WO2021026849A1 - 数据传输方法、装置及系统 - Google Patents
数据传输方法、装置及系统 Download PDFInfo
- Publication number
- WO2021026849A1 WO2021026849A1 PCT/CN2019/100675 CN2019100675W WO2021026849A1 WO 2021026849 A1 WO2021026849 A1 WO 2021026849A1 CN 2019100675 W CN2019100675 W CN 2019100675W WO 2021026849 A1 WO2021026849 A1 WO 2021026849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signaling
- threshold
- rtt
- terminal
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 549
- 238000004891 communication Methods 0.000 claims abstract description 83
- 230000011664 signaling Effects 0.000 claims description 452
- 230000008569 process Effects 0.000 claims description 381
- 230000005540 biological transmission Effects 0.000 claims description 184
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims description 57
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims description 57
- 238000012545 processing Methods 0.000 claims description 29
- 238000004590 computer program Methods 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 abstract description 29
- 238000010586 diagram Methods 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 14
- 238000012790 confirmation Methods 0.000 description 10
- 230000004044 response Effects 0.000 description 9
- 230000008054 signal transmission Effects 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1825—Adaptation of specific ARQ protocol parameters according to transmission conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/231—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- This application relates to the field of wireless communication, and in particular to a data transmission method, device and system.
- Non-Terrestrial Network (NTN) technology is a technology that uses satellite communications to provide communications services to ground users. Compared with terrestrial communications, it has many advantages. For example, NTN technology can be free from user geographic restrictions. , To provide services for terrestrial communications in areas that are difficult to cover. For example, for areas such as mountains, deserts and seas, NTN technology has lower communications costs than terrestrial communications.
- NTN technology has many unique advantages that the Third Generation Partnership Project (3GPP) has begun to carry out research on the integration of satellite communications and terrestrial communications.
- 3GPP Third Generation Partnership Project
- the functions or protocols of the New Radio (NR) of the fifth-generation mobile communications technology (5th-Generation, 5G) suitable for terrestrial communications need to be adjusted appropriately to adapt to NTN technology.
- NR New Radio
- 5G fifth-generation mobile communications technology
- NTN technology will cause a relatively large propagation delay.
- HARQ Hybrid Automatic Repeat reQuest
- the embodiments of the present application provide a data transmission method, device, and system, which can be used to solve the problem of increasing the burden on communication equipment if the HARQ mechanism suitable for terrestrial communication is used in the NTN technology.
- the technical solution is as follows:
- a data transmission method is provided, the method is applied to a terminal, and the method includes:
- RTT Round Trip Network
- the enabling state is a state of a feedback response message (Acknowledgement, ACK) or a negative acknowledgement (Negative Acknowledgement, NACK), and the disabling state is a state where ACK and NACK are not fed back.
- a data transmission method is provided, the method is applied to a network side device, and the method includes:
- the enabled state is a state in which the receiving terminal feeds back ACK or NACK
- the de-enabled state is a state in which the terminal does not feed back ACK or NACK.
- a data transmission device includes: a setting module,
- the setting module is configured to set the HARQ feedback of the device to the enabled state or the disabled state according to the round-trip transmission time RTT of the wireless signal;
- the enabled state is a state of feeding back ACK or NACK
- the disabling state is a state of not feeding back ACK and NACK.
- a data transmission device includes: a setting module,
- the setting module is used to set the HARQ feedback of the device to the enabled state or the disabled state according to the RTT of the wireless signal;
- the enabled state is a state in which the receiving terminal feeds back ACK or NACK
- the de-enabled state is a state in which the terminal does not feed back ACK or NACK.
- a data transmission system in another aspect, includes a terminal and a network-side device, the terminal includes the above-mentioned data transmission device applied to the terminal, and the network-side device includes the above-mentioned data transmission applied to the network-side device Device.
- a terminal in another aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement the aforementioned data applied to the terminal Transmission method.
- a network-side device in another aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement the above application Data transmission method for network side equipment.
- a computer-readable storage medium stores at least one instruction, and the at least one instruction is used to be executed by a processor to implement the above-mentioned data transmission method applied to a terminal, Or, to implement the above-mentioned data transmission method applied to the network side device.
- a chip in another aspect, includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned data transmission method applied to a terminal, or to implement the above-mentioned application Data transmission method for network side equipment.
- a computer program product includes one or more computer programs, and when the computer program is executed by a processor, it is used to implement the above-mentioned data transmission method applied to a terminal, or, It is used to implement the above data transmission method applied to the network side device.
- the HARQ feedback in the HARQ mechanism of the terminal is flexibly set according to the RTT of the wireless signal. Since the HARQ feedback of the terminal can be selectively turned on or off, unnecessary burdens on the terminal are avoided. Moreover, when the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced.
- Figure 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
- FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present application.
- Fig. 3 is a flowchart of a method for setting HARQ feedback of a terminal to an enabled state according to an exemplary embodiment of the present application
- Fig. 4 is a flowchart of a method for setting HARQ feedback of a terminal to a disabled state according to another exemplary embodiment of the present application
- FIG. 5 is a flowchart of a method for setting HARQ feedback of a terminal to an enabled state according to an exemplary embodiment of the present application
- Fig. 6 is a flowchart of a method for setting HARQ feedback of a terminal to a disabled state according to another exemplary embodiment of the present application
- Fig. 7 is a flowchart of a method for setting HARQ feedback of a terminal to an enabled state according to an exemplary embodiment of the present application
- FIG. 8 is a flowchart of a method for setting HARQ feedback of a terminal to a disabled state according to another exemplary embodiment of the present application.
- Fig. 9 is a flowchart of a method for setting HARQ feedback of a terminal to an enabled state according to an exemplary embodiment of the present application.
- FIG. 10 is a flowchart of a method for setting HARQ feedback of a terminal to a disabled state according to another exemplary embodiment of the present application.
- Fig. 11 is a flowchart of a method for setting HARQ feedback of a terminal to an enabled state according to an exemplary embodiment of the present application
- FIG. 12 is a flowchart of a method for setting HARQ feedback of a terminal to a disabled state according to another exemplary embodiment of the present application.
- FIG. 13 is a flowchart of a data transmission method provided by an embodiment of the present application.
- FIG. 14 is a block diagram of a data transmission device provided by an embodiment of the present application.
- 15 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 16 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 17 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 18 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 19 is a block diagram of another data transmission device provided by an embodiment of the present application.
- 20 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 21 is a block diagram of another data transmission device provided by an embodiment of the present application.
- FIG. 22 is a structural block diagram of a terminal provided by an embodiment of the present application.
- FIG. 23 is a structural block diagram of a network side device provided by an embodiment of the present application.
- NTN technology which generally uses satellite communications to provide communication services to ground users.
- satellite communications have many unique advantages.
- satellite communication is not restricted by the user area.
- general terrestrial communication cannot cover areas where communication equipment cannot be installed such as oceans, mountains, and deserts, or areas that cannot be covered by communication due to sparse population.
- satellite communication because A satellite can cover a large area on the ground, and the satellite can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
- satellite communication has greater social value.
- Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital divide between these areas and developed areas. To promote the development of these areas. Thirdly, the satellite communication distance is long, and with the increase of the communication distance, the communication cost has not increased significantly; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
- communication satellites can be divided into: Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) Satellites, High Elliptical Orbit (HEO) satellites, etc.
- LEO Low-Earth Orbit
- MEO Medium-Earth Orbit
- GEO Geostationary Earth Orbit
- HEO High Elliptical Orbit
- 3GPP mainly studies LEO satellites and GEO satellites.
- the LEO satellite's orbital altitude ranges from 500 kilometers (km) to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
- the signal propagation delay of single-hop communication between users is generally less than 20 milliseconds (ms), and the maximum satellite visible time is 20 minutes.
- the NTN technology based on LEO satellites has the characteristics of short signal propagation distance, low link loss, and low requirements for user terminal transmission power.
- the orbital height of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
- the signal propagation delay of single-hop communication between users is generally 250ms.
- the satellite uses multiple beams to cover the ground, that is, a satellite can form dozens or even hundreds of satellite beams to cover the ground.
- a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers.
- the functions or protocols of NR suitable for terrestrial communications need to be appropriately adjusted to adapt to NTN technology.
- the HARQ mechanism in the NR protocol suitable for terrestrial communications needs to be adjusted to adapt to the integration of satellite communications and terrestrial communications.
- the NR protocol defines two levels of retransmission mechanisms, namely the HARQ mechanism at the Medium Access Control (MAC) layer and the Automatic Repeat Request (Automatic Repeat Request) at the Radio Link Control (RLC) layer.
- ARQ Automatic Repeat Request
- the retransmission of lost or erroneous data is mainly handled by the HARQ mechanism of the MAC layer, and then supplemented by the retransmission function of the RLC layer.
- the HARQ mechanism of the MAC layer can provide fast data retransmission, and the ARQ mechanism of the RLC layer can provide reliable data transmission.
- the HARQ mechanism uses the Stop-and-Wait Protocol (also called the SQW protocol) to send data.
- the stop-and-wait protocol after sending a transmission block (TB), the sender stops and waits for confirmation information.
- This process can also be called HARQ feedback.
- the sender will stop and wait for confirmation after each TB is sent, resulting in very low user throughput. Therefore, in order to improve user throughput, NR uses multiple parallel HARQ processes to send data blocks. When one HARQ process is waiting for confirmation information, the sender can use another HARQ process to continue sending data blocks.
- These HARQ processes together form a HARQ entity, which combines a stop-and-wait protocol to allow data blocks to be continuously sent.
- the multiple HARQ processes include an uplink HARQ process and a downlink HARQ process.
- the uplink HARQ process and the downlink HARQ process are independent of each other and do not affect each other.
- the number of the uplink HARQ process and the downlink HARQ process can be the same, and the uplink HARQ process is aimed at the transmission of uplink data.
- the downlink HARQ process is aimed at downlink data transmission.
- the confirmation message includes ACK and NACK. If the confirmation reception is successful, the confirmation message is ACK, and if the confirmation acceptance fails, the confirmation message is NACK.
- the TBs sent by the transmitting end are all referred to as data or wireless signals below.
- the network-side device When using each downlink HARQ process for data downlink transmission, the network-side device (such as a base station) needs to allocate appropriate time-frequency domain resources for the downlink transmission of the terminal before transmitting downlink data to the terminal, and carry out downlink control Information (Downlink Control Information, DCI, also called downlink scheduling signaling) physical downlink control channel (Physical Downlink Control Channel, PDCCH) informs the terminal that the DCI includes the allocated time-frequency domain resource location, MCS, and the downlink HARQ process used ID and initial transmission or retransmission instructions, etc.
- DCI Downlink Control Information
- PDCCH Physical Downlink Control Channel
- the network side device uses the first downlink HARQ process to send downlink data to the terminal, and the terminal uses the second downlink HARQ process indicated by the ID on the corresponding resource to receive the downlink data according to the received DCI indication, and decodes the data. If the terminal decodes successfully, it will feed back an ACK to the network side device. After receiving the ACK, the network side device can continue to use the first downlink HARQ process to continue sending new data; if the terminal fails to decode, it will send new data to the network side device. NACK is fed back. After receiving the NACK, the network side device decides whether to continue to use the first downlink HARQ to retransmit the data or to abandon the data and transmit new data (that is, the initial transmission).
- the first downlink HARQ process cannot be used for data transmission.
- the terminal Before the network side device performs initial transmission or retransmission of data, the terminal cannot use the second downlink HARQ process to receive data.
- the terminal Before the terminal uses a certain downlink HARQ process to complete downlink transmission, the terminal will not receive another DCI to instruct the terminal to use the same downlink HARQ process for downlink transmission.
- the terminal When using each uplink HARQ process for data uplink transmission, the terminal (such as user equipment) needs to allocate appropriate time-frequency domain resources to the terminal's uplink transmission before transmitting uplink data, and pass the DCI bearer
- the PDCCH informs the terminal that the DCI includes the allocated time-frequency domain resource location, MCS, used uplink HARQ process ID, initial transmission or retransmission indication, and so on.
- the terminal uses the third uplink HARQ process indicated by the ID on the corresponding resource according to the received DCI indication to send uplink data.
- the network side device receives the uplink data based on the fourth uplink HARQ process, and then decodes the uplink data.
- the network side device can schedule the terminal to continue to use the third uplink HARQ process to transmit new data; if the network The side device fails to decode, and the network side device determines whether the terminal continues to use the third uplink HARQ process to retransmit the data or abandon the data and transmit new data.
- the terminal Before the network side device receives the uplink data transmitted from the terminal, the terminal cannot be scheduled to use the third uplink HARQ process for data transmission.
- the terminal before the network side device receives the data of the fourth uplink HARQ process, the terminal cannot use the third uplink HARQ process to send data. Before the terminal uses a certain uplink HARQ process to complete uplink transmission, the terminal will not send another DCI to instruct the terminal to use the same uplink HARQ process for uplink transmission.
- At least two HARQ processes are set in the network side device, and the at least two HARQ processes include a downlink HARQ process and an uplink HARQ process. At least two HARQ processes are also set in the terminal, and the at least two HARQ processes are also Including downlink HARQ process and uplink HARQ process.
- the first downlink HARQ process and the fourth uplink HARQ process are both HARQ processes in the network side device
- the second downlink HARQ process and the third uplink HARQ process are both HARQ processes in the terminal.
- the NR protocol applicable to terrestrial communications stipulates that each serving cell corresponding to the terminal has its own HARQ entity.
- Each HARQ entity is responsible for maintaining a set of parallel downlink HARQ processes and a set of parallel uplink HARQ processes.
- each uplink carrier and downlink carrier supports a maximum of 16 HARQ processes.
- the base station can indicate the maximum number of HARQ processes to the terminal through the semi-static configuration of radio resource control (Radio Resource Control, RRC) signaling according to the network deployment situation. If the network does not provide corresponding configuration parameters, the default maximum number of HARQ processes supported by each downlink carrier is 8, and the maximum number of HARQ processes supported by each uplink carrier is always 16.
- RRC Radio Resource Control
- Each HARQ process corresponds to a HARQ process number (Identity or Identification, ID).
- the broadcast control channel Broadcast Control Channel, BCCH
- BCCH Broadcast Control Channel
- the third message Msg3 is transmitted in the random process using HARQ ID 0.
- each downlink HARQ process can only process 1 TB at a time; for terminals that support downlink space division multiplexing, each downlink HARQ process can process 1 or 2 TB at a time.
- Each uplink HARQ process of the terminal processes 1 TB at a time.
- the HARQ mechanism can be divided into a synchronous HARQ mechanism and an asynchronous HARQ mechanism in the time domain, and a non-adaptive HARQ mechanism and an adaptive HARQ mechanism in the frequency domain.
- the uplink and downlink transmissions in the NR protocol use the asynchronous adaptive HARQ mechanism.
- the asynchronous HARQ mechanism means that the retransmission of a TB can occur at any time.
- the adaptive HARQ mechanism refers to the ability to change the frequency domain resources and modulation and coding strategy (Modulation and Coding Scheme, MCS) used for retransmission of the TB.
- MCS Modulation and Coding Scheme
- the HARQ mechanism in the NR protocol suitable for terrestrial communication during downlink transmission, the network side device needs to wait for the ACK or NACK feedback from the terminal for the previous downlink HARQ process before continuing to schedule the downlink HARQ
- the process performs downlink transmission; during uplink transmission, the network side device needs to wait until the uplink data transmitted based on an uplink HARQ process is received, and after decoding is completed, can it continue to schedule the same uplink HARQ process for uplink transmission.
- the HARQ mechanism in the NR protocol suitable for terrestrial communication is used, although multiple parallel HARQ processes can be used for data transmission, the longer the propagation delay, the more the communication equipment (including the terminal and the network side equipment) The more HARQ processes that need to be set up and maintained, in order to achieve continuous data transmission under severe time delays, communication equipment needs to support a larger number of HARQ processes (of course, even if the maximum number of HARQ processes is supported, it may be difficult to alleviate the spread Time delay), this not only requires further expansion of the functions of the communication equipment on the existing basis, but also puts forward higher requirements on the communication equipment, which increases the burden of the communication equipment.
- the communication device turns on HARQ feedback, that is, the HARQ feedback is in the usable state, which can be called the HARQ feedback of the communication device is in the enabled state (or activated state), and the communication device can feed back the confirmation message in this state; Yes, the communication device turns off the HARQ feedback, that is, the HARQ feedback is in an unusable state, which can be referred to as the HARQ feedback of the communication device is in the disabled state (or inactive state), and the communication device cannot feed back confirmation messages in this state.
- a communication device is a device capable of communicating, such as a terminal, a base station, or a satellite.
- FIG. 1 shows a schematic diagram of an implementation environment provided by an embodiment of the present application.
- the implementation environment describes a satellite access network in NTN technology.
- the implementation environment includes terminal 01, satellite 02, gateway 03 and core network 04.
- FIG. 1 only schematically shows a situation of one terminal 01.
- there may be multiple satellites 02 and the multiple satellites 02 are connected through inter-satellite/aerial links (ISL).
- FIG. 1 only schematically shows a situation of one satellite 02.
- a terminal can also be called an NTN terminal.
- the NTN terminal can be a terminal defined by 3GPP, or when a satellite does not directly serve a terminal defined by 3GPP, the NTN terminal can be a terminal specific to a satellite system .
- the terminal may be User Equipment (UE).
- UE User Equipment
- the terminal 01 and the satellite 02 are connected in communication through a service link, and the service link refers to a radio link between the terminal 01 and the satellite 02.
- the terminal 01 can also support a wireless communication connection with a terrestrial access network.
- Satellite 02 can also be referred to as an air platform space or an airborne platform (space/airborne platform), which can implement bent pipe or regenerative payload configuration.
- the gateway (Gateway) 03 is used to connect the satellite (or aviation access network) 02 and the core network.
- the gateway 03 and the satellite 02 are connected by feeder links (Feeder links).
- the satellite 02 is used to connect the terminal 01 to the core network 04.
- the satellite 02 is used to connect the terminal 01 to the core network 04.
- other optional implementation environments may also include a base station, which is not limited in the embodiment of the application.
- Fig. 2 shows a flowchart of a data transmission method provided by an embodiment of the present application.
- the method can be applied to the terminal 01 in the implementation environment shown in Fig. 1.
- the method includes:
- Step 201 According to the RTT of the wireless signal, the HARQ feedback is set to the enabled state or the disabled state.
- the enabled state is a state of feeding back ACK or NACK
- the disabling state is a state of not feeding back ACK and NACK.
- the wireless signal is a wireless signal sent based on the HARQ process.
- the data transmission method provided in the embodiments of the present application can flexibly set the HARQ feedback function in the HARQ mechanism of the terminal according to the RTT of the wireless signal. Since the HARQ feedback of the terminal can be selectively turned on or off, unnecessary burdens on the terminal are avoided. Moreover, when the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced.
- backhauling delay the backhauling delay between the satellite and the gateway
- forward/reverse satellite link delay the forward/reverse satellite link delay
- T p2 forward/reverse satellite link delay
- RTT may also have other textual expressions and formula expressions, and the embodiments of the present application are only illustrative descriptions and do not limit this.
- the terminal feeds back ACK or NACK
- the network side device such as a base station or satellite
- the network side device directly schedules the terminal to perform data retransmission or initial transmission without feeding back ACK or NACK as an example.
- both the network side device and the terminal can feed back ACK or NACK, you can also refer to the data transmission method provided in the embodiment of this application to control the HARQ feedback of the network side device. This is not restricted.
- the RTT is determined by the network side device
- the RTT is determined by the terminal.
- the following describes the data transmission method provided in the embodiment of the present application based on the RTT determination methods of the two wireless signals and the interaction between the network side device and the terminal respectively.
- the network-side device measures the RTT required for transmitting wireless signals between it and the terminal, and the terminal sets the HARQ feedback of the terminal according to the RTT.
- each terminal can support multiple HARQ processes, each HARQ process has a HARQ feedback function; in addition, the terminal can support multiple service types, each service type can use multiple HARQ processes, and each HARQ process has HARQ Feedback function; in addition, when the network side equipment is a satellite, the satellite's ground communication range covers a cell, and there are multiple terminals in the cell.
- Each terminal can support multiple HARQ processes, and each HARQ process has HARQ Feedback function.
- the HARQ process may be an uplink HARQ process or a downlink HARQ process.
- first signaling, second signaling, third signaling, fourth signaling, fifth signaling, and sixth signaling mentioned in the first three data transmission methods below can all be Higher layer signaling or physical layer signaling.
- high-level signaling refers to configuration information from a layer above the physical layer, and the high-level signaling may be RRC signaling or Media Access Control Control Element (MAC CE).
