芯片及第二芯片,其中第一芯片及第二芯片的散热要求不同。在装配时,可以将安装底座分别固定在第一芯片及第二芯片上,并且使得安装底座中间的腔体朝向第一芯片或第二芯片。根据散热要求分别选择与第一芯片及第二芯片对应的导热板,之后再将统一的压板分别装配到对应的安装底座上。在上述装配时,可选地,导热板的第一表面至少不小于芯片的第二表面的表面积,其中,第一表面为导热板用于与芯片导热接触的表面,第二表面为芯片用于与导热板导热连接的表面。即在使用时容纳腔的面积应该至少不小于芯片的第二表面,因此设置的安装座的面积要大于对应的芯片的面积。由上述描述可以看出,对于不同散热要求的芯片来说,其对应的散热装置之间的唯一区别在与安装底座与压板之间的导热板不同。因此,采用本申请实施例提供的散热装置可以适用于具有不同散热要求的芯片,只需要根据散热要求采用对应的导热板即可,无需将整个散热装置整体更换。相比于整体式液体散热装置,不需要针对不同的芯片选择不同的液体散热装置,提高了散热装置的适应性。并且本申请提供的散热装置在维修时,也仅仅需要更换导热板即可,安装底座以及压板可以继续使用,降低了维修的成本。
此外,采用模块化的标准,只需要导热板根据芯片的对应需要选择不同的模具,而安装底座以及压板可以采用统一的模具制备,降低了散热装置的生产难度,降低了散热装置的制备成本。
另外,对于压板上连接的进液接头以及出液接头也可以制备成标准件,方便了跟制冷系统的管道连接。
本申请提供了一种设备,如图1所示,该设备可以为服务器、存储器、路由器或交换机等。如图1所示,芯片20通过设备的主板30承载,散热装置与承载芯片20的主板30可拆卸的固定连接。在散热装置10使用时,可以参考图23,在散热装置10使用时,使用时设备具有制冷装置50,制冷装置50中的进液管51与进液接头113连通,出液管52与出液接头112连通,从而形成一个循环回路。在使用时,液体在循环回路中流通,如图23中的箭头所示,液体沿顺时针方向流动。且在流动的过程中,制冷装置50中冷的液体通过进液管51及进液接头113进入到散热装置10的密封腔中,芯片产生的热量通过导热板传递到液体,液体吸收热量后温度升高,且高温的液体通过出液接头112及出液管52回流到制冷装置50中进行冷却,冷却后的液体再次通过进液管51和进液接头113流入到散热装置10,从而给芯片进行循环散热。
作为一种可能的实施例,本申请还提供了一种机架,如图24及图25所示,其中,图 24为机架的示意图。
图25为散热装置与制冷系统的连接示意图。在使用时,设备装配在机架60中,且机架中可以有多个设备,也可以仅包含一个设备,该设备可以为服务器、存储设备、路由器或交换机。其中,存储设备包括存储阵列或备份设备等存储数据的设备。其中机架中设置有制冷系统(图中未示出)制冷系统连接有进液管61及出液管62,进液管61与散热装置10的进液接头连接,出液管62与散热装置的出液接头连接。可选地,该制冷系统还包括实现液体通道中液体流动的动力装置(例如,泵)和用于对液体进行冷却的制冷装置,从而使得制冷系统与散热装置形成一个循环回路,液体沿顺时针或逆时针方向流动。且在流动的过程中,制冷装置中冷的液体通过进液管61及进液接头进入到散热装置10的密封腔中,芯片产生的热量通过导热板传递到液体,液体吸收热量后温度升高,且高温的液体通过出液接头及出液管62回流到制冷装置中进行冷却,冷却后的液体再次通过进液管61和进液接头113流入到散热装置10,从而给芯片进行循环散热。
本申请还提供一种散热系统,该散热系统的结构类似图23或图24的结构,包括散热装置和制冷系统,该散热装置如图1所示的结构,制冷系统包括液体通道中液体流动的动力装置和用于对液体进行冷却的制冷装置,从而使得制冷系统与散热装置形成一个循环回路,液体沿顺时针或逆时针方向流动,将待散热芯片的热量通过液体通道中液体的流动传导至制冷装置,由制冷装置对液体进行冷却,进而实现对待散热芯片的散热。
本申请中提到的第一表面和第一限位凸起中的“第一”只是用来做名字标识,并不代表顺序上的第一。该规则同样适用于“第二”和“第三”等。
本申请中术语“和/或”用于描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (22)
- 一种散热装置,其特征在于,包括:导热板,所述导热板包括相对的第一表面和第二表面,所述第一表面设置有液体通道;安装底座,所述安装底座设置有用于容纳所述导热板中包括所述第二表面在内的部分区域的容纳腔;压板,用于将所述导热板固定于所述容纳腔内;所述压板与所述安装底座之间具有可拆卸的固定连接,所述压板与所述导热板的所述第一表面之间形成密封腔,所述密封腔用于容纳所述液体通道,所述压板上设置有与所述液体通道连通的进液接头和出液接头。
- 根据权利要求1所述的散热装置,其特征在于,所述导热板包括用于卡装在所述容纳腔内的基板,以及固定设置在所述基板上的散热结构,所述散热结构为所述液体通道。
- 根据权利要求2所述的散热装置,其特征在于,所述安装底座的容纳腔内设置有第一限位凸起;所述基板上设置有与所述第二限位凸起卡合的第一限位凸起。
