WO2021009829A1 - Light source device for endoscope and endoscope device - Google Patents
Light source device for endoscope and endoscope device Download PDFInfo
- Publication number
- WO2021009829A1 WO2021009829A1 PCT/JP2019/027865 JP2019027865W WO2021009829A1 WO 2021009829 A1 WO2021009829 A1 WO 2021009829A1 JP 2019027865 W JP2019027865 W JP 2019027865W WO 2021009829 A1 WO2021009829 A1 WO 2021009829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- region
- amount ratio
- observation
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
Definitions
- the present invention relates to a light source device for an endoscope, an endoscope device, and the like.
- the light source device used for the endoscope device a method using a plurality of light sources that emit light having different wavelengths is known.
- a light source device is disclosed in, for example, Patent Document 1.
- the light source device of Patent Document 1 includes a blue laser, a green laser, and a red laser, the wavelength of the blue laser is the peak wavelength of the hemoglobin absorption spectrum, and the wavelength of the green laser and the red laser is the non-peak of the hemoglobin absorption spectrum.
- the blue laser improves the visibility of the surface blood vessels, and the illumination light has whiteness due to the light amount ratio of the blue laser, the green laser, and the red laser.
- a xenon lamp or the like having a continuous spectrum has been used as a white light source in an endoscope device.
- the function as white light is, for example, lesion drawing output or color tone of an image.
- One aspect of the present invention includes a light source unit that emits light having peak wavelengths different from each other and includes four or more light sources that can independently control the amount of light of each light source and generates illumination light to irradiate an observation object.
- the light amount ratio setting value includes a light source controller that controls the light amount of the four or more light sources based on the light amount ratio setting value that sets the light amount ratio of the four or more light sources, and the light amount ratio setting value relates to the color balance of the illumination light. It is a value that sets the first light amount ratio and the second light amount ratio regarding the degree of emphasis that the illumination light emphasizes the observation object in the region of interest, and the light sources of 4 or more peak in the first wavelength region.
- a first light source that emits light having a wavelength and a second light source that emits light having a peak wavelength in the second wavelength region are included, and the first wavelength region and the second wavelength region are blue region and green.
- the absorption intensity of the light absorption spectrum of the observation object in the first wavelength region is in the second wavelength region. It is relatively larger than the absorption intensity of the light absorption spectrum of the observation object, and the first light amount ratio is blue light amount which is the light amount of the illumination light in the blue region and green which is the light amount of the illumination light in the green region. It relates to a light source device for an endoscope, which is a ratio of the amount of light and the amount of red light, which is the amount of illumination light in the red region.
- an endoscope device including the above-mentioned light source device for an endoscope and an imaging unit for imaging the observation object irradiated with the illumination light.
- Configuration example of the endoscope device An example of the spectrum of illumination light in the basic configuration. An example of setting the second light intensity ratio that satisfies the visibility improvement requirement. Light absorption spectrum of hemoglobin. The figure explaining the division of the visible light wavelength region by the combination of the visibility improvement wavelength region and the color region.
- Detailed configuration example of the light source device An example of the illumination light spectrum in the first embodiment. An example of wavelength characteristics of a blue-green region cut filter. An example of the spectrum of illumination light when a blue-green region cut filter is inserted into the optical path. Examples of transmittance characteristics of the dichroic filter in the first embodiment and the second embodiment. An example of wavelength characteristics of a dichroic filter in a modified example of the second embodiment.
- Absorption spectrum of indocyanine green An example of an illumination light spectrum that emphasizes indocyanine green.
- Absorption spectrum of indigo carmine An example of an illumination light spectrum that emphasizes indigo carmine.
- Absorption spectrum of crystal violet An example of an illumination light spectrum that emphasizes crystal violet.
- Absorption spectrum of Lugol's solution An example of an illumination light spectrum that emphasizes Lugol's solution.
- FIG. 1 is a configuration example of the endoscope device 10.
- the configuration and operation common to general endoscopes will be omitted, and the features related to the present invention will be mainly described.
- a medical endoscope for digestive organs will be described as an example, but the scope of application of the present invention is not limited to this. That is, the endoscope referred to in the present specification refers to a general device provided with an insertion portion for observing the inner surfaces of recesses of various subjects.
- an endoscope is a medical endoscope used for examination or surgery of a living body.
- the endoscope device 10 of FIG. 1 includes a control device 100, a scope 200, a display unit 300, and an input unit 600.
- the display unit 300 is also referred to as a display or a display device.
- the input unit 600 is also called an input device or an operation device.
- the scope 200 is composed of an insertion unit 210, an operation unit 220, a connection cable 230, and a connector 240.
- the insertion portion 210 has flexibility and can be inserted into the body cavity of a living body.
- the body cavity of the living body is the subject in the present embodiment.
- a user such as a doctor grips the operation unit 220 and operates the endoscope device 10 using the operation unit 220.
- the connection cable 230 is a cable that connects the control device 100 and the scope 200, and has flexibility.
- the connector 240 is provided at one end of the connection cable 230, and makes the control device 100 and the scope 200 detachable.
- illumination lenses 211 and 212 that emit illumination light toward the subject, and an imaging unit 213 that captures an image by receiving the illumination light reflected or scattered from the surface of the subject. Have been placed.
- the scope 200 is provided with a light guide 214.
- the light guide 214 is optically connected to the illumination lenses 211 and 212.
- the control device 100 is provided with a light source unit 140, and the light guide 214 guides the illumination light emitted from the light source unit 140 to the illumination lenses 211 and 212.
- the light guide 214 is a light guide for an optical fiber bundle or the like. The light guide extends from the connector 240 to the illumination lenses 211 and 212 via the connection cable 230 and the operation unit 220.
- the illumination lenses 211 and 212 spread the illumination light guided by the light guide so as to have a desired radiation angle.
- Each of the illumination lenses 211 and 212 is an illumination optical system composed of a single lens or a plurality of lenses.
- the image pickup unit 213 has an image pickup optical system and an image pickup element.
- the image sensor is, for example, a CMOS image sensor.
- the imager is a Bayer type imager equipped with RGB primary color filters arranged in a Bayer type, a complementary color imager equipped with a complementary color filter, or a monochrome imager. Monochrome imagers are used for surface-sequential scopes.
- CMOS imager it is also possible to use a CCD as the image sensor.
- the scope 200 is provided with an image signal line 215, and transmits the image signal of the image captured by the image pickup unit 213 to the control device 100.
- the image signal line 215 is arranged in the insertion unit 210, the operation unit 220, and the connection cable 230, and is connected so as to be able to transmit a video signal to the control device 100 via the connector 240.
- the image signal line 215 may be an optical fiber or the like for optical communication.
- the control device 100 includes a light source device 160 that emits illumination light and a processing circuit 110.
- the processing circuit 110 performs image processing on the image signal from the image pickup unit 213 and controls each part of the endoscope device 10.
- the processing circuit 110 is realized by a circuit device in which a plurality of circuit components are mounted on a board.
- the processing circuit 110 may be a processor or an integrated circuit device such as an ASIC (Application Specific Integrated Circuit).
- ASIC Application Specific Integrated Circuit
- the operation of the processing circuit 110 is realized by the processor executing a program that describes the operation of the processing circuit 110.
- the program is stored in, for example, a memory (not shown).
- the display unit 300 displays an image of the subject image processed by the processing circuit 110.
- the display unit 300 is a variety of commonly used display devices, such as a liquid crystal monitor.
- the display unit 300 is electrically connected to the control device 100 by an electrical wiring that transmits an image signal.
- the input unit 600 receives an operation from the user and outputs the operation information to the processing circuit 110.
- the input unit 600 is, for example, a button or dial, a keyboard, a mouse, a touch panel, or the like.
- the touch panel may be provided on the display unit 300.
- the input unit 600 may be an interface connected to an information processing device such as a PC (Personal Computer).
- the interface receives the input information from the information processing apparatus and outputs the input information to the processing circuit 110.
- the interface is, for example, a communication interface such as USB (Universal Serial Bus) or LAN (Local Area Network).
- the light source device 160 includes a light source unit 140 that emits illumination light and a light source controller 150 that controls the light source unit 140.
- the light source unit 140 has four or more light sources that emit four or more lights having different wavelengths from each other.
- the light source unit 140 enters the scope 200 using the four or more lights as illumination light.
- Each light source is, for example, an LED (Light Emitting Diode), a semiconductor laser, or an SLD (Super Luminescent Diode).
- each light source may be a light source in which a laser and a phosphor are combined.
- SLD Super Luminescent Diode
- by combining a phosphor and a laser light of various wavelengths can be emitted with high brightness.
- a laser high-intensity light can be guided to a light guide with high efficiency.
- a light source that combines lamp light and a filter may be used.
- the filter is provided on the optical path from the lamp to the incident end of the light guide.
- the rotation filter has a plurality of filters having different transmission wavelengths from each other, and the rotation of the rotation filter realizes the emitted light of each light source.
- the wavelength region of visible light includes a red region, a green region, and a blue region.
- One of the four or more lights constituting the illumination light belongs to each of these regions.
- two or more of the four or more lights belong to any of the red region, the green region, and the blue region.
- the color region to which the two or more lights belong is referred to as a first same color region.
- the two or more lights belonging to the first same color region one has a peak wavelength in the first wavelength region and the other has a peak wavelength in the second wavelength region.
- a light source that emits light having a peak wavelength in the first wavelength region is called a first light source
- a light source that emits light having a peak wavelength in the second wavelength region is called a second light source.
- a detailed example of the illumination light will be described later.
- the absorption intensity of the light absorption spectrum of the observation object in the first wavelength region is relatively larger than the absorption intensity of the light absorption spectrum of the observation object in the second wavelength region.
- the first wavelength region is also referred to as a visibility improving wavelength region
- the second wavelength region is also referred to as a visibility non-improving wavelength region.
- the visibility-enhancing wavelength region is a wavelength region that emphasizes the observation object in the light absorption spectrum of the observation object existing in the region of interest (ROI: Region Of Interest). By emphasizing the observation object in the region of interest with the illumination light, the visibility of the region of interest is enhanced in the image in which the region of interest is captured.
- the area of interest is an area of interest of a doctor in a subject, for example, a lesion that is desired to be found in screening, a lesion that is the target of examination or treatment, or a tissue that is to be identified in examination or treatment.
- the object to be observed is a substance or a drug contained in a living body.
- the substance contained in the living body is, for example, hemoglobin or ⁇ -carotene.
- the drug is sprayed on the surface of the subject or injected into a blood vessel.
- the agent is, for example, indocyanine green, indigo carmine, crystal violet or Lugol's solution.
- the object to be observed is not limited to any one of the above, and may be at least one of the above. That is, the observation object may include two or more of the above.
- the light source controller 150 can include, for example, a drive circuit that drives the light source and a control circuit or processor that controls the drive circuit.
- the light source controller 150 may be a control circuit or a processor that controls the drive circuit of the light source.
- the light source controller 150 independently adjusts the light intensity of each of the above 4 or more lights based on the light intensity ratio set value.
- the light amount ratio setting value is a value for setting the first light amount ratio and the second light amount ratio.
- the first light amount ratio relates to the color balance of the illumination light.
- the second light amount ratio relates to the degree of emphasis that the illumination light emphasizes the observation object in the region of interest.
- the first light amount ratio is the ratio of the blue light amount, the green light amount, and the red light amount.
- the amount of blue light is the amount of illumination light in the blue region
- the amount of green light is the amount of illumination light in the green region
- the amount of red light is the amount of illumination light in the red region.
- the second light amount ratio is the light amount ratio of the first light source and the second light source determined based on the magnitude relationship in the light absorption spectrum of the observation object. That is, the second light amount ratio is a light amount ratio of light having a peak wavelength in the visibility improving wavelength region and light having a peak wavelength in the visibility non-improving wavelength region.
- the light source controller 150 adjusts the color balance of the illumination light and the degree of emphasis of the region of interest by adjusting the light amount ratio of 4 or more based on the light amount ratio set value.
- the color balance is the balance of red, green, and blue in the illumination light, for example, the color temperature of the illumination light.
- the degree of emphasis is the contrast between the observation object in the region of interest and the other region. That is, since the illumination light is absorbed based on the absorption spectrum of the observation object, the observation object has a larger absorbance than the other regions. As a result, the observation object becomes darker than the other areas, so that a contrast between the observation object and the other areas occurs. This contrast emphasizes the area of interest that includes the object to be observed.
- the light amount ratio set value may be one light amount ratio that realizes the first light amount ratio and the second light amount ratio at the same time, or the first light amount ratio and the second light amount ratio are specified separately. May be good.
- a semiconductor light source has a correlation between a current value and a light emission amount.
- the light amount ratio setting value may specify the current value that realizes the first light amount ratio and the second light amount ratio.
- the light amount ratio set value is stored in the light amount ratio storage unit.
- the light amount ratio storage unit is included in the light source device 160, and is included in, for example, the light source controller 150 as described later.
- the light source controller 150 controls the illumination light based on the light amount ratio set value read from the light amount ratio storage unit.
- the light amount ratio set value is input to the processing circuit 110 via the input unit 600.
- the light source controller 150 controls the illumination light based on the light amount ratio set value from the processing circuit 110.
- the light source controller 150 controls the amount of light emitted from the light source.
- the light source is a light emitting diode
- current dimming the light source controller 150 adjusts the amount of light by changing the drive current that drives the light emitting diode.
- PWM dimming the light source controller 150 adjusts the amount of light by changing the light emission time within a predetermined imaging period.
- pulse number dimming the light source controller 150 adjusts the amount of light by changing the number of pulses to be emitted within a predetermined imaging period. Further, the light source controller 150 may use two or three of these three dimming methods in combination.
- the whiteness of the illumination light and the emphasis of the area of interest are both desired.
- a user of an endoscopic apparatus makes a diagnosis based on the color of a subject in an endoscopic image, and in the diagnosis, the literature or past experience is referred to.
- the whiteness of the illumination light is required in order to utilize the literature or past experience.
- the light source controller 150 adjusts the light amount ratio of four or more lights constituting the illumination light based on the light amount ratio set value to enhance the color balance of the illumination light and the region of interest. Adjust the degree. This makes it possible to independently adjust the color balance of the illumination light and the degree of emphasis of the region of interest. For example, by adjusting the light amount ratio of four or more lights constituting the illumination light, it is possible to realize whiteness that makes the best use of literature or past experience, and to emphasize the region of interest by the illumination light.
- the light source controller 150 adjusts the ratio of the amount of blue light, the amount of green light, and the amount of red light based on the first light amount ratio. Moreover, the light source controller 150 adjusts the amount of light of two or more lights belonging to the same color region based on the second light amount ratio.
- the first light amount ratio is the light amount ratio that sets the color balance of the illumination light
- the second light amount ratio is the light amount ratio that sets the degree of emphasis of the region of interest. That is, the light source controller 150 sets the color balance of the illumination light by the first light amount ratio, and adjusts the emphasis degree of the region of interest based on the second light amount ratio while maintaining the color balance. As a result, the color balance of the illumination light and the degree of emphasis of the area of interest are adjusted independently, and the target color balance and the degree of emphasis of the area of interest are realized.
- FIG. 2 is an example of a spectrum of illumination light in the basic configuration. Here, an example of using six color light sources having different peak wavelengths will be described.
- the visible light region is divided into a blue region, a green region, and a red region.
- the light source unit 140 generates two narrow wavelength region lights in each color region.
- the light source unit 140 includes six light sources that generate light IV, IB, IG1, IG2, IA, and IR.
- the light IV and IB belong to the wavelength regions BV and BB obtained by dividing the blue region.
- BV is on the shorter wavelength side than BB.
- the optical IG1 and IG2 belong to the wavelength regions BG1 and BG2 in which the green region is divided.
- BG1 is on the shorter wavelength side than BG2.
- the optical IA and IR belong to the wavelength regions BA and BR in which the red region is divided. BA is on the shorter wavelength side than BR.
- the spectrum of each light and the spectrum adjacent to it are in contact with each other at the hem. That is, there is no region where there is no light component over the entire wavelength region of visible light, and there is no region where the wavelength component is missing in the illumination light.
- Each region of BV, BB, BG1, BG2, BA, and BR corresponds to the spectral characteristics of the region of interest.
- each wavelength region of BV, BG2, and RA is a visibility improvement wavelength region corresponding to a wavelength region in which visibility can be improved.
- Each of the wavelength regions of BB, BG1, and BR is a non-improved visibility wavelength region corresponding to a wavelength region in which visibility is not relatively improved as compared with the “improved visibility wavelength region”.
- the light IV included in the wavelength region BV can improve the visibility of the region of interest relatively included in the surface layer.
- the optical IG2 included in the wavelength region BG2 can improve the visibility of the region of interest relatively included in the middle layer.
- the optical IA included in the wavelength region BA can improve the visibility of the region of interest included in a relatively deep layer. Therefore, by setting the light amounts of IV, IG2, and IA relatively large, the visibility of the region of interest can be improved. This requirement is called the visibility improvement requirement.
- the light intensity ratio of IV + IB: IG1 + IG2: IA + IR is the above-mentioned first light intensity ratio.
- the first light intensity ratio is about the same as the light intensity ratio of the blue region, the green region, and the red region in the white light source.
- the white light source is a xenon lamp or a halogen lamp.
- White illumination light is realized by this first light amount ratio. Further, by emitting not only the light in the wavelength region with improved visibility but also the light in the wavelength region with non-improved visibility, it is possible to realize the hue and naturalness of the observed image.
- apparent white light can be realized with three colors of light IV, IG2, and IA.
- the wavelength regions of light IB, IG1, and IR are missing, the colors do not look natural depending on the type of subject.
- a subject having high reflectance in the wavelength regions BB, BG1 and BR and low reflectance in the wavelength regions BV, BG2 and BA is observed.
- the image becomes unnaturally darker than when viewed with normal white light, and the hue when viewed with normal white light is lost. I will be broken.
- the spectrum has almost no omission over the entire visible light region, a natural hue can be maintained. If there is no lack of wavelength, it is possible to realize a natural hue by combining with appropriate image processing, even if the spectrum is not necessarily broad.
- FIG. 3 is an example of setting the second light intensity ratio that satisfies the visibility improvement requirement.
- the light amount ratio in the blue region is IV: IB ⁇ 2: 1
- the light intensity ratio in the green region is IG1: IG2 ⁇ 1: 2
- the light intensity ratio in the red region is IA: IR ⁇ 2. It is 1.
- the light amount ratio between the color regions is IB1 + IB2: IG1 + IG2: IR1 + IR2 ⁇ 1: 1: 1. As a result, both can be satisfied.
- the same color region to which the above two or more lights belong may be any of a blue region, a green region, and a red region in FIG.
- the first wavelength region is BV
- the second wavelength region is BB
- the light source that emits IV is the first light source
- the light source that emits IB is the second light source. Is.
- the illumination light is composed of 6 bands of light, but the illumination light may be composed of 4 or more bands of light.
- the illumination light may be composed of 4 or more bands of light.
- one or more lights belong to each of the blue region, the green region, and the red region, and two lights belong to only one of the color regions.
- An example in the case of 5 bands will be described later in the first embodiment.
- the visibility improvement requirements are the following requirements A and B.
- Requirement B is not mandatory but a desirable requirement.
- the visibility improvement requirement defines the above-mentioned second light intensity ratio.
- Requirement A The intensity of light in the wavelength region that contributes to improving the visibility of the region of interest is relatively higher than the intensity of light in the other wavelength regions. For example, light in a wavelength region that contributes to improved visibility can be selected based on the spectral spectrum in the region of interest. In the example of FIG. 3, IV light amount> IB light amount, IG1 light amount ⁇ IG2 light amount, IA light amount> IR light amount. It should be noted that the requirement A is not limited to the case where the requirement A is satisfied in all the color regions, and the requirement A may be satisfied in any one color region.
- Requirement B Light in the wavelength region that contributes to improving the visibility of the region of interest exists in any of the blue region, the green region, and the red region.
- the white light requirements are the following requirements C, D, and E.
- Requirement E is not mandatory but a desirable requirement.
- the white light requirement is a requirement for realizing a hue or naturalness as white light, and defines the above-mentioned first light amount ratio.
- Requirement C Light components are present in any of the blue region, green region, and red region.
- Blue light amount Green light amount: Red light amount is a ratio of approximately white. That is, this ratio is set to be substantially equal to the light amount ratio of the illumination light used in a conventional endoscope such as a xenon lamp, a halogen lamp, or a white LED.
- the ratio of the illumination light may be within a range that can be adjusted to a white balance equivalent to white light in image processing.
- the spectrum of illumination light is a substantially continuous spectrum in the visible light wavelength region.
- the spectrum does not have to be flat, but there is almost no wavelength region where the amount of light is zero. If there is no light in the wavelength region that improves the visibility of the region of interest in any of the blue region, green region, and red region, the hue or naturalness of white light is given priority.
- the spectrum or the amount of light may be set.
- the visible light wavelength region of 400 nm to 700 nm is divided into a blue region, a green region, and a red region.
- the light intensity ratio of the light contained in each color region is set based on the white light requirements of requirements C to E. For example, blue light amount: green light amount: red light amount ⁇ 1: 1: 1.
- the amount of blue light: the amount of green light: the amount of red light may be set to a light amount ratio substantially equal to the color balance in the white light (normal light) of a commercially available endoscope.
- the spectrum pattern in each color region is set based on the visibility improvement requirements of requirements A and B.
- at least one color region of the blue region, the green region, and the red region contains two or more narrow wavelength region lights.
- the narrow wavelength region light has a full width at half maximum of 50 nm or less.
- the light intensity ratio of two or more narrow wavelength region lights belonging to the same color region is set based on which wavelength region contributes to the improvement of visibility.
- the depth at which the illumination light travels inside the living body tissue differs depending on the wavelength. That is, light having a short wavelength such as blue can travel only to the surface layer, but travels from the middle layer to the deep layer as the wavelength becomes longer.
- the region of interest is concentrated on the surface layer or deep layer of living tissue, only the light in the color region that can travel to that depth contributes to the improvement of visibility.
- the region of interest extends from the surface layer to the deep layer, light of a plurality of wavelengths corresponding to each depth contributes to the improvement of visibility.
- the spectral pattern can be set based on the spectral characteristics of each area of interest or the depth at which each area of interest exists.
- the spectrum pattern is set from information such as wavelengths that contribute to improving the visibility of each region of interest and wavelengths that do not.
- Areas of interest include, for example, areas where the color tone has changed compared to normal mucosa, blood vessel patterns, blood vessel structures, surface structures of living tissues, and the like.
- the light amount ratio in each color region is set so as to improve the visibility of these attention regions.
- the first embodiment will be described with an example of assuming a shape or pattern of a blood vessel as a region of interest. That is, in the first embodiment, the observation object included in the region of interest is hemoglobin.
- FIG. 4 is a light absorption spectrum of hemoglobin contained in blood.
- the dotted HBA is the absorption spectrum of oxidized hemoglobin associated with oxygen.
- HBB shown by a solid line is an absorption spectrum of reduced hemoglobin from which oxygen has been removed.
- the two spectra HBA and HBB have substantially similar characteristics. That is, the spectra HBA and HBB have maximum absorption in the range of 410 nm to 440 nm and 520 to 580 nm, and minimum absorption in the range of 470 nm to 500 nm and 630 nm to 720 nm. On the longer wavelength side than 730 nm, the spectrum HBB of reduced hemoglobin has a maximum near 750 nm, and the absorbance of the oxidized hemoglobin spectrum HBA gradually increases toward the long wavelength side.
- Light having a peak near the maximum of the absorption spectrum has a higher rate of absorption by hemoglobin than light in other wavelength regions. Therefore, when observed with light having a peak near the maximum of the absorption spectrum, the contrast between the blood vessel and the surrounding tissue becomes high. As a result, the visibility of blood vessels containing a large amount of hemoglobin is relatively improved. On the contrary, light having a peak near the minimum of the absorption spectrum is less likely to be absorbed by hemoglobin as compared with light in other wavelength regions. Therefore, when observing with light having a peak near the minimum of the absorption spectrum, the contrast between the blood vessel and the surrounding tissue becomes low, so that the visibility of the blood vessel becomes low.
- the visible light wavelength region is divided into the following wavelength regions.
- ⁇ is the wavelength.
- Visibility improvement region VA 400 nm ⁇ ⁇ ⁇ 450 nm
- Non-visibility improvement region NVA 450 nm ⁇ ⁇ ⁇ 510 nm
- Visibility improvement region VB 510 nm ⁇ ⁇ ⁇ 615 nm
- Non-visibility improvement region NVB 615 nm ⁇ ⁇ ⁇ 740 nm
- Visibility improvement region VC 740 nm ⁇ ⁇ ⁇ 790 nm
- the visibility improvement region VA is a wavelength region including an absorption maximum in the vicinity of 410 nm to 440 nm.
- the non-visibility improvement region NVA is a wavelength region including an absorption minimum in the vicinity of 470 nm to 500 nm.
- this wavelength region is included in VA and NVA with 450 nm as a boundary, but the wavelength of the boundary may be arbitrary between 440 nm and 470 nm.
- the visibility improvement region VB is a wavelength region including an absorption maximum in the vicinity of 520 nm to 580 nm, and is set to 510 nm to 615 nm including the boundary region.
- the non-visibility improvement region NVB is a wavelength region including an absorption minimum in the vicinity of 630 nm to 730 nm, and is set to 615 nm to 740 nm including the boundary region.
- the visibility improvement region VC is a wavelength region including the absorption maximum of reduced hemoglobin, and is set to a wavelength region longer than 740 nm.
- Visibility improvement area When illuminated with light of wavelengths included in VA, VB, and VC, the visibility of blood vessels is relatively improved. On the other hand, when illuminated with light having a wavelength included in the non-visibility improving regions NVA and NVB, it is difficult to improve the visibility of blood vessels.
- the penetration depth of light into the living body differs depending on the wavelength. That is, light on the short wavelength side is easily absorbed / scattered on the surface of living tissue, and as the wavelength becomes longer, it easily penetrates deep inside the living body.
- blood vessels in the stomach and intestines have thin capillaries near the surface and slightly thick blood vessels in the middle to deep layers. Therefore, the visibility of the blood vessels on the surface layer is improved by the light in the wavelength region of the visibility improvement region VA.
- Visibility improvement region Light in the wavelength region of VB improves the visibility of blood vessels in the middle layer.
- Visibility Improvement Region The visibility of deep blood vessels is improved by the light in the wavelength region of VC.
- visible light having a diameter of about 400 nm to 680 m is used.
- This visible light region is generally classified into three color regions, a blue region, a green region, and a blue region. For example, it can be classified as follows based on the spectral characteristics of the color filter of the image sensor.
- ⁇ is the wavelength. Blue region: 400 nm ⁇ ⁇ ⁇ 495 nm Green region: 495 nm ⁇ ⁇ ⁇ 585 nm Red region: 585 nm ⁇ ⁇ ⁇ 680 nm
- the illumination light becomes white light when the amount of light in these three color regions is approximately 1: 1: 1.
- the spectral spectrum in each color region does not necessarily have to be broad, and may be illumination light having a maximum and a minimum. Further, even if there is a wavelength loss, white as illumination light can be realized.
- the color tone may be uncomfortable depending on the subject.
- R: G: B ⁇ 1: 1: 1 1, a natural hue and a natural hue can be realized.
- a combination of a xenon lamp, a halogen lamp, a white LED, or a multicolor LED is used in a general endoscope.
- the amount of blue light the amount of green light: the amount of red light ⁇ 1: 1: 1.
- the light of xenon lamps and halogen lamps generally used in conventional endoscopes is generally broad in the visible light wavelength region, and there is no wavelength loss.
- wavelength omission exists depending on the wavelength and spectrum width of the LED.
- the spectral reflectance is also continuous, so the effect of wavelength loss is not large, but the color information is still missing, so compared to normal light observation light.
- the color of the image may change.
- a continuous spectrum having no wavelength loss in the visible light wavelength region or a spectrum having substantially no wavelength loss is used. Therefore, the change in color due to the lack of color information is small.
- the color of the illumination light with peaks and bottoms in the spectrum may change.
- the color information in the bottom region is not zero, the color information in the bottom region can be acquired. Therefore, by combining with appropriate image processing, it is possible to provide an image equivalent to that in the case of broad illumination light.
- FIG. 5 is a diagram illustrating division of a visible light wavelength region by a combination of a visibility improving wavelength region and a color region. It is divided into the following six wavelength regions by the combination of the visibility improving wavelength region and the color region.
- ⁇ is the wavelength.
- Wavelength region RA A wavelength region included in the visibility improvement region VA in the blue region. 400nm ⁇ ⁇ ⁇ 450nm
- Wavelength region RB A wavelength region included in the invisible improvement region NVA in the blue region.
- Wavelength region RC A wavelength region included in the invisible improvement region NVA in the green region.
- Wavelength region RD A wavelength region included in the visibility improvement region VB in the green region.
- Wavelength region RE A wavelength region included in the visibility improvement region VB in the red region. 585 nm ⁇ ⁇ ⁇ 615 nm
- Wavelength region RF A wavelength region included in the invisible improvement region NVB in the red region. 615 nm ⁇ ⁇ ⁇ 680 nm
- the absorption spectrum of the wavelength region RA belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RB belonging to the non-visibility improving region.
- the absorption spectrum of the wavelength region RD belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RC belonging to the non-visibility improving region.
- the absorption spectrum of the wavelength region RE belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RF belonging to the non-visibility improving region.
- the magnitude of the absorption spectrum is compared with the maximum value of the spectrum in the wavelength region.
- the magnitude of the absorption spectrum may be compared by the average value of the spectra in the wavelength region.
- the near-ultraviolet region of less than 400 nm and the near-infrared region of more than 680 nm are not mentioned.
- near-infrared light is effective when observing blood vessels in a deeper layer.
- the visibility improvement effect can be achieved.
- near-ultraviolet light of 380 nm to 400 nm there is a possibility that blood vessels in the polar surface layer can be observed with good contrast.
- FIG. 6 is a detailed configuration example of the light source device 160. Note that only the connector of the scope 200 and the light guide 214 are shown in FIG. 6, and the other components are not shown.
- the light source unit 140 includes a light source LDV that emits purple light IV, a light source LDB that emits blue light IB, a light source LDG that emits green light IG, a light source LDA that emits amber light IA, and red. Includes a light source LDR that emits the light IR of the above, and an optical combine unit 141. Further, the light source unit 140 may further include a lens or the like for changing the light distribution of the light source or making it parallel light.
- the light combining unit 141 combines the above five colors of light and causes the light guide 214 to enter the incident end.
- the optical combiner section 141 is a dichroic filter DC1 to DC4 that combine light IV, IB, IG, IA, and IR.
- the optical combiner 141 may be an optical fiber or an optical fiber bundle having five incident ends and one outgoing end.
- the LED light incident on the light guide 214 is guided to the tip of the scope by the light guide 214 and is irradiated toward the subject.
- the light sources LDV and LDB are InGaN-based LEDs.
- the light sources LDA and LDR are AlGaInP-based LEDs.
- the light source LDG is a so-called hybrid type LED in which an InGaN-based blue LED is used as excitation light and green light is emitted from a phosphor coated on the LED light emitting surface.
- Each LED of the light source LDV, LDB, LDA, and LDR generates light in a narrow wavelength region having a half width of about 20 to 40 nm.
- the LED of the light source LDG emits relatively broad wide wavelength region light having a half width of 50 nm or more.
- the peak wavelengths of the light generated by the light sources LDV, LDB, LDG, LDA, and LDR are 415 nm, 460 nm, 540 nm, 600 nm, and 630 nm, respectively.
- FIG. 7 is an example of the illumination light spectrum in the first embodiment.
- the light IV having a peak wavelength of 415 nm generated by the light source LDV is included in the wavelength region RA that relatively improves visibility.
- the light IB having a peak wavelength of 460 nm generated by the light source LDB is included in the wavelength region RB that does not relatively improve visibility.
- the optical IG having a peak wavelength of 540 nm generated by the light source LDG is included in the wavelength region RD that relatively improves visibility.
- the light IA having a peak wavelength of 600 nm generated by the light source LDA is included in the wavelength region RE that relatively improves visibility.
- the optical IR having a peak wavelength of 630 nm generated by the light source LDR is included in the wavelength region RF that does not relatively improve visibility.
- the light source controller 150 emits light from the light sources LDV, LDB, LDG, LDA, and LDR by outputting a drive current to the light sources LDV, LDB, LDG, LDA, and LDR.
- the light source controller 150 sequentially causes the light sources LDV, LDB, LDG, LDA, and LDR to emit light according to a predetermined light emission sequence.
- the image sensor of the scope is a primary color Bayer type or a complementary color type
- the light source controller 150 simultaneously emits light sources LDV, LDB, LDG, LDA, and LDR.
- the light source controller 150 includes a light amount ratio storage unit 151 and a light amount ratio control circuit 152.
- the light amount ratio storage unit 151 stores the light amount ratio set value. For example, the light amount ratio set value is written in advance in the light amount ratio storage unit 151 at the time of manufacturing the endoscope device.
- Various storage devices can be assumed as the light amount ratio storage unit 151.
- the light amount ratio storage unit 151 is a semiconductor memory such as a RAM or ROM or a non-volatile memory.
- the light amount ratio storage unit 151 may be a magnetic storage device such as a hard disk drive.
- the light amount ratio control circuit 152 controls the light amount ratio of the light emitted by the light sources LDV, LDB, LDG, LDA, and LDR based on the light amount ratio set value read from the light amount ratio storage unit 151.
- the light amount ratio set value includes the first light amount ratio and the second light amount ratio.
- the color balance is set by the first light intensity ratio, and the degree of emphasis of the region of interest is set by the second light intensity ratio.
- the endoscope device of the present embodiment can switch between several observation modes according to the purpose. That is, it is possible to selectively switch between a screening mode, a WLI (White Light Imaging) mode, and three types of special light observation modes.
- the screening mode is also referred to as a first normal light observation mode, and the WLI mode is also referred to as a second normal light observation mode.
- the screening mode is an observation mode that achieves both whiteness and improved visibility.
- the WLI mode corresponds to a general white light observation mode.
- the special light observation mode is an NBI (Narrow Band imaging) mode capable of emphasizing surface blood vessels, an AFI (AutoFluorescence Imaging) mode capable of observing fluorescence, and an RDI mode capable of emphasizing deep blood vessels.
- An observation mode selection switch is provided at least one of the operation unit 220 of the scope 200, the input unit 600 of the control device 100, and the light source device 160.
- the user selects the observation mode by operating the observation mode selection switch.
- the selected observation mode information is transmitted to the light amount ratio control circuit 152.
- the observation mode information is transmitted from the input unit 600 to the light amount ratio control circuit 152 via the processing circuit 110.
- the light amount ratio control circuit 152 reads out the light amount ratio set value corresponding to the selected observation mode from the light amount ratio storage unit 151, and controls the light amount ratio according to the light amount ratio set value. Specifically, when the screening mode is selected, the light amount ratio control circuit 152 controls the light amount ratio according to the first normal light observation set value. When the WLI mode is selected, the light amount ratio control circuit 152 controls the light amount ratio according to the second normal light observation set value. Even when the special light observation mode is selected, the light amount ratio setting value corresponding to each mode is used.
- the light amount ratio storage unit 151 stores the light amount ratio in each observation mode and the type of LED to emit light as a light amount ratio set value. In other words, depending on the observation mode, all five LEDs may be made to emit light, or only some LEDs may be made to emit light. Further, the image processing or the like may be changed according to the observation mode. It is also preferable that the image processing circuit (not shown) selects and processes the corresponding image processing based on the information of the selected observation mode.
- the light source controller 150 may have a dimming function that adjusts the amount of light of each light source according to the brightness of an image or the like.
- Dimming is a function of adjusting the amount of light of a light source so that the image becomes appropriate brightness according to a situation such as a change in the distance between the tip of the scope and the subject or the reflectance of the subject.
- the light source controller 150 performs dimming by increasing or decreasing the amount of light of the entire illumination light while maintaining the ratio of the amount of light of the five light sources.
- the illumination light is white light.
- the light source controller 150 causes the five light sources LDV, LDB, LDG, LDA, and LDR to emit light based on the second normal light observation set value.
- the light intensity ratio is set so that an image substantially equal to an image obtained by a conventional endoscopic light source such as a xenon lamp can be obtained. That is, when the light amounts of the light sources LDV, LDB, LDG, LDA, and LDR are Vp, Bp, Gp, Ap, and Rp, respectively, (Vp + Bp): Gp: (Ap + Rp) ⁇ 1: 1: 1.
- the ratios of (Vp + Bp), Gp, and (Ap + Rp) are 0.9 or more and 1.1 or less, respectively.
- the white condition is not limited to this, and may be a range of a ratio that can be adjusted to white by adjusting image processing, a display device, or the like.
- Vp: Bp and Ap: Rp are set so that the tint of the acquired image is substantially equal to that of the conventional white light observation image. That is, it is set based on the color expression in white light observation.
- the light intensity ratios Vp / Bp and Ap / Rp based on the color representation are both smaller than 1. More preferably, Vp / Bp and Ap / Rp are both 0.5 or more and 0.9 or less. For example, when Vp / Bp and Ap / Rp are 0.5, respectively, Vp: Bp: Gp: Ap: Rp ⁇ 0.33: 0.66: 1.0: 0.33: 0.66.
- the special light observation mode is a mode for observing with illumination light having a special spectral pattern according to the observation purpose, as represented by the NBI mode and the like.
- NBI is an observation mode in which the visibility of blood vessels in the surface layer to the middle layer is improved by using bluish-purple light in the vicinity of 415 nm and green light in the vicinity of 540 nm.
- the basic operation when the special light observation mode is selected as the observation mode is almost the same as that in the WLI mode.
- the endoscope device in this embodiment can be selected from a plurality of special light observation modes such as NBI, AFI, and RDI, and can be selected according to the purpose.
- the NBI mode is an observation mode for improving the visibility of lesions such as cancer, and lights the light sources LDV and LDG.
- the AFI mode is a mode for observing autofluorescence, and lights the light sources LDV and LDG.
- the light sources that light up in NBI mode and AFI mode are the same, but the light intensity ratios are different from each other.
- the NBI and AFI spectra are different depending on the observation mode compatible filter. That is, the spectra of NBI and AFI are adjusted so as to be optimal for NBI observation and AFI observation, respectively.
- the observation mode compatible filter is inserted in the optical path.
- the RDI mode is an observation mode that improves the visibility of deep blood vessels or bleeding points, and lights the light sources LDB, LDA, and LDR.
- the observation mode compatible filter inserts an RDI object into the optical path.
- the light amount ratio in the special light observation mode is set based on the target function of each observation mode, for example, the degree of improvement in the visibility of the feature portion.
- the color representation of the special light observation mode is also set based on the target function of the observation mode, and is generally different from the color representation of the normal light observation image. ..
- the screening mode is an observation mode for the purpose of observation for finding lesions, so-called screening, mainly in situations such as health examinations. Therefore, the visibility of the lesion or the like is higher than that of the WLI mode, and the color expression is more natural than that of the special light mode. As a result, it is possible to prevent the lesion from being overlooked and to realize a natural color to observe without discomfort.
- the purpose of general special light is to make it easier to judge the visibility of the lesion and the condition of the lesion, and the color tone is set to be optimal for the purpose, so the appearance is different from white light. .. For this reason, some doctors may feel tired easily. By achieving both color and visibility, it is possible to realize screening that is less likely to cause fatigue even during long hours of work like white light and is less likely to be overlooked like special light.
- the five color light sources LDV, LDB, LDG, LDA, and LDR are made to emit light based on the set values for the first normal light observation.
- the light intensity ratio of the five color light sources is set to be (Vp + Bp): Gp: (Ap + Rp) ⁇ 1: 1: 1.
- Vp / Bp and Ap / Rp are set to improve the visibility of lesions and the like.
- the setting is based on the spectral characteristics of hemoglobin, which is a common characteristic substance in the field of medical endoscopy.
- Both Vp / Bp and Ap / Rp are larger than 1 and 3 or less. More preferably, Vp / Bp and Ap / Rp are both 1.2 or more and 2.2 or less. These values were determined based on experiments in which vascular contrast was observed while changing the light intensity ratio. For example, when both Vp / Bp and Ap / Rp are 2.0, Vp: Bp: Gp: Ap: Rp ⁇ 0.66: 0.33: 1.0: 0.66: 0.33.
- the method of setting the light intensity ratio in the WLI mode and the screening mode will be described in detail. First, the WLI mode will be described.
- the light intensity ratio is set so that the color of the illumination light is natural white light and the color expression is equivalent to that of the conventionally used xenon lamp.
- the detailed ratio needs to be set according to the peak wavelength and the spectrum pattern of each LED. Further, in the case of the light amount ratio set in this way, the light amount Vp of the light source LDV that relatively improves the visibility is smaller than the light amount Bp of the light source LDB that does not relatively improve the visibility, so that the visibility improvement level is high. Not expensive compared to special light observation mode.
- the relationship between Ap and Rp is similar.
- the purpose of lighting is to achieve both white light and improved visibility.
- Vp + Bp Gp: (Ap + Rp) ⁇ 1: 1: 1 is set.
- the visibility of the region of interest can be improved by increasing (the amount of light belonging to the visibility improving region) / (the amount of light belonging to the non-visibility improving region) in each color region as compared with the WLI mode. ..
- Vp / Bp and Ap / Rp are each set to a value larger than 1.
- ⁇ and ⁇ are real numbers, and ⁇ ⁇ 0 and ⁇ ⁇ 0.
- Vp / Bp and Ap / Rp are both 0.9 or more. In order to be more effective, it is desirable that both Vp / Bp and Ap / Rp are 1.0 or more.
- Vp / Bp and Ap / Rp are less than 3.0. In order to realize a more comfortable image, it is desirable that Vp / Bp and Ap / Rp are both 2.2 or less.
- ⁇ and ⁇ are real numbers, and 0 ⁇ ⁇ 0.3 and 0 ⁇ ⁇ 0.3.
- ⁇ and ⁇ are real numbers, and 0 ⁇ ⁇ ⁇ 0.19 and 0 ⁇ ⁇ ⁇ 0.19.
- the light source LDG that emits green light is a hybrid light source that combines a blue LED and a phosphor. For this reason, it has a spectral shape with a wide hem on the long wavelength side, but it is desirable to cut the portion protruding into the amber region from the viewpoint of light amount ratio control.
- the dichroic filter DC3 may be provided with a function of cutting the light emitted from the light source LDG that protrudes into the amber region.
- the wavelength region of the emitted light of each light source may be limited according to the observation mode.
- an observation mode-compatible filter is inserted on the optical path according to the selected observation mode.
- the observation mode compatible filter may be a filter used in a conventional endoscope.
- the observation mode compatible filter mounted on the rotating disk (turret) is inserted on the optical path.
- the light amount ratio setting value sets the first light amount ratio corresponding to the white illumination light and the second light amount ratio in which the light amount of the first light source is larger than the light amount of the second light source. It is a value to be used.
- the light source controller 150 sets the light amount ratio of the illumination light based on the light amount ratio set value, so that the illumination light that realizes the first light amount ratio and the second light amount ratio can be generated.
- the light amount ratio set value is the light amount ratio set value in the screening mode.
- the first light amount ratio is a light amount ratio that satisfies the white light requirement
- the second light amount ratio is a light amount ratio that satisfies the visibility improvement requirement.
- the second light intensity ratio may be either Vp / Bp or Ap / Rp.
- the amount of light of the first light source / (the amount of light of the second light source) set as the second light amount ratio is 1.5 or more and 2.2 or less.
- the amount of light of the first light source having a large degree of emphasis in the area of interest can be made larger than the amount of light of the second light source having a small degree of emphasis in the area of interest, so that the visibility of the area of interest can be improved. Further, by setting the ratio to 1.5 or more and 2.2 or less, it is possible to maintain the naturalness of white light and improve the visibility of the region of interest.
- the first light source and the second light source are the light source LDV and the light source LDB, or the light source LDA and the light source LDR.
- the four or more light sources emit a purple light source LDV that emits purple light IV, a blue light source LDB that emits blue light IB, a green light source LDG that emits green light IG, and amber light IA.
- the amber light source LDA and the red light source LDR that emits red light IR are included.
- (Vp + Bp): Gp :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white.
- Vp / Bp and Ap / Rp set as the second light amount ratio are both larger than 1.
- Vp / Bp and Ap / Rp set as the second light intensity ratio are both 1.5 or more and 2.2 or less.
- the blue region and the red region it is possible to maintain the naturalness as white light and improve the visibility of the region of interest.
- the visibility of surface blood vessels and deep blood vessels can be improved, and the naturalness of white light can be maintained.
- the light source controller 150 sets the light amount ratio set value to the first normal light observation set value, and when the second normal light observation mode is set.
- the light amount ratio set value is set to the second normal light observation set value.
- (Vp + Bp): Gp :( Ap + Rp) is a light amount ratio that makes white.
- both Vp / Bp and Ap / Rp are larger than 1.
- both Vp / Bp and Ap / Rp are smaller than 1.
- the first normal light observation mode is the screening mode
- the second normal light observation mode is the WLI mode.
- the application of the first normal light observation mode is not limited to screening. That is, the first normal light observation mode can be used even in a medical examination or surgery where it is necessary to improve the visibility of the region of interest while ensuring the natural color of white light.
- the degree of emphasis of the region of interest is higher in the first normal light observation mode than in the second normal light observation mode.
- Vp / Bp and Ap / Rp are larger than 1 in the first normal light observation set value
- the degree of emphasis of the region of interest becomes relatively large in the first normal light observation mode.
- Vp / Bp and Ap / Rp are both smaller than 1 in the second normal light observation set value
- the degree of emphasis of the region of interest is relatively small in the second normal light observation mode.
- the light source controller 150 sets the light amount ratio set value to the normal light observation set value when the normal light observation mode is set, and sets the light amount ratio set value to the special light amount ratio set value when the special light observation mode is set. Set to the light observation setting value.
- the ratio of the amount of blue light, the amount of green light, and the amount of red light in the set value for normal light observation is relatively closer to 1: 1: 1 than the ratio of the amount of blue light, the amount of green light, and the amount of red light in the set value for special light observation.
- the image may have a color balance different from that of white light in general. Therefore, the amount of blue light: the amount of green light: the amount of red light may be relatively farther than 1: 1: 1 as compared with the normal light observation mode.
- each ratio of the amount of blue light, the amount of green light, and the amount of red light is in the range of 0.9 or more and 1.1 or less.
- the ratio of one or more of the blue light amount, the green light amount and the red light amount is less than 0.9 or larger than 1.1.
- the normal light observation mode is a screening mode or a WLI mode.
- the special light observation mode is an NBI mode, an AFI mode, or an RDI mode.
- the light source unit 140 includes the first to nth light sources as four or more light sources.
- n is an integer of 4 or more.
- the light source controller 150 sets the light amount ratio set value to the first normal light observation set value and causes the first to nth light sources to emit light.
- the second normal light observation mode sets the light source controller 150 sets the light amount ratio set value to the second normal light observation set value and causes the first to nth light sources to emit light.
- the special light observation mode the light source controller 150 sets the light amount ratio set value to the special light observation set value, and emits a plurality of light sources corresponding to the special light among the first to nth light sources.
- the ratio of the blue light amount, the green light amount, and the red light amount is the white light amount ratio.
- the light intensity ratios of the plurality of light sources in the first normal light observation set value are relatively plurality in the special light observation set value as compared with the light intensity ratios of the plurality of light sources in the second normal light observation set value. It is close to the light intensity ratio of the light source.
- the light source controller 150 causes the purple light source LDV and the green light source LDG to emit light. Since Vp / Bp> 1 in the screening mode (first normal light observation mode) and Vp / Bp ⁇ 1 in the WLI mode (second normal light observation mode), Vp / Gp in the screening mode is WLI. It becomes larger than Vp / Gp in the mode. Considering that Vp / Gp> 1 in the NBI mode, it can be said that Vp / Gp in the screening mode is relatively close to Vp / Gp in the special light mode as compared with Vp / Gp in the WLI mode. The same applies to the AFI mode and the RDI mode.
- the light source controller 150 includes a light amount ratio storage unit 151 and a light amount ratio control circuit 152.
- the light amount ratio storage unit 151 stores a plurality of light amount ratio set values corresponding to the plurality of observation modes.
- the light amount ratio control circuit 152 reads out the light amount ratio set value corresponding to the set observation mode among the plurality of observation modes from the light amount ratio storage unit 151, and based on the read-out light amount ratio set value, the light amount of four or more light sources. Control the ratio.
- the illumination light can be switched according to the observation mode selected by the user.
- the illumination light in the WLI mode which is close to the conventional white light such as a xenon lamp
- the illumination light in the screening mode that achieves both the white light requirement and the visibility improvement requirement
- the illumination light in the special light observation mode such as NBI are switched. be able to.
- the light source controller 150 synchronizes the light amounts of four or more light sources based on the light amount ratio set value even when the light amount of the illumination light changes, so that the first light amount ratio and the second light amount are synchronized. Maintain the ratio.
- the amount of illumination light changes by dimming control as described above.
- the light source controller 150 can maintain the first light amount ratio and the second light amount ratio by synchronously changing the light amounts of four or more light sources based on the light amount ratio set value.
- the amount of illumination light can be changed while maintaining both the white light requirement and the visibility improvement requirement.
- a visibility improving region that relatively improves visibility and a non-visibility improving region that does not relatively improve visibility based on the spectral spectrum of the observation object It is divided into and.
- one of the two lights belonging to the same color region belongs to the visibility improving region, and the other belongs to the non-visibility improving region.
- the visible light wavelength region is divided into a blue region, a green region, and a red region.
- the visible light wavelength region is divided into four or more wavelength regions based on the three color regions, the visibility improving region, and the non-visibility improving region.
- the peak wavelengths of the four or more light sources belong to different wavelength regions.
- the visible light wavelength region is divided into six wavelength regions of RA to RF.
- the peak wavelengths of the five optical IVs, IBs, IGs, IAs, and IRs belong to different wavelength regions RA, RB, RD, RE, and RF.
- the object to be observed is hemoglobin.
- the four or more light sources are the five wavelength light sources LDV, LDB, LDG, LDA, and LDR.
- the peak wavelengths of the light IV, IG, and IA emitted by the light sources LDV, LDG, and LDA belong to the visibility improvement region
- the peak wavelengths of the light IB and IR emitted by the light sources LDB and LDR belong to the invisibility improvement region.
- the first light intensity ratio (Vp + Bp): Gp :( Ap + Rp) is set based on the color balance.
- the second light intensity ratios, Vp: Bp and Ap: Rp, are set based on the relative visibility improvement level.
- the endoscope device has a plurality of observation modes, and the light amount ratio of each observation mode is set based on the color balance and the visibility of the region of interest.
- the endoscope device has a WLI mode and a screening mode.
- the light intensity ratio of the light whose peak wavelength belongs to the visibility improving region in the screening mode is relatively higher than the light intensity ratio of the light in the WLI mode.
- the first light amount ratio and the second light amount ratio may be set in consideration of the spectral sensitivity characteristic of the image sensor and the spectral characteristic of the optical member on the optical path.
- the spectral sensitivity characteristics of the image sensor are the element sensitivity and the color filter spectral characteristics.
- the optical members are an optical combine unit 141, a light guide 214, and illumination lenses 211 and 212.
- the light source device 160 has a blue-green region cut filter.
- the blue-green region cut filter cuts the green light emitted by the light source LDG, which is approximately 510 nm or less.
- the green region 495 nm to 510 nm is a non-visibility improvement region RC that does not relatively improve visibility. Therefore, from the viewpoint of improving visibility, it is preferable that there is no light component in the non-visibility improving region RC.
- the target subject of the medical endoscope is the mucous membrane of the stomach, esophagus, large intestine, etc., and the light in the non-visibility improving region RC is generally absorbed. Therefore, the influence on the color expression is limited.
- a blue-green region cut filter is newly provided for the purpose of cutting the light in the non-visibility improvement region RC.
- the non-visibility improvement region RC corresponds to a blue-green region.
- a blue-green region cut filter is inserted after the optical combine section 141 is combined and before the light guide 214 is incident.
- the rotating disk is provided with a plurality of openings, one of which is equipped with a turquoise region cut filter, and the turquoise region cut filter is inserted into the optical path when the screening mode is selected.
- FIG. 8 is an example of the wavelength characteristics of the blue-green region cut filter.
- FIG. 9 is an example of the spectrum of the illumination light when the blue-green region cut filter is inserted into the optical path.
- the blue-green region cut filter cuts light of 495 nm to 510 nm and transmits light of other wavelengths.
- the blue-green region cut filter may have a transmittance of about 0.1 at 495 nm to 510 nm. Thereby, it is also possible to restore the color information in the range of 495 nm to 510 nm by image processing.
- the visibility of the blood vessels in the middle layer can be further improved as compared with the first embodiment.
- the second embodiment can be modified as follows.
- the filter is inserted between the optical combine section 141 and the incident end of the light guide 214, but in the modified example, the wavelength characteristic of the dichroic filter DC2 is changed.
- FIG. 10 is an example of the transmittance characteristics of the dichroic filter DC2 in the first embodiment and the second embodiment.
- FIG. 11 is an example of the wavelength characteristics of the dichroic filter DC2 in the modified example of the second embodiment.
- the half-value wavelength is 495 nm in the transmittance characteristics of the dichroic filter DC2.
- the half-value wavelength is a wavelength at which the reflectance and transmittance are 50%.
- the half-value wavelength is 510 nm.
- the illumination light incident on the incident end of the light guide 214 has the spectrum shown in FIG.
- the wavelength components of 495 nm to 510 nm in the WLI mode there are wavelength components of 495 nm to 510 nm in the WLI mode, and the wavelength components of 495 nm to 510 nm are cut only in the screening mode.
- the wavelength component of 495 nm to 510 nm is cut even in the WLI mode.
- the configuration of this modification is effective when the cost and size are prioritized. ..
- the dichroic filters DC1 to DC4 all have a high transmittance on the short wavelength side of about 100% and a low transmittance on the long wavelength side of about 0%.
- the dichroic filters DC1 to DC4 are filters using a dielectric multilayer mirror. Since it is a dielectric multilayer mirror, almost all light that does not pass through is reflected. That is, the value obtained by subtracting the transmittance from 100% is the substantially reflectance.
- the third wavelength region and the fourth wavelength region belong to the second same color region different from the first same color region among the blue region, the green region and the red region.
- the light absorption spectrum of the observation object in the third wavelength region is relatively larger than the light absorption spectrum of the observation object in the fourth wavelength region.
- the four or more light sources include a third light source that emits light having a peak wavelength in the third wavelength region and a fourth light source that emits light having a peak wavelength in the fourth wavelength region.
- the third light source is included and the fourth light source is not included.
- the first identical color region is a blue region or a red region
- the second identical color region is a green region.
- the third wavelength region is the RD of FIG. 5
- the fourth wavelength region is the RC of FIG.
- the light source unit 140 includes a green light source which is a third light source, but does not include a fourth light source. The case where the light source unit 140 includes the third light source and the fourth light source will be described in the third embodiment.
- the tail of the spectrum of the light emitted by the third light source overlaps the fourth wavelength region.
- the spectrum of the green light IG emitted by the third light source has a skirt on the short wavelength side, and the skirt overlaps with RC which is the fourth wavelength region.
- the light source unit 140 has an optical filter that is arranged on the optical path of the illumination light and reduces the light in the fourth wavelength region.
- the light in the fourth wavelength region in which the absorption spectrum of hemoglobin is relatively small, that is, the visibility is not relatively improved, can be reduced by the optical filter.
- the blue-green region cut filter corresponds to the optical filter.
- one light source LDG emits light in the green region
- the two blue-green light sources and the yellow-green light source emit light in the green region.
- the blue-green light source and the yellow-green light source are, for example, LEDs that do not use a phosphor.
- the blue-green light emitted by the blue-green light source has a peak wavelength of 505 nm
- the yellow-green light emitted by the yellow-green light source has a peak wavelength of 550 nm.
- the spectrum of the illumination light in the third embodiment is as shown in FIG. 3 described above.
- the light IG1 is a blue-green light and the light IG2 is a yellow-green light.
- the spectrum of the optical IG1 is distributed in the wavelength region RC in FIG. That is, the optical IG1 is light that does not relatively improve visibility.
- the spectrum of the optical IG2 is distributed in the wavelength region RD in FIG. That is, the optical IG2 is light that relatively improves visibility.
- the light emission control in each observation mode is basically the same as in the first and second embodiments.
- the light source controller 150 lights the light sources of all six colors. Further, the light source controller 150 sets the first light intensity ratio to (Vp + Bp) :( G1p + G2p) :( Ap + Rp) ⁇ 1: 1: 1. G1p is the amount of blue-green light, and G2p is the amount of yellow-green light.
- the second light intensity ratio, G2p / G1p is set based on the tint.
- G2p / G1p is preferably about 1.5 or more and less than 2.2.
- the purple light IV and the yellow-green light IG2 are turned on. Turn off the blue light IB, the blue-green light IG1, the amber light IA, and the red light IR.
- the illumination light is configured as follows in order to satisfy the first to third conditions described in the first embodiment.
- (Vp + Bp) ( G1p + G2p) :( Ap + Rp) ⁇ 1: 1: 1.
- the ratio of each of (Vp + Bp), (G1p + G2p), and (Ap + Rp) is 0.9 or more and 1.1 or less.
- the white condition is not limited to this, and may be a range of a ratio that can be adjusted to white by adjusting image processing, a display device, or the like.
- Vp / Bp, G2p / G1p, and Ap / Rp are all 0.9 or more. In order to be more effective, it is desirable that Vp / Bp, G2p / G1p, and Ap / Rp are all 1.0 or more.
- Vp / Bp, G2p / G1p, and Ap / Rp are all less than 3.0. In order to realize a more natural image, it is desirable that Vp / Bp, G2p / G1p, and Ap / Rp are all 2.2 or less.
- ⁇ , ⁇ , and ⁇ are real numbers, and 0 ⁇ ⁇ 0.3, 0 ⁇ ⁇ 0.3, and 0 ⁇ ⁇ 0.3.
- ⁇ , ⁇ , and ⁇ are real numbers, and 0 ⁇ ⁇ ⁇ 0.19, 0 ⁇ ⁇ ⁇ 0.19, and 0 ⁇ ⁇ 0.19.
- the third embodiment it is possible to realize the illumination light of the screening mode with further improved visibility as compared with the first embodiment. Further, as compared with the second embodiment, it is possible to realize the illumination light of the screening mode with further improved visibility without using the blue-green region cut filter for the screening mode. Further, as compared with the modified example of the second embodiment, it is possible to realize the illumination light of the screening mode in which the visibility is further improved without affecting the WLI mode.
- the screening mode does not have to be a single mode.
- a plurality of screening modes having different light intensity ratios may be provided within a range satisfying the first to third conditions.
- a screening mode may be provided in which the visibility improvement level can be adjusted stepwise or steplessly.
- the light amount ratio of the visibility improving region and the non-visibility improving region may be increased or decreased in conjunction with each other.
- the light amount ratio between the visibility improving region and the non-visibility improving region may be controlled independently for each color region.
- the visibility improvement level can be independently adjusted in each of the surface layer, the middle layer, and the deep layer in the living body.
- the visibility may be changed in order according to the visibility improvement level. For example, the visibility may be adjusted so that the visibility changes in order with the visibility up / down buttons and the like.
- the object to be observed is not limited to hemoglobin, and may be various drugs.
- the wavelength and light intensity ratio of the LED according to the spectral spectra of various chemicals, the distribution of fluorescent chemicals can be confirmed with good visibility. Examples of the drug will be described later.
- the illumination light is not limited to the visible light wavelength region, and may be extended to near infrared or near ultraviolet.
- the wavelength region of the illumination light may be extended to the near infrared.
- the screening mode may also be used as the WLI mode. In this case, it is not necessary to provide the normal light observation mode.
- the four or more light sources included in the light source device 160 include a purple light source LDV that emits purple light IV, a blue light source LDB that emits blue light IB, and a first green light. Includes a 1-green light source, a second green light source that emits a second green light having a wavelength longer than that of the first green light, an amber light source LDA that emits amber light IA, and a red light source LDR that emits red light IR. ..
- the light amounts of the purple light source LDV, the blue light source LDB, the first green light source, the second green light source, the amber light source LDA, and the red light source LDR are Vp, Bp, G1p, G2p, Ap, and Rp, respectively.
- (Vp + Bp) :( G1p + G2p) :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white.
- Vp / Bp, G2p / G1p and Ap / Rp set as the second light amount ratio are all larger than 1.
- the visibility of the region of interest can be further improved even in the green region.
- the visibility of surface blood vessels, middle blood vessels, and deep blood vessels can be improved, and the naturalness of white light can be maintained.
- the first green light is a blue-green light
- the first green light source is a blue-green light source
- the second green light is a yellow-green light
- the second green light source is a yellow-green light source. ..
- the light source controller 150 when the light source controller 150 is set to any of a plurality of normal light observation modes in which the degree of emphasis of the region of interest is stepwise or continuously different, the light source controller 150 corresponds to the set observation mode.
- Set the light amount ratio setting value of the light amount ratio when the light source controller 150 is set to any of a plurality of normal light observation modes in which the degree of emphasis of the region of interest is stepwise or continuously different, the light source controller 150 corresponds to the set observation mode.
- the light source controller 150 changes the degree of emphasis of the region of interest stepwise or continuously by gradually or continuously changing the light amount ratio setting value of the second light amount ratio according to the mode selection. In this way, the degree of visibility improvement can be adjusted according to the needs of the user.
- Drugs Figure 12 is an absorption spectrum of indocyanine green (ICG). Indocyanine green hardly absorbs light in the blue region and the green region, absorbs rapidly from around 600 nm of amber, and has an absorption peak near 700 nm. That is, indocyanine green absorbs more in the red band than in the amber band.
- ICG indocyanine green
- VE is a visibility improving region
- NVD and NVE are non-visibility improving regions.
- NVD and NVE are non-visibility improving regions.
- it can be divided into the following wavelength regions.
- Non-visibility improvement region in the blue region 400 nm ⁇ ⁇ ⁇ 495 nm
- Non-visibility improvement region in the green region 495 nm ⁇ ⁇ ⁇ 585 nm
- Non-visibility improvement region in the red region 585 nm ⁇ ⁇ ⁇ 620 nm
- Visibility improvement region in the red region 620 nm ⁇ ⁇ ⁇ 680 nm
- FIG. 13 is an example of the illumination light spectrum.
- the illumination light is five light sources similar to those in the first embodiment.
- the light intensity ratio of light IV and IB and the light intensity in the green region do not affect the visibility of indocyanine green.
- the visibility of indocyanine green is determined by the light intensity ratio in the red region. In the red region, the red light IR is larger than the absorption intensity of the amber light IA. Therefore, the visibility of indocyanine green can be improved by red light IR rather than by amber light IA. That is, the visibility can be improved by the light having a wavelength longer than that of the light having a wavelength shorter than 620 nm.
- the visibility of indocyanine green can be improved by increasing the amount of red light IR as compared with amber light IA.
- the white light requirement is (Vp + Bp): Gp :( Ap + Rp) ⁇ 1: 1: 1 as in the first embodiment.
- the second light amount ratio Rp / Ap can be arbitrarily set within the range that satisfies this first light amount ratio. For example, it may be set to improve the visibility of living tissues such as mucous membranes. For example, by setting Rp / Ap to be larger than 1 and 3 or less, the visibility of indocyanine green can be improved while maintaining the naturalness of white light.
- FIG. 14 is an absorption spectrum of indigo carmine.
- the absorption intensity of indigo carmine is small in the blue region, increases from around 500 nm, and starts to decrease after peaking at around 630 nm.
- VF is a visibility improving region
- NVF and NVG are non-visibility improving regions.
- Non-visibility improvement region in the blue region 400 nm ⁇ ⁇ ⁇ 495 nm
- Non-visibility improvement region in the green region 495 nm ⁇ ⁇ ⁇ 530 nm
- Visibility improvement region in the green region 530 nm ⁇ ⁇ ⁇ 585 nm
- Visibility improvement region in the red region 585 nm ⁇ ⁇ ⁇ 660 nm
- Non-visibility improvement region in the red region 660 nm ⁇ ⁇ ⁇ 680 nm
- FIG. 15 is an example of the illumination light spectrum.
- the illumination light is five light sources similar to those in the first embodiment.
- purple light IV and blue light IB have almost no effect on improving the visibility of indigo carmine.
- the green light IG is monochromatic, but has a spectrum having a relatively long wavelength and a large amount of light. Therefore, the wavelength component of the green light IG included in the visibility improving region is larger than the wavelength component of the green light IG included in the non-visibility improving region. Therefore, the green light IG can be expected to have a certain degree of visibility improvement effect. Further, since both the amber light IA and the red light IR are included in the visibility improving region, both have the effect of improving the visibility.
- the amber light IA is also included in the visibility improving region, the visibility improving effect can be obtained regardless of the ratio of the light amount ratio of Ap: Rp. Therefore, Ap: Rp may be any ratio as long as the white light requirement is satisfied.
- this ratio can contribute to improving the visibility of indigo carmine, even if it is arbitrary.
- FIG. 16 is an absorption spectrum of crystal violet.
- the absorption spectrum of crystal violet is similar to that of indigo carmine. However, in the absorption spectrum of crystal violet, the maximum wavelength is around 590 nm, which is located on the slightly shorter wavelength side as a whole as compared with the absorption spectrum of indigo carmine. That is, the absorption intensity of crystal violet is small in the blue region, increases from around 500 nm, has a peak at 590 nm, and then decreases sharply.
- VH is a visibility improving region
- NVH and NVI are non-visibility improving regions.
- Non-visibility improvement region in the blue region 400 nm ⁇ ⁇ ⁇ 495 nm
- Non-visibility improvement region in the green region 495 nm ⁇ ⁇ ⁇ 520 nm
- Visibility improvement region in the green region 520 nm ⁇ ⁇ ⁇ 585 nm
- Visibility improvement region in the red region 585 nm ⁇ ⁇ ⁇ 610 nm
- Non-visibility improvement region in the red region 610 nm ⁇ ⁇ ⁇ 680 nm
- FIG. 17 is an example of the illumination light spectrum.
- the illumination light is five light sources similar to those in the first embodiment.
- purple light IV and blue light IB have almost no effect on improving the visibility of crystal violet.
- the green light IG is monochromatic, but has a spectrum having a relatively long wavelength and a large amount of light. Therefore, the wavelength component of the green light IG included in the visibility improving region is relatively larger than the wavelength component of the green light IG included in the non-visibility improving region. Therefore, a certain degree of visibility improvement effect can be expected by the green light IG.
- the amber light IA has an effect of improving visibility because it is close to the peak of the absorption intensity.
- the red light IR is included in the non-visibility improving region, the visibility improving effect is relatively small as compared with the amber light IA.
- the amount of purple light IV, blue light IB, and green light IG can be arbitrarily set within a range that satisfies the white light requirement. For example, it may be set to improve the visibility of living tissues such as mucous membranes and the visibility of blood vessels.
- the second light amount ratio is set to Ap / Rp> 1 within a range that satisfies the white light requirement. For example, by setting Rp / Ap to be larger than 1 and 3 or less, the visibility of crystal violet can be improved while maintaining the naturalness of white light. Further, by setting it larger than 1.5 and 2.2 or less, the visibility improving effect can be further enhanced.
- FIG. 18 is an absorption spectrum of Lugol's solution.
- the absorption spectrum of the Lugol's solution has a maximum near 450 nm and a minimum near 600 nm.
- VJ and VK are visibility improving regions
- NVJ is a non-visibility improving region.
- Visibility improvement region in the blue region 400 nm ⁇ ⁇ ⁇ 495 nm
- Visibility improvement region in the green region 495 nm ⁇ ⁇ ⁇ 520 nm
- Non-visibility improvement region in the green region 520 nm ⁇ ⁇ ⁇ 585 nm
- Non-visibility improvement region in the red region 585 nm ⁇ ⁇ ⁇ 650 nm
- Visibility improvement region in the red region 650 nm ⁇ ⁇ ⁇ 680 nm
- FIG. 19 is an example of the illumination light spectrum.
- the illumination light is five light sources similar to those in the first embodiment.
- the purple light IV and the blue light IB are included in the visibility improvement region, so that both can contribute to the visibility improvement.
- the blue light IB is slightly closer to the absorption maximum, the visibility improvement effect is greater when Bp> Vp.
- the green light IG, the amber light IA, and the red light IR are all included in the non-visibility improving region, the visibility improving effect is small.
- the present invention is not limited to the respective embodiments and the modified examples as they are, and at the embodiment, the gist of the invention is not deviated.
- the components can be transformed and embodied with.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments and modifications. For example, some components may be deleted from all the components described in each embodiment or modification. Further, the components described in different embodiments and modifications may be combined as appropriate. In this way, various modifications and applications are possible within a range that does not deviate from the gist of the invention.
- a term described at least once in the specification or drawing together with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification or drawing.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
This light source device for an endoscope comprises a light source unit (140) and a light source controller (150). The light source controller (150) controls the amount of light of four or more light sources of the light source unit (140) on the basis of a light amount ratio set value. The light amount ratio set value is a value that sets a first light amount ratio relating to the color balance of illumination light and a second light amount ratio relating to the degree of emphasis for emphasizing a subject being observed in an area of interest. The four or more light sources include a first light source that emits light having a peak wavelength in a first wavelength range and a second light source that emits light having a peak wavelength in a second wavelength range. In a first same color region, the optical absorption spectrum of the subject being observed in the first wavelength range is relatively larger than the optical absorption spectrum of the subject being observed in the second wavelength range.
Description
本発明は、内視鏡用光源装置及び内視鏡装置等に関する。
The present invention relates to a light source device for an endoscope, an endoscope device, and the like.
内視鏡装置に用いられる光源装置において、互いに異なる波長の光を出射する複数光源を用いる手法が知られている。このような光源装置は、例えば特許文献1に開示されている。特許文献1の光源装置は、青色レーザと緑色レーザと赤色レーザとを含み、青色レーザの波長は、ヘモグロビン吸収スペクトルのピーク波長であり、緑色レーザ及び赤色レーザの波長は、ヘモグロビン吸収スペクトルの非ピーク波長である。青色レーザによって表層血管の視認性が向上すると共に、青色レーザと緑色レーザと赤色レーザの光量比によって照明光が白色性を有する。
In the light source device used for the endoscope device, a method using a plurality of light sources that emit light having different wavelengths is known. Such a light source device is disclosed in, for example, Patent Document 1. The light source device of Patent Document 1 includes a blue laser, a green laser, and a red laser, the wavelength of the blue laser is the peak wavelength of the hemoglobin absorption spectrum, and the wavelength of the green laser and the red laser is the non-peak of the hemoglobin absorption spectrum. The wavelength. The blue laser improves the visibility of the surface blood vessels, and the illumination light has whiteness due to the light amount ratio of the blue laser, the green laser, and the red laser.
内視鏡装置の照明光において、病変の視認性と白色性を両立する課題がある。具体的には、従来、内視鏡装置における白色光源として、連続スペクトルを有するキセノンランプ等が用いられている。このような一般的な白色光源を用いた観察、診断又はスクリーニングの知見を活用するために、白色光としての機能を維持することが求められる。白色光としての機能とは、例えば病変描出力、又は画像の色合いである。白色光の観察で疑わしい病変部を発見したときに、医師の操作により特殊光観察モードに切り替えて診察を行うことになるが、白色光観察で疑わしい病変に気づかないと、見落としてしまうおそれがある。このため、照明光には病変描出力が求められる。
There is a problem of achieving both visibility and whiteness of lesions in the illumination light of the endoscope device. Specifically, conventionally, a xenon lamp or the like having a continuous spectrum has been used as a white light source in an endoscope device. In order to utilize the knowledge of observation, diagnosis or screening using such a general white light source, it is required to maintain the function as white light. The function as white light is, for example, lesion drawing output or color tone of an image. When a suspicious lesion is found by observing white light, the doctor will switch to the special light observation mode for examination, but if the suspicious lesion is not noticed by observing white light, it may be overlooked. .. Therefore, the illumination light is required to have a lesion drawing output.
本発明の一態様は、互いに異なるピーク波長の光を出射すると共に各光源の光量を独立して制御可能な4以上の光源を含み、観察対象物に照射する照明光を生成する光源部と、前記4以上の光源の光量比を設定する光量比設定値に基づいて、前記4以上の光源の光量を制御する光源コントローラと、を含み、前記光量比設定値は、前記照明光の色バランスに関する第1光量比と、前記照明光が注目領域内の前記観察対象物を強調する強調度合いに関する第2光量比と、を設定する値であり、前記4以上の光源は、第1波長領域にピーク波長を有する光を出射する第1光源と、第2波長領域にピーク波長を有する光を出射する第2光源と、を含み、前記第1波長領域及び前記第2波長領域は、青色領域、緑色領域及び赤色領域のうちいずれかの第1同一色領域に属し、前記第1同一色領域において、前記第1波長領域における前記観察対象物の光吸収スペクトルの吸収強度は、前記第2波長領域における前記観察対象物の光吸収スペクトルの吸収強度より相対的に大きく、前記第1光量比は、前記青色領域における前記照明光の光量である青色光量、前記緑色領域における前記照明光の光量である緑色光量、及び前記赤色領域における前記照明光の光量である赤色光量の光量比である内視鏡用光源装置に関係する。
One aspect of the present invention includes a light source unit that emits light having peak wavelengths different from each other and includes four or more light sources that can independently control the amount of light of each light source and generates illumination light to irradiate an observation object. The light amount ratio setting value includes a light source controller that controls the light amount of the four or more light sources based on the light amount ratio setting value that sets the light amount ratio of the four or more light sources, and the light amount ratio setting value relates to the color balance of the illumination light. It is a value that sets the first light amount ratio and the second light amount ratio regarding the degree of emphasis that the illumination light emphasizes the observation object in the region of interest, and the light sources of 4 or more peak in the first wavelength region. A first light source that emits light having a wavelength and a second light source that emits light having a peak wavelength in the second wavelength region are included, and the first wavelength region and the second wavelength region are blue region and green. In the first same color region, the absorption intensity of the light absorption spectrum of the observation object in the first wavelength region is in the second wavelength region. It is relatively larger than the absorption intensity of the light absorption spectrum of the observation object, and the first light amount ratio is blue light amount which is the light amount of the illumination light in the blue region and green which is the light amount of the illumination light in the green region. It relates to a light source device for an endoscope, which is a ratio of the amount of light and the amount of red light, which is the amount of illumination light in the red region.
また本発明の他の態様は、上記の内視鏡用光源装置と、前記照明光が照射された前記観察対象物を撮像する撮像部と、を含む内視鏡装置に関係する。
Further, another aspect of the present invention relates to an endoscope device including the above-mentioned light source device for an endoscope and an imaging unit for imaging the observation object irradiated with the illumination light.
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
Hereinafter, this embodiment will be described. The present embodiment described below does not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described in the present embodiment are essential constituent requirements of the present invention.
1.内視鏡装置
図1は、内視鏡装置10の構成例である。なお以下では、一般的な内視鏡と共通する構成及び動作については説明を省略し、本発明に関連する特徴部を中心に説明する。また以下では、消化器用の医療用内視鏡を例に説明するが、本発明の適用対象はこれに限定されない。即ち、本明細書で言う内視鏡とは、様々な被写体の凹部内面を観察するための挿入部を備える機器一般を言うものとする。例えば、内視鏡とは、生体の診察又は手術に用いる医療用内視鏡である。 1. 1. Endoscope device FIG. 1 is a configuration example of theendoscope device 10. In the following, the configuration and operation common to general endoscopes will be omitted, and the features related to the present invention will be mainly described. In the following, a medical endoscope for digestive organs will be described as an example, but the scope of application of the present invention is not limited to this. That is, the endoscope referred to in the present specification refers to a general device provided with an insertion portion for observing the inner surfaces of recesses of various subjects. For example, an endoscope is a medical endoscope used for examination or surgery of a living body.
図1は、内視鏡装置10の構成例である。なお以下では、一般的な内視鏡と共通する構成及び動作については説明を省略し、本発明に関連する特徴部を中心に説明する。また以下では、消化器用の医療用内視鏡を例に説明するが、本発明の適用対象はこれに限定されない。即ち、本明細書で言う内視鏡とは、様々な被写体の凹部内面を観察するための挿入部を備える機器一般を言うものとする。例えば、内視鏡とは、生体の診察又は手術に用いる医療用内視鏡である。 1. 1. Endoscope device FIG. 1 is a configuration example of the
図1の内視鏡装置10は、制御装置100とスコープ200と表示部300と入力部600とを含む。なお、表示部300をディスプレイ、表示装置とも呼ぶ。また入力部600を入力装置、操作装置とも呼ぶ。まず、内視鏡装置10の構成について説明する。
The endoscope device 10 of FIG. 1 includes a control device 100, a scope 200, a display unit 300, and an input unit 600. The display unit 300 is also referred to as a display or a display device. The input unit 600 is also called an input device or an operation device. First, the configuration of the endoscope device 10 will be described.
スコープ200は、挿入部210と操作部220と接続ケーブル230とコネクタ240とにより構成されている。挿入部210は、可撓性を有しており、生体の体腔内に挿入可能である。生体の体腔は、本実施形態における被写体である。医師等のユーザは、操作部220を把持すると共に、操作部220を用いて内視鏡装置10を操作する。接続ケーブル230は、制御装置100とスコープ200を接続するケーブルであり、可撓性を有する。コネクタ240は、接続ケーブル230の一端に設けられており、制御装置100とスコープ200を着脱可能にする。
The scope 200 is composed of an insertion unit 210, an operation unit 220, a connection cable 230, and a connector 240. The insertion portion 210 has flexibility and can be inserted into the body cavity of a living body. The body cavity of the living body is the subject in the present embodiment. A user such as a doctor grips the operation unit 220 and operates the endoscope device 10 using the operation unit 220. The connection cable 230 is a cable that connects the control device 100 and the scope 200, and has flexibility. The connector 240 is provided at one end of the connection cable 230, and makes the control device 100 and the scope 200 detachable.
挿入部210の先端には、照明光を被写体に向けて射出する照明レンズ211、212と、被写体の表面から反射又は散乱された照明光を受光することで画像を撮像する撮像ユニット213と、が配置されている。
At the tip of the insertion portion 210, there are illumination lenses 211 and 212 that emit illumination light toward the subject, and an imaging unit 213 that captures an image by receiving the illumination light reflected or scattered from the surface of the subject. Have been placed.
スコープ200には、ライトガイド214が設けられている。ライトガイド214は、照明レンズ211、212と光学的に接続される。制御装置100に光源部140が設けられており、ライトガイド214は、光源部140から射出される照明光を照明レンズ211、212まで導光する。ライトガイド214は、光ファイバ束等のライトガイドである。ライトガイドは、コネクタ240から、接続ケーブル230、操作部220内を経由して、照明レンズ211、212まで延びている。
The scope 200 is provided with a light guide 214. The light guide 214 is optically connected to the illumination lenses 211 and 212. The control device 100 is provided with a light source unit 140, and the light guide 214 guides the illumination light emitted from the light source unit 140 to the illumination lenses 211 and 212. The light guide 214 is a light guide for an optical fiber bundle or the like. The light guide extends from the connector 240 to the illumination lenses 211 and 212 via the connection cable 230 and the operation unit 220.
照明レンズ211、212は、ライトガイドにより導光された照明光を所望の放射角となるように広げる。照明レンズ211、212の各々は、単数又は複数のレンズにより構成された照明光学系である。
The illumination lenses 211 and 212 spread the illumination light guided by the light guide so as to have a desired radiation angle. Each of the illumination lenses 211 and 212 is an illumination optical system composed of a single lens or a plurality of lenses.
撮像ユニット213は、撮像光学系と撮像素子を有している。撮像素子は、例えばCMOS型イメージャである。イメージャは、ベイヤ型に配列されたRGB原色カラーフィルタが搭載されたベイヤ型イメージャ、又は補色カラーフィルタが搭載された補色イメージャ、又はモノクロイメージャである。モノクロイメージャは、面順次方式のスコープに用いられる。なお、撮像素子として、CMOS型イメージャの他にCCDを用いることも可能である。
The image pickup unit 213 has an image pickup optical system and an image pickup element. The image sensor is, for example, a CMOS image sensor. The imager is a Bayer type imager equipped with RGB primary color filters arranged in a Bayer type, a complementary color imager equipped with a complementary color filter, or a monochrome imager. Monochrome imagers are used for surface-sequential scopes. In addition to the CMOS imager, it is also possible to use a CCD as the image sensor.
スコープ200には画像信号線215が設けられており、撮像ユニット213が撮像した画像の画像信号を制御装置100まで伝送する。画像信号線215は、挿入部210、操作部220、接続ケーブル230内に配置されており、コネクタ240を介して制御装置100へ映像信号を伝送可能接続されている。なお、画像信号線215は、光通信用の光ファイバ等であってもよい。
The scope 200 is provided with an image signal line 215, and transmits the image signal of the image captured by the image pickup unit 213 to the control device 100. The image signal line 215 is arranged in the insertion unit 210, the operation unit 220, and the connection cable 230, and is connected so as to be able to transmit a video signal to the control device 100 via the connector 240. The image signal line 215 may be an optical fiber or the like for optical communication.
制御装置100は、照明光を射出する光源装置160と、処理回路110とを含む。処理回路110は、撮像ユニット213からの画像信号に対して画像処理を行ったり、内視鏡装置10の各部を制御したりする。
The control device 100 includes a light source device 160 that emits illumination light and a processing circuit 110. The processing circuit 110 performs image processing on the image signal from the image pickup unit 213 and controls each part of the endoscope device 10.
処理回路110は、複数の回路部品が基板に実装された回路装置により実現される。或いは、処理回路110は、プロセッサ或いはASIC(Application Specific Integrated Circuit)等の集積回路装置であってもよい。処理回路110がプロセッサである場合、処理回路110の動作を記述したプログラムをプロセッサが実行することで、処理回路110の動作が実現される。プログラムは、例えば、図示しないメモリに記憶されている。
The processing circuit 110 is realized by a circuit device in which a plurality of circuit components are mounted on a board. Alternatively, the processing circuit 110 may be a processor or an integrated circuit device such as an ASIC (Application Specific Integrated Circuit). When the processing circuit 110 is a processor, the operation of the processing circuit 110 is realized by the processor executing a program that describes the operation of the processing circuit 110. The program is stored in, for example, a memory (not shown).
表示部300は、処理回路110により画像処理された被写体の画像を表示する。表示部300は、一般に用いられている種々の表示デバイスであり、例えば液晶モニタ等である。表示部300は、画像信号を伝送する電気配線により、制御装置100と電気的に接続されている。
The display unit 300 displays an image of the subject image processed by the processing circuit 110. The display unit 300 is a variety of commonly used display devices, such as a liquid crystal monitor. The display unit 300 is electrically connected to the control device 100 by an electrical wiring that transmits an image signal.
入力部600は、ユーザからの操作を受け付け、その操作情報を処理回路110へ出力する。入力部600は、例えばボタン又はダイヤル、キーボード、マウス、タッチパネル等である。タッチパネルは表示部300に設けられてもよい。或いは、入力部600は、PC(Personal Computer)等の情報処理装置に接続されるインターフェースであってもよい。インターフェースは、情報処理装置からの入力情報を受け付け、その入力情報を処理回路110へ出力する。インターフェースは、例えばUSB(Universal Serial Bus)又はLAN(Local Area Network)等の通信インターフェースである。
The input unit 600 receives an operation from the user and outputs the operation information to the processing circuit 110. The input unit 600 is, for example, a button or dial, a keyboard, a mouse, a touch panel, or the like. The touch panel may be provided on the display unit 300. Alternatively, the input unit 600 may be an interface connected to an information processing device such as a PC (Personal Computer). The interface receives the input information from the information processing apparatus and outputs the input information to the processing circuit 110. The interface is, for example, a communication interface such as USB (Universal Serial Bus) or LAN (Local Area Network).
光源装置160は、照明光を射出する光源部140と、光源部140を制御する光源コントローラ150と、を含む。
The light source device 160 includes a light source unit 140 that emits illumination light and a light source controller 150 that controls the light source unit 140.
光源部140は、互いに波長の異なる4以上の光を射出する4以上の光源を有する。光源部140は、その4以上の光を照明光としてスコープ200に入射する。各光源は、例えば、LED(Light Emitting Diode)、半導体レーザ又はSLD(Super Luminescent Diode)である。或いは、各光源は、レーザと蛍光体を組み合わせた光源であってもよい。SLDを用いることで、LEDよりも狭波長領域且つ高輝度の光源を実現できる。また蛍光体とレーザを組み合わせることで、様々な波長の光を高輝度に発光できる。レーザを用いることで、高輝度な光をライトガイドまで高効率で導光できる。或いは、ランプ光とフィルタを組み合わせた光源が用いられてもよい。フィルタは、ランプからライトガイドの入射端までの光路上に設けられる。例えば、回転フィルタが、互いに透過波長が異なる複数のフィルタを有し、その回転フィルタが回転することで各光源の出射光が実現される。
The light source unit 140 has four or more light sources that emit four or more lights having different wavelengths from each other. The light source unit 140 enters the scope 200 using the four or more lights as illumination light. Each light source is, for example, an LED (Light Emitting Diode), a semiconductor laser, or an SLD (Super Luminescent Diode). Alternatively, each light source may be a light source in which a laser and a phosphor are combined. By using SLD, it is possible to realize a light source having a narrower wavelength region and higher brightness than LED. In addition, by combining a phosphor and a laser, light of various wavelengths can be emitted with high brightness. By using a laser, high-intensity light can be guided to a light guide with high efficiency. Alternatively, a light source that combines lamp light and a filter may be used. The filter is provided on the optical path from the lamp to the incident end of the light guide. For example, the rotation filter has a plurality of filters having different transmission wavelengths from each other, and the rotation of the rotation filter realizes the emitted light of each light source.
可視光の波長領域は、赤色領域、緑色領域及び青色領域を含む。これら各領域には、照明光を構成する4以上の光のうち1つずつが、属している。且つ、赤色領域、緑色領域及び青色領域のいずれかの領域には、4以上の光のうち2以上の光が属している。以下、この2以上の光が属する色領域を第1同一色領域と呼ぶ。第1同一色領域に属する2以上の光のうち一方は第1波長領域にピーク波長を有し、他方は第2波長領域にピーク波長を有する。第1波長領域にピーク波長を有する光を出射する光源を、第1光源と呼び、第2波長領域にピーク波長を有する光を出射する光源を、第2光源と呼ぶ。なお、照明光の詳細な例については後述する。
The wavelength region of visible light includes a red region, a green region, and a blue region. One of the four or more lights constituting the illumination light belongs to each of these regions. In addition, two or more of the four or more lights belong to any of the red region, the green region, and the blue region. Hereinafter, the color region to which the two or more lights belong is referred to as a first same color region. Of the two or more lights belonging to the first same color region, one has a peak wavelength in the first wavelength region and the other has a peak wavelength in the second wavelength region. A light source that emits light having a peak wavelength in the first wavelength region is called a first light source, and a light source that emits light having a peak wavelength in the second wavelength region is called a second light source. A detailed example of the illumination light will be described later.
上記の第1同一色領域において、第1波長領域における観察対象物の光吸収スペクトルの吸収強度は、第2波長領域における観察対象物の光吸収スペクトルの吸収強度より相対的に大きい。以下、第1波長領域を視認性向上波長領域とも呼び、第2波長領域を視認性非向上波長領域とも呼ぶ。視認性向上波長領域とは、注目領域(ROI: Region Of Interest)に存在する観察対象物の光吸収スペクトルにおいて、観察対象物を強調する波長領域である。照明光により注目領域の観察対象物が強調されることで、その注目領域が撮像された画像において注目領域の視認性が高まる。注目領域は、被写体において医師が注目する領域であり、例えばスクリーニングにおいて発見したい病変部、或いは診察又は処置の対象となる病変部、或いは診察又は処置において識別したい組織である。観察対象物は、生体に含まれる物質、又は薬剤である。生体に含まれる物質は、例えばヘモグロビン又はβカロテンである。薬剤は、被写体表面に散布され、又は血管内に注入される。薬剤は、例えばインドシアニングリーン、インジゴカルミン、クリスタルバイオレット又はルゴール液である。なお、観察対象物は、上記のうちいずれか1つに限定されず、上記のうち少なくとも1つであればよい。即ち、観察対象物は、上記のうち2以上を含んでもよい。
In the above first same color region, the absorption intensity of the light absorption spectrum of the observation object in the first wavelength region is relatively larger than the absorption intensity of the light absorption spectrum of the observation object in the second wavelength region. Hereinafter, the first wavelength region is also referred to as a visibility improving wavelength region, and the second wavelength region is also referred to as a visibility non-improving wavelength region. The visibility-enhancing wavelength region is a wavelength region that emphasizes the observation object in the light absorption spectrum of the observation object existing in the region of interest (ROI: Region Of Interest). By emphasizing the observation object in the region of interest with the illumination light, the visibility of the region of interest is enhanced in the image in which the region of interest is captured. The area of interest is an area of interest of a doctor in a subject, for example, a lesion that is desired to be found in screening, a lesion that is the target of examination or treatment, or a tissue that is to be identified in examination or treatment. The object to be observed is a substance or a drug contained in a living body. The substance contained in the living body is, for example, hemoglobin or β-carotene. The drug is sprayed on the surface of the subject or injected into a blood vessel. The agent is, for example, indocyanine green, indigo carmine, crystal violet or Lugol's solution. The object to be observed is not limited to any one of the above, and may be at least one of the above. That is, the observation object may include two or more of the above.
光源コントローラ150は、例えば、光源を駆動する駆動回路と、駆動回路を制御する制御回路又はプロセッサと、を含むことができる。或いは、光源に駆動回路が含まれる場合には、光源コントローラ150は、光源の駆動回路を制御する制御回路又はプロセッサであってもよい。
The light source controller 150 can include, for example, a drive circuit that drives the light source and a control circuit or processor that controls the drive circuit. Alternatively, when the light source includes a drive circuit, the light source controller 150 may be a control circuit or a processor that controls the drive circuit of the light source.
光源コントローラ150は、光量比設定値に基づいて上記4以上の光の各光の光量を独立に調整する。光量比設定値は第1光量比と第2光量比を設定する値である。第1光量比は、照明光の色バランスに関する。第2光量比は、照明光が注目領域内の観察対象物を強調する強調度合いに関する。第1光量比は、青色光量と緑色光量と赤色光量の比である。青色光量は、青色領域における照明光の光量であり、緑色光量は、緑色領域における照明光の光量であり、赤色光量は、赤色領域における照明光の光量である。第2光量比は、観察対象物の光吸収スペクトルにおける大小関係に基づいて定められた第1光源及び第2光源の光量比である。即ち、第2光量比は、視認性向上波長領域にピーク波長を有する光と、視認性非向上波長領域にピーク波長を有する光との光量比である。
The light source controller 150 independently adjusts the light intensity of each of the above 4 or more lights based on the light intensity ratio set value. The light amount ratio setting value is a value for setting the first light amount ratio and the second light amount ratio. The first light amount ratio relates to the color balance of the illumination light. The second light amount ratio relates to the degree of emphasis that the illumination light emphasizes the observation object in the region of interest. The first light amount ratio is the ratio of the blue light amount, the green light amount, and the red light amount. The amount of blue light is the amount of illumination light in the blue region, the amount of green light is the amount of illumination light in the green region, and the amount of red light is the amount of illumination light in the red region. The second light amount ratio is the light amount ratio of the first light source and the second light source determined based on the magnitude relationship in the light absorption spectrum of the observation object. That is, the second light amount ratio is a light amount ratio of light having a peak wavelength in the visibility improving wavelength region and light having a peak wavelength in the visibility non-improving wavelength region.
光源コントローラ150は、光量比設定値に基づいて4以上の光の光量比を調整することで、照明光の色バランスと注目領域の強調度合いとを調整する。色バランスは、照明光における赤色と緑色と青色のバランスであり、例えば照明光の色温度のことである。強調度合いは、注目領域における観察対象物とそれ以外の領域とのコントラストである。即ち、観察対象物の吸収スペクトルに基づいて照明光を吸収するため、観察対象物はそれ以外の領域よりも吸光量が多い。これにより、観察対象物がそれ以外の領域よりも暗くなるので、観察対象物とそれ以外の領域とのコントラストが生じる。このコントラストによって、観察対象物を含む注目領域が強調される。
The light source controller 150 adjusts the color balance of the illumination light and the degree of emphasis of the region of interest by adjusting the light amount ratio of 4 or more based on the light amount ratio set value. The color balance is the balance of red, green, and blue in the illumination light, for example, the color temperature of the illumination light. The degree of emphasis is the contrast between the observation object in the region of interest and the other region. That is, since the illumination light is absorbed based on the absorption spectrum of the observation object, the observation object has a larger absorbance than the other regions. As a result, the observation object becomes darker than the other areas, so that a contrast between the observation object and the other areas occurs. This contrast emphasizes the area of interest that includes the object to be observed.
光量比設定値は、第1光量比及び第2光量比を同時に実現する1つの光量比であってもよいし、或いは第1光量比及び第2光量比が別々に指定されたものであってもよい。例えば、半導体光源は電流値と発光量に相関がある。この場合、光量比設定値は、第1光量比及び第2光量比を実現する電流値を指定するものであってもよい。例えば、光量比設定値は、光量比記憶部に記憶されている。光量比記憶部は光源装置160に含まれ、後述のように例えば光源コントローラ150に含まれる。光源コントローラ150は、光量比記憶部から読み出した光量比設定値に基づいて、照明光を制御する。或いは、光量比設定値は、入力部600を介して処理回路110に入力される。光源コントローラ150は、処理回路110からの光量比設定値に基づいて、照明光を制御する。
The light amount ratio set value may be one light amount ratio that realizes the first light amount ratio and the second light amount ratio at the same time, or the first light amount ratio and the second light amount ratio are specified separately. May be good. For example, a semiconductor light source has a correlation between a current value and a light emission amount. In this case, the light amount ratio setting value may specify the current value that realizes the first light amount ratio and the second light amount ratio. For example, the light amount ratio set value is stored in the light amount ratio storage unit. The light amount ratio storage unit is included in the light source device 160, and is included in, for example, the light source controller 150 as described later. The light source controller 150 controls the illumination light based on the light amount ratio set value read from the light amount ratio storage unit. Alternatively, the light amount ratio set value is input to the processing circuit 110 via the input unit 600. The light source controller 150 controls the illumination light based on the light amount ratio set value from the processing circuit 110.
光源コントローラ150が光源の発光量を制御する手法は種々想定できる。例えば光源が発光ダイオードである場合、電流調光又はPWM調光、パルス数調光、それらの組み合わせ等の手法がある。電流調光では、光源コントローラ150は、発光ダイオードを駆動する駆動電流を変化させることで光量を調整する。PWM調光では、光源コントローラ150は、所定の撮像期間内に発光する時間を変化させることで光量を調整する。パルス数調光では、光源コントローラ150は、所定の撮像期間内に発光させるパルスの数を変化させることで光量を調整する。また、光源コントローラ150は、これら3つの調光手法のうち2つ又は3つを組み合わせて用いてもよい。
Various methods can be assumed in which the light source controller 150 controls the amount of light emitted from the light source. For example, when the light source is a light emitting diode, there are methods such as current dimming or PWM dimming, pulse number dimming, and a combination thereof. In current dimming, the light source controller 150 adjusts the amount of light by changing the drive current that drives the light emitting diode. In PWM dimming, the light source controller 150 adjusts the amount of light by changing the light emission time within a predetermined imaging period. In pulse number dimming, the light source controller 150 adjusts the amount of light by changing the number of pulses to be emitted within a predetermined imaging period. Further, the light source controller 150 may use two or three of these three dimming methods in combination.
以上のように複数の光源を用いて照明光を発生させた場合において、照明光の白色性と注目領域の強調を両立したいという課題がある。例えば、内視鏡装置のユーザは、内視鏡画像における被写体の色等に基づいて診断を行うが、その診断において、文献或いは過去の経験を参考にしている。このとき、文献或いは過去の経験を活かすために照明光の白色性が求められる。また、スクリーニングにおいて注目領域を発見しやすくするため、或いは診察又は処置において注目領域を視認しやすくするため、照明光による注目領域の強調が求められる。
When the illumination light is generated using a plurality of light sources as described above, there is a problem that the whiteness of the illumination light and the emphasis of the area of interest are both desired. For example, a user of an endoscopic apparatus makes a diagnosis based on the color of a subject in an endoscopic image, and in the diagnosis, the literature or past experience is referred to. At this time, the whiteness of the illumination light is required in order to utilize the literature or past experience. Further, in order to make it easier to find the area of interest in screening, or to make it easier to see the area of interest in examination or treatment, it is required to emphasize the area of interest with illumination light.
この点、本実施形態によれば、光源コントローラ150は、照明光を構成する4以上の光の光量比を光量比設定値に基づいて調整することで、照明光の色バランスと注目領域の強調度合いとを調整する。これにより、照明光の色バランスと注目領域の強調度合いを各々独立に調整することが可能になる。例えば、照明光を構成する4以上の光の光量比が調整されることで、文献或いは過去の経験を活かす白色性を実現すると共に、照明光により注目領域を強調できる。
In this regard, according to the present embodiment, the light source controller 150 adjusts the light amount ratio of four or more lights constituting the illumination light based on the light amount ratio set value to enhance the color balance of the illumination light and the region of interest. Adjust the degree. This makes it possible to independently adjust the color balance of the illumination light and the degree of emphasis of the region of interest. For example, by adjusting the light amount ratio of four or more lights constituting the illumination light, it is possible to realize whiteness that makes the best use of literature or past experience, and to emphasize the region of interest by the illumination light.
具体的には、光源コントローラ150は、青色光量と緑色光量と赤色光量の比を第1光量比に基づいて調整する。且つ、光源コントローラ150は、同一色領域に属する2以上の光の光量を、第2光量比に基づいて調整する。
Specifically, the light source controller 150 adjusts the ratio of the amount of blue light, the amount of green light, and the amount of red light based on the first light amount ratio. Moreover, the light source controller 150 adjusts the amount of light of two or more lights belonging to the same color region based on the second light amount ratio.
上記したように、第1光量比は照明光の色バランスを設定する光量比であり、第2光量比は注目領域の強調度合いを設定する光量比である。即ち、光源コントローラ150は、第1光量比によって照明光の色バランスを設定すると共に、その色バランスを保ちながら第2光量比に基づいて注目領域の強調度合いを調整する。これにより、照明光の色バランスと注目領域の強調度合いが独立に調整され、目標とする色バランス及び注目領域の強調度合いが実現される。
As described above, the first light amount ratio is the light amount ratio that sets the color balance of the illumination light, and the second light amount ratio is the light amount ratio that sets the degree of emphasis of the region of interest. That is, the light source controller 150 sets the color balance of the illumination light by the first light amount ratio, and adjusts the emphasis degree of the region of interest based on the second light amount ratio while maintaining the color balance. As a result, the color balance of the illumination light and the degree of emphasis of the area of interest are adjusted independently, and the target color balance and the degree of emphasis of the area of interest are realized.
以下、詳細な実施形態について説明する。なお、以下の複数の実施形態は適宜に組み合わされてもよい。
The detailed embodiment will be described below. The following plurality of embodiments may be combined as appropriate.
2.基本構成
図2は、基本構成における照明光のスペクトル例である。ここでは、互いにピーク波長が異なる6色の光源を用いる例を説明する。 2. 2. Basic configuration FIG. 2 is an example of a spectrum of illumination light in the basic configuration. Here, an example of using six color light sources having different peak wavelengths will be described.
図2は、基本構成における照明光のスペクトル例である。ここでは、互いにピーク波長が異なる6色の光源を用いる例を説明する。 2. 2. Basic configuration FIG. 2 is an example of a spectrum of illumination light in the basic configuration. Here, an example of using six color light sources having different peak wavelengths will be described.
図2に示すように、可視光領域を青色領域と緑色領域と赤色領域に分割する。光源部140は、各色領域に2色ずつの狭波長領域光を発生する。光源部140は、光IV、IB、IG1、IG2、IA、IRを発生する6つの光源を含む。光IV、IBは、青色領域を分割した波長領域BV、BBに属する。BVはBBより短波長側である。光IG1、IG2は、緑色領域を分割した波長領域BG1、BG2に属する。BG1はBG2より短波長側である。光IA、IRは、赤色領域を分割した波長領域BA、BRに属する。BAはBRより短波長側である。
As shown in FIG. 2, the visible light region is divided into a blue region, a green region, and a red region. The light source unit 140 generates two narrow wavelength region lights in each color region. The light source unit 140 includes six light sources that generate light IV, IB, IG1, IG2, IA, and IR. The light IV and IB belong to the wavelength regions BV and BB obtained by dividing the blue region. BV is on the shorter wavelength side than BB. The optical IG1 and IG2 belong to the wavelength regions BG1 and BG2 in which the green region is divided. BG1 is on the shorter wavelength side than BG2. The optical IA and IR belong to the wavelength regions BA and BR in which the red region is divided. BA is on the shorter wavelength side than BR.
図2に示す通り、各光のスペクトルと、その隣りのスペクトルとは、その裾の部分で接する。即ち、可視光の波長領域全体に渡り光成分が無い領域がなく、照明光において波長成分が欠落している領域はない。
As shown in FIG. 2, the spectrum of each light and the spectrum adjacent to it are in contact with each other at the hem. That is, there is no region where there is no light component over the entire wavelength region of visible light, and there is no region where the wavelength component is missing in the illumination light.
BV、BB、BG1、BG2、BA、BRの各領域は、注目領域の分光特性と対応している。具体的には、BV、BG2、RAの各波長領域は、視認性を向上できる波長領域と対応した視認性向上波長領域である。BB、BG1、BRの各波長領域は、“視認性向上波長領域”と比較して視認性は相対的に向上しない波長領域と対応した視認性非向上波長領域である。
Each region of BV, BB, BG1, BG2, BA, and BR corresponds to the spectral characteristics of the region of interest. Specifically, each wavelength region of BV, BG2, and RA is a visibility improvement wavelength region corresponding to a wavelength region in which visibility can be improved. Each of the wavelength regions of BB, BG1, and BR is a non-improved visibility wavelength region corresponding to a wavelength region in which visibility is not relatively improved as compared with the “improved visibility wavelength region”.
青色領域の光は、他の色領域の光に比較して生体の表層で吸収散乱される。緑色領域の光は、他の色領域の光に比較して生体の中層で吸収散乱される。赤色領域の光は、他の色領域の光に比較して生体の深層で吸収散乱される。この結果、波長領域BVに含まれる光IVにより、比較的表層に含まれる注目領域の視認性を向上できる。同様に、波長領域BG2に含まれる光IG2により、比較的中層に含まれる注目領域の視認性を向上できる。同様に、波長領域BAに含まれる光IAにより、比較的深層に含まれる注目領域の視認性を向上できる。従って、IV、IG2、IAの光量を相対的に大きく設定することで、注目領域の視認性を向上できる。この要件を視認性向上要件と呼ぶ。
Light in the blue region is absorbed and scattered on the surface layer of the living body as compared with light in other color regions. Light in the green region is absorbed and scattered in the middle layer of the living body as compared with light in other color regions. Light in the red region is absorbed and scattered in the deep layers of the living body as compared with light in other color regions. As a result, the light IV included in the wavelength region BV can improve the visibility of the region of interest relatively included in the surface layer. Similarly, the optical IG2 included in the wavelength region BG2 can improve the visibility of the region of interest relatively included in the middle layer. Similarly, the optical IA included in the wavelength region BA can improve the visibility of the region of interest included in a relatively deep layer. Therefore, by setting the light amounts of IV, IG2, and IA relatively large, the visibility of the region of interest can be improved. This requirement is called the visibility improvement requirement.
IV+IB:IG1+IG2:IA+IRの光量比は、上記した第1光量比である。第1光量比は、白色光源における青色領域、緑色領域及び赤色領域の光量比と同程度である。白色光源は、キセノンランプ又はハロゲンランプである。この第1光量比によって、白色の照明光が実現される。また、視認性向上波長領域の光だけでなく視認性非向上波長領域の光も発光させることで、観察画像の色合いや自然さを実現することができる。
The light intensity ratio of IV + IB: IG1 + IG2: IA + IR is the above-mentioned first light intensity ratio. The first light intensity ratio is about the same as the light intensity ratio of the blue region, the green region, and the red region in the white light source. The white light source is a xenon lamp or a halogen lamp. White illumination light is realized by this first light amount ratio. Further, by emitting not only the light in the wavelength region with improved visibility but also the light in the wavelength region with non-improved visibility, it is possible to realize the hue and naturalness of the observed image.
例えば、光IV、IG2、IAの3色でも見かけ上の白色光を実現できる。しかし、光IB、IG1、IRの波長領域が欠落しているので、被写体の種類によっては自然な色合いに見えない。例えば、波長領域BBとBG1とBRにおける反射率が高く、且つ波長領域BVとBG2とBAの反射率が低い被写体を観察する。このような被写体を光IV、IG2、IAのみで見た場合、通常の白色光で見た場合に比べて不自然に暗い画像となってしまい、通常の白色光で見た場合の色合いが失われてしまう。本実施形態によれば、可視光領域全域に渡って欠落のほとんどないスペクトルとしているので、自然な色合いを維持できる。なお、波長の欠落がなければ、必ずしもブロードなスペクトルでなくても、適切な画像処理と組み合わせることで自然な色合いを実現することが可能となる。
For example, apparent white light can be realized with three colors of light IV, IG2, and IA. However, since the wavelength regions of light IB, IG1, and IR are missing, the colors do not look natural depending on the type of subject. For example, a subject having high reflectance in the wavelength regions BB, BG1 and BR and low reflectance in the wavelength regions BV, BG2 and BA is observed. When such a subject is viewed only with light IV, IG2, and IA, the image becomes unnaturally darker than when viewed with normal white light, and the hue when viewed with normal white light is lost. I will be broken. According to the present embodiment, since the spectrum has almost no omission over the entire visible light region, a natural hue can be maintained. If there is no lack of wavelength, it is possible to realize a natural hue by combining with appropriate image processing, even if the spectrum is not necessarily broad.
図3は、視認性向上要件を満たす第2光量比の設定例である。図3に示すように、青色領域における光量比はIV:IB≒2:1であり、緑色領域における光量比はIG1:IG2≒1:2であり、赤色領域における光量比はIA:IR≒2:1である。また白色光要件を満たすために、色領域間の光量比はIB1+IB2:IG1+IG2:IR1+IR2≒1:1:1である。これにより、の両方を満足できる。
FIG. 3 is an example of setting the second light intensity ratio that satisfies the visibility improvement requirement. As shown in FIG. 3, the light amount ratio in the blue region is IV: IB≈2: 1, the light intensity ratio in the green region is IG1: IG2≈1: 2, and the light intensity ratio in the red region is IA: IR≈2. It is 1. Further, in order to satisfy the white light requirement, the light amount ratio between the color regions is IB1 + IB2: IG1 + IG2: IR1 + IR2 ≈ 1: 1: 1. As a result, both can be satisfied.
このように構成することで、仮想の注目領域の視認性向上と、従来の白色光観察と同等の色合い、自然さを両立する光源を実現することが可能となる。
With this configuration, it is possible to improve the visibility of the virtual area of interest and to realize a light source that has the same hue and naturalness as conventional white light observation.
なお、上記した2以上の光が属する同一色領域は、図3において青色領域、緑色領域、及び赤色領域のいずれであってもよい。例えば青色領域を同一色領域とした場合、第1波長領域はBVであり、第2波長領域はBBであり、IVを出射する光源が第1光源であり、IBを出射する光源が第2光源である。
Note that the same color region to which the above two or more lights belong may be any of a blue region, a green region, and a red region in FIG. For example, when the blue region is the same color region, the first wavelength region is BV, the second wavelength region is BB, the light source that emits IV is the first light source, and the light source that emits IB is the second light source. Is.
また図2、図3では6バンドの光で照明光を構成したが、4バンド以上の光で照明光を構成すればよい。4バンドの場合、青色領域、緑色領域、及び赤色領域に、それぞれ1以上の光が属し、且ついずれか1つの色領域にのみ2つの光が属する。5バンドの場合の例は、第1実施形態で後述する。
Further, in FIGS. 2 and 3, the illumination light is composed of 6 bands of light, but the illumination light may be composed of 4 or more bands of light. In the case of four bands, one or more lights belong to each of the blue region, the green region, and the red region, and two lights belong to only one of the color regions. An example in the case of 5 bands will be described later in the first embodiment.
3.視認性向上要件と白色光要件
視認性向上要件と白色光要件の詳細を説明する。 3. 3. Visibility Improvement Requirements and White Light Requirements The details of the visibility improvement requirements and white light requirements will be explained.
視認性向上要件と白色光要件の詳細を説明する。 3. 3. Visibility Improvement Requirements and White Light Requirements The details of the visibility improvement requirements and white light requirements will be explained.
視認性向上要件は、下記の要件A及び要件Bである。要件Bは必須ではなく、望ましい要件である。視認性向上要件は、上記した第2光量比を規定する。
The visibility improvement requirements are the following requirements A and B. Requirement B is not mandatory but a desirable requirement. The visibility improvement requirement defines the above-mentioned second light intensity ratio.
要件A:注目領域の視認性向上に貢献する波長領域の光の強度は、それ以外の波長領域の光の強度より相対的に大きい。例えば、注目領域の分光スペクトルに基づいて視認性向上に貢献する波長領域の光を選定することができる。図3の例では、IV光量>IB光量、IG1光量<IG2光量、IA光量>IR光量である。なお、全ての色領域で要件Aが成立する場合に限らず、いずれか1つの色領域で要件Aが成立していればよい。
Requirement A: The intensity of light in the wavelength region that contributes to improving the visibility of the region of interest is relatively higher than the intensity of light in the other wavelength regions. For example, light in a wavelength region that contributes to improved visibility can be selected based on the spectral spectrum in the region of interest. In the example of FIG. 3, IV light amount> IB light amount, IG1 light amount <IG2 light amount, IA light amount> IR light amount. It should be noted that the requirement A is not limited to the case where the requirement A is satisfied in all the color regions, and the requirement A may be satisfied in any one color region.
要件B:注目領域の視認性向上に貢献する波長領域の光は、青色領域、緑色領域及び赤色領域のいずれの領域にも存在する。
Requirement B: Light in the wavelength region that contributes to improving the visibility of the region of interest exists in any of the blue region, the green region, and the red region.
白色光要件は、下記の要件C、要件D、及び要件Eである。要件Eは必須ではなく、望ましい要件である。白色光要件は、白色光としての色合い又は自然さを実現するための要件であり、上記した第1光量比を規定する。
The white light requirements are the following requirements C, D, and E. Requirement E is not mandatory but a desirable requirement. The white light requirement is a requirement for realizing a hue or naturalness as white light, and defines the above-mentioned first light amount ratio.
要件C:青色領域、緑色領域及び赤色領域のいずれの色領域にも光成分が存在する。
Requirement C: Light components are present in any of the blue region, green region, and red region.
要件D:青色光量:緑色光量:赤色光量は、概ね白色となる比率である。即ち、この比率は、キセノンランプ、ハロゲンランプ、又は白色LED等、従来の内視鏡に用いられている照明光の光量比と略等しくなるように設定される。なお、この照明光の比率は、画像処理において白色光相当のホワイトバランスに調整できる範囲であればよい。
Requirement D: Blue light amount: Green light amount: Red light amount is a ratio of approximately white. That is, this ratio is set to be substantially equal to the light amount ratio of the illumination light used in a conventional endoscope such as a xenon lamp, a halogen lamp, or a white LED. The ratio of the illumination light may be within a range that can be adjusted to a white balance equivalent to white light in image processing.
要件E:照明光のスペクトルは、可視光波長領域において、ほぼ連続スペクトルである。スペクトルは平坦である必要はないが、光量ゼロとなる波長領域はほぼない。なお、青色領域、緑色領域、及び赤色領域のいずれかの領域において、注目領域の視認性を向上する波長領域の光が存在しない場合は、白色光としての色合い又は自然さを優先的に考慮して、スペクトル又は光量を設定してもよい。
Requirement E: The spectrum of illumination light is a substantially continuous spectrum in the visible light wavelength region. The spectrum does not have to be flat, but there is almost no wavelength region where the amount of light is zero. If there is no light in the wavelength region that improves the visibility of the region of interest in any of the blue region, green region, and red region, the hue or naturalness of white light is given priority. The spectrum or the amount of light may be set.
一例として、400nm~700nmの可視光波長領域を、青色領域、緑色領域、及び赤色領域に分ける。各色領域に含まれる光の光量比は、要件C~Eの白色光要件に基づいて設定される。例えば青色光量:緑色光量:赤色光量≒1:1:1に設定される。又は、青色光量:緑色光量:赤色光量は、市販されている内視鏡の白色光(通常光)における色バランスと略等しい光量比に設定されてもよい。
As an example, the visible light wavelength region of 400 nm to 700 nm is divided into a blue region, a green region, and a red region. The light intensity ratio of the light contained in each color region is set based on the white light requirements of requirements C to E. For example, blue light amount: green light amount: red light amount ≈ 1: 1: 1. Alternatively, the amount of blue light: the amount of green light: the amount of red light may be set to a light amount ratio substantially equal to the color balance in the white light (normal light) of a commercially available endoscope.
また、各色領域内のスペクトルパターンは、要件A、Bの視認性向上要件に基づいて設定される。例えば、青色領域、緑色領域、及び赤色領域の少なくとも一つの色領域は、2以上の狭波長領域光を含む。狭波長領域光は、半値全幅が50nm以下である。同一色領域に属する2以上の狭波長領域光の光量比は、どの波長領域が視認性向上に貢献するかに基づいて設定される。
Further, the spectrum pattern in each color region is set based on the visibility improvement requirements of requirements A and B. For example, at least one color region of the blue region, the green region, and the red region contains two or more narrow wavelength region lights. The narrow wavelength region light has a full width at half maximum of 50 nm or less. The light intensity ratio of two or more narrow wavelength region lights belonging to the same color region is set based on which wavelength region contributes to the improvement of visibility.
例えば、被写体が生体の場合、照明光が生体組織内部に進行する深さは、波長によって異なる。即ち、青色等短波長の光は比較的表層までしか進行できないが、波長が長くなるに従い中層から深層まで進行する。注目領域が生体組織の表層や深層に集中している場合は、その深さまで進行できる色領域の光のみが、視認性向上に貢献する。注目領域が表層から深層に渡って存在している場合は、各深さに対応した複数の波長の光が、視認性向上に貢献する。
For example, when the subject is a living body, the depth at which the illumination light travels inside the living body tissue differs depending on the wavelength. That is, light having a short wavelength such as blue can travel only to the surface layer, but travels from the middle layer to the deep layer as the wavelength becomes longer. When the region of interest is concentrated on the surface layer or deep layer of living tissue, only the light in the color region that can travel to that depth contributes to the improvement of visibility. When the region of interest extends from the surface layer to the deep layer, light of a plurality of wavelengths corresponding to each depth contributes to the improvement of visibility.
複数の注目領域を観察する場合、各注目領域の分光特性、又は各注目領域が存在する深さ等に基づいて、スペクトルパターンを設定できる。この場合、各注目領域の視認性向上に貢献する波長、及び貢献しない波長等の情報から、スペクトルパターンを設定する。
When observing a plurality of areas of interest, the spectral pattern can be set based on the spectral characteristics of each area of interest or the depth at which each area of interest exists. In this case, the spectrum pattern is set from information such as wavelengths that contribute to improving the visibility of each region of interest and wavelengths that do not.
なお、視認性に向上しない色領域が存在する場合は、白色光としての色合い又は自然さを優先して、その色領域の照明光をブロードなスペクトルの光とするとよい。
If there is a color region that does not improve visibility, it is advisable to prioritize the hue or naturalness of white light and use the illumination light in that color region as light with a broad spectrum.
注目領域は、例えば、正常粘膜と比較して色調が変化した領域、血管のパターン、血管の構造、又は生体組織の表面構造等がある。これら注目領域の視認性を向上するように、各色領域内の光量比を設定する。
Areas of interest include, for example, areas where the color tone has changed compared to normal mucosa, blood vessel patterns, blood vessel structures, surface structures of living tissues, and the like. The light amount ratio in each color region is set so as to improve the visibility of these attention regions.
4.第1実施形態
注目領域として血管の形状やパターンを想定した場合を例に、第1実施形態を説明する。即ち、第1実施形態では、注目領域に含まれる観察対象物はヘモグロビンである。 4. First Embodiment The first embodiment will be described with an example of assuming a shape or pattern of a blood vessel as a region of interest. That is, in the first embodiment, the observation object included in the region of interest is hemoglobin.
注目領域として血管の形状やパターンを想定した場合を例に、第1実施形態を説明する。即ち、第1実施形態では、注目領域に含まれる観察対象物はヘモグロビンである。 4. First Embodiment The first embodiment will be described with an example of assuming a shape or pattern of a blood vessel as a region of interest. That is, in the first embodiment, the observation object included in the region of interest is hemoglobin.
図4は、血液に含まれるヘモグロビンの光吸収スペクトルである。点線で示すHBAは、酸素と結びついた酸化ヘモグロビンの吸収スペクトルである。実線で示すHBBは、酸素が外れた還元ヘモグロビンの吸収スペクトルである。
FIG. 4 is a light absorption spectrum of hemoglobin contained in blood. The dotted HBA is the absorption spectrum of oxidized hemoglobin associated with oxygen. HBB shown by a solid line is an absorption spectrum of reduced hemoglobin from which oxygen has been removed.
図4に示すように、2つのスペクトルHBA、HBBは概ね類似した特徴を有する。即ち、スペクトルHBA、HBBは、410nmから440nm辺りと、520から580nm辺りに吸収の極大を有し、470nmから500nm辺りと630nm~720nm辺りに吸収の極小を有する。730nmより長波長側では、還元ヘモグロビンのスペクトルHBBは750nm近傍に極大を有し、酸化ヘモグロビンのスペクトルHBAは長波長側に向かって吸光度が漸増する。
As shown in FIG. 4, the two spectra HBA and HBB have substantially similar characteristics. That is, the spectra HBA and HBB have maximum absorption in the range of 410 nm to 440 nm and 520 to 580 nm, and minimum absorption in the range of 470 nm to 500 nm and 630 nm to 720 nm. On the longer wavelength side than 730 nm, the spectrum HBB of reduced hemoglobin has a maximum near 750 nm, and the absorbance of the oxidized hemoglobin spectrum HBA gradually increases toward the long wavelength side.
吸収スペクトルの極大近傍にピークを有する光は、それ以外の波長領域の光と比較して、ヘモグロビンに吸収される割合が高い。このため、吸収スペクトルの極大近傍にピークを有する光で観察した場合、血管と周辺組織のコントラストが高くなる。その結果、ヘモグロビンを多く含む血管の視認性が相対的に向上する。逆に吸収スペクトルの極小近傍にピークを有する光は、それ以外の波長領域の光と比較して、ヘモグロビンに吸収されにくい。このため、吸収スペクトルの極小近傍にピークを有する光で観察した場合、血管と周辺組織のコントラストが低くなるので、血管の視認性は低くなる。
Light having a peak near the maximum of the absorption spectrum has a higher rate of absorption by hemoglobin than light in other wavelength regions. Therefore, when observed with light having a peak near the maximum of the absorption spectrum, the contrast between the blood vessel and the surrounding tissue becomes high. As a result, the visibility of blood vessels containing a large amount of hemoglobin is relatively improved. On the contrary, light having a peak near the minimum of the absorption spectrum is less likely to be absorbed by hemoglobin as compared with light in other wavelength regions. Therefore, when observing with light having a peak near the minimum of the absorption spectrum, the contrast between the blood vessel and the surrounding tissue becomes low, so that the visibility of the blood vessel becomes low.
図4に示すヘモグロビンの吸収スペクトルに従って、可視光波長領域を以下の波長領域に分割する。λは波長である。
視認性向上領域VA :400nm≦λ<450nm
非視認性向上領域NVA:450nm≦λ<510nm
視認性向上領域VB :510nm≦λ<615nm
非視認性向上領域NVB:615nm≦λ<740nm
視認性向上領域VC :740nm≦λ<790nm According to the absorption spectrum of hemoglobin shown in FIG. 4, the visible light wavelength region is divided into the following wavelength regions. λ is the wavelength.
Visibility improvement region VA: 400 nm ≤ λ <450 nm
Non-visibility improvement region NVA: 450 nm ≤ λ <510 nm
Visibility improvement region VB: 510 nm ≤ λ <615 nm
Non-visibility improvement region NVB: 615 nm ≤ λ <740 nm
Visibility improvement region VC: 740 nm ≤ λ <790 nm
視認性向上領域VA :400nm≦λ<450nm
非視認性向上領域NVA:450nm≦λ<510nm
視認性向上領域VB :510nm≦λ<615nm
非視認性向上領域NVB:615nm≦λ<740nm
視認性向上領域VC :740nm≦λ<790nm According to the absorption spectrum of hemoglobin shown in FIG. 4, the visible light wavelength region is divided into the following wavelength regions. λ is the wavelength.
Visibility improvement region VA: 400 nm ≤ λ <450 nm
Non-visibility improvement region NVA: 450 nm ≤ λ <510 nm
Visibility improvement region VB: 510 nm ≤ λ <615 nm
Non-visibility improvement region NVB: 615 nm ≤ λ <740 nm
Visibility improvement region VC: 740 nm ≤ λ <790 nm
視認性向上領域VAは、410nmから440nm付近の吸収極大を含む波長領域である。非視認性向上領域NVAは、470nmから500nm付近の吸収極小を含む波長領域である。なお、視認性向上領域VAと非視認性向上領域NVAの境界領域である、440nmから470nm付近の光は、血管の視認性を多少向上させるが、大きく向上させることは無い。本実施形態では、この波長領域を、450nmを境界としてVA及びNVAに含めたが、境界の波長は440nmから470nmの間で任意であってよい。
The visibility improvement region VA is a wavelength region including an absorption maximum in the vicinity of 410 nm to 440 nm. The non-visibility improvement region NVA is a wavelength region including an absorption minimum in the vicinity of 470 nm to 500 nm. The light in the vicinity of 440 nm to 470 nm, which is the boundary region between the visibility improving region VA and the non-visibility improving region NVA, slightly improves the visibility of blood vessels, but does not significantly improve it. In the present embodiment, this wavelength region is included in VA and NVA with 450 nm as a boundary, but the wavelength of the boundary may be arbitrary between 440 nm and 470 nm.
視認性向上領域VBは、520nmから580nm付近の吸収極大を含む波長領域であり、境界領域を含めて510nm~615nmと設定した。非視認性向上領域NVBは、630nm~730nm付近の吸収極小を含む波長領域であり、境界領域を含めて615nm~740nmと設定した。
The visibility improvement region VB is a wavelength region including an absorption maximum in the vicinity of 520 nm to 580 nm, and is set to 510 nm to 615 nm including the boundary region. The non-visibility improvement region NVB is a wavelength region including an absorption minimum in the vicinity of 630 nm to 730 nm, and is set to 615 nm to 740 nm including the boundary region.
視認性向上領域VCは、還元ヘモグロビンの吸収極大を含む波長領域であり、740nmより長波長の領域に設定した。
The visibility improvement region VC is a wavelength region including the absorption maximum of reduced hemoglobin, and is set to a wavelength region longer than 740 nm.
視認性向上領域VA、VB、VCに含まれる波長の光で照明すると、血管の視認性は相対的に向上する。一方、非視認性向上領域NVA、NVBに含まれる波長の光で照明すると、血管の視認性は向上しにくい。
Visibility improvement area When illuminated with light of wavelengths included in VA, VB, and VC, the visibility of blood vessels is relatively improved. On the other hand, when illuminated with light having a wavelength included in the non-visibility improving regions NVA and NVB, it is difficult to improve the visibility of blood vessels.
補足として、内視鏡のように生体を照明する場合、生体内への光の侵入深さは波長によって異なる。即ち短波長側の光は生体組織表面で吸収/散乱され易く、長波長になるに従って生体内部深くまで侵入し易い。例えば胃や腸の血管は、表面付近に細い毛細血管が、中層~深層にはやや太い血管が巡っている。従って、視認性向上領域VAの波長領域の光により表層の血管の視認性が向上する。視認性向上領域VBの波長領域の光により中層の血管の視認性が向上する。視認性向上領域VCの波長領域の光により深層の血管の視認性が向上する。
As a supplement, when illuminating a living body like an endoscope, the penetration depth of light into the living body differs depending on the wavelength. That is, light on the short wavelength side is easily absorbed / scattered on the surface of living tissue, and as the wavelength becomes longer, it easily penetrates deep inside the living body. For example, blood vessels in the stomach and intestines have thin capillaries near the surface and slightly thick blood vessels in the middle to deep layers. Therefore, the visibility of the blood vessels on the surface layer is improved by the light in the wavelength region of the visibility improvement region VA. Visibility improvement region Light in the wavelength region of VB improves the visibility of blood vessels in the middle layer. Visibility Improvement Region The visibility of deep blood vessels is improved by the light in the wavelength region of VC.
次に白色光としての色合い、及び自然さについて説明する。
Next, the hue and naturalness of white light will be explained.
一般に内視鏡の観察に用いる照明光は、概ね400nm~680mの可視光が用いられる。この可視光領域は一般に、青色領域、緑色領域、及び青色領域の3つの色領域に分類される。例えば、撮像素子のカラーフィルタの分光特性に基づいて、以下のように分類できる。λは波長である。
青色領域:400nm≦λ<495nm
緑色領域:495nm≦λ<585nm
赤色領域:585nm≦λ<680nm Generally, as the illumination light used for observing the endoscope, visible light having a diameter of about 400 nm to 680 m is used. This visible light region is generally classified into three color regions, a blue region, a green region, and a blue region. For example, it can be classified as follows based on the spectral characteristics of the color filter of the image sensor. λ is the wavelength.
Blue region: 400 nm ≤ λ <495 nm
Green region: 495 nm ≤ λ <585 nm
Red region: 585 nm ≤ λ <680 nm
青色領域:400nm≦λ<495nm
緑色領域:495nm≦λ<585nm
赤色領域:585nm≦λ<680nm Generally, as the illumination light used for observing the endoscope, visible light having a diameter of about 400 nm to 680 m is used. This visible light region is generally classified into three color regions, a blue region, a green region, and a blue region. For example, it can be classified as follows based on the spectral characteristics of the color filter of the image sensor. λ is the wavelength.
Blue region: 400 nm ≤ λ <495 nm
Green region: 495 nm ≤ λ <585 nm
Red region: 585 nm ≤ λ <680 nm
照明光は、これら3つの色領域の光量が、概ね1:1:1となると白色光となる。このとき各色領域内の分光スペクトルは、必ずしもブロードである必要はなく、極大と極小を有するような照明光でもよい。また波長欠落があっても照明光としての白色は実現することができる。
The illumination light becomes white light when the amount of light in these three color regions is approximately 1: 1: 1. At this time, the spectral spectrum in each color region does not necessarily have to be broad, and may be illumination light having a maximum and a minimum. Further, even if there is a wavelength loss, white as illumination light can be realized.
ただし、極端な狭波長領域光や、発光成分が無い波長領域である波長欠落領域が大きいと、被写体によっては違和感のある色合いとなる場合がある。波長欠落がほとんどなく、R:G:B≒1:1:1となるような照明光で被写体を観察すると自然な色合い、違和感のない色合いを実現することができる。
However, if there is an extremely narrow wavelength region light or a large wavelength missing region that is a wavelength region without a light emitting component, the color tone may be uncomfortable depending on the subject. By observing the subject with illumination light such that there is almost no wavelength loss and R: G: B≈1: 1: 1, a natural hue and a natural hue can be realized.
一般的な内視鏡ではキセノンランプ、ハロゲンランプ、白色LED、又は多色LEDの組み合わせが用いられている。いずれの光も概ね青色光量:緑色光量:赤色光量≒1:1:1である。この条件と適切な画像処理とを組み合わせることで、自然な白色性を有する内視鏡画像を実現する。
A combination of a xenon lamp, a halogen lamp, a white LED, or a multicolor LED is used in a general endoscope. In each case, the amount of blue light: the amount of green light: the amount of red light ≈ 1: 1: 1. By combining this condition with appropriate image processing, an endoscopic image having natural whiteness is realized.
波長欠落について少し詳しく説明する。
The missing wavelength will be explained in a little more detail.
従来の内視鏡で一般的に用いられているキセノンランプ及びハロゲンランプの光は、可視光波長領域において概ねブロードであり、波長欠落は無い。一方、複数の狭波長領域光を組み合わせた照明光の場合、LEDの波長やスペクトル幅によっては波長欠落が存在する。波長欠落が存在する照明光で観察した場合、欠落波長領域における被写体の色情報を取得できない。従って、波長欠落の無い照明光で観察した場合と比較して、色情報が欠落する可能性がある。医療用内視鏡の被写体である生体組織では、分光反射率も連続的であるため、波長欠落の影響は大きくはないが、それでも色情報が欠落することで、通常光観察光と比較して画像の色味が変化する場合が考えられる。本実施形態では、後述するように、可視光波長領域に波長欠落がない連続スペクトル、又は概ね波長欠落がないスペクトルを用いている。このため色情報の欠落に伴う色味の変化は小さい。
The light of xenon lamps and halogen lamps generally used in conventional endoscopes is generally broad in the visible light wavelength region, and there is no wavelength loss. On the other hand, in the case of illumination light in which a plurality of narrow wavelength region lights are combined, wavelength omission exists depending on the wavelength and spectrum width of the LED. When observing with illumination light having a missing wavelength, the color information of the subject in the missing wavelength region cannot be acquired. Therefore, there is a possibility that color information will be lost as compared with the case of observing with illumination light having no wavelength loss. In the biological tissue that is the subject of the medical endoscope, the spectral reflectance is also continuous, so the effect of wavelength loss is not large, but the color information is still missing, so compared to normal light observation light. The color of the image may change. In this embodiment, as will be described later, a continuous spectrum having no wavelength loss in the visible light wavelength region or a spectrum having substantially no wavelength loss is used. Therefore, the change in color due to the lack of color information is small.
なお、キセノンランプ等のブロードな照明光と比較すると、スペクトルにピーク及びボトムがある照明光の場合、色味が変化する場合がある。ただし、ボトム領域の色情報はゼロではないため、そのボトム領域における色情報を取得可能である。従って、適切な画像処理と組み合わせることでブロードな照明光の場合と同等の画像を提供できる。
Compared to a broad illumination light such as a xenon lamp, the color of the illumination light with peaks and bottoms in the spectrum may change. However, since the color information in the bottom region is not zero, the color information in the bottom region can be acquired. Therefore, by combining with appropriate image processing, it is possible to provide an image equivalent to that in the case of broad illumination light.
図5は、視認性向上波長領域と色領域の組み合わせによる可視光波長領域の分割を説明する図である。視認性向上波長領域と色領域の組み合わせにより、以下の6つの波長領域に分割される。λは波長である。
波長領域RA:青色領域のうち視認性向上領域VAに含まれる波長領域。400nm≦λ<450nm
波長領域RB:青色領域のうち非視認性向上領域NVAに含まれる波長領域。450nm≦λ<495nm
波長領域RC:緑色領域のうち非視認性向上領域NVAに含まれる波長領域。495nm≦λ<510nm
波長領域RD:緑色領域のうち視認性向上領域VBに含まれる波長領域。510nm≦λ<585nm
波長領域RE:赤色領域のうち視認性向上領域VBに含まれる波長領域。585nm≦λ<615nm
波長領域RF:赤色領域のうち非視認性向上領域NVBに含まれる波長領域。615nm≦λ<680nm FIG. 5 is a diagram illustrating division of a visible light wavelength region by a combination of a visibility improving wavelength region and a color region. It is divided into the following six wavelength regions by the combination of the visibility improving wavelength region and the color region. λ is the wavelength.
Wavelength region RA: A wavelength region included in the visibility improvement region VA in the blue region. 400nm ≤ λ <450nm
Wavelength region RB: A wavelength region included in the invisible improvement region NVA in the blue region. 450nm ≤ λ <495nm
Wavelength region RC: A wavelength region included in the invisible improvement region NVA in the green region. 495nm ≤ λ <510nm
Wavelength region RD: A wavelength region included in the visibility improvement region VB in the green region. 510 nm ≤ λ <585 nm
Wavelength region RE: A wavelength region included in the visibility improvement region VB in the red region. 585 nm ≤ λ <615 nm
Wavelength region RF: A wavelength region included in the invisible improvement region NVB in the red region. 615 nm ≤ λ <680 nm
波長領域RA:青色領域のうち視認性向上領域VAに含まれる波長領域。400nm≦λ<450nm
波長領域RB:青色領域のうち非視認性向上領域NVAに含まれる波長領域。450nm≦λ<495nm
波長領域RC:緑色領域のうち非視認性向上領域NVAに含まれる波長領域。495nm≦λ<510nm
波長領域RD:緑色領域のうち視認性向上領域VBに含まれる波長領域。510nm≦λ<585nm
波長領域RE:赤色領域のうち視認性向上領域VBに含まれる波長領域。585nm≦λ<615nm
波長領域RF:赤色領域のうち非視認性向上領域NVBに含まれる波長領域。615nm≦λ<680nm FIG. 5 is a diagram illustrating division of a visible light wavelength region by a combination of a visibility improving wavelength region and a color region. It is divided into the following six wavelength regions by the combination of the visibility improving wavelength region and the color region. λ is the wavelength.
Wavelength region RA: A wavelength region included in the visibility improvement region VA in the blue region. 400nm ≤ λ <450nm
Wavelength region RB: A wavelength region included in the invisible improvement region NVA in the blue region. 450nm ≤ λ <495nm
Wavelength region RC: A wavelength region included in the invisible improvement region NVA in the green region. 495nm ≤ λ <510nm
Wavelength region RD: A wavelength region included in the visibility improvement region VB in the green region. 510 nm ≤ λ <585 nm
Wavelength region RE: A wavelength region included in the visibility improvement region VB in the red region. 585 nm ≤ λ <615 nm
Wavelength region RF: A wavelength region included in the invisible improvement region NVB in the red region. 615 nm ≤ λ <680 nm
図4及び図5に示すように、青色領域において、視認性向上領域に属する波長領域RAの吸収スペクトルは、非視認性向上領域に属する波長領域RBの吸収スペクトルよりも大きい。緑色領域において、視認性向上領域に属する波長領域RDの吸収スペクトルは、非視認性向上領域に属する波長領域RCの吸収スペクトルよりも大きい。赤色領域において、視認性向上領域に属する波長領域REの吸収スペクトルは、非視認性向上領域に属する波長領域RFの吸収スペクトルよりも大きい。ここで、吸収スペクトルの大小は、波長領域におけるスペクトルの最大値で比較する。或いは、吸収スペクトルの大小は、波長領域におけるスペクトルの平均値で比較してもよい。
As shown in FIGS. 4 and 5, in the blue region, the absorption spectrum of the wavelength region RA belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RB belonging to the non-visibility improving region. In the green region, the absorption spectrum of the wavelength region RD belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RC belonging to the non-visibility improving region. In the red region, the absorption spectrum of the wavelength region RE belonging to the visibility improving region is larger than the absorption spectrum of the wavelength region RF belonging to the non-visibility improving region. Here, the magnitude of the absorption spectrum is compared with the maximum value of the spectrum in the wavelength region. Alternatively, the magnitude of the absorption spectrum may be compared by the average value of the spectra in the wavelength region.
なお、本実施形態では可視光照明を対象としているため、400nm未満の近紫外及び680nmを超える近赤外領域については言及しない。ただし、さらなる深層にある血管を観察する場合、近赤外光は有効である。このとき、視認性向上領域VCに含まれる波長を用いることで、視認性向上の効果を奏することができる。また、380nm~400nmの近紫外光を用いることで、極表層の血管をコントラストよく観察できる可能性がある。
Since visible light illumination is targeted in this embodiment, the near-ultraviolet region of less than 400 nm and the near-infrared region of more than 680 nm are not mentioned. However, near-infrared light is effective when observing blood vessels in a deeper layer. At this time, by using the wavelength included in the visibility improvement region VC, the visibility improvement effect can be achieved. Further, by using near-ultraviolet light of 380 nm to 400 nm, there is a possibility that blood vessels in the polar surface layer can be observed with good contrast.
図6は、光源装置160の詳細な構成例である。なお図6においてスコープ200のコネクタ及びライトガイド214のみを図示し、その他の構成要素について図示を省略している。
FIG. 6 is a detailed configuration example of the light source device 160. Note that only the connector of the scope 200 and the light guide 214 are shown in FIG. 6, and the other components are not shown.
光源部140は、紫の光IVを射出する光源LDVと、青の光IBを射出する光源LDBと、緑の光IGを射出する光源LDGと、アンバーの光IAを射出する光源LDAと、赤の光IRを射出する光源LDRと、光合波部141と、を含む。また光源部140は、光源の配光を変更したり並行光化したりするためのレンズ等を、更に含んでもよい。
The light source unit 140 includes a light source LDV that emits purple light IV, a light source LDB that emits blue light IB, a light source LDG that emits green light IG, a light source LDA that emits amber light IA, and red. Includes a light source LDR that emits the light IR of the above, and an optical combine unit 141. Further, the light source unit 140 may further include a lens or the like for changing the light distribution of the light source or making it parallel light.
光合波部141は、上記5色の光を合波してライトガイド214の入射端に入射させる。光合波部141は、光IV、IB、IG、IA、IRを合波するダイクロイックフィルタDC1~DC4である。或いは、光合波部141は、5つの入射端と1つの出射端を有する光ファイバ又は光ファイバ束であってもよい。ライトガイド214に入射したLED光は、ライトガイド214によりスコープ先端まで導光され、被写体に向けて照射される。
The light combining unit 141 combines the above five colors of light and causes the light guide 214 to enter the incident end. The optical combiner section 141 is a dichroic filter DC1 to DC4 that combine light IV, IB, IG, IA, and IR. Alternatively, the optical combiner 141 may be an optical fiber or an optical fiber bundle having five incident ends and one outgoing end. The LED light incident on the light guide 214 is guided to the tip of the scope by the light guide 214 and is irradiated toward the subject.
光源LDV、LDBは、InGaN系のLEDである。光源LDA、LDRは、AlGaInP系のLEDである。光源LDGは、InGaN系の青色LEDを励起光とし、LED発光面に塗布された蛍光体から緑色光を発光させる、いわゆるハイブリッド型のLEDである。
The light sources LDV and LDB are InGaN-based LEDs. The light sources LDA and LDR are AlGaInP-based LEDs. The light source LDG is a so-called hybrid type LED in which an InGaN-based blue LED is used as excitation light and green light is emitted from a phosphor coated on the LED light emitting surface.
光源LDV、LDB、LDA、LDRの各LEDは、半値幅が20~40nm程度の狭波長領域光を発生する。光源LDGのLEDは、半値幅50nm以上を有する比較的ブロードな広波長領域光を発する。光源LDV、LDB、LDG、LDA、LDRが発生する光のピーク波長は、それぞれ415nm、460nm、540nm、600nm、630nmである。
Each LED of the light source LDV, LDB, LDA, and LDR generates light in a narrow wavelength region having a half width of about 20 to 40 nm. The LED of the light source LDG emits relatively broad wide wavelength region light having a half width of 50 nm or more. The peak wavelengths of the light generated by the light sources LDV, LDB, LDG, LDA, and LDR are 415 nm, 460 nm, 540 nm, 600 nm, and 630 nm, respectively.
図7は、第1実施形態における照明光スペクトルの例である。
FIG. 7 is an example of the illumination light spectrum in the first embodiment.
図5及び図7に示すように、本実施形態において、光源LDVが発生するピーク波長415nmの光IVは、相対的に視認性を向上する波長領域RAに含まれる。光源LDBが発生するピーク波長460nmの光IBは、相対的に視認性を向上しない波長領域RBに含まれる。光源LDGが発生するピーク波長540nmの光IGは、相対的に視認性を向上する波長領域RDに含まれる。光源LDAが発生するピーク波長600nmの光IAは、相対的に視認性を向上する波長領域REに含まれる。光源LDRが発生するピーク波長630nmの光IRは、相対的に視認性を向上しない波長領域RFに含まれる。
As shown in FIGS. 5 and 7, in the present embodiment, the light IV having a peak wavelength of 415 nm generated by the light source LDV is included in the wavelength region RA that relatively improves visibility. The light IB having a peak wavelength of 460 nm generated by the light source LDB is included in the wavelength region RB that does not relatively improve visibility. The optical IG having a peak wavelength of 540 nm generated by the light source LDG is included in the wavelength region RD that relatively improves visibility. The light IA having a peak wavelength of 600 nm generated by the light source LDA is included in the wavelength region RE that relatively improves visibility. The optical IR having a peak wavelength of 630 nm generated by the light source LDR is included in the wavelength region RF that does not relatively improve visibility.
光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRに対して駆動電流を出力することで、光源LDV、LDB、LDG、LDA、LDRを発光させる。スコープが面順次方式である場合、光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRを、所定の発光シーケンスに従って順次に発光させる。スコープの撮像素子が原色ベイヤ型又は補色型である場合、光源コントローラ150は、光源LDV、LDB、LDG、LDA、LDRを同時に発光させる。
The light source controller 150 emits light from the light sources LDV, LDB, LDG, LDA, and LDR by outputting a drive current to the light sources LDV, LDB, LDG, LDA, and LDR. When the scope is a surface-sequential system, the light source controller 150 sequentially causes the light sources LDV, LDB, LDG, LDA, and LDR to emit light according to a predetermined light emission sequence. When the image sensor of the scope is a primary color Bayer type or a complementary color type, the light source controller 150 simultaneously emits light sources LDV, LDB, LDG, LDA, and LDR.
光源コントローラ150は、光量比記憶部151と、光量比制御回路152とを含む。
The light source controller 150 includes a light amount ratio storage unit 151 and a light amount ratio control circuit 152.
光量比記憶部151は、光量比設定値を記憶する。例えば、内視鏡装置の製造時において予め光量比記憶部151に光量比設定値が書き込まれる。光量比記憶部151として種々の記憶装置を想定できる。例えば、光量比記憶部151は、RAM又はROM、不揮発性メモリ等の半導体メモリである。或いは、光量比記憶部151は、ハードディスクドライブ等の磁気記憶装置であってもよい。
The light amount ratio storage unit 151 stores the light amount ratio set value. For example, the light amount ratio set value is written in advance in the light amount ratio storage unit 151 at the time of manufacturing the endoscope device. Various storage devices can be assumed as the light amount ratio storage unit 151. For example, the light amount ratio storage unit 151 is a semiconductor memory such as a RAM or ROM or a non-volatile memory. Alternatively, the light amount ratio storage unit 151 may be a magnetic storage device such as a hard disk drive.
光量比制御回路152は、光源LDV、LDB、LDG、LDA、LDRが出射する光の光量比を、光量比記憶部151から読み出した光量比設定値に基づいて制御する。上記したように光量比設定値は第1光量比と第2光量比を含む。第1光量比により色バランスが設定され、第2光量比により注目領域の強調度合いが設定される。
The light amount ratio control circuit 152 controls the light amount ratio of the light emitted by the light sources LDV, LDB, LDG, LDA, and LDR based on the light amount ratio set value read from the light amount ratio storage unit 151. As described above, the light amount ratio set value includes the first light amount ratio and the second light amount ratio. The color balance is set by the first light intensity ratio, and the degree of emphasis of the region of interest is set by the second light intensity ratio.
本実施形態の内視鏡装置は目的に応じていくつかの観察モードを切り替えることができる。即ち、スクリーニングモードと、WLI(White Light Imaging)モードと、3種類の特殊光観察モードとを、選択的に切り替えることが可能となっている。スクリーニングモードを第1通常光観察モードとも呼び、WLIモードを第2通常光観察モードとも呼ぶ。スクリーニングモードは、白色性と視認性向上を両立する観察モードである。WLIモードは、一般的な白色光による観察モードに対応する。特殊光観察モードは、表層血管を強調可能なNBI(Narrow Band imaging)モード、蛍光を観察可能なAFI(AutoFluorescence Imaging)モード、深層血管の強調等を可能にするRDIモードである。
The endoscope device of the present embodiment can switch between several observation modes according to the purpose. That is, it is possible to selectively switch between a screening mode, a WLI (White Light Imaging) mode, and three types of special light observation modes. The screening mode is also referred to as a first normal light observation mode, and the WLI mode is also referred to as a second normal light observation mode. The screening mode is an observation mode that achieves both whiteness and improved visibility. The WLI mode corresponds to a general white light observation mode. The special light observation mode is an NBI (Narrow Band imaging) mode capable of emphasizing surface blood vessels, an AFI (AutoFluorescence Imaging) mode capable of observing fluorescence, and an RDI mode capable of emphasizing deep blood vessels.
スコープ200の操作部220、制御装置100の入力部600、及び光源装置160の少なくとも1つに観察モード選択スイッチが設けられる。ユーザが観察モード選択スイッチを操作することで観察モードを選択する。選択された観察モード情報は光量比制御回路152に伝送される。例えば入力部600に観察モード選択スイッチが設けられる場合、入力部600から処理回路110を経由して観察モード情報が光量比制御回路152に伝送される。
An observation mode selection switch is provided at least one of the operation unit 220 of the scope 200, the input unit 600 of the control device 100, and the light source device 160. The user selects the observation mode by operating the observation mode selection switch. The selected observation mode information is transmitted to the light amount ratio control circuit 152. For example, when the input unit 600 is provided with the observation mode selection switch, the observation mode information is transmitted from the input unit 600 to the light amount ratio control circuit 152 via the processing circuit 110.
光量比制御回路152は、選択された観察モードに対応した光量比設定値を光量比記憶部151から読み出し、その光量比設定値により光量比を制御する。具体的には、スクリーニングモードが選択されたとき、光量比制御回路152は第1通常光観察用設定値により光量比を制御する。WLIモードが選択されたとき、光量比制御回路152は第2通常光観察用設定値により光量比を制御する。特殊光観察モードが選択されたときも、それぞれモードに対応した光量比設定値が用いられる。
The light amount ratio control circuit 152 reads out the light amount ratio set value corresponding to the selected observation mode from the light amount ratio storage unit 151, and controls the light amount ratio according to the light amount ratio set value. Specifically, when the screening mode is selected, the light amount ratio control circuit 152 controls the light amount ratio according to the first normal light observation set value. When the WLI mode is selected, the light amount ratio control circuit 152 controls the light amount ratio according to the second normal light observation set value. Even when the special light observation mode is selected, the light amount ratio setting value corresponding to each mode is used.
光量比記憶部151は、各観察モードにおける光量比と、発光させるLEDの種類を、光量比設定値として記憶している。言い換えると、観察モードによって、5個すべてのLEDを発光させる場合もあり、また一部のLEDのみを発光させる場合もある。また、観察モードに応じて画像処理等を変更してもよい。図示しない画像処理回路は、選択された観察モードの情報に基づいて対応した画像処理を選択、処理することも好適である。光源コントローラ150は、画像の明るさ等に応じて各光源の光量を調整する調光機能を有してもよい。調光は、例えばスコープ先端と被写体との距離が変化したり、被写体の反射率等の状況に応じて、画像が適切な明るさとなるよう、光源の光量を調整する機能である。光源コントローラ150は、5つの光源の光量比を維持したまま、照明光全体の光量を増減させることで、調光を行う。
The light amount ratio storage unit 151 stores the light amount ratio in each observation mode and the type of LED to emit light as a light amount ratio set value. In other words, depending on the observation mode, all five LEDs may be made to emit light, or only some LEDs may be made to emit light. Further, the image processing or the like may be changed according to the observation mode. It is also preferable that the image processing circuit (not shown) selects and processes the corresponding image processing based on the information of the selected observation mode. The light source controller 150 may have a dimming function that adjusts the amount of light of each light source according to the brightness of an image or the like. Dimming is a function of adjusting the amount of light of a light source so that the image becomes appropriate brightness according to a situation such as a change in the distance between the tip of the scope and the subject or the reflectance of the subject. The light source controller 150 performs dimming by increasing or decreasing the amount of light of the entire illumination light while maintaining the ratio of the amount of light of the five light sources.
各観察モードの詳細を説明する。まず、一般的な通常光観察モードに相当するWLIモードについて説明する。
The details of each observation mode will be explained. First, a WLI mode corresponding to a general normal light observation mode will be described.
WLIモードにおいて、照明光は白色光である。WLIモードが選択されると、光源コントローラ150は5つの光源LDV、LDB、LDG、LDA、LDRを第2通常光観察用設定値に基づいて発光させる。光量比は、キセノンランプ等の従来の内視鏡光源による画像と略等しい画像が得られるように設定されている。即ち、光源LDV、LDB、LDG、LDA、LDRの光量を、それぞれ、Vp、Bp、Gp、Ap、Rpとしたとき、(Vp+Bp):Gp:(Ap+Rp)≒1:1:1である。例えば、(Vp+Bp)、Gp、(Ap+Rp)の比率は、それぞれ、0.9以上1.1以下である。但し、これに限定されず、白色の条件は、画像処理や表示デバイス等の調整で白色に調整可能な比率の範囲であればよい。またVp:Bp、及びAp:Rpは、取得される画像の色味が従来の白色光観察画像と略等しくなるように設定されている。即ち、白色光観察における色表現に基づいて設定されている。色表現に基づく光量比Vp/Bp、Ap/Rpは、いずれも1より小さい。より望ましくは、Vp/Bp、Ap/Rpは、いずれも0.5以上0.9以下である。例えばVp/Bp、Ap/Rpがそれぞれ0.5のとき、Vp:Bp:Gp:Ap:Rp≒0.33:0.66:1.0:0.33:0.66となる。
In the WLI mode, the illumination light is white light. When the WLI mode is selected, the light source controller 150 causes the five light sources LDV, LDB, LDG, LDA, and LDR to emit light based on the second normal light observation set value. The light intensity ratio is set so that an image substantially equal to an image obtained by a conventional endoscopic light source such as a xenon lamp can be obtained. That is, when the light amounts of the light sources LDV, LDB, LDG, LDA, and LDR are Vp, Bp, Gp, Ap, and Rp, respectively, (Vp + Bp): Gp: (Ap + Rp) ≈ 1: 1: 1. For example, the ratios of (Vp + Bp), Gp, and (Ap + Rp) are 0.9 or more and 1.1 or less, respectively. However, the white condition is not limited to this, and may be a range of a ratio that can be adjusted to white by adjusting image processing, a display device, or the like. Further, Vp: Bp and Ap: Rp are set so that the tint of the acquired image is substantially equal to that of the conventional white light observation image. That is, it is set based on the color expression in white light observation. The light intensity ratios Vp / Bp and Ap / Rp based on the color representation are both smaller than 1. More preferably, Vp / Bp and Ap / Rp are both 0.5 or more and 0.9 or less. For example, when Vp / Bp and Ap / Rp are 0.5, respectively, Vp: Bp: Gp: Ap: Rp≈0.33: 0.66: 1.0: 0.33: 0.66.
特殊光観察モードは、NBIモード等に代表される、観察目的に応じた特殊なスペクトルパターンを有する照明光で観察するモードである。例えばNBIでは、415nm付近の青紫色光と、540nm付近の緑色光を用いることで、表層から中層の血管の視認性を向上する観察モードである。
The special light observation mode is a mode for observing with illumination light having a special spectral pattern according to the observation purpose, as represented by the NBI mode and the like. For example, NBI is an observation mode in which the visibility of blood vessels in the surface layer to the middle layer is improved by using bluish-purple light in the vicinity of 415 nm and green light in the vicinity of 540 nm.
観察モードとして特殊光観察モードが選択された場合の基本的な動作は、WLIモードの場合と概ね同様である。
The basic operation when the special light observation mode is selected as the observation mode is almost the same as that in the WLI mode.
本実施形態における内視鏡装置は、NBI、AFI、RDI等、複数の特殊光観察モードが選択可能となっており、目的に応じてそれぞれ選択できる。
The endoscope device in this embodiment can be selected from a plurality of special light observation modes such as NBI, AFI, and RDI, and can be selected according to the purpose.
NBIモードは、癌等病変部の視認性を向上する観察モードであり、光源LDVとLDGを点灯させる。AFIモードは、自家蛍光を観察するモードであり、光源LDVとLDGを点灯させる。NBIモードとAFIモードにおいて点灯する光源は同じだが、光量比が互いに異なっている。また、最適なスペクトル形状も異なっているため、観察モード対応フィルタによりNBIとAFIのスペクトルは異なっている。即ち、NBIとAFIのスペクトルはそれぞれ、NBI観察、AFI観察に最適となるように調整されている。観察モード対応フィルタは光路に挿入される。
The NBI mode is an observation mode for improving the visibility of lesions such as cancer, and lights the light sources LDV and LDG. The AFI mode is a mode for observing autofluorescence, and lights the light sources LDV and LDG. The light sources that light up in NBI mode and AFI mode are the same, but the light intensity ratios are different from each other. Moreover, since the optimum spectral shape is also different, the NBI and AFI spectra are different depending on the observation mode compatible filter. That is, the spectra of NBI and AFI are adjusted so as to be optimal for NBI observation and AFI observation, respectively. The observation mode compatible filter is inserted in the optical path.
RDIモードは、深層血管又は出血点の視認性を向上する観察モードであり、光源LDBとLDAとLDRを点灯させる。また観察モード対応フィルタはRDI用の物を光路に挿入する。
The RDI mode is an observation mode that improves the visibility of deep blood vessels or bleeding points, and lights the light sources LDB, LDA, and LDR. In addition, the observation mode compatible filter inserts an RDI object into the optical path.
特殊光観察モードにおける光量比は、各観察モードの目的とする機能、例えば特徴部の視認性の向上度合に基づいて設定される。また、特殊光観察モードの色表現も同様に、観察モードの目的とする機能に基づいて設定されており、通常光観察画像の色表現とは異なったものとなっているのが一般的である。
The light amount ratio in the special light observation mode is set based on the target function of each observation mode, for example, the degree of improvement in the visibility of the feature portion. Similarly, the color representation of the special light observation mode is also set based on the target function of the observation mode, and is generally different from the color representation of the normal light observation image. ..
観察モードとしてスクリーニングモードが選択された場合について説明する。
The case where the screening mode is selected as the observation mode will be described.
スクリーニングモードは、主に健康診断等の場面で、病変部を発見するための観察、いわゆるスクリーニングを目的とした観察モードである。このためWLIモードと比較して病変部等の視認性が高く、且つ、特殊光モードと比較して自然な色表現となるように構成されている。これにより、病変部が見落とされるのを抑制すると共に、自然な色合いとすることで違和感のない観察を実現できる。一般的な特殊光は病変部の視認性や病変の状態を判断し易くすることを目的としており、色合いも目的に最適となるよう設定されているため、白色光とは見え方が異なっている。このためドクターによっては疲労を感じやすい場合もある。色合いと視認性を両立することで、白色光のように長時間の作業でも疲労を感じにくく、かつ特殊光のように見落としの少ないスクリーニングを実現することができる。
The screening mode is an observation mode for the purpose of observation for finding lesions, so-called screening, mainly in situations such as health examinations. Therefore, the visibility of the lesion or the like is higher than that of the WLI mode, and the color expression is more natural than that of the special light mode. As a result, it is possible to prevent the lesion from being overlooked and to realize a natural color to observe without discomfort. The purpose of general special light is to make it easier to judge the visibility of the lesion and the condition of the lesion, and the color tone is set to be optimal for the purpose, so the appearance is different from white light. .. For this reason, some doctors may feel tired easily. By achieving both color and visibility, it is possible to realize screening that is less likely to cause fatigue even during long hours of work like white light and is less likely to be overlooked like special light.
スクリーニングモードでは、5色の光源LDV、LDB、LDG、LDA、LDRを第1通常光観察用設定値に基づいて発光させる。5色の光源の光量比は、(Vp+Bp):Gp:(Ap+Rp)≒1:1:1となるように設定されている。このように構成することで、自然な照明光となり作業者の違和感や疲労を低減できる可能性がある。
In the screening mode, the five color light sources LDV, LDB, LDG, LDA, and LDR are made to emit light based on the set values for the first normal light observation. The light intensity ratio of the five color light sources is set to be (Vp + Bp): Gp: (Ap + Rp) ≈ 1: 1: 1. With such a configuration, it becomes a natural illumination light, and there is a possibility that the discomfort and fatigue of the operator can be reduced.
Vp/Bp、Ap/Rpは、病変部等の視認性を向上するように設定されている。本実施形態では、NBIモード又はRDIモードと同様に、医療用内視鏡分野で一般的な特徴物質であるヘモグロビンの分光特性に基づいて設定されている。Vp/Bp、Ap/Rpはいずれも1より大きく3以下である。より望ましくは、Vp/Bp、Ap/Rpはいずれも1.2以上2.2以下である。これらの数値は、光量比を変化させながら血管コントラストを観察する実験に基づいて決定された。例えばVp/Bp、Ap/Rpがいずれも2.0の場合、Vp:Bp:Gp:Ap:Rp≒0.66:0.33:1.0:0.66:0.33となる。
Vp / Bp and Ap / Rp are set to improve the visibility of lesions and the like. In this embodiment, as in the NBI mode or the RDI mode, the setting is based on the spectral characteristics of hemoglobin, which is a common characteristic substance in the field of medical endoscopy. Both Vp / Bp and Ap / Rp are larger than 1 and 3 or less. More preferably, Vp / Bp and Ap / Rp are both 1.2 or more and 2.2 or less. These values were determined based on experiments in which vascular contrast was observed while changing the light intensity ratio. For example, when both Vp / Bp and Ap / Rp are 2.0, Vp: Bp: Gp: Ap: Rp≈0.66: 0.33: 1.0: 0.66: 0.33.
WLIモード、スクリーニングモードにおける光量比の設定手法について詳しく説明する。まずWLIモードから説明する。
The method of setting the light intensity ratio in the WLI mode and the screening mode will be described in detail. First, the WLI mode will be described.
WLIモードでは、照明光の色が自然な白色光であり、かつ色表現が従来から用いられてきたキセノンランプと同等となるように光量比を設定している。我々はこれまでの検討の結果、Vp/Bpが大きくなると黄色みが強くなり、逆にVp/Bp小さくなると青みが強くなることを見出した。またAp/Rpが大きくなると赤みが薄くやや茶色のようになり、Ap/Rpが小さくなると赤みが濃くなることを見出した。Vp/BpとAp/Rpをそれぞれ概ね0.5以上0.9以下の範囲とすることで、キセノンランプ同等の色表現を実現できることが確認できている。但し、詳細な比は各LEDのピーク波長やスペクトルパターンに応じて設定する必要がある。また、このように設定された光量比の場合、相対的に視認性を向上する光源LDVの光量Vpが、相対的に視認性を向上しない光源LDBの光量Bpより小さいため、視認性向上レベルは特殊光観察モードと比較して高くない。ApとRpの関係も同様である。
In the WLI mode, the light intensity ratio is set so that the color of the illumination light is natural white light and the color expression is equivalent to that of the conventionally used xenon lamp. As a result of the studies so far, we have found that the larger the Vp / Bp, the stronger the yellowish color, and conversely, the smaller the Vp / Bp, the stronger the bluish color. It was also found that when Ap / Rp increased, the redness became lighter and slightly brownish, and when Ap / Rp decreased, the redness became darker. It has been confirmed that by setting Vp / Bp and Ap / Rp in the range of about 0.5 or more and 0.9 or less, respectively, it is possible to realize a color expression equivalent to that of a xenon lamp. However, the detailed ratio needs to be set according to the peak wavelength and the spectrum pattern of each LED. Further, in the case of the light amount ratio set in this way, the light amount Vp of the light source LDV that relatively improves the visibility is smaller than the light amount Bp of the light source LDB that does not relatively improve the visibility, so that the visibility improvement level is high. Not expensive compared to special light observation mode. The relationship between Ap and Rp is similar.
スクリーニングモードでは、照明の目的として、白色光であること、かつ視認性を向上することを両立する。
In the screening mode, the purpose of lighting is to achieve both white light and improved visibility.
具体的には、(Vp+Bp):Gp:(Ap+Rp)≒1:1:1に設定する。その上で、各色領域において、(視認性向上領域に属する光の光量)/(非視認性向上領域に属する光の光量)をWLIモードよりも大きくすることで、注目領域の視認性を向上できる。具体的には、Vp/BpとAp/Rpを、それぞれ1より大きい値に設定する。
Specifically, (Vp + Bp): Gp: (Ap + Rp) ≈ 1: 1: 1 is set. In addition, the visibility of the region of interest can be improved by increasing (the amount of light belonging to the visibility improving region) / (the amount of light belonging to the non-visibility improving region) in each color region as compared with the WLI mode. .. Specifically, Vp / Bp and Ap / Rp are each set to a value larger than 1.
上記の条件を、5光源の光量比に置き換えると、Vp:Bp:Gp:Ap:Rp≒0.5+α:0.5-α:1.0:0.5+β:0.5-βである。α、βは実数であり、α≧0、β≧0である。この光量比を第1通常光観察用設定値とすることで、視認性を向上した白色に近い照明を実現できる。
Replacing the above condition with the light intensity ratio of 5 light sources, Vp: Bp: Gp: Ap: Rp≈0.5 + α: 0.5-α: 1.0: 0.5 + β: 0.5-β. α and β are real numbers, and α ≧ 0 and β ≧ 0. By setting this light amount ratio as the first normal light observation setting value, it is possible to realize illumination close to white with improved visibility.
スクリーニングモードでは、ドクター等の作業者が違和感なくスクリーニングを行えるようにするため、色表現についてもWLIモードに近いレベルとする必要がある。言い換えると、Vp/Bpが大きすぎるとき、又はAp/Rpが大きすぎるとき、色表現が変わってしまい、スクリーニング時に作業者が違和感を感じる可能性がある。例えばVp/Bpが3を超えると画像の黄色みが強くなりすぎる。Ap/Rpが3を超えると赤みが薄くなり茶色みが強くなってしまう。また、検討の結果、Vp/Bp、Ap/Rpが3未満であれば違和感を感じにくい色表現が実現できること、2.2以下であればほとんど違和感を感じることなくスクリーニングが可能であることを見出した。
In the screening mode, it is necessary to set the color expression to a level close to that of the WLI mode so that workers such as doctors can perform screening without discomfort. In other words, when Vp / Bp is too large, or when Ap / Rp is too large, the color expression changes, and the operator may feel uncomfortable during screening. For example, when Vp / Bp exceeds 3, the yellowness of the image becomes too strong. When Ap / Rp exceeds 3, the redness becomes lighter and the brownishness becomes stronger. In addition, as a result of the examination, it was found that if Vp / Bp and Ap / Rp are less than 3, a color expression that does not cause a sense of discomfort can be realized, and if it is 2.2 or less, screening is possible with almost no discomfort. It was.
上記の3つの条件をまとめると、以下の通りである。
The above three conditions can be summarized as follows.
第1条件:白色であること。即ち、(Vp+Bp):Gp:(Ap+Rp)≒1:1:1である。
First condition: Must be white. That is, (Vp + Bp): Gp: (Ap + Rp) ≈ 1: 1: 1.
第2条件:視認性向上の効果があること。即ち、Vp/Bp、Ap/Rpはいずれも0.9以上である。より効果を奏するためには、Vp/Bp、Ap/Rpはいずれも1.0以上であることが望ましい。
Second condition: It has the effect of improving visibility. That is, Vp / Bp and Ap / Rp are both 0.9 or more. In order to be more effective, it is desirable that both Vp / Bp and Ap / Rp are 1.0 or more.
第3条件:色表現に違和感がないこと。即ち、Vp/Bp、Ap/Rpはいずれも3.0未満である。より違和感がない画像を実現するためには、Vp/Bp、Ap/Rpはいずれも2.2以下であることが望ましい。
Third condition: There should be no discomfort in color expression. That is, both Vp / Bp and Ap / Rp are less than 3.0. In order to realize a more comfortable image, it is desirable that Vp / Bp and Ap / Rp are both 2.2 or less.
第1~第3条件を、5光源の光量比に置き換えると、Vp:Bp:Gp:Ap:Rp≒0.47+γ:0.53-γ:1.0:0.47+δ:0.53-δである。γ、δは実数であり、0<γ<0.3、0<δ<0.3である。
Replacing the first to third conditions with the light intensity ratio of the five light sources, Vp: Bp: Gp: Ap: Rp≈0.47 + γ: 0.53-γ: 1.0: 0.47 + δ: 0.53-δ Is. γ and δ are real numbers, and 0 <γ <0.3 and 0 <δ <0.3.
より望ましくは、Vp:Bp:Gp:Ap:Rp≒0.5+η:0.5-η:1.0:0.5+ζ:0.5-ζである。η、ζは実数であり、0≦η≦0.19、0≦ζ≦0.19である。
More preferably, Vp: Bp: Gp: Ap: Rp≈0.5 + η: 0.5-η: 1.0: 0.5 + ζ: 0.5-ζ. η and ζ are real numbers, and 0 ≦ η ≦ 0.19 and 0 ≦ ζ ≦ 0.19.
なお、本実施形態において、緑色光を出射する光源LDGは、青色LEDと蛍光体を組み合わせたハイブリッド光源である。このため、長波長側に裾が広がったスペクトル形状を有しているが、アンバー領域にはみ出した部分については、光量比制御の観点からカットするほうが望ましい。例えば、ダイクロイックフィルタDC3に、光源LDGの出射光のうちアンバー領域にはみ出した光をカットする機能を持たせればよい。
In the present embodiment, the light source LDG that emits green light is a hybrid light source that combines a blue LED and a phosphor. For this reason, it has a spectral shape with a wide hem on the long wavelength side, but it is desirable to cut the portion protruding into the amber region from the viewpoint of light amount ratio control. For example, the dichroic filter DC3 may be provided with a function of cutting the light emitted from the light source LDG that protrudes into the amber region.
なお、観察モードに応じて、各光源の出射光を波長領域制限してもよい。この場合、選択された観察モードに応じて光路上に観察モード対応フィルタを挿入する。観察モード対応フィルタは、従来の内視鏡において用いられるフィルタであってもよい。図6において光合波部141が合波した後、ライトガイド214入射前に、観察モード対応フィルタを挿入するのが好適である。本実施形態では図示しないが、観察モード選択時に、回転円板(ターレット)に搭載された観察モード対応フィルタを光路上に挿入するように構成されている。
Note that the wavelength region of the emitted light of each light source may be limited according to the observation mode. In this case, an observation mode-compatible filter is inserted on the optical path according to the selected observation mode. The observation mode compatible filter may be a filter used in a conventional endoscope. In FIG. 6, it is preferable to insert an observation mode-compatible filter after the optical combine section 141 has combined and before the light guide 214 is incident. Although not shown in this embodiment, when the observation mode is selected, the observation mode compatible filter mounted on the rotating disk (turret) is inserted on the optical path.
以上に説明した実施形態によれば、光量比設定値は、白色の照明光に対応した第1光量比と、第1光源の光量が第2光源の光量より大きい第2光量比と、を設定する値である。
According to the embodiment described above, the light amount ratio setting value sets the first light amount ratio corresponding to the white illumination light and the second light amount ratio in which the light amount of the first light source is larger than the light amount of the second light source. It is a value to be used.
このようにすれば、光源コントローラ150が光量比設定値に基づいて照明光の光量比を設定することで、第1光量比及び第2光量比を実現する照明光を発生させることができる。
By doing so, the light source controller 150 sets the light amount ratio of the illumination light based on the light amount ratio set value, so that the illumination light that realizes the first light amount ratio and the second light amount ratio can be generated.
なお、第1実施形態において、光量比設定値は、上記スクリーニングモードにおける光量比設定値である。第1光量比は、上記白色光要件を満たす光量比であり、第2光量比は、上記視認性向上要件を満たす光量比である。第1実施形態において、第2光量比は、Vp/Bp又はAp/Rpのいずれであってもよい。
In the first embodiment, the light amount ratio set value is the light amount ratio set value in the screening mode. The first light amount ratio is a light amount ratio that satisfies the white light requirement, and the second light amount ratio is a light amount ratio that satisfies the visibility improvement requirement. In the first embodiment, the second light intensity ratio may be either Vp / Bp or Ap / Rp.
また本実施形態では、第2光量比として設定される(第1光源の光量)/(第2光源の光量)は、1.5以上2.2以下である。
Further, in the present embodiment, (the amount of light of the first light source) / (the amount of light of the second light source) set as the second light amount ratio is 1.5 or more and 2.2 or less.
このようにすれば、注目領域の強調度合いが大きい第1光源の光量を、注目領域の強調度合いが小さい第2光源の光量より大きくできるので、注目領域の視認性を向上できる。また、その比を1.5以上2.2以下とすることで、白色光としての自然さ等を維持すると共に、注目領域の視認性を向上できる。
By doing so, the amount of light of the first light source having a large degree of emphasis in the area of interest can be made larger than the amount of light of the second light source having a small degree of emphasis in the area of interest, so that the visibility of the area of interest can be improved. Further, by setting the ratio to 1.5 or more and 2.2 or less, it is possible to maintain the naturalness of white light and improve the visibility of the region of interest.
なお、第1実施形態において、第1光源及び第2光源は、光源LDV及び光源LDB、又は光源LDA及び光源LDRである。
In the first embodiment, the first light source and the second light source are the light source LDV and the light source LDB, or the light source LDA and the light source LDR.
また本実施形態では、4以上の光源は、紫色光IVを出射する紫色光源LDVと、青色光IBを出射する青色光源LDBと、緑色光IGを出射する緑色光源LDGと、アンバー光IAを出射するアンバー光源LDAと、赤色光IRを出射する赤色光源LDRと、を含む。紫色光源LDV、青色光源LDB、緑色光源LDG、アンバー光源LDA及び赤色光源LDRの光量を、それぞれVp、Bp、Gp、Ap、Rpとする。このとき、第1光量比として設定される(Vp+Bp):Gp:(Ap+Rp)は、白色となる光量比である。且つ、第2光量比として設定されるVp/Bp及びAp/Rpは、いずれも1より大きい。
Further, in the present embodiment, the four or more light sources emit a purple light source LDV that emits purple light IV, a blue light source LDB that emits blue light IB, a green light source LDG that emits green light IG, and amber light IA. The amber light source LDA and the red light source LDR that emits red light IR are included. Let the light amounts of the purple light source LDV, the blue light source LDB, the green light source LDG, the amber light source LDA, and the red light source LDR be Vp, Bp, Gp, Ap, and Rp, respectively. At this time, (Vp + Bp): Gp :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white. Moreover, Vp / Bp and Ap / Rp set as the second light amount ratio are both larger than 1.
このようにすれば、5光源の照明光において白色光要件と視認性向上要件を両立できる。ヘモグロビン吸収スペクトルにおける視認性向上領域と各色領域との関係から、赤色領域及び青色領域が視認性向上に大きく貢献すると考えられる。本実施形態では、Vp/Bp及びAp/Rpをいずれも1より大きく設定することで、視認性を向上できる。一方、緑色領域は視覚において輝度に対する影響が大きいため、緑色光IGをブロードなスペクトルとすることで、より白色光に近い照明光にできる。
In this way, it is possible to achieve both the white light requirement and the visibility improvement requirement in the illumination light of the five light sources. From the relationship between the visibility improvement region and each color region in the hemoglobin absorption spectrum, it is considered that the red region and the blue region greatly contribute to the visibility improvement. In the present embodiment, visibility can be improved by setting both Vp / Bp and Ap / Rp to be larger than 1. On the other hand, since the green region has a large effect on the brightness in the visual sense, it is possible to obtain illumination light closer to white light by setting the green light IG to a broad spectrum.
また本実施形態では、第2光量比として設定されるVp/Bp及びAp/Rpは、いずれも1.5以上2.2以下である。
Further, in the present embodiment, Vp / Bp and Ap / Rp set as the second light intensity ratio are both 1.5 or more and 2.2 or less.
このようにすれば、青色領域及び赤色領域において、白色光としての自然さ等を維持すると共に、注目領域の視認性を向上できる。例えば、消化管粘膜において、表層血管及び深層血管の視認性を向上すると共に、白色光としての自然さ等を維持できる。
By doing so, in the blue region and the red region, it is possible to maintain the naturalness as white light and improve the visibility of the region of interest. For example, in the gastrointestinal mucosa, the visibility of surface blood vessels and deep blood vessels can be improved, and the naturalness of white light can be maintained.
また本実施形態では、光源コントローラ150は、第1通常光観察モードが設定されたとき光量比設定値を第1通常光観察用設定値に設定し、第2通常光観察モードが設定されたとき光量比設定値を第2通常光観察用設定値に設定する。第1通常光観察用設定値及び第2通常光観察用設定値において、(Vp+Bp):Gp:(Ap+Rp)は白色となる光量比である。第1通常光観察用設定値において、Vp/Bp及びAp/Rpは、いずれも1より大きい。第2通常光観察用設定値において、Vp/Bp及びAp/Rpは、いずれも1より小さい。
Further, in the present embodiment, when the first normal light observation mode is set, the light source controller 150 sets the light amount ratio set value to the first normal light observation set value, and when the second normal light observation mode is set. The light amount ratio set value is set to the second normal light observation set value. In the first normal light observation set value and the second normal light observation set value, (Vp + Bp): Gp :( Ap + Rp) is a light amount ratio that makes white. In the first normal light observation set value, both Vp / Bp and Ap / Rp are larger than 1. In the second normal light observation set value, both Vp / Bp and Ap / Rp are smaller than 1.
このようにすれば、白色性と視認性向上を両立する第1通常光観察モードと、より自然な白色光を実現する第2通常光観察モードとを、ユーザに提供できる。
By doing so, it is possible to provide the user with a first normal light observation mode that achieves both whiteness and improved visibility, and a second normal light observation mode that realizes more natural white light.
なお、第1実施形態において、第1通常光観察モードはスクリーニングモードであり、第2通常光観察モードはWLIモードである。但し、第1通常光観察モードの用途はスクリーニングに限定されない。即ち、白色光としての自然な色味を確保しつつ、注目領域の視認性向上が必要な、診察又は手術等においても、第1通常光観察モードを使用できる。
In the first embodiment, the first normal light observation mode is the screening mode, and the second normal light observation mode is the WLI mode. However, the application of the first normal light observation mode is not limited to screening. That is, the first normal light observation mode can be used even in a medical examination or surgery where it is necessary to improve the visibility of the region of interest while ensuring the natural color of white light.
また本実施形態では、第1通常光観察モードは、第2通常光観察モードよりも注目領域の強調度合いが高い。
Further, in the present embodiment, the degree of emphasis of the region of interest is higher in the first normal light observation mode than in the second normal light observation mode.
即ち、第1通常光観察用設定値において、Vp/Bp及びAp/Rpが、いずれも1より大きいことで、第1通常光観察モードにおいて注目領域の強調度合いが相対的に大きくなる。一方、第2通常光観察用設定値において、Vp/Bp及びAp/Rpが、いずれも1より小さいことで、第2通常光観察モードにおいて注目領域の強調度合いが相対的に小さくなる。
That is, when both Vp / Bp and Ap / Rp are larger than 1 in the first normal light observation set value, the degree of emphasis of the region of interest becomes relatively large in the first normal light observation mode. On the other hand, since Vp / Bp and Ap / Rp are both smaller than 1 in the second normal light observation set value, the degree of emphasis of the region of interest is relatively small in the second normal light observation mode.
また本実施形態では、光源コントローラ150は、通常光観察モードが設定されたとき光量比設定値を通常光観察用設定値に設定し、特殊光観察モードが設定されたとき光量比設定値を特殊光観察用設定値に設定する。通常光観察用設定値における青色光量、緑色光量及び赤色光量の比は、特殊光観察用設定値における青色光量、緑色光量及び赤色光量の比よりも相対的に1:1:1に近い。
Further, in the present embodiment, the light source controller 150 sets the light amount ratio set value to the normal light observation set value when the normal light observation mode is set, and sets the light amount ratio set value to the special light amount ratio set value when the special light observation mode is set. Set to the light observation setting value. The ratio of the amount of blue light, the amount of green light, and the amount of red light in the set value for normal light observation is relatively closer to 1: 1: 1 than the ratio of the amount of blue light, the amount of green light, and the amount of red light in the set value for special light observation.
特殊光観察モードは、注目領域の視認性を優先したモードであるため、一般的に白色光とは異なる色バランスの画像となってもよい。このため、通常光観察モードに比べて青色光量:緑色光量:赤色光量が相対的に1:1:1より遠くてもよい。例えば、通常光観察モードでは、青色光量、緑色光量及び赤色光量の各比率は0.9以上1.1以下の範囲である。一方、特殊光観察モードでは、青色光量、緑色光量及び赤色光量のうち1以上の比率が、0.9未満又は1.1より大きい。
Since the special light observation mode is a mode that prioritizes the visibility of the area of interest, the image may have a color balance different from that of white light in general. Therefore, the amount of blue light: the amount of green light: the amount of red light may be relatively farther than 1: 1: 1 as compared with the normal light observation mode. For example, in the normal light observation mode, each ratio of the amount of blue light, the amount of green light, and the amount of red light is in the range of 0.9 or more and 1.1 or less. On the other hand, in the special light observation mode, the ratio of one or more of the blue light amount, the green light amount and the red light amount is less than 0.9 or larger than 1.1.
なお、第1実施形態において、通常光観察モードはスクリーニングモード又はWLIモードである。特殊光観察モードは、NBIモード、AFIモード、又はRDIモードである。
In the first embodiment, the normal light observation mode is a screening mode or a WLI mode. The special light observation mode is an NBI mode, an AFI mode, or an RDI mode.
また本実施形態では、光源部140は、4以上の光源として第1~第n光源を含む。nは4以上の整数である。光源コントローラ150は、第1通常光観察モードが設定されたとき光量比設定値を第1通常光観察用設定値に設定して第1~第n光源を発光させる。光源コントローラ150は、第2通常光観察モードが設定されたとき光量比設定値を第2通常光観察用設定値に設定して第1~第n光源を発光させる。光源コントローラ150は、特殊光観察モードが設定されたとき光量比設定値を特殊光観察用設定値に設定すると共に、第1~第n光源のうち特殊光に対応する複数の光源を発光させる。第1通常光観察用設定値及び第2通常光観察用設定値において、青色光量、緑色光量及び赤色光量の比は、白色の光量比である。第1通常光観察用設定値における上記複数の光源の光量比は、第2通常光観察用設定値における上記複数の光源の光量比に比べて相対的に、特殊光観察用設定値における複数の光源の光量比に近い。
Further, in the present embodiment, the light source unit 140 includes the first to nth light sources as four or more light sources. n is an integer of 4 or more. When the first normal light observation mode is set, the light source controller 150 sets the light amount ratio set value to the first normal light observation set value and causes the first to nth light sources to emit light. When the second normal light observation mode is set, the light source controller 150 sets the light amount ratio set value to the second normal light observation set value and causes the first to nth light sources to emit light. When the special light observation mode is set, the light source controller 150 sets the light amount ratio set value to the special light observation set value, and emits a plurality of light sources corresponding to the special light among the first to nth light sources. In the first normal light observation set value and the second normal light observation set value, the ratio of the blue light amount, the green light amount, and the red light amount is the white light amount ratio. The light intensity ratios of the plurality of light sources in the first normal light observation set value are relatively plurality in the special light observation set value as compared with the light intensity ratios of the plurality of light sources in the second normal light observation set value. It is close to the light intensity ratio of the light source.
例えば特殊光観察モードがNBIモードである場合、光源コントローラ150は紫色光源LDVと緑色光源LDGとを発光させる。スクリーニングモード(第1通常光観察モード)ではVp/Bp>1であり、WLIモード(第2通常光観察モード)ではVp/Bp<1であることから、スクリーニングモードにおけるVp/Gpの方がWLIモードにおけるVp/Gpよりも大きくなる。NBIモードにおいてVp/Gp>1であることを考慮すると、スクリーニングモードにおけるVp/Gpは、WLIモードにおけるVp/Gpに比べて相対的に、特殊光モードにおけるVp/Gpに近いと言える。AFIモード及びRDIモードにおいても同様である。
For example, when the special light observation mode is the NBI mode, the light source controller 150 causes the purple light source LDV and the green light source LDG to emit light. Since Vp / Bp> 1 in the screening mode (first normal light observation mode) and Vp / Bp <1 in the WLI mode (second normal light observation mode), Vp / Gp in the screening mode is WLI. It becomes larger than Vp / Gp in the mode. Considering that Vp / Gp> 1 in the NBI mode, it can be said that Vp / Gp in the screening mode is relatively close to Vp / Gp in the special light mode as compared with Vp / Gp in the WLI mode. The same applies to the AFI mode and the RDI mode.
また本実施形態では、光源コントローラ150は、光量比記憶部151と光量比制御回路152とを含む。光量比記憶部151は、複数の観察モードに対応した複数の光量比設定値を記憶する。光量比制御回路152は、複数の観察モードのうち設定された観察モードに対応した光量比設定値を光量比記憶部151から読み出し、当該読み出した光量比設定値に基づいて4以上の光源の光量比を制御する。
Further, in the present embodiment, the light source controller 150 includes a light amount ratio storage unit 151 and a light amount ratio control circuit 152. The light amount ratio storage unit 151 stores a plurality of light amount ratio set values corresponding to the plurality of observation modes. The light amount ratio control circuit 152 reads out the light amount ratio set value corresponding to the set observation mode among the plurality of observation modes from the light amount ratio storage unit 151, and based on the read-out light amount ratio set value, the light amount of four or more light sources. Control the ratio.
このようにすれば、ユーザにより選択された観察モードに応じて照明光を切り替えることができる。例えば、キセノンランプ等の従来白色光に近いWLIモードの照明光と、白色光要件と視認性向上要件を両立するスクリーニングモードの照明光と、NBI等の特殊光観察モードにおける照明光と、を切り替えることができる。
In this way, the illumination light can be switched according to the observation mode selected by the user. For example, the illumination light in the WLI mode, which is close to the conventional white light such as a xenon lamp, the illumination light in the screening mode that achieves both the white light requirement and the visibility improvement requirement, and the illumination light in the special light observation mode such as NBI are switched. be able to.
また本実施形態では、光源コントローラ150は、照明光の光量が変化した場合であっても、光量比設定値に基づいて4以上の光源の光量を同期することで第1光量比及び第2光量比を維持する。
Further, in the present embodiment, the light source controller 150 synchronizes the light amounts of four or more light sources based on the light amount ratio set value even when the light amount of the illumination light changes, so that the first light amount ratio and the second light amount are synchronized. Maintain the ratio.
例えば、上記のように調光制御によって照明光の光量が変化する。このとき、光源コントローラ150は、光量比設定値に基づいて4以上の光源の光量を同期して変化させることで、第1光量比及び第2光量比を維持できる。これにより、白色光要件と視認性向上要件の両立を維持したまま、照明光の光量を変化させることができる。
For example, the amount of illumination light changes by dimming control as described above. At this time, the light source controller 150 can maintain the first light amount ratio and the second light amount ratio by synchronously changing the light amounts of four or more light sources based on the light amount ratio set value. As a result, the amount of illumination light can be changed while maintaining both the white light requirement and the visibility improvement requirement.
また本実施形態では、図4に示すように、観察対象物の分光スペクトルに基づいて、相対的に視認性を向上する視認性向上領域と、相対的に視認性を向上しない非視認性向上領域とに分割される。図5及び図7に示すように、同じ色領域に属する2つの光のうち一方は視認性向上領域に属し、他方は非視認性向上領域に属する。
Further, in the present embodiment, as shown in FIG. 4, a visibility improving region that relatively improves visibility and a non-visibility improving region that does not relatively improve visibility based on the spectral spectrum of the observation object It is divided into and. As shown in FIGS. 5 and 7, one of the two lights belonging to the same color region belongs to the visibility improving region, and the other belongs to the non-visibility improving region.
また本実施形態では、図5及び図7に示すように、可視光波長領域は青色領域、緑色領域及び赤色領域に分割される。この3つの色領域と、視認性向上領域及び非視認性向上領域とに基づいて、可視光波長領域は4以上の波長領域に分割される。このとき、4以上の光源のピーク波長は、互いに異なる波長領域に属する。図5の例では、可視光波長領域はRA~RFの6つの波長領域に分割される。そして、5つの光IV、IB、IG、IA、IRのピーク波長は、互いに異なる波長領域RA、RB、RD、RE、RFに属する。
Further, in the present embodiment, as shown in FIGS. 5 and 7, the visible light wavelength region is divided into a blue region, a green region, and a red region. The visible light wavelength region is divided into four or more wavelength regions based on the three color regions, the visibility improving region, and the non-visibility improving region. At this time, the peak wavelengths of the four or more light sources belong to different wavelength regions. In the example of FIG. 5, the visible light wavelength region is divided into six wavelength regions of RA to RF. The peak wavelengths of the five optical IVs, IBs, IGs, IAs, and IRs belong to different wavelength regions RA, RB, RD, RE, and RF.
また本実施形態では、観察対象物はヘモグロビンである。このとき、4以上の光源は、5波長の光源LDV、LDB、LDG、LDA、LDRである。光源LDV、LDG、LDAが出射する光IV、IG、IAのピーク波長は視認性向上領域に属し、光源LDB、LDRが出射する光IB、IRのピーク波長は非視認性向上領域に属する。
Also, in this embodiment, the object to be observed is hemoglobin. At this time, the four or more light sources are the five wavelength light sources LDV, LDB, LDG, LDA, and LDR. The peak wavelengths of the light IV, IG, and IA emitted by the light sources LDV, LDG, and LDA belong to the visibility improvement region, and the peak wavelengths of the light IB and IR emitted by the light sources LDB and LDR belong to the invisibility improvement region.
また本実施形態では、第1光量比である(Vp+Bp):Gp:(Ap+Rp)は、色バランスに基づいて設定される。第2光量比であるVp:Bp及びAp:Rpは、相対的な視認性向上レベルに基づいて設定される。
Further, in the present embodiment, the first light intensity ratio (Vp + Bp): Gp :( Ap + Rp) is set based on the color balance. The second light intensity ratios, Vp: Bp and Ap: Rp, are set based on the relative visibility improvement level.
また本実施形態では、内視鏡装置が複数の観察モードを有し、各観察モードの光量比は、色バランス及び注目領域の視認性に基づいて設定される。
Further, in the present embodiment, the endoscope device has a plurality of observation modes, and the light amount ratio of each observation mode is set based on the color balance and the visibility of the region of interest.
また本実施形態では、内視鏡装置は、WLIモードとスクリーニングモードを有する。ピーク波長が視認性向上領域に属する光の、スクリーニングモードにおける光量比は、その光の、WLIモードにおける光量比よりも相対的に高い。
Further, in the present embodiment, the endoscope device has a WLI mode and a screening mode. The light intensity ratio of the light whose peak wavelength belongs to the visibility improving region in the screening mode is relatively higher than the light intensity ratio of the light in the WLI mode.
また本実施形態では、撮像素子の分光感度特性と、光路上の光学部材の分光特性とを考慮して、第1光量比及び第2光量比を設定してもよい。撮像素子の分光感度特性は、素子感度とカラーフィルタ分光特性である。光学部材は、光合波部141とライトガイド214と照明レンズ211、212である。
Further, in the present embodiment, the first light amount ratio and the second light amount ratio may be set in consideration of the spectral sensitivity characteristic of the image sensor and the spectral characteristic of the optical member on the optical path. The spectral sensitivity characteristics of the image sensor are the element sensitivity and the color filter spectral characteristics. The optical members are an optical combine unit 141, a light guide 214, and illumination lenses 211 and 212.
5.第2実施形態
以下、第2実施形態について説明するが、第1実施形態と共通の部分については説明を省略する。 5. Second Embodiment Hereinafter, the second embodiment will be described, but the description of the parts common to the first embodiment will be omitted.
以下、第2実施形態について説明するが、第1実施形態と共通の部分については説明を省略する。 5. Second Embodiment Hereinafter, the second embodiment will be described, but the description of the parts common to the first embodiment will be omitted.
第2実施形態では、光源装置160は青緑色領域カットフィルタを有する。青緑色領域カットフィルタは、光源LDGが射出する緑色光のうち概ね510nm以下の光をカットする。
In the second embodiment, the light source device 160 has a blue-green region cut filter. The blue-green region cut filter cuts the green light emitted by the light source LDG, which is approximately 510 nm or less.
図5に示すように、緑色領域のうち495nm~510nmは相対的に視認性を向上しない非視認性向上領域RCである。このため、視認性向上の観点からみると、非視認性向上領域RCの光成分は無い方がよい。一方、医療用内視鏡が対象とする被写体は胃や食道、大腸等の粘膜であり、非視認性向上領域RCの光は概ね吸収してしまう。このため、色表現への影響は限定的である。
As shown in FIG. 5, of the green region, 495 nm to 510 nm is a non-visibility improvement region RC that does not relatively improve visibility. Therefore, from the viewpoint of improving visibility, it is preferable that there is no light component in the non-visibility improving region RC. On the other hand, the target subject of the medical endoscope is the mucous membrane of the stomach, esophagus, large intestine, etc., and the light in the non-visibility improving region RC is generally absorbed. Therefore, the influence on the color expression is limited.
そこで、第2実施形態では、非視認性向上領域RCの光をカットする目的で、新たに青緑色領域カットフィルタを設けている。非視認性向上領域RCは、青緑色領域に相当する。
Therefore, in the second embodiment, a blue-green region cut filter is newly provided for the purpose of cutting the light in the non-visibility improvement region RC. The non-visibility improvement region RC corresponds to a blue-green region.
図6において光合波部141が合波した後、ライトガイド214入射前に、青緑色領域カットフィルタが挿入される。回転円板に複数の開口が設けられ、そのいずれかの開口に青緑色領域カットフィルタが搭載され、スクリーニングモードが選択されたとき青緑色領域カットフィルタが光路に挿入される。
In FIG. 6, a blue-green region cut filter is inserted after the optical combine section 141 is combined and before the light guide 214 is incident. The rotating disk is provided with a plurality of openings, one of which is equipped with a turquoise region cut filter, and the turquoise region cut filter is inserted into the optical path when the screening mode is selected.
図8は、青緑色領域カットフィルタの波長特性例である。図9は、青緑色領域カットフィルタが光路に挿入されたときの照明光のスペクトル例である。
FIG. 8 is an example of the wavelength characteristics of the blue-green region cut filter. FIG. 9 is an example of the spectrum of the illumination light when the blue-green region cut filter is inserted into the optical path.
図8及び図9に示すように、青緑色領域カットフィルタは495nm~510nmの光をカットし、それ以外の波長の光を透過する。なお図8に示すように、青緑色領域カットフィルタは495nm~510nmにおいて0.1程度の透過率を有してもよい。これにより、画像処理によって495nm~510nmにおける色情報を復元することも可能である。
As shown in FIGS. 8 and 9, the blue-green region cut filter cuts light of 495 nm to 510 nm and transmits light of other wavelengths. As shown in FIG. 8, the blue-green region cut filter may have a transmittance of about 0.1 at 495 nm to 510 nm. Thereby, it is also possible to restore the color information in the range of 495 nm to 510 nm by image processing.
第2実施形態によれば、緑色領域において相対的に視認性を向上しない領域の光が低減できるため、第1実施形態と比較して、中層の血管等の視認性をより向上できる。
According to the second embodiment, since the light in the region where the visibility is not relatively improved in the green region can be reduced, the visibility of the blood vessels in the middle layer can be further improved as compared with the first embodiment.
第2実施形態は、以下のように変形実施が可能である。第2実施形態では、光合波部141とライトガイド214の入射端との間にフィルタを挿入したが、変形例では、ダイクロイックフィルタDC2の波長特性を変更する。
The second embodiment can be modified as follows. In the second embodiment, the filter is inserted between the optical combine section 141 and the incident end of the light guide 214, but in the modified example, the wavelength characteristic of the dichroic filter DC2 is changed.
図10は、第1実施形態及び第2実施形態におけるダイクロイックフィルタDC2の透過率特性例である。図11は、第2実施形態の変形例におけるダイクロイックフィルタDC2の波長特性例である。
FIG. 10 is an example of the transmittance characteristics of the dichroic filter DC2 in the first embodiment and the second embodiment. FIG. 11 is an example of the wavelength characteristics of the dichroic filter DC2 in the modified example of the second embodiment.
図10では、ダイクロイックフィルタDC2の透過率特性において、半値波長は495nmである。半値波長は、反射率及び透過率が50%となる波長である。一方、図11では、半値波長は510nmである。
In FIG. 10, the half-value wavelength is 495 nm in the transmittance characteristics of the dichroic filter DC2. The half-value wavelength is a wavelength at which the reflectance and transmittance are 50%. On the other hand, in FIG. 11, the half-value wavelength is 510 nm.
図11のように構成することで、光源LDGから出射された緑色光のうち、495nm~510nmの範囲の光は反射されることなく透過し、ライトガイド214の入射端方向には導光されない。この結果、ライトガイド214の入射端に入射する照明光は、図9に示したスペクトルとなる。
With the configuration as shown in FIG. 11, of the green light emitted from the light source LDG, the light in the range of 495 nm to 510 nm is transmitted without being reflected, and is not guided in the incident end direction of the light guide 214. As a result, the illumination light incident on the incident end of the light guide 214 has the spectrum shown in FIG.
本変形例によれば、スクリーニングモード用の青緑色領域カットフィルタを別途設ける必要がないため、より低コストでシンプルな構成を実現できる。
According to this modification, it is not necessary to separately provide a blue-green region cut filter for the screening mode, so that a simple configuration can be realized at a lower cost.
なお、第1実施形態及び第2実施形態では、WLIモードにおいて495nm~510nmの波長成分があり、スクリーニングモードの場合のみ495nm~510nmの波長成分をカットしている。一方、本変形例では、WLIモードにおいても495nm~510nmの波長成分がカットされる。ただし、前述の通り医療用内視鏡の被写体はほとんどこの領域の光を吸収するため画像への影響は限定的であるため、コストやサイズを優先する場合に本変形例の構成は有効である。
In the first embodiment and the second embodiment, there are wavelength components of 495 nm to 510 nm in the WLI mode, and the wavelength components of 495 nm to 510 nm are cut only in the screening mode. On the other hand, in this modification, the wavelength component of 495 nm to 510 nm is cut even in the WLI mode. However, as described above, since the subject of the medical endoscope absorbs light in this region, the influence on the image is limited. Therefore, the configuration of this modification is effective when the cost and size are prioritized. ..
ダイクロイックフィルタDC1~DC4は、いずれも短波長側の透過率が略100%と高く、長波長側の透過率が略0%と低い。ダイクロイックフィルタDC1~DC4は、誘電体多層ミラーを用いたフィルタである。誘電体多層膜ミラーであるため、透過しない光は、ほぼ全て反射される。即ち透過率を100%から減じた値が略反射率となる。また、各フィルタの透過率の変化は、なるべく急峻になるように設計することが望ましい。ただし、コスト等を考慮して、適当な傾きとなるようにすることも好適である。
The dichroic filters DC1 to DC4 all have a high transmittance on the short wavelength side of about 100% and a low transmittance on the long wavelength side of about 0%. The dichroic filters DC1 to DC4 are filters using a dielectric multilayer mirror. Since it is a dielectric multilayer mirror, almost all light that does not pass through is reflected. That is, the value obtained by subtracting the transmittance from 100% is the substantially reflectance. In addition, it is desirable to design the change in the transmittance of each filter to be as steep as possible. However, it is also preferable to set an appropriate inclination in consideration of cost and the like.
以上の実施形態によれば、第3波長領域及び第4波長領域が、青色領域、緑色領域及び赤色領域のうち第1同一色領域とは異なる第2同一色領域に属する。第2同一色領域において、第3波長領域における観察対象物の光吸収スペクトルが、第4波長領域における観察対象物の光吸収スペクトルより相対的に大きいとする。このとき、4以上の光源は、第3波長領域にピーク波長を有する光を出射する第3光源と、第4波長領域にピーク波長を有する光を出射する第4光源と、を含む。又は、第3光源を含み、且つ第4光源を含まない。
According to the above embodiment, the third wavelength region and the fourth wavelength region belong to the second same color region different from the first same color region among the blue region, the green region and the red region. In the second same color region, it is assumed that the light absorption spectrum of the observation object in the third wavelength region is relatively larger than the light absorption spectrum of the observation object in the fourth wavelength region. At this time, the four or more light sources include a third light source that emits light having a peak wavelength in the third wavelength region and a fourth light source that emits light having a peak wavelength in the fourth wavelength region. Alternatively, the third light source is included and the fourth light source is not included.
第2実施形態において、第1同一色領域は青色領域又は赤色領域であり、第2同一色領域は緑色領域である。このとき、第3波長領域は図5のRDであり、第4波長領域は図5のRCである。第2実施形態では、光源部140は、第3光源である緑色光源を含むが、第4光源を含まない。なお、光源部140が第3光源及び第4光源を含む場合については第3実施形態で説明する。
In the second embodiment, the first identical color region is a blue region or a red region, and the second identical color region is a green region. At this time, the third wavelength region is the RD of FIG. 5, and the fourth wavelength region is the RC of FIG. In the second embodiment, the light source unit 140 includes a green light source which is a third light source, but does not include a fourth light source. The case where the light source unit 140 includes the third light source and the fourth light source will be described in the third embodiment.
また本実施形態では、4以上の光源が、第3光源を含み、且つ第4光源を含まないとき、第3光源が出射する光のスペクトルの裾部は、第4波長領域に重なる。
Further, in the present embodiment, when four or more light sources include the third light source and do not include the fourth light source, the tail of the spectrum of the light emitted by the third light source overlaps the fourth wavelength region.
即ち、図7に示すように、第3光源が出射する緑色光IGのスペクトルは、短波長側に裾を有しており、その裾は、第4波長領域であるRCに重なっている。
That is, as shown in FIG. 7, the spectrum of the green light IG emitted by the third light source has a skirt on the short wavelength side, and the skirt overlaps with RC which is the fourth wavelength region.
また本実施形態では、光源部140は、照明光の光路上に配置されると共に第4波長領域の光を低減する光学フィルタを有する。
Further, in the present embodiment, the light source unit 140 has an optical filter that is arranged on the optical path of the illumination light and reduces the light in the fourth wavelength region.
これにより、ヘモグロビンの吸収スペクトルが相対的に小さい、即ち視認性を相対的に向上しない第4波長領域の光を、光学フィルタにより低減できる。視認性を相対的に向上しない第4波長領域の光が低減されることで、視認性向上効果を高めることができる。なお、第2実施形態において、青緑色領域カットフィルタが光学フィルタに対応する。
As a result, the light in the fourth wavelength region, in which the absorption spectrum of hemoglobin is relatively small, that is, the visibility is not relatively improved, can be reduced by the optical filter. By reducing the light in the fourth wavelength region that does not relatively improve the visibility, the visibility improving effect can be enhanced. In the second embodiment, the blue-green region cut filter corresponds to the optical filter.
6.第3実施形態
以下、第3実施形態について説明するが、第1実施形態と共通の部分については説明を省略する。 6. Third Embodiment Hereinafter, the third embodiment will be described, but the description of the parts common to the first embodiment will be omitted.
以下、第3実施形態について説明するが、第1実施形態と共通の部分については説明を省略する。 6. Third Embodiment Hereinafter, the third embodiment will be described, but the description of the parts common to the first embodiment will be omitted.
第1実施形態及び第2実施形態では、1つの光源LDGが緑色領域の光を出射したが、第3実施形態では、2つの青緑色光源及び黄緑色光源が緑色領域の光を出射する。青緑色光源及び黄緑色光源は、例えば蛍光体を用いないLEDである。青緑色光源が出射する青緑色光はピーク波長505nmであり、黄緑色光源が出射する黄緑色光はピーク波長550nmである。
In the first embodiment and the second embodiment, one light source LDG emits light in the green region, but in the third embodiment, the two blue-green light sources and the yellow-green light source emit light in the green region. The blue-green light source and the yellow-green light source are, for example, LEDs that do not use a phosphor. The blue-green light emitted by the blue-green light source has a peak wavelength of 505 nm, and the yellow-green light emitted by the yellow-green light source has a peak wavelength of 550 nm.
第3実施形態における照明光のスペクトルは、上記した図3のようになる。図3において、光IG1が青緑色光であり、光IG2が黄緑色光である。光IG1のスペクトルは、図5において波長領域RCに分布する。即ち、光IG1は、相対的に視認性を向上しない光である。光IG2のスペクトルは、図5において波長領域RDに分布する。即ち、光IG2は、相対的に視認性を向上する光である。
The spectrum of the illumination light in the third embodiment is as shown in FIG. 3 described above. In FIG. 3, the light IG1 is a blue-green light and the light IG2 is a yellow-green light. The spectrum of the optical IG1 is distributed in the wavelength region RC in FIG. That is, the optical IG1 is light that does not relatively improve visibility. The spectrum of the optical IG2 is distributed in the wavelength region RD in FIG. That is, the optical IG2 is light that relatively improves visibility.
各観察モードにおける発光制御は、基本的に第1、第2実施形態と同様である。
The light emission control in each observation mode is basically the same as in the first and second embodiments.
WLIモードにおいて、光源コントローラ150は、6色全ての光源を点灯させる。また、光源コントローラ150は、第1光量比を、(Vp+Bp):(G1p+G2p):(Ap+Rp)≒1:1:1に設定する。G1pは青緑色光の光量であり、G2pは黄緑色光の光量である。
In the WLI mode, the light source controller 150 lights the light sources of all six colors. Further, the light source controller 150 sets the first light intensity ratio to (Vp + Bp) :( G1p + G2p) :( Ap + Rp) ≈ 1: 1: 1. G1p is the amount of blue-green light, and G2p is the amount of yellow-green light.
第2光量比であるG2p/G1pは、色味に基づいて設定される。WLIモードにおいて、G2p/G1pは、概ね1.5以上2.2未満が好適である。
The second light intensity ratio, G2p / G1p, is set based on the tint. In the WLI mode, G2p / G1p is preferably about 1.5 or more and less than 2.2.
特殊光モードのNBIモード及びAFIモードにおいて、紫色光IV及び黄緑色光IG2を点灯させる。青色光IB、青緑色光IG1、アンバー光IA、及び赤色光IRを消灯する。
In the special light mode NBI mode and AFI mode, the purple light IV and the yellow-green light IG2 are turned on. Turn off the blue light IB, the blue-green light IG1, the amber light IA, and the red light IR.
スクリーニングモードでは、第1実施形態で説明した第1~第3条件を満たすために、照明光を以下のように構成する。
In the screening mode, the illumination light is configured as follows in order to satisfy the first to third conditions described in the first embodiment.
第1条件:白色であること。即ち、(Vp+Bp):(G1p+G2p):(Ap+Rp)≒1:1:1である。例えば、(Vp+Bp)、(G1p+G2p)、(Ap+Rp)の各々の比率は、0.9以上1.1以下である。但し、これに限定されず、白色の条件は、画像処理や表示デバイス等の調整で白色に調整可能な比率の範囲であればよい。
First condition: It must be white. That is, (Vp + Bp) :( G1p + G2p) :( Ap + Rp) ≈ 1: 1: 1. For example, the ratio of each of (Vp + Bp), (G1p + G2p), and (Ap + Rp) is 0.9 or more and 1.1 or less. However, the white condition is not limited to this, and may be a range of a ratio that can be adjusted to white by adjusting image processing, a display device, or the like.
第2条件:視認性向上の効果があること。即ち、Vp/Bp、G2p/G1p、Ap/Rpはいずれも0.9以上である。より効果を奏するためには、Vp/Bp、G2p/G1p、Ap/Rpはいずれも1.0以上であることが望ましい。
Second condition: It has the effect of improving visibility. That is, Vp / Bp, G2p / G1p, and Ap / Rp are all 0.9 or more. In order to be more effective, it is desirable that Vp / Bp, G2p / G1p, and Ap / Rp are all 1.0 or more.
第3条件:色表現に違和感がないこと。即ち、Vp/Bp、G2p/G1p、Ap/Rpはいずれも3.0未満である。より違和感がない画像を実現するためには、Vp/Bp、G2p/G1p、Ap/Rpはいずれも2.2以下であることが望ましい。
Third condition: There should be no discomfort in color expression. That is, Vp / Bp, G2p / G1p, and Ap / Rp are all less than 3.0. In order to realize a more natural image, it is desirable that Vp / Bp, G2p / G1p, and Ap / Rp are all 2.2 or less.
第1~第3条件を、6光源の光量比に置き換えると、Vp:Bp:G1p:G2p:Ap:Rp≒0.47+φ:0.53-φ:0.53-ε:0.47+ε:0.47+ξ:0.53-ξである。φ、ε、ξは実数であり、0<φ<0.3、0<ε<0.3、0<ξ<0.3である。
Replacing the first to third conditions with the light intensity ratio of the six light sources, Vp: Bp: G1p: G2p: Ap: Rp≈0.47 + φ: 0.53-φ: 0.53-ε: 0.47 + ε: 0 .47 + ξ: 0.53-ξ. φ, ε, and ξ are real numbers, and 0 <φ <0.3, 0 <ε <0.3, and 0 <ξ <0.3.
より望ましくは、Vp:Bp:G1p:G2p:Ap:Rp≒0.47+κ:0.53-κ:0.53-μ:0.47+μ:0.47+ν:0.53-νである。κ、μ、νは実数であり、0≦κ≦0.19、0≦μ≦0.19、0<ν≦0.19である。
More preferably, Vp: Bp: G1p: G2p: Ap: Rp≈0.47 + κ: 0.53-κ: 0.53-μ: 0.47 + μ: 0.47 + ν: 0.53-ν. κ, μ, and ν are real numbers, and 0 ≦ κ ≦ 0.19, 0 ≦ μ ≦ 0.19, and 0 <ν ≦ 0.19.
第3実施形態によれば、第1実施形態と比較して、視認性をより向上したスクリーニングモードの照明光を実現できる。また第2実施形態と比較して、スクリーニングモード用の青緑色領域カットフィルタを用いることなく、視認性をより向上したスクリーニングモードの照明光を実現できる。また第2実施形態の変形例と比較して、WLIモードに影響を与えることなく視認性をより向上したスクリーニングモードの照明光を実現できる。
According to the third embodiment, it is possible to realize the illumination light of the screening mode with further improved visibility as compared with the first embodiment. Further, as compared with the second embodiment, it is possible to realize the illumination light of the screening mode with further improved visibility without using the blue-green region cut filter for the screening mode. Further, as compared with the modified example of the second embodiment, it is possible to realize the illumination light of the screening mode in which the visibility is further improved without affecting the WLI mode.
なお、スクリーニングモードは単一モードでなくてもよい。第1~第3条件を満たす範囲で光量比の異なる複数のスクリーニングモードを設けてもよい。また視認性向上レベルを段階的又は無段階に調整可能なスクリーニングモードを設けてもよい。このとき、すべての色領域において、視認性向上領域と非視認性向上領域の光量比を連動して上昇又は低下させてもよい。また、色領域ごとに独立に、視認性向上領域と非視認性向上領域の光量比を制御してもよい。これにより、生体における表層、中層、及び深層の各層において視認性向上レベルを独立に調整可能である。スクリーニングモードを複数用意する場合、視認性向上レベルに応じて、順番に視認性が変化するように構成してもよい。例えば、視認性アップダウンボタン等で順に視認性が変化するように、視認性を調整可能としてもよい。
The screening mode does not have to be a single mode. A plurality of screening modes having different light intensity ratios may be provided within a range satisfying the first to third conditions. Further, a screening mode may be provided in which the visibility improvement level can be adjusted stepwise or steplessly. At this time, in all the color regions, the light amount ratio of the visibility improving region and the non-visibility improving region may be increased or decreased in conjunction with each other. Further, the light amount ratio between the visibility improving region and the non-visibility improving region may be controlled independently for each color region. As a result, the visibility improvement level can be independently adjusted in each of the surface layer, the middle layer, and the deep layer in the living body. When a plurality of screening modes are prepared, the visibility may be changed in order according to the visibility improvement level. For example, the visibility may be adjusted so that the visibility changes in order with the visibility up / down buttons and the like.
また、観察対象物はヘモグロビンに限定されず、各種薬剤であってもよい。各種薬剤の分光スペクトルに応じてLEDの波長、光量比を選定することで、蛍光薬剤の分布を視認性よく確認することができる。薬剤の例は後述する。
Further, the object to be observed is not limited to hemoglobin, and may be various drugs. By selecting the wavelength and light intensity ratio of the LED according to the spectral spectra of various chemicals, the distribution of fluorescent chemicals can be confirmed with good visibility. Examples of the drug will be described later.
また、照明光は可視光波長領域に限定されず、近赤外や近紫外に拡張されてもよい。例えば、近赤外で発光する蛍光薬剤を用いる場合、照明光の波長領域を近赤外に拡張してもよい。
Further, the illumination light is not limited to the visible light wavelength region, and may be extended to near infrared or near ultraviolet. For example, when a fluorescent agent that emits light in the near infrared is used, the wavelength region of the illumination light may be extended to the near infrared.
また、スクリーニングモードをWLIモードとして兼用してもよい。この場合、通常光観察モードを設けなくてもよい。
Further, the screening mode may also be used as the WLI mode. In this case, it is not necessary to provide the normal light observation mode.
そのほか、本発明の主旨を逸脱しない範囲で様々な変形が可能である。
In addition, various modifications are possible without departing from the gist of the present invention.
以上の実施形態によれば、光源装置160に含まれる4以上の光源は、紫色光IVを出射する紫色光源LDVと、青色光IBを出射する青色光源LDBと、第1緑色光を出射する第1緑色光源と、第1緑色光より長波長の第2緑色光を出射する第2緑色光源と、アンバー光IAを出射するアンバー光源LDAと、赤色光IRを出射する赤色光源LDRと、を含む。紫色光源LDV、青色光源LDB、第1緑色光源、第2緑色光源、アンバー光源LDA及び赤色光源LDRの光量を、それぞれVp、Bp、G1p、G2p、Ap、Rpとする。このとき、第1光量比として設定される(Vp+Bp):(G1p+G2p):(Ap+Rp)は、白色となる光量比である。且つ、第2光量比として設定されるVp/Bp、G2p/G1p及びAp/Rpは、いずれも1より大きい。
According to the above embodiment, the four or more light sources included in the light source device 160 include a purple light source LDV that emits purple light IV, a blue light source LDB that emits blue light IB, and a first green light. Includes a 1-green light source, a second green light source that emits a second green light having a wavelength longer than that of the first green light, an amber light source LDA that emits amber light IA, and a red light source LDR that emits red light IR. .. The light amounts of the purple light source LDV, the blue light source LDB, the first green light source, the second green light source, the amber light source LDA, and the red light source LDR are Vp, Bp, G1p, G2p, Ap, and Rp, respectively. At this time, (Vp + Bp) :( G1p + G2p) :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white. Moreover, Vp / Bp, G2p / G1p and Ap / Rp set as the second light amount ratio are all larger than 1.
このようにすれば、6光源の照明光において白色光要件と視認性向上要件を両立できる。5光源の照明光に比べて、更に緑色領域においても注目領域の視認性を向上できる。例えば、消化管粘膜において、表層血管、中層血管及び深層血管の視認性を向上すると共に、白色光としての自然さ等を維持できる。
By doing so, it is possible to achieve both the white light requirement and the visibility improvement requirement in the illumination light of the six light sources. Compared with the illumination light of the five light sources, the visibility of the region of interest can be further improved even in the green region. For example, in the gastrointestinal mucosa, the visibility of surface blood vessels, middle blood vessels, and deep blood vessels can be improved, and the naturalness of white light can be maintained.
なお第3実施形態において、第1緑色光は青緑色光であり、第1緑色光源は青緑色光源であり、第2緑色光は黄緑色光であり、第2緑色光源は黄緑色光源である。
In the third embodiment, the first green light is a blue-green light, the first green light source is a blue-green light source, the second green light is a yellow-green light, and the second green light source is a yellow-green light source. ..
また本実施形態では、光源コントローラ150は、注目領域の強調度合いが段階的又は連続的に異なる複数の通常光観察モードのいずれかが設定されたとき、当該設定された観察モードに対応した第2光量比の光量比設定値を設定する。
Further, in the present embodiment, when the light source controller 150 is set to any of a plurality of normal light observation modes in which the degree of emphasis of the region of interest is stepwise or continuously different, the light source controller 150 corresponds to the set observation mode. Set the light amount ratio setting value of the light amount ratio.
即ち、光源コントローラ150は、モード選択に従って第2光量比の光量比設定値を段階的又は連続的に変化させることで、注目領域の強調度合いを段階的又は連続的に変化させる。このようにすれば、ユーザのニーズに合わせて、視認性向上の度合いを調整できる。
That is, the light source controller 150 changes the degree of emphasis of the region of interest stepwise or continuously by gradually or continuously changing the light amount ratio setting value of the second light amount ratio according to the mode selection. In this way, the degree of visibility improvement can be adjusted according to the needs of the user.
7.薬剤
図12は、インドシアニングリーン(ICG)の吸収スペクトルである。インドシアニングリーンは、青色領域と緑色領域の光をほとんど吸収せず、アンバーの600nm付近から急激に吸収が大きくなり、700nm付近に吸収ピークを有する。即ち、インドシアニングリーンは、アンバー帯域と比べて赤色帯域の吸収が大きい。 7. Drugs Figure 12 is an absorption spectrum of indocyanine green (ICG). Indocyanine green hardly absorbs light in the blue region and the green region, absorbs rapidly from around 600 nm of amber, and has an absorption peak near 700 nm. That is, indocyanine green absorbs more in the red band than in the amber band.
図12は、インドシアニングリーン(ICG)の吸収スペクトルである。インドシアニングリーンは、青色領域と緑色領域の光をほとんど吸収せず、アンバーの600nm付近から急激に吸収が大きくなり、700nm付近に吸収ピークを有する。即ち、インドシアニングリーンは、アンバー帯域と比べて赤色帯域の吸収が大きい。 7. Drugs Figure 12 is an absorption spectrum of indocyanine green (ICG). Indocyanine green hardly absorbs light in the blue region and the green region, absorbs rapidly from around 600 nm of amber, and has an absorption peak near 700 nm. That is, indocyanine green absorbs more in the red band than in the amber band.
図12において、VEは視認性向上領域であり、NVD、NVEは非視認性向上領域である。色領域と組み合わせると、以下の波長領域に分割できる。
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<585nm
赤色領域の非視認性向上領域:585nm≦λ<620nm
赤色領域の視認性向上領域:620nm≦λ<680nm In FIG. 12, VE is a visibility improving region, and NVD and NVE are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <585 nm
Non-visibility improvement region in the red region: 585 nm ≤ λ <620 nm
Visibility improvement region in the red region: 620 nm ≤ λ <680 nm
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<585nm
赤色領域の非視認性向上領域:585nm≦λ<620nm
赤色領域の視認性向上領域:620nm≦λ<680nm In FIG. 12, VE is a visibility improving region, and NVD and NVE are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <585 nm
Non-visibility improvement region in the red region: 585 nm ≤ λ <620 nm
Visibility improvement region in the red region: 620 nm ≤ λ <680 nm
図13は、照明光スペクトルの例である。図13では、照明光は第1実施形態と同様な5光源である。
FIG. 13 is an example of the illumination light spectrum. In FIG. 13, the illumination light is five light sources similar to those in the first embodiment.
図12及び図13によれば、光IVとIBの光量比、及び緑色領域の光量はインドシアニングリーンの視認性に影響を及ぼさない。赤色領域の光量比によって、インドシアニングリーンの視認性が決まる。赤色領域では、アンバー光IAの吸収強度と比較して赤色光IRの方が大きい。このため、アンバー光IAよりも赤色光IRの方がインドシアニングリーンの視認性を向上できる。即ち、620nmより短波長の光と比較して、それより長波長の光の方が視認性を向上できる。
According to FIGS. 12 and 13, the light intensity ratio of light IV and IB and the light intensity in the green region do not affect the visibility of indocyanine green. The visibility of indocyanine green is determined by the light intensity ratio in the red region. In the red region, the red light IR is larger than the absorption intensity of the amber light IA. Therefore, the visibility of indocyanine green can be improved by red light IR rather than by amber light IA. That is, the visibility can be improved by the light having a wavelength longer than that of the light having a wavelength shorter than 620 nm.
5色の光源による構成では、アンバー光IAと比較して赤色光IRの光量を増大させることでインドシアニングリーンの視認性を向上できる。白色光要件は第1実施形態と同様に(Vp+Bp):Gp:(Ap+Rp)≒1:1:1である。この第1光量比を満たす範囲で、第2光量比Rp/Apを任意に設定できる。例えば、粘膜等生体組織の視認性を向上するように設定してよい。例えば、Rp/Apを1より大きく3以下に設定することで、白色光としての自然さを維持しつつインドシアニングリーンの視認性を向上できる。
In the configuration with a five-color light source, the visibility of indocyanine green can be improved by increasing the amount of red light IR as compared with amber light IA. The white light requirement is (Vp + Bp): Gp :( Ap + Rp) ≈ 1: 1: 1 as in the first embodiment. The second light amount ratio Rp / Ap can be arbitrarily set within the range that satisfies this first light amount ratio. For example, it may be set to improve the visibility of living tissues such as mucous membranes. For example, by setting Rp / Ap to be larger than 1 and 3 or less, the visibility of indocyanine green can be improved while maintaining the naturalness of white light.
図14は、インジゴカルミンの吸収スペクトルである。インジゴカルミンの吸収強度は、青色領域において小さく、500nm付近から大きくなり、630nm付近をピークに減少に転じる。
FIG. 14 is an absorption spectrum of indigo carmine. The absorption intensity of indigo carmine is small in the blue region, increases from around 500 nm, and starts to decrease after peaking at around 630 nm.
図14において、VFは視認性向上領域であり、NVF、NVGは非視認性向上領域である。色領域と組み合わせると、以下の波長領域に分割できる。
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<530nm
緑色領域の視認性向上領域:530nm≦λ<585nm
赤色領域の視認性向上領域:585nm≦λ<660nm
赤色領域の非視認性向上領域:660nm≦λ<680nm In FIG. 14, VF is a visibility improving region, and NVF and NVG are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <530 nm
Visibility improvement region in the green region: 530 nm ≤ λ <585 nm
Visibility improvement region in the red region: 585 nm ≤ λ <660 nm
Non-visibility improvement region in the red region: 660 nm ≤ λ <680 nm
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<530nm
緑色領域の視認性向上領域:530nm≦λ<585nm
赤色領域の視認性向上領域:585nm≦λ<660nm
赤色領域の非視認性向上領域:660nm≦λ<680nm In FIG. 14, VF is a visibility improving region, and NVF and NVG are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <530 nm
Visibility improvement region in the green region: 530 nm ≤ λ <585 nm
Visibility improvement region in the red region: 585 nm ≤ λ <660 nm
Non-visibility improvement region in the red region: 660 nm ≤ λ <680 nm
図15は、照明光スペクトルの例である。図15では、照明光は第1実施形態と同様な5光源である。
FIG. 15 is an example of the illumination light spectrum. In FIG. 15, the illumination light is five light sources similar to those in the first embodiment.
図14及び図15によれば、紫色光IVと青色光IBは、インジゴカルミンの視認性向上にほとんど影響しない。緑色光IGは単色であるが、比較的長波長の光量が多いスペクトルを有している。このため、非視認性向上領域に含まれる緑色光IGの波長成分に比べて、視認性向上領域に含まれる緑色光IGの波長成分の方が大きい。このため、緑色光IGにより一定程度の視認性向上効果が期待できる。またアンバー光IAと赤色光IRはいずれも視認性向上領域に含まれるため、いずれも視認性を向上する効果がある。吸収スペクトルのピークである630nmにピークを有する赤色光IRの方が、アンバー光IAよりも視認性向上効果が大きい。但し、アンバー光IAも視認性向上領域に含まれているため、Ap:Rpの光量比がどのような比で会っても視認性向上効果がある。従って、白色光要件を満たす範囲で、Ap:Rpは任意の比率であってよい。インジゴカルミンの視認性向上の観点ではAp<Rpが望ましい。Ap:Rp=1:2程度であれば十分に効果を奏する。一方、他の観察対象物の視認性向上や色味を優先する場合、この比率は任意としてもインジゴカルミンの視認性向上に貢献できる。
According to FIGS. 14 and 15, purple light IV and blue light IB have almost no effect on improving the visibility of indigo carmine. The green light IG is monochromatic, but has a spectrum having a relatively long wavelength and a large amount of light. Therefore, the wavelength component of the green light IG included in the visibility improving region is larger than the wavelength component of the green light IG included in the non-visibility improving region. Therefore, the green light IG can be expected to have a certain degree of visibility improvement effect. Further, since both the amber light IA and the red light IR are included in the visibility improving region, both have the effect of improving the visibility. The red light IR having a peak at 630 nm, which is the peak of the absorption spectrum, has a greater effect of improving visibility than the amber light IA. However, since the amber light IA is also included in the visibility improving region, the visibility improving effect can be obtained regardless of the ratio of the light amount ratio of Ap: Rp. Therefore, Ap: Rp may be any ratio as long as the white light requirement is satisfied. Ap <Rp is desirable from the viewpoint of improving the visibility of indigo carmine. If Ap: Rp = 1: 2, the effect is sufficient. On the other hand, when giving priority to improving the visibility and color of other observation objects, this ratio can contribute to improving the visibility of indigo carmine, even if it is arbitrary.
