[go: up one dir, main page]

WO2021023713A1 - System and method for storing and recovering energy by isothermal compression and expansion of air - Google Patents

System and method for storing and recovering energy by isothermal compression and expansion of air Download PDF

Info

Publication number
WO2021023713A1
WO2021023713A1 PCT/EP2020/071811 EP2020071811W WO2021023713A1 WO 2021023713 A1 WO2021023713 A1 WO 2021023713A1 EP 2020071811 W EP2020071811 W EP 2020071811W WO 2021023713 A1 WO2021023713 A1 WO 2021023713A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
rotodynamic
compression
expansion
gas
Prior art date
Application number
PCT/EP2020/071811
Other languages
French (fr)
Inventor
David Teixeira
Philippe Pagnier
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2021023713A1 publication Critical patent/WO2021023713A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention mainly relates to the field of energy storage by compressed air.
  • the best known is the Water Transfer Station by Pumping (STEP) which consists of the use of two water reservoirs at different altitudes. Water is pumped from the lower basin to the upper basin during the charging phase. The water is then sent to a turbine, towards the lower basin, during the discharge.
  • STEP Water Transfer Station by Pumping
  • batteries of different types lithium, nickel, sodium-sulfur, lead-acid .
  • FES Flywheel Energy Storage
  • the technology of energy storage by using a compressed gas is promising.
  • the energy produced and not consumed is used to compress air to pressures between 40 bar and 200 bar using compressors (which can be multi-stage).
  • compressors which can be multi-stage.
  • the air temperature rises.
  • the air can be cooled between each compression stage.
  • the compressed air is then stored under pressure, either in natural cavities (caverns) or in artificial reservoirs.
  • AACAES technology derived from the English “Advanced Adiabatic Compressed Air Energy Storage”.
  • compressed air is stored in a tank independently for heat storage.
  • the air is stored at a temperature close to ambient temperature (a priori less than 50 l ).
  • Such a system therefore has a heat reservoir and a pressurized air reservoir. The presence of these two reservoirs significantly impacts the cost of the system.
  • the system according to the invention consists in performing an isothermal compression or expansion so as to avoid the use of heat exchangers. Thus, the cost of the system is reduced and the system is simpler.
  • the invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas, at least one means of rotodynamic expansion of the fluid. compressed to generate energy.
  • the fluid comprises the gas and a second phase, preferably liquid.
  • the system comprises means for injecting the second phase upstream or into at least one means of rotodynamic compression, and / or upstream or into at least one means of rotodynamic expansion.
  • the purpose of the second phase is to limit the increase in the temperature of the gas during the compression phase.
  • the compression and / or the relaxation are carried out isothermally.
  • the invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas, at least one means of rotodynamic expansion of said compressed fluid to generate an energy.
  • Said fluid comprises said gas and a second phase and the system comprises means for injecting said second phase upstream or inside at least one rotodynamic compression means, and / or upstream or inside it. 'at least one means of rotodynamic expansion.
  • the system comprises at least one separation means positioned after the rotodynamic compression means or after the rotodynamic expansion means.
  • said second phase is a liquid, preferably water.
  • the system comprises at least one means for storing said second phase, said means for storing said second phase being connected to at least one injection means or to at least one separation means.
  • each injection means and / or each separation means is connected to a means for storing said second different liquid phase.
  • each injection means and / or each separation means are connected to a storage means for said second phase, said storage means for said second phase possibly being common to several injection means and / or separation means.
  • all the injection means and / or all the separation means are connected to a single storage means for said second phase.
  • the system comprises at least one mixing means upstream of at least one compression means and / or a separation means downstream of at least one compression means.
  • the system comprises at least one mixing means upstream of at least one expansion means and / or a separation means downstream of at least one expansion means.
  • At least one mixing means is integrated into at least one rotodynamic compression means or at least one rotodynamic expansion means.
  • the invention also relates to a method for storing and recovering energy by compressed gas comprising the following steps: a1) a gas is compressed by means of rotodynamic compression; b1) said compressed gas is stored; c1) said compressed gas is expanded by means of rotodynamic expansion.
  • a second phase is injected into said gas.
  • said second phase is a liquid, preferably water.
  • step a1) is repeated successively several times.
  • step c1) is repeated successively several times.
  • said second phase is mixed with the compressed gas, between the injection of the second phase and the compression or expansion.
  • said second phase and said compressed gas are separated after the compression or expansion step.
  • Figure 1 shows a first part of a first embodiment of the system according to the invention.
  • Figure 2 shows a second part of a first embodiment of the system according to the invention.
  • Figure 3 shows a first part of a second embodiment of the system according to the invention.
  • FIG. 4 represents a second part of a second embodiment of the system according to the invention.
  • FIG. 5 represents an alternative of a first part of a third embodiment of the system according to the invention.
  • Figure 6 shows an embodiment of a rotodynamic machine for compression or relaxation for the system or method according to the invention.
  • the invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas and at least one means of rotodynamic expansion of the compressed fluid to generate an energy.
  • the compression means allows the compression of a fluid (the fluid comprising the gas), making it possible to limit the storage space of the compressed gas in the storage means.
  • the compressed gas leaves the storage means to be expanded in the rotodynamic expansion means. During this relaxation, electricity can for example be generated.
  • a rotodynamic expansion or compression means comprises an internal rotating part which generates compression / expansion.
  • this internal part may comprise a hub on which blades are fixed, the hub being driven in rotation by a rotation shaft, which may itself be driven in rotation, for example by an electric motor.
  • the rotation of the shaft drives that of the blades and thus compresses the fluid.
  • the means is a means of rotodynamic expansion
  • the incoming fluid drives the blades in rotation. It thus releases part of its kinetic and calorific energy, which leads to a loss of pressure.
  • the rotating blades drive a shaft which can itself drive an electric generator to deliver electricity.
  • the fluid comprises the gas and a second phase, preferably liquid.
  • the second phase serves to limit the increase in temperature of the gas during compression or on the contrary to prevent it from cooling too strongly during expansion.
  • the addition of this second phase therefore allows compression or expansion of the compressed gas in a substantially isothermal manner.
  • the system does not require any means of heat exchange, such as a tube exchanger, a plate exchanger or even a contactless exchanger.
  • the system comprises means for injecting (such as an injector) of the second phase upstream or into at least one rotodynamic compression means, and / or upstream or into at least one rotodynamic expansion means. Therefore, the operation isothermal within the means of compression or rotodynamic expansion is improved.
  • the use of means of compression or rotodynamic expansion makes it possible to improve the homogeneity of the mixture between the gas and the second phase. A volumetric piston machine would not allow good homogeneity of the mixture thus formed.
  • the type of positive-displacement compressor used for compressing gas with high flow rates is often a compressor of the screw compressor type, or piston compressor.
  • a specific rotodynamic machine is designed for the compression of a mixture of gas and liquid. In the case of gas storage, the two-phase rotodynamic machine is called a wet compressor. It allows good homogeneity of the fluids.
  • the invention makes it possible to inject liquid into the very heart of the rotodynamic machine, to control both a rate of gas, a particle size of the drops and the homogeneity of the mixture, and thus to control the temperature of the gas during its compression. , or its relaxation.
  • the system may include at least one separation means positioned after the rotodynamic compression means or after the rotodynamic expansion means.
  • the second phase is separated from the gas after compression or expansion so as not to degrade the efficiency of the following stages and / or not to be stored with the gas in the storage means.
  • the system can comprise a separation means after each compression stage, comprising a rotodynamic compression means, and after each expansion stage comprising a rotodynamic expansion means.
  • the second phase can comprise a liquid and preferably this liquid can be water.
  • this liquid can be water.
  • the use of liquid allows for better temperature control during compression or expansion.
  • the water provides good cooling / temperature maintenance efficiency while ensuring minimal cost.
  • the system can comprise at least one storage means of the second phase, this storage means of the second phase being able to be connected to at least one injection means or to at least a means of separation.
  • this storage means of the second phase being able to be connected to at least one injection means or to at least a means of separation.
  • each injection means and / or each separation means can be connected to a different second phase storage means. As a result, the temperature of each tank of the second phase is controlled and thus the isothermal transformations of each compression or expansion stage are better controlled.
  • each injection means and / or each separation means can / can be connected to a storage means of the second phase, this storage means of the second phase possibly being common to several injection means and / or separation means.
  • this alternative makes it possible to limit the number of reservoirs required for the second phase, while ensuring good control of the injection temperatures of the second phase in the various injection or separation means so as to control the isothermal profile of the transformations ( compression, relaxation).
  • all the injection means and / or all the separation means can be connected to a single storage means for said second phase.
  • This solution has the advantage of reducing the number of tanks for the second phase and therefore the overall cost of the system.
  • the system may comprise at least one mixing means upstream or inside at least one rotodynamic compression means and / or a separation means downstream of at least rotodynamic compression means.
  • a mixing means upstream or inside the rotodynamic compression means allows the use of a homogeneous fluid in the rotodynamic compression means (for example a multiphase compressor or a multiphase pump) so as to improve isothermal compression.
  • the addition of the separation means downstream of the rotodynamic compression means makes it possible to remove the second phase, so as to keep the storage only of the compressed gas.
  • the addition of the separation means downstream of the rotodynamic compression means makes it possible to remove the second phase, so as to avoid an excessive second phase rate in the following compression stages, in particular when the second phase is liquid.
  • the mixing means makes it possible to guarantee the gas content, the particle size of the drops and the homogeneity of the mixture to ensure a controlled isothermal transformation, while ensuring good compression.
  • the system may also include at least one mixing means within or upstream of at least one expansion means and / or downstream separation means of at least one expansion means.
  • a mixing means inside or upstream of the rotodynamic expansion means allows the use of a homogeneous fluid in the rotodynamic expansion means (for example a turbine or a multiphase mixer) so as to improve isothermal relaxation.
  • the addition of the separation means downstream of the rotodynamic expansion means makes it possible to remove the second phase, so as to avoid an excessive second phase rate in the following expansion stages, in particular when the second phase is liquid. Indeed, a high level of liquid could damage the means of rotodynamic expansion, in particular in the case of a turbine.
  • the mixing means makes it possible to guarantee the gas level, the particle size of the drops and the homogeneity of the mixture in order to ensure a controlled isothermal transformation, while ensuring good expansion.
  • a mixing means can in particular be a mixer to improve the homogeneity of the mixture of the second phase with the gas.
  • At least one mixing means can be integrated with at least one means of rotodynamic compression or at least one means of rotodynamic expansion.
  • a multiphase compressor can perform both compression and mixing of the whole.
  • a multiphase compressor is a specific rotodynamic machine whose geometry makes it possible not to separate the liquid phase from the gas phase. The two phases are thus intimately and advantageously mixed as homogeneously as possible. This makes it possible to maximize heat exchanges and to cool the gas more efficiently during its compression.
