WO2021014492A1 - Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint - Google Patents
Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint Download PDFInfo
- Publication number
- WO2021014492A1 WO2021014492A1 PCT/JP2019/028465 JP2019028465W WO2021014492A1 WO 2021014492 A1 WO2021014492 A1 WO 2021014492A1 JP 2019028465 W JP2019028465 W JP 2019028465W WO 2021014492 A1 WO2021014492 A1 WO 2021014492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anticorrosion
- paint
- filler
- producing
- anticorrosive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/02—Compounds of alkaline earth metals or magnesium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/40—Compounds of aluminium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/04—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
Definitions
- the present invention relates to a technique for preparing a layered double hydroxide used as a filler for an anticorrosion protective coating material.
- LDH Layered double hydroxides
- anionic clays consist of a positively charged metal hydroxide sheet with interchangeable anions and water molecules in the interlayer space.
- the layered double hydroxide is represented by the following general formula.
- M 2+ and M 3+ are each divalent and trivalent metal cations
- a n- is an anion of valence n
- x is defined as the molar ratio of the trivalent cation to total cations
- Patent Document 2 US5116587A
- Patent Document 3 CN103159328B
- Patent Document 4 WO2015193087A1
- Patent Document 5 US7578878B2.
- Non-Patent Document 1 a homogeneous precursor in which two or more precursors are closely mixed is used as a starting material.
- Non-Patent Document 2 UV light can generate hydroxyl-free radicals that have been shown to promote zeolite crystallization. Furthermore, UV irradiation has been shown to have a significant effect on the size of synthetic materials, such as silver (Non-Patent Document 3), indium nitride (Non-Patent Document 4), and reduced graphene oxide zinc oxide nanorod composites (Non-Patent Document 3).
- Non-patent document 5 is known.
- Hydrotalcite-type anionic clay preparation, properties and applications. Catalysis Today, Vol. 11, No. 2, pp. 173-301 (issued December 2, 1991). Promoted Crystallization of Zeolites with Hydroxyl Free Radicals: Science Vol. 351 No. 6278, pp. 1188-1191 (published March 11, 2016). UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkaline carboxymethylated chitosan solution. Journal of Nanoparticle Research, Vol. 10, No. 7, pp. 1193-1209 (published in October 2008). UV-Assisted Synthesis of Indium Nitride Nano and Microstructures, Journal of Materials Chemistry A, Vol. 3, pp. 5962-5970 (published November 2015). UV-assisted synthesis of reduced graphene oxide-ZnO nanocomplex immobilized on Zn foil with enhanced photocatalytic performance Research on Chemical Intermediates Vol. 42, No. 5, pp. 4479-4996 (March 2016)
- the particle size is usually large (5-10 microns) and contains aggregation, so the induction of UV light is smaller particle size (1-3 microns) and less aggregation. Found that can bring.
- An object of the present invention is to prepare a layered double hydroxide by ultraviolet irradiation in order to improve the addition and release of layered double hydroxides constituting the anticorrosion filler for paints.
- the purpose is to provide a method for producing an agent and a paint.
- the present invention is an ultraviolet assisted synthesis method for preparing a layered double hydroxide (LDH), which is an anticorrosive filler for preventing corrosion of paint, and is used as a method used for preparing a layered double hydroxide structure.
- LDH layered double hydroxide
- Various synthetic methods are exemplified, including precipitation, hydrothermal, sol-gel, microwave and urea hydrolysis.
- the surface chemistry of the particles is modified by the appropriate surface modifier, resulting in ion exchange with corrosion-suppressing anions.
- the main synthetic method is the coprecipitation method. After the addition of divalent and trivalent cations and pH adjustment, the suspension is exposed to ultraviolet A waves (UV-A). After completion of the synthesis process, the surface chemistry of the particles is modified by a suitable surface modifier, resulting in ion exchange with corrosion-suppressing anions (anions).
- the advantages presented by the present invention are: 1. 1.
- the particle size of the layered double hydroxide is small, and it is suitable for the preparation of corrosion-preventive paint (rust-preventive paint).
- the high crystal structure of the synthesized layered double hydroxide is a good choice for the addition and release of anionic corrosion inhibitors.
- 3. Subsequent surface treatment with a surface modifier enhances compatibility with the polymeric coating and makes it easily dispersible.
- the paints of Reference Example 1 and Example 1 prepared according to the formulation shown in Table 1 were applied to a metal plate, and a sample having an X-shaped scratch (scribe) was exposed to salt water, and the sample after 500 hours had passed.
- (A) is Reference Example 1
- (b) is S / LDH
- (c) is S / UV-LDH.
- the paints of Reference Example 2 and Example 2 prepared according to the formulation shown in Table 2 were applied to a metal plate, and a sample having an X-shaped scratch (scribe) was exposed to salt water, and the sample after 500 hours had passed.
- (A) is Reference Example 2,
- (b) is S / LDH, and
- (c) is S / UV-LDH.
- UV-LDH layered double hydroxides
- UV-LDH ultraviolet rays
- the present invention is supported by ultraviolet rays to prepare layered double hydroxides used as corrosion inhibitors for coatings. Synthesize.
- the main synthetic method of LDH is the coprecipitation method. Divalent cations (preferably, but not limited to, Zn 2+ and Mg 2+ ) and trivalent cations (preferably, but not limited to) in the form of salts (preferably nitrates, but not limited to). , Al 3+ ) to water (preferably deionized water, preferably distilled water).
- M 2+ is at least one selected from the group consisting of Zn 2+ , Mg 2+ , or Ni 2+ .
- M 3+ is Al 3+
- Fe 3+ represents at least one kind of metal ion selected from the group consisting of Cr 3+
- a n- is OH -, Cl -, NO 3 - , CO 3 2-
- represent at least one kind of n dianion is selected from the group consisting of SO 4 2-.
- m represents the amount of hydrated water.
- the concentration of the salt having a divalent cation in the solution of LDH is 0.5-2.5 mol, and the molar ratio (x) of the trivalent to divalent cation is preferably 0.4-0.6. is there.
- the pH of the solution is adjusted to pH 9.5 ⁇ 0.5 with an alkaline solution (preferably 10% sodium hydroxide, but not limited to).
- the suspension is irradiated with ultraviolet A wave (UV-A) and exposed (preferably at least 12 hours).
- UV-A ultraviolet A wave
- the suspension is then washed with water (preferably deionized water).
- the suspension is dried in the oven, or more preferably using a spray dryer.
- Ultraviolet A wave (UV-A) irradiation aids LDH crystallization and reduces particle size.
- UV-LDH UV-exposed layered double hydroxides
- the type of organic silane compound can preferably be selected based on the chemical properties of the paint, for example oxylan or amine functional silanes in epoxy paints, amine or hydroxyl functional silanes in polyurea paints and polyurea paints, vinyl esters.
- vinyl functional silane can be exemplified.
- alkyl, preferably methyl functional silanes can be used to modify the surface of UV exposed LDH (UV-LDH) for all types of paints.
- UV-exposed LDH can be carried out directly by the sol-gel method, or preferably by graft polymerization in a solvent medium.
- the solvent can be selected from a wide range of organic solvents, preferably ethanol or toluene or xylene.
- a suspension of "ultraviolet exposed LDH (UV-LDH)" particles (preferably 5-30% by weight) in a solution of a silane compound in a solvent (preferably a concentration of 1-10%) at a high temperature (preferably reflux temperature). )
- a high temperature preferably reflux temperature
- For a certain period of time preferably at least 12 hours). After cooling the mixed suspension, it is preferably washed with the same solvent and then dried in the oven or more preferably using a spray dryer.
- the corrosion inhibitor (corrosion inhibitor) added to the surface-modified LDH (S / UV-LDH) is It is selected from a wide range of inhibitory anionic compounds such as phosphates, polyphosphates, molybdenates, vanazine salts, tungstates and the like.
- the cation moiety of the inhibitory salt can be selected from a wide range of cations, preferably Na + , K + , Ba + 2 .