- the physical layer signaling is configuration information from the physical layer, such as DCI carried by the PDCCH.
- the HARQ feedback of the terminal is set to the enabled state or the disabled state according to the RTT of the wireless signal.
- the HARQ feedback state is set in units of terminals.
- setting the HARQ feedback of the terminal to the enabled state or the disabled state refers to setting the HARQ feedback of each HARQ process in all the HARQ processes supported by the terminal to the enabled state or the disabled state.
- the method of setting the HARQ feedback of the terminal to the enabled state may include:
- Step 2011 The network side device determines the RTT of the wireless signal.
- the network side device may use the time when it sends data to the terminal as the start time, and the time when the ACK or NACK for the data is received from the terminal as the end time.
- the network-side device determines the elapsed time between the start time and the end time as the RTT.
- Step 2012 When the RTT is less than the first threshold threshold, the network side device sets the HARQ feedback of the network side device to the enabled state.
- the enabled state is the state of receiving the response message ACK or the negative response message NACK fed back by the terminal.
- Step 2013-1 When the RTT is less than the first threshold threshold, the network side device generates first signaling.
- the first threshold threshold is used to switch the HARQ feedback of the terminal to the enabled state, and the first threshold threshold may be pre-stored in the network side device. In this way, it can be ensured that both the terminal and the network side device are in the enabled state.
- Step 2013-2 The network side device sends the first signaling.
- the network side device may send the first signaling to the terminal after it generates the first signaling and determines that the HARQ feedback of the current terminal is in the disabled state.
- Step 2014 The terminal receives the first signaling, and switches the HARQ feedback of the terminal from the disabled state to the enabled state according to the first signaling.
- the first signaling is used to instruct to switch the HARQ feedback of the terminal from the disabled state to the enabled state.
- the method of setting the HARQ feedback of the terminal to the disabled state may include:
- Step 2015 The network side device determines the RTT of the wireless signal.
- step 2015 For the relevant description of determining the RTT of the wireless signal by the network side device in step 2015, reference may be made to the above step 2011, and details are not described in the embodiment of the present application.
- Step 2016 When the RTT is greater than the second threshold threshold, the network side device sets the HARQ feedback of the network side device to a disabled state.
- the disabling state is a state in which the terminal does not feed back ACK and NACK.
- Step 2017-1 When the RTT is greater than the second threshold threshold, the network side device generates second signaling.
- the second threshold threshold is used to switch the HARQ feedback of the terminal to the disabled state, and the second threshold threshold may be stored in the network side device in advance.
- Step 2017-2 The network side device sends the second signaling.
- the network side device may send the second signaling to the terminal after it generates the second signaling and determines that the HARQ feedback of the current terminal is in the enabled state.
- Step 2018 The terminal receives the second signaling, and switches the HARQ feedback of the terminal from the enabled state to the disabled state according to the second signaling.
- the second signaling is used to indicate to switch the HARQ feedback of the terminal from the enabled state to the disabled state.
- the second threshold threshold is greater than or equal to the first threshold threshold.
- the terminal before receiving the first signaling or the second signaling, the terminal receives other signaling used to indicate the initial state of the HARQ feedback of the terminal, and after receiving the other signaling, the terminal may set the HARQ of the terminal
- the feedback is set according to the other signaling.
- the other signaling indicates that the initial state of HARQ feedback of the terminal is set to the enabled state, and after receiving the other signaling, the terminal sets its initial state of HARQ feedback to the enabled state.
- the other signaling may be high-level signaling or physical layer signaling.
- the initial state of the HARQ feedback of the terminal is set in a predefined manner, for example, the initial state of the HARQ feedback of the terminal is set to the enabled state or the disabled state by setting the default state.
- the HARQ feedback of all or part of the HARQ processes in at least one HARQ process supported by the terminal is set to the enabled state or the disabled state.
- the terminal can support multiple HARQ entities, and each HARQ entity can correspond to multiple HARQ processes.
- the terminal may set the HARQ feedback of all or part of the HARQ processes in at least one HARQ process supported by the terminal to the enabled state or the disabled state according to the RTT of the wireless signal, and the at least one HARQ process includes one HARQ process or Multiple HARQ processes.
- the HARQ feedback state is set in the unit of HARQ process, that is, the HARQ feedback state is set for each HARQ process separately.
- the method of setting the HARQ feedback of the terminal to the enabled state may include:
- Step 2021 The network side device determines the RTT of the wireless signal.
- step 2021 For the relevant description of determining the RTT of the wireless signal by the network-side device in step 2021, reference may be made to the above step 2011, and details are not described in the embodiment of the present application.
- Step 2022 when the RTT is less than the third threshold threshold, the network side device sets the HARQ feedback of the network side device to an enabled state.
- the enabled state is the state of receiving the response message ACK or the negative response message NACK fed back by the terminal.
- Step 2023-1 When the RTT is less than the third threshold, the network side device generates third signaling.
- the third threshold threshold is used to switch the HARQ feedback of the terminal to the enabled state, and the third threshold threshold may be stored in the network side device in advance.
- Step 2023-1 The network side device sends the third signaling.
- Step 2024 The terminal receives the third signaling, and switches the HARQ feedback of the first target number of HARQ processes from the disabled state to the enabled state according to the third signaling.
- the third signaling is used to instruct to switch the HARQ feedback of the HARQ process of the first target quantity from the disabled state to the enabled state.
- the third signaling may indicate the process ID of each HARQ process in the first target number of HARQ processes, and the terminal switches the HARQ process corresponding to the process ID from the disabled state to the enabled state according to the process ID.
- the network-side device may, after it generates the third signaling, and determine that the HARQ feedback of the HARQ process corresponding to the process ID indicated in the third signaling is in When the state is disabled, the third signaling is sent to the terminal.
- the first target quantity can be freely set by the network side device.
- the method of setting the HARQ feedback of the terminal to the disabled state may include:
- Step 2025 The network side device determines the RTT of the wireless signal.
- step 2025 For the relevant description of determining the RTT of the wireless signal by the network-side device in step 2025, reference may be made to the above step 2011, which is not repeated in the embodiment of the present application.
- Step 2026 When the RTT is greater than the fourth threshold threshold, the network side device sets the HARQ feedback of the network side device to a disabled state.
- the disabling state is a state where the terminal does not feed back ACK and NACK.
- Step 2027-1 When the RTT is greater than the fourth threshold, the network side device generates fourth signaling.
- the fourth threshold threshold is used to switch the HARQ feedback of the terminal to the disabled state, and the fourth threshold threshold may be stored in the network side device in advance.
- Step 2027-1 The network side device sends the fourth signaling.
- Step 2028 The terminal receives the fourth signaling, and switches the HARQ feedback of the second target number of HARQ processes from the enabled state to the disabled state according to the fourth signaling.
- the fourth signaling is used to indicate that the HARQ feedback of the HARQ process of the second target quantity is switched from the enabled state to the disabled state.
- the fourth signaling may indicate the process ID of each HARQ process in the second target number of HARQ processes, and the terminal switches the HARQ process corresponding to the process ID from the enabled state to the disabled state according to the process ID.
- the network-side device may, after it generates the fourth signaling, and determine that the HARQ feedback of the HARQ process corresponding to the process ID indicated in the fourth signaling is in When the state is enabled, the fourth signaling is sent to the terminal.
- the second target quantity can be freely set by the network side device.
- the first target quantity and the second target quantity may be the same or different.
- the fourth threshold threshold is greater than or equal to the third threshold threshold.
- the terminal may also receive the HARQ for indicating at least one HARQ process supported by the terminal.
- Other signaling of the initial state of the feedback After receiving the other signaling, the terminal may set the HARQ feedback of each HARQ process in the at least one HARQ process according to the other signaling, and the other signaling may also Indicate the number of HARQ processes supported by the terminal, which may include the number of downlink HARQ processes supported by the terminal and the number of uplink HARQ processes supported by the terminal.
- the other signaling may be high-level signaling or physical layer signaling.
- the initial state of the HARQ feedback of each HARQ process is set in a predefined manner, for example, the initial state of the HARQ feedback of each HARQ process is set to enable by setting the default state. Enable state or disable state.
- all or part of the HARQ feedback of at least one service type received by the terminal is set to an enabled state or a disabled state.
- the terminal can support at least one service type, and each service type can use multiple HARQ processes, and each HARQ process has a HARQ feedback function.
- the at least one service type includes one service type or multiple service types.
- setting the HARQ feedback of all or part of the service types to the enabled state or the disabled state refers to setting the HARQ feedback state in the unit of the service type.
- Setting the HARQ feedback of the service type to the enabled state or the disabled state refers to setting the HARQ feedback of each HARQ process in all the HARQ processes used by each service type to the enabled state or the disabled state.
- the multiple HARQ processes used by the service type are not fixed, that is, in multiple wireless signal transmission processes of the same service type, the same multiple HARQ processes can be used or used Different multiple HARQ processes.
- the method of setting the HARQ feedback of the terminal to the enabled state may include:
- Step 2031 The network side device determines the RTT of the wireless signal.
- step 2031 For the relevant description of determining the RTT of the wireless signal by the network side device in step 2031, reference may be made to the above step 2011, and details are not described herein again in this embodiment of the application.
- Step 2032 when the RTT is less than the fifth threshold, the network side device sets the HARQ feedback of the network side device to the enabled state.
- the enabled state is the state of receiving the response message ACK or the negative response message NACK fed back by the terminal.
- Step 2033-1 When the RTT is less than the fifth threshold, the network side device generates fifth signaling.
- the fifth threshold is used to switch the HARQ feedback of each service type in all or part of the number of service types to the enabled state.
- the fifth threshold may be stored in the network side device in advance.
- Step 2033-2 The network side device sends the fifth signaling.
- Step 2034 The terminal receives the fifth signaling, and switches the HARQ feedback of the third target number of service types from the disabled state to the enabled state according to the fifth signaling.
- the fifth signaling is used to instruct to switch the HARQ feedback of the service type of the third target quantity from the disabled state to the enabled state.
- the network side device may determine that the third target number of service types are in the disabled state after the network side device generates the fifth signaling. Then send the fifth signaling to the terminal.
- the method for setting the HARQ feedback of the terminal to the disabled state may include:
- Step 2035 The network side device determines the RTT of the wireless signal.
- Step 2036 When the RTT is greater than the sixth threshold, the network side device sets the HARQ feedback of the network side device to a disabled state.
- the disabling state is a state where the terminal does not feed back ACK and NACK.
- Step 2037-1 When the RTT is greater than the sixth threshold, the network side device generates sixth signaling.
- the sixth threshold is used to switch the HARQ feedback of each service type in all or part of the number of service types to the disabled state.
- Step 2037-2 The network side device sends the sixth signaling.
- Step 2088 The terminal receives the sixth signaling, and switches the HARQ feedback of the service type of the fourth target quantity from the enabled state to the disabled state according to the sixth signaling.
- the sixth signaling is used to instruct to switch the HARQ feedback of the service type of the fourth target quantity from the enabled state to the disabled state.
- the network-side device may generate the sixth signaling and determine that the HARQ feedback of the fourth target number of service types is in the enabled state, and then Send the sixth signaling to the terminal.
- the sixth threshold threshold is greater than or equal to the fifth threshold threshold.
- the terminal before receiving the fifth signaling or the sixth signaling, may also receive HARQ for indicating each of the at least two service types supported by the terminal. For other signaling of the initial state of the feedback, after receiving the other signaling, the terminal may set the HARQ feedback of each service type according to the other signaling.
- the other signaling may be high-level signaling or physical layer signaling.
- the initial state of the HARQ feedback of the service type is set in a predefined way, for example, the initial state of the HARQ feedback of the service type is set to the enabled state or disabled by setting the default state. status.
- the service type corresponds to the logical channel one-to-one
- the process of setting the HARQ feedback of the service type is actually the process of setting the HARQ feedback of the logical channel.
- the fifth signaling indicates that the HARQ feedback of the third target number of logical channels is set to the enabled state
- the sixth signaling indicates that the HARQ feedback of the fourth target number of logical channels is set to the disabled state.
- the network-side equipment can be a satellite. Since the satellite's ground communication range covers a cell, the RTT between the satellite and the nearest ground position of the satellite in the cell, that is, the minimum RTT, can be used as the The HARQ feedback of the terminal is set as the basis for the enabled state or the disabled state. Further, setting the HARQ feedback to the enabled state or the disabled state includes setting the HARQ feedback of all terminals in the cell to the enabled state or the disabled state. In this method, the HARQ feedback state of all terminals in the cell is set in the unit of cell.
- the method of setting the HARQ feedback of the terminal to the enabled state may include:
- Step 2041 the satellite determines the minimum RTT.
- the minimum RTT is the RTT of the wireless signal between the satellite and the target position, and the target position is the ground position closest to the satellite within the communication range of the satellite on the ground (that is, in the cell).
- the terminal is at the ground position closest to the satellite within the communication range of the satellite on the ground to measure the minimum RTT.
- Step 2042 when the minimum RTT is less than the seventh threshold, the satellite sets the HARQ feedback of the satellite to the enabled state.
- the enabled state is the state of receiving the response message ACK or the negative response message NACK fed back by the terminal.
- Step 2043-1 When the RTT is less than the seventh threshold, the satellite generates seventh signaling.
- the seventh threshold is used to switch the HARQ feedback of the terminal to the enabled state, and the seventh threshold may be stored in the satellite in advance.
- Step 2043-2 the satellite sends the seventh signaling.
- the satellite may send the seventh signaling to the terminal after it generates the seventh signaling and when it determines that the HARQ feedback of the current terminal is in the disabled state.
- Step 2044 The terminal receives the seventh signaling, and switches the HARQ feedback of the terminal from the disabled state to the enabled state according to the seventh signaling.
- the seventh signaling is used to instruct to switch the HARQ feedback of the terminal from the disabled state to the enabled state.
- All terminals in the cell can receive the seventh signaling, so that all terminals in the cell can switch their HARQ feedback from the disabled state to the enabled state according to the seventh signaling.
- the method for setting the HARQ feedback of the terminal to the disabled state may include:
- Step 2045 The satellite determines the minimum RTT.
- step 2045 For the related description of determining the minimum RTT by the satellite in step 2045, reference may be made to the foregoing step 2041, which is not repeated in this embodiment of the application.
- Step 2046 When the minimum RTT is greater than the eighth threshold, the satellite sets the HARQ feedback of the satellite to the disabled state.
- the disabling state is a state where the terminal does not feed back ACK and NACK.
- Step 2047-1 When the RTT is greater than the eighth threshold, the satellite generates eighth signaling.
- the eighth threshold is used to switch the HARQ feedback of the terminal to the disabled state, and the eighth threshold may be stored in the satellite in advance.
- Step 2047-2 The satellite sends the eighth signaling.
- the satellite may send the eighth signaling to the terminal after it generates the eighth signaling and when it determines that the HARQ feedback of the current terminal is in the enabled state.
- Step 2048 The terminal receives the eighth signaling, and switches the HARQ feedback of all terminals in the cell from the enabled state to the disabled state according to the eighth signaling.
- the eighth signaling is used to instruct to switch the HARQ feedback of the terminal from the enabled state to the disabled state.
- the HARQ feedback of some terminals in the cell can also be switched from the enabled state to the disabled state according to the eighth signaling, which is not limited in the embodiment of the present application.
- the eighth threshold is greater than or equal to the seventh threshold.
- the terminal before receiving the seventh signaling or the eighth signaling, may also receive other signaling used to indicate the initial state of the HARQ feedback of the terminal, and the terminal is receiving After the other signaling, the HARQ feedback of the terminal can be set according to the other signaling.
- the initial state of the HARQ feedback of the terminal is set in a predefined manner, for example, the initial state of the HARQ feedback of the terminal is set to the enabled state or the disabled state by setting the default state.
- the seventh signaling, eighth signaling, and other signaling may all be system messages.
- the system message may be one of a master system information block (Master Information Block, MIB), a system information block (System Information Block, SIB), or a retained system message (Remaining System Information, RMSI).
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining System Information
- the fourth data transmission method mentioned above is to set the HARQ feedback status of all terminals in the cell in a cell unit, that is, to feedback the HARQ process of each HARQ process among all the HARQ processes supported by each terminal. All are set to the enabled state or the disabled state.
- the above-mentioned second and third data transmission methods can also be referred to.
- all or part of the HARQ process of at least one HARQ process supported by the terminal The HARQ feedback of the process is set to the enabled state or the disabled state, or, in the unit of the service type, all or part of the HARQ feedback of at least one service type received by the terminal is set to the enabled state or Disabled state.
- the terminal measures the RTT required to transmit wireless signals between it and the network-side device.
- the method of setting the HARQ feedback of the terminal to the enabled state may include:
- Step 2051-1 The network side device generates ninth signaling.
- the ninth signaling is used to indicate the ninth threshold threshold.
- the ninth threshold is used to switch the HARQ feedback of the terminal to the enabled state.
- Step 2051-2 The network side device sends the ninth signaling.
- Step 2052 The terminal determines the RTT of the wireless signal.
- the terminal may have self-positioning capability, and the terminal can measure the RTT required for transmitting wireless signals between it and the network side device through the self-positioning capability.
- Step 2053 When the RTT is less than the ninth threshold threshold, switch the HARQ feedback of the terminal from the disabled state to the enabled state.
- the terminal After receiving the ninth signaling, the terminal compares the determined RTT of the wireless signal with the ninth threshold indicated by the ninth signaling, and when the RTT is less than the ninth threshold, the terminal's HARQ feedback is used. The enabled state is switched to the enabled state.
- the method of setting the HARQ feedback of the terminal to the disabled state may include:
- Step 2054-1 The network side device generates tenth signaling.
- the tenth signaling is used to indicate the tenth threshold.
- the tenth threshold is used to switch the HARQ feedback of the terminal to the disabled state.
- Step 2054-1 The network side device sends the tenth signaling.
- Step 2055 The terminal determines the RTT of the wireless signal.
- step 2055 For the relevant description of determining the RTT of the wireless signal by the network-side device in step 2055, reference may be made to the foregoing step 2052, and details are not described herein again in this embodiment of the application.
- Step 2056 When the RTT is greater than the tenth threshold threshold, switch the HARQ feedback of the terminal from the disabled state to the enabled state.
- the terminal After receiving the tenth signaling, the terminal compares the determined RTT of the wireless signal with the tenth threshold indicated by the tenth signaling, and when the RTT is greater than the tenth threshold, the terminal’s HARQ feedback is followed by The enabled state is switched to the disabled state.
- the tenth threshold threshold is greater than or equal to the ninth threshold threshold. Similar to the first data transmission method in the above-mentioned first RTT determination method, before receiving the ninth signaling and the tenth signaling, the terminal can also receive other information used to indicate the initial state of the HARQ feedback of the terminal. Therefore, after receiving the other signaling, the terminal can set the HARQ feedback of the terminal according to the other signaling.
- the ninth signaling, tenth signaling, and other signaling may be high-layer signaling or physical layer signaling.
- the method may also include:
- Step 2057 Send a display instruction to the network side device.
- the explicit command may be RRC signaling or MAC CE, and the explicit command is used to inform the network side equipment terminal of the current HARQ feedback status.
- the explicit instruction may be used to make the network side device set its HARQ feedback to the same state as the current HARQ feedback of the terminal.
- the above data transmission method is to set the HARQ feedback status in units of the terminal, that is, for each terminal, the HARQ feedback of each HARQ process in all HARQ processes supported by the terminal is set To enable or disable status.
- the above-mentioned second and third data transmission methods can also be referred to. That is, in the unit of HARQ process, all or part of the HARQ process of at least one HARQ process supported by the terminal The HARQ feedback of the process is set to the enabled state or the disabled state, or, in the unit of the service type, all or part of the HARQ feedback of at least one service type received by the terminal is set to the enabled state or Disabled state.
- the data transmission method provided in the embodiments of the present application can flexibly set the HARQ feedback function in the HARQ mechanism of the terminal according to the RTT of the wireless signal. Since the HARQ feedback of the terminal can be selectively turned on or off according to the RRT of the wireless signal, unnecessary burdens on the terminal are avoided. Moreover, when the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced.
- the HARQ feedback of the terminal is set to the disabled state, thereby realizing faster retransmission.
- the HARQ feedback of the terminal is set to the enabled state, so that the network side device
- the retransmission of data or the transmission of new data can be determined according to whether the wireless signal is correctly decoded, which ensures the reliability of data transmission.
- the HARQ feedback state is flexibly set based on the RTT, system resources can be used more effectively, and the problem is reduced. The necessary resources are wasted.
- the following further describes the data transmission method provided in the embodiment of the present application in conjunction with the uplink transmission process and the downlink transmission process of the wireless signal.
- the following embodiments are described by using the terminal side as an example to transmit wireless signals (that is, the first wireless signal and the second wireless signal) twice.