  • the system is simplified.
  • the multiphase turbine can be used in reverse mode, that is to say with a flow of fluid in the opposite direction to the flow of fluid in compression mode. The fluid then undergoes an expansion during the transfer of its energy to the rotating shaft in the form of mechanical energy. The liquid injected into the expansion element makes it possible to heat the gas.
  • the invention also relates to a method for storing and recovering energy by compressed gas comprising the following steps: a1) a gas is compressed; b1) the compressed gas is stored; c1) the compressed gas is expanded.
  • a second phase is injected into the gas.
  • the addition of the second phase allows for isothermal compression or expansion and therefore avoids the use of heat exchangers.
  • the second phase can be a liquid, preferably water.
  • the temperature profile of the fluid during compression or expansion is better controlled.
  • step a1) can be repeated successively several times.
  • rotodynamic compression means can be used with optimum efficiency for each range of pressure variation.
  • This variant also has the advantage of allowing the use of multiphase rotodynamic compression means, and of improving the performance of the system.
  • step c1) can be repeated successively several times.
  • rotodynamic expansion means can be used with optimum efficiency for each range of pressure variation.
  • This solution also has the advantage of allowing the use of multiphase rotodynamic expansion means and of improving the performance of the system.
  • the second phase can be mixed with the compressed gas, between the injection of the second phase and the compression or expansion.
  • the fluid enters the compression means in a homogeneous manner, which allows good control of the temperature development in the compression means.
  • the second phase and the compressed gas can be separated after the compression or expansion step.
  • the rate of second phase in the fluid remains low even if there are several stages of compression or expansion.
  • FIG 1 schematically and non-limitingly illustrates part of an energy storage and recovery system according to one embodiment of the invention.
  • This part concerns the phase of energy storage by compressed air.
  • This part of the system comprises two second phase tanks 33 and 35, a mixing means such as a mixer 41, a separation means 53 such as a separator, a rotodynamic compression means 1 such as a two-phase rotodynamic compressor and a compressed air storage means 30.
  • Gas, preferably air taken from the ambient medium is mixed within the mixer 41 with the second phase, for example water, coming from the reservoir 35.
  • the fluid thus obtained after the mixture of the second phase with the gas then passes through the compressor 1, in which it is compressed.
  • the two-phase rotodynamic compressor 1 allows the compression of the liquid and the gas simultaneously and improves the mixing between the two phases, thanks to the rotation of the flows that it induces.
  • the good homogeneity of the mixture thus allows a homogeneity of the temperatures, the second phase can then correctly cool the gas during compression.
  • the compression is then almost isothermal, which makes it possible to avoid any heat exchanger at the outlet to cool the gas.
  • the reservoirs 33 and 35 can be distinct or can form a single entity.
  • FIG. 1 schematically and non-limitingly illustrates a second part of an energy storage and recovery system according to one embodiment of the invention.
  • This part concerns the phase of energy recovery by compressed air.
  • This second part can be combined with the first part of FIG. 1 to form a system for storing and recovering energy by compressed gas.
  • This part of the system comprises two second phase tanks 33B and 35B, a mixing means such as a mixer 47, a separation means 55 such as a separator, a two-phase rotodynamic expansion means 2 such as a rotodynamic turbine and a compressed air storage means 30.
  • Compressed gas stored in the reservoir 30 is sent to the two-phase turbine in order to recover the energy contained in the gas.
  • the energy can, for example, then be transformed into electricity via a generator driven by the turbine.
  • the compressed gas issuing from the reservoir 30 is mixed in the mixing means 47, such as a mixer, with a second phase issuing from the reservoir 33B.
  • This second phase preferably liquid, makes it possible to achieve an almost isothermal expansion within the rotodynamic expansion means 2.
  • the gas and the second phase are separated in a separation means 55, such that a separator.
  • the second phase emerging from the separation means 55 is then stored in the tank 35B.
  • the reservoirs 33B and 35B can be distinct or can form a single entity. According to another variant, the reservoirs 33B and / or 35B can also be common with the reservoirs 33 and 35 of [Fig 1].
  • FIG 3 shows schematically and without limitation another variant of a first part concerning the energy storage of the system.
  • the references identical to those in [Fig 1] correspond to the same elements and will therefore not be re-detailed.
  • [Fig 3] has three rotodynamic compression stages 11, 12 and 13. This staging allows more efficient outputs by a lower pressure variation across each rotodynamic compression means 11, 12, and 13.
  • this feature allows the use of standard rotodynamic compression means, which allows a reduction in system cost, no adaptation or design not being necessary.
  • a second phase is mixed with the gas and just downstream of each compression stage, the second phase is separated from the compressed gas.
  • temperature control can be optimal in each compression stage, so as to achieve a quasi-isothermal transformation.
  • the gas is first mixed with the second phase coming from the reservoir 35, in the mixer 41.
  • the fluid thus formed is compressed in the rotodynamic compressor 11, which makes it possible to maintain, or even improve, the mixture.
  • the compression is quasi-isothermal.
  • the compressed fluid leaving the rotodynamic compressor 11 is then separated from the second phase in the separator 51.
  • the second phase is stored in the tank 31.
  • the gas is then mixed with the second phase coming from the tank 36, in the mixer 42.
  • the fluid thus formed is compressed in the rotodynamic compressor 12, which makes it possible to maintain, or even improve, the mixture.
  • the compression is quasi-isothermal.
  • the compressed fluid leaving the rotodynamic compressor 12 is then separated from the second phase in the separator 52.
  • the second phase is stored in the tank 32.
  • the gas is then mixed with the second phase coming from the tank 37, in the mixer 43.
  • the fluid thus formed is compressed in the rotodynamic compressor 13, which makes it possible to maintain, or even improve, the mixture.
  • the compression is quasi-isothermal.
  • the compressed fluid leaving the rotodynamic compressor 13 is then separated from the second phase in the separator 53.
  • the second phase is stored in the tank 33.
  • the compressed gas coming from the separator 53 can then be stored in the tank 30.
  • the tanks 35, 31, 36, 32, 37 and 33 of the second phase are distinct but it could be envisaged that some of them consist of a common tank or alternatively of a single tank for all these. second phase tanks.
  • FIG 4 schematically and non-limitingly shows another variant of a second part relating to the energy recovery of the system. This second part can be combined with the first part of FIG. 3 to form a system for storing and recovering energy by compressed gas.
  • the references identical to those in [Fig 2] correspond to the same elements and will therefore not be re-detailed.
  • [Fig 4] has three rotodynamic expansion stages 23, 22 and 21. This stage allows more efficient outputs by a lower pressure variation across the terminals of each rotodynamic expansion means 21, 22, and 23. In addition, this characteristic allows the use of multiphase rotodynamic expansion means and to improve the performance of the system.
  • a second phase is mixed with the gas and just downstream of each compression stage, the second phase is separated from the gas.
  • temperature control can be optimal in each expansion stage, so as to achieve a quasi-isothermal transformation.
  • the compressed gas leaving the reservoir 30 is first mixed with the second phase issuing from the reservoir 330, in the mixer 47.
  • the fluid thus formed is expanded in the rotodynamic expansion means 23, which makes it possible to maintain, or even to improve the mixture.
  • the compression is almost isothermal.
  • the partially expanded fluid at the outlet of the rotodynamic expansion means 23 is then separated from the second phase in the separator 57.
  • the second phase is stored in the tank 370.
  • the gas is mixed with the second phase from the tank 320, in the mixer 46.
  • the fluid thus formed is compressed in the rotodynamic expansion means 22, which makes it possible to maintain or even improve the mixture.
  • the relaxation is quasi-isothermal.
  • the compressed fluid leaving the rotodynamic expansion means 22 is then separated from the second phase in the separator 56.
  • the second phase is stored in the tank 360.
  • the gas is then mixed with the second phase coming from the tank 310, in the mixer 45.
  • the fluid thus formed is expanded in the rotodynamic expansion means 21, which makes it possible to maintain or even improve the mixture.
  • the relaxation is quasi-isothermal.
  • the compressed fluid at the outlet of the rotodynamic expansion means 21 is then separated from the second phase in the separator 55.
  • the second phase is stored in the reservoir 350.
  • the reservoirs 350, 310, 360, 320, 370 and 330 of the second phase are distinct but it could be envisaged that some of them consist of a common reservoir or alternatively of a single reservoir for all these second phase reservoirs. It could also be envisaged that some of them and / or some of the reservoirs 35, 31, 36, 32, 37 and 33 of [Fig 3] are the same reservoir, or even that they all constitute a single and unique reservoir. , so as to limit the number of tanks and their cost.
  • FIG 5] is a variant of [Fig 3]. The references identical to those in [Fig 3] correspond to the same elements and will therefore not be re-detailed. In the variant of [Fig 5], the compressed gas leaving the separator 53 is stored in the tank 3.
  • the second phase leaving the separator 53 is stored in the lower part of the tank 3 while the gas is stored in the upper part of the reservoir 3.
  • the mixture can be stored directly in the reservoir 3, without passing through a separator 53.
  • the two phases will separate “naturally” at the end of a certain time.
  • the separation by the separator 53 nevertheless makes it possible to ensure a better ordered storage in the tank 3 and easier to activate quickly, without requiring sufficient time between the charge and the discharge of the system to wait for the good separation of the phases in the tank 3. .
  • the tank 3 can include a phase separation membrane. Although this membrane is not essential, it allows better preservation of phase separation.
  • FIG 6 shows an example of a means of compression or rotodynamic expansion.
  • the system can be used in one direction (direction of the black arrow F, the direction of the arrow F corresponds to the direction of fluid flow here, for the case of compression) for the compression and in the reverse direction for the relaxation.
  • the operation shown corresponds to compression.
  • the trigger works in the opposite direction, it will not be detailed.
  • the rotodynamic compression means 120 comprises a hub 103 whose external diameter increases progressively, in the direction of arrow F, in order to generate the compression.
  • One or more blades 102 are rigidly fixed to the hub 103.
  • the hub 103 is in rotation around the longitudinal axis AA of the rotodynamic compression means 120, for example driven by a rotation shaft (not visible), the blades 102 are rotating around axis AA. This rotation of the blades promotes mixing of the two phases.
  • the rotodynamic compression means 120 also comprises an outer casing 100, preferably cylindrical. On the inner surface of this outer casing, are positioned rectifiers 101, the rectifiers 101 being rigidly attached to the outer casing 100.
  • the rotodynamic compression means 120 is therefore a succession of compression stages (via the vanes 101) and rectifiers 102 in the direction F.
  • the rotodynamic compression means comprises a first compression stage 102 , a first rectifier 101, a second compression stage 102, a second rectifier 101, a third compression stage 102 and a third rectifier 101, in the direction of flow F.
  • the presence of the rectifiers tends to limit the centrifugal effect after each compression stage and therefore to further promote mixing between the gas and the second phase.
  • This type of rotodynamic compression means is particularly suitable for multiphase operation, in particular when mixing gas and liquid.
  • the invention may consist in using a two-phase rotodynamic compressor by injecting the second phase directly into the rectifiers of each of the stages. This makes it possible to eliminate the mixing means upstream of the rotodynamic compression means and thus to reduce costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a system for storing and recovering energy by compressed gas, comprising at least one rotodynamic fluid-compression means (1), at least one compressed-gas storage means (3) and at least one means for rotodynamic expansion of the compressed fluid in order to generate energy. The fluid comprises the gas and a second, preferably liquid, phase. Moreover, the system comprises a means for injecting the second phase upstream or into at least one rotodynamic compression means (1), and/or upstream or into at least one rotodynamic expansion means.

Description

SYSTEME ET PROCEDE DE STOCKAGE ET DE RECUPERATION D’ENERGIE PAR COMPRESSION ET DETENTE ISOTHERME DE L’AIR SYSTEM AND METHOD FOR STORAGE AND RECOVERY OF ENERGY BY COMPRESSION AND ISOTHERMAL RELAXATION OF THE AIR
Domaine technique Technical area
La présente invention concerne principalement le domaine de stockage d’énergie par air comprimé. The present invention mainly relates to the field of energy storage by compressed air.
La production d’électricité à partir d’énergies renouvelables, par exemple par l’intermédiaire de panneaux solaires, ou d’éoliennes terrestres ou marines, est en plein essor. Les principaux inconvénients de ces moyens de production sont l’intermittence de la production et la possible non-adéquation entre la période de production et la période de consommation. Il est donc important de disposer d’un système de stockage de l’énergie lors de la production pour la restituer lors d’une période de consommation. The production of electricity from renewable energies, for example through solar panels, or from onshore or offshore wind turbines, is booming. The main disadvantages of these means of production are the intermittence of production and the possible mismatch between the period of production and the period of consumption. It is therefore important to have an energy storage system during production to restore it during a period of consumption.
Il existe de nombreuses technologies permettant cet équilibre. There are many technologies that allow this balance.
Parmi elles, la plus connue est la Station de Transfert d’Eau par Pompage (STEP) qui consiste en l’utilisation de deux réservoirs d’eau à des altitudes différentes. L’eau est pompée du bassin inférieur vers le bassin supérieur lors de la phase de charge. L’eau est ensuite envoyée vers une turbine, en direction du bassin inférieur, lors de la décharge. Among them, the best known is the Water Transfer Station by Pumping (STEP) which consists of the use of two water reservoirs at different altitudes. Water is pumped from the lower basin to the upper basin during the charging phase. The water is then sent to a turbine, towards the lower basin, during the discharge.
L’utilisation de batteries de différents types (lithium, nickel, sodium-soufre, plomb-acide...) peut également répondre à ce besoin de stockage d’énergie. The use of batteries of different types (lithium, nickel, sodium-sulfur, lead-acid ...) can also meet this need for energy storage.
Une autre technologie, le stockage d'énergie par volant d’inertie (FES pour Flywheel Energy Storage) consiste à accélérer un rotor (volant) à une vitesse très élevée et à maintenir l'énergie dans le système sous forme d’énergie cinétique. Lorsque l'énergie est extraite de ce système FES, la vitesse de rotation du volant est réduite en conséquence du principe de conservation de l'énergie. L'ajout d'énergie au système FES entraîne, en conséquence, une augmentation de la vitesse du volant. Another technology, Flywheel Energy Storage (FES), is to accelerate a rotor (flywheel) to a very high speed and hold the energy in the system as kinetic energy. When energy is extracted from this FES system, the rotational speed of the flywheel is reduced as a result of the principle of energy conservation. Adding energy to the FES system therefore results in an increase in flywheel speed.
La technologie de stockage d’énergie par utilisation d’un gaz comprimé, (souvent de l’air comprimé) est prometteuse. L’énergie produite et non consommée est utilisée pour comprimer de l’air à des pressions comprises entre 40 bar et 200 bar à l’aide de compresseurs (pouvant être multi-étagés). Lors de la compression, la température de l’air augmente. Afin de limiter le coût des réservoirs de stockage et minimiser la consommation d’électricité du compresseur, l’air peut être refroidi entre chaque étage de compression. L’air comprimé est alors stocké sous pression, soit dans des cavités naturelles (cavernes), soit dans des réservoirs artificiels. Il existe une variante en développement. Il s’agit d’un procédé dit adiabatique dans lequel la chaleur issue de la compression de l’air est récupérée, stockée et restituée à l’air avant de le détendre. Il s’agit de la technologie AACAES (issue de l’anglais « Advanced Adiabatic Compressed Air Energy Storage »). The technology of energy storage by using a compressed gas (often compressed air) is promising. The energy produced and not consumed is used to compress air to pressures between 40 bar and 200 bar using compressors (which can be multi-stage). During compression, the air temperature rises. In order to limit the cost of the storage tanks and minimize the compressor electricity consumption, the air can be cooled between each compression stage. The compressed air is then stored under pressure, either in natural cavities (caverns) or in artificial reservoirs. There is a variant in development. This is a so-called adiabatic process in which the heat resulting from the compression of the air is recovered, stored and returned to the air before expanding it. This is AACAES technology (derived from the English “Advanced Adiabatic Compressed Air Energy Storage”).
Dans un système AACAES, l’air comprimé est stocké dans un réservoir de manière indépendante au stockage de chaleur. Dans un tel système, l'air est stocké à une température proche de la température ambiante (à priori inférieure à 501). Un tel système dispose donc d’un réservoir de chaleur et d’un réservoir d’air sous pression. La présence de ces deux réservoirs impacte significativement le coût du système. In an AACAES system, compressed air is stored in a tank independently for heat storage. In such a system, the air is stored at a temperature close to ambient temperature (a priori less than 50 l ). Such a system therefore has a heat reservoir and a pressurized air reservoir. The presence of these two reservoirs significantly impacts the cost of the system.
Technique antérieure Prior art
Dans un système de stockage et de récupération d’énergie par air comprimé de l’art antérieur, la chaleur est soit récupérée dans un moyen de stockage de la chaleur (système AACAES), soit l’air est refroidi entre chaque étage de compression et/ou de détente, ce qui nécessite des moyens d’échange de chaleur (par exemple un échangeur de chaleur) entre chaque étage de compression ou détente. Ces systèmes nécessitent donc des échangeurs de chaleur pour récupérer la chaleur ou réchauffer le fluide. La présence de ces échangeurs impacte négativement le coût du système. In a prior art compressed air energy storage and recovery system, the heat is either recovered in a heat storage means (AACAES system), or the air is cooled between each compression stage and / or expansion, which requires heat exchange means (for example a heat exchanger) between each compression or expansion stage. These systems therefore require heat exchangers to recover the heat or heat the fluid. The presence of these exchangers has a negative impact on the cost of the system.
Résumé de l’invention Summary of the invention
Le système selon l’invention consiste à réaliser une compression ou une détente isotherme de manière à éviter l’utilisation d’échangeurs de chaleur. Ainsi, le coût du système est réduit et le système est plus simple. The system according to the invention consists in performing an isothermal compression or expansion so as to avoid the use of heat exchangers. Thus, the cost of the system is reduced and the system is simpler.
Pour cela, l’invention concerne un système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression rotodynamique de fluide, au moins un moyen de stockage de gaz comprimé, au moins un moyen de détente rotodynamique du fluide comprimé pour générer une énergie. Le fluide comprend le gaz et une deuxième phase, de préférence liquide. De plus, le système comprend un moyen d’injection de la deuxième phase en amont ou dans au moins un moyen de compression rotodynamique, et/ou en amont ou dans au moins un moyen de détente rotodynamique. La deuxième phase a pour but de limiter l’augmentation de la température du gaz lors de la phase de compression. Ainsi, la compression et/ou la détente sont réalisées de manière isotherme. L’invention concerne un système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression rotodynamique de fluide, au moins un moyen de stockage de gaz comprimé, au moins un moyen de détente rotodynamique dudit fluide comprimé pour générer une énergie. Ledit fluide comprend ledit gaz et une deuxième phase et le système comprend un moyen d’injection de ladite deuxième phase en amont ou à l'intérieur d'au moins un moyen de compression rotodynamique, et/ou en amont ou à l'intérieur d'au moins un moyen de détente rotodynamique. For this, the invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas, at least one means of rotodynamic expansion of the fluid. compressed to generate energy. The fluid comprises the gas and a second phase, preferably liquid. In addition, the system comprises means for injecting the second phase upstream or into at least one means of rotodynamic compression, and / or upstream or into at least one means of rotodynamic expansion. The purpose of the second phase is to limit the increase in the temperature of the gas during the compression phase. Thus, the compression and / or the relaxation are carried out isothermally. The invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas, at least one means of rotodynamic expansion of said compressed fluid to generate an energy. Said fluid comprises said gas and a second phase and the system comprises means for injecting said second phase upstream or inside at least one rotodynamic compression means, and / or upstream or inside it. 'at least one means of rotodynamic expansion.
Selon une mise en oeuvre de l’invention, le système comprend au moins un moyen de séparation positionné après le moyen de compression rotodynamique ou après le moyen de détente rotodynamique. According to one implementation of the invention, the system comprises at least one separation means positioned after the rotodynamic compression means or after the rotodynamic expansion means.
De préférence, ladite deuxième phase est un liquide, de préférence de l’eau. Preferably, said second phase is a liquid, preferably water.
Avantageusement, le système comprend au moins un moyen de stockage de ladite deuxième phase, ledit moyen de stockage de ladite deuxième phase étant connecté à au moins un moyen d’injection ou à au moins un moyen de séparation. Advantageously, the system comprises at least one means for storing said second phase, said means for storing said second phase being connected to at least one injection means or to at least one separation means.
Selon un mode de réalisation de l’invention, chaque moyen d’injection et/ou chaque moyen de séparation est connecté à un moyen de stockage de ladite deuxième phase liquide différent. According to one embodiment of the invention, each injection means and / or each separation means is connected to a means for storing said second different liquid phase.
Alternativement, chaque moyen d’injection et/ou chaque moyen de séparation sont connectés à un moyen de stockage de ladite deuxième phase, ledit moyen de stockage de ladite deuxième phase pouvant être commun à plusieurs moyens d’injection et/ou moyens de séparation. Alternatively, each injection means and / or each separation means are connected to a storage means for said second phase, said storage means for said second phase possibly being common to several injection means and / or separation means.
Selon une variante de l’invention, tous les moyens d’injection et/ou tous les moyens de séparation sont connectés à un unique moyen de stockage de ladite deuxième phase. According to a variant of the invention, all the injection means and / or all the separation means are connected to a single storage means for said second phase.
Selon une mise en oeuvre du système selon l’invention, le système comprend au moins un moyen de mélange en amont d’au moins un moyen de compression et/ou un moyen de séparation en aval d’au moins moyen de compression. According to an implementation of the system according to the invention, the system comprises at least one mixing means upstream of at least one compression means and / or a separation means downstream of at least one compression means.
Avantageusement, le système comprend au moins un moyen de mélange en amont d’au moins un moyen de détente et/ou un moyen de séparation en aval d’au moins un moyen de détente. Advantageously, the system comprises at least one mixing means upstream of at least one expansion means and / or a separation means downstream of at least one expansion means.