- 根据权利要求2所述的散热装置,其特征在于,所述基板上设置有限位凸起,所述限位凸起抵压在所述安装底座的表面。
- 根据权利要求1至4中任一所述的散热装置,其特征在于,所述压板与所述基板通过密封垫密封连接。
- 根据权利要求1~5中任一项所述的散热装置,其特征在于,还包括压盖,所述压盖与所述安装底座之间可拆卸的固定连接,并将所述压板压在所述导热板。
- 根据权利要求1~6中任一所述的散热装置,其特征在于,所述进液接头和所述出液接头中至少一个与所述压板转动连接。
- 根据权利要求1~7中任一所述的散热装置,其特征在于,所述压板上设置有容纳所述散热结构的容纳槽。
- 根据权利要求1~8中任一所述的散热装置,其特征在于,所述压盖将所述出液接头及所述进液接头压紧在所述压板。
- 根据权利要求9所述的散热装置,其特征在于,所述压板上设置有与所述进液接头及所述出液接头一一对应的凸台,每个凸台具有安装槽;所述进液接头或所述出液接头具有装配在所述安装槽内的凸肩,所述压盖将所述凸肩压紧在所述安装槽内。
- 根据权利要求10所述的散热装置,其特征在于,在所述压盖未将所述凸肩压紧在所述安装槽内时,所述凸肩可相对所述安装槽转动。
- 根据权利要求11所述的散热装置,其特征在于,所述安装槽的侧壁具有多个限位凸起;且所述凸肩上具有与每个限位凸起配合的限位凹槽;或,所述安装槽的侧壁具有多个限位凹槽,且所述凸肩上具有与每个限位凹槽配合的限位凸起。
- 根据权利要求1-12任一项所述的散热装置,其特征在于,所述压板为矩形,所述进液接头和所述出液接头呈对角线设置。
- 根据权利要求1-13任一项所述的散热装置,其特征在于,所述安装底座上设置有用于与芯片连接的浮动螺丝。
- 根据权利要求1-14任一项所述的散热装置,其特征在于,所述导热板的第二表面的面积大于或等于待散热的芯片的表面积,其中,所述第二表面为所述导热板用于与所述 芯片导热的表面。
- 根据权利要求1-15任一项所述的散热装置,其特征在于,所述密封腔内填充有液体,所述液体在所述液体通道中流通。
- 根据权利要求1-16任一项所述的散热装置,其特征在于,所述散热装置与制冷系统连接;所述制冷系统中冷的液体进入到所述散热装置的密封腔中,芯片产生的热量通过所述导热板传递到所述液体,所述液体吸收热量后回流到所述制冷系统中进行冷却。
- 根据权利要求1-17任一所述的散热装置,其特征在于,所述压盖的刚度大于所述压板的刚度。
- 一种设备,其特征在于,包括:主板;安装在在所述主板上的芯片;以及与所述主板固定连接并用于给所述芯片散热的如权利要求1~18任一项所述的散热装置。
- 根据权利要求19所述设备,其特征在于,所述设备与制冷系统相连,所述制冷系统包括进液管以及出液管,所述进液管与所述散热装置的进液接头密封连接,所述出液管与所述散热装置的出液接头密封连接,所述制冷系统还包括用于实现液体通道中液体流动的动力装置,以及用于对液体进行冷却的制冷装置。
- 一种机架,其特征在于,包括:安装在所述机架内的如权利要求1-18任一项所述的散热装置,或如权利要求19或20所述的设备。
- 一种系统,其特征在于,包括如权利要求1-18任一所述的散热装置和制冷系统,所述制冷系统包括用于实现所述散热装置中液体通道中液体流动的动力装置和用于对所述散热装置中液体进行冷却的制冷装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980093341.9A CN113508647B (zh) | 2019-08-31 | 2019-08-31 | 散热装置、设备、机架和系统 |
CN202310363501.5A CN116261309A (zh) | 2019-08-31 | 2019-08-31 | 散热装置、设备、机架和系统 |
PCT/CN2019/103899 WO2021035760A1 (zh) | 2019-08-31 | 2019-08-31 | 散热装置、设备、机架和系统 |
EP19943205.5A EP3968745A4 (en) | 2019-08-31 | 2019-08-31 | Heat dissipation apparatus, device, equipment rack, and system |
US17/552,722 US11903164B2 (en) | 2019-08-31 | 2021-12-16 | Heat dissipation apparatus, device, rack, and system |
