[go: up one dir, main page]

WO2021020163A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2021020163A1
WO2021020163A1 PCT/JP2020/027794 JP2020027794W WO2021020163A1 WO 2021020163 A1 WO2021020163 A1 WO 2021020163A1 JP 2020027794 W JP2020027794 W JP 2020027794W WO 2021020163 A1 WO2021020163 A1 WO 2021020163A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
vehicle
heat exchanger
temperature
valve
Prior art date
Application number
PCT/JP2020/027794
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2021020163A1 publication Critical patent/WO2021020163A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant
  • a radiator that is provided on the vehicle interior side
  • a heat absorber that absorbs the refrigerant
  • an outdoor heat exchanger that is installed outside the vehicle interior to dissipate or absorb the refrigerant
  • an outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger
  • a plurality of switches for switching the flow of the refrigerant.
  • a heating mode equipped with electromagnetic valves and controlling these electromagnetic valves to dissipate the refrigerant discharged from the compressor in the radiator and absorb the refrigerant dissipated in this radiator in the outdoor heat exchanger, and from the compressor.
  • a dehumidification mode in which the discharged refrigerant is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed only by the heat absorber, or the heat absorber and the outdoor heat exchanger absorb heat, and the refrigerant discharged from the compressor is exchanged for outdoor heat.
  • a device has been developed that switches between a cooling mode in which heat is dissipated in a container and heat is absorbed in a heat absorber (see, for example, Patent Document 1).
  • a refrigerant-heat medium heat exchanger (heat exchanger for vehicle-mounted equipment) is provided to exchange heat between the refrigerant circulating in the refrigerant circuit and the heat medium, and the refrigerant-heat medium heat exchanger absorbs heat from the refrigerant.
  • a device has also been developed in which the battery can be cooled by circulating the cooled heat medium (cooling water) through the battery (see, for example, Patent Documents 2 and 3).
  • a control valve such as an outdoor expansion valve or a solenoid valve as described above fails, normal operation cannot be achieved, but conventionally, the operator identifies the failed control valve from the temperature and pressure of the refrigerant circuit. Or, since the failure of the control valve is identified by a complicated determination method by the control device, an erroneous determination occurs or the control is complicated. Therefore, there is a problem that the time and cost for maintenance increase.
  • the present invention has been made to solve the conventional technical problem, and provides an air conditioner for a vehicle capable of identifying a failed control valve relatively easily and accurately. With the goal.
  • the vehicle air conditioner of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior, and a heat absorber that absorbs the refrigerant and cools the air supplied to the vehicle interior.
  • An outdoor heat exchanger provided outside the vehicle interior to absorb or dissipate the refrigerant, a refrigerant circuit having a plurality of control valves for controlling the flow of the refrigerant, and a control device, and the control valve is provided by this control device.
  • each operation mode is executed in sequence, and a failure location determination mode for determining the failed control valve is executed from the temperature and / or pressure of the refrigerant circuit obtained in the executed operation mode. It is characterized by that.
  • the vehicle air conditioner according to the second aspect of the present invention is characterized in that, in the above invention, the control device does not execute the failure location determination mode when the failed control valve is specified.
  • the vehicle air conditioner according to claim 3 is characterized in that, in each of the above inventions, the control device executes a failure location determination mode on condition that a predetermined input operation is performed.
  • the vehicle air conditioner according to the fourth aspect of the present invention has a high pressure sensor capable of detecting the high pressure side pressure of the refrigerant circuit and a low pressure pressure capable of detecting the low pressure side pressure of the refrigerant circuit in all the operation modes in each of the above inventions. It is characterized by having a sensor.
  • the control device has a failure location on the condition that the detection value of the high pressure pressure sensor and the detection value of the low pressure pressure sensor are within the range in which the compressor can be operated. It is characterized by starting each operation mode in the confirmation mode.
  • the vehicle air conditioner according to claim 6 is characterized in that, in each of the above inventions, the temperature sensor capable of detecting the temperature of the refrigerant circuit from the refrigerant outlet of the radiator to the refrigerant inlet of the outdoor heat exchanger is provided. ..
  • the vehicle air conditioner according to the invention of claim 7 includes a sensor capable of detecting the temperature and / or pressure of the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger to the refrigerant suction side of the compressor in each of the above inventions. It is characterized by that.
  • the vehicle air conditioner according to claim 8 is characterized in that, in each of the above inventions, the vehicle air conditioner is provided with a sensor capable of detecting the temperature of the heat absorber or a physical quantity indicating the temperature of the heat absorber.
  • the vehicle air conditioner according to claim 9 includes an indoor blower that ventilates air to a heat absorber and a radiator and an outdoor blower that ventilates outside air to an outdoor heat exchanger in each of the above inventions, and the control device fails.
  • the location determination mode is characterized in that the air volumes of the indoor blower and the outdoor blower are fixed to a constant value.
  • the vehicle air conditioner according to claim 10 has, as control valves in each of the above inventions, an outdoor expansion valve that controls the inflow of refrigerant into the outdoor heat exchanger and an indoor expansion that controls the inflow of refrigerant into the heat exchanger. It is equipped with a valve, a heating valve that is opened during heating, and a dehumidifying valve that is opened during dehumidification.
  • the control device sets the operation mode and uses a radiator and / or an outdoor heat exchanger to dissipate the refrigerant discharged from the compressor.
  • a cooling mode in which heat is dissipated and absorbed by a heat absorber a dehumidifying mode in which the refrigerant discharged from the compressor is dissipated by a radiator and absorbed by an outdoor heat exchanger and a heat exchanger, and a refrigerant discharged from the compressor. It is characterized by having a heating mode in which heat is radiated by a radiator and heat is absorbed by an outdoor heat exchanger.
  • the vehicle air conditioner according to claim 11 has a heat exchanger for vehicle-mounted equipment for absorbing heat of a refrigerant to cool the vehicle-mounted equipment and a refrigerant for the heat exchanger for the vehicle-mounted equipment in each of the above inventions.
  • An auxiliary expansion valve as a control valve for controlling the inflow of the refrigerant is provided, and the control device further has a vehicle-mounted equipment cooling mode in which the refrigerant is absorbed by the vehicle-mounted equipment heat exchanger as an operation mode.
  • a compressor that compresses the refrigerant
  • a radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior
  • a heat exchanger that absorbs the refrigerant and cools the air supplied to the vehicle interior, and the outside of the vehicle interior.
  • An outdoor heat exchanger provided to absorb or dissipate the refrigerant, a refrigerant circuit having a plurality of control valves for controlling the flow of the refrigerant, and a control device are provided, and the control valve is controlled by this control device.
  • an abnormality occurs in the control device due to a failure of one of the control valves based on information on the temperature and / or pressure of the refrigerant circuit. If it is determined that the failure has occurred, each operation mode is executed in sequence, and the failure location determination mode for determining the failed control valve is executed from the temperature and / or pressure of the refrigerant circuit obtained in the executed operation mode. Therefore, it becomes possible to identify the failed control valve relatively easily and accurately.
  • the control device executes the failure location determination mode on the condition that a predetermined input operation is performed as in the invention of claim 3, the operator may perform maintenance by a repair shop or the like. Only when a predetermined input operation is performed, it is possible to execute the failure location determination mode to identify the failed control valve, and the failure location determination mode is executed by an erroneous operation by the vehicle user. It becomes possible to avoid such inconvenience.
  • the high pressure sensor capable of detecting the high pressure side pressure of the refrigerant circuit
  • the low pressure pressure sensor capable of detecting the low pressure side pressure of the refrigerant circuit in all the operation modes as in the invention of claim 4.
  • a temperature sensor capable of detecting the temperature of the refrigerant circuit from the refrigerant outlet of the radiator to the refrigerant inlet of the outdoor heat exchanger, and from the refrigerant outlet of the outdoor heat exchanger to the refrigerant suction side of the compressor as in the invention of claim 7.
  • control device By providing the control device with a sensor capable of detecting the temperature and / or pressure of the refrigerant circuit, and a sensor capable of detecting the temperature of the heat absorber or the physical quantity indicating the temperature of the heat absorber as in the invention of claim 8. , It becomes possible to smoothly confirm the failed control valve by the failure location determination mode.
  • each operation mode in the failure location determination mode is started on condition that the detection value of the high pressure pressure sensor and the detection value of the low pressure pressure sensor are within the range in which the compressor can be operated as in the invention of claim 5. Further, in the failure location determination mode as in the invention of claim 9, the air volume of the indoor blower that ventilates the air to the heat absorber and the radiator and the outdoor blower that ventilates the outside air to the outdoor heat exchanger is set to a constant value. If it is fixed, the control device can accurately identify the failed control valve in the failure location determination mode.
  • the above invention includes an outdoor expansion valve, an indoor expansion valve, a heating valve and a dehumidifying valve as control valves as in the invention of claim 10, and air conditioning for a vehicle that executes a cooling mode, a dehumidifying mode, and a heating mode as operation modes. It is particularly effective for an air conditioner for a vehicle, which is provided with an auxiliary expansion valve as a control valve as in the invention of claim 11 and executes a vehicle-mounted equipment cooling mode as an operation mode.
  • FIG. 1 It is a block diagram of one Example of the air conditioner for a vehicle to which this invention is applied (heating mode). It is a block diagram of the air-conditioning controller as a control device of the air conditioner for a vehicle of FIG. It is a figure explaining the dehumidification mode by the air-conditioning controller of FIG. It is a figure explaining the cooling mode by the air-conditioning controller of FIG. It is a figure explaining the vehicle-mounted equipment cooling mode by the air-conditioning controller of FIG. It is a flowchart explaining the failure location determination mode executed by the air conditioning controller of FIG.
  • FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment to which the present invention is applied.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal engine) is not mounted, and the vehicle is equipped with a battery 55 (for example, a lithium ion battery), and the battery 55 is supplied from an external power source. It is driven and traveled by supplying the electric power charged to the traveling motor (electric motor).
  • the vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
  • the vehicle air conditioner 1 performs the heating mode by the heat pump device HP having the refrigerant circuit R in the electric vehicle that cannot be heated by the waste heat of the engine, and further selectively selects the dehumidifying mode and the cooling mode. By executing this, the air conditioning inside the vehicle interior is performed. Furthermore, a vehicle-mounted device cooling mode for cooling the battery 55 using the heat medium circulation circuit 61 described later is also executed. Needless to say, the present invention is effective not only for the electric vehicle as a vehicle but also for a so-called hybrid vehicle that uses an engine and an electric motor for traveling.
  • the vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and is an electric compressor that is supplied with power from the battery 55 to compress the refrigerant.
  • the (electric compressor) 2 and the high-temperature and high-pressure refrigerant discharged from the compressor 2 are provided in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle interior is ventilated and circulated, and flow in through the refrigerant pipe 13G.
  • An outdoor expansion valve 6 as a control valve including a radiator 4 for radiating the refrigerant to heat the air supplied to the vehicle interior and an electric expansion valve for reducing and expanding the refrigerant during heating, and radiating the refrigerant during cooling.
  • Control consisting of an outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as a condenser and absorb heat of the refrigerant during heating, and an electric expansion valve for decompressing and expanding the refrigerant.
  • the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R of the heat pump device HP is configured.
  • the outdoor expansion valve 6 and the indoor expansion valve 8 expand the refrigerant under reduced pressure and can be fully opened or fully closed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via the check valve 18.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B side, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is connected to the heat absorber 9 via a heating valve 21 as a control valve including an electromagnetic valve opened at the time of heating. It is communicatively connected to the refrigerant pipe 13C located on the outlet side. Then, the check valve 20 is connected to the refrigerant pipe 13C downstream from the connection point of the refrigerant pipe 13D, the refrigerant pipe 13C downstream from the check valve 20 is connected to the accumulator 12, and the accumulator 12 is the compressor 2. It is connected to the refrigerant suction side of. The check valve 20 has the accumulator 12 side in the forward direction.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into the refrigerant pipe 13J and the refrigerant pipe 13F at a branch portion B2 located in front of the outdoor expansion valve 6 (the refrigerant outlet side of the radiator 4 on the upstream side of the refrigerant).
  • One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is on the downstream side of the refrigerant of the check valve 18 via the dehumidifying valve 22 as a control valve composed of a solenoid valve opened at the time of dehumidification, and is on the upstream side of the refrigerant of the indoor expansion valve 8. It is communicatively connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It is a bypass circuit that bypasses 18.
  • each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed.
  • the suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided.
  • an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • auxiliary heater 23 is an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is composed of an electric heater such as a PTC heater, and is provided in the air flow passage 3 on the windward side of the radiator 4 with respect to the air flow in the air flow passage 3 in the embodiment. .. Then, by energizing the auxiliary heater 23, the heating of the vehicle interior can be assisted.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted.
  • An air mix damper 28 for adjusting the ratio of ventilation to the heater 23 and the radiator 4 is provided.
  • FOOT (foot), VENT (vent), and DEF (diff) outlets are formed in the air flow passage 3 on the air downstream side of the radiator 4.
  • the outlet 29 is provided with an outlet switching damper 31 for switching and controlling the blowing of air from each of the outlets.
  • the vehicle air conditioner 1 includes a heat medium circulation circuit 61 for circulating a heat medium in the battery 55 to adjust the temperature of the battery 55. That is, in the embodiment, the battery 55 is the vehicle-mounted device according to the present invention.
  • the heat medium circulation circuit 61 of this embodiment includes a circulation pump 62 as a circulation device and a refrigerant-heat medium heat exchanger 64 as a heat exchanger for vehicle-mounted equipment, and the battery 55 is connected to the heat medium pipe 68. Is connected.
  • the heat medium pipe 68A is connected to the discharge side of the circulation pump 62, and the heat medium pipe 68A is connected to the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64.
  • a heat medium pipe 68B is connected to the outlet of the heat medium flow path 64A, and the heat medium pipe 68B is connected to the inlet of the battery 55.
  • the outlet of the battery 55 is connected to the heat medium pipe 68C, and the heat medium pipe 68C is connected to the suction side of the circulation pump 62.
  • the heat medium used in the heat medium circulation circuit 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as a heat medium.
  • a jacket structure is provided around the battery 55 so that a heat medium can be distributed in a heat exchange relationship with the battery 55.
  • the outlet of the refrigerant pipe 13F of the refrigerant circuit R that is, the branch portion of the refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and on the refrigerant upstream side of the indoor expansion valve 8.
  • One end of the branch pipe 72 is connected to B1.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 as a control valve composed of an electric expansion valve.
  • the auxiliary expansion valve 73 expands the refrigerant flowing into the above-mentioned refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 under reduced pressure, and can be fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B to form the refrigerant pipe 74.
  • the other end is the downstream side of the refrigerant of the check valve 20, and is connected to the refrigerant pipe 13C in front of the accumulator 12 (upstream side of the refrigerant).
  • these auxiliary expansion valves 73 and the like also form a part of the refrigerant circuit R of the heat pump device HP, and at the same time, form a part of the heat medium circulation circuit 61.
  • the branch portion B1 is located on the refrigerant outlet side of the outdoor heat exchanger 7, and the endothermic absorber 9 and the refrigerant-heat medium heat exchanger 64 are connected in parallel on the downstream side of the refrigerant of the branch portion B1. Further, in the embodiment, the refrigerant pipe 13F communicates with the branch portion B1 via the refrigerant pipe 13B.
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1.
  • the air conditioning controller 32 is composed of a microcomputer as an example of a computer including a processor.
  • the input of the air conditioning controller 32 (control device) is sucked into the air flow passage 3 from the outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, the outside air humidity sensor 34 that detects the outside air humidity, and the suction port 25.
  • the HVAC suction temperature sensor 36 that detects the temperature of the air
  • the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior
  • the refrigerant in the vehicle interior the refrigerant in the vehicle interior.
  • the indoor CO 2 concentration sensor 39 that detects the carbon concentration, the blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the blowout port 29, and the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 are detected.
  • the discharge pressure sensor 42, the discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, and the suction refrigerant temperature of the compressor 2 (the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2).
  • the suction temperature sensor 44 as a sensor for detecting the temperature of R) and the suction refrigerant pressure of the compressor 2 (the pressure of the refrigerant circuit R from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2) are detected.
  • the suction pressure sensor 45 as a low-pressure pressure sensor and the temperature of the radiator 4 (the temperature of the refrigerant passing through the radiator 4: the temperature of the refrigerant circuit R from the refrigerant outlet of the radiator 4 to the refrigerant inlet of the outdoor heat exchanger 7:
  • the radiator temperature sensor 46 as a temperature sensor that detects the radiator temperature TCI
  • the radiator pressure as a high-pressure pressure sensor that detects the refrigerant pressure of the radiator 4 (high-pressure side pressure of the refrigerant times R: radiator pressure PCI).
  • Heat absorption as a sensor for detecting the temperature of the sensor 47 and the heat absorber 9 (the temperature of the heat absorber 9 itself or the temperature of the air passing through the heat absorber 9 which is a physical quantity indicating the temperature of the heat absorber 9: the heat absorber temperature Te).
  • the device temperature sensor 48, the heat absorber pressure sensor 49 that detects the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and the amount of solar radiation into the vehicle interior are detected.
  • a photosensor type solar radiation sensor 51 For example, a photosensor type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, an air conditioning operation unit 53 for setting a set temperature and switching of air conditioning operation, and outdoor heat.
  • the temperature of the exchanger 7 (the temperature of the refrigerant immediately after exiting the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO.
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7), and the refrigerant pressure of the outdoor heat exchanger 7 (inside the outdoor heat exchanger 7 or in the outdoor heat exchanger 7).
  • the refrigerant immediately after coming out of the outdoor heat exchanger 7 Each output of the outdoor heat exchanger pressure sensor 56 that detects pressure) is connected.
  • the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium leaving the battery 55, or the temperature of the heat medium entering the battery 55: battery temperature Tb) is further input to the air conditioning controller 32.
  • Each output of the battery temperature sensor 76 to detect and the heat medium outlet temperature sensor 77 to detect the temperature of the heat medium (heat medium temperature Tw) exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is also connected. ing.
  • the output of the air conditioning controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, and the outdoor.
  • the expansion valve 6, the indoor expansion valve 8, the dehumidifying valve 22, the heating valve 21, each solenoid valve, the circulation pump 62, the auxiliary expansion valve 73, and the auxiliary heater 23 are connected.
  • the air conditioning controller 32 controls the outputs of the sensors and the settings input by the air conditioning operation unit 53.
  • the air conditioning controller 32 switches and executes each operation mode of the heating mode, the dehumidification mode, and the cooling mode, and cools the battery 55 (vehicle-mounted device) in the vehicle-mounted device cooling mode (vehicle-mounted device cooling mode). Execute operation mode). First, an operation mode for air-conditioning the interior of the vehicle will be described.
  • FIG. 1 shows the flow of the refrigerant (broken line arrow) in the refrigerant circuit R in the heating mode.
  • the air conditioning controller 32 auto mode
  • the air conditioning operation unit 53 manual mode
  • the air conditioning controller 32 opens the heating valve 21.
  • the indoor expansion valve 8 is fully closed.
  • the dehumidifying valve 22 is closed.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the auxiliary heater 23 and the radiator 4.
  • the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat by running or from the outside air that is ventilated by the outdoor blower 15 (endothermic).
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the heating valve 21, and enters the accumulator 12 via the check valve 20 of the refrigerant pipe 13C.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. Since the air heated by the radiator 4 is blown out from the outlet 29, the interior of the vehicle is heated by this.
  • the air conditioning controller 32 has a target radiator pressure PCO (target value of the pressure PCI of the radiator 4) from the target heater temperature TCO (target value of the air temperature on the leeward side of the radiator 4) calculated from the target blowout temperature TAO described later. Is calculated, and the rotation speed of the compressor 2 is calculated based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI. High pressure side pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. In addition to controlling, the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
  • target radiator pressure PCO target value of the pressure PCI of the radiator 4
  • TCO target value of the air temperature on the leeward side of the radiator 4
  • the auxiliary heater 23 is energized to generate heat to supplement the heating capacity.
  • the air conditioning controller 32 opens the dehumidifying valve 22 and auxiliary expansion when, for example, the battery temperature Tb (which may be the heat medium temperature Tw) detected by the battery temperature sensor 76 rises and exceeds a predetermined threshold value.
  • the valve 73 is also opened to control the valve opening degree. As a result, a part of the refrigerant discharged from the radiator 4 is diverted on the upstream side of the refrigerant of the outdoor expansion valve 6, and reaches the upstream side of the refrigerant of the indoor expansion valve 8 via the refrigerant pipe 13F.
  • the refrigerant then enters the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
  • the air conditioning controller 32 operates a circulation pump 62 to circulate the heat medium through the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the battery 55.
  • the heat medium that has been endothermic from the refrigerant and whose temperature has dropped is circulated to the battery 55, so that the battery 55 is cooled.
  • FIG. 3 shows the flow of the refrigerant (broken line arrow) in the refrigerant circuit R in the dehumidification mode.
  • the air conditioning controller 32 opens the dehumidification valve 22 in the heating mode state (the state in which the battery 55 is not cooled) and opens the indoor expansion valve 8 to reduce the pressure and expand the refrigerant.
  • the air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 so as to maintain the superheat degree (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value, and the endothermic action of the refrigerant generated in the heat absorber 9 at this time.
  • Moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the remaining refrigerant that has been split and flows into the refrigerant pipe 13J is decompressed by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.
  • the refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, so that the dehumidifying and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • Cooling Mode Next, the cooling mode will be described with reference to FIG.
  • this cooling mode which is executed at a high outside temperature such as in summer, the air conditioning controller 32 fully opens the valve opening degree of the outdoor expansion valve 6. Further, the indoor expansion valve 8 is opened to expand the refrigerant under reduced pressure, and the heating valve 21 and the dehumidifying valve 22 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 as shown by the broken line arrow in FIG.
  • the air in the air flow passage 3 is hardly ventilated to the radiator 4, or the ratio is small even when the air is ventilated (because of only reheating during cooling).
  • the refrigerant that has dissipated heat for the reheat during cooling by the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the outdoor expansion valve 6 as it is, passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7, and is ventilated there by traveling or by the outdoor blower 15. It is air-cooled by the outside air to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the endothermic device 9, and the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12.
  • the air cooled by the heat absorber 9 and dehumidified is blown out into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 when, for example, the battery temperature Tb (which may be the heat medium temperature Tw) detected by the battery temperature sensor 76 rises and exceeds a predetermined threshold value.
  • the valve opening is controlled.
  • a part of the refrigerant discharged from the outdoor heat exchanger 7 is diverted on the upstream side of the refrigerant of the indoor expansion valve 8 and enters the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then the refrigerant passes through the branch pipe 72.
  • -It flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
  • the air conditioning controller 32 operates a circulation pump 62 to circulate the heat medium through the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the battery 55.
  • the heat medium that has been endothermic from the refrigerant and whose temperature has dropped is circulated to the battery 55, so that the battery 55 is cooled.
  • the air conditioning controller 32 calculates the target blowout temperature TAO described above from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle interior from the outlet 29.
  • TAO (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects it. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air conditioning controller 32 selects one of the above operation modes based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowout temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowout temperature TAO.
  • FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R (broken line arrow) and the flow of the heat medium in the heat medium circulation circuit 61 (solid line arrow) in the vehicle-mounted equipment mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 to decompress and expand the refrigerant, and opens the dehumidifying valve 22. Further, the outdoor expansion valve 6 and the indoor expansion valve 8 are fully closed, and the heating valve 21 is also closed. Then, the compressor 2 is operated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. All the refrigerant radiated by the radiator 4 flows into the refrigerant pipe 13F through the refrigerant pipe 13E, and enters the refrigerant pipe 13B through the refrigerant pipe 13F.
  • the refrigerant that has flowed into the refrigerant pipe 13B flows into the branch pipe 72 and reaches the auxiliary expansion valve 73.
  • the refrigerant after the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
  • the air conditioning controller 32 operates the circulation pump 62.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where heat is absorbed by the refrigerant evaporating in the refrigerant flow path 64B, and the heat medium is absorbed. Will be cooled.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats circulation sucked into the circulation pump 62 (indicated by a solid arrow in FIG. 5).
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the heat medium temperature Tw (which may be the battery temperature Tb) detected by the heat medium outlet temperature sensor 77, thereby controlling the battery 55. To cool. As a result, the battery 55 can be strongly cooled.
  • Tw which may be the battery temperature Tb
  • the failure location determination mode executed by the air conditioning controller 32 will be described with reference to the flowchart of FIG.
  • the value input from each of the sensors described above indicates an abnormality, and the abnormality is any one of the outdoor expansion valve 6, the indoor expansion valve 8, the auxiliary expansion valve 73, the heating valve 21, and the dehumidifying valve 22.
  • the failure location determination mode for identifying which control valve has failed is executed.
  • the air conditioning controller 32 does not execute the failure location determination mode, and the air conditioning operation unit 53 displays a predetermined error. Do.
  • the values of the high pressure side pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 (high pressure pressure sensor) and the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 (low pressure pressure sensor) are set.
  • the failure location determination mode is executed on condition that the compressor 2 is returned to the operable range (the range that is not a high pressure abnormality or a low pressure abnormality).
  • the air conditioning controller 32 fixes the air volumes of the outdoor blower 15 and the indoor blower 27 to a constant value. Then, in step S1 of FIG. 6, the air conditioning controller 32 first operates the compressor 2 with the operation mode as the cooling mode. Next, the high pressure side pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 in step S2 has risen to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 has a predetermined abnormality. It is determined whether or not there is an abnormality in which the value has dropped to the value or the heat absorber temperature Te detected by the heat absorber temperature sensor 48 does not drop.
  • step S3 it is determined whether or not the endothermic temperature Te has decreased. If the heat absorber temperature Te does not drop in the dehumidification mode, it can be said that the indoor expansion valve 8 has closed (does not operate while fully closed). Therefore, the air conditioning controller 32 proceeds to step S5, and the indoor expansion valve 8 moves. It is identified as having a failure, and a predetermined error display to that effect is displayed on the air conditioning operation unit 53.
  • step S4 of FIG. 6 When the heat absorber temperature Te is lowered in step S4 of FIG. 6, it can be determined that the indoor expansion valve 8 is normal, so that the air conditioning controller 32 proceeds to step S6 and the outdoor expansion valve 6 is out of order. In particular, the air conditioning operation unit 53 is displayed with a predetermined error to that effect.
  • step S8 it is determined whether or not there is an abnormality in which the endothermic temperature Te does not decrease. If there is no abnormality in the cooling mode, that is, when the dehumidification mode is set with no abnormality in the outdoor expansion valve 6 or the indoor expansion valve 8, the dehumidifier temperature Te does not decrease, which means that the dehumidification valve 22 is closed (closed).
  • the air conditioning controller 32 proceeds to step S10, identifies that the dehumidifying valve 22 is out of order, and displays a predetermined error to that effect on the air conditioning operation unit 53.
  • step S8 the heat absorber temperature Te drops
  • the air conditioning controller 32 proceeds to step S9 and switches the operation mode to the heating mode this time.
  • step S11 the high pressure side pressure of the refrigerant circuit R has risen to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 has decreased to a predetermined abnormal value. Determine if there is any abnormality.
  • the air conditioning controller 32 proceeds to step S13. It is determined that the heating valve 21 is out of order, and a predetermined error display to that effect is displayed on the air conditioning operation unit 53.
  • step S11 the air conditioning controller 32 proceeds to step S12, and this time, the operation mode is switched to the vehicle-mounted equipment cooling mode.
  • step S14 the high pressure side pressure of the refrigerant circuit R rose to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 decreased to a predetermined abnormal value. Determine if there is any abnormality.
  • step S15 identifies that the auxiliary expansion valve 73 is out of order, and displays a predetermined error to that effect on the air conditioning operation unit 53.
  • step S14 the air conditioning controller 32 proceeds to step S16 to determine that each control valve is normal, and predetermines that an abnormality other than the control valve has occurred in the air conditioning operation unit 53. Error display shall be performed.
  • the air conditioning controller 32 is among the outdoor expansion valve 6, the indoor expansion valve 8, the auxiliary expansion valve 73, the heating valve 21, and the dehumidifying valve 22 based on the information regarding the temperature and pressure of the refrigerant circuit R.
  • each operation mode of the cooling mode, the dehumidifying mode, the heating mode, and the vehicle-mounted equipment cooling mode is sequentially executed as shown in the flowchart of FIG.
  • the failure location determination mode for determining the failed control valve is executed from the temperature and pressure of the refrigerant circuit R obtained in the executed operation mode, the failed control valve can be identified relatively easily and accurately. You will be able to do it.
  • the air conditioning controller 32 does not execute the failure location determination mode, so that unnecessary operation and time can be saved.
  • a radiator pressure sensor 47 capable of detecting the high pressure side pressure of the refrigerant circuit R and a suction pressure sensor 45 capable of detecting the low pressure side pressure of the refrigerant circuit R are provided in all operation modes, and the radiator R is provided.
  • the radiator temperature sensor 46 that can detect the temperature of the refrigerant circuit R from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant inlet of the outdoor heat exchanger 7, and the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2.
  • the suction temperature sensor 44 that can detect the temperature and pressure of R
  • the suction pressure sensor 45 and the heat absorber temperature sensor 48 that can detect the heat absorber temperature Te are connected to the air conditioning controller 32, the failure due to the failure location determination mode It is possible to smoothly determine the control valve.
  • each operation mode in the failure location determination mode is started on condition that the detection value of the radiator pressure sensor 47 and the detection value of the suction pressure sensor 45 are within the range in which the compressor 2 can be operated. Furthermore, in the failure location determination mode, the air volumes of the indoor blower 27 and the outdoor blower 15 are fixed to a constant value, so that the control valve in which the air conditioner controller 32 has failed in the failure location determination mode can be accurately controlled. You will be able to identify.
  • the outdoor expansion valve 6, the indoor expansion valve 8, the heating valve 21, and the dehumidifying valve 22 are provided as control valves, and the cooling mode, the dehumidifying mode, and the heating mode are executed as the operation modes, and further controlled. It is particularly effective for the vehicle air conditioner 1 which includes an auxiliary expansion valve 73 as a valve and executes a vehicle-mounted equipment cooling mode as an operation mode.
  • the air conditioning controller 32 when an abnormality caused by a failure of any of the control valves occurs, the air conditioning controller 32 automatically executes the failure location determination mode, but the present invention is not limited to this, and the air conditioning operation unit 53 Or, the air conditioning controller 32 may start the failure location determination mode on condition that a predetermined input operation is performed to an external personal computer or the like connected to the air conditioning controller 32.
  • the air conditioning controller 32 shall notify the air conditioning operating unit 53 that an abnormality may have occurred in any of the control valves by displaying a predetermined error. By doing so, it is possible to execute the failure location determination mode and identify the failed control valve only when a predetermined input operation is performed by the operator during maintenance by a repair shop or the like. Therefore, it is possible to avoid the inconvenience that the failure location determination mode is executed due to an erroneous operation by the vehicle user.
  • the battery 55 is taken up as a vehicle-mounted device, but the present invention is not limited to this, and the present invention is also effective for an electric motor for traveling and an inverter device for driving the electric motor.
  • the configuration of the air conditioning controller 32 described in the examples, the configuration of the heat pump device HP of the vehicle air conditioner 1 and the configuration of the heat medium circulation circuit 61 are not limited thereto, and are modified without departing from the spirit of the present invention. It goes without saying that it is possible.
  • Vehicle air conditioner 2 Compressor 4 Heat radiator 6 Outdoor expansion valve (control valve) 7 Outdoor heat exchanger 8 Indoor expansion valve (control valve) 9 Heat absorber 21 Heating valve (control valve) 22 Dehumidifying valve (control valve) 32 Air conditioning controller (control device) 44 Suction temperature sensor (sensor) 45 Suction pressure sensor (low pressure pressure sensor) 46 Dissipator temperature sensor (temperature sensor) 47 Dissipator pressure sensor (high pressure pressure sensor) 55 Battery (Vehicle-mounted equipment) 61 Heat medium circulation circuit 64 Refrigerant-heat medium heat exchanger (heat exchanger for vehicle-mounted equipment) 73 Auxiliary expansion valve (control valve)

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The purpose of the present invention is to provide a vehicle air conditioner capable of relatively easily and accurately specifying a failed control valve. An air conditioning controller (32) according to the present invention sequentially executes respective operation modes, on the basis of information related to the temperature and/or pressure of a refrigerant circuit (R), upon determining that an abnormality has occurred due to a failure of any one of control valves (an outdoor expansion valve (6), an indoor expansion valve (8), an auxiliary expansion valve (73), a heater valve (21), and a dehumidification valve (22)), and executes a failure part defining mode for defining a failed control valve from the temperature and/or pressure of the refrigerant circuit (R) obtained through the executed operation mode .

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、室外熱交換器に流入する冷媒を減圧させる室外膨張弁と、冷媒の流れを切り換える複数の電磁弁を備え、これら電磁弁を制御することで、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器のみ、又は、この吸熱器と室外熱交換器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードとを切り換えて実行するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and a radiator that is provided on the vehicle interior side are provided. A heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is installed outside the vehicle interior to dissipate or absorb the refrigerant, an outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger, and a plurality of switches for switching the flow of the refrigerant. A heating mode equipped with electromagnetic valves and controlling these electromagnetic valves to dissipate the refrigerant discharged from the compressor in the radiator and absorb the refrigerant dissipated in this radiator in the outdoor heat exchanger, and from the compressor. A dehumidification mode in which the discharged refrigerant is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed only by the heat absorber, or the heat absorber and the outdoor heat exchanger absorb heat, and the refrigerant discharged from the compressor is exchanged for outdoor heat. A device has been developed that switches between a cooling mode in which heat is dissipated in a container and heat is absorbed in a heat absorber (see, for example, Patent Document 1).
 一方、バッテリ(車両搭載機器)は自己発熱等で高温となった環境下で充放電を行うと、劣化が進行し、やがては作動不良を起こして破損する危険性もある。そこで、冷媒回路を循環する冷媒と熱媒体を熱交換させる冷媒-熱媒体熱交換器(車両搭載機器用熱交換器)を設け、この冷媒-熱媒体熱交換器で冷媒を吸熱させ、それにより冷却された熱媒体(冷却水)をバッテリに循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, if the battery (vehicle-mounted device) is charged and discharged in an environment where the temperature is high due to self-heating, etc., deterioration will progress, and there is a risk that it will eventually malfunction and be damaged. Therefore, a refrigerant-heat medium heat exchanger (heat exchanger for vehicle-mounted equipment) is provided to exchange heat between the refrigerant circulating in the refrigerant circuit and the heat medium, and the refrigerant-heat medium heat exchanger absorbs heat from the refrigerant. A device has also been developed in which the battery can be cooled by circulating the cooled heat medium (cooling water) through the battery (see, for example, Patent Documents 2 and 3).
特開2017-154521号公報JP-A-2017-154521 特許第5668700号公報Japanese Patent No. 5668700 特許第5440426号公報Japanese Patent No. 5440426
 上記のような室外膨張弁や電磁弁等の制御弁が故障した場合、正常な動作を実現することができなくなるが、従来では冷媒回路の温度や圧力から作業者が故障した制御弁を特定するか、制御装置による複雑な判定方法で制御弁の故障を特定するようにしていたため、誤った判断が発生するか、或いは、制御が煩雑化していた。そのため、メンテナンスのための時間とコストが高騰してしまう問題があった。 If a control valve such as an outdoor expansion valve or a solenoid valve as described above fails, normal operation cannot be achieved, but conventionally, the operator identifies the failed control valve from the temperature and pressure of the refrigerant circuit. Or, since the failure of the control valve is identified by a complicated determination method by the control device, an erroneous determination occurs or the control is complicated. Therefore, there is a problem that the time and cost for maintenance increase.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、比較的簡単、且つ、精度良く故障した制御弁の特定を行うことができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the conventional technical problem, and provides an air conditioner for a vehicle capable of identifying a failed control valve relatively easily and accurately. With the goal.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機、冷媒を放熱させて車室内に供給する空気を加熱する放熱器、冷媒を吸熱させて車室内に供給する空気を冷却する吸熱器、車室外に設けられて冷媒を吸熱又は放熱させる室外熱交換器、及び、冷媒の流れを制御するための複数の制御弁を有する冷媒回路と、制御装置を備え、この制御装置によって制御弁を制御することにより、複数の運転モードを切り換えて実行するものであって、制御装置は、冷媒回路の温度、及び/又は、圧力に関する情報に基づき、何れかの制御弁の故障が原因である異常が発生したと判断した場合、各運転モードを順次実行すると共に、実行した運転モードで得られる冷媒回路の温度、及び/又は、圧力から、故障した制御弁を確定させる故障箇所確定モードを実行することを特徴とする。 The vehicle air conditioner of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior, and a heat absorber that absorbs the refrigerant and cools the air supplied to the vehicle interior. , An outdoor heat exchanger provided outside the vehicle interior to absorb or dissipate the refrigerant, a refrigerant circuit having a plurality of control valves for controlling the flow of the refrigerant, and a control device, and the control valve is provided by this control device. By controlling, a plurality of operation modes are switched and executed, and the control device has an abnormality caused by a failure of one of the control valves based on information on the temperature and / or pressure of the refrigerant circuit. When it is determined that has occurred, each operation mode is executed in sequence, and a failure location determination mode for determining the failed control valve is executed from the temperature and / or pressure of the refrigerant circuit obtained in the executed operation mode. It is characterized by that.
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、故障した制御弁が特定されている場合には、故障箇所確定モードを実行しないことを特徴とする。 The vehicle air conditioner according to the second aspect of the present invention is characterized in that, in the above invention, the control device does not execute the failure location determination mode when the failed control valve is specified.
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、所定の入力操作が行われたことを条件として、故障箇所確定モードを実行することを特徴とする。 The vehicle air conditioner according to claim 3 is characterized in that, in each of the above inventions, the control device executes a failure location determination mode on condition that a predetermined input operation is performed.
 請求項4の発明の車両用空気調和装置は、上記各発明において全ての運転モードにおいて、冷媒回路の高圧側圧力を検出可能な高圧圧力センサと、冷媒回路の低圧側圧力を検出可能な低圧圧力センサを備えたことを特徴とする。 The vehicle air conditioner according to the fourth aspect of the present invention has a high pressure sensor capable of detecting the high pressure side pressure of the refrigerant circuit and a low pressure pressure capable of detecting the low pressure side pressure of the refrigerant circuit in all the operation modes in each of the above inventions. It is characterized by having a sensor.
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、高圧圧力センサの検出値及び低圧圧力センサの検出値が圧縮機を運転可能な範囲となったことを条件として故障箇所確定モードでの各運転モードを開始することを特徴とする。 In the vehicle air conditioner according to the invention of claim 5, in the above invention, the control device has a failure location on the condition that the detection value of the high pressure pressure sensor and the detection value of the low pressure pressure sensor are within the range in which the compressor can be operated. It is characterized by starting each operation mode in the confirmation mode.
 請求項6の発明の車両用空気調和装置は、上記各発明において放熱器の冷媒出口から室外熱交換器の冷媒入口に至る冷媒回路の温度を検出可能な温度センサを備えたことを特徴とする。 The vehicle air conditioner according to claim 6 is characterized in that, in each of the above inventions, the temperature sensor capable of detecting the temperature of the refrigerant circuit from the refrigerant outlet of the radiator to the refrigerant inlet of the outdoor heat exchanger is provided. ..
 請求項7の発明の車両用空気調和装置は、上記各発明において室外熱交換器の冷媒出口から圧縮機の冷媒吸込側に至る冷媒回路の温度、及び/又は、圧力を検出可能なセンサを備えたことを特徴とする。 The vehicle air conditioner according to the invention of claim 7 includes a sensor capable of detecting the temperature and / or pressure of the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger to the refrigerant suction side of the compressor in each of the above inventions. It is characterized by that.
 請求項8の発明の車両用空気調和装置は、上記各発明において吸熱器の温度、又は、当該吸熱器の温度を示す物理量を検出可能なセンサを備えたことを特徴とする。 The vehicle air conditioner according to claim 8 is characterized in that, in each of the above inventions, the vehicle air conditioner is provided with a sensor capable of detecting the temperature of the heat absorber or a physical quantity indicating the temperature of the heat absorber.
 請求項9の発明の車両用空気調和装置は、上記各発明において吸熱器及び放熱器に空気を通風する室内送風機と、室外熱交換器に外気を通風する室外送風機を備え、制御装置は、故障箇所確定モードにおいては、室内送風機及び室外送風機の風量を一定の値に固定することを特徴とする。 The vehicle air conditioner according to claim 9 includes an indoor blower that ventilates air to a heat absorber and a radiator and an outdoor blower that ventilates outside air to an outdoor heat exchanger in each of the above inventions, and the control device fails. The location determination mode is characterized in that the air volumes of the indoor blower and the outdoor blower are fixed to a constant value.
 請求項10の発明の車両用空気調和装置は、上記各発明において制御弁として、室外熱交換器への冷媒の流入を制御する室外膨張弁と、吸熱器への冷媒の流入を制御する室内膨張弁と、暖房時に開放される暖房弁と、除湿時に開放される除湿弁を備え、制御装置は運転モードとして、圧縮機から吐出された冷媒を放熱器、及び/又は、室外熱交換器にて放熱させ、吸熱器にて吸熱させる冷房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、室外熱交換器及び吸熱器にて吸熱させる除湿モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、室外熱交換器にて吸熱させる暖房モードを有することを特徴とする。 The vehicle air conditioner according to claim 10 has, as control valves in each of the above inventions, an outdoor expansion valve that controls the inflow of refrigerant into the outdoor heat exchanger and an indoor expansion that controls the inflow of refrigerant into the heat exchanger. It is equipped with a valve, a heating valve that is opened during heating, and a dehumidifying valve that is opened during dehumidification. The control device sets the operation mode and uses a radiator and / or an outdoor heat exchanger to dissipate the refrigerant discharged from the compressor. A cooling mode in which heat is dissipated and absorbed by a heat absorber, a dehumidifying mode in which the refrigerant discharged from the compressor is dissipated by a radiator and absorbed by an outdoor heat exchanger and a heat exchanger, and a refrigerant discharged from the compressor. It is characterized by having a heating mode in which heat is radiated by a radiator and heat is absorbed by an outdoor heat exchanger.
 請求項11の発明の車両用空気調和装置は、上記各発明において冷媒を吸熱させて車両搭載機器を冷却するための車両搭載機器用熱交換器と、この車両搭載機器用熱交換器への冷媒の流入を制御するための制御弁としての補助膨張弁を備え、制御装置は、運転モードとして、車両搭載機器用熱交換器にて冷媒を吸熱させる車両搭載機器冷却モードを更に有することを特徴とする。 The vehicle air conditioner according to claim 11 has a heat exchanger for vehicle-mounted equipment for absorbing heat of a refrigerant to cool the vehicle-mounted equipment and a refrigerant for the heat exchanger for the vehicle-mounted equipment in each of the above inventions. An auxiliary expansion valve as a control valve for controlling the inflow of the refrigerant is provided, and the control device further has a vehicle-mounted equipment cooling mode in which the refrigerant is absorbed by the vehicle-mounted equipment heat exchanger as an operation mode. To do.
 本発明によれば、冷媒を圧縮する圧縮機、冷媒を放熱させて車室内に供給する空気を加熱する放熱器、冷媒を吸熱させて車室内に供給する空気を冷却する吸熱器、車室外に設けられて冷媒を吸熱又は放熱させる室外熱交換器、及び、冷媒の流れを制御するための複数の制御弁を有する冷媒回路と、制御装置を備え、この制御装置によって制御弁を制御することにより、複数の運転モードを切り換えて実行する車両用空気調和装置において、制御装置が、冷媒回路の温度、及び/又は、圧力に関する情報に基づき、何れかの制御弁の故障が原因である異常が発生したと判断した場合、各運転モードを順次実行すると共に、実行した運転モードで得られる冷媒回路の温度、及び/又は、圧力から、故障した制御弁を確定させる故障箇所確定モードを実行するようにしたので、比較的簡単、且つ、精度良く、故障した制御弁の特定を行うことができるようになる。 According to the present invention, a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior, a heat exchanger that absorbs the refrigerant and cools the air supplied to the vehicle interior, and the outside of the vehicle interior. An outdoor heat exchanger provided to absorb or dissipate the refrigerant, a refrigerant circuit having a plurality of control valves for controlling the flow of the refrigerant, and a control device are provided, and the control valve is controlled by this control device. , In a vehicle air conditioner that switches between multiple operation modes, an abnormality occurs in the control device due to a failure of one of the control valves based on information on the temperature and / or pressure of the refrigerant circuit. If it is determined that the failure has occurred, each operation mode is executed in sequence, and the failure location determination mode for determining the failed control valve is executed from the temperature and / or pressure of the refrigerant circuit obtained in the executed operation mode. Therefore, it becomes possible to identify the failed control valve relatively easily and accurately.
 これにより、メンテナンスのための時間とコストの高騰を未然に解消することができるようになる。この場合、故障した制御弁が既に特定されている場合には、請求項2の発明の如く制御装置が故障箇所確定モードを実行しないようにすることで、無用な動作と時間を省くことができるようになる。 This makes it possible to eliminate the soaring time and cost for maintenance. In this case, when the failed control valve has already been identified, unnecessary operation and time can be saved by preventing the control device from executing the failure location determination mode as in the invention of claim 2. Will be.
 また、請求項3の発明の如く制御装置が、所定の入力操作が行われたことを条件として、故障箇所確定モードを実行するようにすれば、修理工場等によるメンテナンスの際に、作業者による所定の入力操作が行われた場合のみ、故障箇所確定モードを実行して、故障した制御弁の特定を行うことが可能となり、車両の使用者による誤った操作で故障箇所確定モードが実行されてしまう不都合を未然に回避することができるようになる。 Further, if the control device executes the failure location determination mode on the condition that a predetermined input operation is performed as in the invention of claim 3, the operator may perform maintenance by a repair shop or the like. Only when a predetermined input operation is performed, it is possible to execute the failure location determination mode to identify the failed control valve, and the failure location determination mode is executed by an erroneous operation by the vehicle user. It becomes possible to avoid such inconvenience.
 この場合、請求項4の発明の如く全ての運転モードにおいて、冷媒回路の高圧側圧力を検出可能な高圧圧力センサや冷媒回路の低圧側圧力を検出可能な低圧圧力センサ、請求項6の発明の如く放熱器の冷媒出口から室外熱交換器の冷媒入口に至る冷媒回路の温度を検出可能な温度センサ、請求項7の発明の如く室外熱交換器の冷媒出口から圧縮機の冷媒吸込側に至る冷媒回路の温度、及び/又は、圧力を検出可能なセンサ、請求項8の発明の如く吸熱器の温度、又は、当該吸熱器の温度を示す物理量を検出可能なセンサを制御装置に設けることで、故障箇所確定モードによる故障した制御弁の確定を円滑に実現することが可能となる。 In this case, according to the invention of claim 6, the high pressure sensor capable of detecting the high pressure side pressure of the refrigerant circuit, the low pressure pressure sensor capable of detecting the low pressure side pressure of the refrigerant circuit in all the operation modes as in the invention of claim 4. A temperature sensor capable of detecting the temperature of the refrigerant circuit from the refrigerant outlet of the radiator to the refrigerant inlet of the outdoor heat exchanger, and from the refrigerant outlet of the outdoor heat exchanger to the refrigerant suction side of the compressor as in the invention of claim 7. By providing the control device with a sensor capable of detecting the temperature and / or pressure of the refrigerant circuit, and a sensor capable of detecting the temperature of the heat absorber or the physical quantity indicating the temperature of the heat absorber as in the invention of claim 8. , It becomes possible to smoothly confirm the failed control valve by the failure location determination mode.
 この場合、請求項5の発明の如く高圧圧力センサの検出値及び低圧圧力センサの検出値が圧縮機を運転可能な範囲となったことを条件として故障箇所確定モードでの各運転モードを開始するようにし、更には請求項9の発明の如く故障箇所確定モードでは、吸熱器及び放熱器に空気を通風する室内送風機と、室外熱交換器に外気を通風する室外送風機の風量を一定の値に固定するようにすれば、故障箇所確定モードにおいて制御装置が故障した制御弁を精度良く特定することができるようになる。 In this case, each operation mode in the failure location determination mode is started on condition that the detection value of the high pressure pressure sensor and the detection value of the low pressure pressure sensor are within the range in which the compressor can be operated as in the invention of claim 5. Further, in the failure location determination mode as in the invention of claim 9, the air volume of the indoor blower that ventilates the air to the heat absorber and the radiator and the outdoor blower that ventilates the outside air to the outdoor heat exchanger is set to a constant value. If it is fixed, the control device can accurately identify the failed control valve in the failure location determination mode.
 以上の発明は、請求項10の発明の如く制御弁として室外膨張弁、室内膨張弁、暖房弁や除湿弁を備えて、運転モードとして冷房モード、除湿モード、暖房モードを実行する車両用空気調和装置や、請求項11の発明の如く制御弁として補助膨張弁を備えて、運転モードとして車両搭載機器冷却モードを実行する車両用空気調和装置に特に有効である。 The above invention includes an outdoor expansion valve, an indoor expansion valve, a heating valve and a dehumidifying valve as control valves as in the invention of claim 10, and air conditioning for a vehicle that executes a cooling mode, a dehumidifying mode, and a heating mode as operation modes. It is particularly effective for an air conditioner for a vehicle, which is provided with an auxiliary expansion valve as a control valve as in the invention of claim 11 and executes a vehicle-mounted equipment cooling mode as an operation mode.
本発明を適用した車両用空気調和装置の一実施例の構成図である(暖房モード)。It is a block diagram of one Example of the air conditioner for a vehicle to which this invention is applied (heating mode). 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。It is a block diagram of the air-conditioning controller as a control device of the air conditioner for a vehicle of FIG. 図2の空調コントローラによる除湿モードを説明する図である。It is a figure explaining the dehumidification mode by the air-conditioning controller of FIG. 図2の空調コントローラによる冷房モードを説明する図である。It is a figure explaining the cooling mode by the air-conditioning controller of FIG. 図2の空調コントローラによる車両搭載機器冷却モードを説明する図である。It is a figure explaining the vehicle-mounted equipment cooling mode by the air-conditioning controller of FIG. 図2の空調コントローラが実行する故障箇所確定モードを説明するフローチャートである。It is a flowchart explaining the failure location determination mode executed by the air conditioning controller of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウムイオンバッテリ)が搭載され、外部電源からバッテリ55に充電された電力を走行用モータ(電動モータ)に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment to which the present invention is applied. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal engine) is not mounted, and the vehicle is equipped with a battery 55 (for example, a lithium ion battery), and the battery 55 is supplied from an external power source. It is driven and traveled by supplying the electric power charged to the traveling motor (electric motor). The vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを有するヒートポンプ装置HPにより暖房モードを行い、更に、除湿モードや、冷房モードの各運転モードを選択的に実行することで、車室内の空調を行うものである。更にまた、後述する熱媒体循環回路61を用いてバッテリ55を冷却する車両搭載機器冷却モードも実行する。尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であることは云うまでもない。 That is, the vehicle air conditioner 1 performs the heating mode by the heat pump device HP having the refrigerant circuit R in the electric vehicle that cannot be heated by the waste heat of the engine, and further selectively selects the dehumidifying mode and the cooling mode. By executing this, the air conditioning inside the vehicle interior is performed. Furthermore, a vehicle-mounted device cooling mode for cooling the battery 55 using the heat medium circulation circuit 61 described later is also executed. Needless to say, the present invention is effective not only for the electric vehicle as a vehicle but also for a so-called hybrid vehicle that uses an engine and an electric motor for traveling.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、バッテリ55から給電されて冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動膨張弁から成る制御弁としての室外膨張弁6と、冷房時には冷媒を放熱させる凝縮器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動膨張弁から成る制御弁としての室内膨張弁8と、空気流通路3内に設けられて冷房時(除湿時)に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、ヒートポンプ装置HPの冷媒回路Rが構成されている。室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。 The vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and is an electric compressor that is supplied with power from the battery 55 to compress the refrigerant. The (electric compressor) 2 and the high-temperature and high-pressure refrigerant discharged from the compressor 2 are provided in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle interior is ventilated and circulated, and flow in through the refrigerant pipe 13G. An outdoor expansion valve 6 as a control valve including a radiator 4 for radiating the refrigerant to heat the air supplied to the vehicle interior and an electric expansion valve for reducing and expanding the refrigerant during heating, and radiating the refrigerant during cooling. Control consisting of an outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as a condenser and absorb heat of the refrigerant during heating, and an electric expansion valve for decompressing and expanding the refrigerant. An indoor expansion valve 8 as a valve, a heat exchanger 9 provided in the air flow passage 3 for cooling the air supplied to the vehicle interior by absorbing heat from the outside of the vehicle interior to the refrigerant during cooling (during dehumidification). The accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R of the heat pump device HP is configured. The outdoor expansion valve 6 and the indoor expansion valve 8 expand the refrigerant under reduced pressure and can be fully opened or fully closed.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。 Further, the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via the check valve 18. The check valve 18 has a forward direction on the refrigerant pipe 13B side, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁から成る制御弁としての暖房弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cに逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is connected to the heat absorber 9 via a heating valve 21 as a control valve including an electromagnetic valve opened at the time of heating. It is communicatively connected to the refrigerant pipe 13C located on the outlet side. Then, the check valve 20 is connected to the refrigerant pipe 13C downstream from the connection point of the refrigerant pipe 13D, the refrigerant pipe 13C downstream from the check valve 20 is connected to the accumulator 12, and the accumulator 12 is the compressor 2. It is connected to the refrigerant suction side of. The check valve 20 has the accumulator 12 side in the forward direction.
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側の放熱器4の冷媒出口側)に位置する分岐部B2で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁から成る制御弁としての除湿弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into the refrigerant pipe 13J and the refrigerant pipe 13F at a branch portion B2 located in front of the outdoor expansion valve 6 (the refrigerant outlet side of the radiator 4 on the upstream side of the refrigerant). One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13F is on the downstream side of the refrigerant of the check valve 18 via the dehumidifying valve 22 as a control valve composed of a solenoid valve opened at the time of dehumidification, and is on the upstream side of the refrigerant of the indoor expansion valve 8. It is communicatively connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It is a bypass circuit that bypasses 18.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed. The suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided. Further, an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
 また、図1において23は補助加熱装置としての補助ヒータである。この補助ヒータ23はPTCヒータ等の電気ヒータから構成されており、実施例では空気流通路3の空気の流れに対して、放熱器4の風上側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電することで、車室内の暖房補助を行うことができるように構成されている。 Further, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device. The auxiliary heater 23 is composed of an electric heater such as a PTC heater, and is provided in the air flow passage 3 on the windward side of the radiator 4 with respect to the air flow in the air flow passage 3 in the embodiment. .. Then, by energizing the auxiliary heater 23, the heating of the vehicle interior can be assisted.
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted. An air mix damper 28 for adjusting the ratio of ventilation to the heater 23 and the radiator 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (diff) outlets (represented by the outlet 29 in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The outlet 29 is provided with an outlet switching damper 31 for switching and controlling the blowing of air from each of the outlets.
 更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するための熱媒体循環回路61を備えている。即ち、実施例においてはバッテリ55が本発明での車両搭載機器となる。 Further, the vehicle air conditioner 1 includes a heat medium circulation circuit 61 for circulating a heat medium in the battery 55 to adjust the temperature of the battery 55. That is, in the embodiment, the battery 55 is the vehicle-mounted device according to the present invention.
 この実施例の熱媒体循環回路61は、循環装置としての循環ポンプ62と、車両搭載機器用熱交換器としての冷媒-熱媒体熱交換器64を備え、それらとバッテリ55が熱媒体配管68にて接続されている。 The heat medium circulation circuit 61 of this embodiment includes a circulation pump 62 as a circulation device and a refrigerant-heat medium heat exchanger 64 as a heat exchanger for vehicle-mounted equipment, and the battery 55 is connected to the heat medium pipe 68. Is connected.
 実施例の場合、循環ポンプ62の吐出側に熱媒体配管68Aが接続され、この熱媒体配管68Aは冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口に接続されている。そして、この熱媒体流路64Aの出口に熱媒体配管68Bが接続され、この熱媒体配管68Bはバッテリ55の入口に接続されている。そして、バッテリ55の出口は熱媒体配管68Cに接続され、熱媒体配管68Cは循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the heat medium pipe 68A is connected to the discharge side of the circulation pump 62, and the heat medium pipe 68A is connected to the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. A heat medium pipe 68B is connected to the outlet of the heat medium flow path 64A, and the heat medium pipe 68B is connected to the inlet of the battery 55. The outlet of the battery 55 is connected to the heat medium pipe 68C, and the heat medium pipe 68C is connected to the suction side of the circulation pump 62.
 この熱媒体循環回路61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the heat medium circulation circuit 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the embodiment, water is used as a heat medium. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can be distributed in a heat exchange relationship with the battery 55.
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bの分岐部B1には分岐配管72の一端が接続されている。この分岐配管72には電動膨張弁から構成された制御弁としての補助膨張弁73が設けられている。この補助膨張弁73は冷媒-熱媒体熱交換器64の前述した冷媒流路64Bに流入する冷媒を減圧膨張させると共に、全閉も可能とされている。 On the other hand, the outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, the branch portion of the refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and on the refrigerant upstream side of the indoor expansion valve 8. One end of the branch pipe 72 is connected to B1. The branch pipe 72 is provided with an auxiliary expansion valve 73 as a control valve composed of an electric expansion valve. The auxiliary expansion valve 73 expands the refrigerant flowing into the above-mentioned refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 under reduced pressure, and can be fully closed.
 そして、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端は逆止弁20の冷媒下流側であって、アキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等もヒートポンプ装置HPの冷媒回路Rの一部を構成すると同時に、熱媒体循環回路61の一部をも構成することになる。 The other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B to form the refrigerant pipe 74. The other end is the downstream side of the refrigerant of the check valve 20, and is connected to the refrigerant pipe 13C in front of the accumulator 12 (upstream side of the refrigerant). Then, these auxiliary expansion valves 73 and the like also form a part of the refrigerant circuit R of the heat pump device HP, and at the same time, form a part of the heat medium circulation circuit 61.
 上記分岐部B1は室外熱交換器7の冷媒出口側に位置しており、吸熱器9と冷媒-熱媒体熱交換器64は分岐部B1の冷媒下流側で並列に接続されたかたちとなる。また、実施例では冷媒配管13Fは、冷媒配管13Bを介してこの分岐部B1に連通されたかたちとなる。 The branch portion B1 is located on the refrigerant outlet side of the outdoor heat exchanger 7, and the endothermic absorber 9 and the refrigerant-heat medium heat exchanger 64 are connected in parallel on the downstream side of the refrigerant of the branch portion B1. Further, in the embodiment, the refrigerant pipe 13F communicates with the branch portion B1 via the refrigerant pipe 13B.
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管27に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。 When the auxiliary expansion valve 73 is open, the refrigerant (part or all of the refrigerant) discharged from the refrigerant pipe 13F and the outdoor heat exchanger 7 flows into the branch pipe 27, is depressurized by the auxiliary expansion valve 73, and then the refrigerant. -It flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 via the accumulator 12.
 次に、図2において32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。 Next, in FIG. 2, reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1. The air conditioning controller 32 is composed of a microcomputer as an example of a computer including a processor.
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度(室外熱交換器7の冷媒出口から圧縮機2の冷媒吸込側に至る冷媒回路Rの温度)を検出するセンサとしての吸込温度センサ44と、圧縮機2の吸込冷媒圧力(室外熱交換器7の冷媒出口から圧縮機2の冷媒吸込側に至る冷媒回路Rの圧力)を検出する低圧圧力センサとしての吸込圧力センサ45と、放熱器4の温度(放熱器4を経た冷媒の温度:放熱器4の冷媒出口から室外熱交換器7の冷媒入口に至る冷媒回路Rの温度:放熱器温度TCI)を検出する温度センサとしての放熱器温度センサ46と、放熱器4の冷媒圧力(冷媒回Rの高圧側圧力:放熱器圧力PCI)を検出する高圧圧力センサとしての放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9の温度を示す物理量である吸熱器9を経た空気の温度:吸熱器温度Te)を検出するセンサとしての吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。 The input of the air conditioning controller 32 (control device) is sucked into the air flow passage 3 from the outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, the outside air humidity sensor 34 that detects the outside air humidity, and the suction port 25. The HVAC suction temperature sensor 36 that detects the temperature of the air, the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior, and the refrigerant in the vehicle interior. The indoor CO 2 concentration sensor 39 that detects the carbon concentration, the blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the blowout port 29, and the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 are detected. The discharge pressure sensor 42, the discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, and the suction refrigerant temperature of the compressor 2 (the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2). The suction temperature sensor 44 as a sensor for detecting the temperature of R) and the suction refrigerant pressure of the compressor 2 (the pressure of the refrigerant circuit R from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2) are detected. The suction pressure sensor 45 as a low-pressure pressure sensor and the temperature of the radiator 4 (the temperature of the refrigerant passing through the radiator 4: the temperature of the refrigerant circuit R from the refrigerant outlet of the radiator 4 to the refrigerant inlet of the outdoor heat exchanger 7: The radiator temperature sensor 46 as a temperature sensor that detects the radiator temperature TCI) and the radiator pressure as a high-pressure pressure sensor that detects the refrigerant pressure of the radiator 4 (high-pressure side pressure of the refrigerant times R: radiator pressure PCI). Heat absorption as a sensor for detecting the temperature of the sensor 47 and the heat absorber 9 (the temperature of the heat absorber 9 itself or the temperature of the air passing through the heat absorber 9 which is a physical quantity indicating the temperature of the heat absorber 9: the heat absorber temperature Te). The device temperature sensor 48, the heat absorber pressure sensor 49 that detects the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and the amount of solar radiation into the vehicle interior are detected. For example, a photosensor type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, an air conditioning operation unit 53 for setting a set temperature and switching of air conditioning operation, and outdoor heat. The temperature of the exchanger 7 (the temperature of the refrigerant immediately after exiting the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO. When the outdoor heat exchanger 7 functions as an evaporator , The outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7), and the refrigerant pressure of the outdoor heat exchanger 7 (inside the outdoor heat exchanger 7 or in the outdoor heat exchanger 7). , The refrigerant immediately after coming out of the outdoor heat exchanger 7 Each output of the outdoor heat exchanger pressure sensor 56 that detects pressure) is connected.
 また、空調コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度(熱媒体温度Tw)を検出する熱媒体出口温度センサ77の各出力も接続されている。 Further, the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium leaving the battery 55, or the temperature of the heat medium entering the battery 55: battery temperature Tb) is further input to the air conditioning controller 32. Each output of the battery temperature sensor 76 to detect and the heat medium outlet temperature sensor 77 to detect the temperature of the heat medium (heat medium temperature Tw) exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is also connected. ing.
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、除湿弁22、暖房弁21の各電磁弁と、循環ポンプ62、補助膨張弁73、補助ヒータ23が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。 On the other hand, the output of the air conditioning controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, and the outdoor. The expansion valve 6, the indoor expansion valve 8, the dehumidifying valve 22, the heating valve 21, each solenoid valve, the circulation pump 62, the auxiliary expansion valve 73, and the auxiliary heater 23 are connected. The air conditioning controller 32 controls the outputs of the sensors and the settings input by the air conditioning operation unit 53.
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は、この実施例では暖房モードと、除湿モードと、冷房モードの各運転モードを切り換えて実行すると共に、バッテリ55(車両搭載機器)を冷却する車両搭載機器冷却モード(運転モード)を実行する。先ず、車室内の空調を行う運転モードについて説明する。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will be described next. In this embodiment, the air conditioning controller 32 (control device) switches and executes each operation mode of the heating mode, the dehumidification mode, and the cooling mode, and cools the battery 55 (vehicle-mounted device) in the vehicle-mounted device cooling mode (vehicle-mounted device cooling mode). Execute operation mode). First, an operation mode for air-conditioning the interior of the vehicle will be described.
 (1)暖房モード
 最初に、図1を参照しながら暖房モードについて説明する。図1には暖房モードにおける冷媒回路Rの冷媒の流れ(破線矢印)を示している。冬場等の低外気温時に空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、空調コントローラ32は暖房弁21を開放し、室内膨張弁8を全閉とする。また、除湿弁22を閉じる。
(1) Heating mode First, the heating mode will be described with reference to FIG. FIG. 1 shows the flow of the refrigerant (broken line arrow) in the refrigerant circuit R in the heating mode. When the heating mode is selected by the air conditioning controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode) at low outside temperature such as in winter, the air conditioning controller 32 opens the heating valve 21. The indoor expansion valve 8 is fully closed. Also, the dehumidifying valve 22 is closed.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、暖房弁21を経て冷媒配管13Cに至り、当該冷媒配管13Cの逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat by running or from the outside air that is ventilated by the outdoor blower 15 (endothermic). Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the heating valve 21, and enters the accumulator 12 via the check valve 20 of the refrigerant pipe 13C. After the gas-liquid separation, the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. Since the air heated by the radiator 4 is blown out from the outlet 29, the interior of the vehicle is heated by this.
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧側圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。 The air conditioning controller 32 has a target radiator pressure PCO (target value of the pressure PCI of the radiator 4) from the target heater temperature TCO (target value of the air temperature on the leeward side of the radiator 4) calculated from the target blowout temperature TAO described later. Is calculated, and the rotation speed of the compressor 2 is calculated based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI. High pressure side pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. In addition to controlling, the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. , The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled. The target heater temperature TCO is basically TCO = TAO, but a predetermined control limit is provided. When the heating capacity of the radiator 4 is insufficient, the auxiliary heater 23 is energized to generate heat to supplement the heating capacity.
 尚、空調コントローラ32はこの暖房モードにおいて、例えばバッテリ温度センサ76が検出するバッテリ温度Tb(熱媒体温度Twでもよい)が上昇して所定の閾値を超えた場合、除湿弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。 In this heating mode, the air conditioning controller 32 opens the dehumidifying valve 22 and auxiliary expansion when, for example, the battery temperature Tb (which may be the heat medium temperature Tw) detected by the battery temperature sensor 76 rises and exceeds a predetermined threshold value. The valve 73 is also opened to control the valve opening degree. As a result, a part of the refrigerant discharged from the radiator 4 is diverted on the upstream side of the refrigerant of the outdoor expansion valve 6, and reaches the upstream side of the refrigerant of the indoor expansion valve 8 via the refrigerant pipe 13F. The refrigerant then enters the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
 更に、空調コントローラ32は循環ポンプ62を運転して熱媒体を冷媒-熱媒体熱交換器64の熱媒体流路64Aとバッテリ55に循環させる。これにより、冷媒から吸熱されて温度が低下した熱媒体がバッテリ55に循環されるようになるので、バッテリ55は冷却されることになる。 Further, the air conditioning controller 32 operates a circulation pump 62 to circulate the heat medium through the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the battery 55. As a result, the heat medium that has been endothermic from the refrigerant and whose temperature has dropped is circulated to the battery 55, so that the battery 55 is cooled.
 (2)除湿モード
 次に、図3を参照しながら除湿モードについて説明する。図3には除湿モードにおける冷媒回路Rの冷媒の流れ(破線矢印)を示している。除湿モードでは、空調コントローラ32は上記暖房モードの状態(バッテリ55を冷却しない状態)において除湿弁22を開放し、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が除湿弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
(2) Dehumidification mode Next, the dehumidification mode will be described with reference to FIG. FIG. 3 shows the flow of the refrigerant (broken line arrow) in the refrigerant circuit R in the dehumidification mode. In the dehumidification mode, the air conditioning controller 32 opens the dehumidification valve 22 in the heating mode state (the state in which the battery 55 is not cooled) and opens the indoor expansion valve 8 to reduce the pressure and expand the refrigerant. As a result, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F through the dehumidifying valve 22 and flows from the refrigerant pipe 13B to the indoor expansion valve 8. , The remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is depressurized by the indoor expansion valve 8 and then flows into the heat absorber 9 and evaporates.
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。 The air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 so as to maintain the superheat degree (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value, and the endothermic action of the refrigerant generated in the heat absorber 9 at this time. Moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified. The remaining refrigerant that has been split and flows into the refrigerant pipe 13J is decompressed by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, so that the dehumidifying and heating of the vehicle interior is performed.
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。 The air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (3)冷房モード
 次に、図4を用いて冷房モードについて説明する。夏場等の高外気温時に実行されるこの冷房モードでは、空調コントローラ32は室外膨張弁6の弁開度を全開とする。また、室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、暖房弁21と除湿弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
(3) Cooling Mode Next, the cooling mode will be described with reference to FIG. In this cooling mode, which is executed at a high outside temperature such as in summer, the air conditioning controller 32 fully opens the valve opening degree of the outdoor expansion valve 6. Further, the indoor expansion valve 8 is opened to expand the refrigerant under reduced pressure, and the heating valve 21 and the dehumidifying valve 22 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the auxiliary heater 23 and the radiator 4.
 これにより、図4に破線矢印で示す如く圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。冷房モードでは、放熱器4には空気流通路3内の空気は殆ど通風されず、或いは、通風される場合にもその割合は小さくなる(冷房時のリヒートのみのため)。この放熱器4で冷房時のリヒート分の放熱を行った冷媒は、冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 as shown by the broken line arrow in FIG. In the cooling mode, the air in the air flow passage 3 is hardly ventilated to the radiator 4, or the ratio is small even when the air is ventilated (because of only reheating during cooling). The refrigerant that has dissipated heat for the reheat during cooling by the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the outdoor expansion valve 6 as it is, passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7, and is ventilated there by traveling or by the outdoor blower 15. It is air-cooled by the outside air to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the endothermic device 9, and the air is cooled.
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12. The air cooled by the heat absorber 9 and dehumidified is blown out into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 尚、空調コントローラ32はこの冷房モードにおいても、例えばバッテリ温度センサ76が検出するバッテリ温度Tb(熱媒体温度Twでもよい)が上昇して所定の閾値を超えた場合、補助膨張弁73を開いてその弁開度を制御する状態とする。これにより、室外熱交換器7から出た冷媒の一部が室内膨張弁8の冷媒上流側で分流されて分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。 Even in this cooling mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 when, for example, the battery temperature Tb (which may be the heat medium temperature Tw) detected by the battery temperature sensor 76 rises and exceeds a predetermined threshold value. The valve opening is controlled. As a result, a part of the refrigerant discharged from the outdoor heat exchanger 7 is diverted on the upstream side of the refrigerant of the indoor expansion valve 8 and enters the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then the refrigerant passes through the branch pipe 72. -It flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
 更に、空調コントローラ32は循環ポンプ62を運転して熱媒体を冷媒-熱媒体熱交換器64の熱媒体流路64Aとバッテリ55に循環させる。これにより、冷媒から吸熱されて温度が低下した熱媒体がバッテリ55に循環されるようになるので、バッテリ55は冷却されることになる。 Further, the air conditioning controller 32 operates a circulation pump 62 to circulate the heat medium through the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the battery 55. As a result, the heat medium that has been endothermic from the refrigerant and whose temperature has dropped is circulated to the battery 55, so that the battery 55 is cooled.
 (4)空調運転の切換制御
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(4) Switching control of air conditioning operation The air conditioning controller 32 calculates the target blowout temperature TAO described above from the following formula (I). This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle interior from the outlet 29.
TAO = (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam))
・ ・ (I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects it. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. In general, the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。 Then, the air conditioning controller 32 selects one of the above operation modes based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowout temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowout temperature TAO.
 (5)車両搭載機器冷却モード
 また、空調コントローラ32は例えば急速充電器等によりバッテリ55の充電を行う際、車両搭載機器冷却モードを実行する。図5はこの車両搭載機器モードにおける冷媒回路Rの冷媒の流れ方(破線矢印)と熱媒体循環回路61における熱媒体の流れ方(実線矢印)を示している。車両搭載機器冷却モードでは、空調コントローラ32は補助膨張弁73を開いて冷媒を減圧膨張させる状態とし、除湿弁22を開く。また、室外膨張弁6と室内膨張弁8は全閉とし、暖房弁21も閉じる。そして、圧縮機2を運転する。
(5) Vehicle-mounted equipment cooling mode The air-conditioning controller 32 executes the vehicle-mounted equipment cooling mode when charging the battery 55 with, for example, a quick charger or the like. FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R (broken line arrow) and the flow of the heat medium in the heat medium circulation circuit 61 (solid line arrow) in the vehicle-mounted equipment mode. In the vehicle-mounted equipment cooling mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 to decompress and expand the refrigerant, and opens the dehumidifying valve 22. Further, the outdoor expansion valve 6 and the indoor expansion valve 8 are fully closed, and the heating valve 21 is also closed. Then, the compressor 2 is operated.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4で放熱した全ての冷媒は冷媒配管13Eを経て冷媒配管13Fに流入し、当該冷媒配管13Fを経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、分岐配管72に流入して補助膨張弁73に至る。ここで冷媒は減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. All the refrigerant radiated by the radiator 4 flows into the refrigerant pipe 13F through the refrigerant pipe 13E, and enters the refrigerant pipe 13B through the refrigerant pipe 13F. The refrigerant that has flowed into the refrigerant pipe 13B flows into the branch pipe 72 and reaches the auxiliary expansion valve 73. Here, after the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in that order.
 一方、空調コントローラ32は循環ポンプ62を運転する。この循環ポンプ62から吐出された熱媒体が熱媒体配管68内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図5に実線矢印で示す)。 On the other hand, the air conditioning controller 32 operates the circulation pump 62. The heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where heat is absorbed by the refrigerant evaporating in the refrigerant flow path 64B, and the heat medium is absorbed. Will be cooled. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats circulation sucked into the circulation pump 62 (indicated by a solid arrow in FIG. 5).
 この車両搭載機器冷却モードにおいては、空調コントローラ32は熱媒体出口温度センサ77が検出する熱媒体温度Tw(バッテリ温度Tbでもよい)に基づいて圧縮機2の回転数を制御することにより、バッテリ55を冷却する。これにより、バッテリ55を強力に冷却することができるようになる。 In this vehicle-mounted equipment cooling mode, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the heat medium temperature Tw (which may be the battery temperature Tb) detected by the heat medium outlet temperature sensor 77, thereby controlling the battery 55. To cool. As a result, the battery 55 can be strongly cooled.
 (6)故障箇所確定モード
 次に、図6のフローチャートを参照しながら、空調コントローラ32が実行する故障箇所確定モードについて説明する。空調コントローラ32は、前述した各センサから入力される値が異常を示し、その異常が室外膨張弁6、室内膨張弁8、補助膨張弁73、暖房弁21、除湿弁22のうちの何れかの制御弁の故障が原因で発生している可能性があると判断した場合、どの制御弁が故障しているか否かを特定する故障箇所確定モードを実行する。
(6) Failure location determination mode Next, the failure location determination mode executed by the air conditioning controller 32 will be described with reference to the flowchart of FIG. In the air conditioning controller 32, the value input from each of the sensors described above indicates an abnormality, and the abnormality is any one of the outdoor expansion valve 6, the indoor expansion valve 8, the auxiliary expansion valve 73, the heating valve 21, and the dehumidifying valve 22. When it is determined that the cause may be a failure of the control valve, the failure location determination mode for identifying which control valve has failed is executed.
 尚、故障している制御弁がどれであるか、例えば電気的に把握できている場合には、空調コントローラ32は故障箇所確定モードを実行せず、空調操作部53にて所定のエラー表示を行う。 If, for example, it is possible to electrically grasp which control valve is out of order, the air conditioning controller 32 does not execute the failure location determination mode, and the air conditioning operation unit 53 displays a predetermined error. Do.
 また、空調コントローラ32は、放熱器圧力センサ47(高圧圧力センサ)が検出する冷媒回路Rの高圧側圧力と吸込圧力センサ45(低圧圧力センサ)が検出する冷媒回路Rの低圧側圧力の値が、圧縮機2を運転可能な範囲(高圧異常、低圧異常ではない範囲)に復帰していることを条件として故障箇所確定モードを実行する。 Further, in the air conditioning controller 32, the values of the high pressure side pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 (high pressure pressure sensor) and the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 (low pressure pressure sensor) are set. , The failure location determination mode is executed on condition that the compressor 2 is returned to the operable range (the range that is not a high pressure abnormality or a low pressure abnormality).
 次に、具体的にこの故障箇所確定モードの動作について説明する。先ず、空調コントローラ32は室外送風機15と室内送風機27の風量を一定の値に固定する。そして、図6のステップS1で、空調コントローラ32は先ず運転モードを冷房モードとして圧縮機2を運転する。次に、ステップS2で放熱器圧力センサ47が検出する冷媒回路Rの高圧側圧力が所定の異常値まで上昇した、又は、吸込圧力センサ45が検出する冷媒回路Rの低圧側圧力が所定の異常値まで低下した、若しくは、吸熱器温度センサ48が検出する吸熱器温度Teが低下しない、のうちの何れかの異常があるか否か判断する。 Next, the operation of this failure location determination mode will be specifically described. First, the air conditioning controller 32 fixes the air volumes of the outdoor blower 15 and the indoor blower 27 to a constant value. Then, in step S1 of FIG. 6, the air conditioning controller 32 first operates the compressor 2 with the operation mode as the cooling mode. Next, the high pressure side pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 in step S2 has risen to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 has a predetermined abnormality. It is determined whether or not there is an abnormality in which the value has dropped to the value or the heat absorber temperature Te detected by the heat absorber temperature sensor 48 does not drop.
 冷房モードで係る異常がある場合には、室内膨張弁8か室外膨張弁6が故障している可能性があるので、空調コントローラ32はステップS3に進み、今度は運転モードを除湿モードに切り換える。次に、ステップS4で吸熱器温度Teが低下しているか否か判断する。除湿モードとして吸熱器温度Teが低下しないということは、室内膨張弁8が閉故障(全閉のまま動作しない)したものと云えるので、空調コントローラ32はステップS5に進み、室内膨張弁8が故障しているものと特定して、空調操作部53にその旨の所定のエラー表示を行う。 If there is such an abnormality in the cooling mode, there is a possibility that the indoor expansion valve 8 or the outdoor expansion valve 6 has failed, so the air conditioning controller 32 proceeds to step S3, and this time, the operation mode is switched to the dehumidification mode. Next, in step S4, it is determined whether or not the endothermic temperature Te has decreased. If the heat absorber temperature Te does not drop in the dehumidification mode, it can be said that the indoor expansion valve 8 has closed (does not operate while fully closed). Therefore, the air conditioning controller 32 proceeds to step S5, and the indoor expansion valve 8 moves. It is identified as having a failure, and a predetermined error display to that effect is displayed on the air conditioning operation unit 53.
 図6のステップS4で吸熱器温度Teが低下している場合には、室内膨張弁8は正常であると判断できるので、空調コントローラ32はステップS6に進み、室外膨張弁6が故障しているものと特定して、空調操作部53にその旨の所定のエラー表示を行う。 When the heat absorber temperature Te is lowered in step S4 of FIG. 6, it can be determined that the indoor expansion valve 8 is normal, so that the air conditioning controller 32 proceeds to step S6 and the outdoor expansion valve 6 is out of order. In particular, the air conditioning operation unit 53 is displayed with a predetermined error to that effect.
 次に、ステップS2で冷房モードにおける異常が無い場合にも、空調コントローラ32はステップS7に進んで運転モードを除湿モードに切り換える。次に、ステップS8で吸熱器温度Teが低下しない異常があるか否か判断する。冷房モードでは異常が無く、即ち、室外膨張弁6や室内膨張弁8に異常が無い状態で除湿モードとした場合、吸熱器温度Teが低下しないということは、除湿弁22が閉故障(閉じたまま動作しない)したものと云えるので、空調コントローラ32はステップS10に進み、除湿弁22が故障しているものと特定して、空調操作部53にその旨の所定のエラー表示を行う。 Next, even if there is no abnormality in the cooling mode in step S2, the air conditioning controller 32 proceeds to step S7 to switch the operation mode to the dehumidification mode. Next, in step S8, it is determined whether or not there is an abnormality in which the endothermic temperature Te does not decrease. If there is no abnormality in the cooling mode, that is, when the dehumidification mode is set with no abnormality in the outdoor expansion valve 6 or the indoor expansion valve 8, the dehumidifier temperature Te does not decrease, which means that the dehumidification valve 22 is closed (closed). Since it can be said that the air conditioning controller 32 does not operate as it is), the air conditioning controller 32 proceeds to step S10, identifies that the dehumidifying valve 22 is out of order, and displays a predetermined error to that effect on the air conditioning operation unit 53.
 一方、ステップS8で異常がない(吸熱器温度Teが低下)場合、空調コントローラ32はステップS9に進んで今度は運転モードを暖房モードに切り換える。次に、ステップS11で冷媒回路Rの高圧側圧力が所定の異常値まで上昇した、又は、吸込圧力センサ45が検出する冷媒回路Rの低圧側圧力が所定の異常値まで低下した、のうちの何れかの異常があるか否か判断する。 On the other hand, if there is no abnormality in step S8 (the heat absorber temperature Te drops), the air conditioning controller 32 proceeds to step S9 and switches the operation mode to the heating mode this time. Next, in step S11, the high pressure side pressure of the refrigerant circuit R has risen to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 has decreased to a predetermined abnormal value. Determine if there is any abnormality.
 冷房モード及び除湿モードで異常が無く、暖房モードで係る異常がある場合には、暖房弁21が閉故障(閉じたまま動作しない)したものと云えるので、空調コントローラ32はステップS13に進み、暖房弁21が故障しているものと特定して、空調操作部53にその旨の所定のエラー表示を行う。 If there is no abnormality in the cooling mode and the dehumidifying mode, and there is an abnormality in the heating mode, it can be said that the heating valve 21 has closed (does not operate while closed). Therefore, the air conditioning controller 32 proceeds to step S13. It is determined that the heating valve 21 is out of order, and a predetermined error display to that effect is displayed on the air conditioning operation unit 53.
 他方、ステップS11で異常が無い場合には、空調コントローラ32はステップS12に進み、今度は運転モードを車両搭載機器冷却モードに切り換える。次に、ステップS14で冷媒回路Rの高圧側圧力が所定の異常値まで上昇した、又は、吸込圧力センサ45が検出する冷媒回路Rの低圧側圧力が所定の異常値まで低下した、のうちの何れかの異常があるか否か判断する。 On the other hand, if there is no abnormality in step S11, the air conditioning controller 32 proceeds to step S12, and this time, the operation mode is switched to the vehicle-mounted equipment cooling mode. Next, in step S14, the high pressure side pressure of the refrigerant circuit R rose to a predetermined abnormal value, or the low pressure side pressure of the refrigerant circuit R detected by the suction pressure sensor 45 decreased to a predetermined abnormal value. Determine if there is any abnormality.
 冷房モード、除湿モード及び暖房モードで異常が無く、車両搭載機器冷却モードで係る異常がある場合には、補助膨張弁73が閉故障(全閉のまま動作しない)したものと云えるので、空調コントローラ32はステップS15に進み、補助膨張弁73が故障しているものと特定して、空調操作部53にその旨の所定のエラー表示を行う。 If there is no abnormality in the cooling mode, dehumidification mode, and heating mode, and there is an abnormality in the vehicle-mounted equipment cooling mode, it can be said that the auxiliary expansion valve 73 has closed (does not operate while fully closed). The controller 32 proceeds to step S15, identifies that the auxiliary expansion valve 73 is out of order, and displays a predetermined error to that effect on the air conditioning operation unit 53.
 尚、ステップS14でも異常が無い場合には、空調コントローラ32はステップS16に進んで各制御弁は正常であると確定し、空調操作部53に制御弁以外の異常が発生している旨の所定のエラー表示を行うものとする。 If there is no abnormality in step S14, the air conditioning controller 32 proceeds to step S16 to determine that each control valve is normal, and predetermines that an abnormality other than the control valve has occurred in the air conditioning operation unit 53. Error display shall be performed.
 以上詳述した如く本発明では空調コントローラ32が、冷媒回路Rの温度や圧力に関する情報に基づき、室外膨張弁6、室内膨張弁8、補助膨張弁73、暖房弁21及び除湿弁22のうちの何れかの制御弁の故障が原因である異常が発生したと判断した場合、冷房モード、除湿モード、暖房モード、車両搭載機器冷却モードの各運転モードを図6のフローチャートに示すように順次実行すると共に、実行した運転モードで得られる冷媒回路Rの温度や圧力から、故障した制御弁を確定させる故障箇所確定モードを実行するので、比較的簡単、且つ、精度良く、故障した制御弁の特定を行うことができるようになる。 As described in detail above, in the present invention, the air conditioning controller 32 is among the outdoor expansion valve 6, the indoor expansion valve 8, the auxiliary expansion valve 73, the heating valve 21, and the dehumidifying valve 22 based on the information regarding the temperature and pressure of the refrigerant circuit R. When it is determined that an abnormality caused by a failure of any of the control valves has occurred, each operation mode of the cooling mode, the dehumidifying mode, the heating mode, and the vehicle-mounted equipment cooling mode is sequentially executed as shown in the flowchart of FIG. At the same time, since the failure location determination mode for determining the failed control valve is executed from the temperature and pressure of the refrigerant circuit R obtained in the executed operation mode, the failed control valve can be identified relatively easily and accurately. You will be able to do it.
 これにより、メンテナンス(部品交換)のための時間とコストの高騰を未然に解消することができるようになる。この場合、実施例では故障した制御弁が既に特定されている場合には、空調コントローラ32は故障箇所確定モードを実行しないので、無用な動作と時間を省くことができるようになる。 This makes it possible to eliminate the soaring time and cost for maintenance (part replacement). In this case, in the embodiment, when the failed control valve has already been identified, the air conditioning controller 32 does not execute the failure location determination mode, so that unnecessary operation and time can be saved.
 また、実施例では全ての運転モードにおいて冷媒回路Rの高圧側圧力を検出可能な放熱器圧力センサ47や、冷媒回路Rの低圧側圧力を検出可能な吸込圧力センサ45を設けると共に、放熱器Rの冷媒出口から室外熱交換器7の冷媒入口に至る冷媒回路Rの温度を検出可能な放熱器温度センサ46や、室外熱交換器7の冷媒出口から圧縮機2の冷媒吸込側に至る冷媒回路Rの温度と圧力を検出可能な前記吸込温度センサ44や吸込圧力センサ45、吸熱器温度Teを検出可能な吸熱器温度センサ48を空調コントローラ32に接続しているので、故障箇所確定モードによる故障した制御弁の確定を円滑に実現することが可能となる。 Further, in the embodiment, a radiator pressure sensor 47 capable of detecting the high pressure side pressure of the refrigerant circuit R and a suction pressure sensor 45 capable of detecting the low pressure side pressure of the refrigerant circuit R are provided in all operation modes, and the radiator R is provided. The radiator temperature sensor 46 that can detect the temperature of the refrigerant circuit R from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant inlet of the outdoor heat exchanger 7, and the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger 7 to the refrigerant suction side of the compressor 2. Since the suction temperature sensor 44 that can detect the temperature and pressure of R, the suction pressure sensor 45, and the heat absorber temperature sensor 48 that can detect the heat absorber temperature Te are connected to the air conditioning controller 32, the failure due to the failure location determination mode It is possible to smoothly determine the control valve.
 また、実施例では放熱器圧力センサ47の検出値及び吸込圧力センサ45の検出値が圧縮機2を運転可能な範囲となったことを条件として故障箇所確定モードでの各運転モードを開始するようにしており、更には故障箇所確定モードでは、室内送風機27と室外送風機15の風量を一定の値に固定するようにしているので、故障箇所確定モードにおいて空調コントローラ32が故障した制御弁を精度良く特定することができるようになる。 Further, in the embodiment, each operation mode in the failure location determination mode is started on condition that the detection value of the radiator pressure sensor 47 and the detection value of the suction pressure sensor 45 are within the range in which the compressor 2 can be operated. Furthermore, in the failure location determination mode, the air volumes of the indoor blower 27 and the outdoor blower 15 are fixed to a constant value, so that the control valve in which the air conditioner controller 32 has failed in the failure location determination mode can be accurately controlled. You will be able to identify.
 以上の発明は、実施例の如く制御弁として室外膨張弁6、室内膨張弁8、暖房弁21や除湿弁22を備えて、運転モードとして冷房モード、除湿モード、暖房モードを実行し、更に制御弁として補助膨張弁73を備えて、運転モードとして車両搭載機器冷却モードを実行する車両用空気調和装置1に特に有効である。 In the above invention, as in the embodiment, the outdoor expansion valve 6, the indoor expansion valve 8, the heating valve 21, and the dehumidifying valve 22 are provided as control valves, and the cooling mode, the dehumidifying mode, and the heating mode are executed as the operation modes, and further controlled. It is particularly effective for the vehicle air conditioner 1 which includes an auxiliary expansion valve 73 as a valve and executes a vehicle-mounted equipment cooling mode as an operation mode.
 尚、上記実施例では何れかの制御弁の故障が原因である異常が発生した場合、空調コントローラ32が自動的に故障箇所確定モードを実行するようにしたが、それに限らず、空調操作部53や空調コントローラ32に接続された外部パソコン等への所定の入力操作があったことを条件として、空調コントローラ32が上記故障箇所確定モードを開始するようにしてもよい。 In the above embodiment, when an abnormality caused by a failure of any of the control valves occurs, the air conditioning controller 32 automatically executes the failure location determination mode, but the present invention is not limited to this, and the air conditioning operation unit 53 Or, the air conditioning controller 32 may start the failure location determination mode on condition that a predetermined input operation is performed to an external personal computer or the like connected to the air conditioning controller 32.
 その場合には、空調コントローラ32が空調操作部53にて何れかの制御弁に異常が発生した可能性があることを、所定のエラー表示で報知するものとする。このようにすることで、修理工場等によるメンテナンスの際に、作業者による所定の入力操作が行われた場合のみ、故障箇所確定モードを実行して、故障した制御弁の特定を行うことが可能となるので、車両の使用者による誤った操作で故障箇所確定モードが実行されてしまう不都合を未然に回避することができるようになる。 In that case, the air conditioning controller 32 shall notify the air conditioning operating unit 53 that an abnormality may have occurred in any of the control valves by displaying a predetermined error. By doing so, it is possible to execute the failure location determination mode and identify the failed control valve only when a predetermined input operation is performed by the operator during maintenance by a repair shop or the like. Therefore, it is possible to avoid the inconvenience that the failure location determination mode is executed due to an erroneous operation by the vehicle user.
 また、実施例では車両搭載機器としてバッテリ55を採り上げたが、それに限らず、走行用の電動モータやそれを駆動するインバータ装置等にも本発明は有効である。更に、実施例で説明した空調コントローラ32の構成、車両用空気調和装置1のヒートポンプ装置HPや熱媒体循環回路61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Further, in the embodiment, the battery 55 is taken up as a vehicle-mounted device, but the present invention is not limited to this, and the present invention is also effective for an electric motor for traveling and an inverter device for driving the electric motor. Further, the configuration of the air conditioning controller 32 described in the examples, the configuration of the heat pump device HP of the vehicle air conditioner 1 and the configuration of the heat medium circulation circuit 61 are not limited thereto, and are modified without departing from the spirit of the present invention. It goes without saying that it is possible.
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁(制御弁)
 7 室外熱交換器
 8 室内膨張弁(制御弁)
 9 吸熱器
 21 暖房弁(制御弁)
 22 除湿弁(制御弁)
 32 空調コントローラ(制御装置)
 44 吸込温度センサ(センサ)
 45 吸込圧力センサ(低圧圧力センサ)
 46 放熱器温度センサ(温度センサ)
 47 放熱器圧力センサ(高圧圧力センサ)
 55 バッテリ(車両搭載機器)
 61 熱媒体循環回路
 64 冷媒-熱媒体熱交換器(車両搭載機器用熱交換器)
 73 補助膨張弁(制御弁)
1 Vehicle air conditioner 2 Compressor 4 Heat radiator 6 Outdoor expansion valve (control valve)
7 Outdoor heat exchanger 8 Indoor expansion valve (control valve)
9 Heat absorber 21 Heating valve (control valve)
22 Dehumidifying valve (control valve)
32 Air conditioning controller (control device)
44 Suction temperature sensor (sensor)
45 Suction pressure sensor (low pressure pressure sensor)
46 Dissipator temperature sensor (temperature sensor)
47 Dissipator pressure sensor (high pressure pressure sensor)
55 Battery (Vehicle-mounted equipment)
61 Heat medium circulation circuit 64 Refrigerant-heat medium heat exchanger (heat exchanger for vehicle-mounted equipment)
73 Auxiliary expansion valve (control valve)

Claims (11)

  1.  冷媒を圧縮する圧縮機、冷媒を放熱させて車室内に供給する空気を加熱する放熱器、冷媒を吸熱させて前記車室内に供給する空気を冷却する吸熱器、車室外に設けられて冷媒を吸熱又は放熱させる室外熱交換器、及び、冷媒の流れを制御するための複数の制御弁を有する冷媒回路と、制御装置を備え、該制御装置によって前記制御弁を制御することにより、複数の運転モードを切り換えて実行する車両用空気調和装置において、
     前記制御装置は、前記冷媒回路の温度、及び/又は、圧力に関する情報に基づき、何れかの前記制御弁の故障が原因である異常が発生したと判断した場合、前記各運転モードを順次実行すると共に、実行した前記運転モードで得られる前記冷媒回路の温度、及び/又は、圧力から、故障した前記制御弁を確定させる故障箇所確定モードを実行することを特徴とする車両用空気調和装置。
    A compressor that compresses the refrigerant, a radiator that dissipates the refrigerant and heats the air supplied to the passenger compartment, a heat exchanger that absorbs the refrigerant and cools the air supplied to the passenger compartment, and a heat absorber provided outside the passenger compartment to supply the refrigerant. A plurality of operations are provided by providing an outdoor heat exchanger that absorbs or dissipates heat, a refrigerant circuit having a plurality of control valves for controlling the flow of the refrigerant, and a control device, and controlling the control valve by the control device. In a vehicle air conditioner that switches modes and executes
    Based on the information on the temperature and / or pressure of the refrigerant circuit, the control device sequentially executes each of the operation modes when it is determined that an abnormality caused by a failure of any of the control valves has occurred. At the same time, the air conditioner for a vehicle is characterized in that a failure location determination mode for determining the failed control valve is executed from the temperature and / or pressure of the refrigerant circuit obtained in the executed operation mode.
  2.  前記制御装置は、故障した前記制御弁が特定されている場合には、前記故障箇所確定モードを実行しないことを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the control device does not execute the failure location determination mode when the failed control valve is specified.
  3.  前記制御装置は、所定の入力操作が行われたことを条件として、前記故障箇所確定モードを実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1 or 2, wherein the control device executes the failure location determination mode on condition that a predetermined input operation is performed.
  4.  全ての前記運転モードにおいて、前記冷媒回路の高圧側圧力を検出可能な高圧圧力センサと、前記冷媒回路の低圧側圧力を検出可能な低圧圧力センサを備えたことを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。 Claims 1 to claim that the high pressure sensor capable of detecting the high pressure side pressure of the refrigerant circuit and the low pressure pressure sensor capable of detecting the low pressure side pressure of the refrigerant circuit are provided in all the operation modes. The vehicle air conditioner according to any one of item 3.
  5.  前記制御装置は、前記高圧圧力センサの検出値及び低圧圧力センサの検出値が前記圧縮機を運転可能な範囲となったことを条件として前記故障箇所確定モードでの前記各運転モードを開始することを特徴とする請求項4に記載の車両用空気調和装置。 The control device starts each of the operation modes in the failure location determination mode on condition that the detection value of the high pressure pressure sensor and the detection value of the low pressure pressure sensor are within the range in which the compressor can be operated. The vehicle air conditioner according to claim 4.
  6.  前記放熱器の冷媒出口から前記室外熱交換器の冷媒入口に至る前記冷媒回路の温度を検出可能な温度センサを備えたことを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。 The invention according to any one of claims 1 to 5, wherein a temperature sensor capable of detecting the temperature of the refrigerant circuit from the refrigerant outlet of the radiator to the refrigerant inlet of the outdoor heat exchanger is provided. Air conditioner for vehicles.
  7.  前記室外熱交換器の冷媒出口から前記圧縮機の冷媒吸込側に至る前記冷媒回路の温度、及び/又は、圧力を検出可能なセンサを備えたことを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。 Claims 1 to 6 include a sensor capable of detecting the temperature and / or pressure of the refrigerant circuit from the refrigerant outlet of the outdoor heat exchanger to the refrigerant suction side of the compressor. The vehicle air conditioner described in any of them.
  8.  前記吸熱器の温度、又は、当該吸熱器の温度を示す物理量を検出可能なセンサを備えたことを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 7, further comprising a sensor capable of detecting the temperature of the heat absorber or a physical quantity indicating the temperature of the heat absorber.
  9.  前記吸熱器及び放熱器に空気を通風する室内送風機と、前記室外熱交換器に外気を通風する室外送風機を備え、
     前記制御装置は、前記故障箇所確定モードにおいては、前記室内送風機及び前記室外送風機の風量を一定の値に固定することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
    An indoor blower that blows air through the heat absorber and the radiator, and an outdoor blower that blows outside air through the outdoor heat exchanger are provided.
    The vehicle according to any one of claims 1 to 8, wherein the control device fixes the air volume of the indoor blower and the outdoor blower to a constant value in the failure location determination mode. Air conditioner for.
  10.  前記制御弁として、
     前記室外熱交換器への冷媒の流入を制御する室外膨張弁と、
     前記吸熱器への冷媒の流入を制御する室内膨張弁と、
     暖房時に開放される暖房弁と、
     除湿時に開放される除湿弁を備え、
     前記制御装置は前記運転モードとして、
     前記圧縮機から吐出された冷媒を前記放熱器、及び/又は、前記室外熱交換器にて放熱させ、前記吸熱器にて吸熱させる冷房モードと、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、前記室外熱交換器及び前記吸熱器にて吸熱させる除湿モードと、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、前記室外熱交換器にて吸熱させる暖房モードを有することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
    As the control valve
    An outdoor expansion valve that controls the inflow of refrigerant into the outdoor heat exchanger,
    An indoor expansion valve that controls the inflow of refrigerant into the heat absorber,
    A heating valve that opens during heating and
    Equipped with a dehumidifying valve that opens during dehumidification
    The control device is set as the operation mode.
    A cooling mode in which the refrigerant discharged from the compressor is dissipated by the radiator and / or the outdoor heat exchanger and is absorbed by the endothermic device.
    A dehumidification mode in which the refrigerant discharged from the compressor is dissipated by the radiator and heat is absorbed by the outdoor heat exchanger and the endothermic device.
    The invention according to any one of claims 1 to 9, further comprising a heating mode in which the refrigerant discharged from the compressor is dissipated by the radiator and the heat is absorbed by the outdoor heat exchanger. Air conditioner for vehicles.
  11.  冷媒を吸熱させて車両搭載機器を冷却するための車両搭載機器用熱交換器と、該車両搭載機器用熱交換器への冷媒の流入を制御するための前記制御弁としての補助膨張弁を備え、
     前記制御装置は、前記運転モードとして、前記車両搭載機器用熱交換器にて冷媒を吸熱させる車両搭載機器冷却モードを更に有することを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。
    It is provided with a heat exchanger for vehicle-mounted equipment for absorbing heat of the refrigerant to cool the vehicle-mounted equipment, and an auxiliary expansion valve as the control valve for controlling the inflow of the refrigerant into the heat exchanger for the vehicle-mounted equipment. ,
    The control device according to any one of claims 1 to 10, further comprising a vehicle-mounted device cooling mode in which the refrigerant is absorbed by the vehicle-mounted device heat exchanger as the operation mode. The vehicle air conditioner described.
PCT/JP2020/027794 2019-07-29 2020-07-17 Vehicle air conditioner WO2021020163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138546 2019-07-29
JP2019138546A JP2021020572A (en) 2019-07-29 2019-07-29 Vehicular air-conditioner

Publications (1)

Publication Number Publication Date
WO2021020163A1 true WO2021020163A1 (en) 2021-02-04

Family

ID=74229066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027794 WO2021020163A1 (en) 2019-07-29 2020-07-17 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP2021020572A (en)
WO (1) WO2021020163A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286223A (en) * 1996-04-24 1997-11-04 Denso Corp Fault diagnosis device
JP2008014609A (en) * 2006-07-10 2008-01-24 Daikin Ind Ltd Air conditioning controller
JP2017154521A (en) * 2016-02-29 2017-09-07 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2019051890A (en) * 2017-09-19 2019-04-04 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286223A (en) * 1996-04-24 1997-11-04 Denso Corp Fault diagnosis device
JP2008014609A (en) * 2006-07-10 2008-01-24 Daikin Ind Ltd Air conditioning controller
JP2017154521A (en) * 2016-02-29 2017-09-07 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2019051890A (en) * 2017-09-19 2019-04-04 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Also Published As

Publication number Publication date
JP2021020572A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US11772449B2 (en) Vehicle air conditioning device
JP6925288B2 (en) Vehicle air conditioner
US11794548B2 (en) Vehicle air conditioning device
CN110505968B (en) Air conditioner for vehicle
WO2021024755A1 (en) Temperature adjustment device for vehicle-mounted heat-generating equipment and vehicle air conditioner provided with same
CN112867616A (en) Air conditioner for vehicle
US11958337B2 (en) Vehicle air conditioning apparatus
JP7387520B2 (en) Vehicle air conditioner
JP2017154521A (en) Air conditioner for vehicle
WO2022064946A1 (en) Air conditioning device for vehicle
WO2021192760A1 (en) Vehicle air conditioner
WO2018116962A1 (en) Air conditioning device for vehicle
JP2012001036A (en) Air conditioner for vehicle
WO2021020163A1 (en) Vehicle air conditioner
WO2020235262A1 (en) Vehicle air conditioner
WO2021039614A1 (en) Vehicle battery cooling device and vehicle air conditioner equipped therewith
WO2020262125A1 (en) Vehicle air-conditioner
JP2019018709A (en) Air conditioner for vehicle
JP7372793B2 (en) Vehicle air conditioner
JP6925287B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847267

Country of ref document: EP

Kind code of ref document: A1