[go: up one dir, main page]

WO2021014772A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2021014772A1
WO2021014772A1 PCT/JP2020/021852 JP2020021852W WO2021014772A1 WO 2021014772 A1 WO2021014772 A1 WO 2021014772A1 JP 2020021852 W JP2020021852 W JP 2020021852W WO 2021014772 A1 WO2021014772 A1 WO 2021014772A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
treatment liquid
liquid
annular member
discharge path
Prior art date
Application number
PCT/JP2020/021852
Other languages
French (fr)
Japanese (ja)
Inventor
仁司 中井
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN202080044791.1A priority Critical patent/CN114008756A/en
Priority to KR1020227001927A priority patent/KR102636437B1/en
Publication of WO2021014772A1 publication Critical patent/WO2021014772A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate.
  • the substrates to be processed include, for example, semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and substrates for optomagnetic disks. Includes substrates such as substrates, photomask substrates, ceramic substrates, and solar cell substrates.
  • the pattern formed on the surface of the substrate may be oxidized by the oxygen dissolved in the treatment solution.
  • a treatment solution such as a chemical solution
  • the pattern formed on the surface of the substrate may be oxidized by the oxygen dissolved in the treatment solution.
  • Patent Document 1 a blocking member facing the upper surface of the substrate held by the spin chuck is provided, and the space between the blocking member and the substrate is filled with nitrogen gas to create an atmosphere near the upper surface of the substrate. It is disclosed that the oxygen concentration of the water can be reduced.
  • the blocking member provided in the substrate processing apparatus described in Patent Document 1 includes a disk portion facing the upper surface of the substrate and a cylindrical portion extending downward from the outer peripheral portion of the disk portion. Since the substrate is surrounded by a cylindrical portion, it is easy to reduce the oxygen concentration in the atmosphere near the upper surface of the substrate with nitrogen gas. When the processing liquid is supplied to the upper surface of the substrate while the substrate is surrounded by the cylindrical portion, the processing liquid on the substrate scatters outward from the peripheral edge portion of the upper surface of the substrate and is received by the cylindrical portion. Therefore, the processing liquid bounced off the cylindrical portion may reattach to the peripheral edge of the upper surface of the substrate, and particles may be generated.
  • one object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of reducing the oxygen concentration in the atmosphere near the upper surface of the substrate and suppressing the generation of particles on the upper surface of the substrate. Is to provide.
  • One embodiment of the present invention includes a substrate holding unit that holds the substrate horizontally, a substrate rotating unit that rotates the substrate holding unit around a vertical axis passing through a central portion of the substrate held by the substrate holding unit, and the like.
  • a processing liquid supply unit that supplies a processing liquid toward the upper surface of the substrate held by the substrate holding unit, and an inert gas that supplies an inert gas toward the upper surface of the substrate held by the substrate holding unit.
  • the facing member having the above, the annular member surrounding the substrate held by the substrate holding unit in a plan view, the substrate held by the substrate holding unit, the facing member, and the annular member provide an atmosphere from the outside.
  • a substrate processing apparatus including the annular member and an opposing member elevating unit that elevates and elevates the opposing member so as to partition a blocking space in which inflow is restricted.
  • the processing liquid existing on the upper surface of the substrate is centrifugally removed from the peripheral portion of the substrate in the radial direction. It has a guide surface to guide the direction. Then, the extension portion and the annular member define a treatment liquid discharge path for discharging the treatment liquid existing on the guide surface to the outside of the blocking space.
  • the blocking space is partitioned by the substrate, the opposing member, and the annular member by raising and lowering the opposing member together with the annular member.
  • the upper surface of the substrate is treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid. be able to.
  • the guide surface of the annular member guides the treatment liquid existing on the upper surface of the substrate to the outside in the radial direction from the peripheral edge of the substrate by the centrifugal force based on the rotation of the substrate. Then, the processing liquid that has moved on the guide surface is guided to the treatment liquid discharge path without being scattered from the substrate, and is discharged to the outside of the blocking space. Since the guide surface exists between the peripheral edge of the substrate and the treatment liquid discharge path, the peripheral edge of the substrate is sufficiently separated from the extending portion of the facing member. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate.
  • the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
  • the width of the treatment liquid discharge path is smaller than the width of the blocking space in the vertical direction. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space through the treatment liquid discharge path, it is possible to suppress the atmosphere outside the cutoff space from flowing in through the treatment liquid discharge path. Therefore, the upper surface of the substrate can be treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid.
  • the annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path. Then, the treatment liquid discharge path has an inflow port at the boundary between the guide surface and the discharge zone screen.
  • the treatment liquid may collide with the extension part near the inflow port of the treatment liquid discharge path.
  • Backflow flow of the treatment liquid inward in the radial direction of the substrate
  • the inflow port of the processing liquid discharge path is arranged near the peripheral edge of the upper surface of the substrate, so that backflow in the processing liquid may occur on the substrate.
  • backflow occurs, the treatment liquid that goes inward in the radial direction and the treatment liquid that goes outward in the radial direction may collide with each other, and the treatment liquid may scatter in the cutoff space.
  • the treatment liquid scattered in the blocking space reattaches to the upper surface of the substrate, particles are generated on the substrate.
  • the inflow port of the treatment liquid discharge path is provided at the boundary between the discharge path section screen connected to the outer end of the guide surface in the radial direction and the guide surface, the backflow in the treatment liquid The place where the above occurs is on the guide surface. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • the discharge channel screen and the guide surface form a single flat surface that is flat in the horizontal direction. If a step is provided between the guide surface and the discharge path section screen, the treatment liquid may adhere to the bounced treatment liquid due to the step, and the treatment liquid may reattach to the upper surface of the substrate. As a result, particles may be generated on the upper surface of the substrate.
  • the processing liquid that flows on the guide surface can be smoothly flowed into the processing liquid discharge path. Therefore, it is possible to suppress the scattering of the treatment liquid in the blocking space, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
  • the substrate processing apparatus further includes an opposing member rotating unit that rotates the opposing member together with the annular member around the vertical axis in synchronization with the substrate held by the substrate holding unit.
  • Synchronous rotation means rotating in the same direction and at the same rotation speed. If the difference between the rotation speed of the substrate and the rotation speed of the opposing member and the annular member is large, the airflow in the blocking space may be disturbed. When the airflow in the cutoff space is turbulent, the blowing force of the airflow acts on the treatment liquid on the upper surface of the substrate, and the upper surface of the substrate is locally exposed or the treatment liquid is scattered in the cutoff space. Therefore, if the substrate, the annular member, and the facing member that partition the blocking space are configured to rotate synchronously, the turbulence of the airflow in the blocking space can be suppressed.
  • the substrate processing apparatus further includes a plurality of connecting members that connect the annular member and the opposing member. Then, each of the connecting members is formed so as to be directed outward in the radial direction and toward the downstream side in the rotational direction of the substrate held by the substrate holding unit in a plan view.
  • each of the plurality of connecting members connecting the opposing member and the annular member is formed so as to move outward in the radial direction toward the downstream side in the rotational direction in a plan view. There is. Therefore, it is possible to promote the generation of an air flow toward the downstream side in the rotational direction as it goes outward in the radial direction. Therefore, the turbulence of the air flow in the cutoff space can be further suppressed.
  • the substrate processing apparatus further includes a controller that controls the substrate rotating unit, the processing liquid supply unit, the inert gas supply unit, and the facing member elevating unit.
  • the controller does not move the facing member and the annular member by the facing member elevating unit to partition the blocking space, and the inert gas supply unit toward the upper surface of the substrate.
  • the treatment liquid on the upper surface of the substrate is supplied to the upper surface of the substrate via the guide surface and the treatment liquid discharge path by rotating the substrate on the substrate rotation unit and the treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate. It is programmed to perform a process liquid discharge process that discharges out of the shutoff space.
  • the atmosphere in the blocking space can be reliably replaced with the inert gas.
  • the oxygen concentration in the cutoff space that is, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced.
  • a centrifugal force acts on the treatment liquid existing on the upper surface of the substrate, and the treatment liquid existing on the upper surface of the substrate is surely cut off through the guide surface and the treatment liquid discharge path. Can be discharged to the outside. Therefore, the treatment liquid can be excluded from the cutoff space while suppressing the treatment liquid from scattering in the cutoff space. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
  • the guide surface has an inclined surface that is inclined upward so as to go outward in the radial direction.
  • the controller supplies the processing liquid to the upper surface of the substrate held by the substrate holding unit, so that the processing liquid is received by the inclined surface and the upper surface of the substrate and the processing liquid is received.
  • the liquid pool forming step of forming the liquid pool and the liquid pool removing step of accelerating the rotation of the substrate by the substrate rotating unit and removing the liquid pool from the upper surface of the substrate are executed. It is programmed to do.
  • a liquid pool of the treatment liquid can be formed by the inclined surface and the upper surface of the substrate. Therefore, since the treatment liquid is not discharged to the outside of the substrate, the upper surface of the substrate can be treated with the amount of the treatment liquid required to form a liquid pool. Therefore, the consumption of the treatment liquid can be reduced.
  • the inclined surface is inclined so as to go upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate and applying a centrifugal force to the liquid pool, the inclined surface can be smoothly raised on the treatment liquid.
  • the treatment liquid that has climbed the inclined surface smoothly flows into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • Another embodiment of the present invention includes a substrate holding step of horizontally holding a circular substrate in a plan view, and a vertical axis passing through a disk portion having a facing surface facing the substrate from above and a central portion of the substrate.
  • the opposing member having an extending portion extending from the disk portion outward in the radial direction centered on the above, and the annular member surrounding the substrate in a plan view are moved in the vertical direction, and the opposed member and the annular member are moved.
  • the space partitioning step of partitioning the blocking space in which the inflow of the atmosphere from the outside is restricted by the substrate, and the atmosphere in the blocking space is made of the inert gas by supplying the inert gas toward the blocking space.
  • the atmosphere replacement step of replacement the treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate in a state where the atmosphere in the blocking space is replaced by the inert gas, and the treatment liquid are present on the upper surface of the substrate.
  • the treatment liquid existing on the peripheral edge of the upper surface of the substrate is brought into the extending portion via the guide surface provided on the annular member.
  • a substrate treatment method including a treatment liquid discharge step of guiding the treatment liquid to a treatment liquid discharge passage partitioned by the annular member and discharging the treatment liquid from the treatment liquid discharge passage to the outside of the blocking space.
  • the blocking space is partitioned by the substrate, the opposing member, and the annular member by raising and lowering the annular member and the opposing member.
  • the atmosphere in the blocking space can be replaced with the inert gas.
  • the oxygen concentration in the cutoff space that is, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced. Since the inflow of the atmosphere from the external space is restricted in the blocking space, once the atmosphere in the blocking space is replaced with the inert gas, the oxygen concentration in the atmosphere in the blocking space is reduced. Easy to maintain.
  • the upper surface of the substrate is treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid. be able to.
  • the treatment liquid existing on the upper surface of the substrate moves from the peripheral edge of the upper surface of the substrate due to the centrifugal force based on the rotation of the substrate, and is guided to the treatment liquid discharge path via the guide surface.
  • the treatment liquid guided to the treatment liquid discharge path is discharged to the outside of the cutoff space. Since the guide surface exists between the peripheral edge of the substrate and the treatment liquid discharge path, the peripheral edge of the substrate is sufficiently separated from the extending portion of the facing member. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate.
  • the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
  • the width of the treatment liquid discharge path is smaller than the width of the blocking space in the vertical direction. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space through the treatment liquid discharge path, it is possible to suppress the atmosphere outside the cutoff space from flowing in through the treatment liquid discharge path. Therefore, the upper surface of the substrate can be treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid.
  • the annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path. Then, the treatment liquid discharge path has an inflow port at the boundary between the guide surface and the discharge path section screen.
  • the inflow port of the treatment liquid discharge path is provided at the boundary between the discharge path section screen connected to the outer end of the guide surface in the radial direction and the guide surface. Therefore, the location where the backflow occurs in the processing liquid is not on the upper surface of the substrate but on the guide surface. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • the discharge channel screen and the guide surface form a single flat surface that is flat in the horizontal direction.
  • this method there is no step between the guide surface and the discharge path section screen, and the guide surface and the discharge path section screen form a single flat surface that is flat in the horizontal direction. Therefore, the treatment liquid flowing on the guide surface can be smoothly flowed into the treatment liquid discharge path. Therefore, it is possible to suppress the scattering of the treatment liquid in the blocking space, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
  • the substrate processing method further includes a synchronous rotation step of rotating the annular member and the opposing member synchronously around the vertical axis in the processing liquid discharge step. Therefore, the turbulence of the air flow in the cutoff space can be suppressed.
  • the annular member and the opposing member are connected by a connecting member.
  • the connecting member is formed so as to be directed toward the downstream side in the rotational direction of the substrate as it is directed outward in the radial direction in a plan view. Therefore, it is possible to promote the generation of an air flow toward the downstream side in the rotational direction as it goes outward in the radial direction. Therefore, the turbulence of the air flow in the cutoff space can be further suppressed.
  • the guide surface has an inclined surface that inclines upward as it goes outward in the radial direction.
  • the treatment liquid supply step includes a liquid pool forming step of supplying the treatment liquid to the upper surface of the substrate to receive the treatment liquid by the inclined surface and the upper surface of the substrate to form a liquid pool of the treatment liquid.
  • the processing liquid discharge step includes a liquid pool removing step of accelerating the rotation of the substrate and removing the liquid pool from the upper surface of the substrate.
  • a liquid pool of the treatment liquid can be formed by the inclined surface and the upper surface of the substrate. Therefore, since the treatment liquid is not discharged to the outside of the substrate, the upper surface of the substrate can be treated with the amount of the treatment liquid required to form a liquid pool. Therefore, the consumption of the treatment liquid can be reduced.
  • the inclined surface is inclined so as to go upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate and applying a centrifugal force to the liquid pool, the inclined surface can be smoothly raised on the treatment liquid.
  • the treatment liquid that has climbed the inclined surface smoothly flows into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • the inner end surface of the annular member in the radial direction extends in the vertical direction.
  • the upper end of the inner end surface is connected to the guide surface.
  • the annular member is moved toward the upper surface of the substrate so that the upper end portion of the inner end surface of the annular member is located above the upper surface of the substrate.
  • the process includes a liquid pool forming step of receiving the treatment liquid by the inner end surface of the annular member and the upper surface of the substrate by supplying the treatment liquid to form a liquid pool of the treatment liquid.
  • the liquid pool is collected from the upper surface of the substrate by moving the annular member so that the upper end portion of the inner end surface of the annular member is located at the same height as the upper surface of the substrate.
  • a liquid pool elimination step to eliminate.
  • a liquid pool of the treatment liquid can be formed by the inner end surface of the annular member and the upper surface of the substrate. Therefore, the upper surface of the substrate is treated by the treatment liquid in the liquid pool. Therefore, the upper surface of the substrate can be treated by supplying an amount of the treatment liquid required for forming the liquid pool to the upper surface of the substrate. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate is discharged to the outside of the substrate without being received by the inner end surface.
  • the treatment liquid is released from the liquid receiving by the inner end surface. Therefore, the treatment liquid existing on the upper surface of the substrate can be smoothly flowed into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
  • the substrate processing method comprises a first cylindrical portion surrounding the opposing member and the annular member in a plan view, and a first circle extending inward in the radial direction from the first cylindrical portion.
  • a first guard having a ring portion, a second cylindrical portion surrounding the facing member and the annular member in a plan view, and extending inward in the radial direction from the second cylindrical portion to the first annular portion.
  • a guard moving step of individually moving the second guard having the second ring portion facing from below up and down is included.
  • the treatment liquid discharge path has a discharge port for discharging the treatment liquid outward in the radial direction.
  • the guard moving step when the treatment liquid is discharged from the discharge port, the inner end of the first annular portion in the radial direction and the second annular portion in the radial direction in the vertical direction.
  • the step of moving the first guard and the second guard so that the treatment liquid discharge path is located between the inner end and the inner end of the guard is included.
  • the second ring portion of the second guard is located below the discharge port in the vertical direction. Therefore, the treatment liquid bounced off from the first guard adheres to the second guard without moving inward in the radial direction from the second guard. Therefore, it is possible to prevent the treatment liquid bounced off from the first guard from adhering to the lower surface of the substrate.
  • the substrate treatment method is executed in parallel with the treatment liquid discharge step, and a protective liquid supply step of supplying a protective liquid for protecting the lower surface of the substrate toward the lower surface of the substrate. Including further. Then, in the guard moving step, the second guard is located so that the radial inner end of the second ring portion is located below the discharge port and above the lower end of the annular member. Includes the step of moving.
  • the protective liquid is supplied toward the lower surface of the substrate in parallel with the processing liquid discharge process. Therefore, even when the mist of the treatment liquid reaches the vicinity of the lower surface of the substrate beyond the second guard, the lower surface of the substrate can be protected from the mist.
  • the second guard is moved so that the inner end of the second annular portion in the radial direction is located below the discharge port and above the lower end of the annular member. Therefore, the second guard can receive the protective liquid discharged outward from the lower surface of the substrate. That is, the processing liquid discharged from the upper surface of the substrate can be received by the first guard, and the protective liquid discharged outward from the lower surface of the substrate can be received by the second guard. Therefore, it is possible to avoid mixing the treatment liquid discharged from the substrate and the protective liquid. As a result, the treatment liquid and the protective liquid can be recovered without being mixed.
  • the substrate treatment method further includes a pre-rinse step of supplying a rinse liquid to the upper surface of the substrate prior to the treatment liquid supply step.
  • the rinse liquid supplied to the upper surface of the substrate in the pre-rinsing step closes the gap between the annular member and the substrate, and is discharged from the treatment liquid discharge path. Then, the prerinsing step is executed in parallel with the atmosphere replacement step.
  • the gap between the annular member and the substrate is closed by the rinsing liquid. Therefore, the movement of the inert gas through the gap is suppressed. Further, the rinse liquid is discharged from the cutoff space to the external space via the treatment liquid discharge path. Therefore, unless a large force is applied to push away the rinse liquid in the treatment liquid discharge passage, the air does not flow into the cutoff space through the treatment liquid discharge passage. On the other hand, since the inert gas is supplied to the blocking space, the air in the blocking space is discharged to the external space together with the rinsing liquid through the treatment liquid discharge path so that the pressure in the blocking space does not rise too much. To.
  • the atmosphere inside the blocking space can be replaced with an inert gas while further restricting the inflow of the atmosphere from the external space into the blocking space.
  • FIG. 1 is a schematic plan view showing the layout of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a cross-sectional view of the periphery of the extending portion of the facing member provided in the processing unit.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • FIG. 5 is a block diagram showing an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus.
  • FIG. 7A is a schematic view for explaining the state of the substrate processing.
  • FIG. 7B is a schematic view for explaining the state of the substrate processing.
  • FIG. 7C is a schematic view for explaining the state of the substrate processing.
  • FIG. 7D is a schematic view for explaining the state of the substrate processing.
  • FIG. 7E is a schematic view for explaining the state of the substrate processing.
  • FIG. 7F is a schematic view for explaining the state of the substrate processing.
  • FIG. 8 is a schematic view for explaining the state of the treatment liquid in the vicinity of the annular member in the substrate treatment.
  • FIG. 9 is a schematic view for explaining how the guard receives the processing liquid in the substrate processing.
  • FIG. 10A is a schematic diagram for explaining another example of substrate processing by the substrate processing apparatus.
  • FIG. 10B is a schematic diagram for explaining another example of substrate processing by the substrate processing apparatus.
  • FIG. 11A is a schematic view for explaining a modification of the substrate processing apparatus.
  • FIG. 10A is a schematic diagram for explaining another example of substrate processing by the substrate processing apparatus.
  • FIG. 11B is a schematic view for explaining a modification of the substrate processing apparatus.
  • FIG. 12 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a view of the periphery of the annular member provided in the processing unit according to the second embodiment as viewed from above.
  • FIG. 14 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of the periphery of the opposing member and the annular member provided in the processing unit according to the third embodiment.
  • FIG. 16 is a schematic diagram for explaining substrate processing using the substrate processing apparatus according to the third embodiment.
  • FIG. 17 is a schematic diagram for explaining another example of substrate processing using the substrate processing apparatus according to the third embodiment.
  • FIG. 18 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fourth embodiment of the present invention.
  • FIG. 19 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fifth embodiment of the present invention.
  • FIG. 20 is a schematic view for explaining a modified example of the connecting member connected to the annular member.
  • FIG. 1 is a schematic plan view showing the layout of the substrate processing apparatus 1 according to the first embodiment of the present invention.
  • the substrate processing device 1 is a single-wafer type device that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 for processing the substrate W with a fluid, a load port LP on which a carrier C accommodating a plurality of substrates W processed by the processing unit 2 is mounted, and a load port LP. It includes transfer robots IR and CR that transfer the substrate W between the substrate processing unit 2 and the processing unit 2, and a controller 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have, for example, a similar configuration.
  • the processing solution supplied to the substrate W in the processing unit 2 includes a chemical solution, a rinsing solution, a replacement solution, and the like.
  • Each processing unit 2 includes a chamber 4 and a processing cup 7 arranged in the chamber 4, and processes the substrate W in the processing cup 7.
  • the chamber 4 is formed with an entrance / exit (not shown) for loading / unloading the substrate W and unloading the substrate W by the transfer robot CR.
  • the chamber 4 is provided with a shutter unit (not shown) that opens and closes the doorway.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a spin chuck 5, an opposing member 6, a processing cup 7, an annular member 8, a central nozzle 11, a plurality of first lower surface nozzles 12, and a plurality of second lower surface nozzles 13.
  • the spin chuck 5 rotates the substrate W around the vertical rotation axis A1 (vertical axis) passing through the central portion of the substrate W while holding the substrate W horizontally.
  • the spin chuck 5 includes a spin base 21, a rotating shaft 22, and a spin motor 23 that applies a rotational force to the rotating shaft 22.
  • the rotating shaft 22 is a hollow shaft.
  • the rotating shaft 22 extends in the vertical direction along the rotating axis A1.
  • the rotation axis A1 is a vertical axis passing through the central portion of the substrate W.
  • a spin base 21 is coupled to the upper end of the rotating shaft 22.
  • the spin base 21 is fitted onto the upper end of the rotating shaft 22.
  • the upper surface of the spin base 21 has a circular shape in a plan view. The diameter of the upper surface of the spin base 21 is smaller than the diameter of the substrate W.
  • the spin chuck 5 further includes a suction unit 27 that sucks the substrate W arranged on the upper surface of the spin base 21 in order to hold the substrate W on the spin base 21.
  • a suction path 25 is inserted through the spin base 21 and the rotating shaft 22.
  • the suction path 25 has a suction port 24 exposed from the center of the upper surface of the spin base 21.
  • the suction path 25 is connected to the suction pipe 26.
  • the suction pipe 26 is connected to a suction unit 27 such as a vacuum pump.
  • the suction pipe 26 is provided with a suction valve 28 for opening and closing the path.
  • the spin chuck 5 is an example of a substrate holding unit for holding the substrate W horizontally.
  • the substrate W can be placed in the correct position on the spin base 21 using an eccentric sensor (not shown).
  • the spin base 21 is rotated by rotating the rotating shaft 22 by the spin motor 23.
  • the substrate W is rotated around the rotation axis A1 together with the spin base 21.
  • the spin motor 23 is an example of a substrate rotation unit that rotates the substrate W around the rotation axis A1.
  • the inner diameter in the radial direction centered on the rotation axis A1 is referred to as “diameter inner direction”
  • the radial outer direction centered on the rotation axis A1 is referred to as “diameter outer direction”.
  • the facing member 6 includes a disc portion 65 facing the substrate W held by the spin chuck 5 from above, and a flange-shaped (cylindrical) extending portion 66 extending radially outward from the disc portion 65. ..
  • the disk portion 65 is formed in a disk shape having a diameter substantially the same as or larger than that of the substrate W.
  • the disk portion 65 has an facing surface 6a facing the upper surface (upper surface) of the substrate W.
  • the facing surface 6a is arranged above the spin chuck 5 along a substantially horizontal direction.
  • extension portion 66 extends radially outward from the disk portion 65, it is located radially outward from the peripheral edge of the substrate W.
  • a hollow shaft 60 is fixed on the side of the disk portion 65 opposite to the facing surface 6a.
  • a communication hole 6b that penetrates the disk portion 65 up and down and communicates with the internal space of the hollow shaft 60 is formed.
  • the central nozzle 11 is housed in the internal space of the hollow shaft 60 of the facing member 6.
  • the discharge port 11a provided at the tip of the central nozzle 11 faces the central region on the upper surface of the substrate W from above.
  • the central region of the upper surface of the substrate W is a region on the upper surface of the substrate W that includes the center of rotation of the substrate W and its periphery.
  • the central nozzle 11 includes a plurality of tubes (first tube 31, second tube 32, third tube 33, and fourth tube 34) that discharge the fluid downward, and a tubular casing 30 that surrounds the plurality of tubes. ..
  • the plurality of tubes and the casing 30 extend in the vertical direction along the rotation axis A1.
  • the discharge port 11a of the central nozzle 11 is also a discharge port of each tube.
  • the first tube 31 is an example of a chemical solution supply unit that supplies a chemical solution such as DHF (dilute hydrofluoric acid) to the upper surface of the substrate W.
  • the second tube 32 is an example of a rinse liquid supply unit that supplies a rinse liquid such as DIW to the upper surface of the substrate W.
  • the third tube 33 is an example of a replacement liquid supply unit that supplies a replacement liquid such as IPA to the upper surface of the substrate W. That is, the central nozzle 11 is an example of a treatment liquid supply unit that supplies a treatment liquid such as a chemical liquid, a rinse liquid, and a replacement liquid to the upper surface of the substrate W.
  • the fourth tube 34 (center nozzle 11) is an example of an inert gas supply unit that supplies an inert gas such as nitrogen gas toward the upper surface of the substrate W.
  • the first tube 31 is connected to the chemical solution pipe 40 that guides the chemical solution to the first tube 31.
  • the chemical solution valve 50 interposed in the chemical solution pipe 40 is opened, the chemical solution is discharged from the first tube 31 (center nozzle 11) toward the central region on the upper surface of the substrate W in a continuous flow.
  • the chemical solution discharged from the first tube 31 is not limited to DHF. That is, the chemical liquid discharged from the first tube 31 is sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide solution, organic acid (for example, citric acid, oxalic acid, etc.), organic alkali (for example, TMAH). : Tetramethylammonium hydrochloride, etc.), surfactant, corrosion inhibitor, etc.), may be a liquid containing at least one. Examples of the chemical solution in which these are mixed include SPM (sulfuric acid / hydrogen peroxide mixture: hydrogen peroxide mixture), SC1 (ammonia-hydrogen peroxide mixture: ammonia hydrogen peroxide mixture) and the like.
  • SPM sulfuric acid / hydrogen peroxide mixture: hydrogen peroxide mixture
  • SC1 ammonia-hydrogen peroxide mixture: ammonia hydrogen peroxide mixture
  • the second tube 32 is connected to the upper rinse liquid pipe 41 that guides the rinse liquid to the second tube 32.
  • the upper rinse liquid valve 51 interposed in the upper rinse liquid pipe 41 is opened, the rinse liquid is continuously discharged from the second tube 32 (center nozzle 11) toward the central region on the upper surface of the substrate W. ..
  • rinsing solution examples include DIW, carbonated water, electrolytic ionized water, hydrochloric acid water having a dilution concentration (for example, about 1 ppm to 100 ppm), ammonia water having a dilution concentration (for example, about 1 ppm to 100 ppm), and reduced water (hydrogen water).
  • DIW DIW
  • carbonated water electrolytic ionized water
  • hydrochloric acid water having a dilution concentration for example, about 1 ppm to 100 ppm
  • ammonia water having a dilution concentration for example, about 1 ppm to 100 ppm
  • reduced water hydrogen water
  • the third tube 33 is connected to the upper replacement liquid pipe 42 that guides the replacement liquid to the third tube 33.
  • the upper replacement liquid valve 52 interposed in the upper replacement liquid pipe 42 is opened, the replacement liquid is continuously discharged from the third tube 33 (center nozzle 11) toward the central region on the upper surface of the substrate W. ..
  • the replacement liquid discharged from the third tube 33 is a liquid for replacing the rinse liquid on the upper surface of the substrate W.
  • the replacement liquid is preferably a liquid having higher volatility than the rinse liquid.
  • the replacement liquid discharged from the second tube 32 is preferably compatible with the rinse liquid.
  • the replacement liquid discharged from the third tube 33 is, for example, an organic solvent.
  • Examples of the replacement liquid discharged from the third tube 33 include a liquid containing at least one of IPA, HFE (hydrofluoroether), methanol, ethanol, acetone and Trans-1,2-dichloroethylene.
  • the replacement liquid discharged from the third tube 33 does not have to consist of only a single component, and may be a liquid mixed with other components.
  • it may be a mixed solution of IPA and DIW, or it may be a mixed solution of IPA and HFE.
  • the fourth tube 34 is connected to the inert gas pipe 43 that guides the inert gas to the fourth tube 34.
  • the inert gas valve 53 interposed in the inert gas pipe 43 is opened, the inert gas is continuously discharged downward from the fourth tube 34 (center nozzle 11).
  • the inert gas discharged from the fourth tube 34 is, for example, an inert gas such as nitrogen gas (N 2 ).
  • the inert gas is a gas that is inert to the pattern formed on the upper surface of the substrate W or the upper surface of the substrate W.
  • the inert gas is not limited to nitrogen gas, and rare gases such as argon can also be used.
  • first lower surface nozzle 12 Although only one first lower surface nozzle 12 is shown in FIG. 2, a plurality of first lower surface nozzles 12 are arranged at intervals in the rotation direction R of the substrate W.
  • the first lower surface nozzle 12 is an example of a lower rinse liquid supply unit that supplies a rinse liquid such as DIW to the lower surface of the substrate W.
  • Each of the plurality of first lower surface nozzles 12 is connected to a plurality of lower rinse liquid pipes 44 that guide the rinse liquid to the first lower surface nozzle 12.
  • the lower rinse liquid valve 54 interposed in the lower rinse liquid pipe 44 is opened, the rinse liquid is continuously discharged from the first lower surface nozzle 12 toward the outer peripheral region of the lower surface of the substrate W.
  • the outer peripheral region of the lower surface of the substrate W is an annular region between the central region and the peripheral region of the lower surface of the substrate W.
  • the central region of the lower surface of the substrate W is a region on the lower surface of the substrate W that includes the center of rotation of the substrate W and its periphery.
  • the peripheral edge region of the lower surface of the substrate W is a region including the peripheral edge of the lower surface of the substrate W and its surroundings.
  • the rinse liquid discharged from the first lower surface nozzle 12 examples include the same rinse liquid as the rinse liquid discharged from the second tube 32. That is, the rinse liquid discharged from the first lower surface nozzle 12 includes DIW, carbonated water, electrolytic ionized water, hydrochloric acid water having a dilution concentration (for example, about 1 ppm to 100 ppm), and a dilution concentration (for example, about 1 ppm to 100 ppm). Ammonia water, reduced water (hydrogen water) and the like can be mentioned.
  • the second lower surface nozzle 13 is an example of a lower replacement liquid supply unit that supplies a replacement liquid such as IPA to the lower surface of the substrate W.
  • the plurality of second lower surface nozzles 13 are connected to a plurality of lower replacement liquid pipes 45 that guide the replacement liquid to the second lower surface nozzle 13, respectively.
  • the lower replacement liquid valve 55 interposed in the lower replacement liquid pipe 45 is opened, the replacement liquid is discharged from the second lower surface nozzle 13 toward the outer peripheral region of the lower surface of the substrate W in a continuous flow.
  • Examples of the rinse liquid discharged from the second lower surface nozzle 13 include the same rinse liquid as the replacement liquid discharged from the third tube 33. That is, examples of the replacement solution discharged from the third tube 33 include a solution containing at least one of IPA, HFE (hydrofluoroether), methanol, ethanol, acetone and Trans-1,2-dichloroethylene. ..
  • the replacement liquid discharged from the second lower surface nozzle 13 does not have to consist of only a single component, and may be a liquid mixed with other components.
  • it may be a mixed solution of IPA and DIW, or it may be a mixed solution of IPA and HFE.
  • the processing unit 2 further includes an opposing member elevating unit 61 that drives the elevating and lowering of the opposing member 6, and an opposing member rotating unit 62 that rotates the opposing member 6 around the rotation axis A1.
  • the facing member elevating unit 61 can position the facing member 6 at an arbitrary position (height) from the lower position to the upper position.
  • the lower position is the position where the facing surface 6a is closest to the substrate W in the movable range of the facing member 6.
  • the upper position is a position where the facing surface 6a is most distant from the substrate W in the movable range of the facing member 6.
  • the facing member 6 is in the upper position. Must be located in.
  • the facing member elevating unit 61 includes, for example, a ball screw mechanism (not shown) coupled to a support member (not shown) that supports the hollow shaft 60, and an electric motor (not shown) that applies a driving force to the ball screw mechanism. Includes) and.
  • the facing member elevating unit 61 is also referred to as a facing member lifter (blocking plate lifter).
  • the facing member rotation unit 62 includes, for example, an electric motor (not shown) for rotating the hollow shaft 60.
  • the electric motor is built in, for example, a support member that supports the hollow shaft 60.
  • the facing member rotating unit 62 rotates the facing member 6 by rotating the hollow shaft 60.
  • the annular member 8 surrounds the substrate W in a plan view.
  • the annular member 8 is arranged below the extending portion 66 of the opposing member 6.
  • the annular member 8 is connected to the extension portion 66 by a plurality of connecting members 9. Since the annular member 8 is connected to the facing member 6, the annular member 8 moves up and down as the facing member 6 moves up and down. That is, the opposing member elevating unit 61 also functions as an annular member elevating unit that elevates and elevates the annular member 8 together with the opposing member 6.
  • the blocking space section position in which the substrate W, the facing member 6, and the annular member 8 partition the blocking space SS (see FIG. 3 described later) in which the inflow of atmosphere from the external space is restricted.
  • the facing member 6 can be moved to.
  • the blocking space partition position may be a position between the upper position and the lower position, or may be a lower position.
  • FIG. 3 is a cross-sectional view of the periphery of the extending portion 66 of the opposing member 6. As shown in FIG. 3, the extension portion 66 and the annular member 8 define a treatment liquid discharge path 10 for discharging the treatment liquid from the cutoff space SS to the outside of the external space OS.
  • the external space OS includes a space above the facing member 6, a space below the lower surface of the substrate W, and a space radially outer than the facing member 6 and the annular member 8.
  • the extension portion 66 includes a wide portion 80 whose width in the vertical direction is larger than that of the disc portion 65, and a connecting portion 81 that connects the disc portion 65 and the wide portion 80.
  • the width of the connecting portion 81 in the vertical direction increases toward the outside in the radial direction.
  • the connecting portion 81 has an inclined lower surface 81a that is connected to the facing surface 6a and is inclined downward as it goes outward in the radial direction.
  • the wide portion 80 has a flat lower surface 80a that is connected to the inclined lower surface 81a and extends horizontally in the horizontal direction below the facing surface 6a.
  • the blocking space SS is a space between the facing surface 6a of the disk portion 65 of the facing member 6 and the inclined lower surface 81a of the extending portion 66 and the upper surface of the substrate W.
  • the cutoff space SS and the external space OS are communicated with each other by the treatment liquid discharge path 10.
  • the annular member 8 has an upper surface, a lower surface, a radial inner end surface (inner end surface 84), and a radial outer end surface.
  • the upper surface and the lower surface of the annular member 8 are annular in a plan view, respectively.
  • the upper surface of the annular member 8 includes an annular guide surface 85 that guides the treatment liquid existing on the peripheral edge of the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W, and the treatment liquid together with the extending portion 66. It has an annular discharge channel section screen 86 for partitioning the discharge path 10.
  • the inner end face 84 has a cylindrical shape extending in the vertical direction.
  • the guide surface 85 is connected to the upper end of the inner end surface 84 and the radial inner end of the discharge path section screen 86.
  • Each of the guide surface 85 and the discharge path section screen 86 is horizontally flat.
  • the guide surface 85 is flush with the discharge channel screen 86. That is, the guide surface 85 and the discharge path section screen 86 form a single flat surface that is flat and annular in the horizontal direction.
  • the annular member 8 faces the substrate W from the outside in the radial direction.
  • the upper end of the inner end surface 84 and the guide surface 85 are located at the same height as the upper surface of the substrate W.
  • the lower surface of the annular member 8 has an annular lower inclined surface 87 and an annular lower flat surface 88.
  • the lower inclined surface 87 is connected to the lower end of the inner end surface 84, and is inclined downward as it goes outward in the radial direction.
  • the lower flat surface 88 is connected to the radial outer end of the lower inclined surface 87 and is horizontally flat.
  • the treatment liquid discharge path 10 is partitioned by a horizontally flat discharge path section screen 86 and a flat lower surface 80a. Therefore, the treatment liquid discharge path 10 is annular in a plan view and extends in the horizontal direction.
  • the treatment liquid discharge path 10 has an inflow port 10a on the guide surface 85 into which the treatment liquid flows in, and a discharge port 10b for discharging the treatment liquid outward in the radial direction.
  • the inflow port 10a is provided at the boundary between the guide surface 85 and the discharge path section screen 86.
  • the inflow port 10a is located at the radial inner end of the treatment liquid discharge path 10, and the discharge port 10b is located at the radial outer end of the treatment liquid discharge path 10.
  • the width of the blocking space SS in the vertical direction (blocking space width D1) is larger than the width of the gap G (gap width D2) between the peripheral edge of the substrate W and the inner end surface 84 of the annular member 8 in the horizontal direction.
  • the blocking space width D1 is larger than the width of the treatment liquid discharge path 10 (discharge path width D3) in the vertical direction.
  • the blocking space width D1 includes a distance between the facing surface 6a in the vertical direction and the upper surface of the substrate W, and a distance between the inclined lower surface 81a and the guide surface 85 in the vertical direction. Therefore, at the boundary between the guide surface 85 and the discharge path section screen 86, the cutoff space width D1 is equal to the discharge path width D3. However, at most points in the plan view, the cutoff space width D1 is larger than the discharge path width D3, and the average value of the cutoff space width D1 is larger than the discharge path width D3.
  • the distance between the facing surface 6a in the vertical direction and the upper surface of the substrate W is, for example, 10 mm.
  • the gap width D2 and the discharge path width D3 are, for example, 1 mm, respectively. That is, since the gap width D2 and the discharge path width D3 are sufficiently smaller than the cutoff space width D1, the inflow of the atmosphere from the external space OS is restricted.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • the plurality of connecting members 9 are arranged at equal intervals in the rotation direction R of the substrate W.
  • six connecting members 9 are provided.
  • Each connecting member 9 is a columnar shape extending in the vertical direction.
  • the processing cup 7 receives a plurality of guards 71 that receive the liquid scattered outward from the substrate W held by the spin chuck 5, and a plurality of guards 71 that receive the liquid guided downward by the plurality of guards 71. Includes a plurality of cups 72.
  • guards 71 first guard 71A and second guard 71B
  • cups 72 first cup 72A and second cup 72B
  • Each of the first cup 72A and the second cup 72B has the form of an annular groove that is open upward.
  • the first guard 71A is arranged so as to surround the spin base 21.
  • the second guard 71B (inner guard) is arranged so as to surround the spin base 21 in the radial direction of the substrate W with respect to the first guard 71A (outer guard).
  • the first guard 71A and the second guard 71B each have a substantially cylindrical shape, and the upper end portion of each guard 71 is inclined inward so as to be inward in the radial direction.
  • the first guard 71A includes a first cylindrical portion 75A that surrounds the opposing member 6 and the annular member 8 in a plan view, and a first annular portion 76A that extends inward in the radial direction from the upper end of the first cylindrical portion 75A.
  • the first annular portion 76A is inclined with respect to the horizontal direction so as to be upward as it goes inward in the radial direction.
  • the second guard 71B is arranged inward of the first cylindrical portion 75A and surrounds the opposing member 6 and the annular member 8 in a plan view.
  • the second cylindrical portion 75B and the second cylindrical portion 75B are radially inward from the upper end.
  • the second ring portion 76B faces the first ring portion 76A from below.
  • the second annular portion 76B is inclined with respect to the horizontal direction so as to be upward as it goes inward in the radial direction.
  • the first cup 72A receives the processing liquid guided downward by the first guard 71A.
  • the second cup 72B is integrally formed with the first guard 71A, and receives the treatment liquid guided downward by the second guard 71B.
  • the treatment liquid received by the first cup 72A is collected by a first treatment liquid recovery path (not shown) connected to the lower end of the first cup 72A.
  • the treatment liquid received by the second cup 72B is collected by a second treatment liquid recovery path (not shown) connected to the lower end of the second cup 72B.
  • the processing unit 2 includes a guard elevating unit 74 that separately elevates and elevates the first guard 71A and the second guard 71B.
  • the guard elevating unit 74 raises and lowers the first guard 71A between the lower position and the upper position.
  • the guard elevating unit 74 raises and lowers the second guard 71B between the lower position and the upper position.
  • both the first guard 71A and the second guard 71B are located at the upper positions, the processing liquid scattered from the substrate W is received by the second guard 71B.
  • the second guard 71B is located at the lower position and the first guard 71A is located at the upper position, the processing liquid scattered from the substrate W is received by the first guard 71A.
  • the transfer robot CR carries the substrate W into the chamber 4 or the substrate from inside the chamber 4. W can be carried out.
  • the guard elevating unit 74 includes, for example, a first ball screw mechanism (not shown) coupled to the first guard 71A, a first motor (not shown) that applies a driving force to the first ball screw mechanism, and a second. It includes a second ball screw mechanism (not shown) coupled to the guard 71B and a second motor (not shown) that applies a driving force to the second ball screw mechanism.
  • the guard elevating unit 74 is also referred to as a guard lifter.
  • FIG. 5 is a block diagram showing an electrical configuration of a main part of the substrate processing device 1.
  • the controller 3 includes a microcomputer and controls a control target provided in the substrate processing device 1 according to a predetermined control program.
  • the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored.
  • the controller 3 is configured to execute various controls for substrate processing by the processor 3A executing a control program.
  • the controller 3 includes a transfer robot IR, CR, a suction unit 27, a spin motor 23, a guard elevating unit 74, an opposing member rotating unit 62, an opposing member elevating unit 61, a suction valve 28, a chemical solution valve 50, and an upper rinse solution valve 51.
  • the upper replacement liquid valve 52, the inert gas valve 53, the lower rinse liquid valve 54, and the lower replacement liquid valve 55 are programmed to control.
  • the controller 3 By controlling the valve by the controller 3, the presence or absence of the discharge of the treatment liquid or the inert gas from the corresponding nozzle and the discharge flow rate of the treatment liquid or the inert gas from the corresponding nozzle are controlled.
  • FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • FIG. 6 mainly shows the processing realized by the controller 3 executing the program.
  • 7A to 7F are schematic views for explaining the state of each step of the substrate processing. In the following, we will mainly refer to FIGS. 2 and 6. 7A to 7F will be referred to as appropriate.
  • the chemical liquid supply step (step S5), the rinsing step (step S6), the replacement liquid supply step (step S7), the spin dry step (step S8), and the substrate unloading step (step S9) are executed.
  • the unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robot CR and passed to the spin chuck 5 (step S1).
  • the substrate W is held horizontally by the spin chuck 5 (board holding step).
  • the facing member 6 is retracted to the upper position, and the plurality of guards 71 are retracted to the lower position.
  • the holding of the substrate W by the spin chuck 5 is continued until the spin drying step (step S8) is completed.
  • the guard elevating unit 74 has the first guard 71A and the second guard so that at least one guard 71 is located at the upper position from the start of the substrate holding step to the end of the spin drying step (step S8). Adjust the height position of 71B.
  • step S2 for partitioning the blocking space SS is executed. Specifically, as shown in FIG. 7B, the facing member elevating unit 61 moves the facing member 6 to the blocking space section position. As a result, the blocking space SS is partitioned by the substrate W, the facing member 6, and the annular member 8.
  • step S3 an atmosphere replacement step (step S3) of replacing the atmosphere of the cutoff space SS with an inert gas and a prerinsing step (step S4) of cleaning the upper surface of the substrate W with a rinsing liquid are executed in parallel.
  • the spin motor 23 starts rotating the substrate W.
  • the opposing member rotation unit 62 starts rotating the opposing member 6 and the annular member 8.
  • the opposing member rotation unit 62 rotates the opposing member 6 and the annular member 8 synchronously with the substrate W (synchronous rotation step).
  • the synchronous rotation of the substrate W, the opposing member 6, and the annular member 8 is continued until the spin-drying step (step S8) is completed.
  • the inert gas valve 53 and the upper rinse liquid valve 51 are opened with the facing member 6 located at the blocking space section position.
  • the inert gas valve 53 is opened, as shown in FIG. 7C, the inert gas is discharged from the central nozzle 11 and the inert gas is supplied to the shutoff space SS.
  • the upper rinse liquid valve 51 is opened, a rinse liquid such as DIW is discharged from the central nozzle 11 toward the upper surface of the substrate W on the upper surface of the substrate W, as shown in FIG. 7C.
  • the discharged rinse liquid lands on the central region of the upper surface of the substrate W.
  • Centrifugal force due to the rotation of the substrate W acts on the rinse liquid that has landed on the upper surface of the substrate W. Therefore, the rinse liquid is spread over the entire upper surface of the substrate W by centrifugal force.
  • the rinse liquid that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the rinse liquid that has flowed into the treatment liquid discharge path 10 is discharged to the outside of the cutoff space SS.
  • the gap G is closed by the rinsing liquid moving from the peripheral edge of the upper surface of the substrate W to the guide surface 85.
  • the air in the blocking space SS begins to be pushed out by the inert gas from the gap G and the treatment liquid discharge path 10.
  • the inert gas fills the blocking space SS. That is, the atmosphere in the blocking space SS is replaced by the inert gas.
  • the Inactive gas valve 53 is maintained in the open state until the spin drying step (step S8) is completed.
  • the gap G between the annular member 8 and the substrate W is closed by the rinsing liquid. Therefore, the movement of the inert gas through the gap G is suppressed. Further, the rinse liquid is discharged from the cutoff space SS to the external space OS via the treatment liquid discharge path 10. Therefore, the inflow of the atmosphere into the cutoff space SS through the treatment liquid discharge passage 10 does not occur unless a large force that pushes away the rinse liquid in the treatment liquid discharge passage 10 acts. On the other hand, since the inert gas is supplied to the cutoff space SS, the air in the cutoff space SS is discharged to the external space OS via the treatment liquid discharge path 10 so that the pressure in the cutoff space SS does not rise too much. Will be done.
  • the atmosphere in the blocking space SS can be replaced with an inert gas while limiting the inflow of the atmosphere from the external space OS to the blocking space SS.
  • FIG. 7C shows a state in which the treatment liquid discharge path 10 is filled with the rinse liquid
  • the inert gas moves to the external space OS through the treatment liquid discharge passage 10
  • the rinse liquid is shown.
  • a part of the (treatment liquid) is pushed away to move in the treatment liquid discharge path 10 (the same applies to the drawings after FIG. 7D).
  • a chemical solution supply step (step S5) of supplying the chemical solution to the upper surface of the substrate W is executed in order to treat the upper surface of the substrate W with the chemical solution.
  • the upper rinse liquid valve 51 is closed and the chemical liquid valve 50 is opened in a state where the shutoff space SS is filled with the inert gas.
  • the discharge of the rinse liquid from the central nozzle 11 is stopped, and the chemical liquid such as DHF is discharged from the central nozzle 11 toward the upper surface of the substrate W.
  • the chemical solution supply step is an example of a treatment solution supply step of supplying the treatment solution to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas.
  • the prerinsing step is performed before the treatment liquid supply step.
  • Centrifugal force due to the rotation of the substrate W acts on the chemical solution that has landed on the upper surface of the substrate W. Therefore, the chemical solution spreads over the entire upper surface of the substrate W by centrifugal force and replaces the rinse solution existing on the upper surface of the substrate W.
  • the chemical solution that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the chemical solution is discharged to the outside of the blocking space SS via the treatment liquid discharge path 10 (chemical solution discharge step, treatment liquid discharge step).
  • a plurality of lower rinse solution valves 54 are opened. As a result, the rinsing liquid is started to be discharged from the plurality of first lower surface nozzles 12.
  • the rinse liquids discharged from the plurality of first lower surface nozzles 12 land on the lower surface of the substrate W.
  • Centrifugal force due to the rotation of the substrate W acts on the rinse liquid that has landed on the lower surface of the substrate W.
  • the rinse liquid spreads to the peripheral edge of the lower surface of the substrate W.
  • the lower surface of the substrate W is protected by spreading the rinse liquid to the peripheral edge of the lower surface of the substrate W (bottom surface protection step, protective liquid supply step).
  • the rinse liquid functions as a protective liquid that protects the lower surface of the substrate W. Therefore, the first lower surface nozzle 12 functions as a protective liquid supply unit.
  • the rinse liquid that has reached the peripheral edge of the lower surface of the substrate W is guided to the lower surface of the annular member 8 and then scatters radially outward from the annular member 8.
  • a rinsing step (step S6) of supplying a rinsing solution to the upper surface of the substrate W to wash away the chemical solution existing on the upper surface of the substrate W is executed.
  • the chemical solution valve 50 is closed and the upper rinse solution valve 51 is opened in a state where the shutoff space SS is filled with the inert gas.
  • the discharge of the chemical solution from the central nozzle 11 is stopped, and the rinse solution such as DIW is discharged from the central nozzle 11 toward the upper surface of the substrate W.
  • the discharged rinse liquid lands on the central region of the upper surface of the substrate W.
  • the rinse liquid supply step is an example of a treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas.
  • a replacement liquid supply step (step S7) of supplying the replacement liquid to the upper surface of the substrate W in order to replace the rinse liquid existing on the upper surface of the substrate W with the replacement liquid is executed.
  • the upper rinse liquid valve 51 is closed and the upper replacement liquid valve 52 is opened in a state where the shutoff space SS is filled with the inert gas.
  • the discharge of the rinse liquid from the central nozzle 11 is stopped, and the replacement liquid such as IPA is discharged from the central nozzle 11 toward the upper surface of the substrate W.
  • the discharged replacement liquid lands on the central region of the upper surface of the substrate W.
  • the replacement liquid supply step is an example of a treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas.
  • the plurality of lower rinse liquid valves 54 are closed, and the plurality of lower replacement liquid valves 55 are opened.
  • the discharge of the rinse liquid from the plurality of first lower surface nozzles 12 is stopped, and the discharge of the replacement liquid such as IPA from the plurality of second lower surface nozzles 13 is started.
  • the replacement liquids discharged from the plurality of second lower surface nozzles 13 land on the lower surface of the substrate W.
  • the replacement liquid functions as a protective liquid that protects the lower surface of the substrate W. Therefore, the second lower surface nozzle 13 functions as a protective liquid supply unit.
  • the replacement liquid replaces the rinse liquid existing on the lower surface of the substrate W by spreading to the peripheral edge of the lower surface of the substrate W.
  • the replacement liquid that has reached the peripheral edge of the lower surface of the substrate W is guided to the lower surface of the annular member 8 and then scatters radially outward from the annular member 8.
  • step S8 is executed. Specifically, the upper replacement liquid valve 52 and the plurality of lower replacement liquid valves 55 are closed. As a result, the supply of the replacement liquid to the upper surface and the lower surface of the substrate W is stopped.
  • the spin motor 23 accelerates the rotation of the substrate W and rotates the substrate W at high speed. As a result, a large centrifugal force acts on the replacement liquid remaining on the substrate W, and the replacement liquid on the substrate W is shaken off around the substrate W. By continuing to supply the inert gas to the blocking space SS in the spin-drying step, evaporation of the replacement liquid is promoted.
  • the spin motor 23 stops the rotation of the substrate W
  • the opposing member rotating unit 62 stops the rotation of the opposing member 6 and the annular member 8.
  • the guard elevating unit 74 moves the first guard 71A and the second guard 71B to the lower position.
  • the inert gas valve 53 is closed.
  • the facing member elevating unit 61 moves the facing member 6 to the upper position.
  • the transfer robot CR enters the processing unit 2, scoops the processed substrate W from the chuck pin 20 of the spin chuck 5, and carries it out of the processing unit 2 (step S9).
  • the substrate W is passed from the transfer robot CR to the transfer robot IR, and is housed in the carrier C by the transfer robot IR.
  • the state of the treatment liquid near the annular member 8 in the substrate treatment will be described.
  • the state of the treatment liquid in the vicinity of the annular member 8 is the same regardless of the type of the treatment liquid. That is, the same explanation can be made in any of the pre-rinse step, the chemical solution supply step, the rinse step, and the replacement solution supply step.
  • FIG. 8 is a schematic diagram for explaining the state of the treatment liquid in the vicinity of the annular member 8 when the treatment liquid is discharged from the cutoff space SS.
  • Centrifugal force acts on the treatment liquid existing on the upper surface of the substrate W, and the annular member 8 is arranged close to the peripheral edge of the upper surface of the substrate W. Therefore, the processing liquid that has reached the peripheral edge of the upper surface of the substrate W does not fall downward from the gap G between the peripheral edge of the substrate W and the annular member 8, and is radially outward from the peripheral edge of the upper surface of the substrate W.
  • the guide surface 85 moves the processing liquid existing on the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W by the centrifugal force due to the rotation of the substrate W.
  • the treatment liquid that has moved on the guide surface 85 moves outward in the radial direction on the guide surface 85 and flows into the inflow port 10a of the treatment liquid discharge path 10.
  • the treatment liquid that has flowed into the inflow port 10a of the treatment liquid discharge passage 10 moves horizontally in the treatment liquid discharge passage 10 outward in the radial direction and is discharged from the discharge port 10b.
  • the treatment liquid on the guide surface 85 may collide with the inclined lower surface 81a of the extending portion 66 of the facing member 6. In this case, a backflow (flow inward in the radial direction) is generated in the treatment liquid on the guide surface 85, and the liquid filling 100 is formed by the generation of this backflow.
  • the treatment liquid that goes inward in the radial direction and the treatment liquid that goes outward in the radial direction may collide with each other, and the treatment liquid may scatter in the cutoff space SS.
  • the processing liquid scattered in the cutoff space SS reattaches to the upper surface of the substrate W, particles are generated on the substrate W.
  • the inflow port 10a of the processing liquid discharge path 10 is arranged near the peripheral edge of the substrate W, so that the backflow in the processing liquid is caused by the substrate W. May occur on the top surface of.
  • the inflow port 10a of the treatment liquid discharge path 10 is provided at the boundary between the discharge path section screen 86 connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
  • the first guard 71A and the second guard so that at least one guard 71 is located at the upper position from the start of the substrate holding step to the end of the spin drying step (step S8).
  • the height position of 71B is adjusted.
  • the guard 71 is preferably arranged as described below.
  • FIG. 9 is a schematic view for explaining how the guard 71 receives the processing liquid in the substrate processing.
  • the radial inner end 76a of the first annular portion 76A of the first guard 71A and the second guard 71B in the vertical direction are discharged.
  • the treatment liquid discharge path 10 is positioned between the annular portion 76B and the radial inner end 76b.
  • the guard elevating unit 74 is provided with a treatment liquid discharge path 10 between the radial inner end 76a of the first annular portion 76A and the radial inner end 76b of the second annular portion 76B in the vertical direction.
  • the first guard 71A and the second guard 71B are moved so as to be positioned (guard moving step).
  • the radial inner end 76a of the first annular portion 76A is moved so as to be located above the discharge port 10b and below the upper end of the extension portion 66.
  • the second guard 71B is moved so that the radial inner end 76b of the second annular portion 76B is located below the discharge port 10b and above the lower end of the annular member 8 in the vertical direction.
  • the first annular portion 76A of the first guard 71A is located above the discharge port 10b in the vertical direction. Therefore, the processing liquid discharged from the discharge port 10b passes between the first annular portion 76A and the second annular portion 76B and is received by the first cylindrical portion 75A. The treatment liquid received by the first cylindrical portion 75A may bounce off the first cylindrical portion 75A.
  • the radial inner end 76b of the second annular portion 76B is located below the discharge port 10b in the vertical direction. Therefore, the treatment liquid bounced off from the first guard 71A does not move inward in the radial direction from the second guard 71B, but adheres to the second annular portion 76B from above or radially to the second cylindrical portion 75B. It adheres from the outside. Therefore, it is possible to prevent the treatment liquid bounced off from the first guard 71A from adhering to the lower surface of the substrate W.
  • the treatment liquid bounced off from the first guard 71A is the second annular portion 76B and the annular member. It is possible to suppress the movement inward in the radial direction from the gap between the eight.
  • the lower surface of the substrate W is protected by a protective liquid (DIW). Therefore, the lower surface of the substrate W can be protected from the mist of the processing liquid floating near the lower surface of the substrate W.
  • DIW protective liquid
  • the radial inner end 76b of the second annular portion 76B is located below the discharge port 10b and above the lower end of the annular member 8. Therefore, the second guard 71B can receive the protective liquid discharged outward from the lower surface of the substrate W. That is, the treatment liquid discharged from the upper surface of the substrate W can be received by the first guard 71A, and the protective liquid discharged outward from the lower surface of the substrate W can be received by the second guard 71B. Therefore, the treatment liquid and the protection liquid can be recovered while avoiding mixing of the treatment liquid and the protection liquid.
  • the protective liquid moves radially outward by centrifugal force and reaches the lower inclined surface 87 of the annular member 8 from the lower surface of the substrate W.
  • the lower inclined surface 87 is inclined so as to be downward as it goes outward in the radial direction.
  • the protective liquid is scattered from the annular member 8 in the direction along the lower inclined surface 87, that is, in the diagonally downward direction, and is received by the second cylindrical portion 75B of the second guard 71B. Therefore, it is possible to prevent the protective liquid from scattering in the diagonally upward direction. As a result, it is possible to prevent the treatment liquid scattered obliquely upward from entering between the first annular portion 76A of the first guard 71A and the second annular portion 76B of the second guard 71B.
  • the blocking space SS is partitioned by the substrate W, the opposing member 6, and the annular member 8 by moving the opposing member 6 together with the annular member 8 to the blocking space partition position.
  • the atmosphere in the blocking space SS can be replaced with the inert gas.
  • the oxygen concentration in the cutoff space SS that is, the oxygen concentration in the atmosphere near the upper surface of the substrate W can be reduced.
  • the cut-off space SS In the cut-off space SS, the inflow of atmosphere from the external space OS is restricted. Therefore, once the atmosphere in the blocking space SS is replaced with the inert gas, it is easy to maintain the oxygen concentration in the atmosphere in the blocking space SS in a reduced state.
  • the treatment liquid is supplied to the upper surface of the substrate W to suppress an increase in oxygen concentration in the treatment liquid, and the upper surface of the substrate W is covered with the treatment liquid. Can be processed.
  • the treatment liquid supplied to the upper surface of the substrate W moves toward the peripheral edge of the upper surface of the substrate W by centrifugal force.
  • the processing liquid that has reached the peripheral edge of the upper surface of the substrate W moves onto the guide surface 85 of the annular member 8 without scattering from the substrate W.
  • the treatment liquid existing on the guide surface 85 is discharged to the outside of the cutoff space SS via the treatment liquid discharge path 10. Since the guide surface 85 exists between the peripheral edge portion of the substrate W and the processing liquid discharge path 10, the peripheral edge portion of the substrate W is sufficiently separated from the extending portion 66 of the facing member 6. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate W from rebounding from the facing member 6 and reattaching to the upper surface of the substrate W.
  • the oxygen concentration in the atmosphere near the upper surface of the substrate W can be reduced, and the generation of particles on the upper surface of the substrate W can be suppressed.
  • the treatment liquid is not limited to the guide surface 85 and the treatment liquid discharge path 10. It is also discharged from the gap G. As a result, the treatment liquid on the guide surface 85 may be dispersed to form droplets, which may bounce off the guide surface 85 and reattach to the substrate W.
  • the gap width D2 is sufficiently small, and the peripheral edge of the upper surface of the substrate W and the annular member 8 are sufficiently close to each other, so that the treatment liquid does not become droplets and is transmitted from the upper surface of the substrate W. It is possible to move to the guide surface 85. Therefore, the generation of particles can be suppressed.
  • the discharge path width D3 is smaller than the cutoff space width D1. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path 10 is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space SS through the treatment liquid discharge passage 10, the atmosphere outside the cutoff space SS can be suppressed from flowing in through the treatment liquid discharge passage 10. Therefore, the upper surface of the substrate W is treated while suppressing an increase in the oxygen concentration in the treatment liquid by supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas. Can be treated with liquid.
  • the inflow port 10a of the treatment liquid discharge path 10 is provided at the boundary between the discharge path section screen 86 connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
  • the annular member 8 has a discharge path section screen 86 for partitioning the treatment liquid discharge path 10 together with the extension portion 66.
  • the discharge channel screen 86 and the guide surface 85 form a single flat surface that is horizontally flat. Therefore, the treatment liquid flowing on the guide surface 85 can be smoothly flowed into the treatment liquid discharge path 10. Therefore, it is possible to suppress the scattering of the treatment liquid in the cutoff space SS, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
  • the airflow in the cutoff space SS may be disturbed.
  • the air flow is turbulent, a force acts on the treatment liquid on the upper surface of the substrate W due to the air flow, and the upper surface of the substrate W may be locally exposed or the treatment liquid may be scattered in the cutoff space SS.
  • the substrate W, the annular member 8, and the opposing member 6 that partition the blocking space SS rotate synchronously. Therefore, it is possible to suppress the occurrence of airflow turbulence in the cutoff space SS.
  • the gap G is closed by the rinsing liquid by executing the pre-rinsing step. Therefore, at the start of the chemical solution supply step after the pre-rinse step, the state in which the gap G is closed by the rinse solution is maintained until the chemical solution reaches the vicinity of the gap G. Therefore, the inflow of air from the gap G is restricted from the start of the chemical solution supply. Therefore, the oxygen concentration in the cutoff space SS is reduced when the chemical solution is supplied.
  • the gap G is closed by the rinsing liquid and the replacement liquid, respectively. Therefore, the inflow of air from the gap G is suppressed while the processing liquid is supplied to the upper surface of the substrate W.
  • the annular member 8 does not rotate in the configuration in which the facing member 6 is not provided. Therefore, the processing liquid that has moved outward in the radial direction from the peripheral edge of the substrate W may remain on the guide surface 85. Particles may be generated on the substrate W due to the treatment liquid remaining on the guide surface 85 being scattered in the atmosphere.
  • the annular member 8 since the annular member 8 is connected to the opposing member 6, the annular member 8 can be rotated together with the opposing member 6 when the processing liquid on the substrate W is discharged. Therefore, the treatment liquid is unlikely to remain on the guide surface 85, and particles are unlikely to be generated on the substrate W. Further, a plurality of connecting members 9 for connecting the facing member 6 and the annular member 8 are provided in the processing liquid discharge path 10. Therefore, as compared with the configuration in which the connecting member 9 is provided inward in the radial direction with respect to the processing liquid discharge path 10, when the processing liquid colliding with the connecting member 9 bounces off, the bounced processing liquid is transferred to the substrate W. Hard to adhere to the top surface.
  • FIGS. 10A and 10B are schematic views for explaining another example of substrate processing.
  • the connecting member 9 is not shown for convenience of explanation.
  • the position of the opposing member 6 when the upper end portion of the inner end surface 84 of the annular member 8 is at the same height position as the upper surface of the substrate W is the first position. It is called the blocked space section position.
  • the first blocking space section position is the same position as the blocking space section position shown in FIG.
  • the opposing member elevating unit 61 in the processing liquid supply step, arranges the opposing member 6 at the second blocking space section position.
  • the blocking space SS is partitioned by the substrate W, the facing member 6, and the annular member 8 in a state where the upper end of the inner end surface 84 of the annular member 8 is located above the upper surface of the substrate W. It is the position of the opposing member 6 when it is made.
  • a treatment liquid such as a chemical solution is supplied from the central nozzle 11 toward the upper surface of the substrate W.
  • the treatment liquid is received by the inner end surface 84 of the annular member 8 and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step).
  • the second blocking space section position is also referred to as a liquid pool forming position.
  • the opposing member elevating unit 61 moves the opposing member 6 to the first blocking space section position. .. That is, the upper end portion of the inner end surface 84 of the annular member 8 is moved to the same height position as the upper surface of the substrate W.
  • the opposing member 6 and the annular member 8 when the opposing member 6 is located at the second blocking space partition position are shown by a two-dot chain line.
  • the processing liquid existing on the upper surface of the substrate W is released from the liquid receiving by the inner end surface 84. Therefore, the treatment liquid moves outward in the radial direction due to the centrifugal force, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool elimination step).
  • the treatment liquid that has moved to the outside of the peripheral edge of the substrate W due to centrifugal force smoothly flows into the treatment liquid discharge path 10 via the guide surface 85 (see FIG. 8). Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
  • FIGS. 11A and 11B are schematic views for explaining a modification of the substrate processing apparatus 1 according to the first embodiment.
  • the connecting member 9 is not shown for convenience of explanation.
  • the guide surface 85 is an inclined surface as shown in FIG. 11A.
  • the guide surface 85 according to the modified example is inclined so as to be upward as it goes outward in the radial direction.
  • the lower inclined surface 87 is not provided, and the lower flat surface 88 is connected to the lower end of the inner end surface 84.
  • the boundary 6c between the flat lower surface 80a of the wide portion 80 of the opposing member 6 and the inclined lower surface 81a of the connecting portion 81 of the opposing member 6 is formed between the guide surface 85 of the annular member 8 and the discharge path of the annular member 8. It is located inward in the radial direction from the boundary 8c with the ward screen 86.
  • the upper end of the inner end surface 84 is located at the same height as the upper surface of the substrate W.
  • a processing liquid such as a chemical solution is supplied from the central nozzle 11 toward the upper surface of the substrate in a state where the opposing member 6 is located at the blocking space section position.
  • the treatment liquid is received by the guide surface 85 of the annular member 8 and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step). Therefore, the upper surface of the substrate W is treated by the treatment liquid in the liquid pool 101. Therefore, if the amount of processing liquid required for forming the liquid pool 101 is supplied to the upper surface of the substrate W, the upper surface of the substrate W can be processed. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate W is discharged to the outside of the substrate W without being received by the inclined guide surface 85.
  • the spin motor 23 accelerates the rotation of the substrate W (the substrate acceleration step), as shown in FIG. 11B.
  • the rotation speed of the substrate W is changed from a predetermined liquid pool formation speed (for example, 10 rpm) to a liquid pool discharge speed (for example, 1000 rpm).
  • the guide surface 85 is inclined upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate W and applying a centrifugal force to the liquid pool 101, the guide surface 85 can be smoothly raised on the processing liquid.
  • the processing liquid moves outward in the radial direction, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool removing step).
  • the treatment liquid that has climbed the guide surface 85 smoothly flows into the treatment liquid discharge path 10. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
  • the boundary 6c between the flat lower surface 80a and the inclined lower surface 81a is located at a position where it overlaps the boundary 8c between the guide surface 85 and the discharge path section screen 86 in a plan view, or the boundary 6c is in the radial direction with respect to the boundary 8c.
  • the treatment liquid that goes up the guide surface 85 may collide with the inclined lower surface 81a. In this case, there is a possibility that a backflow that causes the treatment liquid to be blocked and particles to be generated may be generated in the treatment liquid on the guide surface 85.
  • the boundary 6c between the flat lower surface 80a and the inclined lower surface 81a is configured to be located radially inward from the boundary 8c between the guide surface 85 and the discharge path section screen 86.
  • the treatment liquid that climbs the guide surface 85 collides with the flat lower surface 80a instead of the inclined lower surface 81a. If so, the treatment liquid smoothly flows into the treatment liquid discharge path 10 without being blocked.
  • FIG. 12 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2P provided in the substrate processing apparatus 1 according to the second embodiment of the present invention.
  • FIG. 12 and FIG. 13 described later the same reference numerals as those in FIG. 1 and the like are added to the same configurations as those shown in FIGS. 1 to 11B, and the description thereof will be omitted.
  • the form of substrate holding is different from that of the processing unit 2 according to the first embodiment (see FIG. 2).
  • the spin chuck 5P of the processing unit 2P does not include the suction unit 27, but includes a plurality of chuck pins 20 that grip the peripheral edge of the substrate W.
  • the plurality of chuck pins 20 are arranged on the upper surface of the spin base 21 at intervals in the circumferential direction (rotation direction R).
  • the plurality of chuck pins 20 can be opened and closed between a closed state in which the substrate W is gripped by contacting the peripheral end of the substrate W and an open state in which the substrate W is retracted from the peripheral end.
  • processing unit 2P does not include the plurality of first lower surface nozzles 12 and the plurality of second lower surface nozzles 13, but includes the lower surface nozzle 14.
  • the lower surface nozzle 14 is inserted into a through hole 21a that opens at the center of the upper surface of the spin base 21 and a hollow rotating shaft 22.
  • the discharge port 14a of the lower surface nozzle 14 is exposed from the upper surface of the spin base 21.
  • the discharge port 14a of the lower surface nozzle 14 faces the central region of the lower surface (lower surface) of the substrate W from below.
  • a common pipe 46 that commonly guides the rinse liquid and the replacement liquid to the bottom surface nozzle 14 is connected to the bottom surface nozzle 14.
  • a lower rinse liquid pipe 47 that guides the rinse liquid to the common pipe 46
  • a lower replacement liquid pipe 48 that guides the replacement liquid to the common pipe 46 are connected.
  • the lower gas flow path 90 is formed by the space between the lower surface nozzle 14 and the through hole 21a of the spin base 21.
  • the lower gas flow path 90 is connected to the inert gas pipe 49 inserted in the space between the inner peripheral surface of the rotating shaft 22 and the lower surface nozzle 14.
  • the inert gas valve 59 interposed in the inert gas pipe 49 is opened, the inert gas is discharged from the lower gas flow path 90 toward the portion around the central portion of the lower surface of the substrate W.
  • the lower surface nozzle 14 is an example of a lower rinse liquid supply unit that supplies the rinse liquid to the lower surface of the substrate W. Further, the lower surface nozzle 14 is an example of a lower replacement liquid supply unit that supplies the replacement liquid to the lower surface of the substrate W. The bottom nozzle 14 is an example of a lower inert gas supply unit that supplies the inert gas toward the lower surface of the substrate W.
  • the opposing member 6, the annular member 8 and the connecting member 9 provided in the processing unit 2P have substantially the same shape as the opposing member 6, the annular member 8 and the connecting member 9 provided in the processing unit 2 according to the first embodiment, respectively. ..
  • the structure of the annular member 8 provided in the processing unit 2P is slightly different from that of the annular member 8 according to the first embodiment.
  • FIG. 13 is a view of the periphery of the annular member 8 provided in the processing unit 2P according to the second embodiment as viewed from above.
  • the annular member 8 provided in the processing unit 2P is formed with a plurality of recesses 8a for avoiding interference with the plurality of chuck pins 20.
  • the plurality of recesses 8a are provided in the same number as the plurality of chuck pins 20, and are arranged in the rotation direction R at the same interval as the interval between the chuck pins 20.
  • the substrate processing apparatus 1 according to the second embodiment can execute the same substrate processing (see FIGS. 6 to 9) as the substrate processing apparatus 1 according to the first embodiment.
  • the lower surface of the substrate W is protected by discharging the rinse liquid or the replacement liquid from the lower surface nozzle 14 (bottom surface protection step, protective liquid supply step). ..
  • the lower surface nozzle 14 functions as a protective liquid supply unit.
  • the atmosphere in the space between the lower surface of the substrate W and the spin base 21 may be replaced with the inert gas by blowing the inert gas toward the lower surface of the substrate W. In this case, the inflow of air (oxygen) into the cutoff space SS can be further suppressed.
  • the same effect as that of the first embodiment is obtained. Further, also in the second embodiment, the substrate processing shown in FIGS. 10A and 10B can be executed, and the modified examples shown in FIGS. 11A and 11B can be applied.
  • FIG. 14 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2Q provided in the substrate processing apparatus 1 according to the third embodiment of the present invention.
  • FIGS. 14 and 15 to 17, which will be described later the same reference numerals as those shown in FIGS. 1 and 13 are assigned to the same configurations as those shown in FIGS. 1 to 13 described above, and the description thereof will be omitted.
  • FIG. 15 is a cross-sectional view of the periphery of the opposing member 6Q and the annular member 8Q provided in the processing unit 2Q according to the third embodiment.
  • the extending portion 66Q of the opposing member 6Q includes a wide portion 110 having a width in the vertical direction larger than that of the disc portion 65, and a connecting portion 111 connecting the disc portion 65 and the wide portion 110. Including. The width of the connecting portion 111 in the vertical direction increases toward the outside in the radial direction.
  • the connecting portion 111 has an inclined lower surface 111a that is connected to the facing surface 6a and is inclined downward as it goes outward in the radial direction.
  • the wide portion 110 has a vertical cylindrical surface 110a connected to the inclined lower surface 111a and extending in the vertical direction, and a flat lower surface 110b connected to the lower end of the vertical cylindrical surface 110a and flat in the horizontal direction.
  • the guide surface 85 is connected to the upper end of the inner end surface 84 and the radial inner end of the discharge path section screen 86.
  • the guide surface 85 is flat in the horizontal direction.
  • the discharge channel screen 86 is connected to the radial outer end of the guide surface 85 and is inclined downward as it goes outward in the radial direction, and the inclined screen 86A and the radial outer end of the inclined screen 86A. Includes a vertical section screen 86B connected to the edge and extending in the vertical direction.
  • the treatment liquid discharge path 10Q is connected to the cutoff space SS, is connected to the inclined discharge path 120, which is partitioned by the inclined lower surface 111a and the inclined section screen 86A, and is connected to the inclined discharge path 120, and is connected to the vertical cylindrical surface. Includes a vertical discharge path 121 partitioned by 110a and a vertical section screen 86B.
  • the inflow port 10Qa of the treatment liquid discharge path 10Q is provided at the radial inner end of the inclined discharge path 120.
  • the discharge port 10Qb of the treatment liquid discharge path 10Q is provided at the lower end of the vertical discharge path 121.
  • the width of the treatment liquid discharge path 10Q (discharge path width D3) is the distance between the inclined section screen 86A and the inclined lower surface 111a, or the distance between the vertical section screen 86B and the vertical cylindrical surface 110a. Also in the third embodiment, it is clear that the cutoff space width D1 is larger than the discharge path width D3 and the average value of the cutoff space width D1 is larger than the discharge path width D3 at most points in the plan view. is there.
  • the upper end of the inner end surface 84 and the guide surface 85 are located at the same height as the upper surface of the substrate W.
  • the substrate processing apparatus 1 according to the third embodiment can execute the same substrate processing (see FIGS. 6 to 7F) as the substrate processing apparatus 1 according to the first embodiment.
  • FIG. 16 is a schematic diagram for explaining the substrate processing using the substrate processing apparatus 1 according to the third embodiment.
  • Centrifugal force acts on the treatment liquid existing on the upper surface of the substrate W, and the annular member 8Q is arranged close to the peripheral edge of the upper surface of the substrate W. Therefore, the processing liquid that has reached the peripheral edge of the upper surface of the substrate W does not fall downward from the gap G between the peripheral edge of the substrate W and the annular member 8Q, and is radially outward from the peripheral edge of the upper surface of the substrate W.
  • the guide surface 85 moves the processing liquid existing on the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W by the centrifugal force due to the rotation of the substrate W.
  • the gap G is closed by the treatment liquid.
  • the treatment liquid that has moved on the guide surface 85 moves outward in the radial direction on the guide surface 85 and flows into the inflow port 10Qa of the treatment liquid discharge path 10Q.
  • the treatment liquid that has flowed into the inflow port 10Qa of the treatment liquid discharge path 10Q moves outward in the radial direction in the inclined discharge path 120, and then moves downward in the vertical discharge path 121. After that, the treatment liquid is discharged from the discharge port 10Qb.
  • the treatment liquid on the guide surface 85 may collide with the inclined lower surface 111a of the extending portion 66 of the facing member 6Q. In this case, a backflow (flow inward in the radial direction) is generated in the treatment liquid on the guide surface 85, and the liquid filling 100 is formed by the generation of this backflow.
  • the inflow port 10Qa of the treatment liquid discharge path 10Q is provided at the boundary between the discharge path section screen 86Q connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W. Further, according to the third embodiment, the same effect as that of the first embodiment is obtained.
  • FIG. 17 is a schematic diagram for explaining another example of substrate processing using the substrate processing apparatus 1 according to the third embodiment.
  • the position of the opposing member 6Q shown in FIG. 16 described above is referred to as a first blocking space partition position.
  • the upper end of the inner end surface 84 of the annular member 8Q is located at the same height as the upper surface of the substrate W.
  • the facing member elevating unit 61 arranges the facing member 6Q at the second blocking space section position.
  • the second blocking space section position is such that the upper end of the inner end surface 84 of the annular member 8Q is located above the upper surface of the substrate W, and the blocking space SS is partitioned by the substrate W, the facing member 6Q, and the annular member 8Q. It is the position of the opposing member 6Q when it is made.
  • a treatment liquid such as a chemical solution is supplied from the central nozzle 11 (see FIG. 14) toward the upper surface of the substrate.
  • the treatment liquid is received by the inner end surface 84 of the annular member 8Q and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step). Therefore, the upper surface of the substrate W is treated by the treatment liquid in the liquid pool 101. Therefore, if the amount of processing liquid required for forming the liquid pool 101 is supplied to the upper surface of the substrate W, the upper surface of the substrate W can be processed. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate W is discharged to the outside of the substrate W without being received by the inner end surface 84.
  • the facing member elevating unit 61 moves the facing member 6Q to the first blocking space section position. That is, the upper end portion of the inner end surface 84 of the annular member 8Q is moved to the same position as the upper surface of the substrate W (see FIG. 16). As a result, the processing liquid existing on the upper surface of the substrate W is released from the liquid receiving by the inner end surface 84. Therefore, the treatment liquid moves outward in the radial direction due to the centrifugal force, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool elimination step).
  • the treatment liquid that has moved to the outside of the peripheral edge of the substrate W due to centrifugal force smoothly flows into the treatment liquid discharge path 10 via the guide surface 85 (see FIG. 16). Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
  • FIG. 18 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2R provided in the substrate processing apparatus 1 according to the fourth embodiment of the present invention.
  • a configuration equivalent to the configuration shown in FIGS. 1 to 17 described above is designated by the same reference numeral as in FIG. 1 and the like, and the description thereof will be omitted.
  • the form of substrate holding is different from the processing unit 2Q (see FIG. 14) according to the third embodiment.
  • the processing unit 2R according to the fourth embodiment has a configuration in which the opposing member 6Q and the annular member 8Q according to the third embodiment and the spin chuck 5P according to the second embodiment are combined.
  • the substrate processing apparatus 1 according to the fourth embodiment can execute the same substrate processing (see FIGS. 6 to 7F) as the substrate processing apparatus 1 according to the first embodiment.
  • the state when the treatment liquid is discharged from the cutoff space SS is the same as that described in the third embodiment (see FIG. 16).
  • the lower surface of the substrate W is protected by discharging the rinse liquid or the replacement liquid from the lower surface nozzle 14 (bottom surface protection step, protective liquid supply step).
  • the lower surface nozzle 14 functions as a protective liquid supply unit.
  • the atmosphere in the space between the lower surface of the substrate W and the spin base 21 may be replaced with the inert gas by blowing the inert gas toward the lower surface of the substrate W.
  • the inflow of oxygen into the cutoff space SS can be further suppressed.
  • the same effect as that of the first embodiment is obtained. Further, also in the fourth embodiment, it is possible to execute another example of the substrate processing shown in FIG. 17 as in the third embodiment.
  • FIG. 19 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fifth embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 and the like are added to the configurations equivalent to the configurations shown in FIGS. 1 to 18 described above, and the description thereof will be omitted.
  • the processing unit 2S according to the fifth embodiment is different from the processing unit 2R (see FIG. 18) according to the fourth embodiment in the mechanism of raising / lowering and rotating the opposing member 6Q and the annular member 8Q.
  • the facing member 6Q and the annular member 8Q of the processing unit 2S according to the fifth embodiment are raised and lowered by the support member raising and lowering unit 131, and are rotated by the spin motor 23.
  • the support member elevating unit 131 is a unit that elevates and elevates the support member 130 that suspends and supports the opposing member 6Q.
  • the facing member 6Q further includes a plurality of flange portions 63 extending horizontally from the upper end of the hollow shaft 60.
  • the opposing member 6Q can be engaged with the spin base 21 by, for example, a magnetic force.
  • the plurality of first engaging portions 135 provided on the annular member 8Q and the plurality of second engaging portions 136 provided on the spin base 21 are attracted by a magnetic force to engage with each other in an uneven manner.
  • the plurality of first engaging portions 135 extend downward from the lower surface of the annular member 8Q.
  • the plurality of first engaging portions 135 are arranged so as to be spaced apart from each other in the circumferential direction (rotation direction R) around the rotation axis A1.
  • the plurality of second engaging portions 136 are arranged on the upper surface of the spin base 21 radially outward of the plurality of chuck pins 20 at intervals in the circumferential direction (rotation direction R) around the rotation axis A1. There is.
  • the spin motor 23 also functions as an opposing member rotating unit that rotates the opposing member 6Q and the annular member 8Q around the rotation axis A1.
  • the annular member 8Q engages the spin base 21 (see the alternate long and short dash line in FIG. 19).
  • the support member 130 includes an opposing member support portion 132 that supports the opposing member 6Q, a nozzle support portion 133 that is provided above the opposing member support portion 132 and supports the casing 30 of the central nozzle 11, and the opposing member support portion 132. It includes a wall portion 134 that connects the nozzle support portions 133 and extends in the vertical direction.
  • the facing member support portion 132 supports the facing member 6Q (flange portion 63) from below.
  • a tubular portion insertion hole 132a through which the hollow shaft 60 is inserted is formed in the central portion of the facing member support portion 132.
  • Each flange portion 63 is formed with a positioning hole 63a that penetrates the flange portion 63 in the vertical direction.
  • the facing member support portion 132 is formed with an engaging projection 132b that can be engaged with the positioning hole 63a of the corresponding flange portion 63.
  • the support member elevating unit 131 includes, for example, a ball screw mechanism (not shown) that raises and lowers the support member 130, and an electric motor (not shown) that applies a driving force to the ball screw mechanism.
  • the support member elevating unit 131 is controlled by the controller 3 (see the alternate long and short dash line in FIG. 5).
  • the support member elevating unit 131 may position the support member 130 at a predetermined height position from the upper position (the position shown by the solid line in FIG. 19) to the lower position (the position shown by the alternate long and short dash line in FIG. 19). it can.
  • the lower position is the position where the support member 130 is closest to the upper surface of the spin base 21 in the movable range of the support member 130.
  • the upper position is the position where the support member 130 is most distant from the upper surface of the spin base 21 in the movable range of the support member 130.
  • the facing member 6Q is suspended and supported.
  • the support member 130 passes through the engagement position between the upper position and the lower position by being raised and lowered by the support member elevating unit 131.
  • the support member 130 descends from the upper position to the engaging position together with the opposing member 6Q and the annular member 8Q.
  • the support member 130 reaches the engaging position, the opposing member 6Q and the annular member 8Q are delivered to the spin base 21.
  • the support member 130 reaches below the engaging position, it separates from the opposing member 6Q.
  • the support member 130 When the support member 130 rises from the lower position and reaches the engaging position, the support member 130 receives the opposing member 6Q and the annular member 8Q from the spin base 21. The support member 130 rises from the engaging position to the upper position together with the opposing member 6Q and the annular member 8Q.
  • the facing member 6Q and the annular member 8Q move up and down with respect to the spin base 21 by raising and lowering the support member 130 by the support member raising and lowering unit 131. Therefore, the support member elevating unit 131 functions as an opposing member elevating unit.
  • the substrate processing apparatus 1 according to the fifth embodiment can execute the same substrate processing as the substrate processing apparatus 1 according to the fourth embodiment.
  • the atmosphere replacement step (step S3) to the spin drying step (step S8) are performed in a state where the support member 130 is located at the lower position (the position indicated by the alternate long and short dash line in FIG. 19). Is executed. Therefore, when the processing liquid is supplied to the upper surface and the lower surface of the substrate W, the opposing member 6Q and the annular member 8Q and the substrate W can be reliably rotated synchronously.
  • the polymer layer forming liquid include a hydrophobizing agent that makes the surface of the substrate W hydrophobic. It is a liquid that reacts with the SiO 2 film on the surface of the pattern formed on the surface of the substrate W to form a sacrificial layer.
  • hydrophobizing agent for example, a silicon-based hydrophobizing agent for hydrophobizing silicon itself and a compound containing silicon, or a metal-based hydrophobizing agent for hydrophobizing the metal itself and a compound containing metal can be used.
  • the metal-based hydrophobizing agent contains, for example, an amine having a hydrophobic group and at least one of an organic silicon compound.
  • the silicon-based hydrophobizing agent is, for example, a silane coupling agent.
  • the silane coupling agent contains, for example, HMDS (hexamethyldisilazane), TMS (tetramethylsilane), fluorinated alkylchlorosilane, alkyldisilazane, and at least one of non-chlorohydrophobic agents.
  • Non-chloro hydrophobic agents include, for example, dimethylsilyldimethylamine, dimethylsilyldiethylamine, hexamethyldisilazane, tetramethyldisilazane, bis (dimethylamino) dimethylsilane, N, N-dimethylaminotrimethylsilane, N-( Trimethylsilyl) Includes at least one of dimethylamine and an organosilane compound.
  • the polymer layer forming liquid is relatively expensive, so we want to reduce the consumption.
  • a method of forming a liquid pool 101 of the polymer layer forming liquid on the upper surface of the substrate W to treat the upper surface of the substrate W is effective.
  • the connecting portion 81 has an inclined lower surface 81a that inclines downward as it goes outward in the radial direction.
  • the connecting portion 81 does not have an inclined lower surface 81a that inclines downward as it goes outward in the radial direction, and is flush with the facing surface 6a as shown by the alternate long and short dash line in FIG. It may have a certain lower surface.
  • the treatment liquid on the guide surface 85 collides with the radial inner end surface 80b of the wide portion 80 of the extending portion 66 of the facing member 6 before flowing into the treatment liquid discharge path 10, thereby guiding the treatment liquid. Backflow occurs in the treatment liquid on the surface 85.
  • each connecting member 9 in the above-described embodiment is a columnar shape extending in the vertical direction. Unlike the above-described embodiment, as shown in FIG. 20, each connecting member 9 is formed so as to be directed toward the downstream side RD of the rotation direction R of the substrate W as it is directed outward in the radial direction in a plan view. You may be.
  • the connecting member 9 is provided in the treatment liquid discharge path 10, but the connecting member 9 may be provided in the blocking space SS. In this case, although not shown, It is connected to the guide surface 85 and the inclined lower surface 81a.
  • Substrate processing device 3 Controller 5: Spin chuck (board holding unit) 5P: Spin chuck (board holding unit) 6: Facing member 6Q: Facing member 6a: Facing surface 8: Ring member 8Q: Ring member 9: Connecting member 10: Treatment liquid discharge path 10Q: Treatment liquid discharge path 10a: Inflow port 10Qa: Inflow port 10b: Discharge port 11: Central nozzle (treatment liquid supply unit, inert gas supply unit) 12: First lower surface nozzle (protective liquid supply unit) 13: Second lower surface nozzle (protective liquid supply unit) 14: Bottom nozzle (protective liquid supply unit) 23: Spin motor (board rotation unit, facing member rotation unit) 61: Opposing member elevating unit 62: Opposing member rotating unit 65: Disk 66: Extension 66Q: Extension 71A: First guard 71B: Second guard 74: Guard elevating unit 75A: First cylindrical portion 75B: Second cylindrical part 76A: First ring part 76B: Second ring part 84: Inner end surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

This substrate treatment device includes: an opposing member that has a disk part having an opposing surface opposing, from above, a substrate held by a substrate holding unit and an extension part extending from the disk part to the outside in the radial direction centered on a vertical axis; an annular member that encircles the substrate held by the substrate holding unit in a plan view; and an opposing member lifting and lowering unit for lifting and lowering, in cooperation with the annular member, the opposing member such that a blocked space to which the inflow of atmosphere from the outside is restricted is demarcated by the substrate, the opposing member, and the annular member. The annular member has a guiding surface for, when a substrate rotation unit rotates the substrate held by the substrate holding unit, guiding a treatment liquid present on the upper surface of the substrate, by centrifugal force, radially outward relative to a circumferential edge section of the substrate. The extension part and the annular member demarcate a treatment liquid discharge path from which the treatment liquid present on the guiding surface is discharged to the outside of the blocking space.

Description

基板処理装置および基板処理方法Substrate processing equipment and substrate processing method
 この発明は、基板を処理する基板処理装置および基板処理方法に関する。処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate. The substrates to be processed include, for example, semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and substrates for optomagnetic disks. Includes substrates such as substrates, photomask substrates, ceramic substrates, and solar cell substrates.
 薬液等の処理液によって基板の表面を処理する際には、処理液中に溶け込んだ酸素によって基板の表面に形成されたパターンが酸化されるおそれがある。パターンの酸化を抑制するためには、基板の表面付近の雰囲気の酸素濃度を低減する必要がある。 When the surface of the substrate is treated with a treatment solution such as a chemical solution, the pattern formed on the surface of the substrate may be oxidized by the oxygen dissolved in the treatment solution. In order to suppress the oxidation of the pattern, it is necessary to reduce the oxygen concentration in the atmosphere near the surface of the substrate.
 そこで、下記特許文献1には、スピンチャックに保持された基板の上面に対向する遮断部材を設け、遮断部材と、基板との間の空間を窒素ガスで満たすことによって、基板の上面付近の雰囲気の酸素濃度を低減することができることが開示されている。 Therefore, in Patent Document 1 below, a blocking member facing the upper surface of the substrate held by the spin chuck is provided, and the space between the blocking member and the substrate is filled with nitrogen gas to create an atmosphere near the upper surface of the substrate. It is disclosed that the oxygen concentration of the water can be reduced.
米国特許出願公開第2015/14610009号明細書U.S. Patent Application Publication No. 2015/14610009
 特許文献1に記載の基板処理装置に備えられた遮断部材は、基板の上面に対向する円板部と、円板部の外周部から下方に延びる円筒部とを含む。円筒部で基板を取り囲んでいるため、基板の上面付近の雰囲気の酸素濃度を窒素ガスで低減しやすい。円筒部で基板を取り囲んだ状態で基板の上面に処理液を供給すると、基板上の処理液は、基板の上面の周縁部から外方に飛散して円筒部によって受けられる。そのため、円筒部から跳ね返った処理液が基板の上面の周縁部に再付着し、パーティクルが発生するおそれがある。 The blocking member provided in the substrate processing apparatus described in Patent Document 1 includes a disk portion facing the upper surface of the substrate and a cylindrical portion extending downward from the outer peripheral portion of the disk portion. Since the substrate is surrounded by a cylindrical portion, it is easy to reduce the oxygen concentration in the atmosphere near the upper surface of the substrate with nitrogen gas. When the processing liquid is supplied to the upper surface of the substrate while the substrate is surrounded by the cylindrical portion, the processing liquid on the substrate scatters outward from the peripheral edge portion of the upper surface of the substrate and is received by the cylindrical portion. Therefore, the processing liquid bounced off the cylindrical portion may reattach to the peripheral edge of the upper surface of the substrate, and particles may be generated.
 そこで、この発明の1つの目的は、基板の上面付近の雰囲気中の酸素濃度を低減することができ、かつ、基板の上面におけるパーティクルの発生を抑制することができる基板処理装置および基板処理方法を提供することである。 Therefore, one object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of reducing the oxygen concentration in the atmosphere near the upper surface of the substrate and suppressing the generation of particles on the upper surface of the substrate. Is to provide.
 この発明の一実施形態は、基板を水平に保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板の中央部を通る鉛直軸線まわりに前記基板保持ユニットを回転させる基板回転ユニットと、前記基板保持ユニットに保持されている基板の上面に向けて処理液を供給する処理液供給ユニットと、前記基板保持ユニットに保持されている基板の上面に向けて不活性ガスを供給する不活性ガス供給ユニットと、前記基板保持ユニットに保持されている基板に上方から対向する対向面を有する円板部と、前記円板部から前記鉛直軸線を中心とする径方向の外方に延びる延設部とを有する対向部材と、平面視で前記基板保持ユニットに保持された基板を取り囲む環状部材と、前記基板保持ユニットに保持されている基板、前記対向部材、および前記環状部材によって外部からの雰囲気の流入が制限された遮断空間が区画されるように前記環状部材とともに前記対向部材を昇降させる対向部材昇降ユニットとを含む、基板処理装置を提供する。 One embodiment of the present invention includes a substrate holding unit that holds the substrate horizontally, a substrate rotating unit that rotates the substrate holding unit around a vertical axis passing through a central portion of the substrate held by the substrate holding unit, and the like. A processing liquid supply unit that supplies a processing liquid toward the upper surface of the substrate held by the substrate holding unit, and an inert gas that supplies an inert gas toward the upper surface of the substrate held by the substrate holding unit. A supply unit, a disk portion having a facing surface facing the substrate held by the substrate holding unit from above, and an extension portion extending outward in the radial direction centered on the vertical axis from the disk portion. The facing member having the above, the annular member surrounding the substrate held by the substrate holding unit in a plan view, the substrate held by the substrate holding unit, the facing member, and the annular member provide an atmosphere from the outside. Provided is a substrate processing apparatus including the annular member and an opposing member elevating unit that elevates and elevates the opposing member so as to partition a blocking space in which inflow is restricted.
 前記環状部材が、前記基板回転ユニットが前記基板保持ユニットに保持された基板を回転させるときに、当該基板の上面に存在する処理液を遠心力によって当該基板の周縁部よりも前記径方向の外方に案内する案内面を有する。そして、前記延設部と前記環状部材とによって、前記案内面に存在する処理液を前記遮断空間外へ排出する処理液排出路が区画されている。 When the annular member rotates the substrate held by the substrate holding unit, the processing liquid existing on the upper surface of the substrate is centrifugally removed from the peripheral portion of the substrate in the radial direction. It has a guide surface to guide the direction. Then, the extension portion and the annular member define a treatment liquid discharge path for discharging the treatment liquid existing on the guide surface to the outside of the blocking space.
 この装置によれば、環状部材とともに対向部材を昇降させることによって、基板と、対向部材と、環状部材とによって遮断空間が区画される。遮断空間が区画された状態で、基板の上面に向けて不活性ガスを供給することによって、遮断空間内の雰囲気を不活性ガスに置換することができる。これにより、遮断空間内の酸素濃度、すなわち、基板の上面付近の雰囲気の酸素濃度を低減することができる。遮断空間は、外部の空間からの雰囲気の流入が制限されているため、遮断空間内の雰囲気が不活性ガスに一度置換されると、遮断空間内の雰囲気中の酸素濃度が低減された状態に維持し易い。 According to this device, the blocking space is partitioned by the substrate, the opposing member, and the annular member by raising and lowering the opposing member together with the annular member. By supplying the inert gas toward the upper surface of the substrate in the state where the blocking space is partitioned, the atmosphere in the blocking space can be replaced with the inert gas. Thereby, the oxygen concentration in the cutoff space, that is, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced. Since the inflow of the atmosphere from the external space is restricted in the blocking space, once the atmosphere in the blocking space is replaced with the inert gas, the oxygen concentration in the atmosphere in the blocking space is reduced. Easy to maintain.
 遮断空間内の雰囲気が不活性ガスに置換された状態で、基板の上面に処理液を供給することによって、処理液中の酸素濃度の上昇を抑制しながら、基板の上面を処理液で処理することができる。 By supplying the treatment liquid to the upper surface of the substrate in a state where the atmosphere in the blocking space is replaced with the inert gas, the upper surface of the substrate is treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid. be able to.
 環状部材の案内面は、基板の回転に基づく遠心力によって、基板の上面に存在する処理液を基板の周縁部よりも径方向の外方に案内する。そして、案内面上に移動した処理液は、基板から飛散することなく、処理液排出路に案内され、遮断空間外に排出される。基板の周縁部と処理液排出路との間に案内面が存在するため、基板の周縁部は対向部材の延設部から充分に離間している。そのため、基板の上面から排出された処理液が対向部材から跳ね返って基板の上面に再付着することを抑制することができる。仮に、基板の上面から排出された処理液が対向部材から跳ね返ったとしても、その大部分は基板の上面よりも径方向の外方に位置する案内面に付着する。したがって、基板の上面に処理液が再付着することを抑制できる。したがって、基板の上面にパーティクルが発生することを抑制できる。 The guide surface of the annular member guides the treatment liquid existing on the upper surface of the substrate to the outside in the radial direction from the peripheral edge of the substrate by the centrifugal force based on the rotation of the substrate. Then, the processing liquid that has moved on the guide surface is guided to the treatment liquid discharge path without being scattered from the substrate, and is discharged to the outside of the blocking space. Since the guide surface exists between the peripheral edge of the substrate and the treatment liquid discharge path, the peripheral edge of the substrate is sufficiently separated from the extending portion of the facing member. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate. Even if the processing liquid discharged from the upper surface of the substrate bounces off the opposing member, most of it adheres to the guide surface located radially outward of the upper surface of the substrate. Therefore, it is possible to prevent the treatment liquid from reattaching to the upper surface of the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 以上の結果、基板の上面付近の雰囲気中の酸素濃度を低減することができ、かつ、基板の上面におけるパーティクルの発生を抑制することができる。 As a result of the above, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記処理液排出路の幅が、鉛直方向における前記遮断空間の幅よりも小さい。そのため、処理液排出路を通過できる流体の流量は、比較的小流量である。したがって、処理液が処理液排出路を介して遮断空間外に排出されている間、遮断空間外の雰囲気が処理液排出路を介して流入することを抑制できる。よって、処理液中の酸素濃度の上昇を抑制しながら、基板の上面を処理液で処理することができる。 In one embodiment of the present invention, the width of the treatment liquid discharge path is smaller than the width of the blocking space in the vertical direction. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space through the treatment liquid discharge path, it is possible to suppress the atmosphere outside the cutoff space from flowing in through the treatment liquid discharge path. Therefore, the upper surface of the substrate can be treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid.
 この発明の一実施形態では、前記環状部材が、前記径方向における前記案内面の外方端に連結され、前記処理液排出路を区画する排出路区画面を有する。そして、前記処理液排出路が、前記案内面と前記排出区画面との境界に流入口を有する。 In one embodiment of the present invention, the annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path. Then, the treatment liquid discharge path has an inflow port at the boundary between the guide surface and the discharge zone screen.
 処理液は、処理液排出路の流入口付近で、延設部に衝突する場合がある。延設部に衝突した処理液中には逆流(基板の径方向の内方に向かう処理液の流れ)が発生する。案内面が設けられていない構成であれば、処理液排出路の流入口が基板の上面の周縁部の付近に配置されるため、処理液中の逆流が基板上で発生するおそれがある。逆流が発生すると、径方向の内方に向かう処理液と径方向の外方に向かう処理液とが衝突して、遮断空間内で処理液が飛び散るおそれがある。遮断空間内に飛び散った処理液が、基板の上面に再付着すると、基板上にパーティクルが発生する。 The treatment liquid may collide with the extension part near the inflow port of the treatment liquid discharge path. Backflow (flow of the treatment liquid inward in the radial direction of the substrate) is generated in the treatment liquid that collides with the extension portion. If the configuration is not provided with a guide surface, the inflow port of the processing liquid discharge path is arranged near the peripheral edge of the upper surface of the substrate, so that backflow in the processing liquid may occur on the substrate. When backflow occurs, the treatment liquid that goes inward in the radial direction and the treatment liquid that goes outward in the radial direction may collide with each other, and the treatment liquid may scatter in the cutoff space. When the treatment liquid scattered in the blocking space reattaches to the upper surface of the substrate, particles are generated on the substrate.
 そこで、処理液排出路の流入口が、径方向における案内面の外方端に連結される排出路区画面と、案内面との境界に設けられている構成であれば、処理液中の逆流の発生箇所は、案内面上である。そのため、基板上の処理液中に逆流が発生することを抑制できる。したがって、基板の上面にパーティクルが発生することを抑制できる。 Therefore, if the inflow port of the treatment liquid discharge path is provided at the boundary between the discharge path section screen connected to the outer end of the guide surface in the radial direction and the guide surface, the backflow in the treatment liquid The place where the above occurs is on the guide surface. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 この発明の一実施形態では、前記排出路区画面および前記案内面が、水平方向に平坦な単一の平坦面を構成する。案内面と排出路区画面との間に段差が設けられている場合、段差に起因して跳ねた処理液に付着し、基板の上面に処理液が再付着するおそれがある。これにより、基板の上面にパーティクルが発生するおそれがある。 In one embodiment of the present invention, the discharge channel screen and the guide surface form a single flat surface that is flat in the horizontal direction. If a step is provided between the guide surface and the discharge path section screen, the treatment liquid may adhere to the bounced treatment liquid due to the step, and the treatment liquid may reattach to the upper surface of the substrate. As a result, particles may be generated on the upper surface of the substrate.
 そこで、案内面と排出路区画面との間に段差がなく、案内面と排出路区画面とが水平方向に平坦な単一の平坦面を構成していれば、案内面上を流れる処理液を、処理液排出路にスムーズに流入させることができる。したがって、遮断空間内で処理液が飛び散ることを抑制でき、処理液の飛散に起因するパーティクルの発生を抑制できる。 Therefore, if there is no step between the guide surface and the discharge path section screen and the guide surface and the discharge path section screen form a single flat surface that is flat in the horizontal direction, the processing liquid that flows on the guide surface. Can be smoothly flowed into the processing liquid discharge path. Therefore, it is possible to suppress the scattering of the treatment liquid in the blocking space, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
 この発明の一実施形態では、前記基板処理装置が、前記環状部材とともに前記対向部材を、前記鉛直軸線まわりに、前記基板保持ユニットに保持された基板と同期回転させる対向部材回転ユニットをさらに含む。同期回転とは、同じ方向に同じ回転速度で回転することである。基板の回転速度と対向部材および環状部材の回転速度との差が大きい場合には、遮断空間内の気流が乱れるおそれがある。遮断空間内の気流が乱れると、基板の上面の処理液に気流の吹き付け力が作用し、基板の上面が局所的に露出したり、遮断空間内で処理液が飛び散ったりする。そこで、遮断空間を区画する基板、環状部材および対向部材が同期回転する構成であれば、遮断空間内での気流の乱れを抑制できる。 In one embodiment of the present invention, the substrate processing apparatus further includes an opposing member rotating unit that rotates the opposing member together with the annular member around the vertical axis in synchronization with the substrate held by the substrate holding unit. Synchronous rotation means rotating in the same direction and at the same rotation speed. If the difference between the rotation speed of the substrate and the rotation speed of the opposing member and the annular member is large, the airflow in the blocking space may be disturbed. When the airflow in the cutoff space is turbulent, the blowing force of the airflow acts on the treatment liquid on the upper surface of the substrate, and the upper surface of the substrate is locally exposed or the treatment liquid is scattered in the cutoff space. Therefore, if the substrate, the annular member, and the facing member that partition the blocking space are configured to rotate synchronously, the turbulence of the airflow in the blocking space can be suppressed.
 この発明の一実施形態では、前記基板処理装置が、前記環状部材と前記対向部材とを連結する複数の連結部材をさらに含む。そして、各前記連結部材が、平面視で、前記径方向の外方に向かうにしたがって、前記基板保持ユニットに保持された基板の回転方向の下流側に向かうように形成されている。 In one embodiment of the present invention, the substrate processing apparatus further includes a plurality of connecting members that connect the annular member and the opposing member. Then, each of the connecting members is formed so as to be directed outward in the radial direction and toward the downstream side in the rotational direction of the substrate held by the substrate holding unit in a plan view.
 遮断空間には、径方向の外方に向かうにしたがって回転方向の下流側に向かう気流が発生し易い。そこで、この装置によれば、対向部材と環状部材とを連結する複数の連結部材のそれぞれが、平面視で、径方向の外方に向かうにしたがって回転方向の下流側に向かうように形成されている。そのため、径方向の外方に向かうにしたがって回転方向の下流側に向かう気流の発生を促すことができる。したがって、遮断空間内での気流の乱れを一層抑制できる。 In the cut-off space, an air flow toward the downstream side in the rotational direction is likely to occur as it goes outward in the radial direction. Therefore, according to this device, each of the plurality of connecting members connecting the opposing member and the annular member is formed so as to move outward in the radial direction toward the downstream side in the rotational direction in a plan view. There is. Therefore, it is possible to promote the generation of an air flow toward the downstream side in the rotational direction as it goes outward in the radial direction. Therefore, the turbulence of the air flow in the cutoff space can be further suppressed.
 この発明の一実施形態では、前記基板処理装置が、前記基板回転ユニット、前記処理液供給ユニット、前記不活性ガス供給ユニットおよび前記対向部材昇降ユニットを制御するコントローラをさらに含む。 In one embodiment of the present invention, the substrate processing apparatus further includes a controller that controls the substrate rotating unit, the processing liquid supply unit, the inert gas supply unit, and the facing member elevating unit.
 そして、前記コントローラが、前記対向部材昇降ユニットによって前記対向部材および前記環状部材を移動させて前記遮断空間を区画する遮断空間区画工程と、前記不活性ガス供給ユニットから前記基板の上面に向けて不活性ガスを供給することによって前記遮断空間内の雰囲気を不活性ガスで置換する雰囲気置換工程と、前記遮断空間内の雰囲気が不活性ガスで置換された状態で、前記処理液供給ユニットから前記基板の上面に処理液を供給する処理液供給工程と、前記基板回転ユニットに前記基板を回転させることによって、前記基板の上面の処理液を、前記案内面および前記処理液排出路を介して、前記遮断空間外に排出する処理液排出工程とを実行するようにプログラムされている。 Then, the controller does not move the facing member and the annular member by the facing member elevating unit to partition the blocking space, and the inert gas supply unit toward the upper surface of the substrate. An atmosphere replacement step of replacing the atmosphere in the blocking space with an inert gas by supplying an active gas, and the substrate from the processing liquid supply unit in a state where the atmosphere in the blocking space is replaced with an inert gas. The treatment liquid on the upper surface of the substrate is supplied to the upper surface of the substrate via the guide surface and the treatment liquid discharge path by rotating the substrate on the substrate rotation unit and the treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate. It is programmed to perform a process liquid discharge process that discharges out of the shutoff space.
 そのため、遮断空間内の雰囲気を不活性ガスで確実に置換することができる。これにより、遮断空間内の酸素濃度、すなわち、基板の上面付近の雰囲気の酸素濃度を低減することができる。そして、基板を回転させることによって、基板の上面に存在する処理液に遠心力が作用して、基板の上面に存在する処理液が、案内面および処理液排出路を介して、確実に遮断空間外に排出することができる。そのため、遮断空間内で処理液が飛び散ることを抑制しながら処理液を遮断空間内から排除することができる。そのため、基板の上面から排出された処理液が対向部材から跳ね返って基板の上面に再付着することを抑制することができる。したがって、基板の上面にパーティクルが発生することを抑制できる。 Therefore, the atmosphere in the blocking space can be reliably replaced with the inert gas. Thereby, the oxygen concentration in the cutoff space, that is, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced. Then, by rotating the substrate, a centrifugal force acts on the treatment liquid existing on the upper surface of the substrate, and the treatment liquid existing on the upper surface of the substrate is surely cut off through the guide surface and the treatment liquid discharge path. Can be discharged to the outside. Therefore, the treatment liquid can be excluded from the cutoff space while suppressing the treatment liquid from scattering in the cutoff space. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 以上の結果、基板の上面付近の雰囲気中の酸素濃度を低減することができ、かつ、基板の上面におけるパーティクルの発生を抑制することができる。 As a result of the above, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記案内面が、前記径方向の外方に向かうにしたがって上方に向かうように傾斜する傾斜面を有する。 In one embodiment of the present invention, the guide surface has an inclined surface that is inclined upward so as to go outward in the radial direction.
 そして、前記コントローラが、前記処理液供給工程において、前記基板保持ユニットに保持された基板の上面に処理液を供給することによって、前記傾斜面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程と、前記処理液排出工程において、前記基板回転ユニットによって前記基板の回転を加速させて前記基板の上面から前記液溜まりを排除する液溜まり排除工程とを実行するようにプログラムされている。 Then, in the processing liquid supply step, the controller supplies the processing liquid to the upper surface of the substrate held by the substrate holding unit, so that the processing liquid is received by the inclined surface and the upper surface of the substrate and the processing liquid is received. In the processing liquid discharge step, the liquid pool forming step of forming the liquid pool and the liquid pool removing step of accelerating the rotation of the substrate by the substrate rotating unit and removing the liquid pool from the upper surface of the substrate are executed. It is programmed to do.
 この装置によれば、基板の上面に処理液を供給することによって、傾斜面と基板の上面とによって処理液の液溜まりを形成することができる。そのため、処理液が基板の外方に排出されないので、液溜まりを形成するために必要な量の処理液によって基板の上面を処理することができる。したがって、処理液の消費量を低減することができる。 According to this device, by supplying the treatment liquid to the upper surface of the substrate, a liquid pool of the treatment liquid can be formed by the inclined surface and the upper surface of the substrate. Therefore, since the treatment liquid is not discharged to the outside of the substrate, the upper surface of the substrate can be treated with the amount of the treatment liquid required to form a liquid pool. Therefore, the consumption of the treatment liquid can be reduced.
 傾斜面は、径方向の外方に向かうにしたがって上方に向かうように傾斜している。そのため、基板の回転を加速させて液溜まりに遠心力を作用させることによって、処理液に傾斜面をスムーズに上らせることができる。傾斜面を上った処理液は、処理液排出路にスムーズに流入される。よって、基板の上面にパーティクルが発生することを抑制できる。 The inclined surface is inclined so as to go upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate and applying a centrifugal force to the liquid pool, the inclined surface can be smoothly raised on the treatment liquid. The treatment liquid that has climbed the inclined surface smoothly flows into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 この発明の他の実施形態は、平面視で円形状の基板を水平に保持する基板保持工程と、前記基板に上方から対向する対向面を有する円板部および前記基板の中央部を通る鉛直軸線を中心とする径方向の外方に前記円板部から延びる延設部を有する対向部材と、平面視で前記基板を取り囲む環状部材とを上下方向に移動させて、前記対向部材、前記環状部材、および前記基板によって外部からの雰囲気の流入が制限された遮断空間を区画する空間区画工程と、前記遮断空間に向けて不活性ガスを供給することによって前記遮断空間内の雰囲気を不活性ガスで置換する雰囲気置換工程と、前記遮断空間内の雰囲気が不活性ガスによって置換された状態で、前記基板の上面に処理液を供給する処理液供給工程と、前記基板の上面に処理液が存在する状態で前記鉛直軸線まわりの回転方向に前記基板を回転させることによって、前記基板の上面の周縁部に存在する処理液を、前記環状部材に設けられた案内面を経由して前記延設部と前記環状部材によって区画される処理液排出路に案内し、処理液を前記処理液排出路から前記遮断空間外へ排出する処理液排出工程とを含む、基板処理方法を提供する。 Another embodiment of the present invention includes a substrate holding step of horizontally holding a circular substrate in a plan view, and a vertical axis passing through a disk portion having a facing surface facing the substrate from above and a central portion of the substrate. The opposing member having an extending portion extending from the disk portion outward in the radial direction centered on the above, and the annular member surrounding the substrate in a plan view are moved in the vertical direction, and the opposed member and the annular member are moved. , And the space partitioning step of partitioning the blocking space in which the inflow of the atmosphere from the outside is restricted by the substrate, and the atmosphere in the blocking space is made of the inert gas by supplying the inert gas toward the blocking space. The atmosphere replacement step of replacement, the treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate in a state where the atmosphere in the blocking space is replaced by the inert gas, and the treatment liquid are present on the upper surface of the substrate. By rotating the substrate in the rotation direction around the vertical axis in this state, the treatment liquid existing on the peripheral edge of the upper surface of the substrate is brought into the extending portion via the guide surface provided on the annular member. Provided is a substrate treatment method including a treatment liquid discharge step of guiding the treatment liquid to a treatment liquid discharge passage partitioned by the annular member and discharging the treatment liquid from the treatment liquid discharge passage to the outside of the blocking space.
 この方法によれば、環状部材および対向部材を昇降させることによって、基板と、対向部材と、環状部材とによって遮断空間が区画される。遮断空間が区画された状態で、基板の上面に向けて不活性ガスを供給することによって、遮断空間内の雰囲気を不活性ガスで置換することができる。これにより、遮断空間内の酸素濃度、すなわち、基板の上面付近の雰囲気の酸素濃度を低減することができる。遮断空間は、外部の空間からの雰囲気の流入が制限されているため、遮断空間内の雰囲気が不活性ガスに一度置換されると、遮断空間内の雰囲気中の酸素濃度が低減された状態に維持し易い。 According to this method, the blocking space is partitioned by the substrate, the opposing member, and the annular member by raising and lowering the annular member and the opposing member. By supplying the inert gas toward the upper surface of the substrate in the state where the blocking space is partitioned, the atmosphere in the blocking space can be replaced with the inert gas. Thereby, the oxygen concentration in the cutoff space, that is, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced. Since the inflow of the atmosphere from the external space is restricted in the blocking space, once the atmosphere in the blocking space is replaced with the inert gas, the oxygen concentration in the atmosphere in the blocking space is reduced. Easy to maintain.
 遮断空間内の雰囲気が不活性ガスに置換された状態で、基板の上面に処理液を供給することによって、処理液中の酸素濃度の上昇を抑制しながら、基板の上面を処理液で処理することができる。 By supplying the treatment liquid to the upper surface of the substrate in a state where the atmosphere in the blocking space is replaced with the inert gas, the upper surface of the substrate is treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid. be able to.
 基板の上面に存在する処理液は、基板が回転に基づく遠心力を受けて、基板の上面の周縁部から移動して、案内面を経由して、処理液排出路に案内される。処理液排出路に案内された処理液は、遮断空間外に排出される。基板の周縁部と処理液排出路との間に案内面が存在するため、基板の周縁部は対向部材の延設部から充分に離間している。そのため、基板の上面から排出された処理液が対向部材から跳ね返って基板の上面に再付着することを抑制することができる。仮に、基板の上面から排出された処理液が対向部材から跳ね返ったとしても、その大部分は基板の上面よりも径方向の外方に位置する案内面に付着する。したがって、基板の上面に処理液が再付着することを抑制できる。したがって、基板の上面にパーティクルが発生することを抑制できる。 The treatment liquid existing on the upper surface of the substrate moves from the peripheral edge of the upper surface of the substrate due to the centrifugal force based on the rotation of the substrate, and is guided to the treatment liquid discharge path via the guide surface. The treatment liquid guided to the treatment liquid discharge path is discharged to the outside of the cutoff space. Since the guide surface exists between the peripheral edge of the substrate and the treatment liquid discharge path, the peripheral edge of the substrate is sufficiently separated from the extending portion of the facing member. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate from rebounding from the facing member and reattaching to the upper surface of the substrate. Even if the processing liquid discharged from the upper surface of the substrate bounces off the opposing member, most of it adheres to the guide surface located radially outward of the upper surface of the substrate. Therefore, it is possible to prevent the treatment liquid from reattaching to the upper surface of the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 以上の結果、基板の上面付近の雰囲気中の酸素濃度を低減することができ、かつ、基板の上面におけるパーティクルの発生を抑制することができる。 As a result of the above, the oxygen concentration in the atmosphere near the upper surface of the substrate can be reduced, and the generation of particles on the upper surface of the substrate can be suppressed.
 この発明の他の実施形態では、前記処理液排出路の幅が、鉛直方向における前記遮断空間の幅よりも小さい。そのため、処理液排出路を通過できる流体の流量は、比較的小流量である。したがって、処理液が処理液排出路を介して遮断空間外に排出されている間、遮断空間外の雰囲気が処理液排出路を介して流入することを抑制できる。よって、処理液中の酸素濃度の上昇を抑制しながら、基板の上面を処理液で処理することができる。 In another embodiment of the present invention, the width of the treatment liquid discharge path is smaller than the width of the blocking space in the vertical direction. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space through the treatment liquid discharge path, it is possible to suppress the atmosphere outside the cutoff space from flowing in through the treatment liquid discharge path. Therefore, the upper surface of the substrate can be treated with the treatment liquid while suppressing an increase in the oxygen concentration in the treatment liquid.
 この発明の他の実施形態では、前記環状部材が、前記径方向における前記案内面の外方端に連結され、前記処理液排出路を区画する排出路区画面を有する。そして、前記処理液排出路が、前記案内面と前記排出路区画面との境界に流入口を有する。 In another embodiment of the present invention, the annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path. Then, the treatment liquid discharge path has an inflow port at the boundary between the guide surface and the discharge path section screen.
 この方法によれば、処理液排出路の流入口が、径方向における案内面の外方端に連結される排出路区画面と、案内面との境界に設けられている。そのため、処理液中の逆流の発生箇所は、基板の上面上ではなく、案内面上である。そのため、基板上の処理液中に逆流が発生することを抑制できる。したがって、基板の上面にパーティクルが発生することを抑制できる。 According to this method, the inflow port of the treatment liquid discharge path is provided at the boundary between the discharge path section screen connected to the outer end of the guide surface in the radial direction and the guide surface. Therefore, the location where the backflow occurs in the processing liquid is not on the upper surface of the substrate but on the guide surface. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 この発明の他の実施形態では、前記排出路区画面および前記案内面が、水平方向に平坦な単一の平坦面を構成する。この方法によれば、案内面と排出路区画面との間に段差がなく、案内面と排出路区画面とが水平方向に平坦な単一の平坦面を構成している。そのため、案内面上を流れる処理液を、処理液排出路にスムーズに流入させることができる。したがって、遮断空間内で処理液が飛び散ることを抑制でき、処理液の飛散に起因するパーティクルの発生を抑制できる。 In another embodiment of the present invention, the discharge channel screen and the guide surface form a single flat surface that is flat in the horizontal direction. According to this method, there is no step between the guide surface and the discharge path section screen, and the guide surface and the discharge path section screen form a single flat surface that is flat in the horizontal direction. Therefore, the treatment liquid flowing on the guide surface can be smoothly flowed into the treatment liquid discharge path. Therefore, it is possible to suppress the scattering of the treatment liquid in the blocking space, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
 この発明の他の実施形態では、前記基板処理方法が、前記処理液排出工程において、前記環状部材および前記対向部材を前記鉛直軸線まわりに前記基板の同期回転させる同期回転工程をさらに含む。そのため、遮断空間内での気流の乱れを抑制できる。 In another embodiment of the present invention, the substrate processing method further includes a synchronous rotation step of rotating the annular member and the opposing member synchronously around the vertical axis in the processing liquid discharge step. Therefore, the turbulence of the air flow in the cutoff space can be suppressed.
 この発明の他の実施形態では、前記環状部材と前記対向部材とが連結部材によって連結されている。そして、前記連結部材が、平面視で、前記径方向の外方に向かうにしたがって、前記基板の回転方向の下流側に向かうように形成されている。そのため、径方向の外方に向かうにしたがって回転方向の下流側に向かう気流の発生を促すことができる。したがって、遮断空間内での気流の乱れを一層抑制できる。 In another embodiment of the present invention, the annular member and the opposing member are connected by a connecting member. Then, the connecting member is formed so as to be directed toward the downstream side in the rotational direction of the substrate as it is directed outward in the radial direction in a plan view. Therefore, it is possible to promote the generation of an air flow toward the downstream side in the rotational direction as it goes outward in the radial direction. Therefore, the turbulence of the air flow in the cutoff space can be further suppressed.
 この発明の他の実施形態では、前記案内面が、前記径方向の外方に向かうにしたがって上方に向かうように傾斜する傾斜面を有する。前記処理液供給工程が、前記基板の上面に処理液を供給することによって、前記傾斜面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程を含む。そして、前記処理液排出工程が、前記基板の回転を加速させて前記基板の上面から前記液溜まりを排除する液溜まり排除工程を含む。 In another embodiment of the present invention, the guide surface has an inclined surface that inclines upward as it goes outward in the radial direction. The treatment liquid supply step includes a liquid pool forming step of supplying the treatment liquid to the upper surface of the substrate to receive the treatment liquid by the inclined surface and the upper surface of the substrate to form a liquid pool of the treatment liquid. Then, the processing liquid discharge step includes a liquid pool removing step of accelerating the rotation of the substrate and removing the liquid pool from the upper surface of the substrate.
 この方法によれば、基板の上面に処理液を供給することによって、傾斜面と基板の上面とによって処理液の液溜まりを形成することができる。そのため、処理液が基板の外方に排出されないので、液溜まりを形成するために必要な量の処理液によって基板の上面を処理することができる。したがって、処理液の消費量を低減することができる。 According to this method, by supplying the treatment liquid to the upper surface of the substrate, a liquid pool of the treatment liquid can be formed by the inclined surface and the upper surface of the substrate. Therefore, since the treatment liquid is not discharged to the outside of the substrate, the upper surface of the substrate can be treated with the amount of the treatment liquid required to form a liquid pool. Therefore, the consumption of the treatment liquid can be reduced.
 傾斜面は、径方向の外方に向かうにしたがって上方に向かうように傾斜している。そのため、基板の回転を加速させて液溜まりに遠心力を作用させることによって、処理液に傾斜面をスムーズに上らせることができる。傾斜面を上った処理液は、処理液排出路にスムーズに流入される。よって、基板の上面にパーティクルが発生することを抑制できる。 The inclined surface is inclined so as to go upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate and applying a centrifugal force to the liquid pool, the inclined surface can be smoothly raised on the treatment liquid. The treatment liquid that has climbed the inclined surface smoothly flows into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 この発明の他の実施形態では、前記径方向における前記環状部材の内方端面が、鉛直方向に延びる。前記内方端面の上端部が、前記案内面に連結されている。そして、前記処理液供給工程が、前記環状部材の前記内方端面の前記上端部が前記基板の上面よりも上方に位置するように前記環状部材を移動させた状態で前記基板の上面に向けて処理液を供給することによって、前記環状部材の前記内方端面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程を含む。前記処理液排出工程が、前記環状部材の前記内方端面の前記上端部が前記基板の上面と同じ高さに位置するように前記環状部材を移動させることによって、前記基板の上面から前記液溜まりを排除する液溜まり排除工程を含む。 In another embodiment of the present invention, the inner end surface of the annular member in the radial direction extends in the vertical direction. The upper end of the inner end surface is connected to the guide surface. Then, in the treatment liquid supply step, the annular member is moved toward the upper surface of the substrate so that the upper end portion of the inner end surface of the annular member is located above the upper surface of the substrate. The process includes a liquid pool forming step of receiving the treatment liquid by the inner end surface of the annular member and the upper surface of the substrate by supplying the treatment liquid to form a liquid pool of the treatment liquid. In the treatment liquid discharge step, the liquid pool is collected from the upper surface of the substrate by moving the annular member so that the upper end portion of the inner end surface of the annular member is located at the same height as the upper surface of the substrate. Includes a liquid pool elimination step to eliminate.
 この方法によれば、基板の上面に処理液を供給することによって、環状部材の内方端面と基板の上面とによって処理液の液溜まりを形成することができる。そのため、液溜まり中の処理液によって基板の上面が処理される。したがって、液溜まりの形成に必要な量の処理液を基板の上面に供給すれば、基板の上面を処理することができる。よって、基板の上面に供給した処理液が内方端面によって受けられることなく基板外に排出される構成と比較して、処理液の消費量を低減することができる。 According to this method, by supplying the treatment liquid to the upper surface of the substrate, a liquid pool of the treatment liquid can be formed by the inner end surface of the annular member and the upper surface of the substrate. Therefore, the upper surface of the substrate is treated by the treatment liquid in the liquid pool. Therefore, the upper surface of the substrate can be treated by supplying an amount of the treatment liquid required for forming the liquid pool to the upper surface of the substrate. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate is discharged to the outside of the substrate without being received by the inner end surface.
 環状部材の内方端面の上端部が基板の上面と同じ高さ位置に位置するように環状部材を移動させれば、処理液が内方端面による液受けから解放される。そのため、基板の上面に存在する処理液を、処理液排出路にスムーズに流入させることができる。よって、基板の上面にパーティクルが発生することを抑制できる。 If the annular member is moved so that the upper end of the inner end surface of the annular member is located at the same height as the upper surface of the substrate, the treatment liquid is released from the liquid receiving by the inner end surface. Therefore, the treatment liquid existing on the upper surface of the substrate can be smoothly flowed into the treatment liquid discharge path. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate.
 この発明の他の実施形態では、前記基板処理方法が、平面視で前記対向部材および前記環状部材を取り囲む第1円筒部と、前記第1円筒部から前記径方向の内方に延びる第1円環部とを有する第1ガードと、平面視で前記対向部材および前記環状部材を取り囲む第2円筒部と、前記第2円筒部から前記径方向の内方に延び、前記第1円環部に下方から対向する第2円環部を有する第2ガードとを、個別に上下動させるガード移動工程をさらに含む。前記処理液排出路が、前記径方向の外方に向けて処理液を排出する排出口を有する。そして、前記ガード移動工程が、前記排出口から処理液が排出される際に、鉛直方向において、前記径方向における前記第1円環部の内方端と前記径方向における前記第2円環部の内方端との間に前記処理液排出路が位置するように、前記第1ガードおよび前記第2ガードを移動させる工程を含む。 In another embodiment of the present invention, the substrate processing method comprises a first cylindrical portion surrounding the opposing member and the annular member in a plan view, and a first circle extending inward in the radial direction from the first cylindrical portion. A first guard having a ring portion, a second cylindrical portion surrounding the facing member and the annular member in a plan view, and extending inward in the radial direction from the second cylindrical portion to the first annular portion. A guard moving step of individually moving the second guard having the second ring portion facing from below up and down is included. The treatment liquid discharge path has a discharge port for discharging the treatment liquid outward in the radial direction. Then, in the guard moving step, when the treatment liquid is discharged from the discharge port, the inner end of the first annular portion in the radial direction and the second annular portion in the radial direction in the vertical direction The step of moving the first guard and the second guard so that the treatment liquid discharge path is located between the inner end and the inner end of the guard is included.
 この方法によれば、処理液が排出口から排出される際に、第2ガードの第2円環部が、鉛直方向において排出口よりも下側に位置する。そのため、第1ガードから跳ね返った処理液は、第2ガードよりも径方向の内方に移動することなく、第2ガードに付着する。したがって、第1ガードから跳ね返った処理液が、基板の下面に付着することを抑制できる。 According to this method, when the treatment liquid is discharged from the discharge port, the second ring portion of the second guard is located below the discharge port in the vertical direction. Therefore, the treatment liquid bounced off from the first guard adheres to the second guard without moving inward in the radial direction from the second guard. Therefore, it is possible to prevent the treatment liquid bounced off from the first guard from adhering to the lower surface of the substrate.
 この発明の他の実施形態では、前記基板処理方法が、前記処理液排出工程と並行して実行され、前記基板の下面を保護する保護液を前記基板の下面に向けて供給する保護液供給工程をさらに含む。そして、前記ガード移動工程が、前記第2円環部の径方向内方端が前記排出口よりも下側で、かつ、前記環状部材の下端よりも上側に位置するように、前記第2ガードを移動させる工程を含む。 In another embodiment of the present invention, the substrate treatment method is executed in parallel with the treatment liquid discharge step, and a protective liquid supply step of supplying a protective liquid for protecting the lower surface of the substrate toward the lower surface of the substrate. Including further. Then, in the guard moving step, the second guard is located so that the radial inner end of the second ring portion is located below the discharge port and above the lower end of the annular member. Includes the step of moving.
 この方法によれば、処理液排出工程と並行して、基板の下面に向けて保護液が供給される。そのため、第2ガードを越えて基板の下面付近にまで処理液のミストが到達した場合であっても、当該ミストから基板の下面を保護することができる。 According to this method, the protective liquid is supplied toward the lower surface of the substrate in parallel with the processing liquid discharge process. Therefore, even when the mist of the treatment liquid reaches the vicinity of the lower surface of the substrate beyond the second guard, the lower surface of the substrate can be protected from the mist.
 さらに、径方向における第2円環部の内方端が、排出口よりも下方で、かつ、環状部材の下端よりも上方に位置するように第2ガードが移動させる。そのため、基板の下面から外方に排出される保護液を第2ガードに受けさせることができる。すなわち、基板の上面から排出される処理液を第1ガードで受け、かつ、基板の下面から外方に排出される保護液を第2ガードに受けさせることができる。そのため、基板から排出される処理液と保護液との混合を避けることができる。ひいては、処理液および保護液を混合させることなく回収することができる。 Further, the second guard is moved so that the inner end of the second annular portion in the radial direction is located below the discharge port and above the lower end of the annular member. Therefore, the second guard can receive the protective liquid discharged outward from the lower surface of the substrate. That is, the processing liquid discharged from the upper surface of the substrate can be received by the first guard, and the protective liquid discharged outward from the lower surface of the substrate can be received by the second guard. Therefore, it is possible to avoid mixing the treatment liquid discharged from the substrate and the protective liquid. As a result, the treatment liquid and the protective liquid can be recovered without being mixed.
 この発明の他の実施形態では、前記基板処理方法が、前記処理液供給工程よりも前に前記基板の上面にリンス液を供給するプレリンス工程をさらに含む。前記プレリンス工程において前記基板の上面に供給されたリンス液は、前記環状部材と前記基板との間の隙間を塞ぎ、前記処理液排出路から排出される。そして、前記プレリンス工程が、前記雰囲気置換工程と並行して実行される。 In another embodiment of the present invention, the substrate treatment method further includes a pre-rinse step of supplying a rinse liquid to the upper surface of the substrate prior to the treatment liquid supply step. The rinse liquid supplied to the upper surface of the substrate in the pre-rinsing step closes the gap between the annular member and the substrate, and is discharged from the treatment liquid discharge path. Then, the prerinsing step is executed in parallel with the atmosphere replacement step.
 環状部材と基板との間の隙間は、リンス液によって塞がれる。そのため、当該隙間を介する不活性ガスの移動が抑制される。また、リンス液は、処理液排出路を介して、遮断空間から外部の空間へ排出される。そのため、処理液排出路内のリンス液を押し退ける程の大きな力が作用しない限り、処理液排出路を介した遮断空間への雰囲気の流入が起こらない。一方、遮断空間に不活性ガスが供給されるため、遮断空間内の圧力が上昇し過ぎないように、遮断空間内の空気は、リンス液とともに処理液排出路を介して外部の空間に排出される。 The gap between the annular member and the substrate is closed by the rinsing liquid. Therefore, the movement of the inert gas through the gap is suppressed. Further, the rinse liquid is discharged from the cutoff space to the external space via the treatment liquid discharge path. Therefore, unless a large force is applied to push away the rinse liquid in the treatment liquid discharge passage, the air does not flow into the cutoff space through the treatment liquid discharge passage. On the other hand, since the inert gas is supplied to the blocking space, the air in the blocking space is discharged to the external space together with the rinsing liquid through the treatment liquid discharge path so that the pressure in the blocking space does not rise too much. To.
 したがって、外部の空間から遮断空間への雰囲気の流入を一層制限しながら、遮断空間内の雰囲気を不活性ガスに置換することができる。 Therefore, the atmosphere inside the blocking space can be replaced with an inert gas while further restricting the inflow of the atmosphere from the external space into the blocking space.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。  The above-mentioned or still other purposes, features and effects of the present invention will be clarified by the description of the embodiments described below with reference to the accompanying drawings.
図1は、この発明の第1実施形態に係る基板処理装置のレイアウトを示す模式的な平面図である。FIG. 1 is a schematic plan view showing the layout of the substrate processing apparatus according to the first embodiment of the present invention. 図2は、前記基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus. 図3は、前記処理ユニットに備えられる対向部材の延設部の周辺の断面図である。FIG. 3 is a cross-sectional view of the periphery of the extending portion of the facing member provided in the processing unit. 図4は、図2に示すIV-IV線に沿う断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. 図5は、前記基板処理装置の主要部の電気的構成を示すブロック図である。FIG. 5 is a block diagram showing an electrical configuration of a main part of the substrate processing apparatus. 図6は、前記基板処理装置による基板処理の一例を説明するための流れ図である。FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus. 図7Aは、前記基板処理の様子を説明するための模式図である。FIG. 7A is a schematic view for explaining the state of the substrate processing. 図7Bは、前記基板処理の様子を説明するための模式図である。FIG. 7B is a schematic view for explaining the state of the substrate processing. 図7Cは、前記基板処理の様子を説明するための模式図である。FIG. 7C is a schematic view for explaining the state of the substrate processing. 図7Dは、前記基板処理の様子を説明するための模式図である。FIG. 7D is a schematic view for explaining the state of the substrate processing. 図7Eは、前記基板処理の様子を説明するための模式図である。FIG. 7E is a schematic view for explaining the state of the substrate processing. 図7Fは、前記基板処理の様子を説明するための模式図である。FIG. 7F is a schematic view for explaining the state of the substrate processing. 図8は、前記基板処理における環状部材付近の処理液の様子を説明するための模式図である。FIG. 8 is a schematic view for explaining the state of the treatment liquid in the vicinity of the annular member in the substrate treatment. 図9は、前記基板処理においてガードが処理液を受ける様子を説明するための模式図である。FIG. 9 is a schematic view for explaining how the guard receives the processing liquid in the substrate processing. 図10Aは、前記基板処理装置による基板処理の別の例を説明するための模式図である。FIG. 10A is a schematic diagram for explaining another example of substrate processing by the substrate processing apparatus. 図10Bは、前記基板処理装置による基板処理の別の例を説明するための模式図である。FIG. 10B is a schematic diagram for explaining another example of substrate processing by the substrate processing apparatus. 図11Aは、前記基板処理装置の変形例について説明するための模式図である。FIG. 11A is a schematic view for explaining a modification of the substrate processing apparatus. 図11Bは、前記基板処理装置の変形例について説明するための模式図である。FIG. 11B is a schematic view for explaining a modification of the substrate processing apparatus. 図12は、本発明の第2実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 12 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the second embodiment of the present invention. 図13は、第2実施形態に係る処理ユニットに備えられる環状部材の周辺を上方から見た図である。FIG. 13 is a view of the periphery of the annular member provided in the processing unit according to the second embodiment as viewed from above. 図14は、本発明の第3実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 14 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the third embodiment of the present invention. 図15は、第3実施形態に係る処理ユニットに備えられる対向部材および環状部材の周辺の断面図である。FIG. 15 is a cross-sectional view of the periphery of the opposing member and the annular member provided in the processing unit according to the third embodiment. 図16は、第3実施形態に係る基板処理装置を用いた基板処理を説明するための模式図である。FIG. 16 is a schematic diagram for explaining substrate processing using the substrate processing apparatus according to the third embodiment. 図17は、第3実施形態に係る基板処理装置を用いた基板処理の別の例を説明するための模式図である。FIG. 17 is a schematic diagram for explaining another example of substrate processing using the substrate processing apparatus according to the third embodiment. 図18は、本発明の第4実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 18 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fourth embodiment of the present invention. 図19は、本発明の第5実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 19 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fifth embodiment of the present invention. 図20は、前記環状部材に連結された連結部材の変形例を説明するための模式図である。FIG. 20 is a schematic view for explaining a modified example of the connecting member connected to the annular member.
 <第1実施形態>
 図1は、この発明の第1実施形態にかかる基板処理装置1のレイアウトを示す模式的な平面図である。
<First Embodiment>
FIG. 1 is a schematic plan view showing the layout of the substrate processing apparatus 1 according to the first embodiment of the present invention.
 基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。 The substrate processing device 1 is a single-wafer type device that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate.
 基板処理装置1は、基板Wを流体で処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。 The substrate processing apparatus 1 includes a plurality of processing units 2 for processing the substrate W with a fluid, a load port LP on which a carrier C accommodating a plurality of substrates W processed by the processing unit 2 is mounted, and a load port LP. It includes transfer robots IR and CR that transfer the substrate W between the substrate processing unit 2 and the processing unit 2, and a controller 3 that controls the substrate processing apparatus 1.
 搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。詳しくは後述するが、処理ユニット2内で基板Wに供給される処理液には、薬液、リンス液、置換液等が含まれる。 The transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR. The transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have, for example, a similar configuration. As will be described in detail later, the processing solution supplied to the substrate W in the processing unit 2 includes a chemical solution, a rinsing solution, a replacement solution, and the like.
 各処理ユニット2は、チャンバ4と、チャンバ4内に配置された処理カップ7とを備えており、処理カップ7内で基板Wに対する処理を実行する。チャンバ4には、搬送ロボットCRによって、基板Wを搬入したり基板Wを搬出したりするための出入口(図示せず)が形成されている。チャンバ4には、この出入口を開閉するシャッタユニット(図示せず)が備えられている。 Each processing unit 2 includes a chamber 4 and a processing cup 7 arranged in the chamber 4, and processes the substrate W in the processing cup 7. The chamber 4 is formed with an entrance / exit (not shown) for loading / unloading the substrate W and unloading the substrate W by the transfer robot CR. The chamber 4 is provided with a shutter unit (not shown) that opens and closes the doorway.
 図2は、処理ユニット2の構成例を説明するための模式図である。処理ユニット2は、スピンチャック5と、対向部材6と、処理カップ7と、環状部材8と、中央ノズル11と、複数の第1下面ノズル12と、複数の第2下面ノズル13とを含む。 FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2. The processing unit 2 includes a spin chuck 5, an opposing member 6, a processing cup 7, an annular member 8, a central nozzle 11, a plurality of first lower surface nozzles 12, and a plurality of second lower surface nozzles 13.
 スピンチャック5は、基板Wを水平に保持しながら、基板Wの中央部を通る鉛直な回転軸線A1(鉛直軸線)まわりに基板Wを回転させる。スピンチャック5は、スピンベース21と、回転軸22と、回転軸22に回転力を与えるスピンモータ23とを含む。回転軸22は、中空軸である。回転軸22は回転軸線A1に沿って鉛直方向に延びている。回転軸線A1は、基板Wの中央部を通る鉛直軸線である。回転軸22の上端には、スピンベース21が結合されている。スピンベース21は、回転軸22の上端に外嵌されている。スピンベース21の上面は、平面視で円形状である。スピンベース21の上面の直径は基板Wの直径よりも小さい。 The spin chuck 5 rotates the substrate W around the vertical rotation axis A1 (vertical axis) passing through the central portion of the substrate W while holding the substrate W horizontally. The spin chuck 5 includes a spin base 21, a rotating shaft 22, and a spin motor 23 that applies a rotational force to the rotating shaft 22. The rotating shaft 22 is a hollow shaft. The rotating shaft 22 extends in the vertical direction along the rotating axis A1. The rotation axis A1 is a vertical axis passing through the central portion of the substrate W. A spin base 21 is coupled to the upper end of the rotating shaft 22. The spin base 21 is fitted onto the upper end of the rotating shaft 22. The upper surface of the spin base 21 has a circular shape in a plan view. The diameter of the upper surface of the spin base 21 is smaller than the diameter of the substrate W.
 スピンチャック5は、基板Wをスピンベース21に保持させるために、スピンベース21の上面に配置された基板Wを吸引する吸引ユニット27をさらに含む。 The spin chuck 5 further includes a suction unit 27 that sucks the substrate W arranged on the upper surface of the spin base 21 in order to hold the substrate W on the spin base 21.
 スピンベース21および回転軸22には、吸引経路25が挿通されている。吸引経路25は、スピンベース21の上面の中心から露出する吸引口24を有する。吸引経路25は、吸引管26に連結されている。吸引管26は、真空ポンプなどの吸引ユニット27に連結されている。吸引管26には、その経路を開閉するための吸引バルブ28が介装されている。 A suction path 25 is inserted through the spin base 21 and the rotating shaft 22. The suction path 25 has a suction port 24 exposed from the center of the upper surface of the spin base 21. The suction path 25 is connected to the suction pipe 26. The suction pipe 26 is connected to a suction unit 27 such as a vacuum pump. The suction pipe 26 is provided with a suction valve 28 for opening and closing the path.
 スピンチャック5は、基板Wを水平に保持するための基板保持ユニットの一例である。図示しない偏心センサを用いて、基板Wをスピンベース21上の正しい位置に配置することができる。 The spin chuck 5 is an example of a substrate holding unit for holding the substrate W horizontally. The substrate W can be placed in the correct position on the spin base 21 using an eccentric sensor (not shown).
 スピンモータ23によって回転軸22が回転されることにより、スピンベース21が回転される。これにより、スピンベース21と共に、基板Wが回転軸線A1まわりに回転される。スピンモータ23は、基板Wを回転軸線A1まわりに回転させる基板回転ユニットの一例である。 The spin base 21 is rotated by rotating the rotating shaft 22 by the spin motor 23. As a result, the substrate W is rotated around the rotation axis A1 together with the spin base 21. The spin motor 23 is an example of a substrate rotation unit that rotates the substrate W around the rotation axis A1.
 以下では、回転軸線A1を中心とする径方向の内方を「径方向内方」といい、回転軸線A1を中心とする径方向の外方を「径方向外方」という。 In the following, the inner diameter in the radial direction centered on the rotation axis A1 is referred to as "diameter inner direction", and the radial outer direction centered on the rotation axis A1 is referred to as "diameter outer direction".
 対向部材6は、スピンチャック5に保持された基板Wに上方から対向する円板部65と、円板部65から径方向外方に延びるフランジ状(円筒状)の延設部66とを含む。 The facing member 6 includes a disc portion 65 facing the substrate W held by the spin chuck 5 from above, and a flange-shaped (cylindrical) extending portion 66 extending radially outward from the disc portion 65. ..
 円板部65は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状に形成されている。円板部65は、基板Wの上面(上側の表面)に対向する対向面6aを有する。対向面6aは、スピンチャック5よりも上方でほぼ水平方向に沿って配置されている。 The disk portion 65 is formed in a disk shape having a diameter substantially the same as or larger than that of the substrate W. The disk portion 65 has an facing surface 6a facing the upper surface (upper surface) of the substrate W. The facing surface 6a is arranged above the spin chuck 5 along a substantially horizontal direction.
 延設部66は、円板部65から径方向外方に延びているので、基板Wの周縁よりも径方向外方に位置している。 Since the extension portion 66 extends radially outward from the disk portion 65, it is located radially outward from the peripheral edge of the substrate W.
 円板部65において対向面6aとは反対側には、中空軸60が固定されている。円板部65において平面視で回転軸線A1と重なる部分には、円板部65を上下に貫通し、中空軸60の内部空間と連通する連通孔6bが形成されている。 A hollow shaft 60 is fixed on the side of the disk portion 65 opposite to the facing surface 6a. In the portion of the disk portion 65 that overlaps the rotation axis A1 in a plan view, a communication hole 6b that penetrates the disk portion 65 up and down and communicates with the internal space of the hollow shaft 60 is formed.
 中央ノズル11は、対向部材6の中空軸60の内部空間に収容されている。中央ノズル11の先端に設けられた吐出口11aは、基板Wの上面の中央領域に上方から対向する。基板Wの上面の中央領域とは、基板Wの上面において基板Wの回転中心およびその周囲を含む領域のことである。 The central nozzle 11 is housed in the internal space of the hollow shaft 60 of the facing member 6. The discharge port 11a provided at the tip of the central nozzle 11 faces the central region on the upper surface of the substrate W from above. The central region of the upper surface of the substrate W is a region on the upper surface of the substrate W that includes the center of rotation of the substrate W and its periphery.
 中央ノズル11は、流体を下方に吐出する複数のチューブ(第1チューブ31、第2チューブ32、第3チューブ33および第4チューブ34)と、複数のチューブを取り囲む筒状のケーシング30とを含む。複数のチューブおよびケーシング30は、回転軸線A1に沿って上下方向に延びている。中央ノズル11の吐出口11aは、各チューブの吐出口でもある。 The central nozzle 11 includes a plurality of tubes (first tube 31, second tube 32, third tube 33, and fourth tube 34) that discharge the fluid downward, and a tubular casing 30 that surrounds the plurality of tubes. .. The plurality of tubes and the casing 30 extend in the vertical direction along the rotation axis A1. The discharge port 11a of the central nozzle 11 is also a discharge port of each tube.
 第1チューブ31(中央ノズル11)は、DHF(希フッ酸)等の薬液を基板Wの上面に供給する薬液供給ユニットの一例である。第2チューブ32(中央ノズル11)は、DIW等のリンス液を基板Wの上面に供給するリンス液供給ユニットの一例である。第3チューブ33(中央ノズル11)は、IPA等の置換液を基板Wの上面に供給する置換液供給ユニットの一例である。すなわち、中央ノズル11は、薬液、リンス液、置換液等の処理液を基板Wの上面に供給する処理液供給ユニットの一例である。 The first tube 31 (center nozzle 11) is an example of a chemical solution supply unit that supplies a chemical solution such as DHF (dilute hydrofluoric acid) to the upper surface of the substrate W. The second tube 32 (center nozzle 11) is an example of a rinse liquid supply unit that supplies a rinse liquid such as DIW to the upper surface of the substrate W. The third tube 33 (center nozzle 11) is an example of a replacement liquid supply unit that supplies a replacement liquid such as IPA to the upper surface of the substrate W. That is, the central nozzle 11 is an example of a treatment liquid supply unit that supplies a treatment liquid such as a chemical liquid, a rinse liquid, and a replacement liquid to the upper surface of the substrate W.
 第4チューブ34(中央ノズル11)は、窒素ガス等の不活性ガスを基板Wの上面に向けて供給する不活性ガス供給ユニットの一例である。 The fourth tube 34 (center nozzle 11) is an example of an inert gas supply unit that supplies an inert gas such as nitrogen gas toward the upper surface of the substrate W.
 第1チューブ31は、薬液を第1チューブ31に案内する薬液配管40に接続されている。薬液配管40に介装された薬液バルブ50が開かれると、薬液が、第1チューブ31(中央ノズル11)から基板Wの上面の中央領域に向けて連続流で吐出される。 The first tube 31 is connected to the chemical solution pipe 40 that guides the chemical solution to the first tube 31. When the chemical solution valve 50 interposed in the chemical solution pipe 40 is opened, the chemical solution is discharged from the first tube 31 (center nozzle 11) toward the central region on the upper surface of the substrate W in a continuous flow.
 第1チューブ31から吐出される薬液は、DHFには限られない。すなわち、第1チューブ31から吐出される薬液は、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえば、クエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイド等)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。これらを混合した薬液の例としては、SPM(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水混合液)、SC1(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)等が挙げられる。 The chemical solution discharged from the first tube 31 is not limited to DHF. That is, the chemical liquid discharged from the first tube 31 is sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide solution, organic acid (for example, citric acid, oxalic acid, etc.), organic alkali (for example, TMAH). : Tetramethylammonium hydrochloride, etc.), surfactant, corrosion inhibitor, etc.), may be a liquid containing at least one. Examples of the chemical solution in which these are mixed include SPM (sulfuric acid / hydrogen peroxide mixture: hydrogen peroxide mixture), SC1 (ammonia-hydrogen peroxide mixture: ammonia hydrogen peroxide mixture) and the like.
 第2チューブ32は、リンス液を第2チューブ32に案内する上側リンス液配管41に接続されている。上側リンス液配管41に介装された上側リンス液バルブ51が開かれると、リンス液が、第2チューブ32(中央ノズル11)から基板Wの上面の中央領域に向けて連続流で吐出される。 The second tube 32 is connected to the upper rinse liquid pipe 41 that guides the rinse liquid to the second tube 32. When the upper rinse liquid valve 51 interposed in the upper rinse liquid pipe 41 is opened, the rinse liquid is continuously discharged from the second tube 32 (center nozzle 11) toward the central region on the upper surface of the substrate W. ..
 リンス液としては、DIW、炭酸水、電解イオン水、希釈濃度(たとえば、1ppm~100ppm程度)の塩酸水、希釈濃度(たとえば、1ppm~100ppm程度)のアンモニア水、還元水(水素水)等が挙げられる。 Examples of the rinsing solution include DIW, carbonated water, electrolytic ionized water, hydrochloric acid water having a dilution concentration (for example, about 1 ppm to 100 ppm), ammonia water having a dilution concentration (for example, about 1 ppm to 100 ppm), and reduced water (hydrogen water). Can be mentioned.
 第3チューブ33は、置換液を第3チューブ33に案内する上側置換液配管42に接続されている。上側置換液配管42に介装された上側置換液バルブ52が開かれると、置換液が、第3チューブ33(中央ノズル11)から基板Wの上面の中央領域に向けて連続流で吐出される。 The third tube 33 is connected to the upper replacement liquid pipe 42 that guides the replacement liquid to the third tube 33. When the upper replacement liquid valve 52 interposed in the upper replacement liquid pipe 42 is opened, the replacement liquid is continuously discharged from the third tube 33 (center nozzle 11) toward the central region on the upper surface of the substrate W. ..
 第3チューブ33から吐出される置換液は、基板Wの上面のリンス液を置換するための液体である。置換液は、リンス液よりも揮発性が高い液体であることが好ましい。第2チューブ32から吐出される置換液は、リンス液と相溶性を有することが好ましい。 The replacement liquid discharged from the third tube 33 is a liquid for replacing the rinse liquid on the upper surface of the substrate W. The replacement liquid is preferably a liquid having higher volatility than the rinse liquid. The replacement liquid discharged from the second tube 32 is preferably compatible with the rinse liquid.
 第3チューブ33から吐出される置換液は、たとえば、有機溶剤である。第3チューブ33から吐出される置換液としては、IPA、HFE(ハイドロフルオロエーテル)、メタノール、エタノール、アセトンおよびTrans-1,2-ジクロロエチレンのうちの少なくとも1つを含む液等が挙げられる。 The replacement liquid discharged from the third tube 33 is, for example, an organic solvent. Examples of the replacement liquid discharged from the third tube 33 include a liquid containing at least one of IPA, HFE (hydrofluoroether), methanol, ethanol, acetone and Trans-1,2-dichloroethylene.
 また、第3チューブ33から吐出される置換液は、単体成分のみからなる必要はなく、他の成分と混合した液体であってもよい。たとえば、IPAとDIWとの混合液であってもよいし、IPAとHFEとの混合液であってもよい。 Further, the replacement liquid discharged from the third tube 33 does not have to consist of only a single component, and may be a liquid mixed with other components. For example, it may be a mixed solution of IPA and DIW, or it may be a mixed solution of IPA and HFE.
 第4チューブ34は、不活性ガスを第4チューブ34に案内する不活性ガス配管43に接続されている。不活性ガス配管43に介装された不活性ガスバルブ53が開かれると、不活性ガス、第4チューブ34(中央ノズル11)から下方に連続的に吐出される。 The fourth tube 34 is connected to the inert gas pipe 43 that guides the inert gas to the fourth tube 34. When the inert gas valve 53 interposed in the inert gas pipe 43 is opened, the inert gas is continuously discharged downward from the fourth tube 34 (center nozzle 11).
 第4チューブ34から吐出される不活性ガスは、たとえば、窒素ガス(N)等の不活性ガスである。不活性ガスは、基板Wの上面や、基板Wの上面に形成されたパターンに対して不活性なガスのことである。不活性ガスとしては、窒素ガスに限られず、アルゴン等の希ガス類を用いることもできる。 The inert gas discharged from the fourth tube 34 is, for example, an inert gas such as nitrogen gas (N 2 ). The inert gas is a gas that is inert to the pattern formed on the upper surface of the substrate W or the upper surface of the substrate W. The inert gas is not limited to nitrogen gas, and rare gases such as argon can also be used.
 図2には、第1下面ノズル12は、一つしか図示されていないが、複数の第1下面ノズル12は、基板Wの回転方向Rに互いに間隔を空けて配置されている。第1下面ノズル12は、DIW等のリンス液を基板Wの下面に供給する下側リンス液供給ユニットの一例である。 Although only one first lower surface nozzle 12 is shown in FIG. 2, a plurality of first lower surface nozzles 12 are arranged at intervals in the rotation direction R of the substrate W. The first lower surface nozzle 12 is an example of a lower rinse liquid supply unit that supplies a rinse liquid such as DIW to the lower surface of the substrate W.
 複数の第1下面ノズル12は、それぞれ、リンス液を第1下面ノズル12に案内する複数の下側リンス液配管44に接続されている。下側リンス液配管44に介装された下側リンス液バルブ54が開かれると、リンス液が、第1下面ノズル12から基板Wの下面の外周領域に向けて連続流で吐出される。 Each of the plurality of first lower surface nozzles 12 is connected to a plurality of lower rinse liquid pipes 44 that guide the rinse liquid to the first lower surface nozzle 12. When the lower rinse liquid valve 54 interposed in the lower rinse liquid pipe 44 is opened, the rinse liquid is continuously discharged from the first lower surface nozzle 12 toward the outer peripheral region of the lower surface of the substrate W.
 基板Wの下面の外周領域とは、基板Wの下面の中央領域および周縁領域の間の環状領域である。基板Wの下面の中央領域とは、基板Wの下面において基板Wの回転中心およびその周囲を含む領域のことである。基板Wの下面の周縁領域とは、基板Wの下面の周縁およびその周囲を含む領域のことである。 The outer peripheral region of the lower surface of the substrate W is an annular region between the central region and the peripheral region of the lower surface of the substrate W. The central region of the lower surface of the substrate W is a region on the lower surface of the substrate W that includes the center of rotation of the substrate W and its periphery. The peripheral edge region of the lower surface of the substrate W is a region including the peripheral edge of the lower surface of the substrate W and its surroundings.
 第1下面ノズル12から吐出されるリンス液としては、第2チューブ32から吐出されるリンス液と同様のものが挙げられる。すなわち、第1下面ノズル12から吐出されるリンス液としては、DIW、炭酸水、電解イオン水、希釈濃度(たとえば、1ppm~100ppm程度)の塩酸水、希釈濃度(たとえば、1ppm~100ppm程度)のアンモニア水、還元水(水素水)等が挙げられる。 Examples of the rinse liquid discharged from the first lower surface nozzle 12 include the same rinse liquid as the rinse liquid discharged from the second tube 32. That is, the rinse liquid discharged from the first lower surface nozzle 12 includes DIW, carbonated water, electrolytic ionized water, hydrochloric acid water having a dilution concentration (for example, about 1 ppm to 100 ppm), and a dilution concentration (for example, about 1 ppm to 100 ppm). Ammonia water, reduced water (hydrogen water) and the like can be mentioned.
 図2には、第2下面ノズル13は、一つしか図示されていないが、複数の第2下面ノズル13は、基板Wの回転方向Rに互いに間隔を空けて配置されている。第2下面ノズル13は、IPA等の置換液を基板Wの下面に供給する下側置換液供給ユニットの一例である。 Although only one second lower surface nozzle 13 is shown in FIG. 2, a plurality of second lower surface nozzles 13 are arranged at intervals in the rotation direction R of the substrate W. The second lower surface nozzle 13 is an example of a lower replacement liquid supply unit that supplies a replacement liquid such as IPA to the lower surface of the substrate W.
 複数の第2下面ノズル13は、ぞれぞれ、置換液を第2下面ノズル13に案内する複数の下側置換液配管45に接続されている。下側置換液配管45に介装された下側置換液バルブ55が開かれると、置換液が、第2下面ノズル13から基板Wの下面の外周領域に向けて連続流で吐出される。 The plurality of second lower surface nozzles 13 are connected to a plurality of lower replacement liquid pipes 45 that guide the replacement liquid to the second lower surface nozzle 13, respectively. When the lower replacement liquid valve 55 interposed in the lower replacement liquid pipe 45 is opened, the replacement liquid is discharged from the second lower surface nozzle 13 toward the outer peripheral region of the lower surface of the substrate W in a continuous flow.
 第2下面ノズル13から吐出されるリンス液としては、第3チューブ33から吐出される置換液と同様のものが挙げられる。すなわち、第3チューブ33から吐出される置換液としては、IPA、HFE(ハイドロフルオロエーテル)、メタノール、エタノール、アセトンおよびTrans-1,2-ジクロロエチレンのうちの少なくとも1つを含む液等が挙げられる。 Examples of the rinse liquid discharged from the second lower surface nozzle 13 include the same rinse liquid as the replacement liquid discharged from the third tube 33. That is, examples of the replacement solution discharged from the third tube 33 include a solution containing at least one of IPA, HFE (hydrofluoroether), methanol, ethanol, acetone and Trans-1,2-dichloroethylene. ..
 第2下面ノズル13から吐出される置換液は、単体成分のみからなる必要はなく、他の成分と混合した液体であってもよい。たとえば、IPAとDIWとの混合液であってもよいし、IPAとHFEとの混合液であってもよい。 The replacement liquid discharged from the second lower surface nozzle 13 does not have to consist of only a single component, and may be a liquid mixed with other components. For example, it may be a mixed solution of IPA and DIW, or it may be a mixed solution of IPA and HFE.
 処理ユニット2は、対向部材6の昇降を駆動する対向部材昇降ユニット61と、対向部材6を回転軸線A1まわりに回転させる対向部材回転ユニット62とをさらに含む。対向部材昇降ユニット61は、下位置から上位置までの任意の位置(高さ)に対向部材6を位置させることができる。 The processing unit 2 further includes an opposing member elevating unit 61 that drives the elevating and lowering of the opposing member 6, and an opposing member rotating unit 62 that rotates the opposing member 6 around the rotation axis A1. The facing member elevating unit 61 can position the facing member 6 at an arbitrary position (height) from the lower position to the upper position.
 下位置とは、対向部材6の可動範囲において、対向面6aが基板Wに最も近接する位置である。上位置とは、対向部材6の可動範囲において対向面6aが基板Wから最も離間する位置である。 The lower position is the position where the facing surface 6a is closest to the substrate W in the movable range of the facing member 6. The upper position is a position where the facing surface 6a is most distant from the substrate W in the movable range of the facing member 6.
 スピンベース21の付近に搬送ロボットCRをアクセスさせて、搬送ロボットCRに、チャンバ4内に基板Wを搬入させたりチャンバ4内から基板Wを搬出させたりするためには、対向部材6が上位置に位置する必要がある。 In order to allow the transfer robot CR to access the vicinity of the spin base 21 so that the transfer robot CR can carry the substrate W into the chamber 4 or carry out the substrate W from the chamber 4, the facing member 6 is in the upper position. Must be located in.
 対向部材昇降ユニット61は、たとえば、中空軸60を支持する支持部材(図示せず)に結合されたボールねじ機構(図示せず)と、当該ボールねじ機構に駆動力を与える電動モータ(図示せず)とを含む。対向部材昇降ユニット61は、対向部材リフタ(遮断板リフタ)ともいう。 The facing member elevating unit 61 includes, for example, a ball screw mechanism (not shown) coupled to a support member (not shown) that supports the hollow shaft 60, and an electric motor (not shown) that applies a driving force to the ball screw mechanism. Includes) and. The facing member elevating unit 61 is also referred to as a facing member lifter (blocking plate lifter).
 対向部材回転ユニット62は、たとえば、中空軸60を回転させる電動モータ(図示せず)を含む。電動モータは、たとえば、中空軸60を支持する支持部材に内蔵されている。対向部材回転ユニット62は、中空軸60を回転させることによって、対向部材6を回転させる。 The facing member rotation unit 62 includes, for example, an electric motor (not shown) for rotating the hollow shaft 60. The electric motor is built in, for example, a support member that supports the hollow shaft 60. The facing member rotating unit 62 rotates the facing member 6 by rotating the hollow shaft 60.
 環状部材8は、平面視で、基板Wを取り囲む。環状部材8は、対向部材6の延設部66の下方に配置されている。環状部材8は、複数の連結部材9によって延設部66に連結されている。環状部材8は、対向部材6に連結されているため、対向部材6の昇降に伴って昇降する。すなわち、対向部材昇降ユニット61は、対向部材6とともに環状部材8を昇降させる環状部材昇降ユニットとしても機能する。 The annular member 8 surrounds the substrate W in a plan view. The annular member 8 is arranged below the extending portion 66 of the opposing member 6. The annular member 8 is connected to the extension portion 66 by a plurality of connecting members 9. Since the annular member 8 is connected to the facing member 6, the annular member 8 moves up and down as the facing member 6 moves up and down. That is, the opposing member elevating unit 61 also functions as an annular member elevating unit that elevates and elevates the annular member 8 together with the opposing member 6.
 対向部材昇降ユニット61は、基板Wと対向部材6と環状部材8とが、外部の空間からの雰囲気の流入が制限された遮断空間SS(後述する図3を参照)を区画する遮断空間区画位置に対向部材6を移動させることができる。遮断空間区画位置は、上位置と下位置との間の位置であってもよいし、下位置であってもよい。 In the facing member elevating unit 61, the blocking space section position in which the substrate W, the facing member 6, and the annular member 8 partition the blocking space SS (see FIG. 3 described later) in which the inflow of atmosphere from the external space is restricted. The facing member 6 can be moved to. The blocking space partition position may be a position between the upper position and the lower position, or may be a lower position.
 図3は、対向部材6の延設部66の周辺の断面図である。図3に示すように、延設部66と環状部材8とによって、処理液を遮断空間SSから外部空間OS外へ排出する処理液排出路10が区画されている。外部空間OSには、対向部材6よりも上方の空間と、基板Wの下面よりも下方の空間と、対向部材6および環状部材8よりも径方向外方の空間とが含まれる。 FIG. 3 is a cross-sectional view of the periphery of the extending portion 66 of the opposing member 6. As shown in FIG. 3, the extension portion 66 and the annular member 8 define a treatment liquid discharge path 10 for discharging the treatment liquid from the cutoff space SS to the outside of the external space OS. The external space OS includes a space above the facing member 6, a space below the lower surface of the substrate W, and a space radially outer than the facing member 6 and the annular member 8.
 延設部66は、鉛直方向の幅が円板部65よりも大きい幅広部80と、円板部65と幅広部80とを連結する連結部81とを含む。鉛直方向における連結部81の幅は、径方向外方に向かうにしたがって大きくなっている。連結部81は、対向面6aに連結され、径方向外方に向かうにしたがって下方に向かうように傾斜する傾斜下面81aを有する。幅広部80は、傾斜下面81aに連結され、対向面6aよりも下方で水平方向に平坦に延びる平坦下面80aを有する。 The extension portion 66 includes a wide portion 80 whose width in the vertical direction is larger than that of the disc portion 65, and a connecting portion 81 that connects the disc portion 65 and the wide portion 80. The width of the connecting portion 81 in the vertical direction increases toward the outside in the radial direction. The connecting portion 81 has an inclined lower surface 81a that is connected to the facing surface 6a and is inclined downward as it goes outward in the radial direction. The wide portion 80 has a flat lower surface 80a that is connected to the inclined lower surface 81a and extends horizontally in the horizontal direction below the facing surface 6a.
 遮断空間SSは、対向部材6の円板部65の対向面6aおよび延設部66の傾斜下面81aと、基板Wの上面との間の空間である。処理液排出路10によって、遮断空間SSと外部空間OSとが連通されている。 The blocking space SS is a space between the facing surface 6a of the disk portion 65 of the facing member 6 and the inclined lower surface 81a of the extending portion 66 and the upper surface of the substrate W. The cutoff space SS and the external space OS are communicated with each other by the treatment liquid discharge path 10.
 環状部材8は、上面と、下面と、径方向内方の端面(内方端面84)と、径方向外方の端面とを有する。環状部材8の上面および下面は、それぞれ、平面視で円環状である。環状部材8の上面は、基板Wの上面の周縁部に存在する処理液を基板Wの上面の周縁部よりも径方向外方に案内する環状の案内面85と、延設部66とともに処理液排出路10を区画する環状の排出路区画面86とを有する。内方端面84は、鉛直方向に延びる円筒状である。 The annular member 8 has an upper surface, a lower surface, a radial inner end surface (inner end surface 84), and a radial outer end surface. The upper surface and the lower surface of the annular member 8 are annular in a plan view, respectively. The upper surface of the annular member 8 includes an annular guide surface 85 that guides the treatment liquid existing on the peripheral edge of the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W, and the treatment liquid together with the extending portion 66. It has an annular discharge channel section screen 86 for partitioning the discharge path 10. The inner end face 84 has a cylindrical shape extending in the vertical direction.
 案内面85は、内方端面84の上方端と、排出路区画面86の径方向内方端とに連結されている。案内面85および排出路区画面86のそれぞれは、水平方向に平坦である。案内面85は、排出路区画面86と面一である。つまり、案内面85および排出路区画面86は、水平方向に平坦で環状の単一の平坦面を構成している。 The guide surface 85 is connected to the upper end of the inner end surface 84 and the radial inner end of the discharge path section screen 86. Each of the guide surface 85 and the discharge path section screen 86 is horizontally flat. The guide surface 85 is flush with the discharge channel screen 86. That is, the guide surface 85 and the discharge path section screen 86 form a single flat surface that is flat and annular in the horizontal direction.
 第1実施形態では、対向部材6が遮断空間区画位置に位置するとき、環状部材8は、基板Wに径方向外方から対向する。対向部材6が遮断空間区画位置に位置するとき、内方端面84の上方端および案内面85は、基板Wの上面と同じ高さに位置する。 In the first embodiment, when the opposing member 6 is located at the blocking space section position, the annular member 8 faces the substrate W from the outside in the radial direction. When the facing member 6 is located at the blocking space section position, the upper end of the inner end surface 84 and the guide surface 85 are located at the same height as the upper surface of the substrate W.
 環状部材8の下面は、環状の下側傾斜面87と、環状の下側平坦面88とを有する。下側傾斜面87は、内方端面84の下方端に連結され、径方向外方に向かうにしたがって下方に向かうように傾斜する。下側平坦面88は、下側傾斜面87の径方向外方端に連結され水平方向に平坦である。 The lower surface of the annular member 8 has an annular lower inclined surface 87 and an annular lower flat surface 88. The lower inclined surface 87 is connected to the lower end of the inner end surface 84, and is inclined downward as it goes outward in the radial direction. The lower flat surface 88 is connected to the radial outer end of the lower inclined surface 87 and is horizontally flat.
 処理液排出路10は、水平方向に平坦な排出路区画面86および平坦下面80aによって区画されている。そのため、処理液排出路10は、平面視で環状であり、水平方向に延びている。 The treatment liquid discharge path 10 is partitioned by a horizontally flat discharge path section screen 86 and a flat lower surface 80a. Therefore, the treatment liquid discharge path 10 is annular in a plan view and extends in the horizontal direction.
 処理液排出路10は、案内面85上の処理液が流入する流入口10aと、径方向外方に向けて処理液を排出する排出口10bとを有する。流入口10aは、案内面85と排出路区画面86との境界に設けられている。流入口10aは、処理液排出路10の径方向内方端に位置し、排出口10bは、処理液排出路10の径方向外方端に位置する。 The treatment liquid discharge path 10 has an inflow port 10a on the guide surface 85 into which the treatment liquid flows in, and a discharge port 10b for discharging the treatment liquid outward in the radial direction. The inflow port 10a is provided at the boundary between the guide surface 85 and the discharge path section screen 86. The inflow port 10a is located at the radial inner end of the treatment liquid discharge path 10, and the discharge port 10b is located at the radial outer end of the treatment liquid discharge path 10.
 鉛直方向における遮断空間SSの幅(遮断空間幅D1)は、水平方向における基板Wの周縁と環状部材8の内方端面84との間の隙間Gの幅(隙間幅D2)よりも大きい。遮断空間幅D1は、鉛直方向における処理液排出路10の幅(排出路幅D3)よりも大きい。 The width of the blocking space SS in the vertical direction (blocking space width D1) is larger than the width of the gap G (gap width D2) between the peripheral edge of the substrate W and the inner end surface 84 of the annular member 8 in the horizontal direction. The blocking space width D1 is larger than the width of the treatment liquid discharge path 10 (discharge path width D3) in the vertical direction.
 ここで、遮断空間幅D1には、鉛直方向における対向面6aと基板Wの上面との間の距離と、鉛直方向における傾斜下面81aと案内面85との間の距離とが含まれる。そのため、案内面85と排出路区画面86との境界においては、遮断空間幅D1は、排出路幅D3と等しい。しかしながら、平面視における大部分の箇所において、遮断空間幅D1は、排出路幅D3よりも大きく、遮断空間幅D1の平均値は、排出路幅D3よりも大きい。 Here, the blocking space width D1 includes a distance between the facing surface 6a in the vertical direction and the upper surface of the substrate W, and a distance between the inclined lower surface 81a and the guide surface 85 in the vertical direction. Therefore, at the boundary between the guide surface 85 and the discharge path section screen 86, the cutoff space width D1 is equal to the discharge path width D3. However, at most points in the plan view, the cutoff space width D1 is larger than the discharge path width D3, and the average value of the cutoff space width D1 is larger than the discharge path width D3.
 鉛直方向における対向面6aと基板Wの上面との間の距離は、たとえば、10mmである。隙間幅D2および排出路幅D3は、それぞれ、たとえば、1mmである。すなわち、隙間幅D2および排出路幅D3は、遮断空間幅D1よりも十分小さいため、外部空間OSからの雰囲気の流入が制限されている。 The distance between the facing surface 6a in the vertical direction and the upper surface of the substrate W is, for example, 10 mm. The gap width D2 and the discharge path width D3 are, for example, 1 mm, respectively. That is, since the gap width D2 and the discharge path width D3 are sufficiently smaller than the cutoff space width D1, the inflow of the atmosphere from the external space OS is restricted.
 連結部材9は、処理液排出路10内に設けられており、延設部66の幅広部80の平坦下面80aと環状部材8の排出路区画面86とに連結されている。図4は、図2に示すIV-IV線に沿う断面図である。図4に示すように、複数の連結部材9は、基板Wの回転方向Rに等間隔で配置されている。本実施形態では、連結部材9は、6個設けられている。各連結部材9は、鉛直方向に延びる円柱状である。 The connecting member 9 is provided in the treatment liquid discharge path 10, and is connected to the flat lower surface 80a of the wide portion 80 of the extension portion 66 and the discharge path section screen 86 of the annular member 8. FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. As shown in FIG. 4, the plurality of connecting members 9 are arranged at equal intervals in the rotation direction R of the substrate W. In the present embodiment, six connecting members 9 are provided. Each connecting member 9 is a columnar shape extending in the vertical direction.
 再び図2を参照して、処理カップ7は、スピンチャック5に保持された基板Wから外方に飛散する液体を受け止める複数のガード71と、複数のガード71によって下方に案内された液体を受け止める複数のカップ72とを含む。 With reference to FIG. 2 again, the processing cup 7 receives a plurality of guards 71 that receive the liquid scattered outward from the substrate W held by the spin chuck 5, and a plurality of guards 71 that receive the liquid guided downward by the plurality of guards 71. Includes a plurality of cups 72.
 この実施形態では、2つのガード71(第1ガード71Aおよび第2ガード71B)と、2つのカップ72(第1カップ72Aおよび第2カップ72B)とが設けられている例を示している。 In this embodiment, an example is shown in which two guards 71 (first guard 71A and second guard 71B) and two cups 72 (first cup 72A and second cup 72B) are provided.
 第1カップ72Aおよび第2カップ72Bのそれぞれは、上向きに開放された環状溝の形態を有している。 Each of the first cup 72A and the second cup 72B has the form of an annular groove that is open upward.
 第1ガード71Aは、スピンベース21を取り囲むように配置されている。第2ガード71B(内側ガード)は、第1ガード71A(外側ガード)よりも基板Wの径方向内方でスピンベース21を取り囲むように配置されている。 The first guard 71A is arranged so as to surround the spin base 21. The second guard 71B (inner guard) is arranged so as to surround the spin base 21 in the radial direction of the substrate W with respect to the first guard 71A (outer guard).
 第1ガード71Aおよび第2ガード71Bは、それぞれ、ほぼ円筒形状を有しており、各ガード71の上端部は、径方向内方に向かうように内方に傾斜している。 The first guard 71A and the second guard 71B each have a substantially cylindrical shape, and the upper end portion of each guard 71 is inclined inward so as to be inward in the radial direction.
 詳しくは、第1ガード71Aは、平面視で対向部材6および環状部材8を取り囲む第1円筒部75Aと、第1円筒部75Aの上端から径方向内方に延びる第1円環部76Aとを有する。第1円環部76Aは、径方向内方に向かうにしたがって上方に向かうように水平方向に対して傾斜している。 Specifically, the first guard 71A includes a first cylindrical portion 75A that surrounds the opposing member 6 and the annular member 8 in a plan view, and a first annular portion 76A that extends inward in the radial direction from the upper end of the first cylindrical portion 75A. Have. The first annular portion 76A is inclined with respect to the horizontal direction so as to be upward as it goes inward in the radial direction.
 第2ガード71Bは、第1円筒部75Aよりも内方に配置され平面視で対向部材6および環状部材8を取り囲む第2円筒部75Bと、第2円筒部75Bの上端から径方向内方に延びる第2円環部76Bとを含む。第2円環部76Bは、第1円環部76Aに下方から対向する。第2円環部76Bは、径方向内方に向かうにしたがって上方に向かうように水平方向に対して傾斜している。 The second guard 71B is arranged inward of the first cylindrical portion 75A and surrounds the opposing member 6 and the annular member 8 in a plan view. The second cylindrical portion 75B and the second cylindrical portion 75B are radially inward from the upper end. Includes a second annular portion 76B extending. The second ring portion 76B faces the first ring portion 76A from below. The second annular portion 76B is inclined with respect to the horizontal direction so as to be upward as it goes inward in the radial direction.
 第1カップ72Aは、第1ガード71Aによって下方に案内された処理液を受け止める。第2カップ72Bは、第1ガード71Aと一体に形成されており、第2ガード71Bによって下方に案内された処理液を受け止める。第1カップ72Aによって受けられた処理液は、第1カップ72Aの下端に連結された第1処理液回収路(図示せず)によって回収される。第2カップ72Bによって受けられた処理液は、第2カップ72Bの下端に連結された第2処理液回収路(図示せず)によって回収される。 The first cup 72A receives the processing liquid guided downward by the first guard 71A. The second cup 72B is integrally formed with the first guard 71A, and receives the treatment liquid guided downward by the second guard 71B. The treatment liquid received by the first cup 72A is collected by a first treatment liquid recovery path (not shown) connected to the lower end of the first cup 72A. The treatment liquid received by the second cup 72B is collected by a second treatment liquid recovery path (not shown) connected to the lower end of the second cup 72B.
 処理ユニット2は、第1ガード71Aおよび第2ガード71Bを別々に昇降させるガード昇降ユニット74を含む。ガード昇降ユニット74は、下位置と上位置との間で第1ガード71Aを昇降させる。ガード昇降ユニット74は、下位置と上位置との間で第2ガード71Bを昇降させる。 The processing unit 2 includes a guard elevating unit 74 that separately elevates and elevates the first guard 71A and the second guard 71B. The guard elevating unit 74 raises and lowers the first guard 71A between the lower position and the upper position. The guard elevating unit 74 raises and lowers the second guard 71B between the lower position and the upper position.
 第1ガード71Aおよび第2ガード71Bがともに上位置に位置するとき、基板Wから飛散する処理液は、第2ガード71Bによって受けられる。第2ガード71Bが下位置に位置し、第1ガード71Aが上位置に位置するとき、基板Wから飛散する処理液は、第1ガード71Aによって受けられる。 When both the first guard 71A and the second guard 71B are located at the upper positions, the processing liquid scattered from the substrate W is received by the second guard 71B. When the second guard 71B is located at the lower position and the first guard 71A is located at the upper position, the processing liquid scattered from the substrate W is received by the first guard 71A.
 第1ガード71Aおよび第2ガード71Bがともに下位置に位置し、かつ、対向部材6が上位置に位置するときには、搬送ロボットCRが、チャンバ4内に基板Wを搬入したりチャンバ4内から基板Wを搬出したりすることができる。 When both the first guard 71A and the second guard 71B are located at the lower position and the opposing member 6 is located at the upper position, the transfer robot CR carries the substrate W into the chamber 4 or the substrate from inside the chamber 4. W can be carried out.
 ガード昇降ユニット74は、たとえば、第1ガード71Aに結合された第1ボールねじ機構(図示せず)と、第1ボールねじ機構に駆動力を与える第1モータ(図示せず)と、第2ガード71Bに結合された第2ボールねじ機構(図示せず)と、第2ボールねじ機構に駆動力を与える第2モータ(図示せず)とを含む。ガード昇降ユニット74は、ガードリフタともいう。 The guard elevating unit 74 includes, for example, a first ball screw mechanism (not shown) coupled to the first guard 71A, a first motor (not shown) that applies a driving force to the first ball screw mechanism, and a second. It includes a second ball screw mechanism (not shown) coupled to the guard 71B and a second motor (not shown) that applies a driving force to the second ball screw mechanism. The guard elevating unit 74 is also referred to as a guard lifter.
 図5は、基板処理装置1の主要部の電気的構成を示すブロック図である。コントローラ3は、マイクロコンピュータを備え、所定の制御プログラムに従って基板処理装置1に備えられた制御対象を制御する。 FIG. 5 is a block diagram showing an electrical configuration of a main part of the substrate processing device 1. The controller 3 includes a microcomputer and controls a control target provided in the substrate processing device 1 according to a predetermined control program.
 具体的には、コントローラ3は、プロセッサ(CPU)3Aと、制御プログラムが格納されたメモリ3Bとを含む。コントローラ3は、プロセッサ3Aが制御プログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。 Specifically, the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored. The controller 3 is configured to execute various controls for substrate processing by the processor 3A executing a control program.
 とくに、コントローラ3は、搬送ロボットIR,CR、吸引ユニット27、スピンモータ23、ガード昇降ユニット74、対向部材回転ユニット62、対向部材昇降ユニット61、吸引バルブ28、薬液バルブ50、上側リンス液バルブ51、上側置換液バルブ52、不活性ガスバルブ53、下側リンス液バルブ54、および下側置換液バルブ55を制御するようにプログラムされている。 In particular, the controller 3 includes a transfer robot IR, CR, a suction unit 27, a spin motor 23, a guard elevating unit 74, an opposing member rotating unit 62, an opposing member elevating unit 61, a suction valve 28, a chemical solution valve 50, and an upper rinse solution valve 51. , The upper replacement liquid valve 52, the inert gas valve 53, the lower rinse liquid valve 54, and the lower replacement liquid valve 55 are programmed to control.
 コントローラ3によってバルブが制御されることによって、対応するノズルからの処理液や不活性ガスの吐出の有無や、対応するノズルからの処理液や不活性ガスの吐出流量が制御される。 By controlling the valve by the controller 3, the presence or absence of the discharge of the treatment liquid or the inert gas from the corresponding nozzle and the discharge flow rate of the treatment liquid or the inert gas from the corresponding nozzle are controlled.
 図6は、基板処理装置1による基板処理の一例を説明するための流れ図である。図6には、主として、コントローラ3がプログラムを実行することによって実現される処理が示されている。図7A~図7Fは、前記基板処理の各工程の様子を説明するための模式図である。以下では、主に図2および図6を参照する。図7A~図7Fについては適宜参照する。 FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus 1. FIG. 6 mainly shows the processing realized by the controller 3 executing the program. 7A to 7F are schematic views for explaining the state of each step of the substrate processing. In the following, we will mainly refer to FIGS. 2 and 6. 7A to 7F will be referred to as appropriate.
 基板処理装置1による基板処理では、たとえば、図6に示すように、基板搬入工程(ステップS1)、遮断空間区画工程(ステップS2)、雰囲気置換工程(ステップS3)、プレリンス工程(ステップS4)、薬液供給工程(ステップS5)、リンス工程(ステップS6)、置換液供給工程(ステップS7)、スピンドライ工程(ステップS8)および基板搬出工程(ステップS9)が実行される。 In the substrate processing by the substrate processing apparatus 1, for example, as shown in FIG. 6, a substrate loading step (step S1), a blocking space partitioning step (step S2), an atmosphere replacement step (step S3), a prerinsing step (step S4), The chemical liquid supply step (step S5), the rinsing step (step S6), the replacement liquid supply step (step S7), the spin dry step (step S8), and the substrate unloading step (step S9) are executed.
 まず、図7Aに示すように、未処理の基板Wは、搬送ロボットCRによってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(ステップS1)。これにより、基板Wは、スピンチャック5によって水平に保持される(基板保持工程)。基板Wの搬入時には、対向部材6は、上位置に退避しており、複数のガード71が下位置に退避している。 First, as shown in FIG. 7A, the unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robot CR and passed to the spin chuck 5 (step S1). As a result, the substrate W is held horizontally by the spin chuck 5 (board holding step). When the substrate W is carried in, the facing member 6 is retracted to the upper position, and the plurality of guards 71 are retracted to the lower position.
 スピンチャック5による基板Wの保持は、スピンドライ工程(ステップS8)が終了するまで継続される。ガード昇降ユニット74は、基板保持工程が開始されてからスピンドライ工程(ステップS8)が終了するまでの間、少なくとも一つのガード71が上位置に位置するように、第1ガード71Aおよび第2ガード71Bの高さ位置を調整する。 The holding of the substrate W by the spin chuck 5 is continued until the spin drying step (step S8) is completed. The guard elevating unit 74 has the first guard 71A and the second guard so that at least one guard 71 is located at the upper position from the start of the substrate holding step to the end of the spin drying step (step S8). Adjust the height position of 71B.
 次に、搬送ロボットCRが処理ユニット2外に退避した後、遮断空間SSを区画する遮断空間区画工程(ステップS2)が実行される。具体的には、図7Bに示すように、対向部材昇降ユニット61が、対向部材6を遮断空間区画位置に移動させる。これにより、基板W、対向部材6および環状部材8によって遮断空間SSが区画される。 Next, after the transfer robot CR has evacuated to the outside of the processing unit 2, the blocking space partitioning step (step S2) for partitioning the blocking space SS is executed. Specifically, as shown in FIG. 7B, the facing member elevating unit 61 moves the facing member 6 to the blocking space section position. As a result, the blocking space SS is partitioned by the substrate W, the facing member 6, and the annular member 8.
 次に、遮断空間SSの雰囲気を不活性ガスによって置換する雰囲気置換工程(ステップS3)と、基板Wの上面にリンス液で洗浄するプレリンス工程(ステップS4)とが並行して実行される。 Next, an atmosphere replacement step (step S3) of replacing the atmosphere of the cutoff space SS with an inert gas and a prerinsing step (step S4) of cleaning the upper surface of the substrate W with a rinsing liquid are executed in parallel.
 具体的には、スピンモータ23が基板Wの回転を開始する。そして、対向部材回転ユニット62が、対向部材6および環状部材8の回転を開始する。対向部材回転ユニット62は、対向部材6および環状部材8を基板Wと同期回転させる(同期回転工程)。基板W、対向部材6および環状部材8の同期回転は、スピンドライ工程(ステップS8)が終了するまで継続される。 Specifically, the spin motor 23 starts rotating the substrate W. Then, the opposing member rotation unit 62 starts rotating the opposing member 6 and the annular member 8. The opposing member rotation unit 62 rotates the opposing member 6 and the annular member 8 synchronously with the substrate W (synchronous rotation step). The synchronous rotation of the substrate W, the opposing member 6, and the annular member 8 is continued until the spin-drying step (step S8) is completed.
 そして、対向部材6が遮断空間区画位置に位置する状態で、不活性ガスバルブ53および上側リンス液バルブ51が開かれる。不活性ガスバルブ53が開かれることにより、図7Cに示すように、中央ノズル11から不活性ガスが吐出され、遮断空間SSに不活性ガスが供給される。上側リンス液バルブ51が開かれることにより、基板Wの上面に、図7Cに示すように、中央ノズル11から基板Wの上面に向けてDIW等のリンス液が吐出される。吐出されたリンス液は、基板Wの上面の中央領域に着液する。 Then, the inert gas valve 53 and the upper rinse liquid valve 51 are opened with the facing member 6 located at the blocking space section position. When the inert gas valve 53 is opened, as shown in FIG. 7C, the inert gas is discharged from the central nozzle 11 and the inert gas is supplied to the shutoff space SS. When the upper rinse liquid valve 51 is opened, a rinse liquid such as DIW is discharged from the central nozzle 11 toward the upper surface of the substrate W on the upper surface of the substrate W, as shown in FIG. 7C. The discharged rinse liquid lands on the central region of the upper surface of the substrate W.
 基板Wの上面に着液したリンス液には、基板Wの回転による遠心力が作用する。そのため、リンス液は遠心力によって基板Wの上面の全体に行き渡る。基板Wの上面の周縁部に到達したリンス液は、案内面85を介して処理液排出路10に流入する。そして、処理液排出路10に流入したリンス液は、遮断空間SSの外に排出される。基板Wの上面の周縁部から案内面85に移動するリンス液によって隙間Gが塞がれる。 Centrifugal force due to the rotation of the substrate W acts on the rinse liquid that has landed on the upper surface of the substrate W. Therefore, the rinse liquid is spread over the entire upper surface of the substrate W by centrifugal force. The rinse liquid that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the rinse liquid that has flowed into the treatment liquid discharge path 10 is discharged to the outside of the cutoff space SS. The gap G is closed by the rinsing liquid moving from the peripheral edge of the upper surface of the substrate W to the guide surface 85.
 遮断空間SSへの不活性ガスの供給が開始されると、隙間Gおよび処理液排出路10から遮断空間SS内の空気が不活性ガスによって押し出され始める。遮断空間SSへの不活性ガスの供給を継続することによって、遮断空間SS内の空気が全て排出され、遮断空間SS内に不活性ガスが充満する。つまり、遮断空間SS内の雰囲気が不活性ガスによって置換される。不活性ガスバルブ53は、スピンドライ工程(ステップS8)が終了するまで開かれた状態で維持される。 When the supply of the inert gas to the blocking space SS is started, the air in the blocking space SS begins to be pushed out by the inert gas from the gap G and the treatment liquid discharge path 10. By continuing to supply the inert gas to the blocking space SS, all the air in the blocking space SS is discharged, and the inert gas fills the blocking space SS. That is, the atmosphere in the blocking space SS is replaced by the inert gas. The Inactive gas valve 53 is maintained in the open state until the spin drying step (step S8) is completed.
 プレリンス工程において、環状部材8と基板Wとの間の隙間Gは、リンス液によって塞がれる。そのため、隙間Gを介する不活性ガスの移動が抑制される。また、リンス液は、処理液排出路10を介して、遮断空間SSから外部空間OSへ排出される。そのため、処理液排出路10内のリンス液を押し退ける程の大きな力が作用しない限り、処理液排出路10を介した遮断空間SSへの雰囲気の流入が起こらない。一方、遮断空間SSには不活性ガスが供給されるため、遮断空間SS内の空気は、遮断空間SS内の圧力が上昇し過ぎないように処理液排出路10を介して外部空間OSに排出される。 In the prerinsing process, the gap G between the annular member 8 and the substrate W is closed by the rinsing liquid. Therefore, the movement of the inert gas through the gap G is suppressed. Further, the rinse liquid is discharged from the cutoff space SS to the external space OS via the treatment liquid discharge path 10. Therefore, the inflow of the atmosphere into the cutoff space SS through the treatment liquid discharge passage 10 does not occur unless a large force that pushes away the rinse liquid in the treatment liquid discharge passage 10 acts. On the other hand, since the inert gas is supplied to the cutoff space SS, the air in the cutoff space SS is discharged to the external space OS via the treatment liquid discharge path 10 so that the pressure in the cutoff space SS does not rise too much. Will be done.
 したがって、外部空間OSから遮断空間SSへの雰囲気の流入を制限しながら、遮断空間SS内の雰囲気を不活性ガスに置換することができる。 Therefore, the atmosphere in the blocking space SS can be replaced with an inert gas while limiting the inflow of the atmosphere from the external space OS to the blocking space SS.
 なお、図7Cでは、処理液排出路10がリンス液によって充填された状態が図示されているが、不活性ガスが処理液排出路10を通って外部空間OSに移動する際には、リンス液(処理液)の一部を押し退けて処理液排出路10を移動する(図7D以降の図面においても同様)。 Although FIG. 7C shows a state in which the treatment liquid discharge path 10 is filled with the rinse liquid, when the inert gas moves to the external space OS through the treatment liquid discharge passage 10, the rinse liquid is shown. A part of the (treatment liquid) is pushed away to move in the treatment liquid discharge path 10 (the same applies to the drawings after FIG. 7D).
 次に、基板Wの上面を薬液で処理するために基板Wの上面に薬液を供給する薬液供給工程(ステップS5)が実行される。 Next, a chemical solution supply step (step S5) of supplying the chemical solution to the upper surface of the substrate W is executed in order to treat the upper surface of the substrate W with the chemical solution.
 具体的には、遮断空間SS内に不活性ガスが充満した状態で、上側リンス液バルブ51が閉じられ薬液バルブ50が開かれる。これにより、中央ノズル11からのリンス液の吐出が停止され、中央ノズル11から基板Wの上面に向けてDHF等の薬液が吐出される。 Specifically, the upper rinse liquid valve 51 is closed and the chemical liquid valve 50 is opened in a state where the shutoff space SS is filled with the inert gas. As a result, the discharge of the rinse liquid from the central nozzle 11 is stopped, and the chemical liquid such as DHF is discharged from the central nozzle 11 toward the upper surface of the substrate W.
 図7Dに示すように、吐出された薬液は、基板Wの上面の中央領域に着液する。薬液供給工程は、遮断空間SS内の雰囲気が不活性ガスで置換された状態で、基板Wの上面に処理液を供給する処理液供給工程の一例である。プレリンス工程は、処理液供給工程よりも前に実行されている。 As shown in FIG. 7D, the discharged chemical solution lands on the central region of the upper surface of the substrate W. The chemical solution supply step is an example of a treatment solution supply step of supplying the treatment solution to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas. The prerinsing step is performed before the treatment liquid supply step.
 基板Wの上面に着液した薬液には、基板Wの回転による遠心力が作用する。そのため、薬液は、遠心力によって基板Wの上面の全体に行き渡り、基板Wの上面に存在するリンス液を置換する。基板Wの上面の周縁部に到達した薬液は、案内面85を介して処理液排出路10に流入する。そして、薬液は、処理液排出路10を介して遮断空間SSの外に排出される(薬液排出工程、処理液排出工程)。 Centrifugal force due to the rotation of the substrate W acts on the chemical solution that has landed on the upper surface of the substrate W. Therefore, the chemical solution spreads over the entire upper surface of the substrate W by centrifugal force and replaces the rinse solution existing on the upper surface of the substrate W. The chemical solution that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the chemical solution is discharged to the outside of the blocking space SS via the treatment liquid discharge path 10 (chemical solution discharge step, treatment liquid discharge step).
 また、薬液供給工程では、複数の下側リンス液バルブ54が開かれる。これにより、複数の第1下面ノズル12からのリンス液の吐出が開始される。複数の第1下面ノズル12から吐出されたリンス液は、基板Wの下面に着液する。 Further, in the chemical solution supply process, a plurality of lower rinse solution valves 54 are opened. As a result, the rinsing liquid is started to be discharged from the plurality of first lower surface nozzles 12. The rinse liquids discharged from the plurality of first lower surface nozzles 12 land on the lower surface of the substrate W.
 基板Wの下面に着液したリンス液には、基板Wの回転による遠心力が作用する。これにより、リンス液が基板Wの下面の周縁部にまで広がる。リンス液が基板Wの下面の周縁部にまで広がることによって、基板Wの下面が保護される(下面保護工程、保護液供給工程)。リンス液は、基板Wの下面を保護する保護液として機能する。したがって、第1下面ノズル12は、保護液供給ユニットとして機能する。 Centrifugal force due to the rotation of the substrate W acts on the rinse liquid that has landed on the lower surface of the substrate W. As a result, the rinse liquid spreads to the peripheral edge of the lower surface of the substrate W. The lower surface of the substrate W is protected by spreading the rinse liquid to the peripheral edge of the lower surface of the substrate W (bottom surface protection step, protective liquid supply step). The rinse liquid functions as a protective liquid that protects the lower surface of the substrate W. Therefore, the first lower surface nozzle 12 functions as a protective liquid supply unit.
 基板Wの下面の周縁部に到達したリンス液は、環状部材8の下面に案内され、その後、環状部材8から径方向外方へ飛散する。 The rinse liquid that has reached the peripheral edge of the lower surface of the substrate W is guided to the lower surface of the annular member 8 and then scatters radially outward from the annular member 8.
 次に、基板Wの上面にリンス液を供給して基板Wの上面に存在する薬液を洗い流すリンス工程(ステップS6)が実行される。具体的には、遮断空間SS内に不活性ガスが充満した状態で、薬液バルブ50が閉じられ上側リンス液バルブ51が開かれる。これにより、中央ノズル11からの薬液の吐出が停止され、中央ノズル11から基板Wの上面に向けてDIW等のリンス液が吐出される。図7Eに示すように、吐出されたリンス液は、基板Wの上面の中央領域に着液する。リンス液供給工程は、遮断空間SS内の雰囲気が不活性ガスで置換された状態で、基板Wの上面に処理液を供給する処理液供給工程の一例である。 Next, a rinsing step (step S6) of supplying a rinsing solution to the upper surface of the substrate W to wash away the chemical solution existing on the upper surface of the substrate W is executed. Specifically, the chemical solution valve 50 is closed and the upper rinse solution valve 51 is opened in a state where the shutoff space SS is filled with the inert gas. As a result, the discharge of the chemical solution from the central nozzle 11 is stopped, and the rinse solution such as DIW is discharged from the central nozzle 11 toward the upper surface of the substrate W. As shown in FIG. 7E, the discharged rinse liquid lands on the central region of the upper surface of the substrate W. The rinse liquid supply step is an example of a treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas.
 基板Wの上面に着液したリンス液には、基板Wの回転による遠心力が作用する。そのため、リンス液は遠心力によって基板Wの上面の全体に行き渡り、基板Wの上面に存在する薬液を置換する。基板Wの上面の周縁部に到達したリンス液は、案内面85を介して処理液排出路10に流入する。そして、リンス液は、処理液排出路10を介して遮断空間SSの外に排出される(リンス液排出工程、処理液排出工程)。リンス工程において、複数の下側リンス液バルブ54は、開かれた状態で維持されている。 Centrifugal force due to the rotation of the substrate W acts on the rinse liquid that has landed on the upper surface of the substrate W. Therefore, the rinse solution spreads over the entire upper surface of the substrate W by centrifugal force and replaces the chemical solution existing on the upper surface of the substrate W. The rinse liquid that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the rinse liquid is discharged to the outside of the cutoff space SS via the treatment liquid discharge passage 10 (rinse liquid discharge step, treatment liquid discharge step). In the rinsing process, the plurality of lower rinsing liquid valves 54 are maintained in an open state.
 次に、基板Wの上面に存在するリンス液を置換液で置換するために基板Wの上面に置換液を供給する置換液供給工程(ステップS7)が実行される。具体的には、遮断空間SS内に不活性ガスが充満した状態で、上側リンス液バルブ51が閉じられ、上側置換液バルブ52が開かれる。これにより、中央ノズル11からのリンス液の吐出が停止され、中央ノズル11から基板Wの上面に向けてIPA等の置換液が吐出される。図7Fに示すように、吐出された置換液は、基板Wの上面の中央領域に着液する。置換液供給工程は、遮断空間SS内の雰囲気が不活性ガスで置換された状態で、基板Wの上面に処理液を供給する処理液供給工程の一例である。 Next, a replacement liquid supply step (step S7) of supplying the replacement liquid to the upper surface of the substrate W in order to replace the rinse liquid existing on the upper surface of the substrate W with the replacement liquid is executed. Specifically, the upper rinse liquid valve 51 is closed and the upper replacement liquid valve 52 is opened in a state where the shutoff space SS is filled with the inert gas. As a result, the discharge of the rinse liquid from the central nozzle 11 is stopped, and the replacement liquid such as IPA is discharged from the central nozzle 11 toward the upper surface of the substrate W. As shown in FIG. 7F, the discharged replacement liquid lands on the central region of the upper surface of the substrate W. The replacement liquid supply step is an example of a treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas.
 基板Wの上面に着液した置換液には、基板Wの回転による遠心力が作用する。そのため、置換液は遠心力によって基板Wの上面の全体に行き渡り、基板Wの上面に存在するリンス液を置換する。基板Wの上面の周縁部に到達した置換液は、案内面85を介して処理液排出路10に流入する。そして、置換液は、処理液排出路10を介して遮断空間SSの外に排出される(置換液排出工程、処理液排出工程)。 Centrifugal force due to the rotation of the substrate W acts on the replacement liquid that has landed on the upper surface of the substrate W. Therefore, the replacement liquid spreads over the entire upper surface of the substrate W by centrifugal force, and replaces the rinse liquid existing on the upper surface of the substrate W. The replacement liquid that has reached the peripheral edge of the upper surface of the substrate W flows into the processing liquid discharge path 10 via the guide surface 85. Then, the replacement liquid is discharged to the outside of the cutoff space SS via the treatment liquid discharge passage 10 (replacement liquid discharge step, treatment liquid discharge step).
 置換液供給工程では、複数の下側リンス液バルブ54が閉じられ、複数の下側置換液バルブ55が開かれる。これにより、複数の第1下面ノズル12からのリンス液の吐出が停止され、複数の第2下面ノズル13からのIPA等の置換液の吐出が開始される。複数の第2下面ノズル13から吐出された置換液は、基板Wの下面に着液する。 In the replacement liquid supply step, the plurality of lower rinse liquid valves 54 are closed, and the plurality of lower replacement liquid valves 55 are opened. As a result, the discharge of the rinse liquid from the plurality of first lower surface nozzles 12 is stopped, and the discharge of the replacement liquid such as IPA from the plurality of second lower surface nozzles 13 is started. The replacement liquids discharged from the plurality of second lower surface nozzles 13 land on the lower surface of the substrate W.
 基板Wの下面に着液した置換液には、基板Wの回転による遠心力が作用する。これにより、置換液は、基板Wの下面の周縁部にまで広がる(下面保護工程、保護液供給工程)。置換液は、基板Wの下面を保護する保護液として機能する。したがって、第2下面ノズル13は、保護液供給ユニットとして機能する。 Centrifugal force due to the rotation of the substrate W acts on the replacement liquid that has landed on the lower surface of the substrate W. As a result, the replacement liquid spreads to the peripheral edge of the lower surface of the substrate W (bottom surface protection step, protective liquid supply step). The replacement liquid functions as a protective liquid that protects the lower surface of the substrate W. Therefore, the second lower surface nozzle 13 functions as a protective liquid supply unit.
 置換液は、基板Wの下面の周縁部にまで広がることによって、基板Wの下面に存在するリンス液を置換する。基板Wの下面の周縁部に到達した置換液は、環状部材8の下面に案内され、その後、環状部材8から径方向外方に飛散する。 The replacement liquid replaces the rinse liquid existing on the lower surface of the substrate W by spreading to the peripheral edge of the lower surface of the substrate W. The replacement liquid that has reached the peripheral edge of the lower surface of the substrate W is guided to the lower surface of the annular member 8 and then scatters radially outward from the annular member 8.
 次に、スピンドライ工程(ステップS8)が実行される。具体的には、上側置換液バルブ52および複数の下側置換液バルブ55が閉じられる。これにより、基板Wの上面および下面への置換液の供給が停止される。 Next, the spin dry step (step S8) is executed. Specifically, the upper replacement liquid valve 52 and the plurality of lower replacement liquid valves 55 are closed. As a result, the supply of the replacement liquid to the upper surface and the lower surface of the substrate W is stopped.
 そして、スピンモータ23が基板Wの回転を加速し、基板Wを高速回転させる。それによって、大きな遠心力が基板W上に残留した置換液に作用し、基板W上の置換液が基板Wの周囲に振り切られる。スピンドライ工程において遮断空間SSへの不活性ガスの供給を継続することによって、置換液の蒸発が促進される。 Then, the spin motor 23 accelerates the rotation of the substrate W and rotates the substrate W at high speed. As a result, a large centrifugal force acts on the replacement liquid remaining on the substrate W, and the replacement liquid on the substrate W is shaken off around the substrate W. By continuing to supply the inert gas to the blocking space SS in the spin-drying step, evaporation of the replacement liquid is promoted.
 そして、スピンモータ23が基板Wの回転を停止させ、対向部材回転ユニット62が対向部材6および環状部材8の回転を停止させる。ガード昇降ユニット74が第1ガード71Aおよび第2ガード71Bを下位置に移動させる。不活性ガスバルブ53が閉じられる。そして、対向部材昇降ユニット61が対向部材6を上位置に移動させる。 Then, the spin motor 23 stops the rotation of the substrate W, and the opposing member rotating unit 62 stops the rotation of the opposing member 6 and the annular member 8. The guard elevating unit 74 moves the first guard 71A and the second guard 71B to the lower position. The inert gas valve 53 is closed. Then, the facing member elevating unit 61 moves the facing member 6 to the upper position.
 搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5のチャックピン20から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(ステップS9)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。 The transfer robot CR enters the processing unit 2, scoops the processed substrate W from the chuck pin 20 of the spin chuck 5, and carries it out of the processing unit 2 (step S9). The substrate W is passed from the transfer robot CR to the transfer robot IR, and is housed in the carrier C by the transfer robot IR.
 次に、基板処理における環状部材8付近の処理液の様子について説明する。環状部材8付近の処理液の様子は、処理液の種類にかかわらず同様である。すなわち、プレリンス工程、薬液供給工程、リンス工程および置換液供給工程のいずれの工程においても同様の説明が可能である。 Next, the state of the treatment liquid near the annular member 8 in the substrate treatment will be described. The state of the treatment liquid in the vicinity of the annular member 8 is the same regardless of the type of the treatment liquid. That is, the same explanation can be made in any of the pre-rinse step, the chemical solution supply step, the rinse step, and the replacement solution supply step.
 図8は、処理液が遮断空間SSから排出される際の環状部材8付近の処理液の様子を説明するための模式図である。基板Wの上面に存在する処理液には、遠心力が作用しており、環状部材8が基板Wの上面の周縁部に近接して配置されている。そのため、基板Wの上面の周縁部に到達した処理液は、基板Wの周縁と環状部材8との間の隙間Gから下方に落下することなく、基板Wの上面の周縁部から径方向外方に移動して、案内面85に達する。すなわち、案内面85は、基板Wの回転による遠心力によって、基板Wの上面に存在する処理液を、基板Wの上面の周縁部よりも径方向外方に移動させる。 FIG. 8 is a schematic diagram for explaining the state of the treatment liquid in the vicinity of the annular member 8 when the treatment liquid is discharged from the cutoff space SS. Centrifugal force acts on the treatment liquid existing on the upper surface of the substrate W, and the annular member 8 is arranged close to the peripheral edge of the upper surface of the substrate W. Therefore, the processing liquid that has reached the peripheral edge of the upper surface of the substrate W does not fall downward from the gap G between the peripheral edge of the substrate W and the annular member 8, and is radially outward from the peripheral edge of the upper surface of the substrate W. To reach the guide surface 85. That is, the guide surface 85 moves the processing liquid existing on the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W by the centrifugal force due to the rotation of the substrate W.
 案内面85上に移動した処理液は、案内面85上を径方向外方に向かって移動し、処理液排出路10の流入口10aに流入する。処理液排出路10の流入口10aに流入した処理液は、処理液排出路10を径方向外方へ向かって水平に移動し、排出口10bから排出される。 The treatment liquid that has moved on the guide surface 85 moves outward in the radial direction on the guide surface 85 and flows into the inflow port 10a of the treatment liquid discharge path 10. The treatment liquid that has flowed into the inflow port 10a of the treatment liquid discharge passage 10 moves horizontally in the treatment liquid discharge passage 10 outward in the radial direction and is discharged from the discharge port 10b.
 処理液が処理液排出路10に流入する前に、案内面85上の処理液は、対向部材6の延設部66の傾斜下面81aに衝突することがある。この場合、案内面85上の処理液中に逆流(径方向内方に向かう流れ)が発生し、この逆流の発生によって液盛り100が形成される。 Before the treatment liquid flows into the treatment liquid discharge path 10, the treatment liquid on the guide surface 85 may collide with the inclined lower surface 81a of the extending portion 66 of the facing member 6. In this case, a backflow (flow inward in the radial direction) is generated in the treatment liquid on the guide surface 85, and the liquid filling 100 is formed by the generation of this backflow.
 逆流が発生すると、径方向内方に向かう処理液と径方向外方に向かう処理液とが衝突して、遮断空間SS内で処理液が飛び散るおそれがある。遮断空間SS内に飛び散った処理液が、基板Wの上面に再付着すると、基板W上にパーティクルが発生する。 When backflow occurs, the treatment liquid that goes inward in the radial direction and the treatment liquid that goes outward in the radial direction may collide with each other, and the treatment liquid may scatter in the cutoff space SS. When the processing liquid scattered in the cutoff space SS reattaches to the upper surface of the substrate W, particles are generated on the substrate W.
 この実施形態とは異なり、案内面85が設けられていない構成であれば、処理液排出路10の流入口10aが基板Wの周縁部付近に配置されるため、処理液中の逆流が基板Wの上面上で発生することがある。 Unlike this embodiment, in the configuration in which the guide surface 85 is not provided, the inflow port 10a of the processing liquid discharge path 10 is arranged near the peripheral edge of the substrate W, so that the backflow in the processing liquid is caused by the substrate W. May occur on the top surface of.
 この実施形態では、処理液排出路10の流入口10aが、径方向における案内面85の外方端に連結される排出路区画面86と、案内面85との境界に設けられている。そのため、処理液中の逆流が発生したとしても、その発生箇所は、基板W上ではなく、案内面85上である。そのため、基板W上の処理液中に逆流が発生することを抑制できる。したがって、基板Wの上面にパーティクルが発生することを抑制できる。 In this embodiment, the inflow port 10a of the treatment liquid discharge path 10 is provided at the boundary between the discharge path section screen 86 connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 上述した基板処理において、基板保持工程が開始されてからスピンドライ工程(ステップS8)が終了するまでの間、少なくとも一つのガード71が上位置に位置するように、第1ガード71Aおよび第2ガード71Bの高さ位置が調整される。しかしながら、特に、薬液供給工程(ステップS4)においては、ガード71は、以下に説明するような配置とすることが好ましい。図9は、基板処理においてガード71が処理液を受ける様子を説明するための模式図である。 In the substrate processing described above, the first guard 71A and the second guard so that at least one guard 71 is located at the upper position from the start of the substrate holding step to the end of the spin drying step (step S8). The height position of 71B is adjusted. However, in particular, in the chemical solution supply step (step S4), the guard 71 is preferably arranged as described below. FIG. 9 is a schematic view for explaining how the guard 71 receives the processing liquid in the substrate processing.
 具体的には、排出口10bから処理液(DHF)が排出されている間、鉛直方向において第1ガード71Aの第1円環部76Aの径方向内方端76aと第2ガード71Bの第2円環部76Bの径方向内方端76bとの間に処理液排出路10を位置させる。具体的には、ガード昇降ユニット74が、鉛直方向において第1円環部76Aの径方向内方端76aと第2円環部76Bの径方向内方端76bとの間に処理液排出路10が位置するように第1ガード71Aおよび第2ガード71Bを移動させる(ガード移動工程)。 Specifically, while the treatment liquid (DHF) is discharged from the discharge port 10b, the radial inner end 76a of the first annular portion 76A of the first guard 71A and the second guard 71B in the vertical direction are discharged. The treatment liquid discharge path 10 is positioned between the annular portion 76B and the radial inner end 76b. Specifically, the guard elevating unit 74 is provided with a treatment liquid discharge path 10 between the radial inner end 76a of the first annular portion 76A and the radial inner end 76b of the second annular portion 76B in the vertical direction. The first guard 71A and the second guard 71B are moved so as to be positioned (guard moving step).
 より詳しくは、第1ガード71Aを上位置に移動または維持させる。これにより、鉛直方向において第1円環部76Aの径方向内方端76aが排出口10bよりも上方で、かつ、延設部66の上端よりも下方に位置するように移動される。第2ガード71Bは、鉛直方向において第2円環部76Bの径方向内方端76bが排出口10bよりも下方で、かつ、環状部材8の下端よりも上方に位置するように移動される。 More specifically, move or maintain the first guard 71A to the upper position. As a result, in the vertical direction, the radial inner end 76a of the first annular portion 76A is moved so as to be located above the discharge port 10b and below the upper end of the extension portion 66. The second guard 71B is moved so that the radial inner end 76b of the second annular portion 76B is located below the discharge port 10b and above the lower end of the annular member 8 in the vertical direction.
 処理液が処理液排出路10の排出口10bから排出される際に、第1ガード71Aの第1円環部76Aは、鉛直方向において排出口10bよりも上方に位置する。そのため、排出口10bから排出される処理液は、第1円環部76Aおよび第2円環部76Bの間を通って第1円筒部75Aによって受けられる。第1円筒部75Aによって受けられた処理液は、第1円筒部75Aから跳ね返ることがある。 When the treatment liquid is discharged from the discharge port 10b of the treatment liquid discharge path 10, the first annular portion 76A of the first guard 71A is located above the discharge port 10b in the vertical direction. Therefore, the processing liquid discharged from the discharge port 10b passes between the first annular portion 76A and the second annular portion 76B and is received by the first cylindrical portion 75A. The treatment liquid received by the first cylindrical portion 75A may bounce off the first cylindrical portion 75A.
 第2円環部76Bの径方向内方端76bは、鉛直方向において排出口10bよりも下方に位置する。そのため、第1ガード71Aから跳ね返った処理液は、第2ガード71Bよりも径方向内方に移動することなく、第2円環部76Bに上方から付着したり、第2円筒部75Bに径方向外方から付着したりする。したがって、第1ガード71Aから跳ね返った処理液が、基板Wの下面に付着することを抑制できる。 The radial inner end 76b of the second annular portion 76B is located below the discharge port 10b in the vertical direction. Therefore, the treatment liquid bounced off from the first guard 71A does not move inward in the radial direction from the second guard 71B, but adheres to the second annular portion 76B from above or radially to the second cylindrical portion 75B. It adheres from the outside. Therefore, it is possible to prevent the treatment liquid bounced off from the first guard 71A from adhering to the lower surface of the substrate W.
 第2円環部76Bの径方向内方端76bが鉛直方向において環状部材8の下端よりも上方に位置するので、第1ガード71Aから跳ね返った処理液が、第2円環部76Bと環状部材8との間の隙間から径方向内方に移動することを抑制できる。 Since the radial inner end 76b of the second annular portion 76B is located above the lower end of the annular member 8 in the vertical direction, the treatment liquid bounced off from the first guard 71A is the second annular portion 76B and the annular member. It is possible to suppress the movement inward in the radial direction from the gap between the eight.
 また、基板Wの下面は、保護液(DIW)によって保護されている。そのため、基板Wの下面付近を漂う処理液のミスト等から基板Wの下面を保護することができる。さらに、処理液が排出口10bから吐出されている間、第2円環部76Bの径方向内方端76bが、排出口10bよりも下方で、かつ、環状部材8の下端よりも上方に位置するため、基板Wの下面から外方に排出される保護液を第2ガード71Bに受けさせることができる。すなわち、基板Wの上面から排出される処理液を第1ガード71Aで受け、かつ、基板Wの下面から外方に排出される保護液を第2ガード71Bに受けさせることができる。そのため、処理液と保護液との混合を避けつつ、処理液および保護液をそれぞれ回収することができる。 Further, the lower surface of the substrate W is protected by a protective liquid (DIW). Therefore, the lower surface of the substrate W can be protected from the mist of the processing liquid floating near the lower surface of the substrate W. Further, while the treatment liquid is discharged from the discharge port 10b, the radial inner end 76b of the second annular portion 76B is located below the discharge port 10b and above the lower end of the annular member 8. Therefore, the second guard 71B can receive the protective liquid discharged outward from the lower surface of the substrate W. That is, the treatment liquid discharged from the upper surface of the substrate W can be received by the first guard 71A, and the protective liquid discharged outward from the lower surface of the substrate W can be received by the second guard 71B. Therefore, the treatment liquid and the protection liquid can be recovered while avoiding mixing of the treatment liquid and the protection liquid.
 保護液は、遠心力によって径方向外方に移動し、基板Wの下面から環状部材8の下側傾斜面87に到達する。下側傾斜面87は、径方向外方に向かうにしたがって下方に向かうように傾斜する。 The protective liquid moves radially outward by centrifugal force and reaches the lower inclined surface 87 of the annular member 8 from the lower surface of the substrate W. The lower inclined surface 87 is inclined so as to be downward as it goes outward in the radial direction.
 そのため、保護液は、下側傾斜面87に沿う方向、すなわち斜め下方向に向けて環状部材8から飛散されて第2ガード71Bの第2円筒部75Bによって受けられる。そのため、保護液が斜め上方向に向けて飛散することを抑制できる。その結果、斜め上方に飛散した処理液が第1ガード71Aの第1円環部76Aと第2ガード71Bの第2円環部76Bとの間に入り込むことを抑制できる。 Therefore, the protective liquid is scattered from the annular member 8 in the direction along the lower inclined surface 87, that is, in the diagonally downward direction, and is received by the second cylindrical portion 75B of the second guard 71B. Therefore, it is possible to prevent the protective liquid from scattering in the diagonally upward direction. As a result, it is possible to prevent the treatment liquid scattered obliquely upward from entering between the first annular portion 76A of the first guard 71A and the second annular portion 76B of the second guard 71B.
 第1実施形態によれば、環状部材8とともに対向部材6を遮断空間区画位置に移動させることによって、基板Wと、対向部材6と、環状部材8とによって遮断空間SSが区画される。遮断空間SSが形成された状態で、基板Wの上面に向けて不活性ガスを供給することによって、遮断空間SS内の雰囲気を不活性ガスに置換することができる。これにより、遮断空間SS内の酸素濃度、すなわち、基板Wの上面付近の雰囲気の酸素濃度を低減することができる。 According to the first embodiment, the blocking space SS is partitioned by the substrate W, the opposing member 6, and the annular member 8 by moving the opposing member 6 together with the annular member 8 to the blocking space partition position. By supplying the inert gas toward the upper surface of the substrate W in the state where the blocking space SS is formed, the atmosphere in the blocking space SS can be replaced with the inert gas. Thereby, the oxygen concentration in the cutoff space SS, that is, the oxygen concentration in the atmosphere near the upper surface of the substrate W can be reduced.
 遮断空間SSは、外部空間OSからの雰囲気の流入が制限されている。そのため、遮断空間SS内の雰囲気が不活性ガスに一度置換されると、遮断空間SS内の雰囲気中の酸素濃度が低減された状態に維持し易い。 In the cut-off space SS, the inflow of atmosphere from the external space OS is restricted. Therefore, once the atmosphere in the blocking space SS is replaced with the inert gas, it is easy to maintain the oxygen concentration in the atmosphere in the blocking space SS in a reduced state.
 遮断空間SS内の雰囲気が不活性ガスに置換された状態で、基板Wの上面に処理液を供給することによって処理液中の酸素濃度の上昇を抑制しながら、基板Wの上面を処理液で処理することができる。 In a state where the atmosphere in the blocking space SS is replaced with an inert gas, the treatment liquid is supplied to the upper surface of the substrate W to suppress an increase in oxygen concentration in the treatment liquid, and the upper surface of the substrate W is covered with the treatment liquid. Can be processed.
 基板Wの上面に供給された処理液は、遠心力によって基板Wの上面の周縁部に向かって移動する。基板Wの上面の周縁部に達した処理液は、基板Wから飛散することなく、環状部材8の案内面85上に移動する。案内面85に存在する処理液は、処理液排出路10を介して遮断空間SS外に排出される。基板Wの周縁部と処理液排出路10との間に案内面85が存在するため、基板Wの周縁部は対向部材6の延設部66から充分に離間している。そのため、基板Wの上面から排出された処理液が対向部材6から跳ね返って基板Wの上面に再付着することを抑制することができる。仮に、基板Wの上面から排出された処理液が対向部材6から跳ね返ったとしても、その大部分は基板Wの上面よりも径方向の外方に位置する案内面85に付着する。したがって、基板Wの上面にパーティクルが発生することを抑制できる。 The treatment liquid supplied to the upper surface of the substrate W moves toward the peripheral edge of the upper surface of the substrate W by centrifugal force. The processing liquid that has reached the peripheral edge of the upper surface of the substrate W moves onto the guide surface 85 of the annular member 8 without scattering from the substrate W. The treatment liquid existing on the guide surface 85 is discharged to the outside of the cutoff space SS via the treatment liquid discharge path 10. Since the guide surface 85 exists between the peripheral edge portion of the substrate W and the processing liquid discharge path 10, the peripheral edge portion of the substrate W is sufficiently separated from the extending portion 66 of the facing member 6. Therefore, it is possible to prevent the processing liquid discharged from the upper surface of the substrate W from rebounding from the facing member 6 and reattaching to the upper surface of the substrate W. Even if the processing liquid discharged from the upper surface of the substrate W rebounds from the opposing member 6, most of the processing liquid adheres to the guide surface 85 located radially outward of the upper surface of the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 以上の結果、基板Wの上面付近の雰囲気中の酸素濃度を低減することができ、かつ、基板Wの上面におけるパーティクルの発生を抑制することができる。 As a result of the above, the oxygen concentration in the atmosphere near the upper surface of the substrate W can be reduced, and the generation of particles on the upper surface of the substrate W can be suppressed.
 また、第1実施形態とは異なり、基板Wの上面の周縁部と環状部材8とが充分に近接していない場合には、処理液は、案内面85および処理液排出路10だけでなく、隙間Gからも排出される。これにより、案内面85上の処理液が分散して液滴となり、案内面85から跳ね上がって、基板Wに再付着するおそれがある。第1実施形態では、隙間幅D2が充分に小さく、基板Wの上面の周縁部と環状部材8とが充分に近接しているため、処理液は、液滴となることなく基板Wの上面から案内面85に移動することができる。したがって、パーティクルの発生を抑制できる。 Further, unlike the first embodiment, when the peripheral edge of the upper surface of the substrate W and the annular member 8 are not sufficiently close to each other, the treatment liquid is not limited to the guide surface 85 and the treatment liquid discharge path 10. It is also discharged from the gap G. As a result, the treatment liquid on the guide surface 85 may be dispersed to form droplets, which may bounce off the guide surface 85 and reattach to the substrate W. In the first embodiment, the gap width D2 is sufficiently small, and the peripheral edge of the upper surface of the substrate W and the annular member 8 are sufficiently close to each other, so that the treatment liquid does not become droplets and is transmitted from the upper surface of the substrate W. It is possible to move to the guide surface 85. Therefore, the generation of particles can be suppressed.
 第1実施形態によれば、排出路幅D3が、遮断空間幅D1よりも小さい。そのため、処理液排出路10を通過できる流体の流量は、比較的小流量である。したがって、処理液が処理液排出路10を介して遮断空間SS外に排出されている間、遮断空間SS外の雰囲気が処理液排出路10を介して流入することを抑制できる。したがって、遮断空間SS内の雰囲気が不活性ガスに置換された状態で、基板Wの上面に処理液を供給することによって処理液中の酸素濃度の上昇を抑制しながら、基板Wの上面を処理液で処理することができる。 According to the first embodiment, the discharge path width D3 is smaller than the cutoff space width D1. Therefore, the flow rate of the fluid that can pass through the treatment liquid discharge path 10 is relatively small. Therefore, while the treatment liquid is discharged to the outside of the cutoff space SS through the treatment liquid discharge passage 10, the atmosphere outside the cutoff space SS can be suppressed from flowing in through the treatment liquid discharge passage 10. Therefore, the upper surface of the substrate W is treated while suppressing an increase in the oxygen concentration in the treatment liquid by supplying the treatment liquid to the upper surface of the substrate W in a state where the atmosphere in the blocking space SS is replaced with the inert gas. Can be treated with liquid.
 第1実施形態では、処理液排出路10の流入口10aが、径方向における案内面85の外方端に連結される排出路区画面86と、案内面85との境界に設けられている。そのため、処理液中の逆流は、発生したとしても、その発生箇所は、基板W上ではなく、案内面85上である。そのため、基板W上の処理液中に逆流が発生することを抑制できる。したがって、基板Wの上面にパーティクルが発生することを抑制できる。 In the first embodiment, the inflow port 10a of the treatment liquid discharge path 10 is provided at the boundary between the discharge path section screen 86 connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 この実施形態とは異なり、案内面85と排出路区画面86との間に段差を設けることも可能である。この場合であっても、案内面85が設けられていない構成と比較して処理液の再付着を抑制することがはできる。しかし、段差に起因して跳ねた処理液に付着し、基板の上面に処理液が再付着するおそれがある。これにより、基板Wの上面にパーティクルが発生するおそれがある。 Unlike this embodiment, it is possible to provide a step between the guide surface 85 and the discharge path section screen 86. Even in this case, the reattachment of the treatment liquid can be suppressed as compared with the configuration in which the guide surface 85 is not provided. However, there is a risk that the treatment liquid will adhere to the splashed treatment liquid due to the step and the treatment liquid will reattach to the upper surface of the substrate. As a result, particles may be generated on the upper surface of the substrate W.
 そこで、第1実施形態によれば、環状部材8が、延設部66とともに処理液排出路10を区画する排出路区画面86を有する。排出路区画面86および案内面85が、水平方向に平坦な単一の平坦面を構成する。そのため、案内面85上を流れる処理液を、処理液排出路10にスムーズに流入させることができる。したがって、遮断空間SS内で処理液が飛び散ることを抑制でき、処理液の飛散に起因するパーティクルの発生を抑制できる。 Therefore, according to the first embodiment, the annular member 8 has a discharge path section screen 86 for partitioning the treatment liquid discharge path 10 together with the extension portion 66. The discharge channel screen 86 and the guide surface 85 form a single flat surface that is horizontally flat. Therefore, the treatment liquid flowing on the guide surface 85 can be smoothly flowed into the treatment liquid discharge path 10. Therefore, it is possible to suppress the scattering of the treatment liquid in the cutoff space SS, and it is possible to suppress the generation of particles due to the scattering of the treatment liquid.
 基板Wの回転速度と対向部材6および環状部材8の回転速度との差が大きい場合には、遮断空間SS内の気流が乱れるおそれがある。気流が乱れると、気流に起因して基板Wの上面の処理液に力が作用し、基板Wの上面が局所的に露出したり、遮断空間SS内に処理液が飛び散ったりすることがある。第1実施形態によれば、遮断空間SSを区画する基板W、環状部材8および対向部材6は、同期回転する。そのため、遮断空間SS内での気流の乱れの発生を抑制できる。 If the difference between the rotation speed of the substrate W and the rotation speed of the opposing member 6 and the annular member 8 is large, the airflow in the cutoff space SS may be disturbed. When the air flow is turbulent, a force acts on the treatment liquid on the upper surface of the substrate W due to the air flow, and the upper surface of the substrate W may be locally exposed or the treatment liquid may be scattered in the cutoff space SS. According to the first embodiment, the substrate W, the annular member 8, and the opposing member 6 that partition the blocking space SS rotate synchronously. Therefore, it is possible to suppress the occurrence of airflow turbulence in the cutoff space SS.
 第1実施形態では、プレリンス工程を実行することによって、隙間Gがリンス液によって塞がれている。そのため、プレリンス工程後の、薬液供給工程の開始時には、薬液が隙間Gの近傍に達するまで、隙間Gがリンス液によって塞がれた状態が維持される。そのため、薬液供給の開始時から隙間Gからの空気の流入が制限されている。したがって、薬液供給時に遮断空間SS内の酸素濃度が低減される。 In the first embodiment, the gap G is closed by the rinsing liquid by executing the pre-rinsing step. Therefore, at the start of the chemical solution supply step after the pre-rinse step, the state in which the gap G is closed by the rinse solution is maintained until the chemical solution reaches the vicinity of the gap G. Therefore, the inflow of air from the gap G is restricted from the start of the chemical solution supply. Therefore, the oxygen concentration in the cutoff space SS is reduced when the chemical solution is supplied.
 また、その後のリンス工程および置換液供給工程においても隙間Gは、それぞれ、リンス液および置換液によって塞がれている。そのため、基板Wの上面に処理液が供給されている間、隙間Gからの空気の流入は抑制されている。 Further, also in the subsequent rinsing step and the replacement liquid supply step, the gap G is closed by the rinsing liquid and the replacement liquid, respectively. Therefore, the inflow of air from the gap G is suppressed while the processing liquid is supplied to the upper surface of the substrate W.
 第1実施形態とは異なり、対向部材6が設けられていない構成では、環状部材8は回転しない。そのため、基板Wの周縁から径方向外方に移動した処理液が案内面85上に残留するおそれがある。案内面85上に残留した処理液が雰囲気中に飛散することによって基板W上にパーティクルが発生するおそれがある。 Unlike the first embodiment, the annular member 8 does not rotate in the configuration in which the facing member 6 is not provided. Therefore, the processing liquid that has moved outward in the radial direction from the peripheral edge of the substrate W may remain on the guide surface 85. Particles may be generated on the substrate W due to the treatment liquid remaining on the guide surface 85 being scattered in the atmosphere.
 そこで、第1実施形態では、対向部材6に環状部材8が連結されているため、基板W上の処理液を排除するときに対向部材6とともに環状部材8を回転させることができる。そのため、案内面85上に処理液が残留しにくいので、基板W上にパーティクルが発生にくい。また、対向部材6および環状部材8を連結する複数の連結部材9は、処理液排出路10内に設けられている。そのため、連結部材9が処理液排出路10よりも径方向内方に設けられている構成と比べて、連結部材9に衝突した処理液が跳ね返った場合に、当該跳ね返った処理液が基板Wの上面に付着しにくい。 Therefore, in the first embodiment, since the annular member 8 is connected to the opposing member 6, the annular member 8 can be rotated together with the opposing member 6 when the processing liquid on the substrate W is discharged. Therefore, the treatment liquid is unlikely to remain on the guide surface 85, and particles are unlikely to be generated on the substrate W. Further, a plurality of connecting members 9 for connecting the facing member 6 and the annular member 8 are provided in the processing liquid discharge path 10. Therefore, as compared with the configuration in which the connecting member 9 is provided inward in the radial direction with respect to the processing liquid discharge path 10, when the processing liquid colliding with the connecting member 9 bounces off, the bounced processing liquid is transferred to the substrate W. Hard to adhere to the top surface.
 図10Aおよび図10Bは、基板処理の別の例を説明するための模式図である。図10Aおよび図10Bでは、説明の便宜上、連結部材9の図示を省略している。当該別の例の基板処理では、図10Bに示すように、環状部材8の内方端面84の上端部が基板Wの上面と同じ高さ位置であるときの対向部材6の位置を第1の遮断空間区画位置という。第1の遮断空間区画位置は、図3に示す遮断空間区画位置と同じ位置である。 10A and 10B are schematic views for explaining another example of substrate processing. In FIGS. 10A and 10B, the connecting member 9 is not shown for convenience of explanation. In the substrate processing of the other example, as shown in FIG. 10B, the position of the opposing member 6 when the upper end portion of the inner end surface 84 of the annular member 8 is at the same height position as the upper surface of the substrate W is the first position. It is called the blocked space section position. The first blocking space section position is the same position as the blocking space section position shown in FIG.
 当該別の例の基板処理では、図10Aに示すように、処理液供給工程において、対向部材昇降ユニット61(図2を参照)が、対向部材6を第2の遮断空間区画位置に配置する。 In the substrate processing of the other example, as shown in FIG. 10A, in the processing liquid supply step, the opposing member elevating unit 61 (see FIG. 2) arranges the opposing member 6 at the second blocking space section position.
 第2の遮断空間区画位置は、環状部材8の内方端面84の上端部が基板Wの上面よりも上方に位置する状態で、基板W、対向部材6および環状部材8によって遮断空間SSが区画されるときの対向部材6の位置である。 In the second blocking space partition position, the blocking space SS is partitioned by the substrate W, the facing member 6, and the annular member 8 in a state where the upper end of the inner end surface 84 of the annular member 8 is located above the upper surface of the substrate W. It is the position of the opposing member 6 when it is made.
 対向部材6が第2の遮断空間区画位置に位置する状態で、基板Wの上面に向けて中央ノズル11から薬液等の処理液を供給する。これにより、環状部材8の内方端面84と基板Wの上面とによって処理液が受けられて処理液の液溜まり101が形成される(液溜まり形成工程)。 With the facing member 6 located at the second blocking space section position, a treatment liquid such as a chemical solution is supplied from the central nozzle 11 toward the upper surface of the substrate W. As a result, the treatment liquid is received by the inner end surface 84 of the annular member 8 and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step).
 そのため、液溜まり101中の処理液によって基板Wの上面が処理される。したがって、液溜まり101の形成に必要な量の処理液を基板Wの上面に供給すれば、基板Wの上面を処理することができる。よって、基板Wの上面に供給した処理液が内方端面84によって受けられることなく基板W外に排出される構成と比較して、処理液の消費量を低減することができる。第2の遮断空間区画位置は、液溜まり形成位置ともいう。 Therefore, the upper surface of the substrate W is treated by the treatment liquid in the liquid pool 101. Therefore, if the amount of processing liquid required for forming the liquid pool 101 is supplied to the upper surface of the substrate W, the upper surface of the substrate W can be processed. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate W is discharged to the outside of the substrate W without being received by the inner end surface 84. The second blocking space section position is also referred to as a liquid pool forming position.
 そして、液溜まり101が形成されてから所定時間経過した後に、図10Bに示すように、対向部材昇降ユニット61(図2を参照)が、対向部材6を第1の遮断空間区画位置に移動させる。すなわち、環状部材8の内方端面84の上端部を基板Wの上面と同じ高さ位置に移動させる。図10Bには、対向部材6が第2の遮断空間区画位置に位置するときの対向部材6および環状部材8を二点鎖線で図示している。 Then, after a predetermined time has elapsed from the formation of the liquid pool 101, as shown in FIG. 10B, the opposing member elevating unit 61 (see FIG. 2) moves the opposing member 6 to the first blocking space section position. .. That is, the upper end portion of the inner end surface 84 of the annular member 8 is moved to the same height position as the upper surface of the substrate W. In FIG. 10B, the opposing member 6 and the annular member 8 when the opposing member 6 is located at the second blocking space partition position are shown by a two-dot chain line.
 対向部材6を第1の遮断空間区画位置に移動させることによって、基板Wの上面に存在する処理液は、内方端面84による液受けから解放される。そのため、処理液が遠心力によって、径方向外方へ移動し、液溜まり101が基板Wの上面から排除される(液溜まり排除工程)。 By moving the facing member 6 to the position of the first blocking space section, the processing liquid existing on the upper surface of the substrate W is released from the liquid receiving by the inner end surface 84. Therefore, the treatment liquid moves outward in the radial direction due to the centrifugal force, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool elimination step).
 遠心力によって基板Wの周縁部の外方に移動した処理液は、案内面85を経て、処理液排出路10にスムーズに流入する(図8を参照)。よって、基板Wの上面にパーティクルが発生することを抑制できる。 The treatment liquid that has moved to the outside of the peripheral edge of the substrate W due to centrifugal force smoothly flows into the treatment liquid discharge path 10 via the guide surface 85 (see FIG. 8). Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 次に、第1実施形態に係る基板処理装置1の変形例について説明する。図11Aおよび図11Bは、第1実施形態に係る基板処理装置1の変形例について説明するための模式図である。図11Aおよび図11Bでは、説明の便宜上、連結部材9の図示を省略している。 Next, a modification of the substrate processing device 1 according to the first embodiment will be described. 11A and 11B are schematic views for explaining a modification of the substrate processing apparatus 1 according to the first embodiment. In FIGS. 11A and 11B, the connecting member 9 is not shown for convenience of explanation.
 第1実施形態の変形例に係る環状部材8では、図11Aに示すように、案内面85が傾斜面である。変形例に係る案内面85は、径方向外方に向かうにしたがって上方に向かうように傾斜している。また、第1実施形態の変形例に係る環状部材8では、下側傾斜面87が設けられておらず、下側平坦面88が内方端面84の下方端に連結されている。 In the annular member 8 according to the modified example of the first embodiment, the guide surface 85 is an inclined surface as shown in FIG. 11A. The guide surface 85 according to the modified example is inclined so as to be upward as it goes outward in the radial direction. Further, in the annular member 8 according to the modified example of the first embodiment, the lower inclined surface 87 is not provided, and the lower flat surface 88 is connected to the lower end of the inner end surface 84.
 また、この変形例では、対向部材6の幅広部80の平坦下面80aと対向部材6の連結部81の傾斜下面81aとの境界6cは、環状部材8の案内面85と環状部材8の排出路区画面86との境界8cよりも径方向内方に位置する。 Further, in this modification, the boundary 6c between the flat lower surface 80a of the wide portion 80 of the opposing member 6 and the inclined lower surface 81a of the connecting portion 81 of the opposing member 6 is formed between the guide surface 85 of the annular member 8 and the discharge path of the annular member 8. It is located inward in the radial direction from the boundary 8c with the ward screen 86.
 対向部材6が遮断空間区画位置に位置するとき、内方端面84の上方端は、基板Wの上面と同じ高さに位置する。 When the facing member 6 is located at the blocking space section position, the upper end of the inner end surface 84 is located at the same height as the upper surface of the substrate W.
 なお、この変形例においても、平面視における大部分の箇所において、遮断空間幅D1は、排出路幅D3よりも大きく、遮断空間幅D1の平均値は、排出路幅D3よりも大きいことは明らかである。 Even in this modification, it is clear that the cutoff space width D1 is larger than the discharge path width D3 and the average value of the cutoff space width D1 is larger than the discharge path width D3 at most points in the plan view. Is.
 第1実施形態に係る基板処理装置1による基板処理では、対向部材6が遮断空間区画位置に位置する状態で、基板の上面に向けて中央ノズル11から薬液等の処理液を供給する。これにより、図11Aに示すように、環状部材8の案内面85と基板Wの上面とによって処理液が受けられて処理液の液溜まり101が形成される(液溜まり形成工程)。そのため、液溜まり101中の処理液によって基板Wの上面が処理される。したがって、液溜まり101の形成に必要な量の処理液を基板Wの上面に供給すれば、基板Wの上面を処理することができる。よって、基板Wの上面に供給した処理液が傾斜する案内面85によって受けられることなく基板W外に排出される構成と比較して、処理液の消費量を低減することができる。 In the substrate processing by the substrate processing apparatus 1 according to the first embodiment, a processing liquid such as a chemical solution is supplied from the central nozzle 11 toward the upper surface of the substrate in a state where the opposing member 6 is located at the blocking space section position. As a result, as shown in FIG. 11A, the treatment liquid is received by the guide surface 85 of the annular member 8 and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step). Therefore, the upper surface of the substrate W is treated by the treatment liquid in the liquid pool 101. Therefore, if the amount of processing liquid required for forming the liquid pool 101 is supplied to the upper surface of the substrate W, the upper surface of the substrate W can be processed. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate W is discharged to the outside of the substrate W without being received by the inclined guide surface 85.
 そして、液溜まり101が形成されてから所定時間経過した後に、図11Bに示すように、スピンモータ23が、基板Wの回転を加速させる(基板加速工程)。具体的には、基板Wの回転速度は、所定の液溜まり形成速度(たとえば、10rpm)から液溜まり排出速度(たとえば、1000rpm)に変更される。この変形例では、案内面85は、径方向外方に向かうにしたがって上方に向かうように傾斜している。そのため、基板Wの回転を加速させて液溜まり101に遠心力を作用させることによって、処理液に案内面85をスムーズに上らせることができる。そのため、処理液が径方向外方へ移動して、液溜まり101が基板Wの上面から排除される(液溜まり排除工程)。案内面85を上った処理液は、処理液排出路10にスムーズに流入する。よって、基板Wの上面にパーティクルが発生することを抑制できる。 Then, after a predetermined time has elapsed from the formation of the liquid pool 101, the spin motor 23 accelerates the rotation of the substrate W (the substrate acceleration step), as shown in FIG. 11B. Specifically, the rotation speed of the substrate W is changed from a predetermined liquid pool formation speed (for example, 10 rpm) to a liquid pool discharge speed (for example, 1000 rpm). In this modification, the guide surface 85 is inclined upward as it goes outward in the radial direction. Therefore, by accelerating the rotation of the substrate W and applying a centrifugal force to the liquid pool 101, the guide surface 85 can be smoothly raised on the processing liquid. Therefore, the processing liquid moves outward in the radial direction, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool removing step). The treatment liquid that has climbed the guide surface 85 smoothly flows into the treatment liquid discharge path 10. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 ここで、平坦下面80aと傾斜下面81aとの境界6cが、案内面85と排出路区画面86との境界8cと平面視で重なる位置に位置する場合や、境界6cが境界8cよりも径方向内方に位置する場合には、案内面85を上る処理液は、傾斜下面81aに衝突するおそれがある。これでは、処理液が堰き止められてパーティクルが発生する原因となる逆流が案内面85上の処理液中に発生するおそれがある。 Here, the boundary 6c between the flat lower surface 80a and the inclined lower surface 81a is located at a position where it overlaps the boundary 8c between the guide surface 85 and the discharge path section screen 86 in a plan view, or the boundary 6c is in the radial direction with respect to the boundary 8c. When it is located inward, the treatment liquid that goes up the guide surface 85 may collide with the inclined lower surface 81a. In this case, there is a possibility that a backflow that causes the treatment liquid to be blocked and particles to be generated may be generated in the treatment liquid on the guide surface 85.
 図11Aおよび図11Bに示すように、平坦下面80aと傾斜下面81aとの境界6cが案内面85と排出路区画面86との境界8cよりも径方向内方に位置するように構成されていれば、案内面85を上る処理液は、傾斜下面81aではなく平坦下面80aに衝突する。そうであれば、処理液は堰き止められることなく処理液排出路10にスムーズに流入する。 As shown in FIGS. 11A and 11B, the boundary 6c between the flat lower surface 80a and the inclined lower surface 81a is configured to be located radially inward from the boundary 8c between the guide surface 85 and the discharge path section screen 86. For example, the treatment liquid that climbs the guide surface 85 collides with the flat lower surface 80a instead of the inclined lower surface 81a. If so, the treatment liquid smoothly flows into the treatment liquid discharge path 10 without being blocked.
 <第2実施形態>
 図12は、本発明の第2実施形態に係る基板処理装置1に備えられる処理ユニット2Pの概略構成を示す模式的な部分断面図である。図12および後述する図13において、前述の図1~図11Bに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Second Embodiment>
FIG. 12 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2P provided in the substrate processing apparatus 1 according to the second embodiment of the present invention. In FIG. 12 and FIG. 13 described later, the same reference numerals as those in FIG. 1 and the like are added to the same configurations as those shown in FIGS. 1 to 11B, and the description thereof will be omitted.
 第2実施形態に係る処理ユニット2Pでは、基板保持の形式が、第1実施形態に係る処理ユニット2(図2を参照)とは異なる。 In the processing unit 2P according to the second embodiment, the form of substrate holding is different from that of the processing unit 2 according to the first embodiment (see FIG. 2).
 具体的には、処理ユニット2Pのスピンチャック5Pは、吸引ユニット27を含んでおらず、基板Wの周縁を把持する複数のチャックピン20を含んでいる。複数のチャックピン20は、互いに周方向(回転方向R)に間隔を空けて、スピンベース21の上面に配置されている。複数のチャックピン20は、基板Wの周端に接触して基板Wを把持する閉状態と、基板Wの周端から退避した開状態との間で開閉可能である。 Specifically, the spin chuck 5P of the processing unit 2P does not include the suction unit 27, but includes a plurality of chuck pins 20 that grip the peripheral edge of the substrate W. The plurality of chuck pins 20 are arranged on the upper surface of the spin base 21 at intervals in the circumferential direction (rotation direction R). The plurality of chuck pins 20 can be opened and closed between a closed state in which the substrate W is gripped by contacting the peripheral end of the substrate W and an open state in which the substrate W is retracted from the peripheral end.
 さらに、第2実施形態に係る処理ユニット2Pは、複数の第1下面ノズル12および複数の第2下面ノズル13を含んでおらず、下面ノズル14を含む。 Further, the processing unit 2P according to the second embodiment does not include the plurality of first lower surface nozzles 12 and the plurality of second lower surface nozzles 13, but includes the lower surface nozzle 14.
 下面ノズル14は、スピンベース21の上面中央部で開口する貫通孔21aと、中空の回転軸22とに挿入されている。下面ノズル14の吐出口14aは、スピンベース21の上面から露出されている。下面ノズル14の吐出口14aは、基板Wの下面(下側の表面)の中央領域に下方から対向する。 The lower surface nozzle 14 is inserted into a through hole 21a that opens at the center of the upper surface of the spin base 21 and a hollow rotating shaft 22. The discharge port 14a of the lower surface nozzle 14 is exposed from the upper surface of the spin base 21. The discharge port 14a of the lower surface nozzle 14 faces the central region of the lower surface (lower surface) of the substrate W from below.
 下面ノズル14には、リンス液、および置換液を下面ノズル14に共通に案内する共通配管46の一端が接続されている。共通配管46の他端には、共通配管46にリンス液を案内する下側リンス液配管47と、共通配管46に置換液を案内する下側置換液配管48とが接続されている。 One end of a common pipe 46 that commonly guides the rinse liquid and the replacement liquid to the bottom surface nozzle 14 is connected to the bottom surface nozzle 14. At the other end of the common pipe 46, a lower rinse liquid pipe 47 that guides the rinse liquid to the common pipe 46 and a lower replacement liquid pipe 48 that guides the replacement liquid to the common pipe 46 are connected.
 下側リンス液配管47に介装された下側リンス液バルブ57が開かれると、リンス液が、下面ノズル14から基板Wの下面の中央領域に向けて連続流で吐出される。下側置換液配管48に介装された下側置換液バルブ58が開かれると、置換液が、下面ノズル14から基板Wの下面の中央領域に向けて連続流で吐出される。 When the lower rinse liquid valve 57 interposed in the lower rinse liquid pipe 47 is opened, the rinse liquid is discharged from the lower surface nozzle 14 toward the central region of the lower surface of the substrate W in a continuous flow. When the lower replacement liquid valve 58 interposed in the lower replacement liquid pipe 48 is opened, the replacement liquid is discharged from the lower surface nozzle 14 toward the central region of the lower surface of the substrate W in a continuous flow.
 下面ノズル14とスピンベース21の貫通孔21aとの間の空間によって、下側ガス流路90が形成されている。下側ガス流路90は、回転軸22の内周面と下面ノズル14との間の空間に挿通された不活性ガス配管49に接続されている。不活性ガス配管49に介装された不活性ガスバルブ59が開かれると、不活性ガスが、下側ガス流路90から基板Wの下面の中央部の周りの部分に向けて吐出される。 The lower gas flow path 90 is formed by the space between the lower surface nozzle 14 and the through hole 21a of the spin base 21. The lower gas flow path 90 is connected to the inert gas pipe 49 inserted in the space between the inner peripheral surface of the rotating shaft 22 and the lower surface nozzle 14. When the inert gas valve 59 interposed in the inert gas pipe 49 is opened, the inert gas is discharged from the lower gas flow path 90 toward the portion around the central portion of the lower surface of the substrate W.
 下面ノズル14は、基板Wの下面にリンス液を供給する下側リンス液供給ユニットの一例である。また、下面ノズル14は、基板Wの下面に置換液を供給する下側置換液供給ユニットの一例である。また、下面ノズル14は、基板Wの下面に向けて不活性ガスを供給する下側不活性ガス供給ユニットの一例である。 The lower surface nozzle 14 is an example of a lower rinse liquid supply unit that supplies the rinse liquid to the lower surface of the substrate W. Further, the lower surface nozzle 14 is an example of a lower replacement liquid supply unit that supplies the replacement liquid to the lower surface of the substrate W. The bottom nozzle 14 is an example of a lower inert gas supply unit that supplies the inert gas toward the lower surface of the substrate W.
 処理ユニット2Pに備えられる対向部材6、環状部材8および連結部材9は、それぞれ、第1実施形態に係る処理ユニット2に備えられる対向部材6、環状部材8および連結部材9とほぼ同じ形状を有する。ただし、処理ユニット2Pに備えられる環状部材8の構造は、第1実施形態に係る環状部材8と若干異なる。図13は、第2実施形態に係る処理ユニット2Pに備えられる環状部材8の周辺を上方から見た図である。 The opposing member 6, the annular member 8 and the connecting member 9 provided in the processing unit 2P have substantially the same shape as the opposing member 6, the annular member 8 and the connecting member 9 provided in the processing unit 2 according to the first embodiment, respectively. .. However, the structure of the annular member 8 provided in the processing unit 2P is slightly different from that of the annular member 8 according to the first embodiment. FIG. 13 is a view of the periphery of the annular member 8 provided in the processing unit 2P according to the second embodiment as viewed from above.
 処理ユニット2Pに備えられる環状部材8には、複数のチャックピン20との干渉を避けるための複数の凹部8aが形成されている。複数の凹部8aは、複数のチャックピン20と同数設けられており、チャックピン20同士の間の間隔と同じ間隔で回転方向Rに並んでいる。 The annular member 8 provided in the processing unit 2P is formed with a plurality of recesses 8a for avoiding interference with the plurality of chuck pins 20. The plurality of recesses 8a are provided in the same number as the plurality of chuck pins 20, and are arranged in the rotation direction R at the same interval as the interval between the chuck pins 20.
 第2実施形態に係る基板処理装置1では、第1実施形態に係る基板処理装置1と同様の基板処理(図6~図9を参照)を実行することができる。ただし、第2実施形態に係る基板処理装置1による基板処理では、下面ノズル14からリンス液または置換液が吐出されることによって基板Wの下面が保護される(下面保護工程、保護液供給工程)。第2実施形態では、下面ノズル14が保護液供給ユニットとして機能する。また、基板Wの下面に向けて不活性ガスを吹き付けることによって、基板Wの下面とスピンベース21との間の空間中の雰囲気を不活性ガスで置換してもよい。この場合、遮断空間SSへの空気(酸素)の流入を一層抑制することができる。 The substrate processing apparatus 1 according to the second embodiment can execute the same substrate processing (see FIGS. 6 to 9) as the substrate processing apparatus 1 according to the first embodiment. However, in the substrate processing by the substrate processing apparatus 1 according to the second embodiment, the lower surface of the substrate W is protected by discharging the rinse liquid or the replacement liquid from the lower surface nozzle 14 (bottom surface protection step, protective liquid supply step). .. In the second embodiment, the lower surface nozzle 14 functions as a protective liquid supply unit. Further, the atmosphere in the space between the lower surface of the substrate W and the spin base 21 may be replaced with the inert gas by blowing the inert gas toward the lower surface of the substrate W. In this case, the inflow of air (oxygen) into the cutoff space SS can be further suppressed.
 第2実施形態によれば、第1実施形態と同様の効果を奏する。また、第2実施形態においても、図10Aおよび図10Bに示す基板処理を実行することもできるし、図11Aおよび図11Bに示す変形例を適用することもできる。 According to the second embodiment, the same effect as that of the first embodiment is obtained. Further, also in the second embodiment, the substrate processing shown in FIGS. 10A and 10B can be executed, and the modified examples shown in FIGS. 11A and 11B can be applied.
 <第3実施形態>
 図14は、本発明の第3実施形態に係る基板処理装置1に備えられる処理ユニット2Qの概略構成を示す模式的な部分断面図である。図14および後述する図15~図17において、前述の図1~図13に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Third Embodiment>
FIG. 14 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2Q provided in the substrate processing apparatus 1 according to the third embodiment of the present invention. In FIGS. 14 and 15 to 17, which will be described later, the same reference numerals as those shown in FIGS. 1 and 13 are assigned to the same configurations as those shown in FIGS. 1 to 13 described above, and the description thereof will be omitted.
 第3実施形態に係る処理ユニット2Qでは、対向部材6Qの延設部66Qと環状部材8Qとが、第1実施形態に係る処理ユニット2(図2を参照)とは異なる。図15は、第3実施形態に係る処理ユニット2Qに備えられる対向部材6Qおよび環状部材8Qの周辺の断面図である。 In the processing unit 2Q according to the third embodiment, the extending portion 66Q and the annular member 8Q of the opposing member 6Q are different from the processing unit 2 (see FIG. 2) according to the first embodiment. FIG. 15 is a cross-sectional view of the periphery of the opposing member 6Q and the annular member 8Q provided in the processing unit 2Q according to the third embodiment.
 第3実施形態に係る対向部材6Qの延設部66Qは、鉛直方向の幅が円板部65よりも大きい幅広部110と、円板部65と幅広部110とを連結する連結部111とを含む。鉛直方向における連結部111の幅は、径方向外方に向かうにしたがって大きくなる。 The extending portion 66Q of the opposing member 6Q according to the third embodiment includes a wide portion 110 having a width in the vertical direction larger than that of the disc portion 65, and a connecting portion 111 connecting the disc portion 65 and the wide portion 110. Including. The width of the connecting portion 111 in the vertical direction increases toward the outside in the radial direction.
 連結部111は、対向面6aに連結され、径方向外方に向かうにしたがって下方に向かうように傾斜する傾斜下面111aを有する。幅広部110は、傾斜下面111aに連結され、鉛直方向に延びる鉛直円筒面110aと、鉛直円筒面110aの下端に連結され水平方向に平坦な平坦下面110bとを有する。 The connecting portion 111 has an inclined lower surface 111a that is connected to the facing surface 6a and is inclined downward as it goes outward in the radial direction. The wide portion 110 has a vertical cylindrical surface 110a connected to the inclined lower surface 111a and extending in the vertical direction, and a flat lower surface 110b connected to the lower end of the vertical cylindrical surface 110a and flat in the horizontal direction.
 案内面85は、内方端面84の上方端と、排出路区画面86の径方向内方端とに連結されている。案内面85は、水平方向に平坦である。排出路区画面86は、案内面85の径方向外方端に連結され、径方向外方に向かうにしたがって下方に向かうように傾斜する傾斜区画面86Aと、傾斜区画面86Aの径方向外方端に連結され、鉛直方向に延びる鉛直区画面86Bとを含む。 The guide surface 85 is connected to the upper end of the inner end surface 84 and the radial inner end of the discharge path section screen 86. The guide surface 85 is flat in the horizontal direction. The discharge channel screen 86 is connected to the radial outer end of the guide surface 85 and is inclined downward as it goes outward in the radial direction, and the inclined screen 86A and the radial outer end of the inclined screen 86A. Includes a vertical section screen 86B connected to the edge and extending in the vertical direction.
 第3実施形態に係る処理液排出路10Qは、遮断空間SSに接続され、傾斜下面111aと傾斜区画面86Aとによって区画される傾斜排出路120と、傾斜排出路120に接続され、鉛直円筒面110aと鉛直区画面86Bとによって区画される鉛直排出路121とを含む。処理液排出路10Qの流入口10Qaは、傾斜排出路120の径方向内方端に設けられている。処理液排出路10Qの排出口10Qbは、鉛直排出路121の下方端に設けられている。 The treatment liquid discharge path 10Q according to the third embodiment is connected to the cutoff space SS, is connected to the inclined discharge path 120, which is partitioned by the inclined lower surface 111a and the inclined section screen 86A, and is connected to the inclined discharge path 120, and is connected to the vertical cylindrical surface. Includes a vertical discharge path 121 partitioned by 110a and a vertical section screen 86B. The inflow port 10Qa of the treatment liquid discharge path 10Q is provided at the radial inner end of the inclined discharge path 120. The discharge port 10Qb of the treatment liquid discharge path 10Q is provided at the lower end of the vertical discharge path 121.
 処理液排出路10Qの幅(排出路幅D3)は、傾斜区画面86Aと傾斜下面111aとの間の距離、または鉛直区画面86Bと鉛直円筒面110aとの間の距離である。第3実施形態においても、平面視における大部分の箇所において、遮断空間幅D1は、排出路幅D3よりも大きく、遮断空間幅D1の平均値は、排出路幅D3よりも大きいことは明らかである。 The width of the treatment liquid discharge path 10Q (discharge path width D3) is the distance between the inclined section screen 86A and the inclined lower surface 111a, or the distance between the vertical section screen 86B and the vertical cylindrical surface 110a. Also in the third embodiment, it is clear that the cutoff space width D1 is larger than the discharge path width D3 and the average value of the cutoff space width D1 is larger than the discharge path width D3 at most points in the plan view. is there.
 第3実施形態では、対向部材6が遮断空間区画位置に位置するとき、内方端面84の上方端および案内面85は、基板Wの上面と同じ高さに位置する。 In the third embodiment, when the facing member 6 is located at the blocking space section position, the upper end of the inner end surface 84 and the guide surface 85 are located at the same height as the upper surface of the substrate W.
 第3実施形態に係る基板処理装置1では、第1実施形態に係る基板処理装置1と同様の基板処理(図6~図7Fを参照)を実行することができる。 The substrate processing apparatus 1 according to the third embodiment can execute the same substrate processing (see FIGS. 6 to 7F) as the substrate processing apparatus 1 according to the first embodiment.
 次に、第3実施形態に係る基板処理において、遮断空間SSから処理液が排出されるときの様子について説明する。図16は、第3実施形態に係る基板処理装置1を用いた基板処理を説明するための模式図である。 Next, in the substrate processing according to the third embodiment, the state when the processing liquid is discharged from the cutoff space SS will be described. FIG. 16 is a schematic diagram for explaining the substrate processing using the substrate processing apparatus 1 according to the third embodiment.
 基板Wの上面に存在する処理液には、遠心力が作用しており、環状部材8Qが基板Wの上面の周縁部に近接して配置されている。そのため、基板Wの上面の周縁部に到達した処理液は、基板Wの周縁と環状部材8Qとの間の隙間Gから下方に落下することなく、基板Wの上面の周縁部から径方向外方に移動して、案内面85に達する。すなわち、案内面85は、基板Wの回転による遠心力によって、基板Wの上面に存在する処理液を、基板Wの上面の周縁部よりも径方向外方に移動させる。隙間Gは、処理液によって塞がれる。 Centrifugal force acts on the treatment liquid existing on the upper surface of the substrate W, and the annular member 8Q is arranged close to the peripheral edge of the upper surface of the substrate W. Therefore, the processing liquid that has reached the peripheral edge of the upper surface of the substrate W does not fall downward from the gap G between the peripheral edge of the substrate W and the annular member 8Q, and is radially outward from the peripheral edge of the upper surface of the substrate W. To reach the guide surface 85. That is, the guide surface 85 moves the processing liquid existing on the upper surface of the substrate W radially outward from the peripheral edge of the upper surface of the substrate W by the centrifugal force due to the rotation of the substrate W. The gap G is closed by the treatment liquid.
 案内面85上に移動した処理液は、案内面85上を径方向外方に向かって移動し、処理液排出路10Qの流入口10Qaに流入する。処理液排出路10Qの流入口10Qaに流入した処理液は、傾斜排出路120内を径方向外方へ向かって移動し、その後、鉛直排出路121内を下方に向かって移動する。その後、処理液は、排出口10Qbから排出される。 The treatment liquid that has moved on the guide surface 85 moves outward in the radial direction on the guide surface 85 and flows into the inflow port 10Qa of the treatment liquid discharge path 10Q. The treatment liquid that has flowed into the inflow port 10Qa of the treatment liquid discharge path 10Q moves outward in the radial direction in the inclined discharge path 120, and then moves downward in the vertical discharge path 121. After that, the treatment liquid is discharged from the discharge port 10Qb.
 案内面85上の処理液は、対向部材6Qの延設部66の傾斜下面111aに衝突することがある。この場合、案内面85上の処理液中に逆流(径方向内方に向かう流れ)が発生し、この逆流の発生によって液盛り100が形成される。 The treatment liquid on the guide surface 85 may collide with the inclined lower surface 111a of the extending portion 66 of the facing member 6Q. In this case, a backflow (flow inward in the radial direction) is generated in the treatment liquid on the guide surface 85, and the liquid filling 100 is formed by the generation of this backflow.
 第3実施形態では、処理液排出路10Qの流入口10Qaが、径方向における案内面85の外方端に連結される排出路区画面86Qと、案内面85との境界に設けられている。そのため、処理液中の逆流が発生したとしても、その発生箇所は、基板W上ではなく、案内面85上である。そのため、基板W上の処理液中に逆流が発生することを抑制できる。したがって、基板Wの上面にパーティクルが発生することを抑制できる。さらに、第3実施形態によれば、第1実施形態と同様の効果を奏する。 In the third embodiment, the inflow port 10Qa of the treatment liquid discharge path 10Q is provided at the boundary between the discharge path section screen 86Q connected to the outer end of the guide surface 85 in the radial direction and the guide surface 85. Therefore, even if the backflow in the treatment liquid occurs, the location where it occurs is not on the substrate W but on the guide surface 85. Therefore, it is possible to suppress the occurrence of backflow in the processing liquid on the substrate W. Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W. Further, according to the third embodiment, the same effect as that of the first embodiment is obtained.
 第3実施形態においても、第1実施形態と同様に、基板処理の別の例を実行することが可能である。図17は、第3実施形態に係る基板処理装置1を用いた基板処理の別の例を説明するための模式図である。当該別の例の基板処理では、上述した図16に示す対向部材6Qの位置を第1の遮断空間区画位置という。対向部材6Qが第1の遮断空間区画位置に位置するとき、環状部材8Qの内方端面84の上端部が基板Wの上面と同じ高さ位置に位置する。 Also in the third embodiment, it is possible to execute another example of the substrate processing as in the first embodiment. FIG. 17 is a schematic diagram for explaining another example of substrate processing using the substrate processing apparatus 1 according to the third embodiment. In the substrate processing of the other example, the position of the opposing member 6Q shown in FIG. 16 described above is referred to as a first blocking space partition position. When the opposing member 6Q is located at the first blocking space section position, the upper end of the inner end surface 84 of the annular member 8Q is located at the same height as the upper surface of the substrate W.
 図17に示すように、処理液供給工程において、対向部材昇降ユニット61(図14を参照)は、対向部材6Qを第2の遮断空間区画位置に配置する。第2の遮断空間区画位置は、環状部材8Qの内方端面84の上端部が基板Wの上面よりも上方に位置する状態で、基板W、対向部材6Qおよび環状部材8Qによって遮断空間SSが区画されるときの対向部材6Qの位置である。 As shown in FIG. 17, in the processing liquid supply step, the facing member elevating unit 61 (see FIG. 14) arranges the facing member 6Q at the second blocking space section position. The second blocking space section position is such that the upper end of the inner end surface 84 of the annular member 8Q is located above the upper surface of the substrate W, and the blocking space SS is partitioned by the substrate W, the facing member 6Q, and the annular member 8Q. It is the position of the opposing member 6Q when it is made.
 対向部材6Qが第2の遮断空間区画位置に位置する状態で、基板の上面に向けて中央ノズル11(図14を参照)から薬液等の処理液を供給する。これにより、環状部材8Qの内方端面84と基板Wの上面とによって処理液が受けられて処理液の液溜まり101が形成される(液溜まり形成工程)。そのため、液溜まり101中の処理液によって基板Wの上面が処理される。したがって、液溜まり101の形成に必要な量の処理液を基板Wの上面に供給すれば、基板Wの上面を処理することができる。よって、基板Wの上面に供給した処理液が内方端面84によって受けられることなく基板W外に排出される構成と比較して、処理液の消費量を低減することができる。 With the facing member 6Q located at the position of the second blocking space section, a treatment liquid such as a chemical solution is supplied from the central nozzle 11 (see FIG. 14) toward the upper surface of the substrate. As a result, the treatment liquid is received by the inner end surface 84 of the annular member 8Q and the upper surface of the substrate W to form a liquid pool 101 of the treatment liquid (liquid pool formation step). Therefore, the upper surface of the substrate W is treated by the treatment liquid in the liquid pool 101. Therefore, if the amount of processing liquid required for forming the liquid pool 101 is supplied to the upper surface of the substrate W, the upper surface of the substrate W can be processed. Therefore, the consumption of the processing liquid can be reduced as compared with the configuration in which the processing liquid supplied to the upper surface of the substrate W is discharged to the outside of the substrate W without being received by the inner end surface 84.
 そして、液溜まり101が形成されてから所定時間経過した後に、対向部材昇降ユニット61が、対向部材6Qを第1の遮断空間区画位置に移動させる。すなわち、環状部材8Qの内方端面84の上端部を基板Wの上面と同じ位置に移動させる(図16を参照)。これにより、基板Wの上面に存在する処理液は、内方端面84による液受けから解放される。そのため、処理液が遠心力によって、径方向外方へ移動し、液溜まり101が基板Wの上面から排除される(液溜まり排除工程)。 Then, after a predetermined time has elapsed from the formation of the liquid pool 101, the facing member elevating unit 61 moves the facing member 6Q to the first blocking space section position. That is, the upper end portion of the inner end surface 84 of the annular member 8Q is moved to the same position as the upper surface of the substrate W (see FIG. 16). As a result, the processing liquid existing on the upper surface of the substrate W is released from the liquid receiving by the inner end surface 84. Therefore, the treatment liquid moves outward in the radial direction due to the centrifugal force, and the liquid pool 101 is removed from the upper surface of the substrate W (liquid pool elimination step).
 遠心力によって基板Wの周縁部の外方に移動した処理液は、案内面85を経て、処理液排出路10にスムーズに流入する(図16を参照)。よって、基板Wの上面にパーティクルが発生することを抑制できる。 The treatment liquid that has moved to the outside of the peripheral edge of the substrate W due to centrifugal force smoothly flows into the treatment liquid discharge path 10 via the guide surface 85 (see FIG. 16). Therefore, it is possible to suppress the generation of particles on the upper surface of the substrate W.
 <第4実施形態>
 図18は、本発明の第4実施形態に係る基板処理装置1に備えられる処理ユニット2Rの概略構成を示す模式的な部分断面図である。図18において、前述の図1~図17に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Fourth Embodiment>
FIG. 18 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit 2R provided in the substrate processing apparatus 1 according to the fourth embodiment of the present invention. In FIG. 18, a configuration equivalent to the configuration shown in FIGS. 1 to 17 described above is designated by the same reference numeral as in FIG. 1 and the like, and the description thereof will be omitted.
 第4実施形態に係る処理ユニット2Rでは、基板保持の形式が、第3実施形態に係る処理ユニット2Q(図14を参照)とは異なる。第4実施形態に係る処理ユニット2Rは、第3実施形態に係る対向部材6Qおよび環状部材8Qと、第2実施形態に係るスピンチャック5Pとを組み合わせた構成である。 In the processing unit 2R according to the fourth embodiment, the form of substrate holding is different from the processing unit 2Q (see FIG. 14) according to the third embodiment. The processing unit 2R according to the fourth embodiment has a configuration in which the opposing member 6Q and the annular member 8Q according to the third embodiment and the spin chuck 5P according to the second embodiment are combined.
 第4実施形態に係る基板処理装置1では、第1実施形態に係る基板処理装置1と同様の基板処理(図6~図7Fを参照)を実行することができる。遮断空間SSから処理液が排出されるときの様子は、第3実施形態における説明と同様である(図16を参照)。 The substrate processing apparatus 1 according to the fourth embodiment can execute the same substrate processing (see FIGS. 6 to 7F) as the substrate processing apparatus 1 according to the first embodiment. The state when the treatment liquid is discharged from the cutoff space SS is the same as that described in the third embodiment (see FIG. 16).
 第4実施形態に係る基板処理装置1による基板処理では、下面ノズル14からリンス液または置換液が吐出されることによって基板Wの下面が保護される(下面保護工程、保護液供給工程)。この場合、下面ノズル14が保護液供給ユニットとして機能する。 In the substrate processing by the substrate processing apparatus 1 according to the fourth embodiment, the lower surface of the substrate W is protected by discharging the rinse liquid or the replacement liquid from the lower surface nozzle 14 (bottom surface protection step, protective liquid supply step). In this case, the lower surface nozzle 14 functions as a protective liquid supply unit.
 また、基板Wの下面に向けて不活性ガスを吹き付けることによって、基板Wの下面とスピンベース21との間の空間中の雰囲気を不活性ガスで置換してもよい。この場合、遮断空間SSへの酸素の流入を一層抑制することができる。 Further, the atmosphere in the space between the lower surface of the substrate W and the spin base 21 may be replaced with the inert gas by blowing the inert gas toward the lower surface of the substrate W. In this case, the inflow of oxygen into the cutoff space SS can be further suppressed.
 第4実施形態によれば、第1実施形態と同様の効果を奏する。また、第4実施形態においても、第3実施形態と同様に、図17に示す基板処理の別の例を実行することが可能である。 According to the fourth embodiment, the same effect as that of the first embodiment is obtained. Further, also in the fourth embodiment, it is possible to execute another example of the substrate processing shown in FIG. 17 as in the third embodiment.
 <第5実施形態>
 図19は、本発明の第5実施形態に係る基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。図19において、前述の図1~図18に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Fifth Embodiment>
FIG. 19 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus according to the fifth embodiment of the present invention. In FIG. 19, the same reference numerals as those in FIG. 1 and the like are added to the configurations equivalent to the configurations shown in FIGS. 1 to 18 described above, and the description thereof will be omitted.
 第5実施形態に係る処理ユニット2Sは、対向部材6Qおよび環状部材8Qの昇降および回転の仕組みが、第4実施形態に係る処理ユニット2R(図18を参照)とは異なる。第5実施形態に係る処理ユニット2Sの対向部材6Qおよび環状部材8Qは、支持部材昇降ユニット131によって昇降され、かつ、スピンモータ23によって回転される。支持部材昇降ユニット131は、対向部材6Qを吊り下げ支持する支持部材130を昇降させるユニットである。 The processing unit 2S according to the fifth embodiment is different from the processing unit 2R (see FIG. 18) according to the fourth embodiment in the mechanism of raising / lowering and rotating the opposing member 6Q and the annular member 8Q. The facing member 6Q and the annular member 8Q of the processing unit 2S according to the fifth embodiment are raised and lowered by the support member raising and lowering unit 131, and are rotated by the spin motor 23. The support member elevating unit 131 is a unit that elevates and elevates the support member 130 that suspends and supports the opposing member 6Q.
 以下では、第5実施形態に係る処理ユニット2Sにおいて第4実施形態に係る処理ユニット2Rと異なる点について詳しく説明する。 Hereinafter, the differences between the processing unit 2S according to the fifth embodiment and the processing unit 2R according to the fourth embodiment will be described in detail.
 第5実施形態に係る対向部材6Qは、中空軸60の上端から水平に延びる複数のフランジ部63をさらに含む。対向部材6Qは、たとえば、磁力によってスピンベース21と係合可能である。詳しくは、環状部材8Qに設けられた複数の第1係合部135と、スピンベース21に設けられた複数の第2係合部136とが磁力によって引かれ合って凹凸係合する。 The facing member 6Q according to the fifth embodiment further includes a plurality of flange portions 63 extending horizontally from the upper end of the hollow shaft 60. The opposing member 6Q can be engaged with the spin base 21 by, for example, a magnetic force. Specifically, the plurality of first engaging portions 135 provided on the annular member 8Q and the plurality of second engaging portions 136 provided on the spin base 21 are attracted by a magnetic force to engage with each other in an uneven manner.
 複数の第1係合部135は、環状部材8Qの下面から下方に延びている。複数の第1係合部135は、回転軸線A1まわりの周方向(回転方向R)に互いに間隔を隔てて配置されている。複数の第2係合部136は、回転軸線A1まわりの周方向(回転方向R)に互いに間隔を隔てて、複数のチャックピン20よりも径方向外方でスピンベース21の上面に配置されている。 The plurality of first engaging portions 135 extend downward from the lower surface of the annular member 8Q. The plurality of first engaging portions 135 are arranged so as to be spaced apart from each other in the circumferential direction (rotation direction R) around the rotation axis A1. The plurality of second engaging portions 136 are arranged on the upper surface of the spin base 21 radially outward of the plurality of chuck pins 20 at intervals in the circumferential direction (rotation direction R) around the rotation axis A1. There is.
 環状部材8Qの各第1係合部135と、スピンベース21の対応する第2係合部136とが係合しているとき、対向部材6Qおよび環状部材8Qは、スピンベース21と一体回転可能である。スピンモータ23は、回転軸線A1まわりに対向部材6Qおよび環状部材8Qを回転させる対向部材回転ユニットとしても機能する。対向部材6Qが遮断空間区画位置に位置するとき、環状部材8Qがスピンベース21と係合する(図19の二点鎖線参照)。 When each first engaging portion 135 of the annular member 8Q and the corresponding second engaging portion 136 of the spin base 21 are engaged, the opposing member 6Q and the annular member 8Q can rotate integrally with the spin base 21. Is. The spin motor 23 also functions as an opposing member rotating unit that rotates the opposing member 6Q and the annular member 8Q around the rotation axis A1. When the opposing member 6Q is located at the blocking space section position, the annular member 8Q engages the spin base 21 (see the alternate long and short dash line in FIG. 19).
 支持部材130は、対向部材6Qを支持する対向部材支持部132と、対向部材支持部132よりも上方に設けられ中央ノズル11のケーシング30を支持するノズル支持部133と、対向部材支持部132およびノズル支持部133を連結し鉛直方向に延びる壁部134とを含む。 The support member 130 includes an opposing member support portion 132 that supports the opposing member 6Q, a nozzle support portion 133 that is provided above the opposing member support portion 132 and supports the casing 30 of the central nozzle 11, and the opposing member support portion 132. It includes a wall portion 134 that connects the nozzle support portions 133 and extends in the vertical direction.
 対向部材支持部132は、対向部材6Q(のフランジ部63)を下方から支持する。対向部材支持部132の中央部には、中空軸60が挿通される筒状部挿通孔132aが形成されている。 The facing member support portion 132 supports the facing member 6Q (flange portion 63) from below. A tubular portion insertion hole 132a through which the hollow shaft 60 is inserted is formed in the central portion of the facing member support portion 132.
 各フランジ部63には、フランジ部63を上下方向に貫通する位置決め孔63aが形成されている。対向部材支持部132には、対応するフランジ部63の位置決め孔63aに係合可能な係合突起132bが形成されている。各位置決め孔63aに、対応する係合突起132bが係合されることによって、回転方向Rにおいて支持部材130に対して対向部材6Qおよび環状部材8Qが位置決めされる。 Each flange portion 63 is formed with a positioning hole 63a that penetrates the flange portion 63 in the vertical direction. The facing member support portion 132 is formed with an engaging projection 132b that can be engaged with the positioning hole 63a of the corresponding flange portion 63. By engaging the corresponding engaging projection 132b with each positioning hole 63a, the opposing member 6Q and the annular member 8Q are positioned with respect to the support member 130 in the rotation direction R.
 支持部材昇降ユニット131は、たとえば、支持部材130を昇降させるボールねじ機構(図示せず)と、当該ボールねじ機構に駆動力を付与する電動モータ(図示せず)とを含む。支持部材昇降ユニット131は、コントローラ3によって制御される(図5の二点鎖線を参照)。 The support member elevating unit 131 includes, for example, a ball screw mechanism (not shown) that raises and lowers the support member 130, and an electric motor (not shown) that applies a driving force to the ball screw mechanism. The support member elevating unit 131 is controlled by the controller 3 (see the alternate long and short dash line in FIG. 5).
 支持部材昇降ユニット131は、上位置(図19に実線で示す位置)から下位置(図19に二点鎖線で示す位置)までの間の所定の高さ位置に支持部材130を位置させることができる。下位置は、支持部材130の可動範囲において、支持部材130がスピンベース21の上面に最も近接する位置である。上位置は、支持部材130の可動範囲において、支持部材130がスピンベース21の上面から最も離間する位置である。 The support member elevating unit 131 may position the support member 130 at a predetermined height position from the upper position (the position shown by the solid line in FIG. 19) to the lower position (the position shown by the alternate long and short dash line in FIG. 19). it can. The lower position is the position where the support member 130 is closest to the upper surface of the spin base 21 in the movable range of the support member 130. The upper position is the position where the support member 130 is most distant from the upper surface of the spin base 21 in the movable range of the support member 130.
 支持部材130は、上位置に位置するとき、対向部材6Qを吊り下げ支持している。支持部材130は、支持部材昇降ユニット131によって昇降されることによって、上位置と下位置との間の係合位置を通過する。 When the support member 130 is located in the upper position, the facing member 6Q is suspended and supported. The support member 130 passes through the engagement position between the upper position and the lower position by being raised and lowered by the support member elevating unit 131.
 支持部材130は、上位置から係合位置まで対向部材6Qおよび環状部材8Qとともに下降する。支持部材130が係合位置に達すると、対向部材6Qおよび環状部材8Qをスピンベース21に受け渡す。支持部材130は、係合位置よりも下方に達すると、対向部材6Qから離間する。 The support member 130 descends from the upper position to the engaging position together with the opposing member 6Q and the annular member 8Q. When the support member 130 reaches the engaging position, the opposing member 6Q and the annular member 8Q are delivered to the spin base 21. When the support member 130 reaches below the engaging position, it separates from the opposing member 6Q.
 支持部材130は、下位置から上昇し係合位置に達すると、スピンベース21から対向部材6Qおよび環状部材8Qを受け取る。支持部材130は、係合位置から上位置まで対向部材6Qおよび環状部材8Qとともに上昇する。 When the support member 130 rises from the lower position and reaches the engaging position, the support member 130 receives the opposing member 6Q and the annular member 8Q from the spin base 21. The support member 130 rises from the engaging position to the upper position together with the opposing member 6Q and the annular member 8Q.
 このように、対向部材6Qおよび環状部材8Qは、支持部材130が支持部材昇降ユニット131によって昇降されることによって、スピンベース21に対して昇降する。そのため、支持部材昇降ユニット131は、対向部材昇降ユニットとして機能する。 In this way, the facing member 6Q and the annular member 8Q move up and down with respect to the spin base 21 by raising and lowering the support member 130 by the support member raising and lowering unit 131. Therefore, the support member elevating unit 131 functions as an opposing member elevating unit.
 第5実施形態に係る基板処理装置1では、第4実施形態に係る基板処理装置1と同様の基板処理を実行することができる。ただし、第5実施形態に係る基板処理では、支持部材130が下位置(図19に二点鎖線で示す位置)に位置する状態で、雰囲気置換工程(ステップS3)~スピンドライ工程(ステップS8)が実行される。そのため、基板Wの上面および下面に処理液を供給する際に、対向部材6Qおよび環状部材8Qと基板Wとを確実に同期回転させることができる。 The substrate processing apparatus 1 according to the fifth embodiment can execute the same substrate processing as the substrate processing apparatus 1 according to the fourth embodiment. However, in the substrate processing according to the fifth embodiment, the atmosphere replacement step (step S3) to the spin drying step (step S8) are performed in a state where the support member 130 is located at the lower position (the position indicated by the alternate long and short dash line in FIG. 19). Is executed. Therefore, when the processing liquid is supplied to the upper surface and the lower surface of the substrate W, the opposing member 6Q and the annular member 8Q and the substrate W can be reliably rotated synchronously.
 第5実施形態に係る構成によれば、第1実施形態と同様の効果を奏する。 According to the configuration according to the fifth embodiment, the same effect as that of the first embodiment is obtained.
 <その他の実施形態>
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
<Other Embodiments>
The present invention is not limited to the embodiments described above, and can be implemented in other embodiments.
 たとえば、上述の各実施形態とは異なり、基板Wの上面にポリマー層を形成するためのポリマー層形成液を処理液として用いる基板処理に応用することができる。ポリマー層形成液としては、たとえば、基板Wの表面を疎水化する疎水化剤が挙げられる。基板Wの表面に形成されたパターンの表面のSiO膜と反応して犠牲層を形成する液体である。 For example, unlike each of the above-described embodiments, it can be applied to a substrate treatment using a polymer layer forming liquid for forming a polymer layer on the upper surface of the substrate W as a treatment liquid. Examples of the polymer layer forming liquid include a hydrophobizing agent that makes the surface of the substrate W hydrophobic. It is a liquid that reacts with the SiO 2 film on the surface of the pattern formed on the surface of the substrate W to form a sacrificial layer.
 疎水化剤としては、たとえば、シリコン自体およびシリコンを含む化合物を疎水化させるシリコン系の疎水化剤、または金属自体および金属を含む化合物を疎水化させるメタル系の疎水化剤を用いることができる。 As the hydrophobizing agent, for example, a silicon-based hydrophobizing agent for hydrophobizing silicon itself and a compound containing silicon, or a metal-based hydrophobizing agent for hydrophobizing the metal itself and a compound containing metal can be used.
 メタル系の疎水化剤は、たとえば、疎水基を有するアミン、および有機シリコン化合物の少なくとも一つを含む。シリコン系の疎水化剤は、たとえば、シランカップリング剤である。シランカップリング剤は、たとえば、HMDS(ヘキサメチルジシラザン)、TMS(テトラメチルシラン)、フッ素化アルキルクロロシラン、アルキルジシラザン、および非クロロ系の疎水化剤の少なくとも一つを含む。非クロロ系の疎水化剤は、たとえば、ジメチルシリルジメチルアミン、ジメチルシリルジエチルアミン、ヘキサメチルジシラザン、テトラメチルジシラザン、ビス(ジメチルアミノ)ジメチルシラン、N,N-ジメチルアミノトリメチルシラン、N-(トリメチルシリル)ジメチルアミンおよびオルガノシラン化合物の少なくとも一つを含む。 The metal-based hydrophobizing agent contains, for example, an amine having a hydrophobic group and at least one of an organic silicon compound. The silicon-based hydrophobizing agent is, for example, a silane coupling agent. The silane coupling agent contains, for example, HMDS (hexamethyldisilazane), TMS (tetramethylsilane), fluorinated alkylchlorosilane, alkyldisilazane, and at least one of non-chlorohydrophobic agents. Non-chloro hydrophobic agents include, for example, dimethylsilyldimethylamine, dimethylsilyldiethylamine, hexamethyldisilazane, tetramethyldisilazane, bis (dimethylamino) dimethylsilane, N, N-dimethylaminotrimethylsilane, N-( Trimethylsilyl) Includes at least one of dimethylamine and an organosilane compound.
 ポリマー層形成液は、比較的高価であるため、消費量を削減したい。上述した実施形態のように、基板Wの上面にポリマー層形成液の液溜まり101を形成して基板Wの上面を処理する手法が有効である。 The polymer layer forming liquid is relatively expensive, so we want to reduce the consumption. As in the above-described embodiment, a method of forming a liquid pool 101 of the polymer layer forming liquid on the upper surface of the substrate W to treat the upper surface of the substrate W is effective.
 また、第1実施形態および第2実施形態において、連結部81は、径方向外方に向かうにしたがって下方に向かうように傾斜する傾斜下面81aを有する。しかしながら、連結部81は、径方向外方に向かうにしたがって下方に向かうように傾斜する傾斜下面81aを有しておらず、図3に二点鎖線で示すように、対向面6aと面一である下面を有していてもよい。この場合、案内面85上の処理液は、処理液排出路10に流入する前に、対向部材6の延設部66の幅広部80の径方向内方端面80bに衝突し、これにより、案内面85上の処理液中に逆流が発生する。 Further, in the first embodiment and the second embodiment, the connecting portion 81 has an inclined lower surface 81a that inclines downward as it goes outward in the radial direction. However, the connecting portion 81 does not have an inclined lower surface 81a that inclines downward as it goes outward in the radial direction, and is flush with the facing surface 6a as shown by the alternate long and short dash line in FIG. It may have a certain lower surface. In this case, the treatment liquid on the guide surface 85 collides with the radial inner end surface 80b of the wide portion 80 of the extending portion 66 of the facing member 6 before flowing into the treatment liquid discharge path 10, thereby guiding the treatment liquid. Backflow occurs in the treatment liquid on the surface 85.
 また、上述の実施形態における連結部材9は、鉛直方向に延びる円柱状である。上述の実施形態とは異なり、図20に示すように、各連結部材9は、平面視で、径方向外方に向かうにしたがって、基板Wの回転方向Rの下流側RDに向かうように形成されていてもよい。 Further, the connecting member 9 in the above-described embodiment is a columnar shape extending in the vertical direction. Unlike the above-described embodiment, as shown in FIG. 20, each connecting member 9 is formed so as to be directed toward the downstream side RD of the rotation direction R of the substrate W as it is directed outward in the radial direction in a plan view. You may be.
 基板Wが回転している場合、遮断空間SSでは、径方向外方に向かうにしたがって回転方向Rの下流側RDに向かう気流F(図9を参照)が発生し易い。連結部材9が、平面視で、径方向外方に向かうにしたがって、基板Wの回転方向Rの下流側RDに向かうように形成されていれば、径方向外方に向かうにしたがって回転方向Rの下流側RDに向かう気流の発生を促すことができる。したがって、気流の乱れを一層抑制できる。 When the substrate W is rotating, an air flow F (see FIG. 9) toward the downstream side RD of the rotation direction R is likely to be generated in the cutoff space SS as it goes outward in the radial direction. If the connecting member 9 is formed so as to be directed toward the downstream side RD of the rotation direction R of the substrate W as it goes outward in the radial direction in a plan view, the rotation direction R becomes larger as it goes outward in the radial direction. It is possible to promote the generation of an air flow toward the downstream RD. Therefore, the turbulence of the air flow can be further suppressed.
 また、上述の実施形態では、連結部材9は、処理液排出路10内に設けられているが、連結部材9は、遮断空間SS内に設けられていてもよく、この場合、図示しないが、案内面85と傾斜下面81aとに連結される。 Further, in the above-described embodiment, the connecting member 9 is provided in the treatment liquid discharge path 10, but the connecting member 9 may be provided in the blocking space SS. In this case, although not shown, It is connected to the guide surface 85 and the inclined lower surface 81a.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used for clarifying the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. Should not, the scope of the invention is limited only by the appended claims.
 この出願は、2019年7月19日に日本国特許庁に提出された特願2019-133864号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2019-133864 filed with the Japan Patent Office on July 19, 2019, and the entire disclosure of this application shall be incorporated herein by reference.
1    :基板処理装置
3    :コントローラ
5    :スピンチャック(基板保持ユニット)
5P   :スピンチャック(基板保持ユニット)
6    :対向部材
6Q   :対向部材
6a   :対向面
8    :環状部材
8Q   :環状部材
9    :連結部材
10   :処理液排出路
10Q  :処理液排出路
10a  :流入口
10Qa :流入口
10b  :排出口
11   :中央ノズル(処理液供給ユニット、不活性ガス供給ユニット)
12   :第1下面ノズル(保護液供給ユニット)
13   :第2下面ノズル(保護液供給ユニット)
14   :下面ノズル(保護液供給ユニット)
23   :スピンモータ(基板回転ユニット、対向部材回転ユニット)
61   :対向部材昇降ユニット
62   :対向部材回転ユニット
65   :円板部
66   :延設部
66Q  :延設部
71A  :第1ガード
71B  :第2ガード
74   :ガード昇降ユニット
75A  :第1円筒部
75B  :第2円筒部
76A  :第1円環部
76B  :第2円環部
84   :内方端面
85   :案内面
86   :排出路区画面
101  :液溜まり
D1   :遮断空間幅(鉛直方向における遮断空間の幅)
D3   :排出路幅(処理液排出路の幅)
SS   :遮断空間
W    :基板
1: Substrate processing device 3: Controller 5: Spin chuck (board holding unit)
5P: Spin chuck (board holding unit)
6: Facing member 6Q: Facing member 6a: Facing surface 8: Ring member 8Q: Ring member 9: Connecting member 10: Treatment liquid discharge path 10Q: Treatment liquid discharge path 10a: Inflow port 10Qa: Inflow port 10b: Discharge port 11: Central nozzle (treatment liquid supply unit, inert gas supply unit)
12: First lower surface nozzle (protective liquid supply unit)
13: Second lower surface nozzle (protective liquid supply unit)
14: Bottom nozzle (protective liquid supply unit)
23: Spin motor (board rotation unit, facing member rotation unit)
61: Opposing member elevating unit 62: Opposing member rotating unit 65: Disk 66: Extension 66Q: Extension 71A: First guard 71B: Second guard 74: Guard elevating unit 75A: First cylindrical portion 75B: Second cylindrical part 76A: First ring part 76B: Second ring part 84: Inner end surface 85: Guide surface 86: Discharge channel screen 101: Liquid pool D1: Blocking space width (width of blocking space in the vertical direction) )
D3: Width of discharge path (width of treatment liquid discharge path)
SS: Blocking space W: Substrate

Claims (19)

  1.  基板を水平に保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板の中央部を通る鉛直軸線まわりに前記基板保持ユニットを回転させる基板回転ユニットと、
     前記基板保持ユニットに保持されている基板の上面に向けて処理液を供給する処理液供給ユニットと、
     前記基板保持ユニットに保持されている基板の上面に向けて不活性ガスを供給する不活性ガス供給ユニットと、
     前記基板保持ユニットに保持されている基板に上方から対向する対向面を有する円板部と、前記円板部から前記鉛直軸線を中心とする径方向の外方に延びる延設部とを有する対向部材と、
     平面視で前記基板保持ユニットに保持された基板を取り囲む環状部材と、
     前記基板保持ユニットに保持されている基板、前記対向部材、および前記環状部材によって外部からの雰囲気の流入が制限された遮断空間が区画されるように前記環状部材とともに前記対向部材を昇降させる対向部材昇降ユニットとを含み、
     前記環状部材が、前記基板回転ユニットが前記基板保持ユニットに保持された基板を回転させるときに、当該基板の上面に存在する処理液を遠心力によって当該基板の周縁部よりも前記径方向の外方に案内する案内面を有し、
     前記延設部と前記環状部材とによって、前記案内面に存在する処理液を前記遮断空間外へ排出する処理液排出路が区画されている、基板処理装置。
    A board holding unit that holds the board horizontally,
    A substrate rotation unit that rotates the substrate holding unit around a vertical axis passing through the center of the substrate held by the substrate holding unit.
    A processing liquid supply unit that supplies the processing liquid toward the upper surface of the substrate held by the substrate holding unit, and
    An inert gas supply unit that supplies an inert gas toward the upper surface of the substrate held by the substrate holding unit,
    Opposing a disk portion having a facing surface facing the substrate held by the substrate holding unit from above and an extending portion extending outward from the disk portion in the radial direction about the vertical axis. Members and
    An annular member that surrounds the substrate held by the substrate holding unit in a plan view,
    An opposing member that raises and lowers the opposing member together with the annular member so that a blocking space in which the inflow of atmosphere from the outside is restricted by the substrate held by the substrate holding unit, the opposing member, and the annular member is partitioned. Including elevating unit
    When the annular member rotates the substrate held by the substrate holding unit, the processing liquid existing on the upper surface of the substrate is centrifugally removed from the peripheral portion of the substrate in the radial direction. It has a guide surface to guide people toward
    A substrate processing apparatus in which a processing liquid discharge path for discharging the treatment liquid existing on the guide surface to the outside of the blocking space is partitioned by the extension portion and the annular member.
  2.  前記処理液排出路の幅が、鉛直方向における前記遮断空間の幅よりも小さい、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the width of the processing liquid discharge path is smaller than the width of the blocking space in the vertical direction.
  3.  前記環状部材が、前記径方向における前記案内面の外方端に連結され、前記処理液排出路を区画する排出路区画面を有し、
     前記処理液排出路が、前記案内面と前記排出路区画面との境界に流入口を有する、請求項1または2に記載の基板処理装置。
    The annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path.
    The substrate processing apparatus according to claim 1 or 2, wherein the processing liquid discharge path has an inflow port at a boundary between the guide surface and the discharge path section screen.
  4.  前記排出路区画面および前記案内面が、水平方向に平坦な単一の平坦面を構成する、請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the discharge channel screen and the guide surface form a single flat surface that is flat in the horizontal direction.
  5.  前記環状部材とともに前記対向部材を、前記鉛直軸線まわりに、前記基板保持ユニットに保持された基板と同期回転させる対向部材回転ユニットをさらに含む、請求項1~4のいずれか一項に記載の基板処理装置。 The substrate according to any one of claims 1 to 4, further comprising an opposing member rotating unit that rotates the opposing member together with the annular member around the vertical axis in synchronization with the substrate held by the substrate holding unit. Processing equipment.
  6.  前記環状部材と前記対向部材とを連結する複数の連結部材をさらに含み、
     各前記連結部材が、平面視で、前記径方向の外方に向かうにしたがって、前記基板保持ユニットに保持された基板の回転方向の下流側に向かうように形成されている、請求項5に記載の基板処理装置。
    A plurality of connecting members for connecting the annular member and the facing member are further included.
    The fifth aspect of the present invention, wherein each of the connecting members is formed so as to be directed outward in the radial direction and toward the downstream side in the rotational direction of the substrate held by the substrate holding unit in a plan view. Board processing equipment.
  7.  前記基板回転ユニット、前記処理液供給ユニット、前記不活性ガス供給ユニットおよび前記対向部材昇降ユニットを制御するコントローラをさらに含み、
     前記コントローラが、前記対向部材昇降ユニットによって前記対向部材および前記環状部材を移動させて前記遮断空間を区画する遮断空間区画工程と、前記不活性ガス供給ユニットから前記基板の上面に向けて不活性ガスを供給することによって前記遮断空間内の雰囲気を不活性ガスで置換する雰囲気置換工程と、前記遮断空間内の雰囲気が不活性ガスで置換された状態で、前記処理液供給ユニットから前記基板の上面に処理液を供給する処理液供給工程と、前記基板回転ユニットに前記基板を回転させることによって、前記基板の上面の処理液を、前記案内面および前記処理液排出路を介して、前記遮断空間外に排出する処理液排出工程とを実行するようにプログラムされている、請求項1~6のいずれか一項に記載の基板処理装置。
    Further including a controller for controlling the substrate rotation unit, the processing liquid supply unit, the inert gas supply unit, and the facing member elevating unit.
    The controller moves the facing member and the annular member by the facing member elevating unit to partition the blocking space, and an inert gas from the inert gas supply unit toward the upper surface of the substrate. The atmosphere replacement step of replacing the atmosphere in the blocking space with an inert gas by supplying the above-mentioned processing liquid supply unit and the upper surface of the substrate from the processing liquid supply unit in a state where the atmosphere in the blocking space is replaced with the inert gas. By rotating the substrate to the substrate rotating unit in the processing liquid supply step of supplying the treatment liquid to the above-mentioned blocking space, the treatment liquid on the upper surface of the substrate is passed through the guide surface and the treatment liquid discharge path. The substrate processing apparatus according to any one of claims 1 to 6, which is programmed to perform a processing liquid discharging step of discharging to the outside.
  8.  前記案内面が、前記径方向の外方に向かうにしたがって上方に向かうように傾斜する傾斜面を有し、
     前記コントローラが、前記処理液供給工程において、前記基板保持ユニットに保持された基板の上面に処理液を供給することによって、前記傾斜面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程と、前記処理液排出工程において、前記基板回転ユニットによって前記基板の回転を加速させて前記基板の上面から前記液溜まりを排除する液溜まり排除工程とを実行するようにプログラムされている、請求項7に記載の基板処理装置。
    The guide surface has an inclined surface that is inclined upward so as to be outward in the radial direction.
    In the treatment liquid supply step, the controller supplies the treatment liquid to the upper surface of the substrate held by the substrate holding unit, and thus receives the treatment liquid by the inclined surface and the upper surface of the substrate to receive the treatment liquid liquid. The liquid pool forming step of forming a pool and the liquid pool removing step of accelerating the rotation of the substrate by the substrate rotating unit to remove the liquid pool from the upper surface of the substrate are executed in the processing liquid discharge step. The substrate processing apparatus according to claim 7, which is programmed in.
  9.  平面視で円形状の基板を水平に保持する基板保持工程と、
     前記基板に上方から対向する対向面を有する円板部および前記基板の中央部を通る鉛直軸線を中心とする径方向の外方に前記円板部から延びる延設部を有する対向部材と、平面視で前記基板を取り囲む環状部材とを上下方向に移動させて、前記対向部材、前記環状部材、および前記基板によって外部からの雰囲気の流入が制限された遮断空間を区画する空間区画工程と、
     前記遮断空間に向けて不活性ガスを供給することによって前記遮断空間内の雰囲気を不活性ガスで置換する雰囲気置換工程と、
     前記遮断空間内の雰囲気が不活性ガスによって置換された状態で、前記基板の上面に処理液を供給する処理液供給工程と、
     前記基板の上面に処理液が存在する状態で前記鉛直軸線まわりの回転方向に前記基板を回転させることによって、前記基板の上面の周縁部に存在する処理液を、前記環状部材に設けられた案内面を経由して前記延設部と前記環状部材とによって区画される処理液排出路に案内し、処理液を前記処理液排出路から前記遮断空間外へ排出する処理液排出工程とを含む、基板処理方法。
    A substrate holding process that holds a circular substrate horizontally in a plan view,
    A flat surface with a disk portion having a facing surface facing the substrate from above and an opposing member having an extending portion extending from the disk portion in the radial direction centered on a vertical axis passing through the central portion of the substrate. A space partitioning step of visually moving the annular member surrounding the substrate in the vertical direction to partition the facing member, the annular member, and the blocking space in which the inflow of the atmosphere from the outside is restricted by the substrate.
    An atmosphere replacement step of replacing the atmosphere in the blocking space with the inert gas by supplying the inert gas toward the blocking space.
    A treatment liquid supply step of supplying the treatment liquid to the upper surface of the substrate in a state where the atmosphere in the blocking space is replaced by the inert gas.
    By rotating the substrate in the rotation direction around the vertical axis in a state where the treatment liquid is present on the upper surface of the substrate, the treatment liquid existing on the peripheral edge of the upper surface of the substrate is guided to the annular member. The process includes a treatment liquid discharge step of guiding the treatment liquid to a treatment liquid discharge passage partitioned by the extension portion and the annular member via a surface, and discharging the treatment liquid from the treatment liquid discharge passage to the outside of the blocking space. Substrate processing method.
  10.  前記処理液排出路の幅が、鉛直方向における前記遮断空間の幅よりも小さい、請求項9に記載の基板処理方法。 The substrate processing method according to claim 9, wherein the width of the processing liquid discharge path is smaller than the width of the blocking space in the vertical direction.
  11.  前記環状部材が、前記径方向における前記案内面の外方端に連結され、前記処理液排出路を区画する排出路区画面を有し、
     前記処理液排出路が、前記案内面と前記排出路区画面との境界に流入口を有する、請求項9または10に記載の基板処理方法。
    The annular member is connected to the outer end of the guide surface in the radial direction, and has a discharge path section screen for partitioning the treatment liquid discharge path.
    The substrate processing method according to claim 9 or 10, wherein the processing liquid discharge path has an inflow port at a boundary between the guide surface and the discharge path section screen.
  12.  前記排出路区画面と、前記案内面とが、水平方向に平坦な単一の平坦面を構成する、請求項11に記載の基板処理方法。 The substrate processing method according to claim 11, wherein the discharge path section screen and the guide surface form a single flat surface that is flat in the horizontal direction.
  13.  前記処理液排出工程において、前記環状部材および前記対向部材を前記鉛直軸線まわりに前記基板の同期回転させる同期回転工程をさらに含む、請求項9~12のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 9 to 12, further comprising a synchronous rotation step of synchronously rotating the substrate around the vertical axis in the processing liquid discharge step.
  14.  前記環状部材と前記対向部材とが連結部材によって連結されており、
     前記連結部材が、平面視で、前記径方向の外方に向かうにしたがって、前記基板の回転方向の下流側に向かうように形成されている、請求項13に記載の基板処理方法。
    The annular member and the opposing member are connected by a connecting member.
    The substrate processing method according to claim 13, wherein the connecting member is formed so as to be directed toward the downstream side in the rotational direction of the substrate as it is directed outward in the radial direction in a plan view.
  15.  前記案内面が、前記径方向の外方に向かうにしたがって上方に向かうように傾斜する傾斜面を有し、
     前記処理液供給工程が、前記基板の上面に処理液を供給することによって、前記傾斜面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程を含み、
     前記処理液排出工程が、前記基板の回転を加速させて前記基板の上面から前記液溜まりを排除する液溜まり排除工程を含む、請求項9~14のいずれか一項に記載の基板処理方法。
    The guide surface has an inclined surface that is inclined upward so as to be outward in the radial direction.
    The treatment liquid supply step includes a liquid pool forming step of supplying the treatment liquid to the upper surface of the substrate to receive the treatment liquid by the inclined surface and the upper surface of the substrate to form a liquid pool of the treatment liquid.
    The substrate processing method according to any one of claims 9 to 14, wherein the treatment liquid discharging step includes a liquid pool removing step of accelerating the rotation of the substrate and removing the liquid pool from the upper surface of the substrate.
  16.  前記径方向における前記環状部材の内方端面が、鉛直方向に延び、
     前記内方端面の上端部が、前記案内面に連結されており、
     前記処理液供給工程が、前記環状部材の前記内方端面の前記上端部が前記基板の上面よりも上方に位置するように前記環状部材を移動させた状態で前記基板の上面に向けて処理液を供給することによって、前記環状部材の前記内方端面と前記基板の上面とによって処理液を受けて処理液の液溜まりを形成する液溜まり形成工程を含み、
     前記処理液排出工程が、前記環状部材の前記内方端面の前記上端部が前記基板の上面と同じ高さに位置するように前記環状部材を移動させることによって、前記基板の上面から前記液溜まりを排除する液溜まり排除工程を含む、請求項9~15のいずれか一項に記載の基板処理方法。
    The inner end face of the annular member in the radial direction extends in the vertical direction,
    The upper end of the inner end surface is connected to the guide surface.
    In the treatment liquid supply step, the treatment liquid is moved toward the upper surface of the substrate in a state where the annular member is moved so that the upper end portion of the inner end surface of the annular member is located above the upper surface of the substrate. Includes a liquid pool forming step of receiving the treatment liquid by the inner end surface of the annular member and the upper surface of the substrate to form a liquid pool of the treatment liquid.
    In the processing liquid discharge step, the liquid pool is collected from the upper surface of the substrate by moving the annular member so that the upper end portion of the inner end surface of the annular member is located at the same height as the upper surface of the substrate. The substrate processing method according to any one of claims 9 to 15, further comprising a liquid pool removing step of eliminating the above-mentioned substances.
  17.  平面視で前記対向部材および前記環状部材を取り囲む第1円筒部と、前記第1円筒部から前記径方向の内方に延びる第1円環部とを有する第1ガードと、平面視で前記対向部材および前記環状部材を取り囲む第2円筒部と、前記第2円筒部から前記径方向の内方に延び、前記第1円環部に下方から対向する第2円環部を有する第2ガードとを、個別に上下動させるガード移動工程をさらに含み、
     前記処理液排出路が、前記径方向の外方に向けて処理液を排出する排出口を有し、
     前記ガード移動工程が、前記排出口から処理液が排出される際に、鉛直方向において、前記径方向における前記第1円環部の内方端と前記径方向における前記第2円環部の内方端との間に前記処理液排出路が位置するように、前記第1ガードおよび前記第2ガードを移動させる工程を含む、請求項9~16のいずれか一項に記載の基板処理方法。
    A first guard having a first cylindrical portion surrounding the facing member and the annular member in a plan view and a first annular portion extending inward in the radial direction from the first cylindrical portion, and the facing surface in a plan view. A second cylindrical portion surrounding the member and the annular member, and a second guard having a second annular portion extending inward in the radial direction from the second cylindrical portion and facing the first annular portion from below. Further includes a guard movement process that moves the cylinder up and down individually.
    The treatment liquid discharge path has a discharge port for discharging the treatment liquid outward in the radial direction.
    In the guard moving step, when the treatment liquid is discharged from the discharge port, in the vertical direction, the inner end of the first annular portion in the radial direction and the inside of the second annular portion in the radial direction. The substrate processing method according to any one of claims 9 to 16, further comprising a step of moving the first guard and the second guard so that the processing liquid discharge path is located between the first guard and the second guard.
  18.  前記処理液排出工程と並行して実行され、前記基板の下面を保護する保護液を前記基板の下面に向けて供給する保護液供給工程をさらに含み、
     前記ガード移動工程が、前記第2円環部の径方向内方端が前記排出口よりも下側で、かつ、前記環状部材の下端よりも上側に位置するように、前記第2ガードを移動させる工程を含む、請求項17に記載の基板処理方法。
    Further including a protective liquid supply step which is executed in parallel with the treatment liquid discharge step and supplies a protective liquid for protecting the lower surface of the substrate toward the lower surface of the substrate.
    In the guard moving step, the second guard is moved so that the radial inner end of the second ring portion is located below the discharge port and above the lower end of the annular member. The substrate processing method according to claim 17, which comprises a step of causing the substrate to be processed.
  19.  前記処理液供給工程よりも前に前記基板の上面にリンス液を供給するプレリンス工程をさらに含み、
     前記プレリンス工程において前記基板の上面に供給されたリンス液は、前記環状部材と前記基板との間の隙間を塞ぎ、前記処理液排出路から排出され、
     前記プレリンス工程が、前記雰囲気置換工程と並行して実行される、請求項9~18のいずれか一項に記載の基板処理方法。
    A pre-rinsing step of supplying a rinsing liquid to the upper surface of the substrate is further included before the treatment liquid supply step.
    The rinse liquid supplied to the upper surface of the substrate in the pre-rinsing step closes the gap between the annular member and the substrate, and is discharged from the treatment liquid discharge path.
    The substrate processing method according to any one of claims 9 to 18, wherein the prerinsing step is executed in parallel with the atmosphere replacement step.
PCT/JP2020/021852 2019-07-19 2020-06-03 Substrate treatment device and substrate treatment method WO2021014772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044791.1A CN114008756A (en) 2019-07-19 2020-06-03 Substrate processing apparatus and substrate processing method
KR1020227001927A KR102636437B1 (en) 2019-07-19 2020-06-03 Substrate processing device and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133864A JP7372068B2 (en) 2019-07-19 2019-07-19 Substrate processing equipment and substrate processing method
JP2019-133864 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021014772A1 true WO2021014772A1 (en) 2021-01-28

Family

ID=74193125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021852 WO2021014772A1 (en) 2019-07-19 2020-06-03 Substrate treatment device and substrate treatment method

Country Status (5)

Country Link
JP (1) JP7372068B2 (en)
KR (1) KR102636437B1 (en)
CN (1) CN114008756A (en)
TW (1) TWI803755B (en)
WO (1) WO2021014772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023045549A (en) * 2021-09-22 2023-04-03 株式会社Screenホールディングス Substrate processing equipment
JP2024171015A (en) * 2023-05-29 2024-12-11 株式会社Screenホールディングス Substrate Processing Equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081064A (en) * 1994-06-20 1996-01-09 Dainippon Screen Mfg Co Ltd Rotary treating device
JP2008021983A (en) * 2006-06-16 2008-01-31 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015088598A (en) * 2013-10-30 2015-05-07 東京エレクトロン株式会社 Liquid processing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168684A1 (en) 2010-01-29 2017-05-17 NEC Display Solutions, Ltd. Illumination optical system and projector using the same
JP6670674B2 (en) * 2016-05-18 2020-03-25 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6881922B2 (en) * 2016-09-12 2021-06-02 株式会社Screenホールディングス Board processing method and board processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081064A (en) * 1994-06-20 1996-01-09 Dainippon Screen Mfg Co Ltd Rotary treating device
JP2008021983A (en) * 2006-06-16 2008-01-31 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015088598A (en) * 2013-10-30 2015-05-07 東京エレクトロン株式会社 Liquid processing equipment

Also Published As

Publication number Publication date
JP7372068B2 (en) 2023-10-31
CN114008756A (en) 2022-02-01
JP2021019092A (en) 2021-02-15
TWI803755B (en) 2023-06-01
KR102636437B1 (en) 2024-02-14
TW202115773A (en) 2021-04-16
KR20220024748A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101215705B1 (en) Coating apparatus, coating method, coating developing apparatus and computer readable medium
TWI391795B (en) Substrate processing apparatus and substrate processing method
JP6523643B2 (en) Substrate processing apparatus and substrate processing method
TWI694485B (en) Substrate processing method and substrate processing apparatus
TWI713102B (en) Substrate processing method and substrate processing apparatus
WO2021014772A1 (en) Substrate treatment device and substrate treatment method
TWI829175B (en) Substrate processing methods
TWI718477B (en) Substrate processing method
JP2018206851A (en) Substrate processing method and substrate processing device
JP2009267101A (en) Substrate-treating device
JP5036415B2 (en) Liquid processing apparatus and liquid processing method
TWI664669B (en) Substrate processing method and substrate processing apparatus
CN109545703B (en) Substrate processing apparatus and substrate processing method
JP2007258565A (en) Substrate processing method and substrate processing apparatus
JP3917384B2 (en) Substrate processing apparatus and substrate cleaning apparatus
JP7372084B2 (en) Substrate processing equipment and substrate processing method
JP2003324090A (en) Substrate processor
JP4342324B2 (en) Substrate processing method and substrate processing apparatus
JP4488497B2 (en) Substrate processing apparatus and substrate processing method
TWI681499B (en) Substrate processing apparatus
JP2003051477A (en) Substrate processing apparatus
KR20090119406A (en) Single Sheet Washing Equipment
KR20070107978A (en) Substrate Processing Apparatus and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844631

Country of ref document: EP

Kind code of ref document: A1