US18/418,434 US20240164052A1 (en) | 2019-08-31 | 2024-01-22 | Heat dissipation apparatus, device, rack, and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/103899 WO2021035760A1 (zh) | 2019-08-31 | 2019-08-31 | 散热装置、设备、机架和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/552,722 Continuation US11903164B2 (en) | 2019-08-31 | 2021-12-16 | Heat dissipation apparatus, device, rack, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035760A1 true WO2021035760A1 (zh) | 2021-03-04 |
Family
ID=74685343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/103899 WO2021035760A1 (zh) | 2019-08-31 | 2019-08-31 | 散热装置、设备、机架和系统 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11903164B2 (zh) |
EP (1) | EP3968745A4 (zh) |
CN (2) | CN113508647B (zh) |
WO (1) | WO2021035760A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113839121A (zh) * | 2021-09-22 | 2021-12-24 | 东风时代(武汉)电池系统有限公司 | 一种冷却板及电池组件 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2584991B (en) * | 2019-05-21 | 2022-01-26 | Iceotope Group Ltd | Cold plate |
WO2021035760A1 (zh) * | 2019-08-31 | 2021-03-04 | 华为技术有限公司 | 散热装置、设备、机架和系统 |
US11553621B2 (en) * | 2020-04-29 | 2023-01-10 | Auras Technology Co., Ltd. | Heat dissipation base |
CN114340298B (zh) * | 2020-09-30 | 2024-10-18 | 华为技术有限公司 | 散热器及电子设备 |
CN114776956B (zh) * | 2022-04-21 | 2023-11-14 | 安徽城宜防务科技有限责任公司 | 一种雷达系统的支撑装置 |
CN114980482B (zh) * | 2022-04-26 | 2023-05-05 | 浙江机电职业技术学院 | 一种自散热基板及其制备方法 |
CN114734212B (zh) * | 2022-05-18 | 2023-07-18 | 东莞新凯隆热能科技有限公司 | 一种高导热吹胀板及其制造工艺 |
CN115360154B (zh) * | 2022-10-19 | 2023-03-24 | 宁波均胜智能汽车技术研究院有限公司 | 一种模块化散热装置及车载域控制器 |
CN117453026B (zh) * | 2023-12-20 | 2024-03-08 | 苏州元脑智能科技有限公司 | 主板液冷散热装置及数据处理系统 |
CN119225495A (zh) * | 2024-11-28 | 2024-12-31 | 苏州元脑智能科技有限公司 | 散热系统和计算机设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7733654B2 (en) * | 2007-12-07 | 2010-06-08 | Coretronic Corporation | Heat dissipation module |
CN103398613A (zh) * | 2013-07-22 | 2013-11-20 | 施金城 | 均热板及其制造方法 |
CN106470537A (zh) * | 2015-08-14 | 2017-03-01 | 中兴通讯股份有限公司 | 单板液冷散热系统及机柜 |
CN109121355A (zh) * | 2017-06-23 | 2019-01-01 | 泽鸿(广州)电子科技有限公司 | 回路式热管以及应用该回路式热管的电子装置 |
CN110035642A (zh) * | 2019-05-21 | 2019-07-19 | 广东工业大学 | 一种液冷式导热块及水冷式散热器 |
CN110035643A (zh) * | 2019-05-23 | 2019-07-19 | Oppo广东移动通信有限公司 | 散热组件以及电子设备 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5016090A (en) * | 1990-03-21 | 1991-05-14 | International Business Machines Corporation | Cross-hatch flow distribution and applications thereof |
TWI284259B (en) * | 2004-05-05 | 2007-07-21 | Asustek Comp Inc | Electrical apparatus with detachable fan module |
CN101166409A (zh) * | 2006-10-16 | 2008-04-23 | 英业达股份有限公司 | 液冷式散热装置 |
US20080314559A1 (en) * | 2007-06-21 | 2008-12-25 | Hsu I-Ta | Heat exchange structure and heat dissipating apparatus having the same |
CN201715908U (zh) * | 2010-06-07 | 2011-01-19 | 锘威科技(深圳)有限公司 | 一体式烧结型平板热管 |
CN103702549A (zh) * | 2013-12-26 | 2014-04-02 | 苏州天脉导热科技有限公司 | 一种用于超薄电子产品的热管 |
JP6349161B2 (ja) * | 2014-06-13 | 2018-06-27 | 昭和電工株式会社 | 液冷式冷却装置 |
US10415597B2 (en) * | 2014-10-27 | 2019-09-17 | Coolit Systems, Inc. | Fluid heat exchange systems |
CN206251499U (zh) * | 2016-12-23 | 2017-06-13 | 河北科技大学 | 一种具有散热功能的机电设备安装支撑座 |
CN209218510U (zh) * | 2018-08-29 | 2019-08-06 | 北斗航天汽车(北京)有限公司 | 电机控制器 |
US10816279B2 (en) * | 2018-11-01 | 2020-10-27 | Han Xu Hardware Plastic Technological Co., Ltd. | High-efficiency water-cooled heat dissipation device |
DE102019202902A1 (de) * | 2019-03-04 | 2020-09-10 | Abb Schweiz Ag | Direkte Kühlung eines Stromrichters durch Verwendung einer geprägten Platte |
GB2584991B (en) * | 2019-05-21 | 2022-01-26 | Iceotope Group Ltd | Cold plate |
WO2021035760A1 (zh) * | 2019-08-31 | 2021-03-04 | 华为技术有限公司 | 散热装置、设备、机架和系统 |
TWI809381B (zh) * | 2021-04-23 | 2023-07-21 | 美商海盜船記憶體股份有限公司 | 具有泵浦的水冷頭裝置 |
-
2019
- 2019-08-31 WO PCT/CN2019/103899 patent/WO2021035760A1/zh unknown
- 2019-08-31 CN CN201980093341.9A patent/CN113508647B/zh active Active
- 2019-08-31 EP EP19943205.5A patent/EP3968745A4/en active Pending
- 2019-08-31 CN CN202310363501.5A patent/CN116261309A/zh active Pending
-
2021
- 2021-12-16 US US17/552,722 patent/US11903164B2/en active Active
-
2024
- 2024-01-22 US US18/418,434 patent/US20240164052A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7733654B2 (en) * | 2007-12-07 | 2010-06-08 | Coretronic Corporation | Heat dissipation module |
CN103398613A (zh) * | 2013-07-22 | 2013-11-20 | 施金城 | 均热板及其制造方法 |
CN106470537A (zh) * | 2015-08-14 | 2017-03-01 | 中兴通讯股份有限公司 | 单板液冷散热系统及机柜 |
CN109121355A (zh) * | 2017-06-23 | 2019-01-01 | 泽鸿(广州)电子科技有限公司 | 回路式热管以及应用该回路式热管的电子装置 |
CN110035642A (zh) * | 2019-05-21 | 2019-07-19 | 广东工业大学 | 一种液冷式导热块及水冷式散热器 |
CN110035643A (zh) * | 2019-05-23 | 2019-07-19 | Oppo广东移动通信有限公司 | 散热组件以及电子设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113839121A (zh) * | 2021-09-22 | 2021-12-24 | 东风时代(武汉)电池系统有限公司 | 一种冷却板及电池组件 |
Also Published As
Publication number | Publication date |
---|---|
US20220110224A1 (en) | 2022-04-07 |
EP3968745A4 (en) | 2022-05-18 |
US11903164B2 (en) | 2024-02-13 |
US20240164052A1 (en) | 2024-05-16 |
CN113508647B (zh) | 2023-03-28 |
EP3968745A1 (en) | 2022-03-16 |
CN113508647A (zh) | 2021-10-15 |
CN116261309A (zh) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021035760A1 (zh) | 散热装置、设备、机架和系统 | |
US10734307B2 (en) | Composite heat sink structures | |
US7440278B2 (en) | Water-cooling heat dissipator | |
JP6744719B2 (ja) | 冗長性を備える冷却システム | |
CN213987146U (zh) | 制冷相机 | |
JP2013165272A (ja) | 放熱モジュール | |
TWM605455U (zh) | 液冷散熱裝置及具有該液冷散熱裝置的液冷散熱系統 | |
CN114340298B (zh) | 散热器及电子设备 | |
CN110730559A (zh) | Pcb散热组件和具有其的服务器 | |
CN112212591B (zh) | 包括具有散热结构的壳体的装置和装置的壳体 | |
CN116321688A (zh) | 一种电路板、电路板组件和电子设备 | |
CN118363442A (zh) | 一种用于计算机的散热结构及散热方法 | |
US7187550B1 (en) | Gasketed field-replaceable active integrated liquid pump heat sink module for thermal management of electronic components | |
CN216566086U (zh) | 液冷散热装置、液冷散热系统及电子装置 | |
WO2022227620A1 (zh) | 一种散热器和电子设备 | |
CN216566085U (zh) | 一种液冷复合热管的散热结构 | |
EP3575919A1 (en) | Dlc block for use in electronic and electric components | |
WO2023005205A1 (zh) | 散热装置及电子设备 | |
US11937407B2 (en) | Photo-etched chassis cooling walls | |
TWM620938U (zh) | 計算系統及用於其之冷卻裝置與冷卻組件 | |
US7637312B1 (en) | Unitary field-replaceable active integrated liquid pump heat sink module for thermal management of electronic components | |
CN210143212U (zh) | 散热组件 | |
CN222692133U (zh) | 一种散热组件及储能电源设备 | |
CN218120244U (zh) | 冷却模块、冷却系统及样本分析仪 | |
CN221125196U (zh) | 一种用于单相浸没式服务器的液冷板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19943205 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019943205 Country of ref document: EP Effective date: 20211206 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |