[go: up one dir, main page]

WO2021020436A1 - Polymer ligands, crystalline metal organic framework, crystalline metal organic framework mixture, molded article, and production method for crystalline metal organic framework - Google Patents

Polymer ligands, crystalline metal organic framework, crystalline metal organic framework mixture, molded article, and production method for crystalline metal organic framework Download PDF

Info

Publication number
WO2021020436A1
WO2021020436A1 PCT/JP2020/029039 JP2020029039W WO2021020436A1 WO 2021020436 A1 WO2021020436 A1 WO 2021020436A1 JP 2020029039 W JP2020029039 W JP 2020029039W WO 2021020436 A1 WO2021020436 A1 WO 2021020436A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
organic framework
polymer
crystalline metal
metal
Prior art date
Application number
PCT/JP2020/029039
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 矢崎
Original Assignee
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学 filed Critical 国立大学法人山梨大学
Priority to JP2021535382A priority Critical patent/JPWO2021020436A1/ja
Publication of WO2021020436A1 publication Critical patent/WO2021020436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/26Monomers containing oxygen atoms in addition to the ether oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms

Definitions

  • the present invention relates to a polymer ligand for forming a crystalline metal-organic structure, a crystalline metal-organic structure containing the polymer ligand, a molded body containing the crystalline metal-organic structure, and the crystalline metal-organic framework. Regarding the manufacturing method of the structure.
  • Metal-organic frameworks can be easily synthesized from organic ligands and metals, and are porous due to the regular arrangement of organic ligands and metals. It is a sex material. As shown in Non-Patent Document 1, since the pore size of a metal-organic framework can be adjusted by a combination of a ligand and a metal, for example, gas separation / storage, improvement of catalytic function, and proton. It is expected to be used in various applications such as conductive materials.
  • the crystalline metal-organic framework is an excellent material in terms of porosity and pore size controllability, but has the disadvantages that the crystal structure is brittle and the physical strength is low. Therefore, the conventional metal-organic framework can be obtained only in the form of an insoluble powder, and it is difficult to mold it into a desired form.
  • Non-Patent Document 2 a method of mixing the metal-organic framework and a polymer (Mixed Matrix polymer method: MMM method) (Non-Patent Document 2), or a film shape by growing the metal-organic framework on a carrier.
  • MMM method Matrix polymer method
  • a method for obtaining a metal-organic framework of (Non-Patent Document 3) has been proposed.
  • the crystalline metal-organic framework which is a crystalline structure, is generally synthesized by using a rigid ligand that easily forms a crystal, but a ligand containing a polymer is used. Examples have also been reported.
  • Non-Patent Document 4 a crystalline metal-organic framework was synthesized using a polymer having a ligand in the main chain, and in Non-Patent Document 5, a ligand was provided at the end of the main chain. It is described that a crystalline metal-organic framework was synthesized using the polymer having.
  • Non-Patent Documents 2 to 5 it is difficult to obtain a molded product made of a metal-organic framework having a certain thickness and strength, and it is constant while maintaining the crystallinity of the metal-organic framework. It was not possible to obtain a metal-organic framework having the thickness and strength of.
  • the present invention has been made in view of such circumstances, and obtains a metal-organic framework having a certain thickness and strength while maintaining crystallinity, which was difficult with conventional metal-organic structures.
  • a crystalline metal having a main chain and a side chain bonded to the main chain, the side chain having a ligand, and the ligand having two or more coordination portions.
  • Polymer ligands for the formation of organic structures are provided.
  • the present inventor used a polymer ligand containing a polymer main chain as a ligand, and by using a polymer ligand having a ligand as a part of a side chain.
  • the present invention has been completed by finding that it becomes a crystalline metal-organic structure having both physical strength and moldability while having the crystallinity of the metal-organic structure.
  • the polymer ligand according to the present invention is a crystal in which the ligand and the metal are regularly arranged and the metal is a lattice point, for example, by mixing with the metal, as in the conventional method for producing a metal-organic framework.
  • a crystalline metal-organic framework composed of a lattice can be formed.
  • the polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, and the side chain is a polymer ligand having a ligand
  • the crystalline metal organic The ligand constituting the structure is bonded to the main chain of the polymer ligand while forming a crystalline metal organic structure by cross-linking the metal serving as a lattice point. Therefore, the crystalline metal-organic framework according to the present invention has a structure in which polymer chains are physically entangled with the crystalline metal-organic framework.
  • the conventional composite material containing a metal-organic framework and a polymer forms a metal-organic structure in advance and mixes the obtained metal-organic structure with a polymer to obtain a molded product (Mixed matrix).
  • MMM method the polymer can only be crosslinked with a ligand existing on the surface of the metal-organic framework, but according to the present invention, the coordination existing inside the crystalline metal-organic framework Since the child and the polymer main chain are bonded to each other, the polymer main chain is taken into the inside of the crystalline metal-organic framework, and the crystalline metal-organic structure and the polymer are intricately entangled with each other. It is considered that the crystalline metal-organic framework according to the present invention has excellent physical strength and moldability while maintaining crystallinity due to the above structure.
  • the polymer ligand has a number average molecular weight of 500 or more.
  • the backbone comprises at least one selected from the group consisting of polyolefins, polystyrenes, polyvinyl ethers, polyesters, polyimides, and polyamides.
  • the backbone comprises an oligomer or polymer having 3 or more repeating units.
  • the ligand is an amino group, an imidazolium group, a pyridyl group, a carboxy group (-COOH), a phenolic hydroxy group (-PhOH), thiol group (-SH), sulfo group (-SO 3 H), It has at least one selected from the group consisting of a phosphonic acid group (-PO 3 H 2 ) and a phosphoric acid group (-OPO 3 H 2 ).
  • a crystalline metal-organic framework containing the above-mentioned polymer ligand and metal is provided.
  • the metal comprises at least one selected from the group consisting of transition metals, Group 2 elements and base metals.
  • the metal-organic framework containing no polymer ligand and / or a polymer other than the polymer contained in the polymer ligand is further contained.
  • a crystalline metal-organic structure described above or a molded product containing the crystalline metal-organic framework.
  • the molded product has a thickness of 0.1 mm or more.
  • a method for producing a crystalline metal-organic framework which comprises a mixing step of mixing the polymer ligand described above with a metal.
  • FIG. 1 is a schematic view of an embodiment of a crystalline metal-organic framework in the present invention.
  • FIG. 2 is a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention as viewed from another viewpoint.
  • FIG. 3 shows a schematic view of another embodiment of the crystalline metal-organic framework according to the present invention.
  • FIG. 4 is an FT-IR spectrum of the crystalline metal-organic framework according to Example 4.
  • FIG. 5 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 4.
  • FIG. 6 is an external photograph and an SEM photograph of the crystalline metal-organic framework according to Example 4.
  • FIG. 7 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 7.
  • FIG. 8 is a schematic view showing the structure of the crystalline metal-organic framework according to Example 7.
  • FIG. 9 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 11.
  • the polymer ligand according to the present invention is a polymer ligand for forming a crystalline metal-organic structure, and the polymer ligand according to the present invention forms a crystalline metal-organic structure by mixing with a metal. Can be formed.
  • the crystalline metal-organic framework refers to a structure including a crystal structure (single crystal) in which metal ions or clusters are crosslinked by a ligand and the metal and the ligand are regularly arranged.
  • the polymer ligand according to the present invention will be described.
  • the polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, the side chain has a ligand, and the ligand has two or more arrangements. Has a position.
  • the side chain preferably has a ligand and a spacer.
  • the ligand is preferably bonded to the main chain via a spacer.
  • the ligand is preferably located at the end of the side chain via a spacer.
  • the polymer ligand according to the present invention preferably has a repeating unit represented by the following formula (1).
  • R 1 , R 2 , and R 3 are organic groups, respectively, R 1 is a main chain, R 2 is a spacer, and R 3 is a ligand.
  • a is preferably 3 or more, more preferably 4 or more, and even more preferably 50 or more. Further, in the above formula (1), a is more preferably 50 to 1000.
  • the polymer ligand may be a homopolymer or a copolymer obtained by copolymerizing two or more kinds of monomers.
  • the polymer ligand is preferably a homopolymer from the viewpoint of ease of synthesis.
  • it when it is used as a copolymer, it may be a random copolymer or a block copolymer.
  • at least one repeating unit among two or more kinds of repeating units may have a ligand in a part of a side chain, and a plurality of repeating units may be used.
  • the repeating unit of may have a ligand in a part of the side chain.
  • the number average molecular weight of the polymer ligand is preferably 500 or more.
  • the upper limit of the number average molecular weight is not particularly limited, but is preferably 50,000 or less, for example.
  • preferred embodiments of the main chain, spacers and ligands will be described in detail.
  • the main chain is not particularly limited, but preferably contains at least one selected from the group consisting of polyolefin, polystyrene, polyvinyl ether, polyester, polyimide, and polyamide.
  • the main chain preferably contains an oligomer or polymer having 3 or more repeating units, more preferably contains an oligomer or polymer having 4 or more repeating units, and an oligomer or polymer having 50 or more repeating units. It is even more preferable to include it. Since various types of polymers can be selected as the main chain of the polymer ligand according to the present invention, it is possible to freely design a molecule as compared with a conventional composite material containing a metal-organic framework and a polymer. is there.
  • the polymer ligand according to the present invention can be selected from not only a polymer obtained by condensation polymerization or ring-opening polymerization but also a polymer obtained by radical polymerization or ionic polymerization. Therefore, the polymer ligand can be freely designed, and there is a possibility that the crystalline metal-organic framework can have a new function.
  • the spacer is a divalent organic group, which may be a single bond, a hydrocarbon group, or may have one or more ester bonds, ether bonds, amide bonds, or carbonyl bonds. It often contains one or more ether bonds, preferably.
  • the ligand is not particularly limited as long as it has two or more coordination portions in which the metal including the metal ion and the metal cluster is coordinated, and a known ligand can be used as the ligand of the metal-organic framework. ..
  • the coordinating portion indicates a portion where the metal can be coordinated.
  • the polymer ligand and the crystalline metal-organic framework according to the present invention may contain a ligand having a coordination portion of 1.
  • the polymer ligand according to the present invention preferably has 3 or more ligands having 2 or more coordination portions, more preferably 4 or more, and even more preferably 50 or more, for example, 50 to 1000. Can have.
  • the ligand has a skeleton derived from at least one selected from the group consisting of aromatic compounds, aliphatic compounds, alicyclic compounds, heteroaromatic compounds, and heterocyclic compounds having two or more coordination portions.
  • the ligand preferably has one or more benzene rings, more preferably one or more and three or less benzene rings.
  • Ligand an amino group, a pyridyl group, imidazolium group, a carboxy group (-COOH), a phenolic hydroxy group (-PhOH), thiol group (-SH), sulfo group (-SO 3 H), a phosphonic acid group (-PO 3 H 2), and preferably it has at least one selected from the group consisting of phosphoric acid group (-OPO 3 H 2), amino group, imidazolium group, a pyridyl group, a carboxy group (-COOH ), It is more preferable to have at least one selected from the group consisting of a phenolic hydroxy group (-PhOH), and it is particularly preferable to have a carboxy group (-COOH).
  • the ligand having a carboxy group include isophthalic acid, terephthalic acid (1,4-benzenedicarboxylic acid), 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, biphenylenedicarboxylic acid, and 1 , 2,3-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, and 1,2,4,5-benzenetetracarboxylic acid selected from the group It is preferable to contain at least one selected from the group consisting of terephthalic acid and biphenylenedicarboxylic acid, and particularly preferably to contain terephthalic acid.
  • the structure of the polymer ligand can be confirmed by analysis by NMR, ESI-TOF, SEC and the like. The analysis conditions and the like for each analysis are as described in the examples. Further, the polymer ligand according to the present invention can be used for producing a crystalline metal-organic framework according to the present invention.
  • the crystalline metal-organic framework according to the present invention will be described below.
  • the crystalline metal-organic framework according to the present invention includes the above-mentioned polymer ligand and metal. Details of the method for producing a crystalline metal-organic framework according to the present invention will be described later, but the crystalline metal-organic framework according to the present invention is, for example, a mixture of a polymer ligand according to the present invention and a metal and heated. Can be obtained by
  • FIG. 1 shows a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention.
  • the crystalline metal-organic framework according to the present invention includes a crystal structure (single crystal) in which a metal 1 and a ligand 2 are regularly arranged.
  • the lattice points of the single crystal contain metal, and the lattice points can be metal ions or metal clusters.
  • Each single crystal is preferably composed of a plurality of unit cells.
  • the ligand 2 constituting the crystal is bonded to the main chain 3 of the polymer ligand via the spacer 4, and is mainly The chain 3 has a structure in which the crystals are entwined.
  • FIG. 2 shows a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention from another viewpoint.
  • the single crystal when the coordinates of any apex of the single crystal are (000) and the axes parallel to each lattice plane of the crystal lattice are the X-axis, the Y-axis, and the Z-axis, the single crystal is It is preferable that a plurality of unit lattices are connected in each of the X-axis, Y-axis, and Z-axis directions. Further, it is preferable that the single crystal has three or more lattice points in each of the X-axis, Y-axis, and Z-axis directions.
  • the crystalline metal-organic framework preferably, at least one polymer ligand is present inside the crystal contained in the crystalline metal-organic framework.
  • the lattice points (000) in FIG. 2 are the vertices of any single crystal contained in the crystalline metal-organic framework.
  • each lattice point in the crystal is represented by (0 ⁇ X ⁇ L, 0 ⁇ Y ⁇ M, 0 ⁇ Z ⁇ N).
  • the lattice points represented by (1 ⁇ X ⁇ L-1, 1 ⁇ Y ⁇ M-1, 1 ⁇ Z ⁇ N-1) are defined as the lattice points existing inside the single crystal.
  • the polymer ligand exists inside the crystal contained in the crystalline metal-organic framework means that the lattice points existing inside the crystal are bridged with any other lattice points. It means the state in which the polymer ligand is present.
  • the polymer ligand exists inside the crystal contained in the crystalline metal-organic framework means that the lattice points inside the single crystal (not exposed to the surface) and It means the presence of a polymer ligand that is crosslinked with any other lattice point.
  • the crystalline metal-organic framework according to the present invention may further contain a ligand other than the polymer ligand according to the present invention (for example, a single ligand not bonded to the polymer).
  • the ligand other than the polymer ligand according to the present invention is a ligand other than the ligand derived from the polymer ligand according to the present invention, that is, a raw material before mixing the ligand and the metal. In the state, it means a ligand that is not bound to the polymer ligand according to the present invention. Specific examples thereof include a single ligand not bound to a polymer and a ligand bound to a polymer (however, the requirement of the polymer ligand of the present invention is lacking).
  • ligands other than the polymer ligand according to the present invention include single ligands of the same type as the ligands listed as ligands that can be contained in the polymer ligand according to the present invention, and these Examples thereof include those in which a ligand is bound to a polymer.
  • the crystalline metal-organic framework according to the present invention can also be mixed with other components to prepare a mixture of crystalline metal-organic frameworks containing the crystalline metal-organic framework according to the present invention.
  • the crystalline metal-organic framework mixture according to the present invention contains the crystalline metal-organic structure according to the present invention, for example, a metal-organic composite and / or a polymer ligand containing no polymer ligand according to the present invention. Polymers other than the polymers contained in are further included.
  • the crystalline metal-organic structure containing the polymer ligand according to the present invention is the polymer ligand according to the present invention or the polymer ligand according to the present invention.
  • the crystalline metal-organic framework containing the polymer ligand according to the present invention and the metal-organic framework containing no polymer ligand according to the present invention are the polymer ligand of the present invention or the present invention. It can include structures linked by polymers other than polymer ligands.
  • the polymer other than the polymer ligand according to the present invention is a polymer other than the polymer derived from the polymer ligand according to the present invention, that is, in the state of the raw material before mixing the ligand and the metal, in the present invention. It means a polymer that is not bound to such a polymer ligand. Specific examples thereof include polymers used in the conventional MMM method.
  • Examples of the metal-organic framework containing no polymer ligand according to the present invention include conventional MOFs (for example, MOFs used in the conventional MMM method), and specific examples are as described below.
  • the crystalline metal-organic framework or the mixture of crystalline metal-organic frameworks according to the present invention contains a ligand other than the polymer ligand according to the present invention, it is not the polymer ligand according to the present invention.
  • the ligand portion and the ligand portion of the polymer ligand according to the present invention may have the same structure or may have different structures.
  • the polymer other than the polymer ligand according to the present invention is used.
  • the polymer portion of the polymer ligand according to the present invention may have the same structure or may have a different structure.
  • the crystalline metal-organic framework according to the present invention contains 10% of the ligands contained in the polymer ligand according to the present invention, where 100 is the total number of ligands contained in the crystalline metal-organic framework.
  • the above content is preferable, 50% or more is more preferable, and 80% or more is particularly preferable.
  • all of the ligands contained in the crystalline metal-organic framework may be ligands contained in the polymer ligand according to the present invention.
  • ligands contained in the crystalline metal-organic structure a certain number or more of the ligands are the polymer ligands according to the present invention, so that the metal-organic structure produced by the conventional MMM method can be obtained. In comparison, it is a crystalline metal-organic framework that is excellent in crystallinity, physical strength, and moldability.
  • FIG. 3 shows a schematic view of another embodiment of the crystalline metal-organic framework according to the present invention.
  • the crystalline metal-organic framework according to the present invention may have one single crystal or a plurality of single crystals. That is, the crystalline metal-organic framework according to the present invention may have one or more single crystals having a jungle gym structure schematically shown in FIG. 1, and may have two or more as shown in FIG. Further, in the crystalline metal-organic framework according to the present invention, it is preferable that one polymer ligand is bonded to two or more single crystals. That is, it is preferable that two or more single crystals constituting the crystalline metal-organic framework according to the present invention are bonded to the main chain of the same polymer ligand via a spacer. Due to the above structure, the crystalline metal-organic framework according to the present invention is considered to have excellent physical strength and moldability while maintaining crystallinity.
  • the polymer ligand according to the present invention since a large number (for example, 50 or more) of ligands are bonded to the main chain via spacers, all the ligands are single crystals (one single crystal). Distortion occurs when trying to form. Therefore, the crystalline metal-organic framework does not become one single crystal as a whole, but has a shape in which a plurality of crystal structures are bonded by a polymer. As a result, it has moldability such as forming a film.
  • the metal according to the present invention preferably contains at least one selected from the group consisting of transition metals, Group 2 elements and base metals.
  • Transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, yttrium, zirconium, niobium, molybdenum, cadmium, ruthenium, palladium, silver, tungsten, iridium, osmium, platinum, and gold. be able to.
  • Group 2 elements include calcium and magnesium.
  • Base metals include steel, copper, aluminum, lead, zinc, tin, tungsten, indium, molybdenum, chromium, germanium, tantalum, magnesium, cobalt, titanium, gallium, antimony, manganese, nickel, beryllium, hafnium, niobium, bismuth, Examples include rhenium and thallium. Among the above, it is more preferable to contain copper, zinc, zirconium, cobalt and iron, and it is particularly preferable to contain zinc.
  • the crystalline metal-organic framework according to the present invention contains a polymer ligand, and a preferred embodiment of the polymer ligand is as described above in "1. Polymer ligand" above.
  • the MOF described in a known document can be widely adopted.
  • MOFs metal-organic frameworks
  • the crystalline metal-organic framework according to the present invention can contain a plurality of types of polymer ligands.
  • the crystalline metal-organic framework according to the present invention can contain a plurality of types of metals. Therefore, the crystalline metal-organic framework according to the present invention can include a plurality of types of single crystals (crystal structures).
  • the crystalline metal-organic framework of the present invention preferably contains 10 to 99 vol% of a crystal component composed of a metal and a ligand, assuming that the entire crystalline metal-organic framework is 100 vol%. Within the above numerical range, a crystalline metal-organic framework capable of exhibiting characteristics due to crystallinity and having excellent physical strength and moldability can be obtained.
  • the crystalline metal-organic framework of the present invention has porosity due to its crystal structure.
  • the pore diameter of the crystalline metal-organic framework of the present invention is preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 2 nm.
  • the crystalline metal-organic framework of the present invention can be suitably used, for example, as a separation membrane or a storage membrane by having a pore size within the above numerical range.
  • the pore size is determined by, for example, immersing a crystalline metal organic structure in a solvent such as chloroform or methylene chloride to remove the high boiling point solvent in the crystal, and vacuum depressurizing the inside of the pore while heating at 100 ° C. After removing the solvent, it can be measured using a high-precision gas / steam adsorption amount measuring device (BELSORP-MaxII).
  • the structure of the crystalline metal-organic framework according to the present invention can be confirmed by powder X-ray diffraction and a scanning electron microscope (SEM). By analyzing by these methods, the characteristics of the crystalline metal-organic framework according to the present invention can be confirmed.
  • SEM scanning electron microscope
  • the crystalline metal-organic framework according to the present invention is observed by SEM, it is observed that the single crystal composed of the ligand and the metal is continuously connected without a gap.
  • the metal-organic framework produced by the MMM method in which the metal-organic structure and the polymer are mixed a gap is observed between the crystal and the polymer (R. Lin et al. ACS Appl. Mater. Interfaces. 2016, 8, 46, 32041-32049, Fig. 6).
  • the crystalline metal-organic framework according to the present invention can have, for example, crystals of 0.5 ⁇ m to 10 ⁇ m.
  • the decomposition method can be selected according to the type of the crystalline metal-organic framework. Examples of the decomposition method include a method in which an acid such as hydrochloric acid is added and, if necessary, heated to decompose. The presence of the polymer ligand can be confirmed by analyzing the obtained decomposition product using NMR, ESI-TOF, SEC and the like. The analysis conditions and the like for each analysis are as described in the examples.
  • the crystalline metal-organic framework of the present invention is made into a molded product (including a film shape), an elastomer, or a gel by changing the ligand site, main chain and spacer site, and metal site of the polymer ligand. It is possible to divide.
  • the molded article according to the present invention includes a crystalline metal-organic framework according to the present invention.
  • the molded product according to the present invention preferably has a thickness of 0.1 mm or more, more preferably 0.2 mm or more, and further preferably 0.3 mm or more.
  • the size of the molded product according to the present invention is preferably 300 mm 2 or more. It is preferable that the molded product according to the present invention can be handled with tweezers and has a certain degree of physical strength, for example.
  • the molded product according to the present invention may contain components other than the crystalline metal-organic framework, if necessary.
  • examples of other components include components of a preferable type and amount as long as they do not interfere with the function of the crystalline metal-organic framework, and examples thereof include other polymers.
  • the molded product according to the present invention can be used for various purposes such as gas separation / storage, improvement of catalytic function, and proton conductive material.
  • the polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, the side chain has a ligand, and the ligand has 2
  • the production method of the polymer ligand having the above coordination portion is not particularly limited, but as an example of a typical synthetic route, first, a raw material having a basic skeleton of the ligand is synthesized or obtained, and then the raw material is synthesized or obtained.
  • the polymer ligand precursor was polymerized by cationic polymerization, and the obtained polymer ligand precursor was hydrolyzed. Then, a method of obtaining the desired polymer ligand can be mentioned.
  • the method for producing the polymer ligand is appropriately adjusted depending on the main chain, spacer, type of ligand, design of the entire polymer ligand, etc. of the target polymer ligand.
  • various types of monomers can be selected as the main chain, and in the above-mentioned polymerization step, not only condensation polymerization and ring-opening polymerization, but also radical polymerization and ionic polymerization ( It is possible to produce a polymer ligand through (cationic polymerization, anionic polymerization).
  • the polymer ligand according to the present invention can be selected from chain polymerization, step-growth polymerization, and living polymerization as its polymerization step, the degree of freedom in designing the polymer ligand is high, and the crystalline metal obtained can be obtained. It is possible to expand the range of functions of organic structures.
  • the method for producing the crystalline metal-organic framework according to the present invention is not particularly limited as long as it contains the above-mentioned polymer ligand and metal, but the above-mentioned polymer ligand is not particularly limited.
  • a mixing step of mixing the raw materials containing the metal For example, it can be produced by mixing a polymer ligand according to the present invention, a solvent and a metal salt, and heating the mixture.
  • known MOF production methods and conditions can be appropriately adopted.
  • the crystalline metal-organic framework according to the present invention may contain a ligand other than the polymer ligand according to the present invention (for example, a single ligand not bound to the polymer).
  • the method for producing a crystalline metal-organic framework according to the present invention is a mixture of a raw material containing the above-mentioned polymer ligand, metal, and a ligand other than the polymer ligand according to the present invention. Includes steps.
  • the crystalline metal-organic framework according to the present invention can be mixed with other components to obtain a crystalline metal-organic framework mixture containing the crystalline metal-organic framework according to the present invention.
  • the method for producing a crystalline metal-organic framework mixture according to the present invention includes a step of mixing a raw material containing the crystalline metal-organic framework according to the present invention, and includes, for example, the crystalline metal-organic framework according to the present invention and the present invention. It includes a mixing step of mixing a polymer other than the polymer ligand according to the present invention and / or a raw material containing a metal-organic framework containing no polymer ligand according to the present invention.
  • metal salt a metal salt containing the above-mentioned metal can be used, and metal nitrate, metal sulfate, metal chloride, metal bromide, metal iodide, metal fluoride, metal carbonate, metal carboxylate, metal. It is preferably selected from the group consisting of phosphates, metal sulfides, and metal hydroxides, and preferably metal salts selected from the group consisting of metal nitrates and metal chlorides.
  • Specific metal salts are preferably copper nitrate, zinc nitrate, cobalt nitrate, indium nitrate, aluminum nitrate, iron nitrate, vanadium nitrate, copper chloride, zinc chloride, cobalt chloride, zirconium chloride, indium chloride and aluminum chloride.
  • Solvents include water, DMF, DMSO, dimethylacetamide, tetrahydrofuran, dioxane, N-methylpyrrolidone, methanol, ethanol, lower alcohols such as isopropanol, esters such as ethyl acetate, ethers such as diethyl ether and diisopropyl ether, and acetone. , Ketones such as methyl ethyl ketone and methyl butyl ketone, halogenated hydrocarbons such as methylene chloride and chloroform, aromatic hydrocarbons such as benzene and toluene can be mentioned.
  • the molded product according to the present invention has, for example, a mixture containing the above-mentioned polymer ligand, solvent and metal salt, which is placed in a container having a desired shape and heated to have a shape corresponding to the shape of the container. It is possible to obtain a molded product.
  • a monomer for forming a polymer ligand according to the present invention is synthesized, and then the obtained monomer is polymerized to obtain a polymer ligand precursor, and a polymer ligand precursor is obtained.
  • the polymer ligand according to the present invention was obtained by hydrolysis.
  • the obtained polymer ligand was used to prepare a molded product containing a crystalline metal-organic framework.
  • Example 2 ⁇ Synthesis of polymer ligand precursor 2>
  • a polymer ligand-forming monomer 1 (7.5951 g, 24.633 mmol) and a thermal cationic polymerization initiator represented by the following formula (55.6 mg, 0. 119 mmol) and 50 mL of toluene were added, and the mixture was stirred at 80 ° C. for 14 hours.
  • the mixture was then poured into excess methanol to give a brown highly viscous liquid.
  • This product was dissolved in CH 2 Cl 2 and added dropwise to methanol.
  • the obtained brown viscous liquid was dried under reduced pressure to obtain the desired polymer ligand precursor 2 (4.7530 g, yield 63%).
  • the number average molecular weight (Mn) of the polymer ligand precursor 2 is 12769
  • the weight average molecular weight (Mw) is 31353
  • Mw / Mn 2.455. It was confirmed.
  • Example 4 ⁇ Synthesis of crystalline metal-organic framework 4> Polymeric ligand 3 (69mg), Zn (NO 3) 2 ⁇ 6H 2 O (193mg), and DMF7mL added to 7mL glass vials (? 20 mm), and the mixture was heated for 4 days at 100 ° C.. The product of the light brown film appearing at the bottom of the vial was washed with DMF and CH 2 Cl 2 and then dried under reduced pressure to give crystalline metal-organic framework 4 (72.7 mg).
  • the SEM photograph is shown in FIG.
  • the crystalline metal-organic framework 4 according to the present invention has a structure in which MOF crystals are connected without gaps, and no phase separation between the MOF and the polymer is observed.
  • SEM photographs of metal-organic frameworks produced by the conventional MMM method are shown in, for example, R.I. Lin et al. ACS Appl. Mater. Interfaces. 2016,8,46,32041-32049 Fig. It is shown in 6.
  • a gap is observed between the MOF and the polymer, and the MOF and the polymer are phase-separated.
  • Thermogravimetric analysis was performed on the obtained crystalline metal-organic framework 4. By 235 ° C., the weight was reduced by 26%, corresponding to the weight of the residual solvent. Also, from 235 ° C to 1000 ° C, the weight corresponding to the weight of the polymer ligand was reduced by 59%. The weight of the residue corresponding to the weight of ZnO was 26%.
  • Example 5 ⁇ Synthesis of polymer ligand precursor 5>
  • the polymer ligand-forming monomer 1 (7.1680 g, 23.248 mmol) obtained in Example 1 and a thermal cationic polymerization initiator (155.5 mg, 0) were placed. .3329 mmol) and 30 mL of toluene were added, and the mixture was stirred at 80 ° C. for 10 hours. The mixture was then poured into excess methanol to give a brown highly viscous liquid. This product was dissolved in CH 2 Cl 2 and added dropwise to methanol. The obtained brown viscous liquid was dried under reduced pressure to obtain the desired polymer ligand precursor 5 (3.58889 g, yield 50%).
  • the number average molecular weight (Mn) of the polymer ligand precursor 5 is 9870
  • the weight average molecular weight (Mw) is 30871
  • Mw / Mn 3.128. It was confirmed.
  • Example 6 ⁇ Synthesis of polymer ligand 6> Polymer ligand precursor 5 (3.589 g), KOH (5.245 g, 93.48 mmol) obtained in Example 5 and 50 mL of H 2 O were added to a 100 mL container. The mixture was stirred at 100 ° C. for 48 hours and then poured into an HCl solution to give a brown solid. The product was washed with H 2 O, then to obtain a polymeric ligand 6 of interest was dried under vacuum (3.338g, 93% yield).
  • Example 7 ⁇ Synthesis of crystalline metal-organic framework 7> Polymer ligand 3 (50 mg), 4,4-bipyridine (13 mg), and Zn (NO 3 ) 2 (74 mg) were dissolved in a DMF: methanol (1: 1) solution, and the resulting solution was dissolved in a glass vial. It was placed in ( ⁇ 20 mm) and heated at 80 ° C. for 4 days. The light brown film product that appeared at the bottom of the vial was washed with a DMF: methanol (1: 1) solution to give crystalline metal-organic framework 7 (60 mg).
  • the crystalline metal-organic framework 7 had a size of ⁇ 20 mm and a thickness of 0.4 mm, was manageable with tweezers, and had a certain level of strength.
  • Example 8 ⁇ Synthesis of Monomer 8 for Forming Polymer Ligand> 4- (Trillsulfonyl) butyl vinyl ether was synthesized according to the method of Example 1. Next, in a 500 mL glass flask containing a magnetic stirrer, dimethyl 2-hydroxy- [1,1'-biphenyl] -4,4'-dicarboxylate (1.836 g, 6.413 mmol), 4- (trillsulfonyl). ) butyl vinyl ether (3.456g, 12.783mmol), K 2 CO 3 (15.4g, 111mmol), was added acetonitrile (about 200 mL). The mixture was stirred at 80 ° C.
  • Example 11 ⁇ Synthesis of crystalline metal-organic framework 11> Polymeric ligand 10 (7.9mg), Zn (NO 3) 2 ⁇ 6H 2 O (20mg), and DMF7mL added to 7mL glass vials (? 20 mm), and the mixture was heated for 4 days at 100 ° C.. The product of the light brown film appearing at the bottom of the vial was washed with DMF and then dried under reduced pressure to give crystalline metal-organic framework 11 (10 mg). The crystalline metal-organic framework 11 was able to be handled with tweezers and had a certain level of strength.
  • the obtained crystalline metal-organic framework 11 was analyzed using XRD (RigakuSmartLab).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

Provided are: polymer ligands with which it is possible to obtain a metal organic framework having a certain thickness and strength while maintaining crystallinity, which had been difficult to accomplish in conventional metal organic frameworks; polymer ligands for crystalline metal organic framework formation; a crystalline metal organic framework including the polymer ligands; a molded article including the crystalline metal organic framework; and a production method for the crystalline metal organic framework. The polymer ligands for crystalline metal organic framework formation have main chains and side chains attached to the main chains. The side chains each have a ligand, and each ligand has two or more coordinating parts.

Description

ポリマー配位子、結晶性金属有機構造体、結晶性金属有機構造体混合物、成形体、及び結晶性金属有機構造体の製造方法Methods for Producing Polymer Ligands, Crystalline Metal-Organic Frameworks, Crystalline Metal-Organic Framework Mixtures, Molds, and Crystalline Metal-Organic Frameworks
 本発明は、結晶性金属有機構造体形成用のポリマー配位子、該ポリマー配位子を含む結晶性金属有機構造体、該結晶性金属有機構造体を含む成形体、及び該結晶性金属有機構造体の製造方法に関する。 The present invention relates to a polymer ligand for forming a crystalline metal-organic structure, a crystalline metal-organic structure containing the polymer ligand, a molded body containing the crystalline metal-organic structure, and the crystalline metal-organic framework. Regarding the manufacturing method of the structure.
 金属有機構造体(Metal Organic Framework:MOF)は、有機配位子と金属から容易に合成することが可能であり、有機配位子と金属とが規則的に配列することによる結晶性を有する多孔性材料である。非特許文献1に示されるように、金属有機構造体は、配位子と金属の組み合わせにより、その孔径を調整することが可能であるため、例えば、ガス分離・貯蔵、触媒機能の向上、プロトン伝導性材料等の様々な用途での使用が期待されている。 Metal-organic frameworks (MOFs) can be easily synthesized from organic ligands and metals, and are porous due to the regular arrangement of organic ligands and metals. It is a sex material. As shown in Non-Patent Document 1, since the pore size of a metal-organic framework can be adjusted by a combination of a ligand and a metal, for example, gas separation / storage, improvement of catalytic function, and proton. It is expected to be used in various applications such as conductive materials.
 結晶性を有する金属有機構造体は、多孔性と孔径制御性の点で優れた材料であるが、結晶構造が脆く、物理的強度が低いという欠点を有する。そのため、従来の金属有機構造体は、不溶性の粉末の形態でしか得ることができず、所望の形態に成形することが困難であった。 The crystalline metal-organic framework is an excellent material in terms of porosity and pore size controllability, but has the disadvantages that the crystal structure is brittle and the physical strength is low. Therefore, the conventional metal-organic framework can be obtained only in the form of an insoluble powder, and it is difficult to mold it into a desired form.
 金属有機構造体を成形する方法として、金属有機構造体とポリマーを混合する方法(Mixed Matrix membrane method : MMM法)(非特許文献2)や、担体上で金属有機構造体を成長させ、フィルム形状の金属有機構造体を得ようとする方法(非特許文献3)が提案されている。 As a method for molding the metal-organic framework, a method of mixing the metal-organic framework and a polymer (Mixed Matrix polymer method: MMM method) (Non-Patent Document 2), or a film shape by growing the metal-organic framework on a carrier. A method for obtaining a metal-organic framework of (Non-Patent Document 3) has been proposed.
 また、結晶性の構造体である結晶性金属有機構造体は、結晶を構成しやすい剛直な配位子を用いて合成されることが一般的ではあるが、ポリマーを含む配位子を用いた例も報告されている。例えば、非特許文献4には、主鎖に配位子を有するポリマーを用いて、結晶性金属有機構造体を合成したことが、非特許文献5には、主鎖の末端に配位子を有するポリマーを用いて、結晶性金属有機構造体を合成したことが記載されている。 Further, the crystalline metal-organic framework, which is a crystalline structure, is generally synthesized by using a rigid ligand that easily forms a crystal, but a ligand containing a polymer is used. Examples have also been reported. For example, in Non-Patent Document 4, a crystalline metal-organic framework was synthesized using a polymer having a ligand in the main chain, and in Non-Patent Document 5, a ligand was provided at the end of the main chain. It is described that a crystalline metal-organic framework was synthesized using the polymer having.
 しかしながら、非特許文献2~5等の従来技術では、一定の厚みと強度を有する金属有機構造体からなる成形体を得ることは困難であり、金属有機構造体の結晶性を維持しつつ、一定の厚みと強度を有する金属有機構造体を得ることができなかった。 However, with the prior arts such as Non-Patent Documents 2 to 5, it is difficult to obtain a molded product made of a metal-organic framework having a certain thickness and strength, and it is constant while maintaining the crystallinity of the metal-organic framework. It was not possible to obtain a metal-organic framework having the thickness and strength of.
 本発明は、このような事情に鑑みてなされたものであり、従来の金属有機構造体では困難であった、結晶性を維持しつつ、一定の厚みと強度を有する金属有機構造体を得ることができるポリマー配位子、結晶性金属有機構造体形成用のポリマー配位子、該ポリマー配位子を含む結晶性金属有機構造体、該結晶性金属有機構造体を含む成形体、及び該結晶性金属有機構造体の製造方法を提供するものである。 The present invention has been made in view of such circumstances, and obtains a metal-organic framework having a certain thickness and strength while maintaining crystallinity, which was difficult with conventional metal-organic structures. Polymer ligands, polymer ligands for forming crystalline metal-organic frameworks, crystalline metal-organic frameworks containing the polymer-organic frameworks, molded bodies containing the crystalline metal-organic framework, and the crystals. It provides a method for producing a metal-organic framework.
 本発明によれば、主鎖、及び前記主鎖に結合した側鎖を有し、前記側鎖は配位子を有し、前記配位子は2以上の配位部を有する、結晶性金属有機構造体形成用のポリマー配位子が提供される。 According to the present invention, a crystalline metal having a main chain and a side chain bonded to the main chain, the side chain having a ligand, and the ligand having two or more coordination portions. Polymer ligands for the formation of organic structures are provided.
 本発明者は、鋭意検討を行ったところ、配位子として、ポリマー主鎖を含むポリマー配位子を用い、かつ、配位子を側鎖の一部として有するポリマー配位子を用いることによって、金属有機構造体の結晶性を有しつつ、物理的強度と成形性を併せ持つ結晶性金属有機構造体となることを見出し、本発明の完成に至った。 As a result of diligent studies, the present inventor used a polymer ligand containing a polymer main chain as a ligand, and by using a polymer ligand having a ligand as a part of a side chain. , The present invention has been completed by finding that it becomes a crystalline metal-organic structure having both physical strength and moldability while having the crystallinity of the metal-organic structure.
 本発明のポリマー配位子を用いることによって、金属有機構造体の結晶性を有しつつ、物理的強度と成形性を併せ持つ結晶性金属有機構造体を得ることができる原理は概ね以下のとおりである。
 本発明に係るポリマー配位子は、従来の金属有機構造体の製造方法と同様、例えば、金属と混合することによって、配位子と金属が規則的に配列し、金属を格子点とした結晶格子をから構成される結晶性金属有機構造体を形成することができる。ここで、本発明に係るポリマー配位子は、主鎖、及び前記主鎖に結合した側鎖を有し、前記側鎖は配位子を有するポリマー配位子であるため、結晶性金属有機構造体を構成する配位子は、格子点となる金属を架橋して結晶性金属有機構造体を構成しつつ、かつ、ポリマー配位子の主鎖と結合されている。このため、本発明に係る結晶性金属有機構造体は、結晶性金属有機構造体に、ポリマー鎖が物理的に絡み合った構造となる。従来の金属有機構造体とポリマーを含む複合材料は、予め金属有機構造体を形成し、得られた金属有機構造体とポリマーを混合して成形体を得ようとするものであるため(Mixed matrix membrane method : MMM法)、ポリマーは、金属有機構造体の表面に存在する配位子としか架橋することができないが、本発明によれば、結晶性金属有機構造体の内部に存在する配位子と、ポリマー主鎖とが結合しているため、ポリマー主鎖は、結晶性金属有機構造体の内部にまで取り込まれ、結晶性金属有機構造体とポリマーとが複雑に絡み合った構造となる。本発明に係る結晶性金属有機構造体は、上記構造に起因し、結晶性を維持しつつ、優れた物理的強度、成形性を有するものとなるものと考えられる。
By using the polymer ligand of the present invention, the principle of obtaining a crystalline metal-organic framework having both physical strength and moldability while having the crystallinity of the metal-organic framework is generally as follows. is there.
The polymer ligand according to the present invention is a crystal in which the ligand and the metal are regularly arranged and the metal is a lattice point, for example, by mixing with the metal, as in the conventional method for producing a metal-organic framework. A crystalline metal-organic framework composed of a lattice can be formed. Here, since the polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, and the side chain is a polymer ligand having a ligand, the crystalline metal organic The ligand constituting the structure is bonded to the main chain of the polymer ligand while forming a crystalline metal organic structure by cross-linking the metal serving as a lattice point. Therefore, the crystalline metal-organic framework according to the present invention has a structure in which polymer chains are physically entangled with the crystalline metal-organic framework. Since the conventional composite material containing a metal-organic framework and a polymer forms a metal-organic structure in advance and mixes the obtained metal-organic structure with a polymer to obtain a molded product (Mixed matrix). In the polymer method (MMM method), the polymer can only be crosslinked with a ligand existing on the surface of the metal-organic framework, but according to the present invention, the coordination existing inside the crystalline metal-organic framework Since the child and the polymer main chain are bonded to each other, the polymer main chain is taken into the inside of the crystalline metal-organic framework, and the crystalline metal-organic structure and the polymer are intricately entangled with each other. It is considered that the crystalline metal-organic framework according to the present invention has excellent physical strength and moldability while maintaining crystallinity due to the above structure.
 以下、本発明の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、前記ポリマー配位子の数平均分子量が500以上である。
 好ましくは、前記主鎖は、ポリオレフィン、ポリスチレン、ポリビニルエーテル、ポリエステル、ポリイミド、及び、ポリアミドからなる群から選ばれる少なくとも一つを含む。
 好ましくは、前記主鎖は、繰り返し単位が3以上であるオリゴマー又はポリマーを含む。
 好ましくは、前記配位子はアミノ基、イミダゾリウム基、ピリジル基、カルボキシ基(-COOH)、フェノール性ヒドロキシ基(-PhOH)、チオール基(-SH)、スルホ基(-SOH)、ホスホン酸基(-PO)、及び、リン酸基(-OPO)からなる群から選ばれる少なくとも一つを有する。
Hereinafter, embodiments of the present invention will be illustrated. The embodiments shown below can be combined with each other.
Preferably, the polymer ligand has a number average molecular weight of 500 or more.
Preferably, the backbone comprises at least one selected from the group consisting of polyolefins, polystyrenes, polyvinyl ethers, polyesters, polyimides, and polyamides.
Preferably, the backbone comprises an oligomer or polymer having 3 or more repeating units.
Preferably, the ligand is an amino group, an imidazolium group, a pyridyl group, a carboxy group (-COOH), a phenolic hydroxy group (-PhOH), thiol group (-SH), sulfo group (-SO 3 H), It has at least one selected from the group consisting of a phosphonic acid group (-PO 3 H 2 ) and a phosphoric acid group (-OPO 3 H 2 ).
 本発明の別の観点によれば、上記に記載のポリマー配位子、及び金属を含む、結晶性金属有機構造体が提供される。 According to another aspect of the present invention, a crystalline metal-organic framework containing the above-mentioned polymer ligand and metal is provided.
 以下、本観点による、種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、少なくとも一つの前記ポリマー配位子が、結晶性金属有機構造体の内部に存在する。
 好ましくは、前記金属は、遷移金属、第2族元素、卑金属からなる群から選ばれる少なくとも一つを含む。
 本発明の別の観点によれば、上記に記載の結晶性金属有機構造体を含む、結晶性金属有機構造体混合物が提供される。
 好ましくは、前記ポリマー配位子を含まない金属有機複合体及び/又はポリマー配位子に含まれるポリマー以外のポリマーをさらに含む。
Hereinafter, various embodiments from this viewpoint will be illustrated. The embodiments shown below can be combined with each other.
Preferably, at least one of the polymer ligands is present inside the crystalline metal-organic framework.
Preferably, the metal comprises at least one selected from the group consisting of transition metals, Group 2 elements and base metals.
According to another aspect of the present invention, there is provided a mixture of crystalline metal-organic frameworks, including the crystalline metal-organic frameworks described above.
Preferably, the metal-organic framework containing no polymer ligand and / or a polymer other than the polymer contained in the polymer ligand is further contained.
 本発明の別の観点によれば、上記に記載の結晶性金属有機構造体、又は結晶性金属有機構造体を含む、成形体が提供される。
 好ましくは、上記成形体は厚み0.1mm以上である。
According to another aspect of the present invention, there is provided a crystalline metal-organic structure described above, or a molded product containing the crystalline metal-organic framework.
Preferably, the molded product has a thickness of 0.1 mm or more.
 本発明の別の観点によれば、上記に記載のポリマー配位子と、金属とを混合する混合工程を有する、結晶性金属有機構造体の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for producing a crystalline metal-organic framework, which comprises a mixing step of mixing the polymer ligand described above with a metal.
図1は、本発明における結晶性金属有機構造体の一実施形態の模式図である。FIG. 1 is a schematic view of an embodiment of a crystalline metal-organic framework in the present invention. 図2は、別の観点から見た本発明に係る結晶性金属有機構造体の一実施形態の模式図である。FIG. 2 is a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention as viewed from another viewpoint. 図3は、本発明に係る結晶性金属有機構造体の別の一実施形態の模式図を示す。FIG. 3 shows a schematic view of another embodiment of the crystalline metal-organic framework according to the present invention. 図4は、実施例4に係る結晶性金属有機構造体のFT-IRスペクトルである。FIG. 4 is an FT-IR spectrum of the crystalline metal-organic framework according to Example 4. 図5は、実施例4に係る結晶性金属有機構造体のX線回折スペクトルである。FIG. 5 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 4. 図6は、実施例4に係る結晶性金属有機構造体の外観写真及びSEM写真である。FIG. 6 is an external photograph and an SEM photograph of the crystalline metal-organic framework according to Example 4. 図7は、実施例7に係る結晶性金属有機構造体のX線回折スペクトルである。FIG. 7 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 7. 図8は、実施例7に係る結晶性金属有機構造体の構造を示す模式図である。FIG. 8 is a schematic view showing the structure of the crystalline metal-organic framework according to Example 7. 図9は、実施例11に係る結晶性金属有機構造体のX線回折スペクトルである。FIG. 9 is an X-ray diffraction spectrum of the crystalline metal-organic framework according to Example 11.
 以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, the present invention will be described in detail by exemplifying the embodiments of the present invention. The present invention is not limited to these descriptions. The various features of the embodiments of the present invention shown below can be combined with each other. In addition, the invention is independently established for each feature.
 本発明に係るポリマー配位子は、結晶性金属有機構造体形成用のポリマー配位子であり、本発明に係るポリマー配位子は、金属と混合することによって、結晶性金属有機構造体を形成することができる。ここで、結晶性金属有機構造体とは、金属イオン又はクラスターが配位子で架橋され、金属と配位子が規則的に配列した結晶構造(単結晶)を含む構造体をいう。
 以下、まず、本発明に係るポリマー配位子について説明する。
The polymer ligand according to the present invention is a polymer ligand for forming a crystalline metal-organic structure, and the polymer ligand according to the present invention forms a crystalline metal-organic structure by mixing with a metal. Can be formed. Here, the crystalline metal-organic framework refers to a structure including a crystal structure (single crystal) in which metal ions or clusters are crosslinked by a ligand and the metal and the ligand are regularly arranged.
Hereinafter, first, the polymer ligand according to the present invention will be described.
1.ポリマー配位子
 本発明に係るポリマー配位子は、主鎖、及び前記主鎖に結合した側鎖を有し、前記側鎖は配位子を有し、前記配位子は2以上の配位部を有する。
 ここで、側鎖は配位子とスペーサーとを有することが好ましい。また、配位子は、主鎖にスペーサーを介して結合していることが好ましい。また、配位子は、スペーサーを介し、側鎖の末端にあることが好ましい。
 本発明に係るポリマー配位子によれば、上記構造を有することによって、金属有機構造体の結晶性を有しつつ、物理的強度と成形性を併せ持つ結晶性金属有機構造体を得ることができる。
1. 1. Polymer Ligand The polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, the side chain has a ligand, and the ligand has two or more arrangements. Has a position.
Here, the side chain preferably has a ligand and a spacer. Further, the ligand is preferably bonded to the main chain via a spacer. Further, the ligand is preferably located at the end of the side chain via a spacer.
According to the polymer ligand according to the present invention, by having the above structure, it is possible to obtain a crystalline metal-organic structure having both physical strength and moldability while having the crystallinity of the metal-organic structure. ..
 本発明に係るポリマー配位子は、以下の式(1)で表される繰り返し単位を有することが好ましい。 The polymer ligand according to the present invention preferably has a repeating unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)において、R、R、Rはそれぞれ有機基であり、Rは主鎖、Rはスペーサー、Rは配位子を示す。
 上記式(1)において、aは、3以上であることが好ましく、4以上であることがより好ましく、50以上であることが更により好ましい。
 また、上記式(1)において、aは50~1000であることがより好ましい。
In the above formula (1), R 1 , R 2 , and R 3 are organic groups, respectively, R 1 is a main chain, R 2 is a spacer, and R 3 is a ligand.
In the above formula (1), a is preferably 3 or more, more preferably 4 or more, and even more preferably 50 or more.
Further, in the above formula (1), a is more preferably 50 to 1000.
 ポリマー配位子は、ホモポリマーであってもよく、2種類以上のモノマーを共重合したコポリマーであってもよい。ポリマー配位子は、合成の簡便性の観点からは、ホモポリマーが好ましい。また、コポリマーとする場合は、ランダム共重合体であってもよく、ブロック共重合体であってもよい。例えば、2種以上のモノマーを共重合したコポリマーとする場合、2種以上の繰り返し単位のうち、少なくとも1つの繰り返し単位が、側鎖の一部に配位子を有していればよく、複数の繰り返し単位が側鎖の一部に配位子を有していても良い。 The polymer ligand may be a homopolymer or a copolymer obtained by copolymerizing two or more kinds of monomers. The polymer ligand is preferably a homopolymer from the viewpoint of ease of synthesis. Further, when it is used as a copolymer, it may be a random copolymer or a block copolymer. For example, in the case of a copolymer obtained by copolymerizing two or more kinds of monomers, at least one repeating unit among two or more kinds of repeating units may have a ligand in a part of a side chain, and a plurality of repeating units may be used. The repeating unit of may have a ligand in a part of the side chain.
 ポリマー配位子の数平均分子量は、500以上とすることが好ましい。また数平均分子量の上限は、特に制限されるものではないが、例えば、50000以下とすることが好ましい。
 以下、主鎖、スペーサー、配位子の好ましい態様について詳述する。
The number average molecular weight of the polymer ligand is preferably 500 or more. The upper limit of the number average molecular weight is not particularly limited, but is preferably 50,000 or less, for example.
Hereinafter, preferred embodiments of the main chain, spacers and ligands will be described in detail.
 主鎖は、特に制限されるものではないが、ポリオレフィン、ポリスチレン、ポリビニルエーテル、ポリエステル、ポリイミド、及び、ポリアミドからなる群から選ばれる少なくとも一つを含むことが好ましい。
 また、主鎖は、繰り返し単位が3以上であるオリゴマー又はポリマーを含むことが好ましく、繰り返し単位が4以上であるオリゴマー又はポリマーを含むことがより好ましく、繰り返し単位が50以上であるオリゴマー又はポリマーを含むことが更により好ましい。
 本発明に係るポリマー配位子は、主鎖として様々な種類のポリマーを選択することが可能であるため、従来の金属有機構造体とポリマーを含む複合材料に比べ、自由な分子設計が可能である。すなわち、本発明に係るポリマー配位子は、従来の複合材料と異なり、縮合重合、開環重合により得られるポリマーのみならず、ラジカル重合、イオン重合により得られるポリマーを選択することが可能であるため、ポリマー配位子の自在な設計が可能であり、結晶性金属有機構造体に新たな機能を持たせることができる可能性を有する。
The main chain is not particularly limited, but preferably contains at least one selected from the group consisting of polyolefin, polystyrene, polyvinyl ether, polyester, polyimide, and polyamide.
The main chain preferably contains an oligomer or polymer having 3 or more repeating units, more preferably contains an oligomer or polymer having 4 or more repeating units, and an oligomer or polymer having 50 or more repeating units. It is even more preferable to include it.
Since various types of polymers can be selected as the main chain of the polymer ligand according to the present invention, it is possible to freely design a molecule as compared with a conventional composite material containing a metal-organic framework and a polymer. is there. That is, unlike the conventional composite material, the polymer ligand according to the present invention can be selected from not only a polymer obtained by condensation polymerization or ring-opening polymerization but also a polymer obtained by radical polymerization or ionic polymerization. Therefore, the polymer ligand can be freely designed, and there is a possibility that the crystalline metal-organic framework can have a new function.
 スペーサーは、2価の有機基であり、単結合であってもよく、炭化水素基であってもよく、1又は複数のエステル結合、エーテル結合、アミド結合、又はカルボニル結合を有していてもよく、1又は複数のエーテル結合を含むことが好ましい。 The spacer is a divalent organic group, which may be a single bond, a hydrocarbon group, or may have one or more ester bonds, ether bonds, amide bonds, or carbonyl bonds. It often contains one or more ether bonds, preferably.
 配位子は、金属イオン及び金属クラスターを含む金属が配位する配位部を2以上有すれば特に制限はなく、金属有機構造体の配位子として公知の配位子を用いることができる。
 ここで、配位部とは、金属が配位可能な箇所を示し、例えば、配位子がカルボキシ基を2つ有する場合、配位部を2つ有し、合計4つの配位座(配位原子)を有するとカウントする。なお、本発明に係るポリマー配位子及び結晶性金属有機構造体は、配位部が1である配位子を含んでもよい。
 本発明に係るポリマー配位子は、配位部を2以上有する配位子を3以上有することが好ましく、4以上有することがより好ましく、50以上有することが更により好ましく、例えば、50~1000有するものとできる。
The ligand is not particularly limited as long as it has two or more coordination portions in which the metal including the metal ion and the metal cluster is coordinated, and a known ligand can be used as the ligand of the metal-organic framework. ..
Here, the coordinating portion indicates a portion where the metal can be coordinated. For example, when the ligand has two carboxy groups, it has two coordinating portions, for a total of four coordinating constellations (coordination). It counts as having a (position atom). The polymer ligand and the crystalline metal-organic framework according to the present invention may contain a ligand having a coordination portion of 1.
The polymer ligand according to the present invention preferably has 3 or more ligands having 2 or more coordination portions, more preferably 4 or more, and even more preferably 50 or more, for example, 50 to 1000. Can have.
 配位子は、2以上の配位部を有する芳香族化合物、脂肪族化合物、脂環式化合物、ヘテロ芳香族化合物、ヘテロ環式化合物からなる群から選択される少なくとも一つに由来する骨格を含むものとすることができる。配位子は1又は複数のベンゼン環を有することが好ましく、1以上3以下のベンゼン環を有することがより好ましい。 The ligand has a skeleton derived from at least one selected from the group consisting of aromatic compounds, aliphatic compounds, alicyclic compounds, heteroaromatic compounds, and heterocyclic compounds having two or more coordination portions. Can include. The ligand preferably has one or more benzene rings, more preferably one or more and three or less benzene rings.
 配位子は、アミノ基、ピリジル基、イミダゾリウム基、カルボキシ基(-COOH)、フェノール性ヒドロキシ基(-PhOH)、チオール基(-SH)、スルホ基(-SOH)、ホスホン酸基(-PO)、及びリン酸基(-OPO)からなる群から選択される少なくとも一つを有することが好ましく、アミノ基、イミダゾリウム基、ピリジル基、カルボキシ基(-COOH)、フェノール性ヒドロキシ基(-PhOH)からなる群から選択される少なくとも一つを有することがより好ましく、カルボキシ基(-COOH)を有することが特に好ましい。 Ligand, an amino group, a pyridyl group, imidazolium group, a carboxy group (-COOH), a phenolic hydroxy group (-PhOH), thiol group (-SH), sulfo group (-SO 3 H), a phosphonic acid group (-PO 3 H 2), and preferably it has at least one selected from the group consisting of phosphoric acid group (-OPO 3 H 2), amino group, imidazolium group, a pyridyl group, a carboxy group (-COOH ), It is more preferable to have at least one selected from the group consisting of a phenolic hydroxy group (-PhOH), and it is particularly preferable to have a carboxy group (-COOH).
 カルボキシ基を有する配位子は、具体的には、イソフタル酸、テレフタル酸(1,4-ベンゼンジカルボン酸)、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、ビフェニレンジカルボン酸、1,2,3-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、1,2,3,4-ベンゼンテトラカルボン酸、及び1,2,4,5-ベンゼンテトラカルボン酸からなる群から選択される少なくとも一つを含むことが好ましく、テレフタル酸、及びビフェニレンジカルボン酸からなる群から選択される少なくとも一つを含むことが好ましく、特に好ましくは、テレフタル酸を含む。 Specific examples of the ligand having a carboxy group include isophthalic acid, terephthalic acid (1,4-benzenedicarboxylic acid), 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, biphenylenedicarboxylic acid, and 1 , 2,3-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, and 1,2,4,5-benzenetetracarboxylic acid selected from the group It is preferable to contain at least one selected from the group consisting of terephthalic acid and biphenylenedicarboxylic acid, and particularly preferably to contain terephthalic acid.
 ポリマー配位子の構造は、NMR、ESI-TOF、SEC等による分析により確認することができる。各分析の分析条件等は実施例に記載のとおりである。
 また、本発明に係るポリマー配位子は、本発明に係る結晶性金属有機構造体の製造に用いることができる。
The structure of the polymer ligand can be confirmed by analysis by NMR, ESI-TOF, SEC and the like. The analysis conditions and the like for each analysis are as described in the examples.
Further, the polymer ligand according to the present invention can be used for producing a crystalline metal-organic framework according to the present invention.
2.結晶性金属有機構造体
 以下、本発明に係る結晶性金属有機構造体について説明する。
 本発明に係る結晶性金属有機構造体は、上記のポリマー配位子、及び金属を含む。本発明に係る結晶性金属有機構造体の製造方法の詳細は後述するが、本発明に係る結晶性金属有機構造体は、例えば、本発明に係るポリマー配位子と金属を混合し、加熱することにより得ることができる。
2. 2. Crystalline Metal-Organic Framework The crystalline metal-organic framework according to the present invention will be described below.
The crystalline metal-organic framework according to the present invention includes the above-mentioned polymer ligand and metal. Details of the method for producing a crystalline metal-organic framework according to the present invention will be described later, but the crystalline metal-organic framework according to the present invention is, for example, a mixture of a polymer ligand according to the present invention and a metal and heated. Can be obtained by
 図1に、本発明に係る結晶性金属有機構造体の一実施形態の模式図を示す。本発明に係る結晶性金属有機構造体は、金属1と配位子2が規則的に配列した結晶構造(単結晶)を含む。該単結晶の格子点は、金属を含み、格子点は金属イオン又は金属クラスターとすることができる。各単結晶は複数の単位格子から構成されることが好ましい。図1に示されるように、本発明に係る結晶性金属有機構造体では、結晶を構成する配位子2は、スペーサー4を介し、ポリマー配位子の主鎖3と結合しており、主鎖3が結晶に絡んだ構造となっている。 FIG. 1 shows a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention. The crystalline metal-organic framework according to the present invention includes a crystal structure (single crystal) in which a metal 1 and a ligand 2 are regularly arranged. The lattice points of the single crystal contain metal, and the lattice points can be metal ions or metal clusters. Each single crystal is preferably composed of a plurality of unit cells. As shown in FIG. 1, in the crystalline metal-organic framework according to the present invention, the ligand 2 constituting the crystal is bonded to the main chain 3 of the polymer ligand via the spacer 4, and is mainly The chain 3 has a structure in which the crystals are entwined.
 図2に、別の観点から見た本発明に係る結晶性金属有機構造体の一実施形態の模式図を示す。図2に示すように、単結晶のいずれかの頂点の座標を(000)とし、結晶格子の各格子面に平行な軸をX軸、Y軸、及びZ軸としたとき、単結晶は、X軸、Y軸、及びZ軸方向のそれぞれに複数の単位格子が連なることが好ましい。また、単結晶は、X軸、Y軸、及びZ軸方向のそれぞれに3以上の格子点を有することが好ましい。 FIG. 2 shows a schematic view of an embodiment of the crystalline metal-organic framework according to the present invention from another viewpoint. As shown in FIG. 2, when the coordinates of any apex of the single crystal are (000) and the axes parallel to each lattice plane of the crystal lattice are the X-axis, the Y-axis, and the Z-axis, the single crystal is It is preferable that a plurality of unit lattices are connected in each of the X-axis, Y-axis, and Z-axis directions. Further, it is preferable that the single crystal has three or more lattice points in each of the X-axis, Y-axis, and Z-axis directions.
 本発明に係る結晶性金属有機構造体は、好ましくは、少なくとも一つのポリマー配位子が、結晶性金属有機構造体に含まれる結晶の内部に存在する。ここで、「ポリマー配位子が、結晶性金属有機構造体に含まれる結晶の内部に存在する」形態について、図2を用いて説明する。上記したように、図2の(000)の格子点は、結晶性金属有機構造体に含まれる単結晶のいずれかの頂点である。また、X軸上の格子点はX=lで表され、X軸上の他端の頂点はX=Lである。同様に、Y軸上の格子点はY=mで表され、Y軸上の他端の頂点はY=Mであり、Z軸上の格子点はZ=nで表され、Z軸上の他端の頂点はZ=Nである。したがって、結晶内の各格子点は、(0≦X≦L、0≦Y≦M、0≦Z≦N)で表される。本発明において、(1≦X≦L-1、1≦Y≦M-1、1≦Z≦N-1)で表される格子点を、単結晶の内部に存在する格子点とする。また、本発明において、「ポリマー配位子が、結晶性金属有機構造体に含まれる結晶の内部に存在する」とは、結晶の内部に存在する格子点と、他の任意の格子点を架橋したポリマー配位子が存在する状態を意味する。別の言い方をすれば、「ポリマー配位子が、結晶性金属有機構造体に含まれる結晶の内部に存在する」とは、単結晶の内部の(表面に露出していない)格子点と、他の任意の格子点とを架橋したポリマー配位子が存在する状態を意味する。本発明に係る結晶性金属有機構造体は、上記構造を取ることによって、結晶性を維持しつつ、優れた物理的強度を有する。
 また、本発明に係る結晶性金属有機構造体は、表面に露出した格子点(X=1又はL、Y=1又はM、Z=1又はN)同士を架橋するポリマー配位子を含むこともできる。
In the crystalline metal-organic framework according to the present invention, preferably, at least one polymer ligand is present inside the crystal contained in the crystalline metal-organic framework. Here, the form in which the polymer ligand is present inside the crystal contained in the crystalline metal-organic framework will be described with reference to FIG. As described above, the lattice points (000) in FIG. 2 are the vertices of any single crystal contained in the crystalline metal-organic framework. Further, the grid points on the X-axis are represented by X = l, and the apex of the other end on the X-axis is X = L. Similarly, the grid points on the Y-axis are represented by Y = m, the apex of the other end on the Y-axis is Y = M, the grid points on the Z-axis are represented by Z = n, and are on the Z-axis. The apex at the other end is Z = N. Therefore, each lattice point in the crystal is represented by (0 ≦ X ≦ L, 0 ≦ Y ≦ M, 0 ≦ Z ≦ N). In the present invention, the lattice points represented by (1 ≦ X ≦ L-1, 1 ≦ Y ≦ M-1, 1 ≦ Z ≦ N-1) are defined as the lattice points existing inside the single crystal. Further, in the present invention, "the polymer ligand exists inside the crystal contained in the crystalline metal-organic framework" means that the lattice points existing inside the crystal are bridged with any other lattice points. It means the state in which the polymer ligand is present. In other words, "the polymer ligand exists inside the crystal contained in the crystalline metal-organic framework" means that the lattice points inside the single crystal (not exposed to the surface) and It means the presence of a polymer ligand that is crosslinked with any other lattice point. The crystalline metal-organic framework according to the present invention has excellent physical strength while maintaining crystallinity by adopting the above structure.
Further, the crystalline metal-organic framework according to the present invention contains a polymer ligand that crosslinks lattice points (X = 1 or L, Y = 1 or M, Z = 1 or N) exposed on the surface. You can also.
 また、本発明に係る結晶性金属有機構造体は、本発明に係るポリマー配位子以外の配位子(例えば、ポリマーと結合していない配位子単体)をさらに含むこともできる。 Further, the crystalline metal-organic framework according to the present invention may further contain a ligand other than the polymer ligand according to the present invention (for example, a single ligand not bonded to the polymer).
 本発明に係るポリマー配位子以外の配位子とは、本発明に係るポリマー配位子に由来する配位子以外の配位子、すなわち、配位子と金属との混合前の原料の状態において、本発明に係るポリマー配位子に結合していない配位子を意味する。具体的には、ポリマーと結合していない単一配位子や、ポリマーに結合した配位子(ただし、本発明のポリマー配位子の要件は欠く)が挙げられる。本発明に係るポリマー配位子以外の配位子としては、本発明に係るポリマー配位子に含まれ得る配位子として列挙した配位子と同じ種類の単一配位子や、これらの配位子がポリマーに結合したものが挙げられる。 The ligand other than the polymer ligand according to the present invention is a ligand other than the ligand derived from the polymer ligand according to the present invention, that is, a raw material before mixing the ligand and the metal. In the state, it means a ligand that is not bound to the polymer ligand according to the present invention. Specific examples thereof include a single ligand not bound to a polymer and a ligand bound to a polymer (however, the requirement of the polymer ligand of the present invention is lacking). Examples of ligands other than the polymer ligand according to the present invention include single ligands of the same type as the ligands listed as ligands that can be contained in the polymer ligand according to the present invention, and these Examples thereof include those in which a ligand is bound to a polymer.
 本発明に係る結晶性金属有機構造体は、他の成分と混合し、本発明に係る結晶性金属有機構造体を含む結晶性金属有機構造体混合物とすることもできる。
 本発明に係る結晶性金属有機構造体混合物は、本発明に係る結晶性金属有機構造体を含み、例えば、本発明に係るポリマー配位子を含まない金属有機複合体及び/又はポリマー配位子に含まれるポリマー以外のポリマーをさらに含むことができる。例えば、本発明に係る結晶性金属有機構造体混合物は、本発明に係るポリマー配位子を含む結晶性金属有機構造体が、本願発明に係るポリマー配位子又は本願発明に係るポリマー配位子以外のポリマーによって連結された構造を含むものとできる。また、本発明に係るポリマー配位子を含む結晶性金属有機構造体と、本発明に係るポリマー配位子を含まない金属有機複合体とが、本発明のポリマー配位子又は本発明に係るポリマー配位子以外のポリマーによって連結された構造を含むものとできる。
The crystalline metal-organic framework according to the present invention can also be mixed with other components to prepare a mixture of crystalline metal-organic frameworks containing the crystalline metal-organic framework according to the present invention.
The crystalline metal-organic framework mixture according to the present invention contains the crystalline metal-organic structure according to the present invention, for example, a metal-organic composite and / or a polymer ligand containing no polymer ligand according to the present invention. Polymers other than the polymers contained in are further included. For example, in the crystalline metal-organic framework mixture according to the present invention, the crystalline metal-organic structure containing the polymer ligand according to the present invention is the polymer ligand according to the present invention or the polymer ligand according to the present invention. It can include structures linked by polymers other than. Further, the crystalline metal-organic framework containing the polymer ligand according to the present invention and the metal-organic framework containing no polymer ligand according to the present invention are the polymer ligand of the present invention or the present invention. It can include structures linked by polymers other than polymer ligands.
 本発明に係るポリマー配位子以外のポリマーとは、本発明に係るポリマー配位子に由来するポリマー以外のポリマー、すなわち、配位子と金属との混合前の原料の状態において、本発明に係るポリマー配位子に結合していないポリマーを意味する。具体的には、従来のMMM法に用いられるポリマーが挙げられる。 The polymer other than the polymer ligand according to the present invention is a polymer other than the polymer derived from the polymer ligand according to the present invention, that is, in the state of the raw material before mixing the ligand and the metal, in the present invention. It means a polymer that is not bound to such a polymer ligand. Specific examples thereof include polymers used in the conventional MMM method.
 本発明に係るポリマー配位子を含まない金属有機複合体としては、従来のMOF(例えば、従来のMMM法に用いられるMOF)を挙げることができ、具体例は後述の通りである。 Examples of the metal-organic framework containing no polymer ligand according to the present invention include conventional MOFs (for example, MOFs used in the conventional MMM method), and specific examples are as described below.
 なお、本発明に係る結晶性金属有機構造体、又は結晶性金属有機構造体混合物が、本発明に係るポリマー配位子以外の配位子を含む場合、本発明に係るポリマー配位子以外の配位子と本発明に係るポリマー配位子の配位子の部分は、同じ構造であってもよく、異なる構造であっても良い。また、本発明に係る結晶性金属有機構造体、又は結晶性金属有機構造体混合物が、本発明に係るポリマー配位子以外のポリマーを含む場合、本発明に係るポリマー配位子以外のポリマーと本発明に係るポリマー配位子のポリマーの部分は、同じ構造であってもよく、異なる構造であっても良い。 When the crystalline metal-organic framework or the mixture of crystalline metal-organic frameworks according to the present invention contains a ligand other than the polymer ligand according to the present invention, it is not the polymer ligand according to the present invention. The ligand portion and the ligand portion of the polymer ligand according to the present invention may have the same structure or may have different structures. When the crystalline metal-organic framework or the mixture of crystalline metal-organic frameworks according to the present invention contains a polymer other than the polymer ligand according to the present invention, the polymer other than the polymer ligand according to the present invention is used. The polymer portion of the polymer ligand according to the present invention may have the same structure or may have a different structure.
 本発明に係る結晶性金属有機構造体は、結晶性金属有機構造体に含まれる全配位子の数を100としたとき、本発明に係るポリマー配位子に含まれる配位子を10%以上含むことが好ましく、50%以上含むことがより好ましく、80%以上含むことが特に好ましい。本発明に係る結晶性金属有機構造体は、結晶性金属有機構造体に含まれる配位子のすべてが、本発明に係るポリマー配位子に含まれる配位子であってもよい。
 結晶性金属有機構造体に含まれる全配位子のうち、一定以上の配位子が、本発明に係るポリマー配位子であることによって、従来のMMM法によって製造された金属有機構造体に比べ、結晶性、物理的強度、成形性に優れる結晶性金属有機構造体となる。
The crystalline metal-organic framework according to the present invention contains 10% of the ligands contained in the polymer ligand according to the present invention, where 100 is the total number of ligands contained in the crystalline metal-organic framework. The above content is preferable, 50% or more is more preferable, and 80% or more is particularly preferable. In the crystalline metal-organic framework according to the present invention, all of the ligands contained in the crystalline metal-organic framework may be ligands contained in the polymer ligand according to the present invention.
Of all the ligands contained in the crystalline metal-organic structure, a certain number or more of the ligands are the polymer ligands according to the present invention, so that the metal-organic structure produced by the conventional MMM method can be obtained. In comparison, it is a crystalline metal-organic framework that is excellent in crystallinity, physical strength, and moldability.
 図3に本発明に係る結晶性金属有機構造体の別の一実施形態の模式図を示す。本発明に係る結晶性金属有機構造体は、単結晶を1つ有してもよいし、複数有していても良い。すなわち、本発明に係る結晶性金属有機構造体は、図1に模式的に示されるジャングルジム構造の単結晶を1つ以上有し、図3のように2つ以上有していても良い。
 また、本発明に係る結晶性金属有機構造体は、一つのポリマー配位子が、2以上の単結晶と結合していることが好ましい。すなわち、本発明に係る結晶性金属有機構造体を構成する2以上の単結晶が、スペーサーを介し、同一のポリマー配位子の主鎖に結合していることが好ましい。本発明に係る結晶性金属有機構造体は、上記構造に起因し、結晶性を維持しつつ、優れた物理的強度、成形性を有するものとなると考えられる。
FIG. 3 shows a schematic view of another embodiment of the crystalline metal-organic framework according to the present invention. The crystalline metal-organic framework according to the present invention may have one single crystal or a plurality of single crystals. That is, the crystalline metal-organic framework according to the present invention may have one or more single crystals having a jungle gym structure schematically shown in FIG. 1, and may have two or more as shown in FIG.
Further, in the crystalline metal-organic framework according to the present invention, it is preferable that one polymer ligand is bonded to two or more single crystals. That is, it is preferable that two or more single crystals constituting the crystalline metal-organic framework according to the present invention are bonded to the main chain of the same polymer ligand via a spacer. Due to the above structure, the crystalline metal-organic framework according to the present invention is considered to have excellent physical strength and moldability while maintaining crystallinity.
 本発明に係るポリマー配位子は、主鎖に多数(例えば50以上)の配位子がそれぞれスペーサーを介して結合しているため、すべての配位子が単一結晶(一つの単結晶)を形成しようとすると歪が生じる。そのため、結晶性金属有機構造体は全体として1つの単結晶にはならず、複数の結晶構造がポリマーで結合されている形状となる。このことにより、例えばフィルム状になるなど成形性を有する。 In the polymer ligand according to the present invention, since a large number (for example, 50 or more) of ligands are bonded to the main chain via spacers, all the ligands are single crystals (one single crystal). Distortion occurs when trying to form. Therefore, the crystalline metal-organic framework does not become one single crystal as a whole, but has a shape in which a plurality of crystal structures are bonded by a polymer. As a result, it has moldability such as forming a film.
 本発明に係る金属は、遷移金属、第2族元素、卑金属からなる群から選ばれる少なくとも一つを含むことが好ましい。
 遷移金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、カドミウム、ルテニウム、パラジウム、銀、タングステン、イリジウム、オスミウム、白金、金を挙げることができる。
 第2族元素としては、カルシウム、マグネシウムを挙げることができる。
 卑金属としては、鉄鋼、銅、アルミニウム、鉛、亜鉛、すず、タングステン、インジウム、モリブデン、クロム、ゲルマニウム、タンタル、マグネシウム、コバルト、チタン、ガリウム、アンチモン、マンガン、ニッケル、ベリリウム、ハフニウム、ニオブ、ビスマス、レニウム、タリウムを挙げることができる。
 上記の中でも、銅、亜鉛、ジルコニウム、コバルト、鉄を含むことがより好ましく、亜鉛を含むことが特に好ましい。
The metal according to the present invention preferably contains at least one selected from the group consisting of transition metals, Group 2 elements and base metals.
Transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, yttrium, zirconium, niobium, molybdenum, cadmium, ruthenium, palladium, silver, tungsten, iridium, osmium, platinum, and gold. be able to.
Examples of Group 2 elements include calcium and magnesium.
Base metals include steel, copper, aluminum, lead, zinc, tin, tungsten, indium, molybdenum, chromium, germanium, tantalum, magnesium, cobalt, titanium, gallium, antimony, manganese, nickel, beryllium, hafnium, niobium, bismuth, Examples include rhenium and thallium.
Among the above, it is more preferable to contain copper, zinc, zirconium, cobalt and iron, and it is particularly preferable to contain zinc.
 本発明に係る結晶性金属有機構造体はポリマー配位子を含み、ポリマー配位子の好ましい態様については、上記の「1.ポリマー配位子」で上述した通りである。 The crystalline metal-organic framework according to the present invention contains a polymer ligand, and a preferred embodiment of the polymer ligand is as described above in "1. Polymer ligand" above.
 配位子と金属とが構成する結晶構造としては、公知の文献(例えば、O.M.Yaghi, et al, Science 2013, 341,1230444)に記載されているMOFを広く採用することが可能である。一例としては、Cu-BTC、MOF-5、IRMOF-10、IRMOF-3、MIL-47、MIL-53、MIL-96、MMOF、SIM-1、ZIF-7、ZIF-8、ZIF-22、ZIF-69、ZIF-90、UiO型のものが挙げられるが、上記文献に示されるように、金属有機構造体(MOF)は過去に20000種類以上が報告されており、上記に具体的に例示した構造に限定されるものではない。 As the crystal structure composed of the ligand and the metal, the MOF described in a known document (for example, OM Yaghi, et al, Science 2013, 341, 123444) can be widely adopted. is there. As an example, Cu-BTC, MOF-5, IRMOF-10, IRMOF-3, MIL-47, MIL-53, MIL-96, MMOF, SIM-1, ZIF-7, ZIF-8, ZIF-22, Examples thereof include ZIF-69, ZIF-90, and UiO types. As shown in the above literature, more than 20,000 types of metal-organic frameworks (MOFs) have been reported in the past, and specific examples thereof are given above. It is not limited to the structure.
 本発明に係る結晶性金属有機構造体は、複数の種類のポリマー配位子を含むことができる。また、本発明に係る結晶性金属有機構造体は、複数の種類の金属を含むことができる。よって、本発明に係る結晶性金属有機構造体は、複数の種類の単結晶(結晶構造)を含むことが可能である。 The crystalline metal-organic framework according to the present invention can contain a plurality of types of polymer ligands. In addition, the crystalline metal-organic framework according to the present invention can contain a plurality of types of metals. Therefore, the crystalline metal-organic framework according to the present invention can include a plurality of types of single crystals (crystal structures).
 本発明の結晶性金属有機構造体は、結晶性金属有機構造体全体を100vol%としたとき、金属と配位子から構成される結晶成分を、10~99vol%含むことが好ましい。上記数値範囲とすることによって、結晶性に起因する特性を発揮することができ、かつ物理的強度、及び成形性に優れる結晶性金属有機構造体とすることができる。 The crystalline metal-organic framework of the present invention preferably contains 10 to 99 vol% of a crystal component composed of a metal and a ligand, assuming that the entire crystalline metal-organic framework is 100 vol%. Within the above numerical range, a crystalline metal-organic framework capable of exhibiting characteristics due to crystallinity and having excellent physical strength and moldability can be obtained.
 本発明の結晶性金属有機構造体は、その結晶構造に起因した多孔性を有する。本発明の結晶性金属有機構造体が有する孔の孔径は0.1nm~10nmであることが好ましく、0.5nm~2nmであることがより好ましい。本発明の結晶性金属有機構造体は、上記数値範囲内の孔径を有することによって、例えば、分離膜、貯蔵膜としての用途に好適に用いることができる。なお、孔径は、例えば、結晶性金属有機構造体をクロロホルムや塩化メチレン等の溶媒に浸漬し、結晶中の高沸点溶媒を除去し、100℃に加熱しながら真空減圧することで孔の内部の溶媒を除去した後、高精度ガス/蒸気吸着量測定装置(BELSORP-MaxII)を用いて測定することができる。 The crystalline metal-organic framework of the present invention has porosity due to its crystal structure. The pore diameter of the crystalline metal-organic framework of the present invention is preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 2 nm. The crystalline metal-organic framework of the present invention can be suitably used, for example, as a separation membrane or a storage membrane by having a pore size within the above numerical range. The pore size is determined by, for example, immersing a crystalline metal organic structure in a solvent such as chloroform or methylene chloride to remove the high boiling point solvent in the crystal, and vacuum depressurizing the inside of the pore while heating at 100 ° C. After removing the solvent, it can be measured using a high-precision gas / steam adsorption amount measuring device (BELSORP-MaxII).
 本発明に係る結晶性金属有機構造体の構造は、粉末X線回折、走査型電子顕微鏡(SEM)により確認することができる。これらの方法で分析することによって、本発明に係る結晶性金属有機構造体の特徴を確認することができる。
 本発明に係る結晶性金属有機構造体をSEMで観察すると、配位子と金属とが構成する単結晶が、隙間なく連続して連結している様子が観察される。一方、金属有機構造体とポリマーを混合するMMM法で製造した金属有機構造体は、結晶と、ポリマーとの間に隙間が見られる(R.Lin et al.ACS Appl.Mater.Interfaces.2016,8,46,32041-32049、Fig.6参照)。例えば、3000倍~15000倍でSEM観察によって、結晶とポリマーとの間の隙間の有無、結晶の連続性を確認することができる。本発明に係る結晶性金属有機構造体は、例えば、0.5μm~10μmの結晶を有するものとできる。
The structure of the crystalline metal-organic framework according to the present invention can be confirmed by powder X-ray diffraction and a scanning electron microscope (SEM). By analyzing by these methods, the characteristics of the crystalline metal-organic framework according to the present invention can be confirmed.
When the crystalline metal-organic framework according to the present invention is observed by SEM, it is observed that the single crystal composed of the ligand and the metal is continuously connected without a gap. On the other hand, in the metal-organic framework produced by the MMM method in which the metal-organic structure and the polymer are mixed, a gap is observed between the crystal and the polymer (R. Lin et al. ACS Appl. Mater. Interfaces. 2016, 8, 46, 32041-32049, Fig. 6). For example, the presence or absence of a gap between the crystal and the polymer and the continuity of the crystal can be confirmed by SEM observation at 3000 to 15000 times. The crystalline metal-organic framework according to the present invention can have, for example, crystals of 0.5 μm to 10 μm.
 また、結晶性金属有機構造体をポリマー配位子と金属とに分解し、得られた分解物を分析することによって、結晶性金属有機構造体が本発明に係るポリマー配位子を含むかを確認することができる。分解の方法は、結晶性金属有機構造体の種類に応じて選択することができる。分解方法としては、例えば、塩酸等の酸を加えて、必要に応じて加熱して分解する方法が挙げられる。得られた分解物を、NMR、ESI-TOF、SEC等を用いて分析することにより、ポリマー配位子の存在を確認することができる。各分析の分析条件等は実施例に記載のとおりである。 Further, by decomposing the crystalline metal-organic framework into a polymer ligand and a metal and analyzing the obtained decomposition product, it is possible to determine whether the crystalline metal-organic framework contains the polymer ligand according to the present invention. You can check. The decomposition method can be selected according to the type of the crystalline metal-organic framework. Examples of the decomposition method include a method in which an acid such as hydrochloric acid is added and, if necessary, heated to decompose. The presence of the polymer ligand can be confirmed by analyzing the obtained decomposition product using NMR, ESI-TOF, SEC and the like. The analysis conditions and the like for each analysis are as described in the examples.
 本発明の結晶性金属有機構造体は、ポリマー配位子の配位子部位、主鎖及びスペーサー部位、金属部位を変更することによって、成形体(フィルム形状を含む)、エラストマー、ゲル状に作り分けることが可能である。 The crystalline metal-organic framework of the present invention is made into a molded product (including a film shape), an elastomer, or a gel by changing the ligand site, main chain and spacer site, and metal site of the polymer ligand. It is possible to divide.
3.成形体
 本発明に係る成形体は、本発明に係る結晶性金属有機構造体を含む。本発明に係る成形体は、好ましくは厚み0.1mm以上であり、より好ましくは0.2mm以上であり、更に好ましくは、0.3mm以上である。
 本発明に係る成形体のサイズは好ましくは300mm以上である。
 本発明に係る成形体は、例えば、ピンセットで取扱いが可能である程度の物理的強度を有することが好ましい。
3. 3. Molded article The molded article according to the present invention includes a crystalline metal-organic framework according to the present invention. The molded product according to the present invention preferably has a thickness of 0.1 mm or more, more preferably 0.2 mm or more, and further preferably 0.3 mm or more.
The size of the molded product according to the present invention is preferably 300 mm 2 or more.
It is preferable that the molded product according to the present invention can be handled with tweezers and has a certain degree of physical strength, for example.
 本発明に係る成形体は、必要に応じて、結晶性金属有機構造体以外の成分を含むこともできる。他の成分の例としては、結晶性金属有機構造体の機能を阻害しない範囲で好ましい種類、量の成分を含むことが可能であるが、一例としては、他のポリマーが挙げられる。
 本発明に係る成形体は、ガス分離・貯蔵、触媒機能の向上、プロトン伝導性材料等の様々な用途に用いることができる。
The molded product according to the present invention may contain components other than the crystalline metal-organic framework, if necessary. Examples of other components include components of a preferable type and amount as long as they do not interfere with the function of the crystalline metal-organic framework, and examples thereof include other polymers.
The molded product according to the present invention can be used for various purposes such as gas separation / storage, improvement of catalytic function, and proton conductive material.
4.ポリマー配位子の製造方法
 本発明に係るポリマー配位子は、主鎖、及び前記主鎖に結合した側鎖を有し、前記側鎖は配位子を有し、前記配位子は2以上の配位部を有するポリマー配位子であれば特にその製造方法は制限されないが、代表的な合成ルートの一例としては、まず、配位子の基礎骨格を有する原料を合成又は入手し、ウェリアムソンエーテル合成により重合性官能基を導入したポリマー配位子形成用モノマーを合成した後、カチオン重合によってポリマー配位子前駆体を重合し、得られたポリマー配位子前駆体を加水分解して目的とするポリマー配位子を得る方法が挙げられる。
4. Method for Producing Polymer Ligand The polymer ligand according to the present invention has a main chain and a side chain bonded to the main chain, the side chain has a ligand, and the ligand has 2 The production method of the polymer ligand having the above coordination portion is not particularly limited, but as an example of a typical synthetic route, first, a raw material having a basic skeleton of the ligand is synthesized or obtained, and then the raw material is synthesized or obtained. After synthesizing a monomer for forming a polymer ligand into which a polymerizable functional group was introduced by Welliamson ether synthesis, the polymer ligand precursor was polymerized by cationic polymerization, and the obtained polymer ligand precursor was hydrolyzed. Then, a method of obtaining the desired polymer ligand can be mentioned.
 ポリマー配位子の製造方法は、目的とするポリマー配位子の主鎖、スペーサー、配位子の種類やポリマー配位子全体の設計等によって適宜調整される。
 本発明に係るポリマー配位子は、主鎖として、様々な種類のモノマーを選択することが可能であり、上述の重合工程において、縮合重合、開環重合のみならず、ラジカル重合、イオン重合(カチオン重合、アニオン重合)を経てポリマー配位子を製造することが可能である。本発明に係るポリマー配位子は、その重合工程として、連鎖重合、逐次重合、リビング重合のいずれも選択可能であるため、ポリマー配位子の設計の自由度が高く、ひいては得られる結晶性金属有機構造体の機能の幅を広げることが可能である。
The method for producing the polymer ligand is appropriately adjusted depending on the main chain, spacer, type of ligand, design of the entire polymer ligand, etc. of the target polymer ligand.
As the polymer ligand according to the present invention, various types of monomers can be selected as the main chain, and in the above-mentioned polymerization step, not only condensation polymerization and ring-opening polymerization, but also radical polymerization and ionic polymerization ( It is possible to produce a polymer ligand through (cationic polymerization, anionic polymerization). Since the polymer ligand according to the present invention can be selected from chain polymerization, step-growth polymerization, and living polymerization as its polymerization step, the degree of freedom in designing the polymer ligand is high, and the crystalline metal obtained can be obtained. It is possible to expand the range of functions of organic structures.
5.結晶性金属有機構造体の製造方法
 本発明に係る結晶性金属有機構造体は、上記のポリマー配位子及び金属を含むものであれば特にその製造方法は制限されないが、上記のポリマー配位子と、金属とを含む原料を混合する混合工程を含む。例えば、本発明に係るポリマー配位子と溶媒と金属塩を混合し、加熱することで製造することができる。製造方法及び条件においては、公知のMOFの製造方法及び条件を適宜採用することができる。
 また、上記したように、本発明に係る結晶性金属有機構造体は、本発明に係るポリマー配位子以外の配位子(例えば、ポリマーと結合していない配位子単体)を含むことができ、この場合、本発明に係る結晶性金属有機構造体の製造方法は、上記のポリマー配位子、金属、及び本発明に係るポリマー配位子以外の配位子を含む原料を混合する混合工程を含む。
 また、本発明に係る結晶性金属有機構造体は、他の成分と混合し、本発明に係る結晶性金属有機構造体を含む結晶性金属有機構造体混合物とすることもでき、この場合、本発明に係る結晶性金属有機構造体混合物の製造方法は、本発明に係る結晶性金属有機構造体を含む原料を混合する工程を含み、例えば、本発明に係る結晶性金属有機構造体と、本発明に係るポリマー配位子以外のポリマー、及び/又は本発明に係るポリマー配位子を含まない金属有機複合体を含む原料を混合する混合工程を含む。
5. Method for Producing Crystallable Metal-Organic Framework The method for producing the crystalline metal-organic framework according to the present invention is not particularly limited as long as it contains the above-mentioned polymer ligand and metal, but the above-mentioned polymer ligand is not particularly limited. And a mixing step of mixing the raw materials containing the metal. For example, it can be produced by mixing a polymer ligand according to the present invention, a solvent and a metal salt, and heating the mixture. As for the production method and conditions, known MOF production methods and conditions can be appropriately adopted.
Further, as described above, the crystalline metal-organic framework according to the present invention may contain a ligand other than the polymer ligand according to the present invention (for example, a single ligand not bound to the polymer). In this case, the method for producing a crystalline metal-organic framework according to the present invention is a mixture of a raw material containing the above-mentioned polymer ligand, metal, and a ligand other than the polymer ligand according to the present invention. Includes steps.
Further, the crystalline metal-organic framework according to the present invention can be mixed with other components to obtain a crystalline metal-organic framework mixture containing the crystalline metal-organic framework according to the present invention. In this case, the present invention The method for producing a crystalline metal-organic framework mixture according to the present invention includes a step of mixing a raw material containing the crystalline metal-organic framework according to the present invention, and includes, for example, the crystalline metal-organic framework according to the present invention and the present invention. It includes a mixing step of mixing a polymer other than the polymer ligand according to the present invention and / or a raw material containing a metal-organic framework containing no polymer ligand according to the present invention.
 金属塩としては、前記した金属を含む金属塩を用いることができ、金属硝酸塩、金属硫酸塩、金属塩化物、金属臭化物、金属ヨウ化物、金属フッ化物、金属炭酸塩、金属カルボン酸塩、金属リン酸塩、金属硫化物、及び金属水酸化物からなる群より選択することが好ましく、金属硝酸塩及び金属塩化物からなる群から選択される金属塩であることが好ましい。
 また、具体的な金属塩としては、好ましくは硝酸銅、硝酸亜鉛、硝酸コバルト、硝酸インジウム、硝酸アルミニウム、硝酸鉄、硝酸バナジウム、塩化銅、塩化亜鉛、塩化コバルト、塩化ジルコニウム、塩化インジウム、塩化アルミニウム、硝酸塩化鉄及び塩化バナジウムからなる群より選択される金属塩を挙げることができ、合成の容易さの観点から、硝酸銅、硝酸亜鉛、硝酸コバルト、硝酸インジウム及び塩化バナジウムからなる群から選択される金属塩を用いることが好ましい。
As the metal salt, a metal salt containing the above-mentioned metal can be used, and metal nitrate, metal sulfate, metal chloride, metal bromide, metal iodide, metal fluoride, metal carbonate, metal carboxylate, metal. It is preferably selected from the group consisting of phosphates, metal sulfides, and metal hydroxides, and preferably metal salts selected from the group consisting of metal nitrates and metal chlorides.
Specific metal salts are preferably copper nitrate, zinc nitrate, cobalt nitrate, indium nitrate, aluminum nitrate, iron nitrate, vanadium nitrate, copper chloride, zinc chloride, cobalt chloride, zirconium chloride, indium chloride and aluminum chloride. , A metal salt selected from the group consisting of iron nitrate and vanadium chloride, and from the viewpoint of ease of synthesis, selected from the group consisting of copper nitrate, zinc nitrate, cobalt nitrate, indium nitrate and vanadium chloride. It is preferable to use a metal salt.
 溶媒としては、水、DMF、DMSO、ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、N-メチルピロリドン、メタノール、エタノール、イソプロパノールなどの低級アルコール、酢酸エチルなどのエステル類、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、アセトン、メチルエチルケトン、メチルブチルケトンなどのケトン類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素などが挙げることができる。 Solvents include water, DMF, DMSO, dimethylacetamide, tetrahydrofuran, dioxane, N-methylpyrrolidone, methanol, ethanol, lower alcohols such as isopropanol, esters such as ethyl acetate, ethers such as diethyl ether and diisopropyl ether, and acetone. , Ketones such as methyl ethyl ketone and methyl butyl ketone, halogenated hydrocarbons such as methylene chloride and chloroform, aromatic hydrocarbons such as benzene and toluene can be mentioned.
6.成形体の製造方法
 本発明に係る成形体は、例えば、上記のポリマー配位子と溶媒と金属塩を含む混合物を所望の形状の容器に入れ加熱することよって、容器の形状に応じた形状の成形体を得ることが可能である。
6. Method for Producing Molded Mold The molded product according to the present invention has, for example, a mixture containing the above-mentioned polymer ligand, solvent and metal salt, which is placed in a container having a desired shape and heated to have a shape corresponding to the shape of the container. It is possible to obtain a molded product.
 以下のように、まず、本発明に係るポリマー配位子形成用モノマーを合成し、続いて得られたモノマーを重合することによって、ポリマー配位子前駆体を得、ポリマー配位子前駆体を加水分解することによって、本発明に係るポリマー配位子を得た。また、得られたポリマー配位子を用いて、結晶性金属有機構造体を含む成形体を作製した。 As described below, first, a monomer for forming a polymer ligand according to the present invention is synthesized, and then the obtained monomer is polymerized to obtain a polymer ligand precursor, and a polymer ligand precursor is obtained. The polymer ligand according to the present invention was obtained by hydrolysis. In addition, the obtained polymer ligand was used to prepare a molded product containing a crystalline metal-organic framework.
(実施例1)
<ポリマー配位子形成用モノマー1の合成>
 まず、C.Hellermark,U.W.Gedde,A.Hult,Polymer,1996,37,3191-3196に記載の方法に従って、4-(トリルスルホニル)ブチルビニルエーテルを合成した。次に、マグネチックスターラーを入れた500mLのガラスフラスコに、2-ヒドロキシテレフタル酸ジメチル(3.2673g、15.545mmol)、4-(トリルスルホニル)ブチルビニルエーテル(4.7445g、17.550mmol)、KCO(11.242g、81.345mmol)、アセトニトリル(約200mL)を加えた。この混合物を80℃で1日撹拌した後、減圧下で濃縮した。得られた濃縮物に水を加え、ジエチルエーテルで粗生成物を抽出した。得られた有機層をMgSOで乾燥し、濾過し、減圧下で濃縮した。得られた粗生成物をゲル浸透クロマトグラフィーにより精製して、淡黄色油状物質であるポリマー配位子形成用モノマー1を得た(4.1035g、13.308mmol、収率86%)。
(Example 1)
<Synthesis of Monomer 1 for Forming Polymer Ligand>
First, C.I. Hellermark, U.S.A. W. Gedde, A. 4- (Trillsulfonyl) butyl vinyl ethers were synthesized according to the methods described in Hult, Polymer, 1996, 37, 3191-3196. Next, in a 500 mL glass flask containing a magnetic stirrer, dimethyl 2-hydroxyterephthalate (3.2673 g, 15.545 mmol), 4- (tolylsulfonyl) butyl vinyl ether (4.7445 g, 17.550 mmol), K. 2 CO 3 (11.242 g, 81.345 mmol) and acetonitrile (about 200 mL) were added. The mixture was stirred at 80 ° C. for 1 day and then concentrated under reduced pressure. Water was added to the obtained concentrate, and the crude product was extracted with diethyl ether. The obtained organic layer was dried over sulfonyl 4 , filtered and concentrated under reduced pressure. The obtained crude product was purified by gel permeation chromatography to obtain a polymer ligand-forming monomer 1 which is a pale yellow oily substance (4.1035 g, 13.308 mmol, yield 86%).
<ポリマー配位子形成用モノマー1の分析>
 得られたポリマー配位子形成用モノマー1を、NMR(BrukerAVANCEIII-HD)、FT-IR(JASCOFT/IR-4200、KBr法)、及びESI-TOF(BrukermicrOTOFII)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of Monomer 1 for Polymer Ligand Formation>
The obtained polymer ligand-forming monomer 1 was analyzed using NMR (BrukerAVANCEIII-HD), FT-IR (JASCOFT / IR-4200, KBr method), and ESI-TOF (BrukermicrOTOFII). The analysis conditions and results are shown below.
H NMR(500MHz,CDCl,r.t.):δ7.79(d,J=8.0Hz,1H),7.62(d,J=8.0Hz,1H),7.61(s,1H),7.48(dd,J=14.5,7.0Hz,1H),4.18(dd,J=14.5,7.0Hz,1H),4.13(t,J=6.0Hz,2H),3.99(dd,J=7.0,2.0Hz,1H),3.93(s,3H),3.90(s,3H),3.76(t,J=6.0Hz,2H),1.99-1.87(m,4H).
13CNMR(125MHz,CDCl,r.t.):δ166.4(C),166.4(C),158.2(C),152.0(CH),134.4(C),131.5(CH),124.6(C),121.3(CH),113.9(CH),86.5(CH),68.7(CH),67.5(CH),52,6(CH),52.4(CH),25.9(CH),25.8(CH).
・FT-IR(KBr,cm-):2953,2878,1728,1616,1578,1501,1489,1389,1294,1233,1198,1114,1082,1006,964,818,756.
・HR MS (ESI-TOF;CHCN):m/zCalcd.331.1152,Found331.1149[1+Na]
 以上の分析結果より、ポリマー配位子形成用モノマー1は以下の構造を有することを確認した。
1 H NMR (500 MHz, CDCl 3 , rt.): δ7.79 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.61 ( s, 1H), 7.48 (dd, J = 14.5, 7.0Hz, 1H), 4.18 (dd, J = 14.5, 7.0Hz, 1H), 4.13 (t, J) = 6.0Hz, 2H), 3.99 (dd, J = 7.0, 2.0Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 3.76 (t) , J = 6.0Hz, 2H), 1.99-1.87 (m, 4H).
13 CNMR (125 MHz, CDCl 3 , rt.): δ166.4 (C q ), 166.4 (C q ), 158.2 (C q ), 152.0 (CH), 134.4 ( C q ), 131.5 (CH), 124.6 (C q ), 121.3 (CH), 113.9 (CH), 86.5 (CH), 68.7 (CH), 67.5 (CH), 52.6 (CH), 52.4 (CH), 25.9 (CH), 25.8 (CH).
FT-IR (KBr, cm- 1 ): 2953,2878,1728,1616,1578,1501,1489,1389,1294,1233/1198,1114,1082,1006,964,818,756.
HR MS (ESI-TOF; CH 3 CN): m / z Calcd. 331.1152, Found331.1149 [1 + Na] + .
From the above analysis results, it was confirmed that the polymer ligand-forming monomer 1 has the following structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (実施例2)
<ポリマー配位子前駆体2の合成>
 Nで満たされた200mLの二口ガラスフラスコに、ポリマー配位子形成用モノマー1(7.5951g、24.633mmol)、下記式で表される熱カチオン重合開始剤(55.6mg、0.119mmol)、及びトルエン50mLを加え、80℃で14時間撹拌した。次にその混合物を過剰のメタノール中に注ぎ入れて、褐色の高粘性液体を得た。この生成物をCHClに溶解し、メタノールに滴下した。得られた褐色粘稠液体を減圧乾燥して目的とするポリマー配位子前駆体2(4.7530g、収率63%)を得た。
(Example 2)
<Synthesis of polymer ligand precursor 2>
In a 200 mL two-necked glass flask filled with N 2 , a polymer ligand-forming monomer 1 (7.5951 g, 24.633 mmol) and a thermal cationic polymerization initiator represented by the following formula (55.6 mg, 0. 119 mmol) and 50 mL of toluene were added, and the mixture was stirred at 80 ° C. for 14 hours. The mixture was then poured into excess methanol to give a brown highly viscous liquid. This product was dissolved in CH 2 Cl 2 and added dropwise to methanol. The obtained brown viscous liquid was dried under reduced pressure to obtain the desired polymer ligand precursor 2 (4.7530 g, yield 63%).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
<ポリマー配位子前駆体2の分析>
 得られたポリマー配位子前駆体2を、NMR(BrukerAVANCEIII-HD)、FT-IR(JASCOFT/IR-4200、KBr法)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of polymer ligand precursor 2>
The obtained polymer ligand precursor 2 was analyzed using NMR (BrukerAVANCEIII-HD) and FT-IR (JASCOFT / IR-4200, KBr method). The analysis conditions and results are shown below.
H NMR(500MHz,DMSO-d,r.t.):δ7.87-7.31(br,3H),4.16-3.92(br,2H),3.92-3.71(br,6H),3.71-3.25(br,3H),2.00-1.34(br,6H).
13C NMR(125MHz,CDCl,r.t.):δ166.1(C),158.2(C),134.2(C),131.4(CH),124.3(C),121.1(CH),113.7(CH),73.8(CH),52.5(CH),52.2(CH),27.1(CH),26.5(CH).
・FT-IR(KBr,cm-):2949,2860,1726,1581,1575,1452,1438,1294,1226,1109,1080,1003,962,878,816,791,754,696.
 以上の分析結果より、ポリマー配位子前駆体2は以下の構造を有することを確認した。
1 H NMR (500 MHz, DMSO-d 6 , rt.): δ7.87-7.31 (br, 3H), 4.16-3.92 (br, 2H), 3.92-3. 71 (br, 6H), 3.71-3.25 (br, 3H), 2.00-1.34 (br, 6H).
13 C NMR (125 MHz, CDCl 3 , rt.): δ166.1 (C q ), 158.2 (C q ), 134.2 (C q ), 131.4 (CH), 124.3 (C q ), 121.1 (CH), 113.7 (CH), 73.8 (CH), 52.5 (CH), 52.2 (CH), 27.1 (CH), 26.5 (CH).
FT-IR (KBr, cm- 1 ): 2949, 2860, 1726, 1581, 1575, 1452, 1438, 1294, 1226, 1109, 1080, 1003, 962, 878, 816,791, 754,696.
From the above analysis results, it was confirmed that the polymer ligand precursor 2 has the following structure.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、SECクロマトグラム(溶媒:THF、ポリスチレン標準)により、ポリマー配位子前駆体2の数平均分子量(Mn)=12769、重量平均分子量(Mw)=31353、Mw/Mn=2.455であることを確認した。 Further, according to the SEC chromatogram (solvent: THF, polystyrene standard), the number average molecular weight (Mn) of the polymer ligand precursor 2 is 12769, the weight average molecular weight (Mw) is 31353, and Mw / Mn = 2.455. It was confirmed.
(実施例3)
<ポリマー配位子3の合成>
ポリマー配位子前駆体2(3.6618g)、KOH(15.1642g、0.5247mmol)、及びHO50mLを100mL容器に添加した。混合物を100℃で48時間撹拌し、次にそれをHCl溶液に注いで褐色の固体を得た。これをHOとメタノールで洗浄した後、減圧乾燥して目的とするポリマー配位子3を得た。
(Example 3)
<Synthesis of polymer ligand 3>
Polymer ligand precursor 2 (3.6618 g), KOH (15,1642 g, 0.5247 mmol), and 50 mL of H 2 O were added to a 100 mL container. The mixture was stirred at 100 ° C. for 48 hours and then poured into an HCl solution to give a brown solid. This was washed with H 2 O and methanol to obtain a polymer ligand 3 for the purpose and dried under reduced pressure.
<ポリマー配位子3の分析>
 得られたポリマー配位子3を、NMR(BrukerAVANCEIII-HD)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of polymer ligand 3>
The obtained polymer ligand 3 was analyzed using NMR (BrookerAVANCEIII-HD). The analysis conditions and results are shown below.
H NMR(500MHz,DMSO-d6,r.t.):δ13.00(s,2H),7.76-7.34(br,3H),4.20-3.72(br,2H),3.72-2.95(br,3H+DMSO),1.89-1.11(6H).
13 CNMR(125MHz,DMSO-d6,r.t.):δ167.0(Cq),166.6(Cq),156.9(Cq),134.4(Cq),130.3(CH),125.6(Cq),1120.8(CH),113.4(CH),73.1(CH),68.3(CH),26.3(CH),25.9(CH).
 以上の分析結果より、ポリマー配位子3は以下の構造を有することを確認した。
1 H NMR (500 MHz, DMSO-d6, rt.): δ13.00 (s, 2H), 7.76-7.34 (br, 3H), 4.20-3.72 (br, 2H) ), 3.72-2.95 (br, 3H + DMSO), 1.89-1.11 (6H).
13 CNMR (125 MHz, DMSO-d6, rt.): δ167.0 (Cq), 166.6 (Cq), 156.9 (Cq), 134.4 (Cq), 130.3 (CH) , 125.6 (Cq), 1120.8 (CH), 113.4 (CH), 73.1 (CH), 68.3 (CH), 26.3 (CH), 25.9 (CH).
From the above analysis results, it was confirmed that the polymer ligand 3 has the following structure.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(実施例4)
<結晶性金属有機構造体4の合成>
 ポリマー配位子3(69mg)、Zn(NO・6HO(193mg)、及びDMF7mLを7mLガラスバイアル(Φ20mm)に加え、混合物を100℃で4日間加熱した。淡褐色フィルムがバイアルの底に現れた生成物を、DMF及びCHClで洗浄し、次いで減圧下で乾燥して結晶性金属有機構造体4(72.7mg)を得た。
(Example 4)
<Synthesis of crystalline metal-organic framework 4>
Polymeric ligand 3 (69mg), Zn (NO 3) 2 · 6H 2 O (193mg), and DMF7mL added to 7mL glass vials (? 20 mm), and the mixture was heated for 4 days at 100 ° C.. The product of the light brown film appearing at the bottom of the vial was washed with DMF and CH 2 Cl 2 and then dried under reduced pressure to give crystalline metal-organic framework 4 (72.7 mg).
<結晶性金属有機構造体4の分析>
 得られた結晶性金属有機構造体4を、FT-IR(JASCOFT/IR-4200)、及びXRD(RigakuSmartLab)用いて分析した。FT-IRのスペクトルを図4に、X線回折スペクトルを図5に示す。得られたスペクトルより、結晶性金属有機構造体4がMOF5の結晶構造を有することが確認された。また、得られた結晶性金属有機構造体からなる成形体はΦ20mm×厚み0.4mmの大きさであり、ピンセットで取扱いが可能である程度の強度を有したものであった。
 さらに、得られた結晶性金属有機構造体4を、SEMで4000倍及び11000倍で観察した。SEM写真を図6に示す。本願発明に係る結晶性金属有機構造体4は、MOFの結晶同士が隙間なく連結した構造であり、MOFとポリマーの間の相分離は見られなかった。一方、従来のMMM法(MOFとポリマーを混ぜ合わせる方法)で製造した金属有機構造体のSEM写真が、例えば、R.Lin et al.ACS Appl.Mater.Interfaces.2016,8,46,32041-32049のFig.6に示されている。MMM法で製造された金属有機構造体では、MOFと、ポリマーとの間に隙間が見られ、MOFとポリマーとが相分離している。
 得られた結晶性金属有機構造体4について熱重量分析(TGA)を行った。235℃までに、残留した溶媒の重量に対応する26%の重量が減少した。また、235℃から1000℃にかけて、ポリマー配位子の重量に対応する59%の重量が減少した。ZnOの重量に対応する残留物の重量は、26%であった。
<Analysis of crystalline metal-organic framework 4>
The obtained crystalline metal-organic framework 4 was analyzed using FT-IR (JASCOFT / IR-4200) and XRD (RigakuSmartLab). The spectrum of FT-IR is shown in FIG. 4, and the X-ray diffraction spectrum is shown in FIG. From the obtained spectrum, it was confirmed that the crystalline metal-organic framework 4 has the crystal structure of MOF5. Further, the obtained molded product made of the crystalline metal-organic framework had a size of Φ20 mm × thickness of 0.4 mm, could be handled with tweezers, and had a certain level of strength.
Further, the obtained crystalline metal-organic framework 4 was observed by SEM at 4000 times and 11000 times. The SEM photograph is shown in FIG. The crystalline metal-organic framework 4 according to the present invention has a structure in which MOF crystals are connected without gaps, and no phase separation between the MOF and the polymer is observed. On the other hand, SEM photographs of metal-organic frameworks produced by the conventional MMM method (method of mixing MOF and polymer) are shown in, for example, R.I. Lin et al. ACS Appl. Mater. Interfaces. 2016,8,46,32041-32049 Fig. It is shown in 6. In the metal-organic framework produced by the MMM method, a gap is observed between the MOF and the polymer, and the MOF and the polymer are phase-separated.
Thermogravimetric analysis (TGA) was performed on the obtained crystalline metal-organic framework 4. By 235 ° C., the weight was reduced by 26%, corresponding to the weight of the residual solvent. Also, from 235 ° C to 1000 ° C, the weight corresponding to the weight of the polymer ligand was reduced by 59%. The weight of the residue corresponding to the weight of ZnO was 26%.
<結晶性金属有機構造体4の分解>
 得られた結晶性金属有機構造体4に塩酸(1mol/L、1mL)およびDMF(2mL)を加え、を加え、室温で12時間分解した。得られた分解物を、NMR(BrukerAVANCEIII-HD)を用いて分析したところ、分解物は、実施例3において得られたポリマー配位子3と同じピークを有することが確認することができた。したがって、結晶性金属有機構造体4の酸分解物は、ポリマー配位子3を含むことが確認できた。
<Decomposition of crystalline metal-organic framework 4>
Hydrochloric acid (1 mol / L, 1 mL) and DMF (2 mL) were added to the obtained crystalline metal-organic framework 4, and the mixture was added and decomposed at room temperature for 12 hours. When the obtained decomposed product was analyzed using NMR (BrukerAVANCE III-HD), it was confirmed that the decomposed product had the same peak as the polymer ligand 3 obtained in Example 3. Therefore, it was confirmed that the acid decomposition product of the crystalline metal-organic framework 4 contained the polymer ligand 3.
(実施例5)
<ポリマー配位子前駆体5の合成>
 Nで満たされた200mLの二口ガラスフラスコに、実施例1で得られたポリマー配位子形成用モノマー1(7.1680g、23.248mmol)、熱カチオン重合開始剤(155.5mg、0.3329mmol)、及びトルエン30mLを加え、80℃で10時間撹拌した。次にその混合物を過剰のメタノール中に注いで褐色の高粘性液体を得た。この生成物をCHClに溶解し、メタノールに滴下した。得られた褐色粘稠液体を減圧乾燥して目的とするポリマー配位子前駆体5(3.5889g、収率50%)を得た。
(Example 5)
<Synthesis of polymer ligand precursor 5>
In a 200 mL two-necked glass flask filled with N 2 , the polymer ligand-forming monomer 1 (7.1680 g, 23.248 mmol) obtained in Example 1 and a thermal cationic polymerization initiator (155.5 mg, 0) were placed. .3329 mmol) and 30 mL of toluene were added, and the mixture was stirred at 80 ° C. for 10 hours. The mixture was then poured into excess methanol to give a brown highly viscous liquid. This product was dissolved in CH 2 Cl 2 and added dropwise to methanol. The obtained brown viscous liquid was dried under reduced pressure to obtain the desired polymer ligand precursor 5 (3.58889 g, yield 50%).
<ポリマー配位子前駆体5の分析>
 得られたポリマー配位子前駆体5を、実施例2と同様の方法で分析し、以下の構造を有することを確認した。
<Analysis of polymer ligand precursor 5>
The obtained polymer ligand precursor 5 was analyzed by the same method as in Example 2 and confirmed to have the following structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、SECクロマトグラム(溶媒:THF、ポリスチレン標準)により、ポリマー配位子前駆体5の数平均分子量(Mn)=9870、重量平均分子量(Mw)=30871、Mw/Mn=3.128であることを確認した。 Further, according to the SEC chromatogram (solvent: THF, polystyrene standard), the number average molecular weight (Mn) of the polymer ligand precursor 5 is 9870, the weight average molecular weight (Mw) is 30871, and Mw / Mn = 3.128. It was confirmed.
(実施例6)
<ポリマー配位子6の合成>
 実施例5で得られたポリマー配位子前駆体5(3.589g)、KOH(5.245g、93.48mmol)、及びHO50mLを100mL容器に添加した。混合物を100℃で48時間撹拌し、次にそれをHCl溶液に注いで褐色の固体を得た。この生成物をHOで洗浄し、次いで減圧下で乾燥して目的とするポリマー配位子6(3.338g、収率93%)を得た。
(Example 6)
<Synthesis of polymer ligand 6>
Polymer ligand precursor 5 (3.589 g), KOH (5.245 g, 93.48 mmol) obtained in Example 5 and 50 mL of H 2 O were added to a 100 mL container. The mixture was stirred at 100 ° C. for 48 hours and then poured into an HCl solution to give a brown solid. The product was washed with H 2 O, then to obtain a polymeric ligand 6 of interest was dried under vacuum (3.338g, 93% yield).
<ポリマー配位子6の分析>
 得られたポリマー配位子6を、実施例3と同様にNMR(BrukerAVANCEIII-HD)を用いて分析し、以下の構造を有することを確認した。
<Analysis of polymer ligand 6>
The obtained polymer ligand 6 was analyzed by NMR (BrukerAVANCEIII-HD) in the same manner as in Example 3, and it was confirmed that the polymer ligand 6 had the following structure.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(実施例7)
<結晶性金属有機構造体7の合成>
 ポリマー配位子3(50mg)、4,4-ビピリジン(13mg)、及びZn(NO(74mg)を、DMF:メタノール(1:1)溶液に溶解し、得られた溶液をガラスバイアル(Φ20mm)に入れ、80℃で4日間加熱した。バイアルの底に現れた淡褐色フィルム生成物を、DMF:メタノール(1:1)溶液で洗浄し、結晶性金属有機構造体7(60mg)を得た。結晶性金属有機構造体7は、Φ20mm×厚み0.4mmであり、ピンセットで取扱いが可能である程度の強度を有したものであった。
(Example 7)
<Synthesis of crystalline metal-organic framework 7>
Polymer ligand 3 (50 mg), 4,4-bipyridine (13 mg), and Zn (NO 3 ) 2 (74 mg) were dissolved in a DMF: methanol (1: 1) solution, and the resulting solution was dissolved in a glass vial. It was placed in (Φ20 mm) and heated at 80 ° C. for 4 days. The light brown film product that appeared at the bottom of the vial was washed with a DMF: methanol (1: 1) solution to give crystalline metal-organic framework 7 (60 mg). The crystalline metal-organic framework 7 had a size of Φ20 mm and a thickness of 0.4 mm, was manageable with tweezers, and had a certain level of strength.
<結晶性金属有機構造体7の分析>
 得られた結晶性金属有機構造体7を、XRD(RigakuSmartLab)を用いて分析した。X線回折スペクトルを図7に示す。得られたスペクトルは、XRD(2θ)=5.7,9.7,14.8に反射パターンを有していた。よって、結晶性金属有機構造体7は、図8に示すようなMOFの結晶構造を有することが確認された。
<Analysis of crystalline metal-organic framework 7>
The obtained crystalline metal-organic framework 7 was analyzed using XRD (RigakuSmartLab). The X-ray diffraction spectrum is shown in FIG. The obtained spectrum had a reflection pattern at XRD (2θ) = 5.7, 9.7, 14.8. Therefore, it was confirmed that the crystalline metal-organic framework 7 has a MOF crystal structure as shown in FIG.
 <結晶性金属有機構造体7の分解>
 得られた結晶性金属有機構造体7に塩酸(1mol/L、1mL)およびDMF(2mL)を加え、室温で1時間分解した。得られた分解物を、NMR(BrukerAVANCEIII-HD)を用いて分析したところ、分解物は、実施例3において得られたポリマー配位子3と同じ構造を有することが確認することができた。したがって、結晶性金属有機構造体7の酸分解物は、ポリマー配位子3を含むことが確認できた。
<Decomposition of crystalline metal-organic framework 7>
Hydrochloric acid (1 mol / L, 1 mL) and DMF (2 mL) were added to the obtained crystalline metal-organic framework 7, and the mixture was decomposed at room temperature for 1 hour. When the obtained decomposed product was analyzed using NMR (BrukerAVANCE III-HD), it was confirmed that the decomposed product had the same structure as the polymer ligand 3 obtained in Example 3. Therefore, it was confirmed that the acid decomposition product of the crystalline metal-organic framework 7 contained the polymer ligand 3.
(実施例8)
 <ポリマー配位子形成用モノマー8の合成>
 実施例1の方法に準じ、4-(トリルスルホニル)ブチルビニルエーテルを合成した。次に、マグネチックスターラーを入れた500mLのガラスフラスコに、dimethyl 2-hydroxy-[1,1'-biphenyl]-4,4'-dicarboxylate(1.836g、6.413mmol)、4-(トリルスルホニル)ブチルビニルエーテル(3.456g、12.783mmol)、KCO(15.4g、111mmol)、アセトニトリル(約200mL)を加えた。この混合物を80℃で1日撹拌した後、3―アミノプロパノール(ca.3mL)を加え、さらに80℃で1日撹拌した。得られた反応溶液を減圧下で濃縮した。得られた濃縮物に水を加え、ジエチルエーテル・酢酸エチルで粗生成物を抽出した。得られた有機層をMgSOで乾燥し、濾過し、減圧下で濃縮した。得られた粗生成物をゲル浸透クロマトグラフィーにより精製して、白色個体であるポリマー配位子形成用モノマー8を得た(1.602g、4.168mmol、収率70%)。
(Example 8)
<Synthesis of Monomer 8 for Forming Polymer Ligand>
4- (Trillsulfonyl) butyl vinyl ether was synthesized according to the method of Example 1. Next, in a 500 mL glass flask containing a magnetic stirrer, dimethyl 2-hydroxy- [1,1'-biphenyl] -4,4'-dicarboxylate (1.836 g, 6.413 mmol), 4- (trillsulfonyl). ) butyl vinyl ether (3.456g, 12.783mmol), K 2 CO 3 (15.4g, 111mmol), was added acetonitrile (about 200 mL). The mixture was stirred at 80 ° C. for 1 day, then 3-aminopropanol (ca. 3 mL) was added, and the mixture was further stirred at 80 ° C. for 1 day. The obtained reaction solution was concentrated under reduced pressure. Water was added to the obtained concentrate, and the crude product was extracted with diethyl ether / ethyl acetate. The obtained organic layer was dried over sulfonyl 4 , filtered and concentrated under reduced pressure. The obtained crude product was purified by gel permeation chromatography to obtain a white solid polymer ligand-forming monomer 8 (1.602 g, 4.168 mmol, yield 70%).
<ポリマー配位子形成用モノマー8の分析>
 得られたポリマー配位子形成用モノマー8を、NMR(BrukerAVANCEIII-HD)、FT-IR(JASCOFT/IR-4200、KBr法)、及びESI-TOF(BrukermicrOTOFII)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of Monomer 8 for Polymer Ligand Formation>
The obtained polymer ligand-forming monomer 8 was analyzed using NMR (BrukerAVANCEIII-HD), FT-IR (JASCOFT / IR-4200, KBr method), and ESI-TOF (BrukermicrOTOFII). The analysis conditions and results are shown below.
H NMR(500MHz,CDCl,r.t.):δ8.08(d,J=4.0Hz,2H),7.20(s,1H),7.70-7.61(m,3H),7.39(d,J=5.0Hz,1H),6.43(m,1H),4.14-4.07(m,3H),3.97-3.94(m,7H),3.66(t,J=5.0Hz,2H)1.86-1.54(m,4H).
13CNMR(125MHz,CDCl,r.t.):δ167.0(C),166.8(C),155.8(C),151.8(C),142.3(C),134.3(C),131.0(CH),130.7(CH),129.5(CH),129.4(CH),129.3(CH),129.1(C),122.2(C),113.1(CH),86.5(CH),68.3(CH),67.3(CH),52,3(CH),52.2(CH),25.8(CH),25.7(CH).
 以上の分析結果より、ポリマー配位子形成用モノマー8は以下の構造を有することを確認した。
1 H NMR (500 MHz, CDCl 3 , rt.): δ8.08 (d, J = 4.0 Hz, 2H), 7.20 (s, 1H), 7.70-7.61 (m, 3H), 7.39 (d, J = 5.0Hz, 1H), 6.43 (m, 1H), 4.14-4.07 (m, 3H), 3.97-3.94 (m, 7H), 3.66 (t, J = 5.0Hz, 2H) 1.86-1.54 (m, 4H).
13 CNMR (125 MHz, CDCl 3 , rt.): δ167.0 (C q ), 166.8 (C q ), 155.8 (C q ), 151.8 (C q ), 142.3 (C q ), 134.3 (C q ), 131.0 (CH), 130.7 (CH), 129.5 (CH), 129.4 (CH), 129.3 (CH), 129. 1 (C q ), 122.2 (C q ), 113.1 (CH), 86.5 (CH), 68.3 (CH), 67.3 (CH), 52.3 (CH), 52 .2 (CH), 25.8 (CH), 25.7 (CH).
From the above analysis results, it was confirmed that the polymer ligand forming monomer 8 has the following structure.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (実施例9)
<ポリマー配位子前駆体9の合成>
 Nで満たされた200mLの二口ガラスフラスコに、ポリマー配位子形成用モノマー8(0.2964g、0.7710mmol)、下記式で表される熱カチオン重合開始剤(4.7mg、10μmol)、及びトルエン5mLを加え、90℃で14時間撹拌した。次にその混合物を過剰のメタノール中に注ぎ入れて、褐色の高粘性液体を得た。この生成物をCHClに溶解し、メタノールに滴下した。得られた褐色粘稠液体を減圧乾燥して目的とするポリマー配位子前駆体9(10.5mg、収率4%)を得た。
(Example 9)
<Synthesis of polymer ligand precursor 9>
In a 200 mL two-necked glass flask filled with N 2 , a polymer ligand-forming monomer 8 (0.2964 g, 0.7710 mmol) and a thermal cationic polymerization initiator represented by the following formula (4.7 mg, 10 μmol) , And 5 mL of toluene were added, and the mixture was stirred at 90 ° C. for 14 hours. The mixture was then poured into excess methanol to give a brown highly viscous liquid. This product was dissolved in CH 2 Cl 2 and added dropwise to methanol. The obtained brown viscous liquid was dried under reduced pressure to obtain the desired polymer ligand precursor 9 (10.5 mg, yield 4%).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<ポリマー配位子前駆体9の分析>
 得られたポリマー配位子前駆体9を、NMR(BrukerAVANCEIII-HD)、FT-IR(JASCOFT/IR-4200、KBr法)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of polymer ligand precursor 9>
The obtained polymer ligand precursor 9 was analyzed using NMR (BrukerAVANCEIII-HD) and FT-IR (JASCOFT / IR-4200, KBr method). The analysis conditions and results are shown below.
H NMR(500MHz,CDCl,r.t.):δ8.14-7.88(br,2H),7.77-7.30(br,5H),4.12-3.73(br,8H),3.43-3.11(br,4H),1.34-0.61(br,4H)
 以上の分析結果より、ポリマー配位子前駆体9は以下の構造を有することを確認した。
1 H NMR (500 MHz, CDCl 3 , rt.): δ8.14-7.88 (br, 2H), 7.77-7.30 (br, 5H), 4.12-3.73 ( br, 8H), 3.43-3.11 (br, 4H), 1.34-0.61 (br, 4H)
From the above analysis results, it was confirmed that the polymer ligand precursor 9 has the following structure.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(実施例10)
<ポリマー配位子10の合成>
ポリマー配位子前駆体9(10.5mg)、KOH(130mg、2.31mmol)、メタノール5mL及びHO5mLを100mL容器に添加した。混合物を100℃で48時間撹拌し、次にそれをHCl溶液に注いで褐色の固体を得た。これをHOとメタノール、クロロホルムで洗浄した後、減圧乾燥して目的とするポリマー配位子10を得た。
(Example 10)
<Synthesis of polymer ligand 10>
Polymer ligand precursor 9 (10.5 mg), KOH (130 mg, 2.31 mmol), 5 mL of methanol and 5 mL of H 2 O were added to a 100 mL container. The mixture was stirred at 100 ° C. for 48 hours and then poured into an HCl solution to give a brown solid. This was washed between H 2 O and methanol, chloroform, to give a polymeric ligand 10 of interest and then dried under reduced pressure.
<ポリマー配位子10の分析>
 得られたポリマー配位子10を、NMR(BrukerAVANCEIII-HD)を用いて分析した。分析条件及び結果を以下に示す。
<Analysis of polymer ligand 10>
The obtained polymer ligand 10 was analyzed using NMR (BrookerAVANCEIII-HD). The analysis conditions and results are shown below.
H NMR(500MHz,DMSO-d6,r.t.):δ13.00(s,2H),8.11-7.79(br,2H),7.79-7.20(br,5H),4.45-3.68(br,2H),3.68-2.96(br,3H+DMSO),1.88-0.95(6H).
 以上の分析結果より、ポリマー配位子10は以下の構造を有することを確認した。
1 1 H NMR (500 MHz, DMSO-d6, rt.): δ13.00 (s, 2H), 8.11-7.79 (br, 2H), 7.79-7.20 (br, 5H) , 4.45-3.68 (br, 2H), 3.68-2.96 (br, 3H + DMSO), 1.88-0.95 (6H).
From the above analysis results, it was confirmed that the polymer ligand 10 has the following structure.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(実施例11)
<結晶性金属有機構造体11の合成>
 ポリマー配位子10(7.9mg)、Zn(NO・6HO(20mg)、及びDMF7mLを7mLガラスバイアル(Φ20mm)に加え、混合物を100℃で4日間加熱した。淡褐色フィルムがバイアルの底に現れた生成物を、DMFで洗浄し、次いで減圧下で乾燥して結晶性金属有機構造体11(10mg)を得た。結晶性金属有機構造体11は、ピンセットで取扱いが可能である程度の強度を有したものであった。
(Example 11)
<Synthesis of crystalline metal-organic framework 11>
Polymeric ligand 10 (7.9mg), Zn (NO 3) 2 · 6H 2 O (20mg), and DMF7mL added to 7mL glass vials (? 20 mm), and the mixture was heated for 4 days at 100 ° C.. The product of the light brown film appearing at the bottom of the vial was washed with DMF and then dried under reduced pressure to give crystalline metal-organic framework 11 (10 mg). The crystalline metal-organic framework 11 was able to be handled with tweezers and had a certain level of strength.
 得られた結晶性金属有機構造体11を、XRD(RigakuSmartLab)用いて分析した。X線回折スペクトルを図8に示す。XRD(2θ)=7.3,10.4,11.6に反射パターンを有していた。得られたスペクトルより、結晶性金属有機構造体11がIRMOF-10の結晶構造を有することか確認された。 The obtained crystalline metal-organic framework 11 was analyzed using XRD (RigakuSmartLab). The X-ray diffraction spectrum is shown in FIG. It had a reflection pattern at XRD (2θ) = 7.3, 10.4, 11.6. From the obtained spectrum, it was confirmed whether the crystalline metal-organic framework 11 had the crystal structure of IRMOF-10.
1 金属
2 配位子
3 主鎖
4 スペーサー
1 metal 2 ligand 3 main chain 4 spacer

Claims (14)

  1.  主鎖、及び前記主鎖に結合した側鎖を有し、
     前記側鎖は配位子を有し、
     前記配位子は2以上の配位部を有する、
     結晶性金属有機構造体形成用のポリマー配位子。
    It has a main chain and a side chain bonded to the main chain.
    The side chain has a ligand and
    The ligand has two or more coordinations.
    A polymer ligand for the formation of crystalline metal-organic frameworks.
  2.  請求項1に記載のポリマー配位子であって、
     数平均分子量が500以上である、ポリマー配位子。
    The polymer ligand according to claim 1.
    A polymer ligand having a number average molecular weight of 500 or more.
  3.  請求項1又は2のいずれかに記載のポリマー配位子であって、
     前記主鎖は、ポリオレフィン、ポリスチレン、ポリビニルエーテル、ポリエステル、ポリイミド、及び、ポリアミドからなる群から選ばれる少なくとも一つを含む、ポリマー配位子。
    The polymer ligand according to claim 1 or 2.
    The main chain is a polymer ligand containing at least one selected from the group consisting of polyolefin, polystyrene, polyvinyl ether, polyester, polyimide, and polyamide.
  4.  請求項1~3のいずれかに記載のポリマー配位子であって、
     前記主鎖は、繰り返し単位が3以上であるオリゴマー又はポリマーを含む、ポリマー配位子。
    The polymer ligand according to any one of claims 1 to 3.
    The main chain is a polymer ligand containing an oligomer or polymer having 3 or more repeating units.
  5.  請求項2~4のいずれかに記載のポリマー配位子であって、
     前記配位子はアミノ基、イミダゾリウム基、ピリジル基、カルボキシ基(-COOH)、フェノール性ヒドロキシ基(-PhOH)、チオール基(-SH)、スルホ基(-SOH)、ホスホン酸基(-PO)、及び、リン酸基(-OPO)からなる群から選ばれる少なくとも一つを有する、ポリマー配位子。
    The polymer ligand according to any one of claims 2 to 4.
    The ligand is an amino group, an imidazolium group, a pyridyl group, a carboxy group (-COOH), a phenolic hydroxy group (-PhOH), thiol group (-SH), sulfo group (-SO 3 H), a phosphonic acid group A polymer ligand having at least one selected from the group consisting of (-PO 3 H 2 ) and a phosphate group (-OPO 3 H 2 ).
  6.  請求項1~5のいずれかに記載のポリマー配位子、及び金属を含む、結晶性金属有機構造体。 A crystalline metal-organic framework containing the polymer ligand according to any one of claims 1 to 5 and a metal.
  7.  請求項6に記載の結晶性金属有機構造体であって、少なくとも一つの前記ポリマー配位子が、結晶性金属有機構造体に含まれる結晶の内部に存在する、結晶性金属有機構造体。 The crystalline metal-organic framework according to claim 6, wherein at least one of the polymer ligands is present inside the crystal contained in the crystalline metal-organic structure.
  8.  請求項6又は7のいずれかに記載の結晶性金属有機構造体であって、
    前記金属は遷移金属、第2族元素、卑金属からなる群から選ばれる少なくとも一つを含む、結晶性金属有機構造体。
    The crystalline metal-organic framework according to any one of claims 6 or 7.
    The metal is a crystalline metal-organic framework containing at least one selected from the group consisting of transition metals, Group 2 elements, and base metals.
  9.  請求項6~8のいずれかに記載の結晶性金属有機構造体であって、前記ポリマー配位子に含まれる配位子以外の配位子をさらに含む、結晶性金属有機構造体。 The crystalline metal-organic structure according to any one of claims 6 to 8, further comprising a ligand other than the ligand contained in the polymer ligand.
  10. 請求項6~9のいずれかに記載の結晶性金属有機構造体を含む、結晶性金属有機構造体混合物。 A mixture of crystalline metal-organic frameworks, which comprises the crystalline metal-organic framework according to any one of claims 6 to 9.
  11.  請求項10に記載の結晶性金属有機構造体混合物であって、前記ポリマー配位子を含まない金属有機複合体及び/又はポリマー配位子に含まれるポリマー以外のポリマーをさらに含む、結晶性金属有機構造体混合物。 The crystalline metal-organic framework mixture according to claim 10, further comprising a polymer other than the polymer contained in the polymer ligand-free metal-organic framework and / or the polymer ligand. Organic structure mixture.
  12.  請求項6~9のいずれかに記載の結晶性金属有機構造体、又は、請求項10若しくは11に記載の結晶性金属有機構造体を含む、成形体。 A molded product containing the crystalline metal-organic framework according to any one of claims 6 to 9 or the crystalline metal-organic framework according to claim 10 or 11.
  13.  請求項12に記載の成形体であって、厚み0.1mm以上である、成形体。 The molded product according to claim 12, which has a thickness of 0.1 mm or more.
  14.  請求項1~5のいずれかに記載のポリマー配位子と、金属とを含む原料を混合する混合工程
    を有する、結晶性金属有機構造体の製造方法。
    A method for producing a crystalline metal-organic framework, which comprises a mixing step of mixing a raw material containing the polymer ligand according to any one of claims 1 to 5 with a metal.
PCT/JP2020/029039 2019-07-30 2020-07-29 Polymer ligands, crystalline metal organic framework, crystalline metal organic framework mixture, molded article, and production method for crystalline metal organic framework WO2021020436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535382A JPWO2021020436A1 (en) 2019-07-30 2020-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139767 2019-07-30
JP2019-139767 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020436A1 true WO2021020436A1 (en) 2021-02-04

Family

ID=74229171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029039 WO2021020436A1 (en) 2019-07-30 2020-07-29 Polymer ligands, crystalline metal organic framework, crystalline metal organic framework mixture, molded article, and production method for crystalline metal organic framework

Country Status (2)

Country Link
JP (1) JPWO2021020436A1 (en)
WO (1) WO2021020436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571905A (en) * 2022-10-02 2023-01-06 吉林大学 ZnO gas-sensing materials derived from defect-engineered MOFs and their applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892810A (en) * 2015-05-16 2015-09-09 北京化工大学 Method for preparing porous polymer particles through firstly assembling and then photopolymerization
JP2016052620A (en) * 2014-09-03 2016-04-14 日本製紙株式会社 Composite of metal-organic framework and cellulose nanofiber
WO2016204301A1 (en) * 2015-06-18 2016-12-22 国立大学法人九州大学 Composite material, photon upconversion material, and photon upconverter
JP2017522904A (en) * 2014-07-03 2017-08-17 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Host-Guest Metal Organic Structure System
JP2019018178A (en) * 2017-07-20 2019-02-07 旭化成株式会社 Separation membrane
WO2019039509A1 (en) * 2017-08-22 2019-02-28 積水化学工業株式会社 Composition, production method for molded object, and molded object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522904A (en) * 2014-07-03 2017-08-17 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Host-Guest Metal Organic Structure System
JP2016052620A (en) * 2014-09-03 2016-04-14 日本製紙株式会社 Composite of metal-organic framework and cellulose nanofiber
CN104892810A (en) * 2015-05-16 2015-09-09 北京化工大学 Method for preparing porous polymer particles through firstly assembling and then photopolymerization
WO2016204301A1 (en) * 2015-06-18 2016-12-22 国立大学法人九州大学 Composite material, photon upconversion material, and photon upconverter
JP2019018178A (en) * 2017-07-20 2019-02-07 旭化成株式会社 Separation membrane
WO2019039509A1 (en) * 2017-08-22 2019-02-28 積水化学工業株式会社 Composition, production method for molded object, and molded object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ZHENJIE, NGUYEN HA THI HOANG, MILLER STEPHEN A., COHEN SETH M.: "polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, no. 21, 18 May 2015 (2015-05-18), pages 6152 - 6157, XP055788004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571905A (en) * 2022-10-02 2023-01-06 吉林大学 ZnO gas-sensing materials derived from defect-engineered MOFs and their applications
CN115571905B (en) * 2022-10-02 2023-09-15 吉林大学 ZnO gas-sensitive materials derived from defect-engineered MOFs and their applications

Also Published As

Publication number Publication date
JPWO2021020436A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
Sánchez-González et al. Assembling metal–organic cages as porous materials
KR102029944B1 (en) Metohd of in situ preparation of a metal-organic framework within an ionic polymer having a core-shell structure
Reynolds et al. Highly selective room temperature acetylene sorption by an unusual triacetylenic phosphine MOF
US9205419B2 (en) Large pore metal organic frameworks
Luo et al. pH-Dependent cobalt (ii) frameworks with mixed 3, 3′, 5, 5′-tetra (1 H-imidazol-1-yl)-1, 1′-biphenyl and 1, 3, 5-benzenetricarboxylate ligands: synthesis, structure and sorption property
CN102414255B (en) Block coordination copolymers
KR102581045B1 (en) Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
KR20110041381A (en) Improved method for preparing a support-transition metal hydride complex in which a transition metal is introduced into a dehydrogenable support and an intermediate thereof
KR20120003438A (en) Titanium-Based Inorganic-Organic Hybrid Solid Materials, Methods for Making the Same, and Uses thereof
WO2021020436A1 (en) Polymer ligands, crystalline metal organic framework, crystalline metal organic framework mixture, molded article, and production method for crystalline metal organic framework
Antonio et al. Utilization of a Mixed-Ligand Strategy to Tune the Properties of Cuboctahedral Porous Coordination Cages
KR20240062535A (en) Polymer-Metal-Organic Frameworks Based on Polymer of Intrinsic Microporosity as Ligand, and Preparation Method and Use Thereof
KR102393247B1 (en) Pyrazolyl-Imidazolium Ligands, Metal Organic Frameworks Comprising the Same and Method of Preparing the Same
CN104844657B (en) A kind of manganese Metal polymer and its preparation method and application
Goodgame et al. Transition metal complexes of cubic (T8) oligo-silsesquioxanes
Zhou et al. Four new metal–organic supramolecular networks based on aromatic acid and flexible bis (imidazole) ligand: Synthesis, structures and luminescent properties
US8324323B2 (en) Block coordination copolymers
US8884087B2 (en) Block coordination copolymers
KR100817537B1 (en) Porous metal-organic frameworks with empty coordination sites, methods for their preparation and use as molecular adsorbents and catalysts
Tian et al. Diverse coordination polymers from a new bent dipyridyl-type ligand 3, 6-di (pyridin-4-yl)-9 H-carbazole
Xu et al. Design and constructions of three novel metal–organic frameworks based on pillared-layer motifs
KR101992599B1 (en) Metal-Organic Frameworks containing transition metal and alkali metal and synthetic method therof
Sanotra et al. Hydrothermal Synthesis, Crystal Structure and Characterization of New Coordination Polymer [Co2 (pydc) 2 (H2O) 6] n· 2 n H2O
Israfilov et al. Exploring the formation of coordination polymers based on dicarboxylic ligands derived from fluorene and their adsorption abilities
Xu et al. A Novel Co (II) Coordination Polymer Assembled from V-shaped 2, 3, 2’, 3’-Thiodiphthalic Acid and N-donor Ancillary Ligand: Syntheses, Structure and Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846470

Country of ref document: EP

Kind code of ref document: A1