Selon une variante de l’invention, au moins un moyen de mélange est intégré à au moins un moyen de compression rotodynamique ou à au moins un moyen de détente rotodynamique. L’invention concerne aussi un procédé de stockage et de récupération d’énergie par gaz comprimé comprenant les étapes suivantes : a1) on comprime un gaz par un moyen de compression rotodynamique ; b1) on stocke ledit gaz comprimé ; c1) on détend ledit gaz comprimé par un moyen de détente rotodynamique. According to a variant of the invention, at least one mixing means is integrated into at least one rotodynamic compression means or at least one rotodynamic expansion means. The invention also relates to a method for storing and recovering energy by compressed gas comprising the following steps: a1) a gas is compressed by means of rotodynamic compression; b1) said compressed gas is stored; c1) said compressed gas is expanded by means of rotodynamic expansion.
De plus, lors ou avant les étapes de compression ou de détente, on injecte une deuxième phase dans ledit gaz. In addition, during or before the compression or expansion steps, a second phase is injected into said gas.
De manière préférée, ladite deuxième phase est un liquide, de préférence de l’eau. Preferably, said second phase is a liquid, preferably water.
Avantageusement, on réitère successivement plusieurs fois l’étape a1). Advantageously, step a1) is repeated successively several times.
De manière avantageuse, on réitère successivement plusieurs fois l’étape c1). Advantageously, step c1) is repeated successively several times.
Selon une mise en oeuvre du procédé de l’invention, on mélange ladite deuxième phase avec le gaz comprimé, entre l’injection de la deuxième phase et la compression ou la détente. According to an implementation of the method of the invention, said second phase is mixed with the compressed gas, between the injection of the second phase and the compression or expansion.
Selon une variante de l’invention, on sépare ladite deuxième phase et ledit gaz comprimé, après l’étape de compression ou de détente. According to a variant of the invention, said second phase and said compressed gas are separated after the compression or expansion step.
Liste des figures List of Figures
D'autres caractéristiques et avantages du système et du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après. Other characteristics and advantages of the system and of the method according to the invention will become apparent on reading the following description of non-limiting examples of embodiments, with reference to the appended figures and described below.
La figure 1 représente une première partie d’un premier mode de réalisation du système selon l’invention. Figure 1 shows a first part of a first embodiment of the system according to the invention.
La figure 2 représente une deuxième partie d’un premier mode de réalisation du système selon l’invention. Figure 2 shows a second part of a first embodiment of the system according to the invention.
La figure 3 représente une première partie d’un deuxième mode de réalisation du système selon l’invention. Figure 3 shows a first part of a second embodiment of the system according to the invention.
La figure 4 représente une deuxième partie d’un deuxième mode de réalisation du système selon l’invention. La figure 5 représente une alternative d’une première partie d’un troisième mode de réalisation du système selon l’invention. FIG. 4 represents a second part of a second embodiment of the system according to the invention. FIG. 5 represents an alternative of a first part of a third embodiment of the system according to the invention.
La figure 6 représente un mode de réalisation d’une machine rotodynamique pour la compression ou la détente pour le système ou le procédé selon l’invention. Figure 6 shows an embodiment of a rotodynamic machine for compression or relaxation for the system or method according to the invention.
Description des modes de réalisation Description of embodiments
L’invention concerne un système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression rotodynamique de fluide, au moins un moyen de stockage de gaz comprimé et au moins un moyen de détente rotodynamique du fluide comprimé pour générer une énergie. Ainsi, le moyen de compression permet la compression d’un fluide (le fluide comprenant le gaz), permettant de limiter l’espace de stockage du gaz comprimé dans le moyen de stockage. Pour la restitution d’énergie, le gaz comprimé ressort du moyen de stockage pour être détendu dans le moyen de détente rotodynamique. Lors de cette détente, de l’électricité peut par exemple être générée. The invention relates to a system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression of fluid, at least one means of storage of compressed gas and at least one means of rotodynamic expansion of the compressed fluid to generate an energy. Thus, the compression means allows the compression of a fluid (the fluid comprising the gas), making it possible to limit the storage space of the compressed gas in the storage means. For energy recovery, the compressed gas leaves the storage means to be expanded in the rotodynamic expansion means. During this relaxation, electricity can for example be generated.
Un moyen de détente ou de compression rotodynamique comprend une partie interne en rotation qui génère une compression/détente. Par exemple, cette partie interne peut comprendre un moyeu sur lequel sont fixées des aubes, le moyeu étant entraîné en rotation par un arbre de rotation, qui peut lui-même être entraîné en rotation par exemple par un moteur électrique. Pour un moyen de compression rotodynamique, la rotation de l’arbre entraîne celle des pales et ainsi comprime le fluide. A l’inverse, lorsque le moyen est un moyen de détente rotodynamique, le fluide arrivant entraîne les pales en rotation. Il cède ainsi une partie de son énergie cinétique et calorifique, ce qui entraîne une perte de pression. Les pales en rotation entraînent un arbre qui peut lui-même entraîner une génératrice électrique pour restituer de l’électricité. A rotodynamic expansion or compression means comprises an internal rotating part which generates compression / expansion. For example, this internal part may comprise a hub on which blades are fixed, the hub being driven in rotation by a rotation shaft, which may itself be driven in rotation, for example by an electric motor. For a means of rotodynamic compression, the rotation of the shaft drives that of the blades and thus compresses the fluid. Conversely, when the means is a means of rotodynamic expansion, the incoming fluid drives the blades in rotation. It thus releases part of its kinetic and calorific energy, which leads to a loss of pressure. The rotating blades drive a shaft which can itself drive an electric generator to deliver electricity.
Le fluide comprend le gaz et une deuxième phase, de préférence liquide. La deuxième phase sert à limiter l’augmentation de température du gaz lors de la compression ou au contraire à éviter son trop fort refroidissement lors de la détente. L’ajout de cette deuxième phase permet donc une compression ou une détente du gaz comprimé de manière sensiblement isotherme. De ce fait, le système ne nécessite pas de moyen d’échange de chaleur, tel qu’un échangeur à tube, un échangeur à plaque ou encore qu’un échangeur sans contact. The fluid comprises the gas and a second phase, preferably liquid. The second phase serves to limit the increase in temperature of the gas during compression or on the contrary to prevent it from cooling too strongly during expansion. The addition of this second phase therefore allows compression or expansion of the compressed gas in a substantially isothermal manner. As a result, the system does not require any means of heat exchange, such as a tube exchanger, a plate exchanger or even a contactless exchanger.
Par ailleurs, le système comprend un moyen d’injection (tel qu’un injecteur) de la deuxième phase en amont ou dans au moins un moyen de compression rotodynamique, et/ou en amont ou dans au moins un moyen de détente rotodynamique. De ce fait, le fonctionnement isotherme au sein du moyen de compression ou de détente rotodynamique est amélioré. De plus, l’utilisation de moyens de compression ou de détente rotodynamique permet d’améliorer l’homogénéité du mélange entre le gaz et la deuxième phase. Une machine volumétrique à piston ne permettrait pas une bonne homogénéité du mélange ainsi constitué. En effet, le type de compresseur volumétrique utilisé pour la compression de gaz avec des débits importants, est souvent un compresseur de type compresseur à vis, ou compresseur à pistons. Ceux-ci nécessitent généralement une lubrification des éléments en friction, souvent incompatible avec un liquide de refroidissement du gaz tel que l'eau par exemple, de sorte que l'air doit, dans la plupart des cas, être asséché à l'entrée du compresseur. A contrario, une machine rotodynamique spécifique est dimensionnée pour la compression d'un mélange de gaz et de liquide. Dans le cas du stockage de gaz, la machine rotodynamique diphasique est appelée compresseur humide. Elle permet une bonne homogénéité des fluides. Furthermore, the system comprises means for injecting (such as an injector) of the second phase upstream or into at least one rotodynamic compression means, and / or upstream or into at least one rotodynamic expansion means. Therefore, the operation isothermal within the means of compression or rotodynamic expansion is improved. In addition, the use of means of compression or rotodynamic expansion makes it possible to improve the homogeneity of the mixture between the gas and the second phase. A volumetric piston machine would not allow good homogeneity of the mixture thus formed. Indeed, the type of positive-displacement compressor used for compressing gas with high flow rates is often a compressor of the screw compressor type, or piston compressor. These generally require lubrication of the friction elements, often incompatible with a gas coolant such as water for example, so that the air must, in most cases, be dried at the inlet of the gas. compressor. Conversely, a specific rotodynamic machine is designed for the compression of a mixture of gas and liquid. In the case of gas storage, the two-phase rotodynamic machine is called a wet compressor. It allows good homogeneity of the fluids.
L’invention permet d'injecter de liquide au sein même de la machine rotodynamique, de maîtriser à la fois un taux de gaz, une granulométrie de gouttes et l'homogénéité du mélange, et ainsi de maîtriser la température du gaz lors de sa compression, ou de sa détente. The invention makes it possible to inject liquid into the very heart of the rotodynamic machine, to control both a rate of gas, a particle size of the drops and the homogeneity of the mixture, and thus to control the temperature of the gas during its compression. , or its relaxation.
De préférence, le système peut comprendre au moins un moyen de séparation positionné après le moyen de compression rotodynamique ou après le moyen de détente rotodynamique. Ainsi, la deuxième phase est séparée du gaz après la compression ou la détente de manière à ne pas dégrader le rendement des étages suivants et/ou de ne pas être stockée avec le gaz dans le moyen de stockage. Preferably, the system may include at least one separation means positioned after the rotodynamic compression means or after the rotodynamic expansion means. Thus, the second phase is separated from the gas after compression or expansion so as not to degrade the efficiency of the following stages and / or not to be stored with the gas in the storage means.
Préférentiellement, le système peut comprendre un moyen de séparation après chaque étage de compression, comprenant un moyen de compression rotodynamique, et après chaque étage de détente comprenant un moyen de détente rotodynamique. Preferably, the system can comprise a separation means after each compression stage, comprising a rotodynamic compression means, and after each expansion stage comprising a rotodynamic expansion means.
Avantageusement, la deuxième phase peut comprendre un liquide et de manière préférée, ce liquide peut être de l’eau. L’utilisation de liquide permet de mieux maîtriser la température lors de la compression ou de la détente. L’eau permet une bonne efficacité de refroidissement/maintien en température tout en assurant un coût minimal. Advantageously, the second phase can comprise a liquid and preferably this liquid can be water. The use of liquid allows for better temperature control during compression or expansion. The water provides good cooling / temperature maintenance efficiency while ensuring minimal cost.
Selon un mode de réalisation du système selon l’invention, le système peut comprendre au moins un moyen de stockage de la deuxième phase, ce moyen de stockage de la deuxième phase pouvant être connecté à au moins un moyen d’injection ou à au moins un moyen de séparation. De ce fait, il est possible d’injecter et/ou de récupérer la deuxième phase de manière à mieux maîtriser la température de la deuxième phase lors de son injection ou de son retrait et ainsi, mieux maîtriser la compression ou la détente isotherme. Selon une variante de l’invention, chaque moyen d’injection et/ou chaque moyen de séparation peut être connecté à un moyen de stockage de la deuxième phase différent. De ce fait, la température de chaque réservoir de la deuxième phase est maîtrisée et ainsi, les transformations isothermes de chaque étage de compression ou de détente sont mieux contrôlées. According to one embodiment of the system according to the invention, the system can comprise at least one storage means of the second phase, this storage means of the second phase being able to be connected to at least one injection means or to at least a means of separation. As a result, it is possible to inject and / or recover the second phase so as to better control the temperature of the second phase when it is injected or withdrawn and thus, better to control the isothermal compression or expansion. According to a variant of the invention, each injection means and / or each separation means can be connected to a different second phase storage means. As a result, the temperature of each tank of the second phase is controlled and thus the isothermal transformations of each compression or expansion stage are better controlled.
Selon une alternative de l’invention, chaque moyen d’injection et/ou chaque moyen de séparation peut/peuvent être connecté/s à un moyen de stockage de la deuxième phase, ce moyen de stockage de la deuxième phase pouvant être commun à plusieurs moyens d’injection et/ou moyens de séparation. Ainsi, il est possible d’utiliser un même moyen de stockage pour injecter ou récupérer la deuxième phase à une température sensiblement homogène. Cette alternative permet de limiter le nombre de réservoirs nécessaires pour la deuxième phase, tout en assurant une bonne maîtrise des températures d’injection de la deuxième phase dans les différents moyens d’injection ou de séparation de manière à maîtriser le profil isotherme des transformations (compression, détente). According to an alternative of the invention, each injection means and / or each separation means can / can be connected to a storage means of the second phase, this storage means of the second phase possibly being common to several injection means and / or separation means. Thus, it is possible to use the same storage means to inject or recover the second phase at a substantially homogeneous temperature. This alternative makes it possible to limit the number of reservoirs required for the second phase, while ensuring good control of the injection temperatures of the second phase in the various injection or separation means so as to control the isothermal profile of the transformations ( compression, relaxation).
De manière avantageuse, tous les moyens d’injection et/ou tous les moyens de séparation peuvent être connectés à un unique moyen de stockage de ladite deuxième phase. Cette solution a l’avantage de réduire le nombre de réservoirs pour la deuxième phase et donc le coût global du système. Advantageously, all the injection means and / or all the separation means can be connected to a single storage means for said second phase. This solution has the advantage of reducing the number of tanks for the second phase and therefore the overall cost of the system.
De manière préférée, le système peut comprendre au moins un moyen de mélange en amont ou à l'intérieur d’au moins un moyen de compression rotodynamique et/ou un moyen de séparation en aval d’au moins moyen de compression rotodynamique. L’ajout d’un moyen de mélange en amont ou à l'intérieur du moyen de compression rotodynamique permet l’utilisation d’un fluide homogène dans le moyen de compression rotodynamique (par exemple un compresseur polyphasique ou une pompe polyphasique) de manière à améliorer la compression isotherme. L’ajout du moyen de séparation en aval du moyen de compression rotodynamique permet de retirer la deuxième phase, de manière à conserver le stockage seulement du gaz comprimé. L’ajout du moyen de séparation en aval du moyen de compression rotodynamique permet de retirer la deuxième phase, de manière à éviter un taux de deuxième phase trop important dans les étages de compression suivants, notamment lorsque la deuxième phase est liquide. En effet, un taux élevé de liquide pourrait endommager le moyen de compression rotodynamique, notamment lorsque ce moyen de compression n’est pas adapté pour fonctionner avec de forts taux de liquide. Le moyen de mélange permet de garantir le taux de gaz, la granulométrie de gouttes et l'homogénéité du mélange afin d’assurer une transformation isotherme contrôlée, tout en assurant une bonne compression. Preferably, the system may comprise at least one mixing means upstream or inside at least one rotodynamic compression means and / or a separation means downstream of at least rotodynamic compression means. The addition of a mixing means upstream or inside the rotodynamic compression means allows the use of a homogeneous fluid in the rotodynamic compression means (for example a multiphase compressor or a multiphase pump) so as to improve isothermal compression. The addition of the separation means downstream of the rotodynamic compression means makes it possible to remove the second phase, so as to keep the storage only of the compressed gas. The addition of the separation means downstream of the rotodynamic compression means makes it possible to remove the second phase, so as to avoid an excessive second phase rate in the following compression stages, in particular when the second phase is liquid. Indeed, a high level of liquid could damage the rotodynamic compression means, in particular when this compression means is not suitable for operating with high levels of liquid. The mixing means makes it possible to guarantee the gas content, the particle size of the drops and the homogeneity of the mixture to ensure a controlled isothermal transformation, while ensuring good compression.
En outre, le système peut également comprendre au moins un moyen de mélange à l'intérieur ou en amont d’au moins un moyen de détente et/ou un moyen de séparation en aval d’au moins un moyen de détente. L’ajout d’un moyen de mélange à l'intérieur ou en amont du moyen de détente rotodynamique permet l’utilisation d’un fluide homogène dans le moyen de détente rotodynamique (par exemple une turbine ou un mélangeur polyphasique) de manière à améliorer la détente isotherme. L’ajout du moyen de séparation en aval du moyen de détente rotodynamique permet de retirer la deuxième phase, de manière à éviter un taux de deuxième phase trop important dans les étages de détente suivants, notamment lorsque la deuxième phase est liquide. En effet, un taux élevé de liquide pourrait endommager le moyen de détente rotodynamique, notamment dans le cas d’une turbine. Le moyen de mélange permet de garantir le taux de gaz, la granulométrie de gouttes et l'homogénéité du mélange afin d’assurer une transformation isotherme contrôlée, tout en assurant une bonne détente. Further, the system may also include at least one mixing means within or upstream of at least one expansion means and / or downstream separation means of at least one expansion means. The addition of a mixing means inside or upstream of the rotodynamic expansion means allows the use of a homogeneous fluid in the rotodynamic expansion means (for example a turbine or a multiphase mixer) so as to improve isothermal relaxation. The addition of the separation means downstream of the rotodynamic expansion means makes it possible to remove the second phase, so as to avoid an excessive second phase rate in the following expansion stages, in particular when the second phase is liquid. Indeed, a high level of liquid could damage the means of rotodynamic expansion, in particular in the case of a turbine. The mixing means makes it possible to guarantee the gas level, the particle size of the drops and the homogeneity of the mixture in order to ensure a controlled isothermal transformation, while ensuring good expansion.
De préférence, un moyen de mélange peut notamment être un mélangeur pour améliorer l’homogénéité du mélange de la deuxième phase avec le gaz. Preferably, a mixing means can in particular be a mixer to improve the homogeneity of the mixture of the second phase with the gas.
Selon un mode de réalisation avantageux, au moins un moyen de mélange peut être intégré à au moins un moyen de compression rotodynamique ou à au moins un moyen de détente rotodynamique. En effet, l’utilisation par exemple d’un compresseur polyphasique peut à la fois réaliser la compression et le mélange de l’ensemble. En effet, un compresseur polyphasique est une machine rotodynamique spécifique dont la géométrie permet de ne pas séparer la phase liquide de la phase gazeuse. Les deux phases sont ainsi intimement et avantageusement mélangées de manière la plus homogène possible. Cela permet de maximiser les échanges thermiques et de refroidir le gaz plus efficacement lors de sa compression. Ainsi, le système est simplifié. Pour le moyen de détente rotodynamique, la turbine polyphasique peut être utilisée en mode inversé, c’est-à-dire avec une circulation de fluide en sens inverse de la circulation de fluide en mode de compression. Le fluide suit alors une détente lors du transfert de son énergie à l'arbre en rotation sous la forme d'énergie mécanique. Le liquide injecté dans l'élément de détente permet de réchauffer le gaz. According to an advantageous embodiment, at least one mixing means can be integrated with at least one means of rotodynamic compression or at least one means of rotodynamic expansion. Indeed, the use of, for example, a multiphase compressor can perform both compression and mixing of the whole. Indeed, a multiphase compressor is a specific rotodynamic machine whose geometry makes it possible not to separate the liquid phase from the gas phase. The two phases are thus intimately and advantageously mixed as homogeneously as possible. This makes it possible to maximize heat exchanges and to cool the gas more efficiently during its compression. Thus, the system is simplified. For the rotodynamic expansion means, the multiphase turbine can be used in reverse mode, that is to say with a flow of fluid in the opposite direction to the flow of fluid in compression mode. The fluid then undergoes an expansion during the transfer of its energy to the rotating shaft in the form of mechanical energy. The liquid injected into the expansion element makes it possible to heat the gas.
L’invention concerne également un procédé de stockage et de récupération d’énergie par gaz comprimé comprenant les étapes suivantes : a1) on comprime un gaz ; b1) on stocke le gaz comprimé ; c1) on détend le gaz comprimé. The invention also relates to a method for storing and recovering energy by compressed gas comprising the following steps: a1) a gas is compressed; b1) the compressed gas is stored; c1) the compressed gas is expanded.
De plus, lors ou avant les étapes de compression ou de détente, on injecte une deuxième phase dans le gaz. L’ajout de la deuxième phase permet de réaliser une compression ou une détente isotherme et donc d’éviter l’utilisation d’échangeurs de chaleur. In addition, during or before the compression or expansion steps, a second phase is injected into the gas. The addition of the second phase allows for isothermal compression or expansion and therefore avoids the use of heat exchangers.
Avantageusement, la deuxième phase peut être un liquide, de préférence de l’eau. Ainsi, le profil de température du fluide lors de la compression ou de la détente est mieux maîtrisé. Advantageously, the second phase can be a liquid, preferably water. Thus, the temperature profile of the fluid during compression or expansion is better controlled.
Selon une variante, on peut réitérer successivement plusieurs fois l’étape a1). Ainsi, on peut utiliser des moyens de compression rotodynamique avec un rendement optimal pour chaque plage de variation de pression. Cette variante a aussi l’avantage de permettre l’utilisation de moyens de compression rotodynamique polyphasique, et d’améliorer les performances du système. According to one variant, step a1) can be repeated successively several times. Thus, rotodynamic compression means can be used with optimum efficiency for each range of pressure variation. This variant also has the advantage of allowing the use of multiphase rotodynamic compression means, and of improving the performance of the system.
Préférentiellement, on peut réitérer successivement plusieurs fois l’étape c1). Ainsi, on peut utiliser des moyens de détente rotodynamique avec un rendement optimal pour chaque plage de variation de pression. Cette solution a aussi l’avantage de permettre l’utilisation de moyens de détente rotodynamique polyphasique et d’améliorer les performances du système. Preferably, step c1) can be repeated successively several times. Thus, rotodynamic expansion means can be used with optimum efficiency for each range of pressure variation. This solution also has the advantage of allowing the use of multiphase rotodynamic expansion means and of improving the performance of the system.
Selon une mise en oeuvre du procédé selon l’invention, on peut mélanger la deuxième phase avec le gaz comprimé, entre l’injection de la deuxième phase et la compression ou la détente. De ce fait, le fluide entre dans le moyen de compression de manière homogène, ce qui permet une bonne maîtrise de l’évolution de la température dans le moyen de compression. According to an implementation of the method according to the invention, the second phase can be mixed with the compressed gas, between the injection of the second phase and the compression or expansion. As a result, the fluid enters the compression means in a homogeneous manner, which allows good control of the temperature development in the compression means.
Selon une variante du procédé selon l’invention, on peut séparer la deuxième phase et le gaz comprimé, après l’étape de compression ou de détente. Ainsi, le taux de deuxième phase dans le fluide reste faible même s’il existe plusieurs étages de compression ou de détente. Cela est particulièrement avantageux lorsque la deuxième phase est liquide. En effet, un taux élevé de liquide pourrait endommager les moyens de compression ou de détente rotodynamique. De plus, il serait plus difficile de maîtriser la température du fluide. According to a variant of the process according to the invention, the second phase and the compressed gas can be separated after the compression or expansion step. Thus, the rate of second phase in the fluid remains low even if there are several stages of compression or expansion. This is particularly advantageous when the second phase is liquid. Indeed, a high level of liquid could damage the means of compression or rotodynamic expansion. In addition, it would be more difficult to control the temperature of the fluid.
La [Fig 1] illustre de manière schématique et non limitative une partie d’un système de stockage et de récupération d’énergie selon un mode de réalisation de l’invention. Cette partie concerne la phase de stockage d’énergie par air comprimé. Cette partie du système comprend deux réservoirs de deuxième phase 33 et 35, un moyen de mélange tel qu’un mélangeur 41 , un moyen de séparation 53 tel qu’un séparateur, un moyen de compression rotodynamique 1 tel qu’un compresseur rotodynamique diphasique et un moyen de stockage d’air comprimé 30. Du gaz, de préférence de l’air prélevé dans le milieu ambiant est mélangé au sein du mélangeur 41 avec la deuxième phase, par exemple de l’eau, issue du réservoir 35. Le fluide ainsi obtenu après le mélange de la deuxième phase avec le gaz traverse ensuite le compresseur 1 , dans lequel il est comprimé. Le compresseur rotodynamique diphasique 1 permet la compression du liquide et du gaz de manière simultanée et améliore le mélange entre les deux phases, grâce à la rotation des flux qu’il induit. La bonne homogénéité du mélange permet ainsi une homogénéité des températures, la deuxième phase peut alors correctement refroidir le gaz lors de la compression. La compression est alors quasi isotherme, ce qui permet d’éviter tout échangeur de chaleur en sortie pour refroidir le gaz. Les réservoirs 33 et 35 peuvent être distincts ou peuvent former une seule et même entité. [Fig 1] schematically and non-limitingly illustrates part of an energy storage and recovery system according to one embodiment of the invention. This part concerns the phase of energy storage by compressed air. This part of the system comprises two second phase tanks 33 and 35, a mixing means such as a mixer 41, a separation means 53 such as a separator, a rotodynamic compression means 1 such as a two-phase rotodynamic compressor and a compressed air storage means 30. Gas, preferably air taken from the ambient medium is mixed within the mixer 41 with the second phase, for example water, coming from the reservoir 35. The fluid thus obtained after the mixture of the second phase with the gas then passes through the compressor 1, in which it is compressed. The two-phase rotodynamic compressor 1 allows the compression of the liquid and the gas simultaneously and improves the mixing between the two phases, thanks to the rotation of the flows that it induces. The good homogeneity of the mixture thus allows a homogeneity of the temperatures, the second phase can then correctly cool the gas during compression. The compression is then almost isothermal, which makes it possible to avoid any heat exchanger at the outlet to cool the gas. The reservoirs 33 and 35 can be distinct or can form a single entity.
La [Fig 2] illustre de manière schématique et non limitative une deuxième partie d’un système de stockage et de récupération d’énergie selon un mode de réalisation de l’invention. Cette partie concerne la phase de récupération d’énergie par air comprimé. Cette deuxième partie peut être combinée à la première partie de la figure 1 pour former un système de stockage et de récupération d’énergie par gaz comprimé. Cette partie du système comprend deux réservoirs de deuxième phase 33B et 35B, un moyen de mélange tel qu’un mélangeur 47, un moyen de séparation 55 tel qu’un séparateur, un moyen de détente rotodynamique diphasique 2 tel qu’une turbine rotodynamique et un moyen de stockage d’air comprimé 30. Du gaz comprimé stocké dans le réservoir 30 est envoyé vers la turbine diphasique afin de récupérer l’énergie contenue dans le gaz. L’énergie peut, par exemple, être ensuite transformée en électricité par l’intermédiaire d’une génératrice entraînée par la turbine. Avant d’entrer dans le moyen de détente rotodynamique 2, le gaz comprimé issu du réservoir 30 est mélangé dans le moyen de mélange 47, tel qu’un mélangeur, avec une deuxième phase issue du réservoir 33B. Cette deuxième phase, de préférence liquide, permet de réaliser une détente quasi isotherme au sein du moyen de détente rotodynamique 2. Lorsque le fluide ressort de la turbine, le gaz et la deuxième phase sont séparés dans un moyen de séparation 55, tel qu’un séparateur. La deuxième phase ressortant du moyen de séparation 55 est ensuite stockée dans le réservoir 35B. Les réservoirs 33B et 35B peuvent être distincts ou peuvent former une seule et même entité. Selon une autre variante, les réservoirs 33B et/ou 35B peuvent également être communs avec les réservoirs 33 et 35 de la [Fig 1] [Fig 2] schematically and non-limitingly illustrates a second part of an energy storage and recovery system according to one embodiment of the invention. This part concerns the phase of energy recovery by compressed air. This second part can be combined with the first part of FIG. 1 to form a system for storing and recovering energy by compressed gas. This part of the system comprises two second phase tanks 33B and 35B, a mixing means such as a mixer 47, a separation means 55 such as a separator, a two-phase rotodynamic expansion means 2 such as a rotodynamic turbine and a compressed air storage means 30. Compressed gas stored in the reservoir 30 is sent to the two-phase turbine in order to recover the energy contained in the gas. The energy can, for example, then be transformed into electricity via a generator driven by the turbine. Before entering the rotodynamic expansion means 2, the compressed gas issuing from the reservoir 30 is mixed in the mixing means 47, such as a mixer, with a second phase issuing from the reservoir 33B. This second phase, preferably liquid, makes it possible to achieve an almost isothermal expansion within the rotodynamic expansion means 2. When the fluid leaves the turbine, the gas and the second phase are separated in a separation means 55, such that a separator. The second phase emerging from the separation means 55 is then stored in the tank 35B. The reservoirs 33B and 35B can be distinct or can form a single entity. According to another variant, the reservoirs 33B and / or 35B can also be common with the reservoirs 33 and 35 of [Fig 1].
La [Fig 3] représente de manière schématique et non limitative une autre variante d’une première partie concernant le stockage d’énergie du système. Les références identiques à celles de la [Fig 1] correspondent aux mêmes éléments et ne seront donc pas re-détaillés. Contrairement à la [Fig 1] où un seul étage de compression était réalisé via le moyen de compression rotodynamique 1 , la [Fig 3] dispose de trois étages de compression rotodynamique 11 , 12 et 13. Cet étagement permet des rendements plus performants par une variation de pression plus faible aux bornes de chaque moyen de compression rotodynamique 11 , 12, et 13. De plus, cette caractéristique permet l’utilisation de moyen de compression rotodynamique standard, ce qui permet une réduction de coût du système, aucune adaptation ou conception n’étant nécessaire. [Fig 3] shows schematically and without limitation another variant of a first part concerning the energy storage of the system. The references identical to those in [Fig 1] correspond to the same elements and will therefore not be re-detailed. Unlike [Fig 1] where a single compression stage was produced via the rotodynamic compression means 1, [Fig 3] has three rotodynamic compression stages 11, 12 and 13. This staging allows more efficient outputs by a lower pressure variation across each rotodynamic compression means 11, 12, and 13. In addition, this feature allows the use of standard rotodynamic compression means, which allows a reduction in system cost, no adaptation or design not being necessary.
Juste en amont de chaque étage de compression, une deuxième phase est mélangée au gaz et juste en aval de chaque étage de compression, la deuxième phase est séparée du gaz comprimé. Ainsi, la maîtrise de la température peut être optimale dans chaque étage de compression, de manière à réaliser une transformation quasi-isotherme. Ainsi, le gaz est d’abord mélangé avec la deuxième phase issue du réservoir 35, dans le mélangeur 41 . Le fluide ainsi formé est comprimé dans le compresseur rotodynamique 11 , qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la compression est quasi-isotherme. Le fluide comprimé en sortie du compresseur rotodynamique 11 est ensuite séparée de la deuxième phase dans le séparateur 51. La deuxième phase est stockée dans le réservoir 31. Puis le gaz est mélangé avec la deuxième phase issue du réservoir 36, dans le mélangeur 42. Le fluide ainsi formé est comprimé dans le compresseur rotodynamique 12, qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la compression est quasi-isotherme. Le fluide comprimé en sortie du compresseur rotodynamique 12 est ensuite séparée de la deuxième phase dans le séparateur 52. La deuxième phase est stockée dans le réservoir 32. Puis le gaz est mélangé avec la deuxième phase issue du réservoir 37, dans le mélangeur 43. Le fluide ainsi formé est comprimé dans le compresseur rotodynamique 13, qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la compression est quasi-isotherme. Le fluide comprimé en sortie du compresseur rotodynamique 13 est ensuite séparée de la deuxième phase dans le séparateur 53. La deuxième phase est stockée dans le réservoir 33. Le gaz comprimé issu du séparateur 53 peut alors être stocké dans le réservoir 30. Sur la [Fig 3], les réservoirs 35, 31 , 36, 32, 37 et 33 de deuxième phase sont distincts mais il pourrait être envisagé que certains d’entre eux soient constitués d’un réservoir commun ou alternativement d’un unique réservoir pour tous ces réservoirs de deuxième phase. La [Fig 4] représente de manière schématique et non limitative une autre variante d’une deuxième partie concernant la récupération d’énergie du système. Cette deuxième partie peut être combinée à la première partie de la figure 3 pour former un système de stockage et de récupération d’énergie par gaz comprimé. Les références identiques à celles de la [Fig 2] correspondent aux mêmes éléments et ne seront donc pas re-détaillés. Just upstream of each compression stage, a second phase is mixed with the gas and just downstream of each compression stage, the second phase is separated from the compressed gas. Thus, temperature control can be optimal in each compression stage, so as to achieve a quasi-isothermal transformation. Thus, the gas is first mixed with the second phase coming from the reservoir 35, in the mixer 41. The fluid thus formed is compressed in the rotodynamic compressor 11, which makes it possible to maintain, or even improve, the mixture. Thus, the compression is quasi-isothermal. The compressed fluid leaving the rotodynamic compressor 11 is then separated from the second phase in the separator 51. The second phase is stored in the tank 31. The gas is then mixed with the second phase coming from the tank 36, in the mixer 42. The fluid thus formed is compressed in the rotodynamic compressor 12, which makes it possible to maintain, or even improve, the mixture. Thus, the compression is quasi-isothermal. The compressed fluid leaving the rotodynamic compressor 12 is then separated from the second phase in the separator 52. The second phase is stored in the tank 32. The gas is then mixed with the second phase coming from the tank 37, in the mixer 43. The fluid thus formed is compressed in the rotodynamic compressor 13, which makes it possible to maintain, or even improve, the mixture. Thus, the compression is quasi-isothermal. The compressed fluid leaving the rotodynamic compressor 13 is then separated from the second phase in the separator 53. The second phase is stored in the tank 33. The compressed gas coming from the separator 53 can then be stored in the tank 30. On the [ Fig 3], the tanks 35, 31, 36, 32, 37 and 33 of the second phase are distinct but it could be envisaged that some of them consist of a common tank or alternatively of a single tank for all these. second phase tanks. [Fig 4] schematically and non-limitingly shows another variant of a second part relating to the energy recovery of the system. This second part can be combined with the first part of FIG. 3 to form a system for storing and recovering energy by compressed gas. The references identical to those in [Fig 2] correspond to the same elements and will therefore not be re-detailed.
Contrairement à la [Fig 2] où un seul étage de détente était réalisé via le moyen de détente rotodynamique 2, la [Fig 4] dispose de trois étages de détente rotodynamique 23, 22 et 21. Cet étagement permet des rendements plus performants par une variation de pression plus faible aux bornes de chaque moyen de détente rotodynamique 21 , 22, et 23. De plus, cette caractéristique permet l’utilisation de moyen de détente rotodynamique polyphasique et d’améliorer les performances du système. Unlike [Fig 2] where a single expansion stage was produced via the rotodynamic expansion means 2, [Fig 4] has three rotodynamic expansion stages 23, 22 and 21. This stage allows more efficient outputs by a lower pressure variation across the terminals of each rotodynamic expansion means 21, 22, and 23. In addition, this characteristic allows the use of multiphase rotodynamic expansion means and to improve the performance of the system.
Juste en amont de chaque étage de détente, une deuxième phase est mélangée au gaz et juste en aval de chaque étage de compression, la deuxième phase est séparée du gaz. Ainsi, la maîtrise de la température peut être optimale dans chaque étage de détente, de manière à réaliser une transformation quasi-isotherme. Ainsi, le gaz comprimé sortant du réservoir 30 est d’abord mélangé avec la deuxième phase issue du réservoir 330, dans le mélangeur 47. Le fluide ainsi formé est détendu dans le moyen de détente rotodynamique 23, qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la compression est quasi- isotherme. Le fluide partiellement détendu en sortie du moyen de détente rotodynamique 23 est ensuite séparée de la deuxième phase dans le séparateur 57. La deuxième phase est stockée dans le réservoir 370. Puis le gaz est mélangé avec la deuxième phase issue du réservoir 320, dans le mélangeur 46. Le fluide ainsi formé est comprimé dans le moyen de détente rotodynamique 22, qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la détente est quasi-isotherme. Le fluide comprimé en sortie du moyen de détente rotodynamique 22 est ensuite séparée de la deuxième phase dans le séparateur 56. La deuxième phase est stockée dans le réservoir 360. Puis le gaz est mélangé avec la deuxième phase issue du réservoir 310, dans le mélangeur 45. Le fluide ainsi formé est détendu dans le moyen de détente rotodynamique 21 , qui permet de maintenir, voire d’améliorer le mélange. Ainsi, la détente est quasi-isotherme. Le fluide comprimé en sortie du moyen de détente rotodynamique 21 est ensuite séparée de la deuxième phase dans le séparateur 55. La deuxième phase est stockée dans le réservoir 350. Sur la [Fig 4], les réservoirs 350, 310, 360, 320, 370 et 330 de deuxième phase sont distincts mais il pourrait être envisagé que certains d’entre eux soient constitués d’un réservoir commun ou alternativement d’un unique réservoir pour tous ces réservoirs de deuxième phase. Il pourrait aussi être envisagé que certains d’entre eux et/ou certains des réservoirs 35, 31 , 36, 32, 37 et 33 de la [Fig 3] soient un même réservoir, voire qu’ils constituent tous un seul et unique réservoir, de manière à limiter le nombre de réservoirs et leur coût. La [Fig 5] est une variante de la [Fig 3]. Les références identiques à celles de la [Fig 3] correspondent aux mêmes éléments et ne seront donc pas re-détaillés. Dans la variante de la [Fig 5], le gaz comprimé sortant du séparateur 53 est stocké dans le réservoir 3. La deuxième phase sortant du séparateur 53 est stockée dans la partie basse du réservoir 3 alors que le gaz est stocké dans la partie haute du réservoir 3. Alternativement, en sortie de du compresseur rotodynamique 13, le mélange peut directement être stocké dans le réservoir 3, sans passer par un séparateur 53. En effet, dans ce cas, les deux phases vont se séparer « naturellement » au bout d’un certain temps. La séparation par le séparateur 53 permet néanmoins d’assurer un stockage mieux ordonné dans le réservoir 3 et plus facile à activer rapidement, sans nécessiter de délai suffisant entre la charge et la décharge du système pour attendre la bonne séparation des phases dans le réservoir 3. Just upstream of each expansion stage, a second phase is mixed with the gas and just downstream of each compression stage, the second phase is separated from the gas. Thus, temperature control can be optimal in each expansion stage, so as to achieve a quasi-isothermal transformation. Thus, the compressed gas leaving the reservoir 30 is first mixed with the second phase issuing from the reservoir 330, in the mixer 47. The fluid thus formed is expanded in the rotodynamic expansion means 23, which makes it possible to maintain, or even to improve the mixture. Thus, the compression is almost isothermal. The partially expanded fluid at the outlet of the rotodynamic expansion means 23 is then separated from the second phase in the separator 57. The second phase is stored in the tank 370. Then the gas is mixed with the second phase from the tank 320, in the mixer 46. The fluid thus formed is compressed in the rotodynamic expansion means 22, which makes it possible to maintain or even improve the mixture. Thus, the relaxation is quasi-isothermal. The compressed fluid leaving the rotodynamic expansion means 22 is then separated from the second phase in the separator 56. The second phase is stored in the tank 360. The gas is then mixed with the second phase coming from the tank 310, in the mixer 45. The fluid thus formed is expanded in the rotodynamic expansion means 21, which makes it possible to maintain or even improve the mixture. Thus, the relaxation is quasi-isothermal. The compressed fluid at the outlet of the rotodynamic expansion means 21 is then separated from the second phase in the separator 55. The second phase is stored in the reservoir 350. In [Fig 4], the reservoirs 350, 310, 360, 320, 370 and 330 of the second phase are distinct but it could be envisaged that some of them consist of a common reservoir or alternatively of a single reservoir for all these second phase reservoirs. It could also be envisaged that some of them and / or some of the reservoirs 35, 31, 36, 32, 37 and 33 of [Fig 3] are the same reservoir, or even that they all constitute a single and unique reservoir. , so as to limit the number of tanks and their cost. [Fig 5] is a variant of [Fig 3]. The references identical to those in [Fig 3] correspond to the same elements and will therefore not be re-detailed. In the variant of [Fig 5], the compressed gas leaving the separator 53 is stored in the tank 3. The second phase leaving the separator 53 is stored in the lower part of the tank 3 while the gas is stored in the upper part of the reservoir 3. Alternatively, at the outlet of the rotodynamic compressor 13, the mixture can be stored directly in the reservoir 3, without passing through a separator 53. In fact, in this case, the two phases will separate “naturally” at the end of a certain time. The separation by the separator 53 nevertheless makes it possible to ensure a better ordered storage in the tank 3 and easier to activate quickly, without requiring sufficient time between the charge and the discharge of the system to wait for the good separation of the phases in the tank 3. .
Lorsque le séparateur 53 est utilisé en amont du réservoir 3, le réservoir 3 peut comprendre une membrane de séparation des phases. Bien que cette membrane ne soit pas indispensable, elle permet une meilleure conservation de séparation des phases. When the separator 53 is used upstream of the tank 3, the tank 3 can include a phase separation membrane. Although this membrane is not essential, it allows better preservation of phase separation.
La [Fig 6] présente un exemple de moyen de compression ou de détente rotodynamique. Le système peut être utilisé dans un sens (sens de la flèche noire F, le sens de la flèche F correspond au sens du flux de fluide ici, pour le cas de la compression) pour la compression et en sens inverse pour la détente. Le fonctionnement présenté correspond à la compression. La détente fonctionnant en sens inverse, elle ne sera pas détaillée. [Fig 6] shows an example of a means of compression or rotodynamic expansion. The system can be used in one direction (direction of the black arrow F, the direction of the arrow F corresponds to the direction of fluid flow here, for the case of compression) for the compression and in the reverse direction for the relaxation. The operation shown corresponds to compression. As the trigger works in the opposite direction, it will not be detailed.
Le moyen de compression rotodynamique 120 comprend un moyeu 103 dont le diamètre externe augmente progressivement, dans le sens de la flèche F, afin de générer la compression. Une ou plusieurs aubes 102 sont fixées rigidement au moyeu 103. Lorsque le moyeu 103 est en rotation autour de l’axe AA longitudinal du moyen de compression rotodynamique 120, par exemple entraînée par un arbre de rotation (non visible), les aubes 102 sont en rotation autour de l’axe AA. Cette rotation des aubes favorise le mélange des deux phases. Le moyen de compression rotodynamique 120 comprend aussi une enveloppe externe 100, de préférence cylindrique. Sur la surface interne de cette enveloppe externe, sont positionnées des redresseurs 101 , les redresseurs 101 étant fixés rigidement à l’enveloppe externe 100. The rotodynamic compression means 120 comprises a hub 103 whose external diameter increases progressively, in the direction of arrow F, in order to generate the compression. One or more blades 102 are rigidly fixed to the hub 103. When the hub 103 is in rotation around the longitudinal axis AA of the rotodynamic compression means 120, for example driven by a rotation shaft (not visible), the blades 102 are rotating around axis AA. This rotation of the blades promotes mixing of the two phases. The rotodynamic compression means 120 also comprises an outer casing 100, preferably cylindrical. On the inner surface of this outer casing, are positioned rectifiers 101, the rectifiers 101 being rigidly attached to the outer casing 100.
Le moyen de compression rotodynamique 120 est donc une succession d’étages de compression (par les aubes 101) et de redresseurs 102 dans le sens F. Sur la figure 6, par exemple, le moyen de compression rotodynamique comprend un premier étage de compression 102, un premier redresseur 101 , un deuxième étage de compression 102, un deuxième redresseur 101 , un troisième étage de compression 102 et un troisième redresseur 101 , dans le sens du flux F. La présence des redresseurs tend à limiter l’effet centrifuge après chaque étage de compression et donc à encore favoriser le mélange entre le gaz et la deuxième phase. The rotodynamic compression means 120 is therefore a succession of compression stages (via the vanes 101) and rectifiers 102 in the direction F. In FIG. 6, for example, the rotodynamic compression means comprises a first compression stage 102 , a first rectifier 101, a second compression stage 102, a second rectifier 101, a third compression stage 102 and a third rectifier 101, in the direction of flow F. The presence of the rectifiers tends to limit the centrifugal effect after each compression stage and therefore to further promote mixing between the gas and the second phase.
Ce type de moyen de compression rotodynamique, est particulièrement adapté au fonctionnement polyphasique, notamment lors de mélange de gaz et de liquide. This type of rotodynamic compression means is particularly suitable for multiphase operation, in particular when mixing gas and liquid.
Selon une alternative non représentée, l’invention peut consister à utiliser un compresseur rotodynamique diphasique en injectant la deuxième phase directement dans les redresseurs de chacun des étages. Cela permet de supprimer les moyens de mélange en amont des moyens de compression rotodynamique et ainsi de réduire les coûts. According to an alternative not shown, the invention may consist in using a two-phase rotodynamic compressor by injecting the second phase directly into the rectifiers of each of the stages. This makes it possible to eliminate the mixing means upstream of the rotodynamic compression means and thus to reduce costs.

Claims

Revendications Claims
1. Système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression rotodynamique (1 , 11 , 12, 13) de fluide, au moins un moyen de stockage de gaz comprimé (30), au moins un moyen de détente rotodynamique (2, 21 , 22, 23) dudit fluide comprimé pour générer une énergie, caractérisé en ce que ledit fluide comprend ledit gaz et une deuxième phase et en ce que le système comprend un moyen d’injection de ladite deuxième phase en amont ou à l'intérieur d'au moins un moyen de compression rotodynamique (1 , 11 , 12, 12), et/ou en amont ou à l'intérieur d'au moins un moyen de détente rotodynamique (2, 21 , 22, 23). 1. A system for storing and recovering energy by compressed gas comprising at least one means of rotodynamic compression (1, 11, 12, 13) of fluid, at least one means of storage of compressed gas (30), at least one means for rotodynamic expansion (2, 21, 22, 23) of said compressed fluid to generate energy, characterized in that said fluid comprises said gas and a second phase and in that the system comprises means for injecting said second phase upstream or inside at least one rotodynamic compression means (1, 11, 12, 12), and / or upstream or inside at least one rotodynamic expansion means (2, 21, 22, 23).
2. Système de stockage et de récupération d’énergie selon la revendication 1 , pour lequel le système comprend au moins un moyen de séparation (51 , 52, 53, 55, 56, 57) positionné après le moyen de compression rotodynamique (1 , 11 , 12, 12) ou après le moyen de détente rotodynamique (2, 21 , 22, 23). 2. The energy storage and recovery system according to claim 1, wherein the system comprises at least one separation means (51, 52, 53, 55, 56, 57) positioned after the rotodynamic compression means (1, 11, 12, 12) or after the rotodynamic expansion means (2, 21, 22, 23).
3. Système de stockage et de récupération d’énergie selon l’une des revendications précédentes, pour lequel ladite deuxième phase est un liquide, de préférence de l’eau. 3. Energy storage and recovery system according to one of the preceding claims, wherein said second phase is a liquid, preferably water.
4. Système de stockage et de récupération d’énergie selon l’une des revendications précédentes, pour lequel le système comprend au moins un moyen de stockage de ladite deuxième phase (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350), ledit moyen de stockage de ladite deuxième phase (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350) étant connecté à au moins un moyen d’injection ou à au moins un moyen de séparation (51 , 52, 53, 55, 56, 57).4. Energy storage and recovery system according to one of the preceding claims, for which the system comprises at least one storage means of said second phase (31, 32, 33, 35, 36, 37, 33B, 35B , 330, 370, 320, 360, 310, 350), said means for storing said second phase (31, 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350 ) being connected to at least one injection means or to at least one separation means (51, 52, 53, 55, 56, 57).
5. Système de stockage et de récupération d’énergie selon l’une des revendications précédentes pour lequel chaque moyen d’injection et/ou chaque moyen de séparation (51 , 52, 53, 55, 56, 57) est connecté à un moyen de stockage de ladite deuxième phase liquide (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350) différent. 5. Energy storage and recovery system according to one of the preceding claims for which each injection means and / or each separation means (51, 52, 53, 55, 56, 57) is connected to a means. for storing said second liquid phase (31, 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350) different.
6. Système de stockage et de récupération d’énergie selon l’une des revendications 1 à 4 pour lequel chaque moyen d’injection et/ou chaque moyen de séparation (51 , 52, 53, 55, 56, 57) sont connectés à un moyen de stockage de ladite deuxième phase (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350), ledit moyen de stockage de ladite deuxième phase (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350) pouvant être commun à plusieurs moyens d’injection et/ou moyens de séparation (51 , 52, 53, 55, 56, 57). 6. Energy storage and recovery system according to one of claims 1 to 4 for which each injection means and / or each separation means (51, 52, 53, 55, 56, 57) are connected to means for storing said second phase (31, 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350), said means for storing said second phase (31, 32 , 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350) which may be common to several injection means and / or separation means (51, 52, 53, 55, 56 , 57).
7. Système de stockage et de récupération d’énergie selon la revendication 6 pour lequel tous les moyens d’injection et/ou tous les moyens de séparation (51 , 52, 53, 55, 56, 57) sont connectés à un unique moyen de stockage de ladite deuxième phase (31 , 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350). 7. Energy storage and recovery system according to claim 6, for which all the injection means and / or all the separation means (51, 52, 53, 55, 56, 57) are connected to a single storage means of said second phase (31, 32, 33, 35, 36, 37, 33B, 35B, 330, 370, 320, 360, 310, 350).
8. Système de stockage et de récupération d’énergie selon l’une des revendications précédentes, pour lequel le système comprend au moins un moyen de mélange (41 , 42, 43, 45, 46, 47) en amont d’au moins un moyen de compression rotodynamique (1 , 11 , 12, 12) et/ou un moyen de séparation (51 , 52, 53, 55, 56, 57) en aval d’au moins moyen de compression rotodynamique (1 , 11 , 12, 12).8. Energy storage and recovery system according to one of the preceding claims, wherein the system comprises at least one mixing means (41, 42, 43, 45, 46, 47) upstream of at least one rotodynamic compression means (1, 11, 12, 12) and / or separation means (51, 52, 53, 55, 56, 57) downstream of at least rotodynamic compression means (1, 11, 12, 12).
9. Système de stockage et de récupération d’énergie selon l’une des revendications précédentes, pour lequel le système comprend au moins un moyen de mélange (41 , 42, 43, 45, 46, 47) en amont d’au moins un moyen de détente rotodynamique (2, 21 , 22, 23) et/ou un moyen de séparation (51 , 52, 53, 55, 56, 57) en aval d’au moins un moyen de détente rotodynamique (2, 21 , 22, 23). 9. Energy storage and recovery system according to one of the preceding claims, for which the system comprises at least one mixing means (41, 42, 43, 45, 46, 47) upstream of at least one rotodynamic expansion means (2, 21, 22, 23) and / or a separation means (51, 52, 53, 55, 56, 57) downstream of at least one rotodynamic expansion means (2, 21, 22 , 23).
10. Système de stockage et de récupération d’énergie selon l’une des revendications 8 ou 9 pour lequel au moins un moyen de mélange (41 , 42, 43, 45, 46, 47) est intégré à au moins un moyen de compression rotodynamique (1 , 11 , 12, 12) ou à au moins un moyen de détente rotodynamique (2, 21 , 22, 23). 10. Energy storage and recovery system according to one of claims 8 or 9 for which at least one mixing means (41, 42, 43, 45, 46, 47) is integrated with at least one compression means. rotodynamic (1, 11, 12, 12) or at least one rotodynamic expansion means (2, 21, 22, 23).
11. Procédé de stockage et de récupération d’énergie par gaz comprimé comprenant les étapes suivantes : a1) on comprime un gaz par un moyen de compression rotodynamique ; b1 ) on stocke ledit gaz comprimé ; c1) on détend ledit gaz comprimé par un moyen de détente rotodynamique ; caractérisé en ce que lors ou avant les étapes de compression ou de détente, on injecte une deuxième phase dans ledit gaz. 11. A method of storing and recovering energy by compressed gas comprising the following steps: a1) a gas is compressed by means of rotodynamic compression; b1) said compressed gas is stored; c1) said compressed gas is expanded by a rotodynamic expansion means; characterized in that during or before the compression or expansion steps, a second phase is injected into said gas.
12. Procédé de stockage et de récupération d’énergie par gaz comprimé selon la revendication 11 , pour lequel ladite deuxième phase est un liquide, de préférence de l’eau. 12. A method of storing and recovering energy by compressed gas according to claim 11, wherein said second phase is a liquid, preferably water.
13. Procédé de stockage et de récupération d’énergie par gaz comprimé selon l’une des revendications 11 ou 12, pour lequel on réitère successivement plusieurs fois l’étape a1). 13. A method for storing and recovering energy by compressed gas according to one of claims 11 or 12, for which step a1) is successively repeated several times.
14. Procédé de stockage et de récupération d’énergie par gaz comprimé selon l’une des revendications 11 à 13, pour lequel on réitère successivement plusieurs fois l’étape c1). 14. A method for storing and recovering energy by compressed gas according to one of claims 11 to 13, for which step c1) is successively repeated several times.
15. Procédé de stockage et de récupération d’énergie par gaz comprimé selon l’une des revendications 11 à 14, pour lequel, on mélange ladite deuxième phase avec le gaz comprimé, entre l’injection de la deuxième phase et la compression ou la détente. 15. A method for storing and recovering energy by compressed gas according to one of claims 11 to 14, for which said second phase is mixed with the compressed gas, between the injection of the second phase and the compression or the compression. relaxation.
16. Procédé de stockage et de récupération d’énergie par gaz comprimé selon l’une des revendications 11 à 15, pour lequel on sépare ladite deuxième phase et ledit gaz comprimé, après l’étape de compression ou de détente. 16. A method for storing and recovering energy by compressed gas according to one of claims 11 to 15, for which said second phase and said compressed gas are separated, after the compression or expansion step.
PCT/EP2020/071811 2019-08-07 2020-08-03 System and method for storing and recovering energy by isothermal compression and expansion of air WO2021023713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909042A FR3099795B1 (en) 2019-08-07 2019-08-07 System and method for storing and recovering energy by isothermal compression and expansion of air
FRFR1909042 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021023713A1 true WO2021023713A1 (en) 2021-02-11

Family

ID=68733336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071811 WO2021023713A1 (en) 2019-08-07 2020-08-03 System and method for storing and recovering energy by isothermal compression and expansion of air

Country Status (2)

Country Link
FR (1) FR3099795B1 (en)
WO (1) WO2021023713A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2125377A1 (en) * 1971-02-12 1972-09-29 Gulf Oil Corp
US20130192216A1 (en) * 2011-09-20 2013-08-01 Light Sail Energy Inc. Compressed gas energy storage system using turbine
US20130269331A1 (en) * 2012-04-12 2013-10-17 Lightsail Energy Inc. Compressed gas energy storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2125377A1 (en) * 1971-02-12 1972-09-29 Gulf Oil Corp
US20130192216A1 (en) * 2011-09-20 2013-08-01 Light Sail Energy Inc. Compressed gas energy storage system using turbine
US20130269331A1 (en) * 2012-04-12 2013-10-17 Lightsail Energy Inc. Compressed gas energy storage system

Also Published As

Publication number Publication date
FR3099795A1 (en) 2021-02-12
FR3099795B1 (en) 2021-10-08

Similar Documents

Publication Publication Date Title
EP3283734B1 (en) System and method for compressed air energy storage and recovery with constant volume heating
EP3763023B1 (en) Dual-flux electric machine
FR3110895A1 (en) Hybrid propulsion system of an aircraft
EP2764243B1 (en) Method and improved system for converting marine heat energy
CN112555171B (en) A non-cooling super-turbine compressor for solar power generation
WO2013057427A1 (en) Improved adiabatic storage of energy in the form of heat and compressed air
WO2021023713A1 (en) System and method for storing and recovering energy by isothermal compression and expansion of air
FR3025831B1 (en) ENERGY PRODUCTION SYSTEM BASED ON RANKINE CYCLE
EP3994409B1 (en) Horizontal-axis heat recovery and storage system
FR3018100B1 (en) SYSTEM FOR CONVERTING WIND ENERGY IN ELECTRIC ENERGY INCORPORATING COMPRESSED AIR STORAGE MEANS
WO1998021474A1 (en) System for storing energy using air under pressure driven by a wind power engine
WO2021001198A1 (en) System and method for storing and recovering heat, comprising a radial passage within storage particles
CN210564758U (en) Mixed-flow turbocharger of adjustable nozzle ring
WO2022117406A1 (en) Method for storage and recovery of energy with thermal optimisation on expansion
FR3117163A1 (en) method for storing and recovering energy comprising a gas turbine for reheating compressed gas during expansion
EP3753088B1 (en) Electric machine having a stator grating comprising aerodynamic appendages
FR3040089A1 (en) MULTI-STAGE HEAT PUMP IN CASCADE
FR3146162A1 (en) System and method for storing and recovering energy with assistance in starting the compression means
EP4359655A1 (en) Method for storing and recovering energy with indirect heat storage upon compression
FR3140653A1 (en) DEVICE FOR ENERGY CONVERSION
WO2019115122A1 (en) Electrically powered turbopump assembly for a closed circuit, particularly of the rankine cycle type, comprising integrated cooling
WO2023247218A1 (en) System and method for compressing carbon dioxide with multi-stage compression and supercritical pump
FR3133404A1 (en) Air boost system for fuel conditioning system and method of use
FR2531744A1 (en) Turbine with crossed blades.
WO2012080623A1 (en) Propulsion system for ships

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20746995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20746995

Country of ref document: EP

Kind code of ref document: A1