- the method includes:
- Step 301 Set the initial state of HARQ feedback of the terminal.
- the initial state of the HARQ feedback of the terminal is set to the enabled state or the disabled state according to the signaling sent by the network side device, or the terminal sets the initial state of the HARQ feedback of the terminal to the initial state or the disabled state according to a predefined state.
- Step 302 Receive target signaling.
- the target signaling is generated by the network-side device according to the RTT of the wireless signal.
- the target signaling may be used to indicate that the HARQ feedback of the terminal is set to an enabled or disabled state, or to indicate that the terminal supports at least In a HARQ process, the HARQ feedback of all or part of the HARQ process is set to the enabled state or the disabled state, or is used to indicate all or part of the number of service types in at least one service type received by the terminal
- the HARQ feedback is set to the enabled state or the disabled state.
- the terminal By receiving the target signaling, the terminal sets its HARQ feedback to the same state as the HARQ feedback of the network side device to ensure the effective execution of the data transmission method provided in the embodiment of the present application.
- the target signaling may be any one of the foregoing first to tenth signaling.
- step 303 is executed after step 302; if the initial state of the terminal is in the enabled state, and What is received is the target signaling for switching the HARQ feedback of the terminal to the disabled state, and then step 312 is executed after step 302.
- Step 303 The terminal switches the HARQ feedback of the terminal from the disabled state to the enabled state according to the received signaling.
- step 304 is executed after step 303; if the terminal is in uplink transmission, step 308 is executed after step 303.
- Step 304 Receive the first wireless signal based on the target downlink HARQ process in the terminal.
- the first wireless signal is transmitted through a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
- PDSCH Physical Downlink Shared Channel
- the target downlink HARQ process is any one of the downlink HARQ processes in the terminal.
- Step 305 Perform decoding processing on the first wireless signal, and feed back an ACK or NACK for the target downlink HARQ process to the network side device.
- the terminal When the terminal successfully decodes the first wireless signal, it returns an ACK to the network side device; otherwise, if the terminal fails to decode the first wireless signal, it returns a NACK to the network side device.
- Step 306 Receive the second wireless signal based on the target downlink HARQ process in the terminal.
- the second wireless signal is transmitted through PDSCH.
- the target downlink HARQ process that receives the first wireless signal and the target downlink HARQ process that receives the second wireless signal may be the same downlink HARQ process, or may be different downlink HARQ processes.
- Step 307 Perform decoding processing on the second wireless signal, and feed back an ACK or NACK for the target downlink HARQ process to the network side device.
- the terminal When the terminal successfully decodes the second wireless signal, it feeds back an ACK to the network side device; on the contrary, if the terminal fails to decode the second wireless signal, it feeds back a NACK to the network side device.
- Step 308 Receive the first DCI.
- the first DCI is received through a physical downlink control channel (Physical Downlink Control Channel, PDCCH), and is used to schedule a target uplink HARQ process.
- PDCCH Physical Downlink Control Channel
- the first DCI includes the allocated time-frequency domain resource location, MCS, used uplink HARQ process ID, initial transmission and retransmission indication, etc., and can be used to schedule the target uplink HARQ process.
- Step 309 Send a first wireless signal based on the target uplink HARQ process.
- the first wireless signal is transmitted through a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
- the target uplink HARQ process is any one of the uplink HARQ processes in the terminal.
- Step 310 Receive the second DCI.
- the second DCI is received through the PDCCH, and the second DCI includes the allocated time-frequency domain resource location, MCS, used uplink HARQ process ID, initial transmission and retransmission indication, etc., and can be used to schedule the target uplink HARQ process.
- Step 311 Send a second wireless signal based on the target uplink HARQ process, and the second wireless signal is transmitted through PUSCH.
- the target uplink HARQ process for receiving the first wireless signal and the target uplink HARQ process for receiving the second wireless signal may be the same uplink HARQ process, or may be different uplink HARQ processes. If the target uplink HARQ process that receives the first wireless signal and the target uplink HARQ process that receives the second wireless signal are the same uplink HARQ process, the second DCI is sent after the network side device decodes the first wireless signal, That is, the terminal needs to wait for at least the time for the network side device to decode the first wireless signal before it can continue to use the same target uplink HARQ process to send the second wireless signal.
- Step 312 Switch the HARQ feedback of the terminal from the enabled state to the disabled state according to the received signaling.
- step 313 is executed after step 312; if the terminal is in uplink transmission, step 315 is executed after step 312.
- Step 313 Receive the first wireless signal based on the target downlink HARQ process in the terminal.
- the first wireless signal is transmitted through PDSCH.
- the target downlink HARQ process is at least one downlink HARQ process of the terminal.
- Step 314 Do not feed back the ACK or NACK for the target downlink HARQ process, and continue to receive the second wireless signal based on the target downlink HARQ process after receiving the first wireless signal.
- the second wireless signal is transmitted through PDSCH.
- Step 315 Receive the first DCI.
- the first DCI is used to schedule a target uplink HARQ process, and the target uplink HARQ process is at least one uplink HARQ process of the terminal.
- the first DCI is received through the PDCCH and used to schedule the target uplink HARQ process to transmit the first wireless signal.
- the first DCI includes the allocated time-frequency domain resource location, MCS, used uplink HARQ process ID, initial transmission and retransmission indication, etc., which can be used to schedule the target uplink HARQ process.
- Step 316 Send a first wireless signal based on the target uplink HARQ process, and the first wireless signal is transmitted through PUSCH.
- Step 317 Receive the second DCI.
- the second DCI is sent by the network side device without considering the decoding result of the first wireless signal, and the second DCI is used to schedule the target uplink HARQ process.
- the second DCI is received through the PDCCH and is used to schedule the target uplink HARQ process to transmit the second wireless signal.
- the second DCI includes the allocated time-frequency domain resource location, MCS, used uplink HARQ process ID, initial transmission and retransmission indication, etc., which can be used to schedule the target uplink HARQ process.
- the target uplink HARQ process for receiving the first wireless signal and the target uplink HARQ process for receiving the second wireless signal may be the same uplink HARQ process, or may be different uplink HARQ processes.
- the terminal's HARQ feedback When in the deactivated state, the terminal can continuously receive the DCI used to schedule the same target uplink HARQ process.
- Step 318 Send a second wireless signal based on the target uplink HARQ process, and the second wireless signal is transmitted through PUSCH.
- the network side device can continue to use the same target downlink HARQ process without waiting for the ACK or NACK feedback from the terminal for a certain wireless signal.
- the terminal does not need to wait for the network side device to use the downlink HARQ process for downlink transmission after receiving the ACK or NACK that it feeds back for the target downlink HARQ process. Since a HARQ feedback de-enabled state is provided, which effectively reduces the transmission delay compared with the enabled state, it effectively reduces the pressure on the terminal and reduces the signal transmission delay.
- the network side device In the process of uplink transmission, for a target uplink HARQ process, since the network side device does not need to wait to receive the first wireless signal and then send the DCI for scheduling the target uplink HARQ process to the terminal, it can directly schedule the first wireless signal. After transmission, the same target uplink HARQ process is scheduled to transmit the second wireless signal. Correspondingly, after the terminal sends the first wireless signal, it can continue without waiting for the receiving network side device to complete the decoding of the first wireless signal. Send the second wireless signal. Since a HARQ feedback de-enabled state is provided, it effectively reduces the transmission delay compared to the enabled state, thus effectively reducing the pressure on the terminal and reducing the signal transmission delay between the terminal and the network side device.
- the target downlink HARQ process is any one of all the downlink HARQ processes supported by the terminal; in the above-mentioned first RTT determination method, the target downlink HARQ process is any one of the first target number of uplink HARQ processes indicated by the third signaling; for the third data transmission method in the first RTT determination method, The target downlink HARQ process is any one of the service types of the third target quantity indicated by the fifth signaling; for the fourth data transmission method in the first RTT determination method, the target downlink HARQ process is satellite ground communication Any one of all the downlink HARQ processes supported by all the terminals in the covered cell; for the data transmission method in the second RTT determination method described above, the target downlink HARQ process is any one of all the downlink HARQ processes supported by the terminal.
- the target uplink HARQ process is any one of all the uplink HARQ processes supported by the terminal; for the first RTT determination method described above, In the second data transmission method, the target uplink HARQ process is any one of the second target number of uplink HARQ processes indicated by the fourth signaling; for the third data transmission method in the first RTT determination method, the target The uplink HARQ process is any one of the service types of the fourth target quantity indicated by the sixth signaling; for the fourth data transmission method in the first RTT determination method, the target uplink HARQ process is satellite communication coverage on the ground Any one of all uplink HARQ processes supported by all terminals in the cell; for the data transmission method in the above-mentioned second RTT determination method, the target uplink HARQ process is any one of all uplink HARQ processes supported by the terminal.
- the steps performed by the terminal in the above embodiments can be implemented as a data transmission method on the terminal side; the steps performed by the network side device in the above embodiments can be implemented as a data transmission method on the network side device.
- FIG. 14 shows a block diagram of a data transmission device provided by an embodiment of the present application.
- the device 400 includes:
- the setting module 401 is configured to set the HARQ feedback of the device to the enabled state or the disabled state according to the round-trip transmission time RTT of the wireless signal;
- the enabling state is a state in which an ACK or NACK message is fed back
- the disabling state is a state in which ACK and NACK are not fed back.
- the data transmission device provided in the embodiment of the present application can flexibly set the HARQ feedback function in the HARQ mechanism of the terminal according to the RTT of the wireless signal. Since the HARQ feedback of the terminal can be selectively turned on or off according to the RRT of the wireless signal, unnecessary burdens on the terminal are avoided. Moreover, when the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced.
- the RTT is determined by a network-side device; or, the RTT is determined by the apparatus.
- FIG. 15 shows a block diagram of a data transmission device provided by an embodiment of the present application.
- the device further includes: a receiving module 402.
- the receiving module 402 is configured to receive target signaling. It is generated by the network side device according to the RTT of the wireless signal; the setting module 401 is configured to set the HARQ feedback of the terminal to an enabled state or a disabled state according to the target signaling.
- the target signaling is used to indicate that, among at least one HARQ process supported by the device, all or part of the HARQ feedback of the HARQ process is set to the enabled state or the disabled state; or, the The target signaling is used to indicate that all or part of the HARQ feedback of the service types in the at least one service type received by the device is set to the enabled state or the disabled state.
- the receiving module 402 is configured to receive first signaling, and the first signaling is used to instruct to switch the HARQ feedback of the device from the disabled state to the enabled state; or, the receiving The module 402 is configured to receive second signaling, where the second signaling is used to instruct to switch the HARQ feedback of the device from an enabled state to a disabled state;
- the first signaling and the second signaling are both generated by the network side device according to the RTT.
- the first signaling is generated when the network side device determines that the RTT is less than a first threshold threshold
- the second signaling is when the network side device determines that the RTT is greater than a second threshold.
- the threshold threshold is generated; wherein the second threshold threshold is greater than or equal to the first threshold threshold.
- the receiving module 402 is configured to receive third signaling, where the third signaling is used to instruct to switch the HARQ feedback of the first target number of HARQ processes from the disabled state to the enabled state; or , The receiving module 402 is configured to receive fourth signaling, the fourth signaling is used to instruct to switch the HARQ feedback of the second target number of HARQ processes from the enabled state to the disabled state, wherein the Both the third signaling and the fourth signaling are generated by the network side device according to the RTT.
- the third signaling is generated when the network-side device determines that the RTT is less than a third threshold threshold
- the fourth signaling is when the network-side device determines that the RTT is greater than a fourth threshold.
- the third signaling is used to indicate the process number of each HARQ process in the first target number of HARQ processes; the fourth signaling is used to indicate the second target number of HARQ processes The process ID of each HARQ process in the process.
- the receiving module 402 is configured to receive fifth signaling, where the fifth signaling is used to instruct to switch the HARQ feedback of the third target quantity of service types from the disabled state to the enabled state; or , The receiving module 402 is configured to receive sixth signaling, the sixth signaling is used to instruct to switch the HARQ feedback of the service type of the fourth target quantity from the enabled state to the disabled state, wherein the Both the fifth signaling and the sixth signaling are generated by the network side device according to the RTT.
- the fifth signaling is generated when the network side device determines that the RTT is less than a fifth threshold threshold
- the sixth signaling is when the network side device determines that the RTT is greater than a sixth threshold.
- the threshold threshold is generated, the sixth threshold threshold is greater than or equal to the fifth threshold threshold.
- the network-side device is a satellite, and a communication range of the satellite on the ground covers a cell.
- the RTT is determined by the satellite; the setting module 401 is configured to set the HARQ feedback of the terminal to the enabled state or the disabled state according to the minimum RTT, and the terminal is the A terminal in a small area; wherein the minimum RTT is the RTT of the wireless signal between the satellite and a target location, and the target location is the ground location closest to the satellite in the cell.
- the receiving module 402 is configured to receive seventh signaling, where the seventh signaling is used to instruct to switch the HARQ feedback of the device from the disabled state to the enabled state; or, the receiving The module 402 is configured to receive eighth signaling, which is used to instruct to switch the HARQ feedback of the device from the enabled state to the disabled state; wherein, the seventh signaling and the first The eight signaling is generated by the satellite according to the minimum RTT.
- the seventh signaling is generated when the satellite determines that the minimum RTT is less than a seventh threshold threshold
- the eighth signaling is when the satellite determines that the minimum RTT is greater than an eighth threshold threshold Generated at time, wherein the eighth threshold threshold is greater than or equal to the seventh threshold threshold.
- the receiving module 402 is configured to receive ninth signaling, and the ninth signaling is used to indicate a ninth threshold; the setting module is configured to determine the RTT of the wireless signal; when the If the RTT is less than the ninth threshold threshold, the HARQ feedback of the device is switched from the disabled state to the enabled state; or, the receiving module 402 is configured to receive tenth signaling, and the tenth signaling uses Indicating the tenth threshold threshold; the setting module is used to determine the RTT of the wireless signal; when the RTT is greater than the tenth threshold threshold, switch the HARQ feedback of the device from the enabled state to the disabled State; wherein the tenth threshold threshold is greater than or equal to the ninth threshold threshold.
- the HARQ feedback of the device is in a disabled state
- the receiving module 402 is configured to receive a first wireless signal based on a target downlink HARQ process, and the target downlink HARQ process is at least one downlink HARQ of the terminal Process;
- the receiving module 402 is configured to not feed back ACK or NACK for the target downlink HARQ process, and continue to receive a second wireless signal based on the target downlink HARQ process after receiving the first wireless signal.
- FIG. 16 shows a block diagram of a data transmission device provided by an embodiment of the present application.
- the device further includes: a sending module 403, and the receiving module 402 , Configured to receive first downlink control information DCI, the first DCI is used to schedule a target uplink HARQ process, the target uplink HARQ process is at least one uplink HARQ process of the terminal; the sending module 403 is configured to The first wireless signal is sent based on the target uplink HARQ process; the receiving module 402 is configured to receive a second DCI, and the second DCI is the result of the network side device not considering the decoding result of the first wireless signal In the case of sending, the second DCI is used to schedule the target uplink HARQ process; the sending module 403 is used to send a second wireless signal based on the target uplink HARQ process.
- the first signaling or the second signaling is radio resource control RRC signaling, media access control control unit MAC CE, or downlink control information DCI; or, the third signaling or the The fourth signaling is the RRC signaling, the MAC CE, or the DCI; or, the fifth signaling or the sixth signaling is the RRC signaling, the MAC CE, or The DCI; or, the seventh signaling or the eighth signaling is a system broadcast message; or, the ninth signaling or the tenth signaling is the RRC signaling, the MAC CE , Or the DCI.
- the data transmission device provided in the embodiment of the present application can flexibly set the HARQ feedback function in the HARQ mechanism of the terminal according to the RTT of the wireless signal. Since the HARQ feedback of the terminal can be selectively turned on or off according to the RRT of the wireless signal, unnecessary burdens on the terminal are avoided. When the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced. Moreover, in the data transmission method provided by the embodiment of the present application, when the RTT of the wireless signal transmitted between the terminal and the network side device is large, the HARQ feedback of the terminal is set to the disabled state, thereby achieving faster reconfiguration.
- the HARQ feedback of the terminal is set to the enabled state, so that the network The side device can decide to retransmit data or transmit new data according to whether the wireless signal is decoded correctly, which ensures the reliability of data transmission.
- the HARQ feedback state is flexibly set based on the RTT, system resources can be used more effectively and reduced Unnecessary waste of resources.
- the network side device can continue to use the same target downlink HARQ without waiting for the ACK or NACK feedback from the terminal for a certain wireless signal.
- the process performs downlink data transmission, and accordingly, the terminal does not need to wait for the network side device to use the downlink HARQ process to perform downlink transmission after receiving the ACK or NACK that it feeds back for the target downlink HARQ process. Since a HARQ feedback de-enabled state is provided, which effectively reduces the transmission delay compared with the enabled state, it effectively reduces the pressure on the terminal and reduces the signal transmission delay.
- the network side device In the process of uplink transmission, for a target uplink HARQ process, since the network side device does not need to wait to receive the first wireless signal and then send the DCI for scheduling the target uplink HARQ process to the terminal, it can directly schedule the first wireless signal. After transmission, the same target uplink HARQ process is scheduled to transmit the second wireless signal. Correspondingly, after the terminal sends the first wireless signal, it can continue without waiting for the receiving network side device to complete the decoding of the first wireless signal. Send the second wireless signal. Since a HARQ feedback de-enabled state is provided, which effectively reduces the transmission delay compared to the enabled state, the pressure on the terminal is effectively reduced, and the signal transmission delay between the terminal and the network side device is reduced.
- FIG. 17 shows a block diagram of a data transmission device 500 provided by an embodiment of the present application.
- the device 500 includes: a setting module 501 for feeding back HARQ of the device according to the RTT of the wireless signal Set to an enabled state or a disabled state; wherein, the enabled state is a state in which the receiving terminal feeds back ACK or NACK, and the disabled state is a state in which the terminal does not feed back ACK or NACK.
- the data transmission device provided by the embodiment of the present application can send target signaling to the terminal according to the RTT of the wireless signal, and the target signaling can be used to flexibly set the HARQ in the HARQ mechanism of the terminal and the network side device.
- Feedback function Since the HARQ feedback of the terminal can be selectively turned on or off according to the RRT of the wireless signal, unnecessary burdens on the terminal are avoided. Moreover, when the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced.
- the RTT is determined by the apparatus; or, the RTT is determined by the terminal.
- FIG. 18 shows a block diagram of a data transmission device 500 provided by an embodiment of the present application.
- the device further includes: a processing module 502 for determining the RTT of the wireless signal;
- the setting module 501 is configured to set the HARQ feedback of the device to the enabled state or the disabled state according to the RTT.
- FIG. 19 shows a block diagram of a data transmission device 500 provided in an embodiment of the present application.
- the device further includes: a sending module 503, and the processing module 502 is configured to generate target signaling according to the RTT;
- the sending module 503 is used to send the target signaling, where the target signaling is used to set the HARQ feedback of the terminal to an enabled state or a disabled state.
- the processing module 502 is configured to generate first signaling when the RTT is less than a first threshold threshold, and the first signaling is used to switch the HARQ feedback of the terminal from the disabled state to Enabled state; the processing module 502 is used to generate second signaling when the RTT is greater than a second threshold threshold, and the second signaling is used to switch the HARQ feedback of the terminal from the enabled state to the disabled Enable state; the second threshold threshold is greater than or equal to the first threshold threshold.
- the processing module 502 is configured to generate third signaling when the RTT is less than a third threshold threshold, where the third signaling is used to use at least one HARQ process supported by the terminal, the first The HARQ feedback of the target number of HARQ processes is switched from the disabled state to the enabled state; the processing module 502 is configured to generate fourth signaling when the RTT is greater than the fourth threshold threshold, and the fourth signaling uses In at least one HARQ process supported by the terminal, the HARQ feedback of the second target number of HARQ processes is switched from the enabled state to the disabled state; the fourth threshold threshold is greater than or equal to the third threshold threshold.
- the third signaling is used to indicate the process number of each HARQ process in the first target number of HARQ processes; the fourth signaling is used to indicate the second target number of HARQ processes The process ID of each HARQ process in the process.
- the processing module 502 is configured to generate fifth signaling when the RTT is less than a fifth threshold threshold, where the fifth signaling is used to use the third signal among at least one service type received by the terminal
- the HARQ feedback of the target number of service types is switched from the disabled state to the enabled state
- the processing module 502 is configured to generate sixth signaling when the RTT is greater than the sixth threshold threshold, and the sixth signaling uses In the at least one service type received by the terminal, the HARQ feedback of the service type of the fourth target quantity is switched from the enabled state to the disabled state
- the sixth threshold threshold is greater than or equal to the fifth threshold threshold.
- the device is a satellite, and a communication range of the satellite on the ground covers a cell.
- the processing module 502 is configured to determine a minimum RTT of the wireless signal, where the minimum RTT is the RTT of the wireless signal between the satellite and a target location, and the target location is in the cell The ground position closest to the satellite, the minimum RTT is used to set the HARQ feedback of all terminals in the cell to the enabled state or the disabled state; the processing module 502 is used to set the HARQ feedback according to the minimum RTT Generate target signaling.
- the processing module 502 is configured to generate seventh signaling when the minimum RTT is less than a seventh threshold threshold, where the seventh signaling is used to send HARQ feedback of all terminals in the cell from The enabled state is switched to the enabled state; the processing module 502 is configured to generate eighth signaling when the minimum RTT is greater than the eighth threshold threshold, and the eighth signaling is used to transfer all terminals in the cell The HARQ feedback is switched from the enabled state to the disabled state; the eighth threshold threshold is greater than or equal to the seventh threshold threshold.
- FIG. 20 shows a block diagram of a data transmission device 500 provided in an embodiment of the present application.
- the device further includes: a sending module 503, which uses For sending the ninth signaling, the ninth signaling is used to indicate the ninth threshold threshold, or the sending module 503 is used to send the tenth signaling, and the tenth signaling is used to indicate the tenth threshold threshold, wherein, the tenth threshold threshold is greater than or equal to the ninth threshold threshold, and the ninth threshold threshold is used to trigger the terminal to feed back the terminal's HARQ when the RTT is less than the ninth threshold threshold Switch from the disabled state to the enabled state, and the tenth threshold threshold is used to trigger the terminal to switch the HARQ feedback of the terminal from the enabled state to the disabled when the RTT is greater than the tenth threshold threshold.
- Enable state is used for sending the ninth signaling, the ninth signaling is used to indicate the ninth threshold threshold, or the sending module 503 is used to send the tenth signaling, and the tenth signaling is used to
- the HARQ feedback of the device is in a disabled state
- the sending module 503 is configured to send a first wireless signal based on a target downlink HARQ process, and the target downlink HARQ process is at least one downlink of the network side device HARQ process; the sending module 503 is configured to not receive ACK or NACK for the target downlink HARQ process, and continue to send a second wireless signal based on the target downlink HARQ process after sending the first wireless signal.
- FIG. 21 shows a block diagram of a data transmission device 500 according to an embodiment of the present application.
- the device further includes: a receiving module 504, and the sending module 503, configured to send a first DCI, the first DCI is used to schedule a target uplink HARQ process, the target uplink HARQ process is at least one uplink HARQ process of the network side device; the receiving module 504 is configured to The target uplink HARQ process receives the first wireless signal; the sending module 503 is configured to send a second DCI without considering the decoding result of the first wireless signal, and the second DCI is used to schedule the The target uplink HARQ process; the receiving module 504 is configured to receive a second wireless signal based on the target uplink HARQ process.
- the first signaling or the second signaling is RRC signaling, MAC CE, or DCI; or, the third signaling or the fourth signaling is the RRC signaling, The MAC CE or the DCI; or the fifth signaling or the sixth signaling is the RRC signaling, the MAC CE, or the DCI; or the seventh signaling Or the eighth signaling is a system broadcast message; or, the ninth signaling or the tenth signaling is the RRC signaling, the MAC CE, or the DCI.
- the data transmission device provided by the embodiment of the present application can send target signaling to the terminal according to the RTT of the wireless signal, and the target signaling can be used to flexibly set the HARQ feedback function in the HARQ mechanism of the terminal. Since the HARQ feedback of the terminal can be selectively turned on or off according to the RRT of the wireless signal, unnecessary burdens on the terminal are avoided.
- the HARQ feedback of the terminal When the HARQ feedback of the terminal is in the off state (that is, the disabled state), the transmission delay of the wireless signal can be reduced. Moreover, in the data transmission method provided by the embodiment of the present application, when the RTT of the wireless signal transmitted between the terminal and the network side device is large, the HARQ feedback of the terminal is set to the disabled state, thereby achieving faster reconfiguration. It ensures the reliability of data transmission and the delay of data transmission at the same time; when the RTT of the wireless signal transmitted between the terminal and the network side device is small, the HARQ feedback of the terminal is set to the enabled state, so that the network The side device can decide to retransmit data or transmit new data according to whether the wireless signal is decoded correctly, which ensures the reliability of data transmission. Moreover, because the HARQ feedback state is flexibly set based on the RTT, system resources can be used more effectively and reduced Unnecessary waste of resources.
- the network side device can continue to use the same target downlink HARQ without waiting for the ACK or NACK feedback from the terminal for a certain wireless signal.
- the process performs downlink data transmission, and accordingly, the terminal does not need to wait for the network side device to use the downlink HARQ process to perform downlink transmission after receiving the ACK or NACK that it feeds back for the target downlink HARQ process. Since a HARQ feedback de-enabled state is provided, which effectively reduces the transmission delay compared with the enabled state, it effectively reduces the pressure on the terminal and reduces the signal transmission delay.
- the network side device In the process of uplink transmission, for a target uplink HARQ process, since the network side device does not need to wait to receive the first wireless signal and then send the DCI for scheduling the target uplink HARQ process to the terminal, it can directly schedule the first wireless signal. After transmission, the same target uplink HARQ process is scheduled to transmit the second wireless signal. Correspondingly, after the terminal sends the first wireless signal, it can continue without waiting for the receiving network side device to complete the decoding of the first wireless signal. Send the second wireless signal. Since a HARQ feedback de-enabled state is provided, which effectively reduces the transmission delay compared to the enabled state, the pressure on the terminal is effectively reduced, and the signal transmission delay between the terminal and the network side device is reduced.
- An embodiment of the present application provides a data transmission system.
- the system includes a terminal and a network side device.
- the terminal is the data transmission device described in FIGS. 14 and 15, and the network side device is shown in FIGS. 17 to 21.
- the data transmission device is the data transmission device described in FIGS. 14 and 15, and the network side device is shown in FIGS. 17 to 21.
- FIG. 22 shows a structural block diagram of a terminal provided by an embodiment of the present application.
- the terminal includes a processor 91, a receiver 92, a transmitter 93, a memory 94, and a bus 95.
- the processor 91 includes one or more processing cores, and the processor 91 executes various functional applications and information processing by running software programs and modules.
- the receiver 92 and the transmitter 93 can be implemented as a communication component.
- the communication component can be a communication chip.
- the communication chip can include a receiving module, a transmitting module, a modem module, etc., which are used to modulate and/or decode information. Tune, and receive or send the information through wireless signals.
- the memory 94 is connected to the processor 91 through a bus 95.
- the memory 94 may be used to store at least one instruction, and the processor 91 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
- the memory 94 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static anytime access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except for programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disks or optical disks.
- SRAM static anytime access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable except for programmable read only memory
- PROM programmable read only memory
- ROM read only memory
- magnetic memory flash memory
- flash memory magnetic disks or optical disks.
- the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the data transmission method provided by each method embodiment described above.
- the present application also provides a chip that includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the data transmission method provided by the foregoing method embodiments.
- the present application also provides a computer program product.
- the computer program product includes one or more computer programs.
- the computer program is executed by a processor, the computer program is used to implement the data transmission method provided by the foregoing method embodiments.
- FIG. 23 shows a structural block diagram of a network-side device provided by an embodiment of the present application.
- the network-side device includes a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
- the processor 101 includes one or more processing cores, and the processor 11 executes various functional applications and information processing by running software programs and modules.
- the receiver 102 and the transmitter 103 can be implemented as a communication component.
- the communication component can be a communication chip.
- the communication chip can include a receiving module, a transmitting module, a modem module, etc., which are used to modulate and/or decode information. Tune, and receive or send the information through wireless signals.
- the memory 104 is connected to the processor 101 through a bus 105.
- the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
- the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static always-access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except for programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disks or optical disks.
- SRAM static always-access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM programmable read only memory
- PROM programmable read only memory
- ROM read only memory
- magnetic memory flash memory
- flash memory magnetic disks or optical disks.
- the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the data transmission method provided by each method embodiment described above.
- the present application also provides a chip that includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the data transmission method provided by the foregoing method embodiments.
- the present application also provides a computer program product.
- the computer program product includes one or more computer programs.
- the computer program is executed by a processor, the computer program is used to implement the data transmission method provided by the foregoing method embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种数据传输方法、装置及系统,涉及无线通信领域,该方法通过根据无线信号的RTT灵活地设置终端的HARQ机制中的HARQ反馈。由于终端的HARQ反馈可以有选择性地开启或者关闭,避免了给终端造成不必要的负担。
Description
本申请涉及无线通信领域,特别涉及一种数据传输方法、装置及系统。
非地面通信网络(Non Terrestrial Network,NTN)技术是一种采用卫星通信的方式向地面用户提供通信服务的技术,其相比于地面通信具有很多优点,例如,NTN技术可以不受用户地域的限制,为地面通信难以通信覆盖的区域提供服务,再例如,对于山地、荒漠及海上等地区,NTN技术相较于地面通信具有较低的通信成本。
正是由于NTN技术具有很多独特的优点,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)已经着手开展卫星通信与地面通信融合的研究工作。在将卫星通信与地面通信进行融合的过程中,适用于地面通信的第五代移动通信技术(5th-Generation,5G)新空口(New Radio,NR)的功能或者协议需要进行适当的调整以适应NTN技术。例如,NTN技术会导致较大的传播延迟,如果沿用适用于地面通信的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)机制,会增加通信设备的负担。
发明内容
本申请实施例提供了一种数据传输方法、装置及系统,可以用于解决若在NTN技术中沿用适用于地面通信的HARQ机制导致通信设备的负担增加的问题。所述技术方案如下:
一个方面,提供了一种数据传输方法,所述方法应用于终端,所述方法包括:
根据无线信号的往返传输时间(Round Trip Network,RTT),将所述终端的HARQ反馈设置为使能状态或者去使能状态;
其中,所述使能状态为反馈应答消息(Acknowledgement,ACK)或者否定应答消息(Negative Acknowledgement,NACK)的状态,所述去使能状态为不反馈ACK以及NACK的状态。
另一方面,提供了一种数据传输方法,所述方法应用于网络侧设备,所述方法包括:
根据无线信号的RTT,将所述网络侧设备的HARQ反馈设置为使能状态或者去使能状态;
其中,所述使能状态为接收终端反馈ACK或者NACK的状态,所述去使能状态为所述终端不反馈ACK以及NACK的状态。
另一方面,提供了一种数据传输装置,所述装置包括:设置模块,
所述设置模块用于根据无线信号的往返传输时间RTT,将所述装置的HARQ反馈设置为使能状态或者去使能状态;
其中,所述使能状态为反馈ACK或者NACK的状态,所述去使能状态为不反馈ACK以及NACK的状态。
另一方面,提供了一种数据传输装置,所述装置包括:设置模块,
所述设置模块用于根据无线信号的RTT,将所述装置的HARQ反馈设置为使能状态或者去使能状态;
其中,所述使能状态为接收终端反馈ACK或者NACK的状态,所述去使能状态为所述终端不反馈ACK以及NACK的状态。
另一方面,提供了一种数据传输系统,所述系统包括终端和网络侧设备,所述终端包括上述应用于终端的数据传输装置,所述网络侧设备包括上述应用于网络侧设备的数据传输装置。
另一方面,提供了一种终端,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述应用于终端的的数据传输方法。
另一方面,提供了一种网络侧设备,所述网络侧设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述应用于网络侧设备的数据传输方法。
另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述应用于终端的的数据传输方法,或者,以实现上述应用于网络侧设备的数据传输方法。
另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现上述应用于终端的数据传输方法,或者,用于实现上述应用于网络侧设备的数据传输方法。
另一方面,提供了一种计算机程序产品,所述计算机程序产品包括一个或多个计算机程序,所述计算机程序被处理器执行时,用于实现上述应用于终端的的数据传输方法,或者,用于实现上述应用于网络侧设备的数据传输方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过根据无线信号的RTT灵活地设置终端HARQ机制中的HARQ反馈。由于终端的HARQ反馈可以有选择性 地开启或者关闭,避免了给终端造成不必要的负担。并且,当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例所提供的一种实施环境的示意图;
图2是本申请实施例提供的一种数据传输方法的流程图;
图3是本申请一个示例性实施例提供的一种将终端的HARQ反馈设置为使能状态的方法流程图;
图4是本申请另一个示例性实施例提供的一种将终端的HARQ反馈设置为去使能状态的方法流程图;
图5是本申请一个示例性实施例提供的一种将终端的HARQ反馈设置为使能状态的方法流程图;
图6是本申请另一个示例性实施例提供的一种将终端的HARQ反馈设置为去使能状态的方法流程图;
图7是本申请一个示例性实施例提供的一种将终端的HARQ反馈设置为使能状态的方法流程图;
图8是本申请另一个示例性实施例提供的一种将终端的HARQ反馈设置为去使能状态的方法流程图;
图9是本申请一个示例性实施例提供的一种将终端的HARQ反馈设置为使能状态的方法流程图;
图10是本申请另一个示例性实施例提供的一种将终端的HARQ反馈设置为去使能状态的方法流程图;
图11是本申请一个示例性实施例提供的一种将终端的HARQ反馈设置为使能状态的方法流程图;
图12是本申请另一个示例性实施例提供的一种将终端的HARQ反馈设置为去使能状态的方法流程图;
图13是本申请实施例提供的一种数据传输方法的流程图;
图14是本申请实施例提供的一种数据传输装置的框图;
图15是本申请实施例提供的另一种数据传输装置的框图;
图16是本申请实施例提供的另一种数据传输装置的框图;
图17是本申请实施例提供的另一种数据传输装置的框图;
图18是本申请实施例提供的另一种数据传输装置的框图;
图19是本申请实施例提供的另一种数据传输装置的框图;
图20是本申请实施例提供的另一种数据传输装置的框图;
图21是本申请实施例提供的另一种数据传输装置的框图;
图22是本申请实施例提供的一种终端的结构方框图;
图23是本申请实施例提供的一种网络侧设备的结构方框图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前3GPP正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比于地面通信(例如地面蜂窝网),卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山以及沙漠等无法搭设通信设备的区域,或者由于人口稀少而不做通信覆盖的区域,对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面区域,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信具有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小这些区域与发达地区的数字鸿沟,以促进这些区域的发展。再次,卫星通信距离远,并且随着通信距离的增大,通讯成本并没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
按照通信卫星的轨道高度,可以将通信卫星分为:低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段3GPP主要研究的是LEO卫星和GEO卫星。其中,LEO卫星的轨道高度范围为500千米(km)至1500km,相应的轨道周期约为1.5小时至2小时。用户间单跳通信的信号传播延迟一般小于20毫秒(ms),最大卫星可视时间为20分钟。基于LEO卫星的NTN技术具有信号传播距离短、链路损耗少以及对用户终端的发射功率要求不高的特点。GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时,用户间单跳通信的信号传播延迟一般为250ms。为了保证卫星在地球上的覆盖面积以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,也即是,一颗卫星可以形成几十甚至数百个卫星波束来覆盖地面,其中,每个卫星波束可以覆盖直径几十至上百公里的地面区域。
在将卫星通信与地面通信进行融合的过程中,适用于地面通信的NR的功能或者协议需要进行适当的调整以适应NTN技术。例如,适用于地面通信的NR协议中的HARQ机制便需要为适应卫星通信与地面通信的融合进行调整。
为了有助于理解本申请实施例的相关描述,在此首先对NR协议中的HARQ机制进行简要介绍:
在NR协议定义了两级重传机制,分别是媒质接入控制(Medium Access Control,MAC)层的HARQ机制和无线链路控制(Radio Link Control,RLC)层的自动重复请求(Automatic Repeat Request,ARQ)机制。其中,丢失或出错的数据的重传主要是由MAC层的HARQ机制处理的,再由RLC层的重传功能进行补充。MAC层的HARQ机制能够提供快速的数据重传,RLC层的ARQ机制能够提供可靠的数据传输。
HARQ机制使用停等协议(Stop-and-Wait Protocol,也称SQW协议)来发送数据。在停等协议中,发送端在发送一个传输块(Transmission Block,TB)之后,就停下来等待确认信息,该过程也可称为HARQ反馈。如此使得发送端在每发送一个TB之后,均会停下来等待确认,导致用户吞吐量很低。因此,为了提高用户吞吐量,NR采用多个并行的HARQ进程进行数据块的发送,当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据块。这些HARQ进程共同组成了一个HARQ实体,该HARQ实体结合了停等协议,允许数据块进行连续发送。其中,该多个HARQ进程包括上行HARQ进程和下行HARQ进程,上行HARQ进程和下行HARQ进程相互独立互不影响,上行HARQ进程和下行HARQ进程的数量可以相同,该上行HARQ进程针对上行数据的传输,下行HARQ进程针对下行数据传输。确认消息包括ACK以及NACK。若确认接收成功则该确认消息为ACK,如果确认接受失败则该确认消息为NACK。为了便于说明,以下将发送端发送的TB均称为数据或者无线信号。
在采用每个下行HARQ进程进行数据的下行传输时,网络侧设备(例如基站)在给终端传输下行数据之前,需要先给该终端的下行传输分配合适的时频域资源,并通过承载下行控制信息(Downlink Control Information,DCI,也称下行调度信令)的物理下行控制信道(Physical Downlink Control Channel,PDCCH)告知终端,该DCI中包含分配的时频域资源位置、MCS、使用的下行HARQ进程ID以及初传或重传指示等等。网络侧设备使用第一下行HARQ进程向终端发送下行数据,终端根据收到的DCI指示在对应的资源上使用该ID指示的第二下行HARQ进程接收下行数据,并对该数据进行解码。终端如果解码成功,则向网络侧设备反馈ACK,网络侧设备在收到ACK后,就可以继续使用该第一下行HARQ进程继续发送新的数据进行;终端如果解码失败,则向网络侧设备反馈NACK,网络侧设备在收到NACK后,由网络侧设备决定是继续使用该第一下行HARQ对该数据进行重传还是放弃该数据而传输新的数据(即初传)。在网络侧设备收到来自终端的针对某个下行HARQ进程的ACK或者NACK反馈之前,不能使用该第一下行HARQ进程进行数据传输。相应的,在网络侧设备进行初传或者重传数据之前,终端不能使用该第二下行HARQ进程接收数据。在终端使用某个下行HARQ进程完成下行传输之前,终端不会再接收到另一条DCI指示终端使用同样的下行HARQ进程进行下行传输。
在采用每个上行HARQ进程进行数据的上行传输时,终端(例如用户设备)在传输上行数据之前,需要网络侧设备先给该终端的上行传输分配合适的时频域资源,并通过承载DCI的PDCCH告知终端,该DCI中包含分配的时频域资源位置、MCS、使用的上行HARQ进程ID以及初传或重传指示等等。终端根据收到的DCI指示在对应的资源上使用该ID指示的第三上行HARQ进程发送上行数据。网络侧设备基于第四上行HARQ进程接收上行数据,然后对该上行数据进行解码,如果网络侧设备解码成功,网络侧设备便可以调度终端继续使用该第三上行HARQ进程传输新的数据;如果网络侧设备解码失败,由网络侧设备决定终端是继续使用该第三上行HARQ进程对该数据进行重传还是放弃该数据而传输新的数据。在网络侧设备收到来自终端传输的上行数据之前,不能调度终端使用该第三上行HARQ进程进行数据传输。相应的,在网络侧设备收到第四上行HARQ进程的数据之前,终端不能使用该第三上行HARQ进程发送数据。在终端使用某个上行HARQ进程完成上行传输之前,终端不会再发送到另一条DCI指示终端使用同样的上行HARQ进程进行上行传输。
需要说明的是,网络侧设备中设置有至少两个HARQ进程,该至少两个HARQ进程包括下行HARQ进程和上行HARQ进程,终端中也设置有至少两个HARQ进程,该至少两个HARQ进程也包括下行HARQ进程和上行HARQ进程。上文中,第一下行HARQ进程和第四上行HARQ进程均为网络侧设备中的HARQ进程,第二下行HARQ进程和第三上行HARQ进程均为终端中的HARQ进程。
适用于地面通信的NR协议中规定,终端对应的每个服务小区都有各自的HARQ实体。每个HARQ实体负责维护一组并行的下行HARQ进程和一组并行的上行HARQ进程。目前每个上行载波和下行载波均支持最多16个HARQ进程。基站可以根据网络部署情况通过无线资源控制(Radio Resource Control,RRC)信令的半静态配置向终端指示最大的HARQ进程数量。如果网络没有提供相应的配置参数,则每个下行载波支持的缺省的最大HARQ进程数量为8个,而每个上行载波支持的最大HARQ进程数量始终为16个。每个HARQ进程对应一个HARQ进程号(Identity或Identification,ID)。对于下行传输,广播控制信道(Broadcast Control Channel,BCCH)使用一个专用的广播HARQ进程。对于上行传输,随机过程中的传输第三消息Msg3使用HARQ ID 0。
对于不支持下行空分复用的终端,每个下行HARQ进程只能一次处理1个TB;对于支持下行空分复用的终端,每个下行HARQ进程可以一次处理1个或者2个TB。终端的每个上行HARQ进程一次处理1个TB。HARQ机制在时域上可以分为同步HARQ机制和异步HARQ机制,在频域上分为非自适应HARQ机制和自适应HARQ机制。NR协议中的上下行传输均使用异步自适应HARQ机制,其中,异步HARQ机制指的是TB的重传可以发生在任意时刻,对于同一个TB,其重传与上一次传输的时间间隔是不固定的;自适应HARQ机制指的是可以改变重传TB 所使用的频域资源和调制与编码策略(Modulation and Coding Scheme,MCS)。
基于上述介绍可以看出,适用于地面通信的NR协议中的HARQ机制,在下行传输时,网络侧设备需要等待接收终端针对上一个下行HARQ进程反馈的ACK或者NACK,才可以继续调度该下行HARQ进程进行下行传输;在上行传输时,网络侧设备需要等到接收到基于一个上行HARQ进程传输的上行数据,完成解码后才可以继续调度该同一个上行HARQ进程进行上行传输。如此使得数据的传播时延较长,尤其对于卫星与地面的距离较长的情况,更加导致NTN技术的传播延迟较为严重。
另外,如果沿用适用于地面通信的NR协议中的HARQ机制,虽然可以采用多个并行的HARQ进程进行数据的发送,但是,由于传播时延越长,通信设备(包括终端和网络侧设备)中需要设置和维护的HARQ进程越多,在严重时延的情况下为了实现数据的连续传输,通信设备需要支持较大数目的HARQ进程(当然,即使支持了最大数量的HARQ进程也可能难以缓解传播时延),这样做不但需要在现有基础上对通信设备的功能进行进一步扩展,同时会对通信设备提出更高的要求,增加了通讯设备的负担。
需要说明的是,通信设备开启HARQ反馈,即该HARQ反馈处于可使用状态可以称为该通信设备的HARQ反馈处于使能状态(或激活状态),该状态下该通信设备可以反馈确认消息;相应的,通信设备关闭HARQ反馈,即该HARQ反馈处于不可使用状态可以称为该通信设备的HARQ反馈处于去使能状态(或非激活状态),该状态下该通信设备不能反馈确认消息。通信设备为能够进行通信的设备,例如终端、基站或者卫星等。
图1示出了本申请实施例所提供的一种实施环境的示意图,该实施环境描述的是NTN技术中的卫星接入网络(Satellite access network)。该实施环境包括终端01、卫星02、网关03以及核心网04。
在NTN技术中,终端01可以为多个,该多个终端01可以均与卫星02进行通信连接,图1仅示意性地示出了一个终端01的情况。另外,卫星02可以为多个,该多个卫星02之间通过星间链路(Inter satellite/aerial links,ISL)进行连接,图1仅示意性地示出了一个卫星02的情况。
在NTN技术中,终端也可以称为NTN终端,该NTN终端可以为3GPP所定义的终端,或者当卫星不直接服务于3GPP所定义的终端时,该NTN终端可以为一个特定于卫星系统的终端。终端可以为用户设备(User Equipment,UE)。
终端01与卫星02之间通过服务链路(service link)通信连接,服务链路指的是终端01与卫星02之间的无线链路(radio link)。此外,终端01还可以支持与地面接入网的无线通信连接。
卫星02也可以称为空中平台空间或空中平台(space/airborne platform),可实现弯管(bent pipe)或再生载荷(regenerative payload)的配置。
网关(Gateway)03为用于连接卫星(或者航空接入网)02和核心网。网关03与卫星02之间通过馈线链路(Feeder links)连接。
在本申请实施例所提供的实施环境中,卫星02用于将终端01连接至核心网04,当然,在其他可选的实施环境中也可以包括基站,本申请实施例对此不进行限制。
图2示出了本申请实施例提供的一种数据传输方法的流程图,该方法可以应用于图1所示的实施环境中的终端01,该方法包括:
步骤201、根据无线信号的RTT,将HARQ反馈设置为使能状态或者去使能状态。
其中,该使能状态为反馈ACK或者NACK的状态,该去使能状态为不反馈ACK以及NACK的状态。该无线信号为基于HARQ进程发送的无线信号。
综上所述,本申请实施例所提供的数据传输方法,可以根据无线信号的RTT灵活地设置终端的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以有选择性地开启或者关闭,避免了给终端造成不必要的负担。并且,当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。
对于NTN技术来说,RTT可以为两倍的卫星与网关之间的回程延迟(backhauling delay)T
p1以及终端与卫星之间的正向/反向卫星链路延迟(forward/reverse satellite link delay)T
p2,即RTT=2(T
p1+T
p2)。当然,基于的角度不同,RTT还可以有其他文字表述及公式表达方式,本申请实施例仅为示意性说明,并不对此进行限制。
需要说明的是,本申请实施例以终端反馈ACK或者NACK,而网络侧设备(例如基站或者卫星)直接调度终端进行数据的重传或者初传,而无需反馈ACK或者NACK为例。当然,在其他可选的实施例中,网络侧设备和终端均可以反馈ACK或者NACK,则也可以参考本申请实施例所提供的数据传输方法控制网络侧设备的HARQ反馈,本申请实施例对此不进行限制。
在本申请实施例中,提供了两种确定无线信号的RTT的方式,分别为RTT为网络侧设备确定的,以及RTT为终端确定的。以下分别基于该两种无线信号的RTT的确定方式以及网络侧设备和终端的交互,对本申请实施例所提供的数据传输方法进行说明。
在第一种RTT的确定方式中,由网络侧设备测量其与终端之间传输无线信号所需的RTT,终端根据该RTT设 置终端的HARQ反馈。
其中,每个终端可以支持多个HARQ进程,每个HARQ进程均具有HARQ反馈功能;另外,终端可以支持多个业务类型,每个业务类型可以使用多个HARQ进程,每个HARQ进程均具有HARQ反馈功能;再另外,当网络侧设备为卫星时,卫星在地面的通信范围覆盖一个小区,该小区内对应有多个终端,每个终端可以支持多个HARQ进程,每个HARQ进程均具有HARQ反馈功能。其中,该HARQ进程可以为上行HARQ进程或者下行HARQ进程。针对上述终端、业务类型、小区与HARQ进程的多种对应关系,以下提供了四种数据传输方法。
需要提前说明的是,以下前三种数据传输方法中所提到的第一信令、第二信令、第三信令、第四信令、第五信令以及第六信令均可以为高层信令或者为物理层信令。其中,高层信令指的是来自物理层以上的层的配置信息,高层信令可以为RRC信令或者媒体接入控制控制单元(Media Access ControlControl Element,MAC CE)。物理层信令为来自物理层的配置信息,例如由PDCCH承载的DCI。
在第一种数据传输方法中,根据无线信号的RTT,将终端的HARQ反馈设置为使能状态或者去使能状态。在该方法中,以终端为单位设置HARQ反馈的状态。其中,将终端的HARQ反馈设置为使能状态或者去使能状态指的是,将该终端支持的所有HARQ进程中的每个HARQ进程的HARQ反馈均设置为使能状态或者去使能状态。
如图3所示,将终端的HARQ反馈设置为使能状态的方法可以包括:
步骤2011、网络侧设备确定无线信号的RTT。
网络侧设备可以将其向终端发送数据的时刻作为开始时刻,将接收到来自终端针对该数据的ACK或者NACK的时刻作为结束时刻。网络侧设备将开始时刻与结束时刻之间所经历的时长确定为RTT。
步骤2012、当该RTT小于第一门限阈值时,网络侧设备将网络侧设备的HARQ反馈设置为使能状态。
该使能状态为接收终端反馈的应答消息ACK或者否定应答消息NACK的状态。
步骤2013-1、当该RTT小于第一门限阈值时,网络侧设备生成第一信令。
该第一门限阈值用于将终端的HARQ反馈切换为使能状态,第一门限阈值可以预先存储于网络侧设备中。如此可以保证终端和网络侧设备均处于使能状态。
步骤2013-2、网络侧设备发送该第一信令。
为了避免对终端的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第一信令之后,且确定当前终端的HARQ反馈处于去使能状态时,再向终端发送第一信令。
步骤2014、终端接收该第一信令,根据该第一信令将终端的HARQ反馈从去使能状态切换为使能状态。
该第一信令用于指示将终端的HARQ反馈从去使能状态切换为使能状态。
另外,如图4所示,将终端的HARQ反馈设置为去使能状态的方法可以包括:
步骤2015、网络侧设备确定无线信号的RTT。
步骤2015中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2011,本申请实施例在此不再赘述。
步骤2016、当该RTT大于第二门限阈值,网络侧设备将网络侧设备的HARQ反馈设置为去使能状态。
该去使能状态为终端不反馈ACK以及NACK的状态。
步骤2017-1、当该RTT大于第二门限阈值,网络侧设备生成第二信令。
该第二门限阈值用于将终端的HARQ反馈切换为去使能状态,第二门限阈值可以预先存储于网络侧设备中。
步骤2017-2、网络侧设备发送该第二信令。
为了避免对终端的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第二信令之后,且确定当前终端的HARQ反馈处于使能状态时,再向终端发送第二信令。
步骤2018、终端接收该第二信令,根据该第二信令将终端的HARQ反馈从使能状态切换为去使能状态。
该第二信令用于指示将终端的HARQ反馈从使能状态切换为去使能状态。
需要说明的是,第二门限阈值大于或等于第一门限阈值。
可选的,终端在接收到第一信令或第二信令之前,接收用于指示终端的HARQ反馈的初始状态的其他信令,终端在接收到该其他信令之后,可以将终端的HARQ反馈根据该其他信令进行设置。例如,该其他信令指示将终端的HARQ反馈的初始状态设置为使能状态,则终端在接收到该其他信令之后,将其HARQ反馈的初始状态设置为使能状态。该其他信令可以为高层信令或者物理层信令。
在其他可选的实现方式中,通过预定义的方式设置终端的HARQ反馈的初始状态,例如通过设置缺省状态的方式将终端的HARQ反馈的初始状态设置为使能状态或者去使能状态。
在第二种数据传输方法中,根据无线信号的RTT,将终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态。
在前面已经介绍过,终端可以支持多个HARQ实体,每个HARQ实体可以对应多个HARQ进程。终端可以根据无线信号的RTT,将其支持的至少一个HARQ进程中的全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态,该至少一个HARQ进程包括一个HARQ进程或多个HARQ进程。在该方法中,以HARQ进程为单位设置HARQ反馈的状态,也即是,分别针对每个HARQ进程设置其HARQ反馈的状态。
其中,如图5所示,将终端的HARQ反馈设置为使能状态的方法可以包括:
步骤2021、网络侧设备确定无线信号的RTT。
步骤2021中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2011,本申请实施例在此不再赘述。
步骤2022、当该RTT小于第三门限阈值时,网络侧设备将网络侧设备的HARQ反馈设置为使能状态。
该使能状态为接收终端反馈的应答消息ACK或者否定应答消息NACK的状态。
步骤2023-1、当该RTT小于第三门限阈值时,网络侧设备生成第三信令。
该第三门限阈值用于将终端的HARQ反馈切换为使能状态,第三门限阈值可以预先存储于网络侧设备中。
步骤2023-1、网络侧设备发送该第三信令。
步骤2024、终端接收该第三信令,根据该第三信令将第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态。
该第三信令用于指示将第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态。
第三信令可以指示第一目标数量的HARQ进程中每个HARQ进程的进程ID,终端根据该进程ID,将该进程ID对应的HARQ进程从去使能状态切换为使能状态。
为了避免对终端中的HARQ进程的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第三信令之后,且确定第三信令中指示的进程ID对应的HARQ进程的HARQ反馈均处于去使能状态时,再向终端发送第该三信令。
其中,该第一目标数量可以由网络侧设备自由设置。
另外,如图6所示,将终端的HARQ反馈设置为去使能状态的方法可以包括:
步骤2025、网络侧设备确定无线信号的RTT。
步骤2025中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2011,本申请实施例在此不再赘述。
步骤2026、当该RTT大于第四门限阈值,网络侧设备将网络侧设备的HARQ反馈设置为去使能状态。
该去使能状态为所述终端不反馈ACK以及NACK的状态。
步骤2027-1、当该RTT大于第四门限阈值,网络侧设备生成第四信令。
该第四门限阈值用于将终端的HARQ反馈切换为去使能状态,第四门限阈值可以预先存储于网络侧设备中。
步骤2027-1、网络侧设备发送该第四信令。
步骤2028、终端接收该第四信令,根据该第四信令将第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态。
该第四信令用于指示将第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态。
第四信令可以指示第二目标数量的HARQ进程中每个HARQ进程的进程ID,终端根据该进程ID,将该进程ID对应的HARQ进程从使能状态切换为去使能状态。
为了避免对终端中的HARQ进程的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第四信令之后,且确定第四信令中指示的进程ID对应的HARQ进程的HARQ反馈均处于使能状态时,再向终端发送该第四信令。
其中,该第二目标数量可以由网络侧设备自由设置。第一目标数量与第二目标数量可以相同,也可以不同。
需要说明的是,第四门限阈值大于或等于第三门限阈值。
可选的,与上述第一种数据传输方法类似,终端在接收到第三信令或第四信令之前,还可以接收用于指示终端支持的至少一个HARQ进程中,每个HARQ进程的HARQ反馈的初始状态的其他信令,终端在接收到该其他信令之后,可以将该至少一个HARQ进程中的每个HARQ进程的HARQ反馈根据该其他信令进行设置,该其他信令中还可以指示终端支持的HARQ进程的数量,可以包括终端支持的下行HARQ进程的数量以及终端支持的上行HARQ进程的数量。该其他信令可以为高层信令或者物理层信令。
在其他可选的实现方式中,通过预定义的方式设置该每个HARQ进程的HARQ反馈的初始状态,例如通过设置缺省状态的方式将该每个HARQ进程的HARQ反馈的初始状态设置为使能状态或者去使能状态。
在第三种数据传输方法中,根据无线信号的RTT,将终端接收的至少一个业务类型中,全部或部分数量的业务类型的HARQ反馈均设置为使能状态或者去使能状态。
在前面已经介绍过,终端可以支持至少一个业务类型,每个业务类型可以使用多个HARQ进程,每个HARQ进程均具有HARQ反馈功能,该至少一个业务类型包括一个业务类型或者多个业务类型。在该第三种数据传输方法中,全部或部分数量的业务类型的HARQ反馈均设置为使能状态或者去使能状态指的是,以业务类型为单位设置HARQ反馈的状态。业务类型的HARQ反馈设置为使能状态或者去使能状态指的是,将每个业务类型使用的所有HARQ进程中的每个HARQ进程的HARQ反馈均设置为使能状态或者去使能状态。需要说明的是,业务类型所使用的多个HARQ进程并不是固定的,也即是,在同一个业务类型的多次无线信号的传输过程中,可以使用相同的多个HARQ进程,也可以使用不同的多个HARQ进程。
其中,如图7所示,将终端的HARQ反馈设置为使能状态的方法可以包括:
步骤2031、网络侧设备确定无线信号的RTT。
步骤2031中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2011,本申请实施例在此不再赘述。
步骤2032、当该RTT小于第五门限阈值时,网络侧设备将网络侧设备的HARQ反馈设置为使能状态。
该使能状态为接收终端反馈的应答消息ACK或者否定应答消息NACK的状态。
步骤2033-1、当该RTT小于第五门限阈值时,网络侧设备生成第五信令。
该第五门限阈值用于将全部或部分数量的业务类型中,每个业务类型的HARQ反馈切换为使能状态。第五门限阈值可以预先存储于网络侧设备中。
步骤2033-2、网络侧设备发送该第五信令。
步骤2034、终端接收该第五信令,根据该第五信令将第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态。
该第五信令用于指示将第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态。
为了避免对终端中的HARQ进程的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第五信令之后,且确定第三目标数量的业务类型的HARQ反馈均处于去使能状态时,再向终端发送该第五信令。
另外,如图8所示,将终端的HARQ反馈设置为去使能状态的方法可以包括:
步骤2035、网络侧设备确定无线信号的RTT。
步骤2035中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2011,本申请实施例在此不再赘述。
步骤2036、当该RTT大于第六门限阈值,网络侧设备将网络侧设备的HARQ反馈设置为去使能状态。
该去使能状态为所述终端不反馈ACK以及NACK的状态。
步骤2037-1、当该RTT大于第六门限阈值,网络侧设备生成第六信令。
该第六门限阈值用于将全部或部分数量的业务类型中,每个业务类型的HARQ反馈切换为去使能状态。
步骤2037-2、网络侧设备发送该第六信令。
步骤2088、终端接收该第六信令,根据该第六信令将第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态。
第六信令用于指示将第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态。
为了避免对终端中的HARQ进程的HARQ反馈的状态进行重复操作,网络侧设备可以在其生成第六信令之后,且确定第四目标数量的业务类型的HARQ反馈均处于使能状态时,再向终端发送该第六信令。
需要说明的是,第六门限阈值大于或等于第五门限阈值。
可选的,与上述第一种数据传输方法类似,终端在接收到第五信令或第六信令之前,还可以接收用于指示终端支持的至少两个业务类型中每个业务类型的HARQ反馈的初始状态的其他信令,终端在接收到该其他信令之后,可以将每个业务类型的HARQ反馈根据该其他信令进行设置。该其他信令可以为高层信令或者物理层信令。
在其他可选的实现方式中,通过预定义的方式设置业务类型的HARQ反馈的初始状态,例如通过设置缺省状态的方式将业务类型的HARQ反馈的初始状态设置为使能状态或者去使能状态。
其中,业务类型与逻辑信道一一对应,设置业务类型的HARQ反馈的过程实际上是设置逻辑信道的HARQ反馈的过程。第五信令指示将第三目标数量的逻辑信道的HARQ反馈均设置为使能状态,第六信令指示将第四目标数量的逻辑信道的HARQ反馈均设置为去使能状态。
在第四种数据传输方法中,网络侧设备可以为卫星,由于卫星在地面的通信范围覆盖一个小区,因此,可以将卫星与该小区内距离卫星最近的地面位置的RTT,即最小RTT作为将终端的HARQ反馈设置为使能状态或者去使能状态的依据。进一步的,将HARQ反馈设置为使能状态或者去使能状态,包括将小区内的所有终端的HARQ反馈设置为使能状态或者去使能状态。该方法中,以小区为单位设置小区内所有终端的HARQ反馈的状态。
其中,如图9所示,将终端的HARQ反馈设置为使能状态的方法可以包括:
步骤2041、卫星确定最小RTT。
该最小RTT为无线信号在卫星与目标位置之间的RTT,该目标位置为卫星在地面的通信范围内(即小区内),距离该卫星最近的地面位置。卫星在确定最小RTT的过程中,假设终端处于卫星在地面的通信范围内距离卫星最近的地面位置,以此测量最小RTT。
步骤2042、当该最小RTT小于第七门限阈值时,卫星将卫星的HARQ反馈设置为使能状态。
该使能状态为接收终端反馈的应答消息ACK或者否定应答消息NACK的状态。
步骤2043-1、当该RTT小于第七门限阈值时,卫星生成第七信令。
该第七门限阈值用于将终端的HARQ反馈切换为使能状态,第七门限阈值可以预先存储于卫星中。
步骤2043-2、卫星发送该第七信令。
为了避免对终端的HARQ反馈的状态进行重复操作,卫星可以在其生成第七信令之后,且确定当前终端的HARQ反馈处于去使能状态时,再向终端发送第七信令。
步骤2044、终端接收该第七信令,根据该第七信令将该终端的HARQ反馈从去使能状态切换为使能状态。
该第七信令用于指示将终端的HARQ反馈从去使能状态切换为使能状态。
对于该小区内的所有终端,均可以接收该第七信令,使得该小区内的所有终端均可以根据该第七信令将各自的 HARQ反馈从去使能状态切换为使能状态。
当然,也可以用于将小区内的部分终端的HARQ反馈根据该第七信令从去使能状态切换为使能状态,本申请实施例对此不进行限制。
另外,如图10所示,将终端的HARQ反馈设置为去使能状态的方法可以包括:
步骤2045、卫星确定最小RTT。
步骤2045中卫星确定最小RTT的相关描述可以参考上述步骤2041,本申请实施例在此不再赘述。
步骤2046、当该最小RTT大于第八门限阈值,卫星将卫星的HARQ反馈设置为去使能状态。
该去使能状态为所述终端不反馈ACK以及NACK的状态。
步骤2047-1、当该RTT大于第八门限阈值,卫星生成第八信令。
该第八门限阈值用于将终端的HARQ反馈切换为去使能状态,第八门限阈值可以预先存储于卫星中。
步骤2047-2、卫星发送该第八信令。
为了避免对终端的HARQ反馈的状态进行重复操作,卫星可以在其生成第八信令之后,且确定当前终端的HARQ反馈处于使能状态时,再向终端发送第八信令。
步骤2048、终端接收该第八信令,根据该第八信令将小区内的所有终端的HARQ反馈从使能状态切换为去使能状态。
该第八信令用于指示将终端的HARQ反馈从使能状态切换为去使能状态。
当然,也可以根据该第八信令将小区内的部分终端的HARQ反馈从使能状态切换为去使能状态,本申请实施例对此不进行限制。
需要说明的是,第八门限阈值大于或等于第七门限阈值。
可选的,与上述第一种数据传输方法类似,终端在接收到第七信令或第八信令之前,还可以接收用于指示终端的HARQ反馈的初始状态的其他信令,终端在接收到该其他信令之后,可以将终端的HARQ反馈根据该其他信令进行设置。
在其他可选的实现方式中,通过预定义的方式设置终端的HARQ反馈的初始状态,例如通过设置缺省状态的方式将终端的HARQ反馈的初始状态设置为使能状态或者去使能状态。
该第七信令、第八信令以及其他信令可以为均为系统消息。其中,系统消息可以是主系统信息块(Master Information Block,MIB)、系统信息块(System Information Block,SIB)或者保留系统消息(Remaining System Information,RMSI)中的一种。
还需要说明的是,上述第四种数据传输方法是以小区为单位设置小区内所有终端的HARQ反馈的状态,也即是,将每个终端支持的所有HARQ进程中每个HARQ进程的HARQ反馈均设置为使能状态或者去使能状态。在其他可选的实现方式中,也可以参考上述第二种和第三种数据传输方法,也即是,以HARQ进程为单位,将终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态,或者,以业务类型为单位,将终端接收的至少一个业务类型中,全部或部分数量的业务类型的HARQ反馈设置为使能状态或者去使能状态。
在第二种RTT的确定方式中,由终端测量其与网络侧设备之间传输无线信号所需的RTT。可选的,如图11所示,将终端的HARQ反馈设置为使能状态的方法可以包括:
步骤2051-1、网络侧设备生成第九信令。
第九信令用于指示第九门限阈值。第九门限阈值用于将终端的HARQ反馈切换为使能状态。
步骤2051-2、网络侧设备发送该第九信令。
步骤2052、终端确定无线信号的RTT。
终端可以具备自定位能力,终端通过自定位能力测量其与网络侧设备之间传输无线信号所需的RTT。
步骤2053、当该RTT小于该第九门限阈值,将终端的HARQ反馈从去使能状态切换为使能状态。
终端在接收到第九信令之后,将确定的无线信号的RTT与该第九信令指示的第九门限阈值进行比较,当该RTT小于该第九门限阈值,将终端的HARQ反馈从去使能状态切换为使能状态。
另外,如图12所示,将终端的HARQ反馈设置为去使能状态的方法可以包括:
步骤2054-1、网络侧设备生成第十信令。
第十信令用于指示第十门限阈值。该第十门限阈值用于将终端的HARQ反馈切换为去使能状态。
步骤2054-1、网络侧设备发送该第十信令。
步骤2055、终端确定无线信号的RTT。
步骤2055中网络侧设备确定无线信号的RTT的相关描述可以参考上述步骤2052,本申请实施例在此不再赘述。
步骤2056、当该RTT大于该第十门限阈值,将终端的HARQ反馈从去使能状态切换为使能状态。
终端在接收到第十信令之后,将确定的无线信号的RTT与该第十信令指示的第十门限阈值进行比较,当该RTT大于于该第十门限阈值,将终端的HARQ反馈从使能状态切换为去使能状态。
其中,第十门限阈值大于或等于第九门限阈值。与上述第一种RTT的确定方式中的第一种数据传输方法类似,终端在接收到第九信令和第十信令之前,还可以接收用于指示终端的HARQ反馈的初始状态的其他信令,终端在接收到该其他信令之后,可以将终端的HARQ反馈根据该其他信令进行设置。该第九信令、第十信令以及其他信令可以为高层信令或者物理层信令。
可选的,如图11和图12所示,终端在将其HARQ反馈从去使能状态切换为使能状态,或者,终端在将其HARQ反馈从使能状态切换为去使能状态之后,该方法还可以包括:
步骤2057、向网络侧设备发送显示指令。
该显性指令可以为RRC信令或者MAC CE,该显性指令用于告知网络侧设备终端当前的HARQ反馈的状态。该显性指令可以用于使网络侧设备将其HARQ反馈设置为与终端当前的HARQ反馈相同的状态。
还需要说明的是,上述数据传输方法是以终端为单位设置HARQ反馈的状态,也即是,对于每个终端来说,将该终端支持的所有HARQ进程中每个HARQ进程的HARQ反馈均设置为使能状态或者去使能状态。在其他可选的实现方式中,也可以参考上述第二种和第三种数据传输方法,也即是,以HARQ进程为单位,将终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态,或者,以业务类型为单位,将终端接收的至少一个业务类型中,全部或部分数量的业务类型的HARQ反馈设置为使能状态或者去使能状态。
综上所述,本申请实施例所提供的数据传输方法,可以根据无线信号的RTT灵活地设置终端的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以根据无线信号的RRT而有选择性地开启或者关闭,避免了给终端造成不必要的负担。并且,当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。
在本申请实施例提供的数据传输方法中,当终端与网络侧设备之间传输的无线信号的RTT较大时,将终端的HARQ反馈设置为去使能状态,从而实现较快速的重传,保证了数据传输的可靠性,并同时保证了数据传输的时延;当终端与网络侧设备之间传输的无线信号的RTT较小时,将终端的HARQ反馈设置为使能状态,使得网络侧设备可以根据无线信号是否正确解码来决定重传数据或者传输新数据,保证了数据传输的可靠性,并且,由于基于该RTT灵活设置了HARQ反馈的状态,可以更加有效地利用系统资源,减少了不必要的资源浪费。
以下结合无线信号的上行传输过程和下行传输过程对本申请实施例所提供的数据传输方法进行进一步说明。为了便于读者更好的理解本申请,以下实施例以传输两次无线信号(即第一无线信号和第二无线信号)且以终端侧为例进行说明。如图13所示,该方法包括:
步骤301、设置终端的HARQ反馈的初始状态。
根据网络侧设备发送的信令将终端的HARQ反馈的初始状态设置为使能状态或者去使能状态,或者终端根据预定义将终端的HARQ反馈的初始状态设置为初始状态或者去使能状态。
步骤302、接收目标信令。
该目标信令为网络侧设备根据无线信号的RTT生成的,该目标信令可以用于指示将终端的HARQ反馈设置为使能状态或者去使能状态,或者,用于指示将终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态,或者,用于指示将所述终端接收的至少一个业务类型中,全部或部分数量业务类型的HARQ反馈均设置为使能状态或者去使能状态。
终端通过接收该目标信令,将其HARQ反馈设置为与网络侧设备的HARQ反馈相同的状态,以保证本申请实施例提供的数据传输方法的有效执行。该目标信令可以为上述第一信令至第十信令中的任意一个信令。
若终端的初始状态为去使能状态,且接收的是将终端的HARQ反馈切换为使能状态的目标信令,则在步骤302之后执行步骤303;若终端的初始状态为使能状态,且接收的是将终端的HARQ反馈切换为去使能状态的目标信令,则在步骤302之后执行步骤312。
步骤303、终端根据接收到的信令将终端的HARQ反馈从去使能状态切换为使能状态。
若终端处于下行传输,则在步骤303之后执行步骤304;若终端处于上行传输,则在步骤303之后执行步骤308。
步骤304、基于终端中的目标下行HARQ进程接收第一无线信号。
该第一无线信号通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输。其中,该目标下行HARQ进程为终端中的下行HARQ进程中的任意一个。
步骤305、对该第一无线信号进行解码处理,并向网络侧设备反馈针对该目标下行HARQ进程的ACK或者NACK。
当终端对该第一无线信号解码成功,则向网络侧设备反馈ACK;反之,若终端对该第一无线信号解码不成功,则向网络侧设备反馈NACK。
步骤306、基于终端中的目标下行HARQ进程接收第二无线信号。
该第二无线信号通过PDSCH传输。其中,接收第一无线信号的目标下行HARQ进程与接收第二无线信号的目标下行HARQ进程可以为相同的下行HARQ进程,也可以为不同的下行HARQ进程。
步骤307、对该第二无线信号进行解码处理,并向网络侧设备反馈针对该目标下行HARQ进程的ACK或者NACK。
当终端对该第二无线信号解码成功,则向网络侧设备反馈ACK;反之,若终端对该第二无线信号解码不成功,则向网络侧设备反馈NACK。
步骤308、接收第一DCI。
该第一DCI通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)接收,用于调度目标上行HARQ进程。该第一DCI中包含分配的时频域资源位置、MCS、使用的上行HARQ进程ID以及初传重传指示等等,能够用于调度目标上行HARQ进程。
步骤309、基于该目标上行HARQ进程发送第一无线信号。
第一无线信号通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。该目标上行HARQ进程为终端中的上行HARQ进程中的任意一个。
步骤310、接收第二DCI。
该第二DCI通过PDCCH接收,该第二DCI中包含分配的时频域资源位置、MCS、使用的上行HARQ进程ID以及初传重传指示等等,能够用于调度目标上行HARQ进程。
步骤311、基于该目标上行HARQ进程发送第二无线信号,该第二无线信号通过PUSCH传输。
其中,接收第一无线信号的目标上行HARQ进程与接收第二无线信号的目标上行HARQ进程可以为相同的上行HARQ进程,也可以为不同的上行HARQ进程。若接收第一无线信号的目标上行HARQ进程与接收第二无线信号的目标上行HARQ进程为相同的上行HARQ进程,则该第二DCI是网络侧设备对该第一无线信号的解码之后发送的,也即是终端需要至少等待网络侧设备对该第一无线信号进行解码的时间之后,才可以继续使用同一目标上行HARQ进程发送第二无线信号。
步骤312、根据接收到的信令将终端的HARQ反馈从使能状态切换为去使能状态。
若终端处于下行传输,则在步骤312之后执行步骤313;若终端处于上行传输,则在步骤312之后执行步骤315。
步骤313、基于终端中的目标下行HARQ进程接收第一无线信号。
该第一无线信号通过PDSCH传输。该目标下行HARQ进程为终端的至少一个下行HARQ进程。
步骤314、不反馈针对目标下行HARQ进程的ACK或者NACK,在接收第一无线信号之后基于目标下行HARQ进程继续接收第二无线信号。
该第二无线信号通过PDSCH传输。
步骤315、接收第一DCI。
该第一DCI用于调度目标上行HARQ进程,目标上行HARQ进程为所述终端的至少一个上行HARQ进程。该第一DCI通过PDCCH接收,用于调度目标上行HARQ进程以传输第一无线信号。第一DCI中包含分配的时频域资源位置、MCS、使用的上行HARQ进程ID以及初传重传指示等等,能够用于调度目标上行HARQ进程。
步骤316、基于该目标上行HARQ进程发送第一无线信号,该第一无线信号通过PUSCH传输。
步骤317、接收第二DCI。
该第二DCI是网络侧设备不考虑对该第一无线信号的解码结果的情况下发送的,第二DCI用于调度目标上行HARQ进程。该第二DCI通过PDCCH接收,用于调度该目标上行HARQ进程以传输第二无线信号。第二DCI中包含分配的时频域资源位置、MCS、使用的上行HARQ进程ID以及初传重传指示等等,能够用于调度目标上行HARQ进程。
其中,接收第一无线信号的目标上行HARQ进程与接收第二无线信号的目标上行HARQ进程可以为相同的上行HARQ进程,也可以为不同的上行HARQ进程。
当接收第一无线信号的目标上行HARQ进程与接收第二无线信号的目标上行HARQ进程为相同的上行HARQ进程时,可以看出,本申请实施例提供的数据传输方法中,当终端的HARQ反馈处于去激活态时,终端可连续接收用于调度同一目标上行HARQ进程的DCI。
步骤318、基于该目标上行HARQ进程发送第二无线信号,该第二无线信号通过PUSCH传输。
当终端处于去使能状态下,在下行传输的过程中,对于一个目标下行HARQ进程,网络侧设备无需等待终端针对某一无线信号反馈的ACK或者NACK便可以继续使用同一个目标下行HARQ进程进行下行数据的传输,相应的,终端也无需等待网络侧设备在接收到其针对目标下行HARQ进程反馈的ACK或者NACK之后再使用该下行HARQ进程进行下行传输。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了信号传输的时延。在上行传输的过程中,对于一个目标上行HARQ进程,由于网络侧设备无需等待接收到第一无线信号再向终端发送调度该目标上行HARQ进程的DCI,而是可以直接在调度第一无线信号的传输之后,便调度同一个目标上行HARQ进程进行第二无线信号的传输,相应的,终端在发送第一无线信号之后,无需等待接收网络侧设备对第一无线信号的解码完成指示,便可以继续发送第二无线信号。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了终端与网 络侧设备信号传输的时延。
需要说明的是,针对上述第一种RTT的确定方式中的第一种数据传输方法,目标下行HARQ进程为终端支持的所有下行HARQ进程中的任意一个;针对上述第一种RTT的确定方式中的第二种数据传输方法,目标下行HARQ进程为第三信令指示的第一目标数量的上行HARQ进程中的任意一个;针对上述第一种RTT的确定方式中的第三种数据传输方法,目标下行HARQ进程为第五信令指示的第三目标数量的业务类型中的任意一个;针对上述第一种RTT的确定方式中的第四种数据传输方法,目标下行HARQ进程为卫星在地面通信覆盖的小区内的所有终端支持的所有下行HARQ进程中的任意一个;针对上述第二种RTT的确定方式中的数据传输方法,目标下行HARQ进程为终端支持的所有下行HARQ进程中的任意一个。
与此类似,针对上述第一种RTT的确定方式中的第一种数据传输方法,目标上行HARQ进程为终端支持的所有上行HARQ进程中的任意一个;针对上述第一种RTT的确定方式中的第二种数据传输方法,目标上行HARQ进程为第四信令指示的第二目标数量的上行HARQ进程中的任意一个;针对上述第一种RTT的确定方式中的第三种数据传输方法,目标上行HARQ进程为第六信令指示的第四目标数量的业务类型中的任意一个;针对上述第一种RTT的确定方式中的第四种数据传输方法,目标上行HARQ进程为卫星在地面通信覆盖的小区内的所有终端支持的所有上行HARQ进程中的任意一个;针对上述第二种RTT的确定方式中的数据传输方法,目标上行HARQ进程为终端支持的所有上行HARQ进程中的任意一个。
上述实施例中的由终端执行的步骤可以实现为终端一侧的数据传输方法方法;上述实施例中的由网络侧设备执行的步骤可以实现为网络侧设备一侧的数据传输方法。
图14示出了本申请实施例提供的一种数据传输装置的框图,所述装置400包括:
设置模块401,用于根据无线信号的往返传输时间RTT,将该装置的HARQ反馈设置为使能状态或者去使能状态;
其中,所述使能状态为反馈应答消息ACK或者否定应答消息NACK的状态,所述去使能状态为不反馈ACK以及NACK的状态。
综上所述,本申请实施例所提供的数据传输装置,可以根据无线信号的RTT灵活地设置终端的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以根据无线信号的RRT而有选择性地开启或者关闭,避免了给终端造成不必要的负担。并且,当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。
可选的,所述RTT为网络侧设备确定的;或者,所述RTT为所述装置确定的。
可选的,图15示出了本申请实施例提供的一种数据传输装置的框图,所述装置还包括:接收模块402,所述接收模块402用于接收目标信令,所述目标信令为网络侧设备根据所述无线信号的RTT生成的;所述设置模块401用于根据所述目标信令,将所述终端的HARQ反馈设置为使能状态或者去使能状态。
可选的,所述目标信令用于指示将所述装置支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态;或者,所述目标信令用于指示将所述装置接收的至少一个业务类型中,全部或部分数量的业务类型的HARQ反馈均设置为使能状态或者去使能状态。
可选的,所述接收模块402,用于接收第一信令,所述第一信令用于指示将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块402,用于接收第二信令,所述第二信令用于指示将所述装置的HARQ反馈从使能状态切换为去使能状态;
其中,所述第一信令和所述第二信令均为所述网络侧设备根据所述RTT生成的。
可选的,所述第一信令为所述网络侧设备在确定所述RTT小于第一门限阈值时生成的,所述第二信令为所述网络侧设备在确定所述RTT大于第二门限阈值时生成的;其中,所述第二门限阈值大于或等于所述第一门限阈值。
可选的,所述接收模块402,用于接收第三信令,所述第三信令用于指示将第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块402,用于接收第四信令,所述第四信令用于指示将第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态,其中,所述第三信令和所述第四信令均为所述网络侧设备根据所述RTT生成的。
可选的,所述第三信令为所述网络侧设备在确定所述RTT小于第三门限阈值时生成的,所述第四信令为所述网络侧设备在确定所述RTT大于第四门限阈值时生成的;其中,所述第四门限阈值大于或等于所述第三门限阈值。
可选的,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
可选的,所述接收模块402,用于接收第五信令,所述第五信令用于指示将第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块402,用于接收第六信令,所述第六信令用于指示将第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态,其中,所述第五信令和所述第六信令均为所述网络侧设备根据所述RTT生成的。
可选的,所述第五信令为所述网络侧设备在确定所述RTT小于第五门限阈值时生成的,所述第六信令为所述网络侧设备在确定所述RTT大于第六门限阈值时生成的,其中,所述第六门限阈值大于或等于所述第五门限阈值。
可选的,所述网络侧设备为卫星,所述卫星在地面的通信范围覆盖一个小区。
可选的,所述RTT为所述卫星确定的;所述设置模块401,用于根据最小RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,所述终端为所述小区内的一个终端;其中,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置。
可选的,所述接收模块402,用于接收第七信令,所述第七信令用于指示将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块402,用于接收第八信令,所述第八信令用于指示将所述装置的HARQ反馈从使能状态切换为去使能状态;其中,所述第七信令和所述第八信令均为所述卫星根据所述最小RTT生成的。
可选的,所述第七信令为所述卫星在确定所述最小RTT小于第七门限阈值时生成的,所述第八信令为所述卫星在确定所述最小RTT大于第八门限阈值时生成的,其中,所述第八门限阈值大于或等于所述第七门限阈值。
可选的,所述接收模块402,用于接收第九信令,所述第九信令用于指示第九门限阈值;所述设置模块,用于确定所述无线信号的RTT;当所述RTT小于所述第九门限阈值,将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块402,用于接收第十信令,所述第十信令用于指示第十门限阈值;所述设置模块,用于确定所述无线信号的RTT;当所述RTT大于所述第十门限阈值,将所述装置的HARQ反馈从使能状态切换为去使能状态;其中,所述第十门限阈值大于或等于所述第九门限阈值。
可选的,所述装置的HARQ反馈为去使能状态,所述接收模块402,用于基于目标下行HARQ进程接收第一无线信号,所述目标下行HARQ进程为所述终端的至少一个下行HARQ进程;所述接收模块402,用于不反馈针对所述目标下行HARQ进程的ACK或者NACK,在接收所述第一无线信号之后基于所述目标下行HARQ进程继续接收第二无线信号。
可选的,所述装置的HARQ反馈为去使能状态,图16示出了本申请实施例提供的一种数据传输装置的框图,所述装置还包括:发送模块403,所述接收模块402,用于接收第一下行控制信息DCI,所述第一DCI用于调度目标上行HARQ进程,所述目标上行HARQ进程为所述终端的至少一个上行HARQ进程;所述发送模块403,用于基于所述目标上行HARQ进程发送第一无线信号;所述接收模块402,用于接收第二DCI,所述第二DCI是所述网络侧设备不考虑对所述第一无线信号的解码结果的情况下发送的,所述第二DCI用于调度所述目标上行HARQ进程;所述发送模块403,用于基于所述目标上行HARQ进程发送第二无线信号。
可选的,所述第一信令或者所述第二信令为无线资源控制RRC信令、媒体接入控制控制单元MAC CE、或者下行控制信息DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
综上所述,本申请实施例所提供的数据传输装置,可以根据无线信号的RTT灵活地设置终端的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以根据无线信号的RRT而有选择性地开启或者关闭,避免了给终端造成不必要的负担。当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。并且,在本申请实施例提供的数据传输方法中,当终端与网络侧设备之间传输的无线信号的RTT较大时,将终端的HARQ反馈设置为去使能状态,从而实现较快速的重传,保证了数据传输的可靠性,并同时保证了数据传输的时延;当终端与网络侧设备之间传输的无线信号的RTT较小时,将终端的HARQ反馈设置为使能状态,使得网络侧设备可以根据无线信号是否正确解码来决定重传数据或者传输新数据,保证了数据传输的可靠性,并且,由于基于该RTT灵活设置了HARQ反馈的状态,可以更加有效地利用系统资源,减少了不必要的资源浪费。
并且,当终端处于去使能状态下,在下行传输的过程中,对于一个目标下行HARQ进程,网络侧设备无需等待终端针对某一无线信号反馈的ACK或者NACK便可以继续使用同一个目标下行HARQ进程进行下行数据的传输,相应的,终端也无需等待网络侧设备在接收到其针对目标下行HARQ进程反馈的ACK或者NACK之后再使用该下行HARQ进程进行下行传输。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了信号传输的时延。在上行传输的过程中,对于一个目标上行HARQ进程,由于网络侧设备无需等待接收到第一无线信号再向终端发送调度该目标上行HARQ进程的DCI,而是可以直接在调度第一无线信号的传输之后,便调度同一个目标上行HARQ进程进行第二无线信号的传输,相应的,终端在发送第一无线信号之后,无需等待接收网络侧设备对第一无线信号的解码完成指示,便可以继续发送第二无线信号。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了终端与网络侧设备信号传输的时延。
图17示出了本申请实施例提供的一种数据传输装置500的框图,所述装置500包括:设置模块501,所述设置模块501用于根据无线信号的RTT,将所述装置的HARQ反馈设置为使能状态或者去使能状态;其中,所述使能状态为接收终端反馈ACK或者NACK的状态,所述去使能状态为所述终端不反馈ACK以及NACK的状态。
综上所述,本申请实施例所提供的数据传输装置,可以根据无线信号的RTT向终端发送目标信令,该目标信令可以用于灵活地设置终端以及网络侧设备的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以根据无 线信号的RRT而有选择性地开启或者关闭,避免了给终端造成不必要的负担。并且,当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。
可选的,所述RTT为所述装置确定的;或者,所述RTT为终端确定的。
可选的,图18示出了本申请实施例提供的一种数据传输装置500的框图,所述装置还包括:处理模块502,所述处理模块502用于确定所述无线信号的RTT;所述设置模块501用于根据所述RTT将所述装置的HARQ反馈设置为使能状态或者去使能状态。
可选的,图19示出了本申请实施例提供的一种数据传输装置500的框图,所述装置还包括:发送模块503,所述处理模块502用于根据所述RTT生成目标信令;所述发送模块503用于发送所述目标信令,其中,所述目标信令用于将所述终端的HARQ反馈设置为使能状态或者去使能状态。
可选的,所述处理模块502用于当所述RTT小于第一门限阈值时,生成第一信令,所述第一信令用于将所述终端的HARQ反馈从去使能状态切换为使能状态;所述处理模块502用于当所述RTT大于第二门限阈值时,生成第二信令,所述第二信令用于将所述终端的HARQ反馈从使能状态切换为去使能状态;所述第二门限阈值大于或等于所述第一门限阈值。
可选的,所述处理模块502用于当所述RTT小于第三门限阈值时,生成第三信令,所述第三信令用于将所述终端支持的至少一个HARQ进程中,第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;所述处理模块502用于当所述RTT大于第四门限阈值时,生成第四信令,所述第四信令用于将所述终端支持的至少一个HARQ进程中,第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态;所述第四门限阈值大于或等于所述第三门限阈值。
可选的,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
可选的,所述处理模块502用于当所述RTT小于第五门限阈值时,生成第五信令,所述第五信令用于将所述终端接收的至少一个业务类型中,第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;所述处理模块502用于当所述RTT大于第六门限阈值时,生成第六信令,所述第六信令用于将所述终端接收的至少一个业务类型中,第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态;所述第六门限阈值大于或等于所述第五门限阈值。
可选的,所述装置为卫星,所述卫星在地面的通信范围覆盖一个小区。
可选的,所述处理模块502用于确定所述无线信号的最小RTT,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置,所述最小RTT用于将所述小区内的所有终端的HARQ反馈设置为使能状态或者去使能状态;所述处理模块502,用于根据所述最小RTT生成目标信令。
可选的,所述处理模块502用于当所述最小RTT小于第七门限阈值时,生成第七信令,所述第七信令用于将所述小区内的所有终端的HARQ反馈从去使能状态切换为使能状态;所述处理模块502用于当所述最小RTT大于第八门限阈值时,生成第八信令,所述第八信令用于将所述小区内的所有终端的HARQ反馈从使能状态切换为去使能状态;所述第八门限阈值大于或等于所述第七门限阈值。
可选的,所述RTT为所述终端确定的;图20示出了本申请实施例提供的一种数据传输装置500的框图,所述装置还包括:发送模块503,所述发送模块503用于发送第九信令,所述第九信令用于指示第九门限阈值,或者,所述发送模块503用于发送第十信令,所述第十信令用于指示第十门限阈值,其中,所述第十门限阈值大于或等于所述第九门限阈值,所述第九门限阈值用于当所述RTT小于所述第九门限阈值时,触发所述终端将所述终端的HARQ反馈从去使能状态切换为使能状态,所述第十门限阈值用于当所述RTT大于所述第十门限阈值时,触发所述终端将所述终端的HARQ反馈从使能状态切换为去使能状态。
可选的,所述装置的HARQ反馈为去使能状态,所述发送模块503用于基于目标下行HARQ进程发送第一无线信号,所述目标下行HARQ进程为所述网络侧设备的至少一个下行HARQ进程;所述发送模块503用于不接收针对所述目标下行HARQ进程的ACK或者NACK,在发送所述第一无线信号之后基于所述目标下行HARQ进程继续发送第二无线信号。
可选的,所述装置的HARQ反馈为去使能状态,图21示出了本申请实施例提供的一种数据传输装置500的框图,所述装置还包括:接收模块504,所述发送模块503,用于发送第一DCI,所述第一DCI用于调度目标上行HARQ进程,所述目标上行HARQ进程为所述网络侧设备的至少一个上行HARQ进程;所述接收模块504,用于基于所述目标上行HARQ进程接收第一无线信号;所述发送模块503,用于在不考虑对所述第一无线信号的解码结果的情况下发送第二DCI,所述第二DCI用于调度所述目标上行HARQ进程;所述接收模块504,用于基于所述目标上行HARQ进程接收第二无线信号。
可选的,所述第一信令或者所述第二信令为RRC信令、MAC CE、或者DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者 所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
综上所述,本申请实施例所提供的数据传输装置,可以根据无线信号的RTT向终端发送目标信令,该目标信令可以用于灵活地设置终端的HARQ机制中的HARQ反馈功能。由于终端的HARQ反馈可以根据无线信号的RRT而有选择性地开启或者关闭,避免了给终端造成不必要的负担。
当终端的HARQ反馈处于关闭状态(即去使能状态)时,能够减少无线信号的传输时延。并且,在本申请实施例提供的数据传输方法中,当终端与网络侧设备之间传输的无线信号的RTT较大时,将终端的HARQ反馈设置为去使能状态,从而实现较快速的重传,保证了数据传输的可靠性,并同时保证了数据传输的时延;当终端与网络侧设备之间传输的无线信号的RTT较小时,将终端的HARQ反馈设置为使能状态,使得网络侧设备可以根据无线信号是否正确解码来决定重传数据或者传输新数据,保证了数据传输的可靠性,并且,由于基于该RTT灵活设置了HARQ反馈的状态,可以更加有效地利用系统资源,减少了不必要的资源浪费。
并且,当终端处于去使能状态下,在下行传输的过程中,对于一个目标下行HARQ进程,网络侧设备无需等待终端针对某一无线信号反馈的ACK或者NACK便可以继续使用同一个目标下行HARQ进程进行下行数据的传输,相应的,终端也无需等待网络侧设备在接收到其针对目标下行HARQ进程反馈的ACK或者NACK之后再使用该下行HARQ进程进行下行传输。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了信号传输的时延。在上行传输的过程中,对于一个目标上行HARQ进程,由于网络侧设备无需等待接收到第一无线信号再向终端发送调度该目标上行HARQ进程的DCI,而是可以直接在调度第一无线信号的传输之后,便调度同一个目标上行HARQ进程进行第二无线信号的传输,相应的,终端在发送第一无线信号之后,无需等待接收网络侧设备对第一无线信号的解码完成指示,便可以继续发送第二无线信号。由于提供了一种HARQ反馈的去使能状态,其相较于使能状态有效减少了传输时延,因此有效减轻了终端的压力,减少了终端与网络侧设备信号传输的时延。
本申请实施例提供了一种数据传输系统,所述系统包括终端和网络侧设备,所述终端为图14和图15所述的数据传输装置,所述网络侧设备为图17至图21所述的数据传输装置。
请参考图22,其示出了本申请实施例提供的一种终端的结构方框图,该终端包括:处理器91、接收器92、发射器93、存储器94和总线95。
处理器91包括一个或者一个以上处理核心,处理器91通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器92和发射器93可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器94通过总线95与处理器91相连。
存储器94可用于存储至少一个指令,处理器91用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器94可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的数据传输方法。
本申请还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述各个方法实施例提供的数据传输方法。
本申请还提供了一种计算机程序产品,所述计算机程序产品包括一个或多个计算机程序,所述计算机程序被处理器执行时,用于实现上述各个方法实施例提供的数据传输方法。
请参考图23,其示出了本申请实施例提供的一种网络侧设备的结构方框图,该网络侧设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器11通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的数据传输方法。
本申请还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述各个方法实施例提供的数据传输方法。
本申请还提供了一种计算机程序产品,所述计算机程序产品包括一个或多个计算机程序,所述计算机程序被处理器执行时,用于实现上述各个方法实施例提供的数据传输方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (75)
- 一种数据传输方法,其特征在于,所述方法应用于终端,所述方法包括:根据无线信号的往返传输时间RTT,将所述终端的混合自动重传请求HARQ反馈设置为使能状态或者去使能状态;其中,所述使能状态为反馈应答消息ACK或者否定应答消息NACK的状态,所述去使能状态为不反馈ACK以及NACK的状态。
- 根据权利要求1所述的方法,其特征在于,所述RTT为网络侧设备确定的;或者,所述RTT为所述终端确定的。
- 根据权利要求2所述的方法,其特征在于,所述根据无线信号的RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,包括:接收目标信令,所述目标信令为网络侧设备根据所述无线信号的RTT生成的;根据所述目标信令,将所述终端的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求3所述的方法,其特征在于,所述目标信令用于指示将所述终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态;或者,所述目标信令用于指示将所述终端接收的至少一个业务类型中,全部或部分数量业务类型的HARQ反馈均设置为使能状态或者去使能状态。
- 根据权利要求3所述的方法,其特征在于,所述接收目标信令,包括:接收第一信令,所述第一信令用于指示将所述终端的HARQ反馈从去使能状态切换为使能状态;或者,接收第二信令,所述第二信令用于指示将所述终端的HARQ反馈从使能状态切换为去使能状态;其中,所述第一信令和所述第二信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求5所述的方法,其特征在于,所述第一信令为所述网络侧设备在确定所述RTT小于第一门限阈值时生成的,所述第二信令为所述网络侧设备在确定所述RTT大于第二门限阈值时生成的;其中,所述第二门限阈值大于或等于所述第一门限阈值。
- 根据权利要求4所述的方法,其特征在于,所述接收目标信令,包括:接收第三信令,所述第三信令用于指示将第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;或者,接收第四信令,所述第四信令用于指示将第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态,其中,所述第三信令和所述第四信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求7所述的方法,其特征在于,所述第三信令为所述网络侧设备在确定所述RTT小于第三门限阈值时生成的,所述第四信令为所述网络侧设备在确定所述RTT大于第四门限阈值时生成的;其中,所述第四门限阈值大于或等于所述第三门限阈值。
- 根据权利要求7所述的方法,其特征在于,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
- 根据权利要求4所述的方法,其特征在于,所述接收目标信令,包括:接收第五信令,所述第五信令用于指示将第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;或者,接收第六信令,所述第六信令用于指示将第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态,其中,所述第五信令和所述第六信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求10所述的方法,其特征在于,所述第五信令为所述网络侧设备在确定所述RTT小于第五门限阈值时生成的,所述第六信令为所述网络侧设备在确定所述RTT大于第六门限阈值时生成的,其中,所述第六门限阈值大于或等于所述第五门限阈值。
- 根据权利要求3所述的方法,其特征在于,所述网络侧设备为卫星,所述卫星在地面的通信范围覆盖一个小区。
- 根据权利要求12所述的方法,其特征在于,所述RTT为所述卫星确定的;所述根据无线信号的RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,包括:根据最小RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,所述终端为所述小区内的一个终端;其中,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置。
- 根据权利要求13所述的方法,其特征在于,所述接收目标信令,包括:接收第七信令,所述第七信令用于指示将所述终端的HARQ反馈从去使能状态切换为使能状态;或者,接收第八信令,所述第八信令用于指示将所述终端的HARQ反馈从使能状态切换为去使能状态;其中,所述第七信令和所述第八信令均为所述卫星根据所述最小RTT生成的。
- 根据权利要求14所述的方法,其特征在于,所述第七信令为所述卫星在确定所述最小RTT小于第七门限阈值时生成的,所述第八信令为所述卫星在确定所述最小RTT大于第八门限阈值时生成的,其中,所述第八门限阈值大于或等于所述第七门限阈值。
- 根据权利要求2所述的方法,其特征在于,所述接收目标信令,包括:接收第九信令,所述第九信令用于指示第九门限阈值;所述根据无线信号的RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,包括:确定所述无线信号的RTT;当所述RTT小于所述第九门限阈值,将所述终端的HARQ反馈从去使能状态切换为使能状态;或者,所述接收目标信令,包括:接收第十信令,所述第十信令用于指示第十门限阈值;所述根据无线信号的RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,包括:确定所述无线信号的RTT;当所述RTT大于所述第十门限阈值,将所述终端的HARQ反馈从使能状态切换为去使能状态;其中,所述第十门限阈值大于或等于所述第九门限阈值。
- 根据权利要求1至16任一所述的方法,其特征在于,所述终端的HARQ反馈为去使能状态,所述方法还包括:基于目标下行HARQ进程接收第一无线信号,所述目标下行HARQ进程为所述终端的至少一个下行HARQ进程;不反馈针对所述目标下行HARQ进程的ACK或者NACK,在接收所述第一无线信号之后基于所述目标下行HARQ进程继续接收第二无线信号。
- 根据权利要求1至16任一所述的方法,其特征在于,所述终端的HARQ反馈为去使能状态,所述方法还包括:接收第一下行控制信息DCI,所述第一DCI用于调度目标上行HARQ进程,所述目标上行HARQ进程为所述终端的至少一个上行HARQ进程;基于所述目标上行HARQ进程发送第一无线信号;接收第二DCI,所述第二DCI是所述网络侧设备不考虑对所述第一无线信号的解码结果的情况下发送的,所述第二DCI用于调度所述目标上行HARQ进程;基于所述目标上行HARQ进程发送第二无线信号。
- 根据权利要求5、7、10、14和16中任一所述的方法,其特征在于,所述第一信令或者所述第二信令为无线资源控制RRC信令、媒体接入控制控制单元MAC CE、或者下行控制信息DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
- 一种数据传输方法,其特征在于,所述方法应用于网络侧设备,所述方法包括:根据无线信号的RTT,将所述网络侧设备的HARQ反馈设置为使能状态或者去使能状态;其中,所述使能状态为接收终端反馈ACK或者NACK的状态,所述去使能状态为所述终端不反馈ACK以及NACK的状态。
- 根据权利要求20所述的方法,其特征在于,所述RTT为所述网络侧设备确定的;或者,所述RTT为终端确定的。
- 根据权利要求21所述的方法,其特征在于,所述根据无线信号的RTT,将网络侧设备的HARQ反馈设置为使能状态或者去使能状态,包括:确定所述无线信号的RTT;根据所述RTT将所述网络侧设备的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求22所述的方法,其特征在于,所述方法还包括:根据所述RTT生成和发送目标信令,其中,所述目标信令用于将所述终端的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求23所述的方法,其特征在于,所述目标信令用于指示将所述终端支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态;或者,所述目标信令用于指示将所述终端接收的至少一个业务类型中,全部或部分数量业务类型的HARQ反馈均设置为使能状态或者去使能状态。
- 根据权利要求23所述的方法,其特征在于,所述根据所述RTT生成目标信令,包括:当所述RTT小于第一门限阈值时,生成第一信令,所述第一信令用于将所述终端的HARQ反馈从去使能状态切换为使能状态;当所述RTT大于第二门限阈值时,生成第二信令,所述第二信令用于将所述终端的HARQ反馈从使能状态切换为去使能状态;所述第二门限阈值大于或等于所述第一门限阈值。
- 根据权利要求24所述的方法,其特征在于,所述根据所述RTT生成目标信令,包括:当所述RTT小于第三门限阈值时,生成第三信令,所述第三信令用于将所述终端支持的至少一个HARQ进程中,第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;当所述RTT大于第四门限阈值时,生成第四信令,所述第四信令用于将所述终端支持的至少一个HARQ进程中,第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态;所述第四门限阈值大于或等于所述第三门限阈值。
- 根据权利要求26所述的方法,其特征在于,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
- 根据权利要求24所述的方法,其特征在于,所述根据所述RTT生成目标信令,包括:当所述RTT小于第五门限阈值时,生成第五信令,所述第五信令用于将所述终端接收的至少一个业务类型中,第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;当所述RTT大于第六门限阈值时,生成第六信令,所述第六信令用于将所述终端接收的至少一个业务类型中,第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态;所述第六门限阈值大于或等于所述第五门限阈值。
- 根据权利要求24所述的方法,其特征在于,所述网络侧设备为卫星,所述卫星在地面的通信范围覆盖一个小区。
- 根据权利要求29所述的方法,其特征在于,所述确定所述无线信号的RTT,包括:确定所述无线信号的最小RTT,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置,所述最小RTT用于将所述小区内的所有终端的HARQ反馈设置为使能状态或者去使能状态;所述根据所述RTT生成目标信令,包括:根据所述最小RTT生成所述目标信令。
- 根据权利要求30所述的方法,其特征在于,所述根据所述最小RTT生成所述目标信令,包括:当所述最小RTT小于第七门限阈值时,生成第七信令,所述第七信令用于将所述小区内的所有终端的HARQ反馈从去使能状态切换为使能状态;当所述最小RTT大于第八门限阈值时,生成第八信令,所述第八信令用于将所述小区内的所有终端的HARQ反馈从使能状态切换为去使能状态;所述第八门限阈值大于或等于所述第七门限阈值。
- 根据权利要求22所述的方法,其特征在于,所述RTT为所述终端确定的;所述方法还包括:发送第九信令,所述第九信令用于指示第九门限阈值,或者,发送第十信令,所述第十信令用于指示第十门限阈值,其中,所述第十门限阈值大于或等于所述第九门限阈值,所述第九门限阈值用于当所述RTT小于所述第九门限阈值时,触发所述终端将所述终端的HARQ反馈从去使能状态切换为使能状态,所述第十门限阈 值用于当所述RTT大于所述第十门限阈值时,触发所述终端将所述终端的HARQ反馈从使能状态切换为去使能状态。
- 根据权利要求21至32任一所述的方法,其特征在于,所述网络侧设备的HARQ反馈为去使能状态,所述方法还包括:基于目标下行HARQ进程发送第一无线信号,所述目标下行HARQ进程为所述网络侧设备的至少一个下行HARQ进程;不接收针对所述目标下行HARQ进程的ACK或者NACK,在发送所述第一无线信号之后基于所述目标下行HARQ进程继续发送第二无线信号。
- 根据权利要求21至32任一所述的方法,其特征在于,所述方法还包括:发送第一DCI,所述第一DCI用于调度目标上行HARQ进程,所述目标上行HARQ进程为所述网络侧设备的至少一个上行HARQ进程;基于所述目标上行HARQ进程接收第一无线信号;在不考虑对所述第一无线信号的解码结果的情况下发送第二DCI,所述第二DCI用于调度所述目标上行HARQ进程;基于所述目标上行HARQ进程接收第二无线信号。
- 根据权利要求25、26、28、31和32中任一所述的方法,其特征在于,所述第一信令或者所述第二信令为RRC信令、MAC CE、或者DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
- 一种数据传输装置,其特征在于,所述装置包括:设置模块,所述设置模块用于根据无线信号的往返传输时间RTT,将所述装置的HARQ反馈设置为使能状态或者去使能状态;其中,所述使能状态为反馈ACK或者NACK的状态,所述去使能状态为不反馈ACK以及NACK的状态。
- 根据权利要求36所述的装置,其特征在于,所述RTT为网络侧设备确定的;或者,所述RTT为所述装置确定的。
- 根据权利要求37所述的装置,其特征在于,所述装置还包括:接收模块,所述接收模块用于接收目标信令,所述目标信令为网络侧设备根据所述无线信号的RTT生成的;所述设置模块用于根据所述目标信令,将所述终端的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求38所述的装置,其特征在于,所述目标信令用于指示将所述装置支持的至少一个HARQ进程中,全部或部分数量的HARQ进程的HARQ反馈均设置为使能状态或者去使能状态;或者,所述目标信令用于指示将所述装置接收的至少一个业务类型中,全部或部分数量的业务类型的HARQ反馈均设置为使能状态或者去使能状态。
- 根据权利要求38所述的装置,其特征在于,所述接收模块,用于接收第一信令,所述第一信令用于指示将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块,用于接收第二信令,所述第二信令用于指示将所述装置的HARQ反馈从使能状态切换为去使能状态;其中,所述第一信令和所述第二信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求40所述的装置,其特征在于,所述第一信令为所述网络侧设备在确定所述RTT小于第一门限阈值时生成的,所述第二信令为所述网络侧设备在确定所述RTT大于第二门限阈值时生成的;其中,所述第二门限阈值大于或等于所述第一门限阈值。
- 根据权利要求39所述的装置,其特征在于,所述接收模块,用于接收第三信令,所述第三信令用于指示将第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块,用于接收第四信令,所述第四信令用于指示将第二目标数量的HARQ进程的HARQ 反馈从使能状态切换为去使能状态,其中,所述第三信令和所述第四信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求42所述的装置,其特征在于,所述第三信令为所述网络侧设备在确定所述RTT小于第三门限阈值时生成的,所述第四信令为所述网络侧设备在确定所述RTT大于第四门限阈值时生成的;其中,所述第四门限阈值大于或等于所述第三门限阈值。
- 根据权利要求42所述的装置,其特征在于,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
- 根据权利要求39所述的装置,其特征在于,所述接收模块,用于接收第五信令,所述第五信令用于指示将第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块,用于接收第六信令,所述第六信令用于指示将第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态,其中,所述第五信令和所述第六信令均为所述网络侧设备根据所述RTT生成的。
- 根据权利要求45所述的装置,其特征在于,所述第五信令为所述网络侧设备在确定所述RTT小于第五门限阈值时生成的,所述第六信令为所述网络侧设备在确定所述RTT大于第六门限阈值时生成的,其中,所述第六门限阈值大于或等于所述第五门限阈值。
- 根据权利要求38所述的装置,其特征在于,所述网络侧设备为卫星,所述卫星在地面的通信范围覆盖一个小区。
- 根据权利要求47所述的装置,其特征在于,所述RTT为所述卫星确定的;所述设置模块,用于根据最小RTT,将所述终端的HARQ反馈设置为使能状态或者去使能状态,所述终端为所述小区内的一个终端;其中,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置。
- 根据权利要求48所述的装置,其特征在于,所述接收模块,用于接收第七信令,所述第七信令用于指示将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块,用于接收第八信令,所述第八信令用于指示将所述装置的HARQ反馈从使能状态切换为去使能状态;其中,所述第七信令和所述第八信令均为所述卫星根据所述最小RTT生成的。
- 根据权利要求49所述的装置,其特征在于,所述第七信令为所述卫星在确定所述最小RTT小于第七门限阈值时生成的,所述第八信令为所述卫星在确定所述最小RTT大于第八门限阈值时生成的,其中,所述第八门限阈值大于或等于所述第七门限阈值。
- 根据权利要求37所述的装置,其特征在于,所述接收模块,用于接收第九信令,所述第九信令用于指示第九门限阈值;所述设置模块,用于确定所述无线信号的RTT;当所述RTT小于所述第九门限阈值,将所述装置的HARQ反馈从去使能状态切换为使能状态;或者,所述接收模块,用于接收第十信令,所述第十信令用于指示第十门限阈值;所述设置模块,用于确定所述无线信号的RTT;当所述RTT大于所述第十门限阈值,将所述装置的HARQ反馈从使能状态切换为去使能状态;其中,所述第十门限阈值大于或等于所述第九门限阈值。
- 根据权利要求36至51任一所述的装置,其特征在于,所述装置的HARQ反馈为去使能状态,所述接收模块,用于基于目标下行HARQ进程接收第一无线信号,所述目标下行HARQ进程为所述终端的至少一个下行HARQ进程;所述接收模块,用于不反馈针对所述目标下行HARQ进程的ACK或者NACK,在接收所述第一无线信号之后基于所述目标下行HARQ进程继续接收第二无线信号。
- 根据权利要求36至51任一所述的装置,其特征在于,所述装置的HARQ反馈为去使能状态,所述装置还包括:发送模块,所述接收模块,用于接收第一下行控制信息DCI,所述第一DCI用于调度目标上行HARQ进程,所 述目标上行HARQ进程为所述终端的至少一个上行HARQ进程;所述发送模块,用于基于所述目标上行HARQ进程发送第一无线信号;所述接收模块,用于接收第二DCI,所述第二DCI是所述网络侧设备不考虑对所述第一无线信号的解码结果的情况下发送的,所述第二DCI用于调度所述目标上行HARQ进程;所述发送模块,用于基于所述目标上行HARQ进程发送第二无线信号。
- 根据权利要求41、43、46、50和51中任一所述的装置,其特征在于,所述第一信令或者所述第二信令为无线资源控制RRC信令、媒体接入控制控制单元MAC CE、或者下行控制信息DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
- 一种数据传输装置,其特征在于,所述装置包括:设置模块,所述设置模块用于根据无线信号的RTT,将所述装置的HARQ反馈设置为使能状态或者去使能状态;其中,所述使能状态为接收终端反馈ACK或者NACK的状态,所述去使能状态为所述终端不反馈ACK以及NACK的状态。
- 根据权利要求55所述的装置,其特征在于,所述RTT为所述装置确定的;或者,所述RTT为终端确定的。
- 根据权利要求56所述的装置,其特征在于,所述装置还包括:处理模块,所述处理模块用于确定所述无线信号的RTT;所述设置模块用于根据所述RTT将所述装置的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求57所述的装置,其特征在于,所述装置还包括:发送模块,所述处理模块用于根据所述RTT生成目标信令;所述发送模块用于发送所述目标信令,其中,所述目标信令用于将所述终端的HARQ反馈设置为使能状态或者去使能状态。
- 根据权利要求58所述的装置,其特征在于,所述处理模块用于当所述RTT小于第一门限阈值时,生成第一信令,所述第一信令用于将所述终端的HARQ反馈从去使能状态切换为使能状态;所述处理模块用于当所述RTT大于第二门限阈值时,生成第二信令,所述第二信令用于将所述终端的HARQ反馈从使能状态切换为去使能状态;所述第二门限阈值大于或等于所述第一门限阈值。
- 根据权利要求58所述的装置,其特征在于,所述处理模块用于当所述RTT小于第三门限阈值时,生成第三信令,所述第三信令用于将所述终端支持的至少一个HARQ进程中,第一目标数量的HARQ进程的HARQ反馈从去使能状态切换为使能状态;所述处理模块用于当所述RTT大于第四门限阈值时,生成第四信令,所述第四信令用于将所述终端支持的至少一个HARQ进程中,第二目标数量的HARQ进程的HARQ反馈从使能状态切换为去使能状态;所述第四门限阈值大于或等于所述第三门限阈值。
- 根据权利要求60所述的装置,其特征在于,所述第三信令用于指示所述第一目标数量的HARQ进程中每个所述HARQ进程的进程号;所述第四信令用于指示所述第二目标数量的HARQ进程中每个所述HARQ进程的进程号。
- 根据权利要求58所述的装置,其特征在于,所述处理模块用于当所述RTT小于第五门限阈值时,生成第五信令,所述第五信令用于将所述终端接收的至少一个业务类型中,第三目标数量的业务类型的HARQ反馈从去使能状态切换为使能状态;所述处理模块用于当所述RTT大于第六门限阈值时,生成第六信令,所述第六信令用于将所述终端接收的至少一个业务类型中,第四目标数量的业务类型的HARQ反馈从使能状态切换为去使能状态;所述第六门限阈值大于或等于所述第五门限阈值。
- 根据权利要求58所述的装置,其特征在于,所述装置为卫星,所述卫星在地面的通信范围覆盖一个小区。
- 根据权利要求63所述的装置,其特征在于,所述处理模块用于确定所述无线信号的最小RTT,所述最小RTT为所述无线信号在所述卫星与目标位置之间的RTT,所述目标位置为所述小区内距离所述卫星最近的地面位置,所述最小RTT用于将所述小区内的所有终端的HARQ反馈设置为使能状态或者去使能状态;所述处理模块,用于根据所述最小RTT生成目标信令。
- 根据权利要求64所述的装置,其特征在于,所述处理模块用于当所述最小RTT小于第七门限阈值时,生成第七信令,所述第七信令用于将所述小区内的所有终端的HARQ反馈从去使能状态切换为使能状态;所述处理模块用于当所述最小RTT大于第八门限阈值时,生成第八信令,所述第八信令用于将所述小区内的所有终端的HARQ反馈从使能状态切换为去使能状态;所述第八门限阈值大于或等于所述第七门限阈值。
- 根据权利要求56所述的装置,其特征在于,所述RTT为所述终端确定的;所述装置还包括:发送模块,所述发送模块用于发送第九信令,所述第九信令用于指示第九门限阈值,或者,所述发送模块用于发送第十信令,所述第十信令用于指示第十门限阈值,其中,所述第十门限阈值大于或等于所述第九门限阈值,所述第九门限阈值用于当所述RTT小于所述第九门限阈值时,触发所述终端将所述终端的HARQ反馈从去使能状态切换为使能状态,所述第十门限阈值用于当所述RTT大于所述第十门限阈值时,触发所述终端将所述终端的HARQ反馈从使能状态切换为去使能状态。
- 根据权利要求55至66任一所述的装置,其特征在于,所述装置的HARQ反馈为去使能状态,所述发送模块用于基于目标下行HARQ进程发送第一无线信号,所述目标下行HARQ进程为所述网络侧设备的至少一个下行HARQ进程;所述发送模块用于不接收针对所述目标下行HARQ进程的ACK或者NACK,在发送所述第一无线信号之后基于所述目标下行HARQ进程继续发送第二无线信号。
- 根据权利要求55至66任一所述的装置,其特征在于,所述装置的HARQ反馈为去使能状态,所述装置还包括:接收模块,所述发送模块,用于发送第一DCI,所述第一DCI用于调度目标上行HARQ进程,所述目标上行HARQ进程为所述网络侧设备的至少一个上行HARQ进程;所述接收模块,用于基于所述目标上行HARQ进程接收第一无线信号;所述发送模块,用于在不考虑对所述第一无线信号的解码结果的情况下发送第二DCI,所述第二DCI用于调度所述目标上行HARQ进程;所述接收模块,用于基于所述目标上行HARQ进程接收第二无线信号。
- 根据权利要求59、60、62、65和66中任一所述的方法,其特征在于,所述第一信令或者所述第二信令为RRC信令、MAC CE、或者DCI;或者,所述第三信令或者所述第四信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第五信令或者所述第六信令为所述RRC信令、所述MAC CE、或者所述DCI;或者,所述第七信令或者所述第八信令为系统广播消息;或者,所述第九信令或者所述第十信令为所述RRC信令、所述MAC CE、或者所述DCI。
- 一种数据传输系统,其特征在于,所述系统包括终端和网络侧设备,所述终端包括权利要求36至54任一所述的数据传输装置,所述网络侧设备包括权利要求55至69任一所述的数据传输装置。
- 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述权利要求1至19中任一所述的数据传输方法。
- 一种网络侧设备,其特征在于,所述网络侧设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述权利要求20至35中任一所述的数据传输方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述权利要求1至19中任一所述的数据传输方法,或者,以实现上述权利要求20至35中任一所述的数据传输方法。
- 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至19任一所述的数据传输方法,或者,用于实现上述权利要求20至35中任一所述的数据传输方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括一个或多个计算机程序,所述计算机程序被处理器执行时,用于实现如权利要求1至19任一所述的数据传输方法,或者,用于实现上述权利要求20至35中任一所述的数据传输方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19941421.0A EP4007195A4 (en) | 2019-08-14 | 2019-08-14 | METHOD, APPARATUS AND SYSTEM FOR TRANSMITTING DATA |
PCT/CN2019/100675 WO2021026849A1 (zh) | 2019-08-14 | 2019-08-14 | 数据传输方法、装置及系统 |
CN201980095020.2A CN113647040B (zh) | 2019-08-14 | 2019-08-14 | 数据传输方法、装置及系统 |
CN202410422266.9A CN118249966A (zh) | 2019-08-14 | 2019-08-14 | 数据传输方法、装置及系统 |
US17/650,641 US20220200741A1 (en) | 2019-08-14 | 2022-02-10 | Method, apparatus and system for transmitting data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/100675 WO2021026849A1 (zh) | 2019-08-14 | 2019-08-14 | 数据传输方法、装置及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/650,641 Continuation US20220200741A1 (en) | 2019-08-14 | 2022-02-10 | Method, apparatus and system for transmitting data |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021026849A1 true WO2021026849A1 (zh) | 2021-02-18 |
Family
ID=74570841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/100675 WO2021026849A1 (zh) | 2019-08-14 | 2019-08-14 | 数据传输方法、装置及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220200741A1 (zh) |
EP (1) | EP4007195A4 (zh) |
CN (2) | CN118249966A (zh) |
WO (1) | WO2021026849A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022205276A1 (en) * | 2021-04-01 | 2022-10-06 | Zte Corporation | Methods, devices and systems for harq feedback disabling |
WO2023230875A1 (zh) * | 2022-05-31 | 2023-12-07 | 深圳传音控股股份有限公司 | 控制方法、通信设备及存储介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2587651B (en) * | 2019-10-03 | 2022-03-09 | Samsung Electronics Co Ltd | Methods, apparatus, and systems for supporting a handover |
US20230261790A1 (en) * | 2020-07-16 | 2023-08-17 | Beijing Xiaomi Mobile Software Co., Ltd. | Retransmission request method and apparatus, and retransmitted data reception method and apparatus |
US20230129437A1 (en) * | 2021-10-21 | 2023-04-27 | Samsung Electronics Co., Ltd. | Measurement and cell reselection in a ntn |
US20240205912A1 (en) * | 2022-12-20 | 2024-06-20 | Qualcomm Incorporated | Sidelink feedback for network energy savings |
WO2025035324A1 (en) * | 2023-08-11 | 2025-02-20 | Nokia Shanghai Bell Co., Ltd. | Harq state for rrc configuration for multi-tb scheduling |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103957564A (zh) * | 2014-04-17 | 2014-07-30 | 北京创毅视讯科技有限公司 | 一种数据传输方法和装置 |
US20170164363A1 (en) * | 2014-08-26 | 2017-06-08 | Huawei Technologies Co., Ltd. | Data transmission method, user equipment, and base station |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8312337B2 (en) * | 2009-05-01 | 2012-11-13 | Clearwire Ip Holdings Llc | System and method for dynamic hybrid automatic repeat request (HARQ) enable/disable |
EP3738240A1 (en) * | 2018-01-11 | 2020-11-18 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Data retransmission mechanism in terrestrial or non-terrestrial networks exhibiting a high propagation delay |
CN110098892B (zh) * | 2018-01-30 | 2020-09-01 | 上海朗帛通信技术有限公司 | 一种用于无线通信的通信节点中的方法和装置 |
WO2019222881A1 (en) * | 2018-05-21 | 2019-11-28 | Nokia Shanghai Bell Co., Ltd. | Hybrid automatic repeat request in non-terrestrial networks |
US20200313806A1 (en) * | 2019-03-29 | 2020-10-01 | Qualcomm Incorporated | Dynamically configurable acknowledgement procedures |
EP3963783A2 (en) * | 2019-04-30 | 2022-03-09 | IDAC Holdings, Inc. | Open loop harq in wireless systems |
US11497008B2 (en) * | 2019-07-25 | 2022-11-08 | Samsung Electronics Co., Ltd. | Enhancements on synchronization, random access, and HARQ operation for non-terrestrial networks |
CN114175804A (zh) * | 2019-08-01 | 2022-03-11 | 鸿颖创新有限公司 | 用于ntn中的下行链路传输的方法和设备 |
-
2019
- 2019-08-14 CN CN202410422266.9A patent/CN118249966A/zh active Pending
- 2019-08-14 EP EP19941421.0A patent/EP4007195A4/en active Pending
- 2019-08-14 WO PCT/CN2019/100675 patent/WO2021026849A1/zh unknown
- 2019-08-14 CN CN201980095020.2A patent/CN113647040B/zh active Active
-
2022
- 2022-02-10 US US17/650,641 patent/US20220200741A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103957564A (zh) * | 2014-04-17 | 2014-07-30 | 北京创毅视讯科技有限公司 | 一种数据传输方法和装置 |
US20170164363A1 (en) * | 2014-08-26 | 2017-06-08 | Huawei Technologies Co., Ltd. | Data transmission method, user equipment, and base station |
Non-Patent Citations (3)
Title |
---|
INTERDIGITAL INC.: "Considerations on HARQ Management for Non-Terrestrial Networks", 3GPP DRAFT; R1-1802631 CONSIDERATIONS ON HARQ MANAGEMENT FOR NON-TERRESTRIAL NETWORKS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Atehns, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051398069 * |
MEDIATEK INC.: "Summary Delay-tolerant re-transmission mechanisms in NR-NTN", 3GPP DRAFT; R1-1905733-MEDIATEK-SUMMARY DELAY-TOLERANT TRANSMISSION MECHANISMS IN NR-NTN-V02, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 10 April 2019 (2019-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707790 * |
See also references of EP4007195A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022205276A1 (en) * | 2021-04-01 | 2022-10-06 | Zte Corporation | Methods, devices and systems for harq feedback disabling |
WO2023230875A1 (zh) * | 2022-05-31 | 2023-12-07 | 深圳传音控股股份有限公司 | 控制方法、通信设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20220200741A1 (en) | 2022-06-23 |
EP4007195A1 (en) | 2022-06-01 |
CN113647040A (zh) | 2021-11-12 |
EP4007195A4 (en) | 2022-07-06 |
CN113647040B (zh) | 2024-05-10 |
CN118249966A (zh) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220200741A1 (en) | Method, apparatus and system for transmitting data | |
US12048051B2 (en) | Method and apparatus for data transmission, terminal, and storage medium | |
EP3874647B1 (en) | Lch mapping to harq process id for non-terrestrial networks | |
US20210391952A1 (en) | Harq bundling procedure for non-terrestrial networks | |
CN114651460B (zh) | 灵活高容量无线电网络临时标识符 | |
US20230015847A1 (en) | Method for releasing uplink resource, terminal device, and network device | |
CN113647035B (zh) | 数据传输方法、装置及系统 | |
WO2022061664A1 (zh) | 传输控制方法、装置、设备及存储介质 | |
CN116250371A (zh) | 终端在无线通信系统中发送上行链路信号的方法和设备 | |
CN115767754B (zh) | 数据传输方法、装置及设备 | |
CN115580380A (zh) | 无线通信的方法及装置 | |
CN114731238B (zh) | 配置授权定时器的使用方法与装置、终端设备和网络设备 | |
WO2022040848A1 (zh) | 信息传输方法、装置、设备及存储介质 | |
WO2021184317A1 (zh) | 生效时间的确定方法、终端及网络设备 | |
WO2022082353A1 (zh) | 非连续接收重传定时器的启动方法、装置、设备及介质 | |
CN115918199B (zh) | 数据处理方法、装置、设备及存储介质 | |
WO2022252048A1 (zh) | 定时参数配置方法、装置、终端设备及网络设备 | |
WO2021184244A1 (zh) | 通信方法及装置 | |
WO2021142824A1 (zh) | 信息处理方法、装置、设备及存储介质 | |
WO2023279295A1 (zh) | 信息处理方法、装置、终端设备及存储介质 | |
WO2022099514A1 (zh) | 无线通信方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19941421 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019941421 Country of ref document: EP Effective date: 20220224 |