- the prepared anionic corrosion inhibitor-added LDH (Inh-S / UV-LDH) can be used in the formulation of protective paints as an effective corrosion resistant filler.
- the recommended amount of this corrosion resistant filler to use is 0.5-5% by weight of all components, depending on the protective coating required. It is also recommended to replace up to 30% by weight. It is recommended to replace up to 30% by weight of the total content of the anticorrosive pigment with LDH (Inh-S / UV-LDH) with anionic corrosion inhibitors, the rest being inert fillers such as talc, calcium carbonate or It is a barite.
- Example 1 A Zn-Al phosphate-based LDH surface-modified with aminopropyltriethoxysilane was prepared and added to a solvent-based epoxy paint as follows.
- the concentration of Zn (NO 3 ) 2 in the solution is 1 mol, and the molar ratio of Al (NO 3 ) 3 to Zn (NO 3 ) 2 is 0.5.
- the pH of the solution is adjusted to 9.5 ⁇ 0.5 with an alkaline solution (sodium hydroxide 10%).
- the suspension is then exposed for 24 hours by irradiation with ultraviolet A wave (UV-A, 40 W, manufactured by Philips, wavelength 315-400 nm).
- UV-A, 40 W manufactured by Philips, wavelength 315-400 nm
- the suspension is then washed with deionized water. Further, the suspension is dried using a spray dryer.
- a specific suspension To prepare a specific suspension, first prepare a 5% by weight solution (silane solution) of aminopropyltriethoxysilane in ethanol, and then use the synthesized LDH (Zn-Al LDH to which phosphate is added). A 15 wt% suspension was prepared in addition to the silane solution.
- the prepared suspension was mixed under reflux for 24 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
- a 5 wt% solution of sodium phosphate in deionized water was used to dope the surface modified LDH.
- a 10 wt% suspension of surface-modified LDH (S / UV-LDH) was prepared in an inhibitory solution. The suspension was mixed for 12 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
- Table 1 shows the formulation of the epoxy paint
- Reference Example 1 shows the surface of 20% by weight of the total zinc phosphate content by adding the prepared phosphoric acid in a typical formulation containing 11.3% zinc phosphate.
- the components of the thickener gel of No. 3 are adjusted with the organic clay thickener shown by No. 11-13, xylene, and methanol in the formulation shown in Table 1. Further, the components of No. 1-10 were used as part A, the polyamide 115 of No. 14 as part B, and the mixing ratio of A: B was 10: 1.
- the LDH synthesis procedure was repeated without UV irradiation, and the final sample was represented as S / LDH.
- the particle sizes of S / LDH and S / UV-LDH were in the range of 5-10 and 1-3 microns, respectively.
- FIG. 1 the paints of Reference Example 1 and Example 1 prepared according to the formulation shown in Table 1 were applied to a metal plate, and a sample having an X-shaped scratch (scribe) was exposed to salt water for 500 hours.
- the image of the sample after the lapse is shown, (a) is Reference Example 1, (b) is S / LDH, and (c) is S / UV-LDH.
- the sample coated with the LDH-containing paint of Example 1 did not show any swelling around the region where the X-shaped scratch was formed.
- an X-shaped scratch is applied to the sample coated with the paint of Reference Example 1 containing only zinc phosphate (No. 8 in Table 1) as a general anticorrosive pigment. There was swelling and corrosion around the wound.
- Example 2 Zn-Al LDHs surface modified with methyltriethoxysilane and filled with molybdate were prepared for solvent-based epoxy coatings as follows.
- the concentration of Zn (NO 3 ) 2 in the solution is 1 mol, and the molar ratio of Al (NO 3 ) 3 to Zn (NO 3 ) 2 is 0.5.
- the pH of the solution is adjusted to 9.5 ⁇ 0.5 with an alkaline solution (sodium hydroxide 10%).
- the suspension was then irradiated with ultraviolet A waves (UV-A, 40 W, manufactured by Philips, wavelength 315-400 nm) and exposed for 24 hours.
- UV-A, 40 W, manufactured by Philips, wavelength 315-400 nm ultraviolet A waves
- the suspension was washed with deionized water and then the suspension was dried using a spray dryer.
- a 5 wt% toluene solution of methyltriethoxysilane was prepared.
- the synthesized LDH was added to the silane solution to prepare a 15% by weight suspension.
- the suspension was mixed under reflux for 24 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
- a 5 wt% solution of sodium molybdate in deionized water was used to dope the surface modified LDH.
- a 10 wt% suspension of surface-modified LDH (S / UV-LDH) was prepared in an inhibitory solution. The suspension was mixed for 12 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
- Table 2 shows the formulation of the epoxy ester paint, and Reference Example 2 is prepared with 11.3% by weight of the total zinc phosphate content in a typical formulation of the epoxy ester paint containing 10% zinc phosphate.
- the surface was replaced with Zn—Al-based LDH whose surface was modified by adding phosphoric acid, and the rest was replaced with 90% by weight of heavy crystal stone. All other conditions, namely surface treatment, dispersion and dry film thickness, paint application and storage treatment, remained the same.
- the LDH synthesis procedure was repeated without UV irradiation, and the final sample was designated as (S / LDH).
- the particle sizes of S / LDH and S / UV-LDH were in the range of 5-10 and 1-3 microns, respectively.
- the sample coated with the LDH-containing paint of Example 2 did not show any swelling around the region where the X-shaped scratch was formed.
- an X-shaped scratch is applied to the sample coated with the paint of Reference Example 2 containing only zinc phosphate (No. 29 in Table 2) as a general anticorrosive pigment. Severe swelling and corrosion were seen around the wound.
- the sample coated with the paint containing S / UV-LDH shown in FIG. 2 (c) is more corroded than the sample coated with the paint containing the S / LDH anticorrosive pigment shown in FIG. 2 (b). There were few.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Abstract
Provided is an anticorrosive filler for paint that improves the addition and release of layered double hydroxides that constitute an anticorrosive filler for paint. An anticorrosive filler, which is for organic paint and filled with an anionic corrosion inhibitor, is added to an anticorrosive material the particle diameter of which is reduced by irradiation with ultraviolet rays A and the surface of which is modified with a silane compound agent.
Description
本発明は、防食保護塗料用の充填剤として用いられる層状複水酸化物(Layered Double Hydroxide)の調製技術に関する。
The present invention relates to a technique for preparing a layered double hydroxide used as a filler for an anticorrosion protective coating material.
陰イオン粘土として知られる層状複水酸化物(LDH)は、層間空間に交換可能な陰イオンおよび水分子を有する正に帯電した金属水酸化物シートからなる。層状複水酸化物は下記の一般式で表される。
Layered double hydroxides (LDH), known as anionic clays, consist of a positively charged metal hydroxide sheet with interchangeable anions and water molecules in the interlayer space. The layered double hydroxide is represented by the following general formula.
ここで、M2+およびM3+はそれぞれ2価および3価の金属カチオンであり、An-は価数nの陰イオンであり、xは3価カチオン対全カチオンのモル比として定義される(特許文献1:EP2263976A1)。
Here, M 2+ and M 3+ are each divalent and trivalent metal cations, A n-is an anion of valence n, x is defined as the molar ratio of the trivalent cation to total cations ( Patent Document 1: EP2263976A1).
層状複水酸化物の層間空間における陰イオンは局在化されていないので、他の陰イオン種と交換することができる。そのため、広範な用途に大きな関心が寄せられており、例えば、石炭火力発電所の排ガスからのNOxおよびSOxの除去(特許文献2:US5116587A)、廃水からの染料の除去(特許文献3:CN103159328B)および水の浄化(特許文献4:WO2015193087A1)が知られている。
Since the anions in the interlayer space of the layered double hydroxide are not localized, they can be exchanged with other anion species. Therefore, there is great interest in a wide range of applications, for example, removal of NOx and SOx from the exhaust gas of coal-fired power plants (Patent Document 2: US5116587A), removal of dyes from wastewater (Patent Document 3: CN103159328B). And water purification (Patent Document 4: WO2015193087A1) is known.
また、積極的な電解質条件に曝されたときにオンデマンド放出のための陰イオン腐食防止種の貯蔵に有力であることから、保護塗料産業における用途も見いだされている(特許文献5:US7578878B2)。
It has also been found to be used in the protective paint industry because it is effective in storing anionic corrosion-preventing species for on-demand release when exposed to aggressive electrolyte conditions (Patent Document 5: US7578878B2). ..
層状複水酸化物構造の調製のために、共沈、水熱、ゾルゲル、マイクロ波および尿素加水分解を含む種々の合成方法が存在する。しかしながら、共沈法は層状複水酸化物の合成のために最も簡単で広く受け入れられている。この方法を利用して、2つ以上の前駆体が密接に混合されている均質な前駆体が出発物質として使用される(非特許文献1)。
There are various synthetic methods for the preparation of layered double hydroxide structures, including coprecipitation, hydrothermal, sol-gel, microwave and urea hydrolysis. However, the coprecipitation method is the simplest and most widely accepted for the synthesis of layered double hydroxides. Utilizing this method, a homogeneous precursor in which two or more precursors are closely mixed is used as a starting material (Non-Patent Document 1).
一方、UV光は、ゼオライトの結晶化を促進することが示されているヒドロキシルフリーラジカルを生成することができる(非特許文献2)。さらに、UV照射は、合成材料のサイズに大きな影響を与えることが示されており、例えば銀(非特許文献3)、窒化インジウム(非特許文献4)、還元グラフェン酸化物酸化亜鉛ナノロッド複合体(非特許文献5)が知られている。
On the other hand, UV light can generate hydroxyl-free radicals that have been shown to promote zeolite crystallization (Non-Patent Document 2). Furthermore, UV irradiation has been shown to have a significant effect on the size of synthetic materials, such as silver (Non-Patent Document 3), indium nitride (Non-Patent Document 4), and reduced graphene oxide zinc oxide nanorod composites (Non-Patent Document 3). Non-patent document 5) is known.
ところで、本発明者らは、UV照射がない場合、粒径は通常大きく(5~10ミクロン)そして凝集を含むので、UV光の誘導はより小さい粒径(1~3ミクロン)およびより少ない凝集をもたらすことができることを見出した。
By the way, we have found that in the absence of UV irradiation, the particle size is usually large (5-10 microns) and contains aggregation, so the induction of UV light is smaller particle size (1-3 microns) and less aggregation. Found that can bring.
本発明の目的は、塗料用の防食充填剤を構成する層状複水酸化物の添加および放出を改良するために、紫外線照射による層状複水酸化物を調製した塗料用の防食充填剤、防食充填剤の製造方法及び塗料を提供することにある。
An object of the present invention is to prepare a layered double hydroxide by ultraviolet irradiation in order to improve the addition and release of layered double hydroxides constituting the anticorrosion filler for paints. The purpose is to provide a method for producing an agent and a paint.
本発明は、塗料の腐食防止用の防食充填剤である層状複水酸化物(LDH)を調製するために紫外線の支援合成法で、層状複水酸化物構造の調製に使用される方法として共沈、水熱、ゾル―ゲル、マイクロ波および尿素加水分解を含む種々の合成方法が例示される。
The present invention is an ultraviolet assisted synthesis method for preparing a layered double hydroxide (LDH), which is an anticorrosive filler for preventing corrosion of paint, and is used as a method used for preparing a layered double hydroxide structure. Various synthetic methods are exemplified, including precipitation, hydrothermal, sol-gel, microwave and urea hydrolysis.
合成プロセスの完了後、粒子の表面化学は適切な表面改質剤によって改質され、腐食抑制アニオンを伴うイオン交換が起こる。主な合成方法は、共沈法によるものである。2価及び3価の陽イオンの添加及びpH調整後、懸濁液を紫外線A波(UV-A)に曝露する。合成プロセスの完了後、粒子の表面化学は適切な表面改質剤によって改質され、腐食抑制アニオン(陰イオン)を伴うイオン交換が起こる。
After the synthesis process is complete, the surface chemistry of the particles is modified by the appropriate surface modifier, resulting in ion exchange with corrosion-suppressing anions. The main synthetic method is the coprecipitation method. After the addition of divalent and trivalent cations and pH adjustment, the suspension is exposed to ultraviolet A waves (UV-A). After completion of the synthesis process, the surface chemistry of the particles is modified by a suitable surface modifier, resulting in ion exchange with corrosion-suppressing anions (anions).
本発明により提示される利点は以下の通りである。
1.層状複水酸化物の粒径が小さく、腐食防止塗料(防錆塗料)の調製に適している。
2.合成された層状複水酸化物の高結晶構造は、陰イオン腐食防止剤の添加および放出のための良好な選択となる。
3.表面改質剤によるその後の表面処理は、ポリマー塗料との相溶性を高め、容易に分散可能にする。 The advantages presented by the present invention are:
1. 1. The particle size of the layered double hydroxide is small, and it is suitable for the preparation of corrosion-preventive paint (rust-preventive paint).
2. 2. The high crystal structure of the synthesized layered double hydroxide is a good choice for the addition and release of anionic corrosion inhibitors.
3. 3. Subsequent surface treatment with a surface modifier enhances compatibility with the polymeric coating and makes it easily dispersible.
1.層状複水酸化物の粒径が小さく、腐食防止塗料(防錆塗料)の調製に適している。
2.合成された層状複水酸化物の高結晶構造は、陰イオン腐食防止剤の添加および放出のための良好な選択となる。
3.表面改質剤によるその後の表面処理は、ポリマー塗料との相溶性を高め、容易に分散可能にする。 The advantages presented by the present invention are:
1. 1. The particle size of the layered double hydroxide is small, and it is suitable for the preparation of corrosion-preventive paint (rust-preventive paint).
2. 2. The high crystal structure of the synthesized layered double hydroxide is a good choice for the addition and release of anionic corrosion inhibitors.
3. 3. Subsequent surface treatment with a surface modifier enhances compatibility with the polymeric coating and makes it easily dispersible.
本発明方法を以下に説明する。
A)紫外線(UV)支援による層状複水酸化物(以下、UV-LDHとする)の合成
本発明は、塗装の腐食防止剤として用いられる層状複水酸化物を調製するために紫外線の支援により合成する。LDHの主な合成方法は、共沈法によるものである。塩(好ましくは、硝酸塩が好ましいが、これに限定されない)の形態の2価カチオン(好ましくは、これに限定されないが、Zn2+およびMg2+)および3価カチオン(好ましくは、これに限定されないが、Al3+)を水(好ましくは脱イオン水、好ましくは蒸留水)に加える。 The method of the present invention will be described below.
A) Synthesis of layered double hydroxides (hereinafter referred to as UV-LDH) supported by ultraviolet rays (UV) The present invention is supported by ultraviolet rays to prepare layered double hydroxides used as corrosion inhibitors for coatings. Synthesize. The main synthetic method of LDH is the coprecipitation method. Divalent cations (preferably, but not limited to, Zn 2+ and Mg 2+ ) and trivalent cations (preferably, but not limited to) in the form of salts (preferably nitrates, but not limited to). , Al 3+ ) to water (preferably deionized water, preferably distilled water).
A)紫外線(UV)支援による層状複水酸化物(以下、UV-LDHとする)の合成
本発明は、塗装の腐食防止剤として用いられる層状複水酸化物を調製するために紫外線の支援により合成する。LDHの主な合成方法は、共沈法によるものである。塩(好ましくは、硝酸塩が好ましいが、これに限定されない)の形態の2価カチオン(好ましくは、これに限定されないが、Zn2+およびMg2+)および3価カチオン(好ましくは、これに限定されないが、Al3+)を水(好ましくは脱イオン水、好ましくは蒸留水)に加える。 The method of the present invention will be described below.
A) Synthesis of layered double hydroxides (hereinafter referred to as UV-LDH) supported by ultraviolet rays (UV) The present invention is supported by ultraviolet rays to prepare layered double hydroxides used as corrosion inhibitors for coatings. Synthesize. The main synthetic method of LDH is the coprecipitation method. Divalent cations (preferably, but not limited to, Zn 2+ and Mg 2+ ) and trivalent cations (preferably, but not limited to) in the form of salts (preferably nitrates, but not limited to). , Al 3+ ) to water (preferably deionized water, preferably distilled water).
上記の式(1)に示す層状複水酸化物(防食物質)の一般式において、式(1)中、M2+はZn2+、Mg2+、またはNi2+からなる群から選択される少なくともいずれか1種の金属イオンを表し、M3+はAl3+、Fe3+、Cr3+からなる群から選択される少なくともいずれか1種の金属イオンを表し、An-はOH-、Cl-、NO3
-、CO3
2-、SO4
2-からなる群から選択される少なくともいずれか1種のn価陰イオンを表す。mは水和水の量を表す。
In the general formula of the layered double hydroxide (anticorrosion substance) shown in the above formula (1), in the formula (1), M 2+ is at least one selected from the group consisting of Zn 2+ , Mg 2+ , or Ni 2+ . represents one metal ion, M 3+ is Al 3+, Fe 3+, represents at least one kind of metal ion selected from the group consisting of Cr 3+, a n- is OH -, Cl -, NO 3 - , CO 3 2-, represent at least one kind of n dianion is selected from the group consisting of SO 4 2-. m represents the amount of hydrated water.
前記LDHの溶液中の2価カチオンを有する塩の濃度は0.5-2.5モルであり、3価から2価のカチオンのモル比(x)は好ましくは0.4-0.6である。溶液のpHは、アルカリ溶液(好ましくは水酸化ナトリウム10%であるが、これに限定されない)によりpH9.5±0.5に調整する。
The concentration of the salt having a divalent cation in the solution of LDH is 0.5-2.5 mol, and the molar ratio (x) of the trivalent to divalent cation is preferably 0.4-0.6. is there. The pH of the solution is adjusted to pH 9.5 ± 0.5 with an alkaline solution (preferably 10% sodium hydroxide, but not limited to).
次いで、紫外線A波(UV-A)を懸濁液に照射し、曝露(好ましくは少なくとも12時間)する。そして、懸濁液を水(好ましくは脱イオン水)で洗浄する。
Next, the suspension is irradiated with ultraviolet A wave (UV-A) and exposed (preferably at least 12 hours). The suspension is then washed with water (preferably deionized water).
続いて、懸濁液をオーブン中で、またはより好ましくは噴霧乾燥機を用いて乾燥する。紫外線A波(UV-A)の照射は、LDHの結晶化を助け、粒子サイズを減少させる。
Subsequently, the suspension is dried in the oven, or more preferably using a spray dryer. Ultraviolet A wave (UV-A) irradiation aids LDH crystallization and reduces particle size.
B)適切な表面改質剤による紫外線暴露LDH(UV-LDH)の表面改質(S/UV-LDH)。
紫外線暴露済みの層状複水酸化物(UV-LDH)の表面改質は、有機シラン化合物を溶媒ベースおよび粉体塗料に適用する場合に行うことができる。水性塗料に適用するための表面改質は無視することができる。有機シラン化合物の種類は、好ましくは、塗料の化学的性質に基づいて選択することができ、例えばエポキシ塗料ではオキシランまたはアミン官能性シラン、ポリウレア塗料およびポリウレア塗料ではアミンまたはヒドロキシル官能性シラン、ビニルエステル塗料ではビニル官能性シランを例示することができる。しかしながら、アルキル、好ましくはメチル官能性シランを使用して、全てのタイプの塗料について紫外線暴露LDH(UV-LDH)の表面を改質することができる。 B) Surface modification (S / UV-LDH) of UV-exposed LDH (UV-LDH) with an appropriate surface modifier.
Surface modification of UV-exposed layered double hydroxides (UV-LDH) can be performed when organic silane compounds are applied to solvent bases and powder coatings. Surface modifications for application to water-based paints can be ignored. The type of organic silane compound can preferably be selected based on the chemical properties of the paint, for example oxylan or amine functional silanes in epoxy paints, amine or hydroxyl functional silanes in polyurea paints and polyurea paints, vinyl esters. In the paint, vinyl functional silane can be exemplified. However, alkyl, preferably methyl functional silanes, can be used to modify the surface of UV exposed LDH (UV-LDH) for all types of paints.
紫外線暴露済みの層状複水酸化物(UV-LDH)の表面改質は、有機シラン化合物を溶媒ベースおよび粉体塗料に適用する場合に行うことができる。水性塗料に適用するための表面改質は無視することができる。有機シラン化合物の種類は、好ましくは、塗料の化学的性質に基づいて選択することができ、例えばエポキシ塗料ではオキシランまたはアミン官能性シラン、ポリウレア塗料およびポリウレア塗料ではアミンまたはヒドロキシル官能性シラン、ビニルエステル塗料ではビニル官能性シランを例示することができる。しかしながら、アルキル、好ましくはメチル官能性シランを使用して、全てのタイプの塗料について紫外線暴露LDH(UV-LDH)の表面を改質することができる。 B) Surface modification (S / UV-LDH) of UV-exposed LDH (UV-LDH) with an appropriate surface modifier.
Surface modification of UV-exposed layered double hydroxides (UV-LDH) can be performed when organic silane compounds are applied to solvent bases and powder coatings. Surface modifications for application to water-based paints can be ignored. The type of organic silane compound can preferably be selected based on the chemical properties of the paint, for example oxylan or amine functional silanes in epoxy paints, amine or hydroxyl functional silanes in polyurea paints and polyurea paints, vinyl esters. In the paint, vinyl functional silane can be exemplified. However, alkyl, preferably methyl functional silanes, can be used to modify the surface of UV exposed LDH (UV-LDH) for all types of paints.
紫外線暴露LDH(UV-LDH)の表面改質は、ゾル-ゲル法、または好ましくは溶媒媒体中でのグラフト重合によって直接行うことができる。溶媒は、広範囲の有機溶媒、好ましくはエタノールまたはトルエンまたはキシレンから選択することができる。溶媒(好ましくは濃度1-10%)中のシラン化合物の溶液中の「紫外線暴露LDH(UV-LDH)」粒子(好ましくは5-30重量%)の懸濁液を、高温(好ましくは還流温度)で一定時間(好ましくは少なくとも12時間)混合する。混合後の懸濁液を冷却した後、好ましくは同じ溶媒で洗浄し、次いで、懸濁液をオーブン中で、またはより好ましくは噴霧乾燥機を用いて乾燥させる。
Surface modification of UV-exposed LDH (UV-LDH) can be carried out directly by the sol-gel method, or preferably by graft polymerization in a solvent medium. The solvent can be selected from a wide range of organic solvents, preferably ethanol or toluene or xylene. A suspension of "ultraviolet exposed LDH (UV-LDH)" particles (preferably 5-30% by weight) in a solution of a silane compound in a solvent (preferably a concentration of 1-10%) at a high temperature (preferably reflux temperature). ) For a certain period of time (preferably at least 12 hours). After cooling the mixed suspension, it is preferably washed with the same solvent and then dried in the oven or more preferably using a spray dryer.
C)アニオン(陰イオン)腐食阻害剤(inhibitor)の添加LDH(Inh-S/UV-LDH)の調整
表面改質LDH(S/UV-LDH)に添加する腐食阻害剤(corrosion inhibitor)は、リン酸塩、ポリリン酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩などの広範囲の阻害性陰イオン化合物から選択される。阻害性塩(inhibitive salt)の陽イオン部は、広範囲のカチオン、好ましくはNa+、K+、Ba+2から選択することができる。 C) Addition of anionic (anionic) corrosion inhibitor (inhibitor) Adjustment of LDH (Inh-S / UV-LDH) The corrosion inhibitor (corrosion inhibitor) added to the surface-modified LDH (S / UV-LDH) is It is selected from a wide range of inhibitory anionic compounds such as phosphates, polyphosphates, molybdenates, vanazine salts, tungstates and the like. The cation moiety of the inhibitory salt can be selected from a wide range of cations, preferably Na + , K + , Ba + 2 .
表面改質LDH(S/UV-LDH)に添加する腐食阻害剤(corrosion inhibitor)は、リン酸塩、ポリリン酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩などの広範囲の阻害性陰イオン化合物から選択される。阻害性塩(inhibitive salt)の陽イオン部は、広範囲のカチオン、好ましくはNa+、K+、Ba+2から選択することができる。 C) Addition of anionic (anionic) corrosion inhibitor (inhibitor) Adjustment of LDH (Inh-S / UV-LDH) The corrosion inhibitor (corrosion inhibitor) added to the surface-modified LDH (S / UV-LDH) is It is selected from a wide range of inhibitory anionic compounds such as phosphates, polyphosphates, molybdenates, vanazine salts, tungstates and the like. The cation moiety of the inhibitory salt can be selected from a wide range of cations, preferably Na + , K + , Ba + 2 .
表面改質剤添加LDH(S/UV-LDH)を添加するために、水(好ましくは脱イオン水)中の腐食阻害剤(好ましくはリン酸ナトリウム)の2-20重量%溶液(腐食阻害剤を含む溶液)を使用する。この目的のために、表面改質剤添加LDH(S/UV-LDH)の懸濁液(1-30重量%、好ましくは10重量%)を阻害溶液中で調製する。懸濁液を一定時間(好ましくは少なくとも12時間)混合する。その後、脱イオン水で洗浄することが好ましい。次いで、懸濁液をオーブン中で、またはより好ましくは噴霧乾燥機を用いて乾燥させる。
Surface modifier addition 2-20 wt% solution of corrosion inhibitor (preferably sodium phosphate) in water (preferably deionized water) (corrosion inhibitor) to add LDH (S / UV-LDH) A solution containing) is used. For this purpose, a suspension of surface modifier-added LDH (S / UV-LDH) (1-30% by weight, preferably 10% by weight) is prepared in the inhibitory solution. The suspension is mixed for a period of time (preferably at least 12 hours). After that, it is preferable to wash with deionized water. The suspension is then dried in the oven, or more preferably using a spray dryer.
D)塗料への適用
調製された陰イオン腐食阻害剤添加LDH(Inh-S/UV-LDH)は、効果的な耐腐食性フィラーとして保護塗料の配合に使用することができる。この耐腐食性フィラーの推奨使用量は、必要とされる保護塗料に応じて、全成分の0.5~5重量%である。また、30重量%まで交換することが推奨される。陰イオン腐食阻害剤添加LDH(Inh-S/UV-LDH)で防食顔料の全含有量の30重量%までを置換することが推奨され、残りは不活性充填剤、例えば、タルク、炭酸カルシウムまたは重晶石である。 D) Application to paints The prepared anionic corrosion inhibitor-added LDH (Inh-S / UV-LDH) can be used in the formulation of protective paints as an effective corrosion resistant filler. The recommended amount of this corrosion resistant filler to use is 0.5-5% by weight of all components, depending on the protective coating required. It is also recommended to replace up to 30% by weight. It is recommended to replace up to 30% by weight of the total content of the anticorrosive pigment with LDH (Inh-S / UV-LDH) with anionic corrosion inhibitors, the rest being inert fillers such as talc, calcium carbonate or It is a barite.
調製された陰イオン腐食阻害剤添加LDH(Inh-S/UV-LDH)は、効果的な耐腐食性フィラーとして保護塗料の配合に使用することができる。この耐腐食性フィラーの推奨使用量は、必要とされる保護塗料に応じて、全成分の0.5~5重量%である。また、30重量%まで交換することが推奨される。陰イオン腐食阻害剤添加LDH(Inh-S/UV-LDH)で防食顔料の全含有量の30重量%までを置換することが推奨され、残りは不活性充填剤、例えば、タルク、炭酸カルシウムまたは重晶石である。 D) Application to paints The prepared anionic corrosion inhibitor-added LDH (Inh-S / UV-LDH) can be used in the formulation of protective paints as an effective corrosion resistant filler. The recommended amount of this corrosion resistant filler to use is 0.5-5% by weight of all components, depending on the protective coating required. It is also recommended to replace up to 30% by weight. It is recommended to replace up to 30% by weight of the total content of the anticorrosive pigment with LDH (Inh-S / UV-LDH) with anionic corrosion inhibitors, the rest being inert fillers such as talc, calcium carbonate or It is a barite.
実施例1
アミノプロピルトリエトキシシラン(aminopropyltriethoxy silane)で表面改質されたZn-Alリン酸塩系LDHを調製し、以下のように溶媒系エポキシ塗料に添加した。 Example 1
A Zn-Al phosphate-based LDH surface-modified with aminopropyltriethoxysilane was prepared and added to a solvent-based epoxy paint as follows.
アミノプロピルトリエトキシシラン(aminopropyltriethoxy silane)で表面改質されたZn-Alリン酸塩系LDHを調製し、以下のように溶媒系エポキシ塗料に添加した。 Example 1
A Zn-Al phosphate-based LDH surface-modified with aminopropyltriethoxysilane was prepared and added to a solvent-based epoxy paint as follows.
溶液中のZn(NO3)2の濃度は1モルであり、Al(NO3)3とZn(NO3)2のモル比は0.5である。溶液のpHをアルカリ溶液(水酸化ナトリウム10%)によりpH9.5±0.5に調整する。次いで、紫外線A波(UV-A、40W、Philips社製、波長315~400nm)での照射により懸濁液を24時間暴露する。その後懸濁液を脱イオン水で洗浄する。さらに懸濁液をスプレードライヤーを用いて乾燥する。
The concentration of Zn (NO 3 ) 2 in the solution is 1 mol, and the molar ratio of Al (NO 3 ) 3 to Zn (NO 3 ) 2 is 0.5. The pH of the solution is adjusted to 9.5 ± 0.5 with an alkaline solution (sodium hydroxide 10%). The suspension is then exposed for 24 hours by irradiation with ultraviolet A wave (UV-A, 40 W, manufactured by Philips, wavelength 315-400 nm). The suspension is then washed with deionized water. Further, the suspension is dried using a spray dryer.
具体的な懸濁液の調整は、先ずエタノール中のアミノプロピルトリエトキシシランの5重量%溶液(シラン溶液)を調製し、合成したLDH(リン酸塩が添加されたZn-Al系LDH)をシラン溶液に加えて15重量%の懸濁液を調製した。
To prepare a specific suspension, first prepare a 5% by weight solution (silane solution) of aminopropyltriethoxysilane in ethanol, and then use the synthesized LDH (Zn-Al LDH to which phosphate is added). A 15 wt% suspension was prepared in addition to the silane solution.
調製した懸濁液を還流下で24時間混合後、脱イオン水で洗浄した。その後、噴霧乾燥機を用いて懸濁液を乾燥した。
The prepared suspension was mixed under reflux for 24 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
表面改質されたLDHを添加(dope)するために、脱イオン水中のリン酸ナトリウムの5重量%溶液を使用した。このために、表面改質されたLDH(S/UV-LDH)の10重量%懸濁液を阻害溶液(inhibitive solution)中に調製した。懸濁液を12時間混合後、脱イオン水で洗浄した。その後、噴霧乾燥機を用いて懸濁液を乾燥した。
A 5 wt% solution of sodium phosphate in deionized water was used to dope the surface modified LDH. To this end, a 10 wt% suspension of surface-modified LDH (S / UV-LDH) was prepared in an inhibitory solution. The suspension was mixed for 12 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
表1はエポキシ塗料の配合を示し、参考例1はリン酸亜鉛11.3%を含有する典型的な配合において、全リン酸亜鉛含有量の20重量%を、調製したリン酸の添加で表面を改質したZn-Al系LDHで置き換え、残りをタルク(80重量%)で置き換えた。他のすべての条件、すなわち表面処理、分散および乾燥フィルムの厚さ、塗料の塗布および保存処理は同じままであった。
Table 1 shows the formulation of the epoxy paint, and Reference Example 1 shows the surface of 20% by weight of the total zinc phosphate content by adding the prepared phosphoric acid in a typical formulation containing 11.3% zinc phosphate. Was replaced with modified Zn—Al LDH, and the rest was replaced with talc (80% by weight). All other conditions, namely surface treatment, dispersion and dry film thickness, paint application and storage treatment, remained the same.
番号3の増粘剤ゲルの成分は、番号11-13で示す有機粘土増粘剤、キシレン、メタノールにより表1で示す配合で調整されている。また、番号1-10の成分をA部、番号14のポリアミド115をB部とし、A:Bの混合比を10:1として混合した。
The components of the thickener gel of No. 3 are adjusted with the organic clay thickener shown by No. 11-13, xylene, and methanol in the formulation shown in Table 1. Further, the components of No. 1-10 were used as part A, the polyamide 115 of No. 14 as part B, and the mixing ratio of A: B was 10: 1.
LDHの合成手順をUV照射なしで繰り返し、そして最終試料をS/LDHと現した。S/LDHおよびS/UV-LDHの粒径はそれぞれ5~10および1~3ミクロンの範囲内であった。
The LDH synthesis procedure was repeated without UV irradiation, and the final sample was represented as S / LDH. The particle sizes of S / LDH and S / UV-LDH were in the range of 5-10 and 1-3 microns, respectively.
図1は、表1の配合に従って調製された参考例1と実施例1の塗料を金属板に塗布し、X字形状に引っかき傷(scribe)を形成した試料に対して塩水を晒し、500時間経過後における試料の画像を示し、(a)は参考例1、(b)はS/LDH、(c)はS/UV-LDHである。
In FIG. 1, the paints of Reference Example 1 and Example 1 prepared according to the formulation shown in Table 1 were applied to a metal plate, and a sample having an X-shaped scratch (scribe) was exposed to salt water for 500 hours. The image of the sample after the lapse is shown, (a) is Reference Example 1, (b) is S / LDH, and (c) is S / UV-LDH.
図1の(b)(c)に示すように、実施例1のLDHを含有する塗料を塗布した試料はX字形状の引っかき傷を形成した領域の周辺には膨れは見られなかった。しかし、図1の(a)に示すように、一般的な防食顔料としてリン酸亜鉛(表1の番号8)のみを含有する参考例1の塗料を塗布した試料には、X字形状の引っかき傷の周囲には膨れおよび腐食が見られた。
As shown in FIGS. 1B and 1C, the sample coated with the LDH-containing paint of Example 1 did not show any swelling around the region where the X-shaped scratch was formed. However, as shown in FIG. 1 (a), an X-shaped scratch is applied to the sample coated with the paint of Reference Example 1 containing only zinc phosphate (No. 8 in Table 1) as a general anticorrosive pigment. There was swelling and corrosion around the wound.
実施例2
メチルトリエトキシシランによって表面改質され、モリブデン酸塩が充填されたZn-Al系LDHを、以下のように溶媒ベースのエポキシ塗料のために調製した。 Example 2
Zn-Al LDHs surface modified with methyltriethoxysilane and filled with molybdate were prepared for solvent-based epoxy coatings as follows.
メチルトリエトキシシランによって表面改質され、モリブデン酸塩が充填されたZn-Al系LDHを、以下のように溶媒ベースのエポキシ塗料のために調製した。 Example 2
Zn-Al LDHs surface modified with methyltriethoxysilane and filled with molybdate were prepared for solvent-based epoxy coatings as follows.
溶液中のZn(NO3)2の濃度は1モルであり、Al(NO3)3とZn(NO3)2のモル比は0.5である。溶液のpHをアルカリ溶液(水酸化ナトリウム10%)によりpH9.5±0.5に調整する。次いで、懸濁液に紫外線A波(UV-A、40W、フィリップス社製、波長315~400nm)を照射し、24時間暴露した。懸濁液を脱イオン水で洗浄し、その後懸濁液をスプレードライヤーを用いて乾燥した。
The concentration of Zn (NO 3 ) 2 in the solution is 1 mol, and the molar ratio of Al (NO 3 ) 3 to Zn (NO 3 ) 2 is 0.5. The pH of the solution is adjusted to 9.5 ± 0.5 with an alkaline solution (sodium hydroxide 10%). The suspension was then irradiated with ultraviolet A waves (UV-A, 40 W, manufactured by Philips, wavelength 315-400 nm) and exposed for 24 hours. The suspension was washed with deionized water and then the suspension was dried using a spray dryer.
具体的な懸濁液の調整は、メチルトリエトキシシランの5重量%トルエン溶液を調製した。合成したLDHをシラン溶液に添加し15重量%の懸濁液を調製した。懸濁液を還流下で24時間混合した後、脱イオン水で洗浄した。その後、噴霧乾燥機を用いて懸濁液を乾燥した。
For specific suspension preparation, a 5 wt% toluene solution of methyltriethoxysilane was prepared. The synthesized LDH was added to the silane solution to prepare a 15% by weight suspension. The suspension was mixed under reflux for 24 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
表面改質されたLDHを添加(dope)するために、脱イオン水中のモリブデン酸ナトリウムの5重量%溶液を使用した。このために、表面改質されたLDH(S/UV-LDH)の10重量%懸濁液を阻害溶液(inhibitive solution)中に調製した。懸濁液を12時間混合後、脱イオン水で洗浄した。その後、噴霧乾燥機を用いて懸濁液を乾燥した。
A 5 wt% solution of sodium molybdate in deionized water was used to dope the surface modified LDH. To this end, a 10 wt% suspension of surface-modified LDH (S / UV-LDH) was prepared in an inhibitory solution. The suspension was mixed for 12 hours and then washed with deionized water. The suspension was then dried using a spray dryer.
表2は、エポキシエステル塗料の配合を示し、参考例2は10%のリン酸亜鉛を含有するエポキシエステル塗料の典型的な配合において、全リン酸亜鉛含量の11.3重量%を、調製されたリン酸を添加して表面を改質したZn-Al系LDHで置き換え、残りを重晶石で90重量%に置き換えた。他のすべての条件、すなわち表面処理、分散および乾燥フィルムの厚さ、塗料の塗布および保存処理は同じままであった。
Table 2 shows the formulation of the epoxy ester paint, and Reference Example 2 is prepared with 11.3% by weight of the total zinc phosphate content in a typical formulation of the epoxy ester paint containing 10% zinc phosphate. The surface was replaced with Zn—Al-based LDH whose surface was modified by adding phosphoric acid, and the rest was replaced with 90% by weight of heavy crystal stone. All other conditions, namely surface treatment, dispersion and dry film thickness, paint application and storage treatment, remained the same.
LDHの合成手順をUV照射なしで繰り返し、そして最終試料を(S/LDH)と表した。S/LDHおよびS/UV-LDHの粒径はそれぞれ5~10および1~3ミクロンの範囲内であった。
The LDH synthesis procedure was repeated without UV irradiation, and the final sample was designated as (S / LDH). The particle sizes of S / LDH and S / UV-LDH were in the range of 5-10 and 1-3 microns, respectively.
図2は、表2の配合に従って調製された参考例2と実施例2の塗料を金属板に塗布し、X字形状に引っかき傷(scribe)を形成した試料に対して塩水を晒し、500時間経過後における試料の画像を示し、(a)は参考例2、(b)はS/LDH、(c)はS/UV-LDHである。
In FIG. 2, the paints of Reference Example 2 and Example 2 prepared according to the formulation shown in Table 2 were applied to a metal plate, and a sample having an X-shaped scratch (scribe) was exposed to salt water for 500 hours. The image of the sample after the lapse is shown, (a) is Reference Example 2, (b) is S / LDH, and (c) is S / UV-LDH.
図2の(b)(c)に示すように、実施例2のLDHを含有する塗料を塗布した試料はX字形状の引っかき傷を形成した領域の周辺には膨れは見られなかった。しかし、図2の(a)に示すように、一般的な防食顔料としてリン酸亜鉛(表2の番号29)のみを含有する参考例2の塗料を塗布した試料には、X字形状の引っかき傷の周囲には激しい膨れおよび腐食が見られた。また、図2(c)に示すS/UV-LDHを含有する塗料を塗布した試料は、図2(b)に示すS/LDH防食顔料を含有する塗料を塗布した試料と比較して腐食が少なかった。
As shown in FIGS. 2B and 2C, the sample coated with the LDH-containing paint of Example 2 did not show any swelling around the region where the X-shaped scratch was formed. However, as shown in FIG. 2A, an X-shaped scratch is applied to the sample coated with the paint of Reference Example 2 containing only zinc phosphate (No. 29 in Table 2) as a general anticorrosive pigment. Severe swelling and corrosion were seen around the wound. Further, the sample coated with the paint containing S / UV-LDH shown in FIG. 2 (c) is more corroded than the sample coated with the paint containing the S / LDH anticorrosive pigment shown in FIG. 2 (b). There were few.
As shown in FIGS. 2B and 2C, the sample coated with the LDH-containing paint of Example 2 did not show any swelling around the region where the X-shaped scratch was formed. However, as shown in FIG. 2A, an X-shaped scratch is applied to the sample coated with the paint of Reference Example 2 containing only zinc phosphate (No. 29 in Table 2) as a general anticorrosive pigment. Severe swelling and corrosion were seen around the wound. Further, the sample coated with the paint containing S / UV-LDH shown in FIG. 2 (c) is more corroded than the sample coated with the paint containing the S / LDH anticorrosive pigment shown in FIG. 2 (b). There were few.
Claims (16)
- 紫外線A波の照射で粒子サイズが小サイズ化され、表面がシラン化合物で改質された下記式(1)に示す防食物質に、陰イオン腐食阻害剤が充填された有機塗料に用いられる防食充填剤。
- 請求項1に記載の防食充填剤において、
前記シラン化合物は、アルキル、好ましくはメチル官能性シランであることを特徴とする防食充填剤。 In the anticorrosion filler according to claim 1,
The silane compound is an anticorrosion filler characterized by being an alkyl, preferably a methyl functional silane. - 請求項1に記載の防食充填剤において、
前記陰イオン腐食阻害剤は、リン酸塩、ポリリン酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩からなる群から選択されるいずれか一つであることを特徴とする防食充填剤。 In the anticorrosion filler according to claim 1,
The anticorrosion filler, wherein the anionic corrosion inhibitor is any one selected from the group consisting of phosphate, polyphosphate, molybdate, vanadate, and tungstate. - 請求項3に記載の防食充填剤において、
前記陰イオン腐食阻害剤のカチオン性部分は、Na+、K+、Ba+2の群から選択されるいずれか一つであることを特徴とする防食充填剤。 In the anticorrosion filler according to claim 3,
An anticorrosive filler characterized in that the cationic portion of the anionic corrosion inhibitor is any one selected from the group of Na + , K + , and Ba + 2 . - 有機塗料に用いられる防食充填剤の製造方法であって、
下記式(2)に示す防食物質を水または脱イオン水に加えた懸濁液に紫外線A波を所定時間照射し、前記防食物質を紫外線により暴露する第1工程と、
前記紫外線暴露された防食物質をゾル-ゲル法または溶媒媒体中でのグラフト重合により表面改質する第2工程と、
前記表面改質された防食物質を腐食阻害剤を含む阻害溶液に加えて混合する第3工程、
とを有する防食充填剤の製造方法。
The first step of irradiating a suspension in which an anticorrosive substance represented by the following formula (2) is added to water or deionized water with ultraviolet A wave for a predetermined time and exposing the anticorrosive substance with ultraviolet rays.
The second step of surface-modifying the UV-exposed anticorrosive substance by a sol-gel method or graft polymerization in a solvent medium, and
The third step, in which the surface-modified anticorrosive substance is added to an inhibitory solution containing a corrosion inhibitor and mixed.
A method for producing an anticorrosion filler having and.
- 請求項5に記載の防食充填剤の製造方法において、
前記第2工程の溶媒媒体中のグラフト重合は、有機溶媒中のシラン化合物の溶液中の前記紫外線暴露された防食物質の懸濁液を還流温度で混合し、冷却後に洗浄、乾燥して前記紫外線暴露された防食物質の表面改質を行うことを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to claim 5.
In the graft polymerization in the solvent medium of the second step, a suspension of the anticorrosive substance exposed to ultraviolet rays in a solution of a silane compound in an organic solvent is mixed at a reflux temperature, cooled, washed and dried to obtain the ultraviolet rays. A method for producing an anticorrosive filler, which comprises surface modification of an exposed anticorrosive substance. - 請求項5に記載の防食充填剤の製造方法において、
前記第1工程、および前記第3工程の終了後、前記各防食物質を水または脱イオン水で洗浄し、乾燥することを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to claim 5.
A method for producing an anticorrosion filler, which comprises washing each of the anticorrosion substances with water or deionized water and drying them after the completion of the first step and the third step. - 請求項5から7のいずれかに記載の防食充填剤の製造方法において、
前記第3工程で用いられる前記腐食阻害剤はリン酸ナトリウムであって、前記リン酸ナトリウムを水または脱イオン水に対して2から20wt%の濃度範囲で溶解した阻害溶液に前記表面改質された防食物質を添加することを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to any one of claims 5 to 7.
The corrosion inhibitor used in the third step is sodium phosphate, and the surface is modified with an inhibitory solution in which the sodium phosphate is dissolved in water or deionized water in a concentration range of 2 to 20 wt%. A method for producing an anticorrosive filler, which comprises adding an anticorrosive substance. - 請求項8に記載の防食充填剤の製造方法において、
シラン溶液に対して前記防食物質を1から30wt%含む前記第2工程で前記表面改質された防食物質の懸濁液を前記阻害溶液中で調整することを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to claim 8.
A method for producing an anticorrosion filler, which comprises preparing a suspension of the surface-modified anticorrosion substance in the inhibitory solution in the second step, which contains 1 to 30 wt% of the anticorrosion substance with respect to the silane solution. .. - 請求項6から9のいずれかに記載の防食充填剤の製造方法において、
前記有機溶媒は、エタノール、トルエンまたはキシレンからなる群から選択されたいずれか一つであって、濃度1~10%の溶媒中のシラン化合物溶液中に5から30wt%の防食物質を有する懸濁液を前記阻害溶液に添加することを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to any one of claims 6 to 9.
The organic solvent is any one selected from the group consisting of ethanol, toluene or xylene and is a suspension having 5 to 30 wt% anticorrosive material in a silane compound solution in a solvent having a concentration of 1 to 10%. A method for producing an anticorrosion filler, which comprises adding a liquid to the inhibitory solution. - 請求項5から10のいずれかに記載の防食充填剤の製造方法において、
前記第1工程における懸濁液は、溶液中の2価のカチオンを有する塩の濃度が0.5から2.5モルで、アルカリ溶液によりpHが9.5±0.5に調整されることを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to any one of claims 5 to 10.
The suspension in the first step has a concentration of a salt having a divalent cation in the solution of 0.5 to 2.5 mol, and the pH is adjusted to 9.5 ± 0.5 by an alkaline solution. A method for producing an anticorrosion filler. - 請求項5~11のいずれかに記載の防食充填剤の製造方法において、
紫外線A波は波長が315~400nmで、12~24時間前記懸濁液を暴露することを特徴とする防食充填剤の製造方法。 In the method for producing an anticorrosion filler according to any one of claims 5 to 11.
A method for producing an anticorrosion filler, wherein the ultraviolet A wave has a wavelength of 315 to 400 nm and exposes the suspension for 12 to 24 hours. - 請求項1から4のいずれかに記載の防食充填剤が充填された溶剤系、水系または粉末系の塗料。 A solvent-based, water-based or powder-based paint filled with the anticorrosion filler according to any one of claims 1 to 4.
- 請求項13に記載の塗料において、
前記防食充填剤の前記シラン化合物は、エポキシ塗料では、オキシランまたはアミン官能性シラン、ポリウレタン塗料およびポリウレア塗料ではアミンまたはヒドロキシル官能性シラン、ビニルエステル塗料ではビニル官能性シランであることを特徴とする塗料。 In the paint according to claim 13,
The silane compound of the anticorrosion filler is a paint characterized by being an oxylane or amine functional silane in an epoxy paint, an amine or hydroxyl functional silane in a polyurethane paint and a polyurea paint, and a vinyl functional silane in a vinyl ester paint. .. - 請求項13または14に記載の塗料において、
前記防食充填剤は、塗料の全配合物の0.5から5重量%であることを特徴とする塗料。 In the paint according to claim 13 or 14.
The anticorrosion filler is a paint characterized by being 0.5 to 5% by weight of the total composition of the paint. - 請求項13から15のいずれかに記載の塗料において、
前記防食充填剤は、防食顔料の全含有量の30重量%までを置換し、残りは不活性充填剤であるタルク、炭酸カルシウムまたは重晶石であることを特徴とする塗料。 In the paint according to any one of claims 13 to 15.
The coating material is characterized in that the anticorrosion filler replaces up to 30% by weight of the total content of the anticorrosion pigment, and the rest is talc, calcium carbonate or barite which is an inert filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/028465 WO2021014492A1 (en) | 2019-07-19 | 2019-07-19 | Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/028465 WO2021014492A1 (en) | 2019-07-19 | 2019-07-19 | Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021014492A1 true WO2021014492A1 (en) | 2021-01-28 |
Family
ID=74192971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028465 WO2021014492A1 (en) | 2019-07-19 | 2019-07-19 | Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021014492A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512337A (en) * | 2021-07-14 | 2021-10-19 | 苏州嘉乐威新材料股份有限公司 | High-adhesion epoxy varnish modified based on load-type corrosion inhibitor and preparation method thereof |
CN113716574A (en) * | 2021-07-29 | 2021-11-30 | 国家石油天然气管网集团有限公司 | Corrosion-inhibiting anion intercalation layered double metal hydroxide and preparation method and application thereof |
CN117165156A (en) * | 2023-08-29 | 2023-12-05 | 湖北彩龙涂料科技有限公司 | Quick-drying alkyd paint and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001158872A (en) * | 1999-12-02 | 2001-06-12 | Kansai Paint Co Ltd | Composition for hydrophilization treatment |
JP2005336002A (en) * | 2004-05-26 | 2005-12-08 | Nippon Chem Ind Co Ltd | Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition |
WO2006068118A1 (en) * | 2004-12-22 | 2006-06-29 | Tayca Corporation | Layered double hydroxide peelable in water, and production process and use thereof |
WO2013083293A1 (en) * | 2011-12-08 | 2013-06-13 | Tata Steel Nederland Technology Bv | Anti-corrosion system for steel |
JP2015520018A (en) * | 2012-04-17 | 2015-07-16 | ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH | Method of coating a metal surface with a coating composition containing layered double hydroxide particles |
JP2016511300A (en) * | 2013-01-17 | 2016-04-14 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH | Method for producing anticorrosion coating |
-
2019
- 2019-07-19 WO PCT/JP2019/028465 patent/WO2021014492A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001158872A (en) * | 1999-12-02 | 2001-06-12 | Kansai Paint Co Ltd | Composition for hydrophilization treatment |
JP2005336002A (en) * | 2004-05-26 | 2005-12-08 | Nippon Chem Ind Co Ltd | Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition |
WO2006068118A1 (en) * | 2004-12-22 | 2006-06-29 | Tayca Corporation | Layered double hydroxide peelable in water, and production process and use thereof |
WO2013083293A1 (en) * | 2011-12-08 | 2013-06-13 | Tata Steel Nederland Technology Bv | Anti-corrosion system for steel |
JP2015520018A (en) * | 2012-04-17 | 2015-07-16 | ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH | Method of coating a metal surface with a coating composition containing layered double hydroxide particles |
JP2016511300A (en) * | 2013-01-17 | 2016-04-14 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH | Method for producing anticorrosion coating |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512337A (en) * | 2021-07-14 | 2021-10-19 | 苏州嘉乐威新材料股份有限公司 | High-adhesion epoxy varnish modified based on load-type corrosion inhibitor and preparation method thereof |
CN113716574A (en) * | 2021-07-29 | 2021-11-30 | 国家石油天然气管网集团有限公司 | Corrosion-inhibiting anion intercalation layered double metal hydroxide and preparation method and application thereof |
CN117165156A (en) * | 2023-08-29 | 2023-12-05 | 湖北彩龙涂料科技有限公司 | Quick-drying alkyd paint and preparation method thereof |
CN117165156B (en) * | 2023-08-29 | 2024-03-12 | 湖北彩龙涂料科技有限公司 | Quick-drying alkyd paint and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6104298B2 (en) | Anticorrosive particles | |
WO2021014492A1 (en) | Anticorrosive filler used in organic paint, anticorrosive filler manufacturing method, and paint | |
FI90669B (en) | Method and product for surface treatment | |
WO2006068118A1 (en) | Layered double hydroxide peelable in water, and production process and use thereof | |
Zhang et al. | Enhancement of anticorrosion protection via inhibitor-loaded ZnAlCe-LDH nanocontainers embedded in sol–gel coatings | |
Majd et al. | Construction of a smart active/barrier anti-corrosion system based on epoxy-ester/zinc intercalated kaolin nanocontainer for steel substrate | |
MX2014012409A (en) | Process for coating metallic surfaces with coating compositions containing particles of a layered double hydroxide. | |
KR20010034407A (en) | Titanium oxide colloidal sol and process for the preparation thereof | |
AïtAghzzaf et al. | Grafted palygorskite as containers of heptanoate for corrosion protection of steel in NaCl medium | |
JP2014114211A (en) | Submicron anti-corrosive particle | |
Kardar et al. | Studying the active corrosion inhibition effect of the Ce3+/2-mercaptobenzothiazole loaded NaY zeolite/Zn-Al LDH based containers in a silane coating | |
Olya et al. | Synthesis, characterization and protective functioning of surface decorated Zn-Al layered double hydroxide with SiO2 nano-particles | |
CN104603211A (en) | Aluminum phosphates, compositions comprising aluminum phosphate, and methods for making the same | |
US8580226B2 (en) | Synthesis of sodium titanate and ion exchange use thereof | |
DE19722750A1 (en) | Paint detackifying and sedimentation agents | |
Galvão et al. | Anticorrosion thin film smart coatings for aluminum alloys | |
JP2005171029A (en) | Coating composition, method for forming film having photocatalytic function, and photocatalytic member | |
EP2209564B1 (en) | Method for the production of high-impact layers | |
JP2986962B2 (en) | Rust preventive pigment composition and paint containing the same | |
WO2006080402A1 (en) | Method for producing resin substrate coated with titanic acid film | |
WO2007023678A1 (en) | Composite titanic acid coating film and composite titanic acid-coated resin substrate | |
Zarki et al. | Grafted sepiolite as smart nanocontainer for Daphne Gnidium plant extract: PH-dependent controlled release and effective green anti-corrosion coating | |
WO2007023679A1 (en) | Light-resistant titanic acid coating film and resin bases with the coating film | |
CN115838544B (en) | Novel barrier shield pigment of modified layered silicate and preparation method thereof | |
FI75102C (en) | VATTENFRITT VAETSKESYSTEM, SOM INNEHAOLLER ORGANOFIL LERKOMPOSITION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19938949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19938949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |