[go: up one dir, main page]

WO2021020394A1 - Beam adjusting method and beam adjusting device - Google Patents

Beam adjusting method and beam adjusting device Download PDF

Info

Publication number
WO2021020394A1
WO2021020394A1 PCT/JP2020/028892 JP2020028892W WO2021020394A1 WO 2021020394 A1 WO2021020394 A1 WO 2021020394A1 JP 2020028892 W JP2020028892 W JP 2020028892W WO 2021020394 A1 WO2021020394 A1 WO 2021020394A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
optical system
emitting element
information
Prior art date
Application number
PCT/JP2020/028892
Other languages
French (fr)
Japanese (ja)
Inventor
一臣 村上
内田 直樹
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021535359A priority Critical patent/JPWO2021020394A1/ja
Publication of WO2021020394A1 publication Critical patent/WO2021020394A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/06Testing the alignment of vehicle headlight devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a new adjustment method for aligning a plurality of beams.
  • LDs high-brightness laser diodes
  • Patent Document 1 a vehicle headlight having a plurality of laser diodes as a light source unit has been devised.
  • the vehicle headlights described above are equipped with a scanning mechanism that scans the beam emitted from the laser diode toward the phosphor, and the shape of the scanning light incident on the phosphor differs for each of the plurality of laser diodes. It is said that various light distribution pattern control can be realized.
  • the light source is required to have the characteristic of illuminating a farther distance brightly. Therefore, when it is difficult to achieve the desired brightness with one LD, it is necessary to superimpose the laser beams emitted from the plurality of LDs to improve the brightness.
  • each laser beam is not parallel light, the optical axes of each laser beam are well aligned by the conventional adjustment method. I can't.
  • the present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new technique for aligning a plurality of laser beams.
  • the beam adjusting method of the present invention has a first laser beam emitted from the first light emitting element and a second laser beam emitted from the second light emitting element.
  • an optical system that superimposes a first laser beam and a second laser beam and irradiates them in the same direction, which is a beam adjustment method for aligning, (1) a first position at a first position of an optical path of the optical system.
  • the first information about each image of the first laser beam and the second laser beam is acquired, and (2) of the first laser beam and the second laser beam at a second position different from the first position of the optical path.
  • the second information about each image is acquired, and (3) the configuration of the optical system is adjusted so that the first laser beam and the second laser beam are aligned based on the first information and the second information. ..
  • the deviation between the first laser beam and the second laser beam can be grasped more accurately. For example, it is possible to estimate not only the misalignment of the two laser beams but also the angle formed by each other's beams.
  • the configuration of the optical system may be adjusted so that the overlap of each image in the first information increases and the overlap of each image in the second information increases. As a result, the first laser beam and the second laser beam can be easily aligned.
  • the first laser beam and the second laser beam may be aligned by changing the position or direction of at least one of the first light emitting element or the second light emitting element. As a result, the first laser beam and the second laser beam can be aligned with each other by simple adjustment.
  • the optical system is a beam that superimposes a first laser beam emitted from the first light emitting element in the first direction and a second laser beam emitted from the second light emitting element in a direction different from the first direction. It may be provided with a splitter. As a result, the first light emitting element and the second light emitting element can be arranged apart from each other.
  • the optical system may include a first condensing member that condenses the first laser beam and a second condensing member that condenses the second laser beam.
  • the first condensing member is arranged between the first light emitting element and the beam splitter in the optical path
  • the second condensing member is arranged between the second light emitting element and the beam splitter in the optical path. It may be done.
  • the first laser beam emitted from the first light emitting element can be focused by the first condensing member before it spreads.
  • the second laser beam emitted from the second light emitting element can be focused by the second condensing member before it spreads.
  • Another aspect of the present invention is a beam adjusting device.
  • a first light emitting element that emits a first laser beam, a second light emitting element that emits a second laser beam, and a first laser beam and a second laser beam are superposed.
  • An optical system that irradiates in the same direction, a first target that acquires first information about each image of the first laser beam and the second laser beam at the first position of the optical path of the optical system, and a first target of the optical path. Based on the second target, which acquires the second information about each image of the first laser beam and the second laser beam at the second position different from the first position, and the first information and the second information.
  • An adjusting unit for adjusting the configuration of the optical system is provided so that the first laser beam and the second laser beam are aligned.
  • the deviation between the first laser beam and the second laser beam can be reduced by a relatively simple adjustment.
  • a plurality of laser beams can be aligned.
  • FIG. 3A is a diagram for explaining an image of the two misaligned beams at the first target
  • FIG. 3B is an image of the two misaligned beams at the second target.
  • FIG. 4A is a diagram for explaining an image of the two beams having an angular deviation at the first target
  • FIG. 4B is an image of the two beams having an angular deviation at the second target. It is a figure for demonstrating.
  • FIG. 1 is a side view schematically showing a schematic configuration of a vehicle headlight according to the present embodiment.
  • the vehicle headlight described below is a so-called direct-illumination type lamp that irradiates the front of the vehicle without reflecting the laser light emitted from the light source, but it was adjusted by the beam adjustment method according to the present embodiment.
  • the vehicle lighting equipment that uses a light source is not necessarily limited to this.
  • a laser beam emitted upward from a light source is reflected by a MEMS (Micro Electro Mechanical Systems) mirror, and the reflected laser beam scans a light-transmitting phosphor to obtain a light distribution pattern having a predetermined shape in front of the vehicle.
  • MEMS Micro Electro Mechanical Systems
  • the vehicle headlight shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2017-130398 may be used.
  • it may be a vehicle headlight using a rotary reflector instead of the MEMS mirror as the scanning mechanism (for example, the vehicle headlight shown in FIG. 1 of JP-A-2018-195447).
  • the vehicle headlight 10 includes a light source 12, a wavelength conversion member 14 that converts a part of the light L emitted by the light source 12 into wavelengths and emits the light L, and a light L and wavelength conversion emitted by the light source 12 that has passed through the wavelength conversion member 14.
  • a projection lens 16 for projecting the converted light L'wavelength-converted by the member 14 onto the front of the vehicle in a predetermined light distribution pattern is provided.
  • the wavelength conversion member 14 is preferably a material that allows at least light L to pass through, and is, for example, a phosphor dispersion resin or phosphor ceramics containing a YAG (Yttrium Aluminum Garnet) phosphor. Further, the light source 12 to be combined with the YAG phosphor that emits yellow light as the wavelength conversion light is preferably a blue light emitting element. As a result, pseudo white light can be realized by mixing the blue transmitted light L and the yellow converted light L'.
  • the light source 12 includes a laser element 18 as a first semiconductor light emitting element that emits a first laser beam L1, a laser element 20 as a second light emitting element that emits a second laser beam L2, and a first.
  • An optical system 22 that superimposes the laser beam L1 and the second laser beam L2 and irradiates them in the same direction is provided.
  • the laser element 18 and the laser element 20 emit light having a peak wavelength in the blue wavelength range.
  • a light source having higher brightness can be realized, but for that purpose, it is necessary to match the laser beams emitted by the plurality of laser elements as much as possible.
  • a plurality of laser elements cannot be arranged in the same place.
  • the optical system 22 has a first laser beam L1 emitted from the laser element 18 in the first direction D1 and a second direction D2 (first direction) different from the first direction D1.
  • a beam splitter 24 for superimposing the second laser beam L2 emitted from the laser element 20 in the angle formed by D1 and the second direction D2 is provided.
  • the laser element 18 and the laser element 20 can be arranged apart from each other.
  • the laser beam L1 emitted by the laser element 18 is P-polarized laser light, and is condensed by a cylindrical lens 26 as a condensing member.
  • the direction of light collection is the vertical direction in the figure.
  • the laser beam L2 emitted by the laser element 20 is S-polarized laser light, and is condensed by a cylindrical lens 28 as a condensing member.
  • the direction of light collection is the direction perpendicular to the drawing.
  • the beam splitter 24 allows the first laser beam L1 of P-polarized light to pass through and reflects the second laser beam L2 of S-polarized light so that the optical axes of the two laser beams can be aligned and superposed.
  • a light source 12 having higher brightness can be realized. For that purpose, it is necessary to adjust the optical paths of the two laser beams in the light source 12.
  • FIG. 2 is a schematic view showing a schematic configuration of a beam adjusting device according to the present embodiment.
  • the beam adjusting device 30 obtains first information about each image of the first laser beam L1 and the second laser beam L2 at the first position P1 of the light source 12 and the optical path 22a of the optical system 22.
  • the target 32 and the second target 34 that acquires the second information about each image of the first laser beam L1 and the second laser beam L2 at the second position P2 different from the first position P1 of the optical path 22a.
  • the adjusting unit 36 that adjusts the configuration of the optical system 22 so that the first laser beam L1 and the second laser beam L2 are aligned based on the first information and the second information.
  • the first target 32 and the second target 34 may be a mechanism or device capable of acquiring the shape and position of the image of the laser beam, and for example, a camera equipped with an image sensor such as CMOS or CCD or a projection screen is used. ..
  • the adjusting unit 36 can electrically or mechanically change the position and orientation of each component (including the laser element and the beam splitter) existing on the optical path from the laser element 18 and the laser element 20 to the beam splitter 24, for example. It is configured as follows.
  • FIG. 3A is a diagram for explaining an image of the two misaligned beams at the first target
  • FIG. 3B is an image of the two misaligned beams at the second target. It is a figure for demonstrating.
  • the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction.
  • FIG. 3 (a) an image I L1 which the first laser beam L1 is formed on the first target 32
  • the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction.
  • the optical system 22 includes a cylindrical lens 26 that concentrates the first laser beam L1 and a cylindrical lens 28 that concentrates the second laser beam L2.
  • the cylindrical lens 26 is arranged between the laser element 18 and the beam splitter 24 in the optical path, and the cylindrical lens 28 is arranged between the laser element 20 and the beam splitter 24 in the optical path.
  • the cylindrical lens 26 can collect light before the first laser beam L1 emitted from the laser element 18 spreads, so that the cylindrical lens 26 can be miniaturized.
  • the cylindrical lens 28 can collect light before the second laser beam L2 emitted from the laser element 20 spreads, the cylindrical lens 28 can be miniaturized.
  • both the first laser beam L1 and the second laser beam L2 reach the first target 32 and the second target 34 via the condensing optical system. Therefore, neither the first laser beam L1 nor the second laser beam L2 is parallel light, and the shape of the beam cross section changes depending on the location of the target. For example, the image I 'L1 and the image I' L2 shown in FIG. 3 (b), as compared to the image I L1 and the image I L2, the beam cross section is small. Therefore, when the images shown in FIGS. 3 (a) and 3 (b) are formed at each target, the first laser beam L1 and the second laser beam L2 are emitted from the light source 12. Is parallel, but it is presumed that the emission position is off.
  • FIG. 4A is a diagram for explaining an image of the two beams having an angular deviation at the first target
  • FIG. 4B is an image of the two beams having an angular deviation at the second target. It is a figure for demonstrating.
  • the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction.
  • FIG. 4 (a) an image I L1 which the first laser beam L1 is formed on the first target 32
  • the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction.
  • the first laser beam L1 and the second laser beam L2 have an emission angle from the light source 12. Is presumed to be out of alignment.
  • the beam adjusting device 30 can execute the beam adjusting method capable of adjusting not only the position deviation of the beam but also the angle deviation described above. More specifically, the beam adjusting method according to the present embodiment is for aligning the first laser beam L1 emitted from the laser element 18 and the second laser beam L2 emitted from the laser element 20.
  • the deviation between the first laser beam L1 and the second laser beam L2 can be grasped more accurately. For example, not only the positional deviation between the two laser beams but also the angle (angle deviation) formed by the two laser beams can be estimated.
  • the adjusting unit 36 increases the overlap of the images IL1 and IL2 on the first target 32. to, and, as the overlap of the image I 'L1, I' L2 in the second target 34 increases to adjust the configuration of the optical system. As a result, the first laser beam L1 and the second laser beam L2 can be easily aligned.
  • the configuration of the optical system 22 may be adjusted so that the first laser beam L1 and the second laser beam L2 are aligned, for example, by changing the position or direction of at least one of the laser element 18 and the laser element 20.
  • the first laser beam L1 and the second laser beam L2 can be aligned with each other with relatively simple adjustment.
  • the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the configuration of the embodiment may be appropriately combined or replaced. It is included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. Such embodiments may also be included in the scope of the present invention.
  • the present invention can be used for adjusting the optical axis of a vehicle lamp equipped with a laser element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A beam adjusting device (30) comprises: a first light-emitting element that projects a first laser beam L1; a second light-emitting element that projects a second laser beam L2; an optical system (22) that projects, in the same direction, the first laser beam and the second laser beam in an overlapping manner; a first target (32) that obtains first information pertaining to images of the first laser beam and the second laser beam at a first position P1 on the light path of the optical system; a second target (34) that obtains second information pertaining to images of the first laser beam and the second laser beam at a second position P2 on the light path, which is different from the first position; and an adjusting unit (36) that adjusts the configuration of the optical system on the basis of the first information and the second information so that the first laser beam and the second laser beam are aligned with each other.

Description

ビーム調整方法およびビーム調整装置Beam adjustment method and beam adjustment device
 本発明は、複数のビームを揃えるための新たな調整方法に関する。 The present invention relates to a new adjustment method for aligning a plurality of beams.
 近年、様々な照明や電子機器の光源として輝度の高いレーザダイオード(LD)の開発が進んでいる。例えば、光源ユニットとして複数のレーザダイオードを備えた車両用前照灯が考案されている(特許文献1参照)。 In recent years, the development of high-brightness laser diodes (LDs) as light sources for various lighting and electronic devices has progressed. For example, a vehicle headlight having a plurality of laser diodes as a light source unit has been devised (see Patent Document 1).
特開2017-204453号公報JP-A-2017-204453
 前述の車両用前照灯は、レーザダイオードから出射したビームを蛍光体に向けて走査する走査機構を備えており、蛍光体に入射する走査光の形状が複数のレーザダイオード毎に異なるため、多彩な配光パターン制御を実現できるとされている。 The vehicle headlights described above are equipped with a scanning mechanism that scans the beam emitted from the laser diode toward the phosphor, and the shape of the scanning light incident on the phosphor differs for each of the plurality of laser diodes. It is said that various light distribution pattern control can be realized.
 ところで、灯具の用途によっては、より遠方を明るく照射する特性が光源に求められる。そのため、一つのLDでは所望の輝度を実現することが困難な場合、複数のLDから出射したレーザビームを重ね合わせて輝度を向上することが必要である。 By the way, depending on the application of the lamp, the light source is required to have the characteristic of illuminating a farther distance brightly. Therefore, when it is difficult to achieve the desired brightness with one LD, it is necessary to superimpose the laser beams emitted from the plurality of LDs to improve the brightness.
 しかしながら、例えば、灯具からの照射光の輝度を高めるためにビーム径を絞ったレーザビームを重ね合わせる場合、各レーザビームが平行光でないため、従来の調整方法では各レーザビームの光軸をうまく揃えられない。 However, for example, when superimposing laser beams having a narrowed beam diameter in order to increase the brightness of the irradiation light from the lamp, since each laser beam is not parallel light, the optical axes of each laser beam are well aligned by the conventional adjustment method. I can't.
 本発明はこうした状況に鑑みてなされたものであり、その例示的な目的の一つは、複数のレーザビームを揃えるための新たな技術を提供することにある。 The present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new technique for aligning a plurality of laser beams.
 上記課題を解決するために、本発明のある態様のビーム調整方法は、第1の発光素子から出射する第1のレーザビームと、第2の発光素子から出射する第2のレーザビームと、を揃えるためのビーム調整方法であって、第1のレーザビームと第2のレーザビームとを重ね合わせて同じ方向に照射する光学系において、(1)該光学系の光路の第1の位置で第1のレーザビームおよび第2のレーザビームの各像に関する第1の情報を取得し、(2)光路の第1の位置と異なる第2の位置で第1のレーザビームおよび第2のレーザビームの各像に関する第2の情報を取得し、(3)第1の情報および第2の情報に基づいて第1のレーザビームと第2のレーザビームとを揃えるように、光学系の構成を調整する。 In order to solve the above problems, the beam adjusting method of the present invention has a first laser beam emitted from the first light emitting element and a second laser beam emitted from the second light emitting element. In an optical system that superimposes a first laser beam and a second laser beam and irradiates them in the same direction, which is a beam adjustment method for aligning, (1) a first position at a first position of an optical path of the optical system. The first information about each image of the first laser beam and the second laser beam is acquired, and (2) of the first laser beam and the second laser beam at a second position different from the first position of the optical path. The second information about each image is acquired, and (3) the configuration of the optical system is adjusted so that the first laser beam and the second laser beam are aligned based on the first information and the second information. ..
 この態様によると、第1のレーザビームおよび第2のレーザビームのずれをより正確に把握することができる。例えば、二つのレーザビームの位置ずれだけでなく、互いのビームが成す角度を推定できる。 According to this aspect, the deviation between the first laser beam and the second laser beam can be grasped more accurately. For example, it is possible to estimate not only the misalignment of the two laser beams but also the angle formed by each other's beams.
 第1の情報における各像の重なりが多くなるように、かつ、第2の情報における各像の重なりが多くなるように、光学系の構成を調整してもよい。これにより、第1のレーザビームと第2のレーザビームとが揃い易くなる。 The configuration of the optical system may be adjusted so that the overlap of each image in the first information increases and the overlap of each image in the second information increases. As a result, the first laser beam and the second laser beam can be easily aligned.
 第1の発光素子または第2の発光素子の少なくとも一方の位置または向きを変えることで、第1のレーザビームと第2のレーザビームとを揃えてもよい。これにより、簡易な調整で第1のレーザビームと第2のレーザビームとを揃えることができる。 The first laser beam and the second laser beam may be aligned by changing the position or direction of at least one of the first light emitting element or the second light emitting element. As a result, the first laser beam and the second laser beam can be aligned with each other by simple adjustment.
 光学系は、第1の発光素子から第1の方向へ出射する第1のレーザビームと、第1の方向と異なる方向へ第2の発光素子から出射する第2のレーザビームとを重ね合わせるビームスプリッタを備えてもよい。これにより、第1の発光素子と第2の発光素子とを離して配置できる。 The optical system is a beam that superimposes a first laser beam emitted from the first light emitting element in the first direction and a second laser beam emitted from the second light emitting element in a direction different from the first direction. It may be provided with a splitter. As a result, the first light emitting element and the second light emitting element can be arranged apart from each other.
 光学系は、第1のレーザビームを集光する第1の集光部材と、第2のレーザビームを集光する第2の集光部材と、を備えてもよい。第1の集光部材は、光路において第1の発光素子とビームスプリッタとの間に配置されており、第2の集光部材は、光路において第2の発光素子とビームスプリッタとの間に配置されていてもよい。これにより、第1の発光素子から出射する第1のレーザビームが広がる前に第1の集光部材で集光できる。また、第2の発光素子から出射する第2のレーザビームが広がる前に第2の集光部材で集光できる。 The optical system may include a first condensing member that condenses the first laser beam and a second condensing member that condenses the second laser beam. The first condensing member is arranged between the first light emitting element and the beam splitter in the optical path, and the second condensing member is arranged between the second light emitting element and the beam splitter in the optical path. It may be done. As a result, the first laser beam emitted from the first light emitting element can be focused by the first condensing member before it spreads. Further, the second laser beam emitted from the second light emitting element can be focused by the second condensing member before it spreads.
 本発明の別の態様は、ビーム調整装置である。この装置は、第1のレーザビームを出射する第1の発光素子と、第2のレーザビームを出射する第2の発光素子と、第1のレーザビームと第2のレーザビームとを重ね合わせて同じ方向に照射する光学系と、光学系の光路の第1の位置で第1のレーザビームおよび第2のレーザビームの各像に関する第1の情報を取得する第1のターゲットと、光路の第1の位置と異なる第2の位置で第1のレーザビームおよび第2のレーザビームの各像に関する第2の情報を取得する第2のターゲットと、第1の情報および第2の情報に基づいて第1のレーザビームと第2のレーザビームとが揃うように、光学系の構成を調整する調整部と、を備える。 Another aspect of the present invention is a beam adjusting device. In this device, a first light emitting element that emits a first laser beam, a second light emitting element that emits a second laser beam, and a first laser beam and a second laser beam are superposed. An optical system that irradiates in the same direction, a first target that acquires first information about each image of the first laser beam and the second laser beam at the first position of the optical path of the optical system, and a first target of the optical path. Based on the second target, which acquires the second information about each image of the first laser beam and the second laser beam at the second position different from the first position, and the first information and the second information. An adjusting unit for adjusting the configuration of the optical system is provided so that the first laser beam and the second laser beam are aligned.
 この態様によると、第1のレーザビームと第2のレーザビームとのずれを比較的簡易な調整で小さくできる。 According to this aspect, the deviation between the first laser beam and the second laser beam can be reduced by a relatively simple adjustment.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、複数のレーザビームを揃えることができる。 According to the present invention, a plurality of laser beams can be aligned.
本実施の形態に係る車両用前照灯の概略構成を示す模式的に示す側面図である。It is a side view which shows typically the schematic structure of the headlight for a vehicle which concerns on this embodiment. 本実施の形態に係るビーム調整装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the beam adjustment apparatus which concerns on this embodiment. 図3(a)は、位置ずれがある2つのビームの第1のターゲットにおける像を説明するための図、図3(b)は、位置ずれがある2つのビームの第2のターゲットにおける像を説明するための図である。FIG. 3A is a diagram for explaining an image of the two misaligned beams at the first target, and FIG. 3B is an image of the two misaligned beams at the second target. It is a figure for demonstrating. 図4(a)は、角度ずれがある2つのビームの第1のターゲットにおける像を説明するための図、図4(b)は、角度ずれがある2つのビームの第2のターゲットにおける像を説明するための図である。FIG. 4A is a diagram for explaining an image of the two beams having an angular deviation at the first target, and FIG. 4B is an image of the two beams having an angular deviation at the second target. It is a figure for demonstrating.
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described with reference to the drawings based on the embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 (車両用灯具)
 はじめに、本実施の形態に係るビーム調整方法で調整した光源を用いた車両用灯具について説明する。車両用灯具は、例えば、高輝度光源を用いて車両前方を遠方まで明るく照射可能な車両用前照灯である。図1は、本実施の形態に係る車両用前照灯の概略構成を模式的に示す側面図である。なお、以下で説明する車両用前照灯は、光源から出射したレーザ光を反射せずに車両前方へ照射するいわゆる直射タイプの灯具であるが、本実施の形態に係るビーム調整方法で調整した光源を用いる車両用灯具としては、必ずしもこれに限られない。例えば、光源から上方に出射したレーザ光をMEMS(Micro Electro Mechanical Systems)ミラーで反射し、反射されたレーザ光で光透過型の蛍光体を走査することで、車両前方に所定形状の配光パターンを表示する車両用前照灯であってもよい(例えば、特開2017-130398の図2に示す車両用前照灯。)。あるいは、走査機構としてMEMSミラーの代わりに回転リフレクタを用いた車両用前照灯であってもよい(例えば、特開2018-195447の図1に示す車両用前照灯。)。
(Vehicle lamps)
First, a vehicle lamp using a light source adjusted by the beam adjusting method according to the present embodiment will be described. The vehicle lighting equipment is, for example, a vehicle headlight capable of illuminating the front of the vehicle brightly to a distant place by using a high-intensity light source. FIG. 1 is a side view schematically showing a schematic configuration of a vehicle headlight according to the present embodiment. The vehicle headlight described below is a so-called direct-illumination type lamp that irradiates the front of the vehicle without reflecting the laser light emitted from the light source, but it was adjusted by the beam adjustment method according to the present embodiment. The vehicle lighting equipment that uses a light source is not necessarily limited to this. For example, a laser beam emitted upward from a light source is reflected by a MEMS (Micro Electro Mechanical Systems) mirror, and the reflected laser beam scans a light-transmitting phosphor to obtain a light distribution pattern having a predetermined shape in front of the vehicle. (For example, the vehicle headlight shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2017-130398) may be used. Alternatively, it may be a vehicle headlight using a rotary reflector instead of the MEMS mirror as the scanning mechanism (for example, the vehicle headlight shown in FIG. 1 of JP-A-2018-195447).
 車両用前照灯10は、光源12と、光源12が発する光Lの一部を波長変換して出射する波長変換部材14と、波長変換部材14を透過した光源12が発する光Lおよび波長変換部材14で波長変換された変換光L’を車両前方に所定の配光パターンで投影する投影レンズ16と、を備える。 The vehicle headlight 10 includes a light source 12, a wavelength conversion member 14 that converts a part of the light L emitted by the light source 12 into wavelengths and emits the light L, and a light L and wavelength conversion emitted by the light source 12 that has passed through the wavelength conversion member 14. A projection lens 16 for projecting the converted light L'wavelength-converted by the member 14 onto the front of the vehicle in a predetermined light distribution pattern is provided.
 波長変換部材14は、少なくとも光Lを透過させる材料が好ましく、例えば、YAG(Yttrium Aluminum Garnet)蛍光体を含有する蛍光体分散樹脂や蛍光体セラミックスである。また、波長変換光として黄色光を発するYAG蛍光体と組み合わせる光源12は、青色発光素子が好ましい。これにより、青色の透過光Lと黄色の変換光L’を混色することで、擬似的な白色光を実現できる。 The wavelength conversion member 14 is preferably a material that allows at least light L to pass through, and is, for example, a phosphor dispersion resin or phosphor ceramics containing a YAG (Yttrium Aluminum Garnet) phosphor. Further, the light source 12 to be combined with the YAG phosphor that emits yellow light as the wavelength conversion light is preferably a blue light emitting element. As a result, pseudo white light can be realized by mixing the blue transmitted light L and the yellow converted light L'.
 (光源)
 光源12は、第1のレーザビームL1を出射する第1の半導体発光素子としてのレーザ素子18と、第2のレーザビームL2を出射する第2の発光素子としてのレーザ素子20と、第1のレーザビームL1と第2のレーザビームL2とを重ね合わせて同じ方向に照射する光学系22と、を備える。
(light source)
The light source 12 includes a laser element 18 as a first semiconductor light emitting element that emits a first laser beam L1, a laser element 20 as a second light emitting element that emits a second laser beam L2, and a first. An optical system 22 that superimposes the laser beam L1 and the second laser beam L2 and irradiates them in the same direction is provided.
 レーザ素子18およびレーザ素子20は、ピーク波長が青色の波長範囲の光を発する。このように、複数のレーザ素子を用いることで、より高輝度の光源を実現できるが、そのためには、複数のレーザ素子が出射するレーザビームを極力一致させる必要がある。一方、同じ場所に複数のレーザ素子を配置することはできない。 The laser element 18 and the laser element 20 emit light having a peak wavelength in the blue wavelength range. As described above, by using a plurality of laser elements, a light source having higher brightness can be realized, but for that purpose, it is necessary to match the laser beams emitted by the plurality of laser elements as much as possible. On the other hand, a plurality of laser elements cannot be arranged in the same place.
 そこで、本実施の形態に係る光学系22は、レーザ素子18から第1の方向D1へ出射する第1のレーザビームL1と、第1の方向D1と異なる第2の方向D2(第1の方向D1と第2の方向D2との成す角はほぼ90度)へレーザ素子20から出射する第2のレーザビームL2とを重ね合わせるビームスプリッタ24を備えている。これにより、レーザ素子18とレーザ素子20とを離して配置できる。 Therefore, the optical system 22 according to the present embodiment has a first laser beam L1 emitted from the laser element 18 in the first direction D1 and a second direction D2 (first direction) different from the first direction D1. A beam splitter 24 for superimposing the second laser beam L2 emitted from the laser element 20 in the angle formed by D1 and the second direction D2 is provided. As a result, the laser element 18 and the laser element 20 can be arranged apart from each other.
 レーザ素子18が発するレーザビームL1は、P偏光のレーザ光であり、集光部材としてのシリンドリカルレンズ26によって集光される。集光される方向は、図の上下方向である。レーザ素子20が発するレーザビームL2は、S偏光のレーザ光であり、集光部材としてのシリンドリカルレンズ28によって集光される。集光される方向は、図面に対して鉛直な方向である。 The laser beam L1 emitted by the laser element 18 is P-polarized laser light, and is condensed by a cylindrical lens 26 as a condensing member. The direction of light collection is the vertical direction in the figure. The laser beam L2 emitted by the laser element 20 is S-polarized laser light, and is condensed by a cylindrical lens 28 as a condensing member. The direction of light collection is the direction perpendicular to the drawing.
 ビームスプリッタ24は、P偏光の第1のレーザビームL1を透過させ、S偏光の第2のレーザビームL2を反射させることで、2つのレーザビームの光軸を揃えて重ね合わせることができる。ここで、2つのレーザビームが完全に一致していれば、より高輝度な光源12を実現できる。そのためには、光源12における2つのレーザビームの光路を調整する必要がある。 The beam splitter 24 allows the first laser beam L1 of P-polarized light to pass through and reflects the second laser beam L2 of S-polarized light so that the optical axes of the two laser beams can be aligned and superposed. Here, if the two laser beams are completely matched, a light source 12 having higher brightness can be realized. For that purpose, it is necessary to adjust the optical paths of the two laser beams in the light source 12.
 (ビーム調整装置および調整方法)
 図2は、本実施の形態に係るビーム調整装置の概略構成を示す模式図である。ビーム調整装置30は、光源12と、光学系22の光路22aの第1の位置P1で第1のレーザビームL1および第2のレーザビームL2の各像に関する第1の情報を取得する第1のターゲット32と、光路22aの第1の位置P1と異なる第2の位置P2で第1のレーザビームL1および第2のレーザビームL2の各像に関する第2の情報を取得する第2のターゲット34と、第1の情報および第2の情報に基づいて第1のレーザビームL1と第2のレーザビームL2とが揃うように、光学系22の構成を調整する調整部36と、を備える。
(Beam adjustment device and adjustment method)
FIG. 2 is a schematic view showing a schematic configuration of a beam adjusting device according to the present embodiment. The beam adjusting device 30 obtains first information about each image of the first laser beam L1 and the second laser beam L2 at the first position P1 of the light source 12 and the optical path 22a of the optical system 22. The target 32 and the second target 34 that acquires the second information about each image of the first laser beam L1 and the second laser beam L2 at the second position P2 different from the first position P1 of the optical path 22a. , The adjusting unit 36 that adjusts the configuration of the optical system 22 so that the first laser beam L1 and the second laser beam L2 are aligned based on the first information and the second information.
 第1のターゲット32や第2のターゲット34は、レーザビームの像の形状や位置を取得できる機構や装置であれよく、例えば、CMOSやCCDといった画像センサを備えたカメラや、投影スクリーンが用いられる。調整部36は、例えば、レーザ素子18やレーザ素子20からビームスプリッタ24までの光路上に存在する各部品(レーザ素子やビームスプリッタを含む)の位置や向きを、電気的または機械的に変更できるように構成されている。 The first target 32 and the second target 34 may be a mechanism or device capable of acquiring the shape and position of the image of the laser beam, and for example, a camera equipped with an image sensor such as CMOS or CCD or a projection screen is used. .. The adjusting unit 36 can electrically or mechanically change the position and orientation of each component (including the laser element and the beam splitter) existing on the optical path from the laser element 18 and the laser element 20 to the beam splitter 24, for example. It is configured as follows.
 図3(a)は、位置ずれがある2つのビームの第1のターゲットにおける像を説明するための図、図3(b)は、位置ずれがある2つのビームの第2のターゲットにおける像を説明するための図である。図3(a)に示すように、第1のレーザビームL1が第1のターゲット32上で形成する像IL1と、第2のレーザビームL2が第1のターゲット32上で形成する像IL2とは、水平方向に変位量Yだけずれている。また、図3(b)に示すように、第1のレーザビームL1が第2のターゲット34上で形成する像I’L1と、第2のレーザビームL2が第2のターゲット34上で形成する像I’L2とは、水平方向に変位量Y’(Y’=Y)だけずれている。 FIG. 3A is a diagram for explaining an image of the two misaligned beams at the first target, and FIG. 3B is an image of the two misaligned beams at the second target. It is a figure for demonstrating. As shown in FIG. 3 (a), an image I L1 which the first laser beam L1 is formed on the first target 32, the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction. Further, as shown in FIG. 3 (b), the first laser beam L1 and the image I 'L1 forming on the second target 34, the second laser beam L2 is formed on the second target 34 The image I'L2 is displaced in the horizontal direction by the amount of displacement Y'(Y'= Y).
 また、本実施の形態に係る光学系22は、第1のレーザビームL1集光するシリンドリカルレンズ26と、第2のレーザビームL2を集光するシリンドリカルレンズ28と、を備えている。シリンドリカルレンズ26は、光路においてレーザ素子18とビームスプリッタ24との間に配置されており、シリンドリカルレンズ28は、光路においてレーザ素子20とビームスプリッタ24との間に配置されている。これにより、レーザ素子18から出射する第1のレーザビームL1が広がる前にシリンドリカルレンズ26で集光できるため、シリンドリカルレンズ26を小型化できる。また、レーザ素子20から出射する第2のレーザビームL2が広がる前にシリンドリカルレンズ28で集光できるため、シリンドリカルレンズ28を小型化できる。 Further, the optical system 22 according to the present embodiment includes a cylindrical lens 26 that concentrates the first laser beam L1 and a cylindrical lens 28 that concentrates the second laser beam L2. The cylindrical lens 26 is arranged between the laser element 18 and the beam splitter 24 in the optical path, and the cylindrical lens 28 is arranged between the laser element 20 and the beam splitter 24 in the optical path. As a result, the cylindrical lens 26 can collect light before the first laser beam L1 emitted from the laser element 18 spreads, so that the cylindrical lens 26 can be miniaturized. Further, since the cylindrical lens 28 can collect light before the second laser beam L2 emitted from the laser element 20 spreads, the cylindrical lens 28 can be miniaturized.
 このように、第1のレーザビームL1および第2のレーザビームL2は、いずれも集光光学系を経て第1のターゲット32および第2のターゲット34に到達する。そのため、第1のレーザビームL1および第2のレーザビームL2は、いずれも平行光ではなく、ターゲットの場所によってビーム断面の形状が変化する。例えば、図3(b)に示す像I’L1および像I’L2は、像IL1および像IL2と比較して、ビーム断面が小さくなっている。したがって、各ターゲットで、図3(a)、図3(b)に示すような像が形成されている場合、第1のレーザビームL1および第2のレーザビームL2は、光源12からの出射方向は平行であるものの、出射位置はずれていることが推定される。 In this way, both the first laser beam L1 and the second laser beam L2 reach the first target 32 and the second target 34 via the condensing optical system. Therefore, neither the first laser beam L1 nor the second laser beam L2 is parallel light, and the shape of the beam cross section changes depending on the location of the target. For example, the image I 'L1 and the image I' L2 shown in FIG. 3 (b), as compared to the image I L1 and the image I L2, the beam cross section is small. Therefore, when the images shown in FIGS. 3 (a) and 3 (b) are formed at each target, the first laser beam L1 and the second laser beam L2 are emitted from the light source 12. Is parallel, but it is presumed that the emission position is off.
 次に、2つのビームの出射角度がずれている場合について説明する。図4(a)は、角度ずれがある2つのビームの第1のターゲットにおける像を説明するための図、図4(b)は、角度ずれがある2つのビームの第2のターゲットにおける像を説明するための図である。図4(a)に示すように、第1のレーザビームL1が第1のターゲット32上で形成する像IL1と、第2のレーザビームL2が第1のターゲット32上で形成する像IL2とは、水平方向に変位量Yだけずれている。また、図4(b)に示すように、第1のレーザビームL1が第2のターゲット34上で形成する像I’L1と、第2のレーザビームL2が第2のターゲット34上で形成する像I’L2とは、水平方向に変位量Y’(Y’<Y)だけずれている。 Next, a case where the emission angles of the two beams are deviated will be described. FIG. 4A is a diagram for explaining an image of the two beams having an angular deviation at the first target, and FIG. 4B is an image of the two beams having an angular deviation at the second target. It is a figure for demonstrating. As shown in FIG. 4 (a), an image I L1 which the first laser beam L1 is formed on the first target 32, the image I L2 the second laser beam L2 is formed on the first target 32 Is displaced by the amount of displacement Y in the horizontal direction. Further, as shown in FIG. 4 (b), the first laser beam L1 and the image I 'L1 forming on the second target 34, the second laser beam L2 is formed on the second target 34 The image I'L2 is displaced in the horizontal direction by the amount of displacement Y'(Y'<Y).
 したがって、各ターゲットで、図4(a)、図4(b)に示すような像が形成されている場合、第1のレーザビームL1および第2のレーザビームL2は、光源12からの出射角度がずれていることが推定される。 Therefore, when the images shown in FIGS. 4 (a) and 4 (b) are formed at each target, the first laser beam L1 and the second laser beam L2 have an emission angle from the light source 12. Is presumed to be out of alignment.
 本実施の形態に係るビーム調整装置30は、前述のビームの位置ずれだけでなく角度ずれも調整できるビーム調整方法を実行できる。詳述すると、本実施の形態に係るビーム調整方法は、レーザ素子18から出射する第1のレーザビームL1と、レーザ素子20から出射する第2のレーザビームL2と、を揃えるためのものであり、光学系22において、(1)光学系22の光路22aの第1の位置P1で第1のレーザビームL1および第2のレーザビームL2の各像IL1,IL2に関する第1の情報を取得し、(2)光路22aの第2の位置P2で第1のレーザビームL1および第2のレーザビームL2の各像I’L1,I’L2に関する第2の情報を取得し、(3)第1の情報および第2の情報に基づいて第1のレーザビームL1と第2のレーザビームL2とを揃えるように、調整部36が光学系22の構成を調整する。 The beam adjusting device 30 according to the present embodiment can execute the beam adjusting method capable of adjusting not only the position deviation of the beam but also the angle deviation described above. More specifically, the beam adjusting method according to the present embodiment is for aligning the first laser beam L1 emitted from the laser element 18 and the second laser beam L2 emitted from the laser element 20. , obtained at the optical system 22, the first information on each image I L1, I L2 of (1) a first first at the position P1 of the laser beam L1 and the second laser beam L2 of the light path 22a of the optical system 22 and, (2) obtains the second information for each image I 'L1, I' L2 in the second position P2 of the optical path 22a first laser beam L1 and the second laser beam L2, (3) the The adjusting unit 36 adjusts the configuration of the optical system 22 so that the first laser beam L1 and the second laser beam L2 are aligned based on the information of 1 and the second information.
 ビーム調整装置30によれば、第1のレーザビームL1および第2のレーザビームL2のずれをより正確に把握することができる。例えば、二つのレーザビームの位置ずれだけでなく、互いのビームが成す角度(角度ずれ)を推定できる。 According to the beam adjusting device 30, the deviation between the first laser beam L1 and the second laser beam L2 can be grasped more accurately. For example, not only the positional deviation between the two laser beams but also the angle (angle deviation) formed by the two laser beams can be estimated.
 そして、各ターゲット32,34における各ビームL1,L2の像の位置や大きさの情報に基づいて、調整部36は、第1のターゲット32における各像IL1,IL2の重なりが多くなるように、かつ、第2のターゲット34における各像I’L1,I’L2の重なりが多くなるように、光学系の構成を調整する。これにより、第1のレーザビームL1と第2のレーザビームL2とが揃い易くなる。 Then, based on the information on the positions and sizes of the images of the beams L1 and L2 on the targets 32 and 34, the adjusting unit 36 increases the overlap of the images IL1 and IL2 on the first target 32. to, and, as the overlap of the image I 'L1, I' L2 in the second target 34 increases to adjust the configuration of the optical system. As a result, the first laser beam L1 and the second laser beam L2 can be easily aligned.
 光学系22の構成の調整は、例えば、レーザ素子18またはレーザ素子20の少なくとも一方の位置または向きを変えることで、第1のレーザビームL1と第2のレーザビームL2とを揃えてもよい。これにより、比較的簡易な調整で第1のレーザビームL1と第2のレーザビームL2とを揃えることができる。 The configuration of the optical system 22 may be adjusted so that the first laser beam L1 and the second laser beam L2 are aligned, for example, by changing the position or direction of at least one of the laser element 18 and the laser element 20. As a result, the first laser beam L1 and the second laser beam L2 can be aligned with each other with relatively simple adjustment.
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the configuration of the embodiment may be appropriately combined or replaced. It is included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. Such embodiments may also be included in the scope of the present invention.
 本発明は、レーザ素子を備えた車両用灯具の光軸調整に利用できる。 The present invention can be used for adjusting the optical axis of a vehicle lamp equipped with a laser element.
 D1 第1の方向、 L1 第1のレーザビーム、 P1 第1の位置、 D2 第2の方向、 L2 第2のレーザビーム、 P2 第2の位置、 12 光源、 14 波長変換部材、 16 投影レンズ、 18,20 レーザ素子、 22 光学系、 22a 光路、 24 ビームスプリッタ、 26,28 シリンドリカルレンズ、 30 ビーム調整装置、 32 第1のターゲット、 34 第2のターゲット、 36 調整部。 D1 1st direction, L1 1st laser beam, P1 1st position, D2 2nd direction, L2 2nd laser beam, P2 2nd position, 12 light source, 14 wavelength conversion member, 16 projection lens, 18,20 laser element, 22 optical system, 22a optical path, 24 beam splitter, 26,28 cylindrical lens, 30 beam adjuster, 32 first target, 34 second target, 36 adjustment unit.

Claims (6)

  1.  第1の発光素子から出射する第1のレーザビームと、第2の発光素子から出射する第2のレーザビームと、を揃えるためのビーム調整方法であって、
     前記第1のレーザビームと前記第2のレーザビームとを重ね合わせて同じ方向に照射する光学系において、(1)該光学系の光路の第1の位置で前記第1のレーザビームおよび前記第2のレーザビームの各像に関する第1の情報を取得し、(2)前記光路の前記第1の位置と異なる第2の位置で前記第1のレーザビームおよび前記第2のレーザビームの各像に関する第2の情報を取得し、(3)前記第1の情報および前記第2の情報に基づいて前記第1のレーザビームと前記第2のレーザビームとを揃えるように、前記光学系の構成を調整する、
     ことを特徴とするビーム調整方法。
    It is a beam adjustment method for aligning the first laser beam emitted from the first light emitting element and the second laser beam emitted from the second light emitting element.
    In an optical system in which the first laser beam and the second laser beam are superimposed and irradiated in the same direction, (1) the first laser beam and the first laser beam at a first position in the optical path of the optical system. The first information about each image of the two laser beams is acquired, and (2) each image of the first laser beam and the second laser beam at a second position different from the first position of the optical path. (3) The configuration of the optical system so as to align the first laser beam and the second laser beam based on the first information and the second information. To adjust,
    A beam adjustment method characterized by that.
  2.  前記第1の情報における各像の重なりが多くなるように、かつ、前記第2の情報における各像の重なりが多くなるように、前記光学系の構成を調整する、
     ことを特徴とする請求項1に記載のビーム調整方法。
    The configuration of the optical system is adjusted so that the overlap of the images in the first information is large and the overlap of the images in the second information is large.
    The beam adjusting method according to claim 1, wherein the beam is adjusted.
  3.  前記第1の発光素子または前記第2の発光素子の少なくとも一方の位置または向きを変えることで、前記第1のレーザビームと前記第2のレーザビームとを揃えることを特徴とする請求項1または2に記載のビーム調整方法。 1 or claim 1, wherein the first laser beam and the second laser beam are aligned by changing the position or direction of at least one of the first light emitting element or the second light emitting element. The beam adjustment method according to 2.
  4.  前記光学系は、前記第1の発光素子から第1の方向へ出射する前記第1のレーザビームと、前記第1の方向と異なる第2の方向へ前記第2の発光素子から出射する前記第2のレーザビームとを重ね合わせるビームスプリッタを備えることを特徴とする請求項1乃至3のいずれか1項に記載のビーム調整方法。 The optical system includes the first laser beam emitted from the first light emitting element in the first direction and the second laser beam emitted from the second light emitting element in a second direction different from the first direction. The beam adjusting method according to any one of claims 1 to 3, further comprising a beam splitter for superimposing the laser beam of 2.
  5.  前記光学系は、前記第1のレーザビームを集光する第1の集光部材と、前記第2のレーザビームを集光する第2の集光部材と、を備え、
     前記第1の集光部材は、前記光路において前記第1の発光素子と前記ビームスプリッタとの間に配置されており、
     前記第2の集光部材は、前記光路において前記第2の発光素子と前記ビームスプリッタとの間に配置されている、
     ことを特徴とする請求項4に記載のビーム調整方法。
    The optical system includes a first condensing member that condenses the first laser beam and a second condensing member that condenses the second laser beam.
    The first light collecting member is arranged between the first light emitting element and the beam splitter in the optical path.
    The second light collecting member is arranged between the second light emitting element and the beam splitter in the optical path.
    The beam adjusting method according to claim 4, wherein the beam is adjusted.
  6.  第1のレーザビームを出射する第1の発光素子と、
     第2のレーザビームを出射する第2の発光素子と、
     前記第1のレーザビームと前記第2のレーザビームとを重ね合わせて同じ方向に照射する光学系と、
     前記光学系の光路の第1の位置で前記第1のレーザビームおよび前記第2のレーザビームの各像に関する第1の情報を取得する第1のターゲットと、
     前記光路の前記第1の位置と異なる第2の位置で前記第1のレーザビームおよび前記第2のレーザビームの各像に関する第2の情報を取得する第2のターゲットと、
     前記第1の情報および前記第2の情報に基づいて前記第1のレーザビームと前記第2のレーザビームとが揃うように、前記光学系の構成を調整する調整部と、
     を備えることを特徴とするビーム調整装置。
    A first light emitting element that emits a first laser beam,
    A second light emitting element that emits a second laser beam,
    An optical system in which the first laser beam and the second laser beam are superimposed and irradiated in the same direction,
    A first target for acquiring first information about each image of the first laser beam and the second laser beam at a first position in the optical path of the optical system.
    A second target for acquiring second information about each image of the first laser beam and the second laser beam at a second position different from the first position of the optical path,
    An adjusting unit that adjusts the configuration of the optical system so that the first laser beam and the second laser beam are aligned based on the first information and the second information.
    A beam adjusting device characterized by being provided with.
PCT/JP2020/028892 2019-07-29 2020-07-28 Beam adjusting method and beam adjusting device WO2021020394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535359A JPWO2021020394A1 (en) 2019-07-29 2020-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139053 2019-07-29
JP2019139053 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020394A1 true WO2021020394A1 (en) 2021-02-04

Family

ID=74229954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028892 WO2021020394A1 (en) 2019-07-29 2020-07-28 Beam adjusting method and beam adjusting device

Country Status (2)

Country Link
JP (1) JPWO2021020394A1 (en)
WO (1) WO2021020394A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251010A (en) * 1988-03-31 1989-10-06 Toshiba Corp Optical axis adjusting device
JP2011107573A (en) * 2009-11-20 2011-06-02 Nec Corp System, device and method for adjusting optical axis, and program
JP2012247529A (en) * 2011-05-26 2012-12-13 Hitachi Media Electoronics Co Ltd Light source device and optical axis adjustment method
JP2013235742A (en) * 2012-05-09 2013-11-21 Sharp Corp Lighting device, and vehicle headlamp
JP2014126723A (en) * 2012-12-27 2014-07-07 Funai Electric Co Ltd Image display apparatus
JP2017228390A (en) * 2016-06-21 2017-12-28 スタンレー電気株式会社 Lighting device
WO2019044374A1 (en) * 2017-09-01 2019-03-07 パナソニックIpマネジメント株式会社 Light source device and light projection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251010A (en) * 1988-03-31 1989-10-06 Toshiba Corp Optical axis adjusting device
JP2011107573A (en) * 2009-11-20 2011-06-02 Nec Corp System, device and method for adjusting optical axis, and program
JP2012247529A (en) * 2011-05-26 2012-12-13 Hitachi Media Electoronics Co Ltd Light source device and optical axis adjustment method
JP2013235742A (en) * 2012-05-09 2013-11-21 Sharp Corp Lighting device, and vehicle headlamp
JP2014126723A (en) * 2012-12-27 2014-07-07 Funai Electric Co Ltd Image display apparatus
JP2017228390A (en) * 2016-06-21 2017-12-28 スタンレー電気株式会社 Lighting device
WO2019044374A1 (en) * 2017-09-01 2019-03-07 パナソニックIpマネジメント株式会社 Light source device and light projection device

Also Published As

Publication number Publication date
JPWO2021020394A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US20150176778A1 (en) Lighting device
JP6424828B2 (en) Light source device and image display device
CN107797369B (en) Lighting fixtures and projectors
US9188709B2 (en) Optical multiplexing apparatus and projector
US9547226B2 (en) Light source device and projection-type image display device
WO2018021108A1 (en) Light emission device and illumination device
US7563005B2 (en) Light source module and lamp equipped with the same
JP6287437B2 (en) projector
JP6946651B2 (en) Light source device and projector
JP2006301620A (en) Illumination unit and image projection apparatus employing the same
JP2003065805A (en) Illumination, and display
US20190271448A1 (en) Lighting tool for vehicle
TW201918783A (en) X-shaped adjusting module and light combing device and projector using the same
CN108227358A (en) Lighting device and projecting apparatus
KR20060125346A (en) Lighting system with adjustable aspect ratio and projection system
JP7023672B2 (en) Vehicle lighting fixtures, control devices and control methods
JP5532210B2 (en) Lighting device and projector
WO2021020394A1 (en) Beam adjusting method and beam adjusting device
JP6515514B2 (en) Light source device, lighting device and projector
CN109661539B (en) Front shining lamp
JP2005283817A (en) Light source device and projector
JP2021018079A (en) Imaging apparatus, measuring device, and measuring method
US20220290828A1 (en) Laser-assist led for high-power adb automotive headlight
JP6504142B2 (en) Light assembly
JP2015138082A (en) Light source device and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847788

Country of ref document: EP

Kind code of ref document: A1