図16は、クリスタルバイオレットの吸収スペクトルである。クリスタルバイオレットの吸収スペクトルはインジゴカルミンの吸収スペクトルに似る。但し、クリスタルバイオレットの吸収スペクトルにおいて、極大波長は590nm付近であり、インジゴカルミンの吸収スペクトルに比べて、全体的にやや短波長側に位置している。即ち、クリスタルバイオレットの吸収強度は、青色領域において小さく、500nm付近から大きくなり、590nmにピークを有し、その後急激に低下する。
FIG. 16 is an absorption spectrum of crystal violet. The absorption spectrum of crystal violet is similar to that of indigo carmine. However, in the absorption spectrum of crystal violet, the maximum wavelength is around 590 nm, which is located on the slightly shorter wavelength side as a whole as compared with the absorption spectrum of indigo carmine. That is, the absorption intensity of crystal violet is small in the blue region, increases from around 500 nm, has a peak at 590 nm, and then decreases sharply.
図16において、VHは視認性向上領域であり、NVH、NVIは非視認性向上領域である。色領域と組み合わせると、以下の波長領域に分割できる。
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<520nm
緑色領域の視認性向上領域:520nm≦λ<585nm
赤色領域の視認性向上領域:585nm≦λ<610nm
赤色領域の非視認性向上領域:610nm≦λ<680nm In FIG. 16, VH is a visibility improving region, and NVH and NVI are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <520 nm
Visibility improvement region in the green region: 520 nm ≤ λ <585 nm
Visibility improvement region in the red region: 585 nm ≤ λ <610 nm
Non-visibility improvement region in the red region: 610 nm ≤ λ <680 nm
青色領域の非視認性向上領域:400nm≦λ<495nm
緑色領域の非視認性向上領域:495nm≦λ<520nm
緑色領域の視認性向上領域:520nm≦λ<585nm
赤色領域の視認性向上領域:585nm≦λ<610nm
赤色領域の非視認性向上領域:610nm≦λ<680nm In FIG. 16, VH is a visibility improving region, and NVH and NVI are non-visibility improving regions. When combined with the color region, it can be divided into the following wavelength regions.
Non-visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Non-visibility improvement region in the green region: 495 nm ≤ λ <520 nm
Visibility improvement region in the green region: 520 nm ≤ λ <585 nm
Visibility improvement region in the red region: 585 nm ≤ λ <610 nm
Non-visibility improvement region in the red region: 610 nm ≤ λ <680 nm
図17は、照明光スペクトルの例である。図17では、照明光は第1実施形態と同様な5光源である。
FIG. 17 is an example of the illumination light spectrum. In FIG. 17, the illumination light is five light sources similar to those in the first embodiment.
図16及び図17によれば、紫色光IVと青色光IBは、クリスタルバイオレットの視認性向上にほとんど影響しない。緑色光IGは単色であるが、比較的長波長の光量が多いスペクトルを有している。このため、非視認性向上領域に含まれる緑色光IGの波長成分に比べて、視認性向上領域に含まれる緑色光IGの波長成分の方が比較的大きい。このため、緑色光IGによる一定程度の視認性向上効果が期待できる。赤色領域では、アンバー光IAは吸収強度のピークに近いため視認性向上効果を有する。一方、赤色光IRは非視認性向上領域に含まれるため、アンバー光IAに比べて相対的に視認性向上効果が小さい。
According to FIGS. 16 and 17, purple light IV and blue light IB have almost no effect on improving the visibility of crystal violet. The green light IG is monochromatic, but has a spectrum having a relatively long wavelength and a large amount of light. Therefore, the wavelength component of the green light IG included in the visibility improving region is relatively larger than the wavelength component of the green light IG included in the non-visibility improving region. Therefore, a certain degree of visibility improvement effect can be expected by the green light IG. In the red region, the amber light IA has an effect of improving visibility because it is close to the peak of the absorption intensity. On the other hand, since the red light IR is included in the non-visibility improving region, the visibility improving effect is relatively small as compared with the amber light IA.
以上より、紫色光IV、青色光IB及び緑色光IGの光量を、白色光要件を満たす範囲で任意に設定できる。例えば、粘膜等生体組織の視認性や、血管の視認性を向上するように設定してよい。一方、白色光要件を満たす範囲で、第2光量比をAp/Rp>1に設定する。例えば、Rp/Apを1より大きく3以下に設定することで、白色光としての自然さを維持しつつクリスタルバイオレットの視認性を向上できる。また1.5より大きく2.2以下に設定することでより視認性向上効果を高めることができる。
From the above, the amount of purple light IV, blue light IB, and green light IG can be arbitrarily set within a range that satisfies the white light requirement. For example, it may be set to improve the visibility of living tissues such as mucous membranes and the visibility of blood vessels. On the other hand, the second light amount ratio is set to Ap / Rp> 1 within a range that satisfies the white light requirement. For example, by setting Rp / Ap to be larger than 1 and 3 or less, the visibility of crystal violet can be improved while maintaining the naturalness of white light. Further, by setting it larger than 1.5 and 2.2 or less, the visibility improving effect can be further enhanced.
図18は、ルゴール液の吸収スペクトルである。ルゴール液の吸収スペクトルは、450nm付近に極大を有し、600nm付近に極小を有する。
FIG. 18 is an absorption spectrum of Lugol's solution. The absorption spectrum of the Lugol's solution has a maximum near 450 nm and a minimum near 600 nm.
図18において、VJ、VKは視認性向上領域であり、NVJは非視認性向上領域である。色領域と組み合わせると、以下の波長領域に分割できる。
青色領域の視認性向上領域:400nm≦λ<495nm
緑色領域の視認性向上領域:495nm≦λ<520nm
緑色領域の非視認性向上領域:520nm≦λ<585nm
赤色領域の非視認性向上領域:585nm≦λ<650nm
赤色領域の視認性向上領域:650nm≦λ<680nm In FIG. 18, VJ and VK are visibility improving regions, and NVJ is a non-visibility improving region. When combined with the color region, it can be divided into the following wavelength regions.
Visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Visibility improvement region in the green region: 495 nm ≤ λ <520 nm
Non-visibility improvement region in the green region: 520 nm ≤ λ <585 nm
Non-visibility improvement region in the red region: 585 nm ≤ λ <650 nm
Visibility improvement region in the red region: 650 nm ≤ λ <680 nm
青色領域の視認性向上領域:400nm≦λ<495nm
緑色領域の視認性向上領域:495nm≦λ<520nm
緑色領域の非視認性向上領域:520nm≦λ<585nm
赤色領域の非視認性向上領域:585nm≦λ<650nm
赤色領域の視認性向上領域:650nm≦λ<680nm In FIG. 18, VJ and VK are visibility improving regions, and NVJ is a non-visibility improving region. When combined with the color region, it can be divided into the following wavelength regions.
Visibility improvement region in the blue region: 400 nm ≤ λ <495 nm
Visibility improvement region in the green region: 495 nm ≤ λ <520 nm
Non-visibility improvement region in the green region: 520 nm ≤ λ <585 nm
Non-visibility improvement region in the red region: 585 nm ≤ λ <650 nm
Visibility improvement region in the red region: 650 nm ≤ λ <680 nm
図18に示すように、ルゴール液の吸収スペクトルにおいて、極端に吸収の小さい領域が少ない。このため、ルゴール液を観察対象物とする場合、光量比による視認性向上の効果が他の薬剤に比べて限定的となる可能性がある。
As shown in FIG. 18, in the absorption spectrum of Lugol's solution, there are few regions where absorption is extremely small. Therefore, when Lugol's solution is used as an observation object, the effect of improving visibility by the light amount ratio may be limited as compared with other drugs.
図19は、照明光スペクトルの例である。図19では、照明光は第1実施形態と同様な5光源である。
FIG. 19 is an example of the illumination light spectrum. In FIG. 19, the illumination light is five light sources similar to those in the first embodiment.
図18及び図19によれば、青色領域では、紫色光IVと青色光IBは視認性向上領域に含まれるため、いずれも視認性向上に貢献できる。青色光IBの方が若干吸収極大に近いため、Bp>Vpとした方が視認性向上効果は大きい。例えばVp:Bp=1:2程度にすることで視認性向上効果を奏することができる。一方、緑色光IG、アンバー光IA及び赤色光IRは、いずれも非視認性向上領域に含まれるため、視認性向上効果が小さい。但し、アンバー光IAは吸収スペクトルの極小(600nm)付近であるため、その極小から離れた赤色光IRの方がアンバー光IAより視認性向上効果が高い。例えばAp:Rp=1:2とすると比較的視認性を向上できる。
According to FIGS. 18 and 19, in the blue region, the purple light IV and the blue light IB are included in the visibility improvement region, so that both can contribute to the visibility improvement. Since the blue light IB is slightly closer to the absorption maximum, the visibility improvement effect is greater when Bp> Vp. For example, by setting Vp: Bp = 1: 2, the visibility improving effect can be achieved. On the other hand, since the green light IG, the amber light IA, and the red light IR are all included in the non-visibility improving region, the visibility improving effect is small. However, since the amber light IA is near the minimum (600 nm) of the absorption spectrum, the red light IR far from the minimum has a higher visibility improving effect than the amber light IA. For example, when Ap: Rp = 1: 2, visibility can be relatively improved.
以上をまとめると、Vp:Bp=1:2、Ap:Rp=1:2とすることで視認性を向上しやすい。但し、その効果は比較的小さい可能性があるので、他の粘膜や血管の視認性向上や、画像の色再現性を向上する光量比としてもよい。
Summarizing the above, it is easy to improve visibility by setting Vp: Bp = 1: 2 and Ap: Rp = 1: 2. However, since the effect may be relatively small, the light intensity ratio may be used to improve the visibility of other mucous membranes and blood vessels and the color reproducibility of the image.
以上、本発明を適用した実施形態及びその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
Although the embodiments to which the present invention is applied and the modified examples thereof have been described above, the present invention is not limited to the respective embodiments and the modified examples as they are, and at the embodiment, the gist of the invention is not deviated. The components can be transformed and embodied with. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments and modifications. For example, some components may be deleted from all the components described in each embodiment or modification. Further, the components described in different embodiments and modifications may be combined as appropriate. In this way, various modifications and applications are possible within a range that does not deviate from the gist of the invention. In addition, a term described at least once in the specification or drawing together with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification or drawing.
10 内視鏡装置、100 制御装置、110 処理回路、140 光源部、141 光合波部、150 光源コントローラ、151 光量比記憶部、152 光量比制御回路、160 光源装置、200 スコープ、210 挿入部、211 照明レンズ、212 照明レンズ、213 撮像ユニット、214 ライトガイド、215 画像信号線、220 操作部、230 接続ケーブル、240 コネクタ、300 表示部、600 入力部、BA,BB,BG1,BG2,BR,BV 波長領域、HBA,HBB ヘモグロビンの光吸収スペクトル、IA,IB、IG、IR、IV 光、LDA,LDB,LDG,LDR,LDV 光源、NVA,NVB,NVD,NVE,NVF,NVG,NVH,NVI,NVJ 非視認性向上領域、RA~RF 波長領域、VA,VB,VC,VE,VF,VH,VJ,VK 視認性向上領域
10 Endoscope device, 100 control device, 110 processing circuit, 140 light source unit, 141 light source unit, 150 light source controller, 151 light amount ratio storage unit, 152 light amount ratio control circuit, 160 light source device, 200 scope, 210 insertion unit, 211 Illumination lens, 212 Illumination lens, 213 Imaging unit, 214 Light guide, 215 Image signal line, 220 Operation unit, 230 Connection cable, 240 connector, 300 Display unit, 600 Input unit, BA, BB, BG1, BG2, BR, BV wavelength region, HBA, HBB hemoglobin light absorption spectrum, IA, IB, IG, IR, IV light, LDA, LDB, LDG, LDR, LDV light source, NVA, NVB, NVD, NVE, NVF, NVG, NVH, NVI , NVJ non-visibility improvement area, RA-RF wavelength range, VA, VB, VC, VE, VF, VH, VJ, VK visibility improvement area
Claims (20)
- 互いに異なるピーク波長の光を出射すると共に各光源の光量を独立して制御可能な4以上の光源を含み、観察対象物に照射する照明光を生成する光源部と、
前記4以上の光源の光量比を設定する光量比設定値に基づいて、前記4以上の光源の光量を制御する光源コントローラと、
を含み、
前記光量比設定値は、前記照明光の色バランスに関する第1光量比と、前記照明光が注目領域内の前記観察対象物を強調する強調度合いに関する第2光量比と、を設定する値であり、
前記4以上の光源は、第1波長領域にピーク波長を有する光を出射する第1光源と、第2波長領域にピーク波長を有する光を出射する第2光源と、を含み、
前記第1波長領域及び前記第2波長領域は、青色領域、緑色領域及び赤色領域のうちいずれかの第1同一色領域に属し、
前記第1同一色領域において、前記第1波長領域における前記観察対象物の光吸収スペクトルの吸収強度は、前記第2波長領域における前記観察対象物の光吸収スペクトルの吸収強度より相対的に大きく、
前記第1光量比は、前記青色領域における前記照明光の光量である青色光量、前記緑色領域における前記照明光の光量である緑色光量、及び前記赤色領域における前記照明光の光量である赤色光量の光量比であることを特徴とする内視鏡用光源装置。 A light source unit that emits light having peak wavelengths different from each other and includes four or more light sources that can independently control the amount of light of each light source and generates illumination light to irradiate an observation object.
A light source controller that controls the amount of light of the four or more light sources based on the light amount ratio setting value that sets the light amount ratio of the four or more light sources.
Including
The light amount ratio setting value is a value for setting a first light amount ratio regarding the color balance of the illumination light and a second light amount ratio regarding the degree of emphasis that the illumination light emphasizes the observation object in the region of interest. ,
The four or more light sources include a first light source that emits light having a peak wavelength in the first wavelength region and a second light source that emits light having a peak wavelength in the second wavelength region.
The first wavelength region and the second wavelength region belong to any one of the blue region, the green region, and the red region, which is the first same color region.
In the first same color region, the absorption intensity of the light absorption spectrum of the observation object in the first wavelength region is relatively larger than the absorption intensity of the light absorption spectrum of the observation object in the second wavelength region.
The first light amount ratio is the amount of blue light which is the amount of illumination light in the blue region, the amount of green light which is the amount of light of the illumination light in the green region, and the amount of red light which is the amount of light of the illumination light in the red region. A light source device for an endoscope characterized by having a light intensity ratio. - 請求項1において、
前記光量比設定値は、白色の前記照明光に対応した前記第1光量比と、前記第1光源の光量が前記第2光源の光量より大きい前記第2光量比と、を設定する値であり、
前記第2光量比は、前記観察対象物の光吸収スペクトルにおける大小関係に基づいて定められた前記第1光源及び前記第2光源の光量比であることを特徴とする内視鏡用光源装置。 In claim 1,
The light amount ratio setting value is a value for setting the first light amount ratio corresponding to the white illumination light and the second light amount ratio in which the light amount of the first light source is larger than the light amount of the second light source. ,
The second light amount ratio is a light amount ratio of the first light source and the second light source determined based on the magnitude relationship in the light absorption spectrum of the observation object. - 請求項2において、
前記第2光量比として設定される(前記第1光源の光量)/(前記第2光源の光量)は、1.5以上2.2以下であることを特徴とする内視鏡用光源装置。 In claim 2,
A light source device for an endoscope, wherein (the amount of light of the first light source) / (the amount of light of the second light source) set as the second light amount ratio is 1.5 or more and 2.2 or less. - 請求項2において、
前記4以上の光源は、紫色光を出射する紫色光源と、青色光を出射する青色光源と、緑色光を出射する緑色光源と、アンバー光を出射するアンバー光源と、赤色光を出射する赤色光源と、を含み、
前記紫色光源、前記青色光源、前記緑色光源、前記アンバー光源及び前記赤色光源の光量を、それぞれVp、Bp、Gp、Ap、Rpとしたとき、
前記第1光量比として設定される(Vp+Bp):Gp:(Ap+Rp)は、白色となる光量比であり、且つ、
前記第2光量比として設定されるVp/Bp及びAp/Rpは、いずれも1より大きいことを特徴とする内視鏡用光源装置。 In claim 2,
The four or more light sources are a purple light source that emits purple light, a blue light source that emits blue light, a green light source that emits green light, an amber light source that emits amber light, and a red light source that emits red light. And, including
When the light amounts of the purple light source, the blue light source, the green light source, the amber light source, and the red light source are Vp, Bp, Gp, Ap, and Rp, respectively.
(Vp + Bp): Gp :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white, and
A light source device for an endoscope, wherein both Vp / Bp and Ap / Rp set as the second light amount ratio are larger than 1. - 請求項4において、
前記第2光量比として設定されるVp/Bp及びAp/Rpは、いずれも1.5以上2.2以下であることを特徴とする内視鏡用光源装置。 In claim 4,
A light source device for an endoscope, wherein Vp / Bp and Ap / Rp set as the second light amount ratio are both 1.5 or more and 2.2 or less. - 請求項4において、
前記光源コントローラは、第1通常光観察モードが設定されたとき前記光量比設定値を第1通常光観察用設定値に設定し、第2通常光観察モードが設定されたとき前記光量比設定値を第2通常光観察用設定値に設定し、
前記第1通常光観察用設定値及び前記第2通常光観察用設定値において、(Vp+Bp):Gp:(Ap+Rp)は白色となる光量比であり、
前記第1通常光観察用設定値において、Vp/Bp及びAp/Rpは、いずれも1より大きく、
前記第2通常光観察用設定値において、Vp/Bp及びAp/Rpは、いずれも1より小さいことを特徴とする内視鏡用光源装置。 In claim 4,
The light source controller sets the light amount ratio set value to the first normal light observation set value when the first normal light observation mode is set, and the light amount ratio set value when the second normal light observation mode is set. Is set to the second normal light observation setting value,
In the first normal light observation set value and the second normal light observation set value, (Vp + Bp): Gp :( Ap + Rp) is a light amount ratio that makes white.
In the first normal light observation set value, both Vp / Bp and Ap / Rp are larger than 1.
A light source device for an endoscope, wherein Vp / Bp and Ap / Rp are both smaller than 1 in the second normal light observation set value. - 請求項6において、
前記第1通常光観察モードは、前記第2通常光観察モードよりも前記注目領域の前記強調度合いが高いことを特徴とする内視鏡用光源装置。 In claim 6,
The first normal light observation mode is a light source device for an endoscope, characterized in that the degree of emphasis of the region of interest is higher than that of the second normal light observation mode. - 請求項2において、
前記4以上の光源は、紫色光を出射する紫色光源と、青色光を出射する青色光源と、第1緑色光を出射する第1緑色光源と、前記第1緑色光より長波長の第2緑色光を出射する第2緑色光源と、アンバー光を出射するアンバー光源と、赤色光を出射する赤色光源と、を含み、
前記紫色光源、前記青色光源、前記第1緑色光源、前記第2緑色光源、前記アンバー光源及び前記赤色光源の光量を、それぞれVp、Bp、G1p、G2p、Ap、Rpとしたとき、
前記第1光量比として設定される(Vp+Bp):(G1p+G2p):(Ap+Rp)は、白色となる光量比であり、且つ、
前記第2光量比として設定されるVp/Bp、G2p/G1p及びAp/Rpは、いずれも1より大きいことを特徴とする内視鏡用光源装置。 In claim 2,
The four or more light sources are a purple light source that emits purple light, a blue light source that emits blue light, a first green light source that emits first green light, and a second green light having a wavelength longer than that of the first green light. A second green light source that emits light, an amber light source that emits amber light, and a red light source that emits red light are included.
When the light amounts of the purple light source, the blue light source, the first green light source, the second green light source, the amber light source, and the red light source are Vp, Bp, G1p, G2p, Ap, and Rp, respectively.
(Vp + Bp) :( G1p + G2p) :( Ap + Rp) set as the first light amount ratio is a light amount ratio that turns white, and
A light source device for an endoscope, wherein Vp / Bp, G2p / G1p, and Ap / Rp, which are set as the second light amount ratio, are all larger than 1. - 請求項1において、
前記光源コントローラは、通常光観察モードが設定されたとき前記光量比設定値を通常光観察用設定値に設定し、特殊光観察モードが設定されたとき前記光量比設定値を特殊光観察用設定値に設定し、
前記通常光観察用設定値における前記青色光量、前記緑色光量及び前記赤色光量の比は、前記特殊光観察用設定値における前記青色光量、前記緑色光量及び前記赤色光量の比よりも相対的に1:1:1に近いことを特徴とする内視鏡用光源装置。 In claim 1,
The light source controller sets the light amount ratio setting value to the normal light observation setting value when the normal light observation mode is set, and sets the light amount ratio setting value to the special light observation setting value when the special light observation mode is set. Set to a value
The ratio of the blue light amount, the green light amount, and the red light amount in the normal light observation set value is relatively 1 than the ratio of the blue light amount, the green light amount, and the red light amount in the special light observation set value. A light source device for an endoscope characterized by being close to 1: 1. - 請求項1において、
前記光源部は、前記4以上の光源として第1~第n光源(nは4以上の整数)を含み、
前記光源コントローラは、第1通常光観察モードが設定されたとき前記光量比設定値を第1通常光観察用設定値に設定して前記第1~第n光源を発光させ、第2通常光観察モードが設定されたとき前記光量比設定値を第2通常光観察用設定値に設定して前記第1~第n光源を発光させ、特殊光観察モードが設定されたとき前記光量比設定値を特殊光観察用設定値に設定すると共に、前記第1~第n光源のうち特殊光に対応する複数の光源を発光させ、
前記第1通常光観察用設定値及び前記第2通常光観察用設定値において、前記青色光量、前記緑色光量及び前記赤色光量の比は、白色の光量比であり、
前記第1通常光観察用設定値における前記複数の光源の光量比は、前記第2通常光観察用設定値における前記複数の光源の光量比に比べて相対的に、前記特殊光観察用設定値における複数の光源の光量比に近いことを特徴とする内視鏡用光源装置。 In claim 1,
The light source unit includes first to nth light sources (n is an integer of 4 or more) as the 4 or more light sources.
When the first normal light observation mode is set, the light source controller sets the light amount ratio set value to the first normal light observation set value, causes the first to nth light sources to emit light, and observes the second normal light. When the mode is set, the light amount ratio setting value is set to the second normal light observation setting value to cause the first to nth light sources to emit light, and when the special light observation mode is set, the light amount ratio setting value is set. In addition to setting the set value for observing special light, a plurality of light sources corresponding to the special light among the first to nth light sources are made to emit light.
In the first normal light observation set value and the second normal light observation set value, the ratio of the blue light amount, the green light amount, and the red light amount is the white light amount ratio.
The light amount ratio of the plurality of light sources in the first normal light observation set value is a set value for special light observation relative to the light amount ratio of the plurality of light sources in the second normal light observation set value. A light source device for an endoscope, which is characterized by being close to the light intensity ratio of a plurality of light sources in the above. - 請求項1において、
前記光源コントローラは、前記強調度合いが段階的又は連続的に異なる複数の通常光観察モードのいずれかが設定されたとき、当該設定された観察モードに対応した前記第2光量比の前記光量比設定値を設定することを特徴とする内視鏡用光源装置。 In claim 1,
When any of a plurality of normal light observation modes having different degrees of emphasis stepwise or continuously is set, the light source controller sets the light amount ratio of the second light amount ratio corresponding to the set observation mode. A light source device for an endoscope, characterized in that a value is set. - 請求項1において、
前記光源コントローラは、
複数の観察モードに対応した複数の前記光量比設定値を記憶する光量比記憶部と、
前記複数の観察モードのうち設定された観察モードに対応した前記光量比設定値を前記光量比記憶部から読み出し、当該読み出した前記光量比設定値に基づいて前記4以上の光源の光量比を制御する光量比制御回路と、
を含むことを特徴とする内視鏡用光源装置。 In claim 1,
The light source controller
A light amount ratio storage unit that stores a plurality of the light amount ratio set values corresponding to a plurality of observation modes, and a light amount ratio storage unit.
The light amount ratio set value corresponding to the set observation mode among the plurality of observation modes is read out from the light amount ratio storage unit, and the light amount ratio of the four or more light sources is controlled based on the read out light amount ratio set value. Light intensity ratio control circuit and
A light source device for an endoscope, which comprises. - 請求項12において、
前記光源コントローラは、
前記照明光の光量が変化した場合であっても、前記光量比設定値に基づいて前記4以上の光源の光量を同期することで前記第1光量比及び前記第2光量比を維持することを特徴とする内視鏡用光源装置。 In claim 12,
The light source controller
Even when the amount of illumination light changes, the first light amount ratio and the second light amount ratio can be maintained by synchronizing the light amounts of the four or more light sources based on the light amount ratio set value. A featured light source device for endoscopes. - 請求項1において、
第3波長領域及び第4波長領域が、前記青色領域、前記緑色領域及び前記赤色領域のうち前記第1同一色領域とは異なる第2同一色領域に属し、前記第2同一色領域において、前記第3波長領域における前記観察対象物の光吸収スペクトルが、前記第4波長領域における前記観察対象物の光吸収スペクトルより相対的に大きいとき、
前記4以上の光源は、
前記第3波長領域にピーク波長を有する光を出射する第3光源と、前記第4波長領域にピーク波長を有する光を出射する第4光源と、を含む、
又は、前記第3光源を含み、且つ前記第4光源を含まないことを特徴とする内視鏡用光源装置。 In claim 1,
The third wavelength region and the fourth wavelength region belong to the second same color region different from the first same color region among the blue region, the green region, and the red region, and in the second same color region, the said When the light absorption spectrum of the observation object in the third wavelength region is relatively larger than the light absorption spectrum of the observation object in the fourth wavelength region.
The four or more light sources are
A third light source that emits light having a peak wavelength in the third wavelength region and a fourth light source that emits light having a peak wavelength in the fourth wavelength region are included.
Alternatively, an endoscope light source device including the third light source and not including the fourth light source. - 請求項14において、
前記4以上の光源が、前記第3光源を含み、且つ前記第4光源を含まないとき、
前記第3光源が出射する光のスペクトルの裾部は、前記第4波長領域に重なることを特徴とする内視鏡用光源装置。 In claim 14,
When the four or more light sources include the third light source and do not include the fourth light source.
A light source device for an endoscope, wherein the skirt of a spectrum of light emitted by the third light source overlaps the fourth wavelength region. - 請求項14において、
前記光源部は、
前記照明光の光路上に配置されると共に前記第4波長領域の光を低減する光学フィルタを有することを特徴とする内視鏡用光源装置。 In claim 14,
The light source unit
A light source device for an endoscope, which is arranged on an optical path of the illumination light and has an optical filter that reduces light in the fourth wavelength region. - 請求項1において、
前記観察対象物は、生体に含まれる物質、又は薬剤であることを特徴とする内視鏡用光源装置。 In claim 1,
The observation object is a light source device for an endoscope, which is a substance or a drug contained in a living body. - 請求項1において、
前記観察対象物は、ヘモグロビン、インドシアニングリーン、インジゴカルミン、クリスタルバイオレット、及びルゴール液の少なくともいずれか1つであることを特徴とする内視鏡用光源装置。 In claim 1,
The object to be observed is a light source device for an endoscope, which is at least one of hemoglobin, indocyanine green, indigo carmine, crystal violet, and Lugol's solution. - 請求項1乃至18のいずれかに記載の内視鏡用光源装置と、
前記照明光が照射された前記観察対象物を撮像する撮像部と、
を含むことを特徴とする内視鏡装置。 The light source device for an endoscope according to any one of claims 1 to 18.
An imaging unit that images the observation object irradiated with the illumination light,
An endoscopic device comprising. - 請求項19において、
第1通常光観察モードと第2通常光観察モードを有し、
前記光源コントローラは、前記第1通常光観察モードが設定されたとき、前記第2通常光観察モードよりも前記強調度合いが高い前記第2光量比を設定することで、内視鏡装置の表示画像における前記注目領域の視認性を前記第2通常光観察モードよりも高くすることを特徴とする内視鏡装置。 In claim 19.
It has a first normal light observation mode and a second normal light observation mode.
When the first normal light observation mode is set, the light source controller sets the second light amount ratio, which has a higher degree of emphasis than the second normal light observation mode, to display an image of the endoscope device. An endoscope device characterized in that the visibility of the region of interest in the above is higher than that of the second normal light observation mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/027865 WO2021009829A1 (en) | 2019-07-16 | 2019-07-16 | Light source device for endoscope and endoscope device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/027865 WO2021009829A1 (en) | 2019-07-16 | 2019-07-16 | Light source device for endoscope and endoscope device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021009829A1 true WO2021009829A1 (en) | 2021-01-21 |
Family
ID=74209729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027865 WO2021009829A1 (en) | 2019-07-16 | 2019-07-16 | Light source device for endoscope and endoscope device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021009829A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016151903A1 (en) * | 2015-03-25 | 2016-09-29 | オリンパス株式会社 | Observation system |
WO2017051455A1 (en) * | 2015-09-24 | 2017-03-30 | オリンパス株式会社 | Endoscope device |
WO2017061003A1 (en) * | 2015-10-08 | 2017-04-13 | オリンパス株式会社 | Endoscope device |
JP2017113185A (en) * | 2015-12-22 | 2017-06-29 | 富士フイルム株式会社 | Endoscope system, processor device, and method for operating endoscope system |
WO2017216883A1 (en) * | 2016-06-14 | 2017-12-21 | オリンパス株式会社 | Endoscope device |
JP2018051143A (en) * | 2016-09-30 | 2018-04-05 | 富士フイルム株式会社 | Endoscope system and method for operating the same |
WO2019003489A1 (en) * | 2017-06-26 | 2019-01-03 | オリンパス株式会社 | Light source control device and endoscope system |
-
2019
- 2019-07-16 WO PCT/JP2019/027865 patent/WO2021009829A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016151903A1 (en) * | 2015-03-25 | 2016-09-29 | オリンパス株式会社 | Observation system |
WO2017051455A1 (en) * | 2015-09-24 | 2017-03-30 | オリンパス株式会社 | Endoscope device |
WO2017061003A1 (en) * | 2015-10-08 | 2017-04-13 | オリンパス株式会社 | Endoscope device |
JP2017113185A (en) * | 2015-12-22 | 2017-06-29 | 富士フイルム株式会社 | Endoscope system, processor device, and method for operating endoscope system |
WO2017216883A1 (en) * | 2016-06-14 | 2017-12-21 | オリンパス株式会社 | Endoscope device |
JP2018051143A (en) * | 2016-09-30 | 2018-04-05 | 富士フイルム株式会社 | Endoscope system and method for operating the same |
WO2019003489A1 (en) * | 2017-06-26 | 2019-01-03 | オリンパス株式会社 | Light source control device and endoscope system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5404968B1 (en) | Endoscope device | |
JP5427318B1 (en) | Endoscope device | |
JP5355827B1 (en) | Endoscope device | |
WO2011004801A1 (en) | Lighting device for endoscope, and endoscope device | |
CN103068298A (en) | Endoscope device | |
WO2013145409A1 (en) | Endoscopic device | |
EP2754379A1 (en) | Endoscope system and image display method | |
US10893810B2 (en) | Image processing apparatus that identifiably displays bleeding point region | |
JP6839773B2 (en) | Endoscope system, how the endoscope system works and the processor | |
JP6155367B2 (en) | Endoscope device | |
JP2016158837A (en) | Endoscope light source device, endoscope system, and operation method of endoscope light source device | |
WO2021009829A1 (en) | Light source device for endoscope and endoscope device | |
WO2019171703A1 (en) | Endoscope system | |
JP7324307B2 (en) | Light source device, endoscope system and control method | |
JP7573067B2 (en) | Endoscope equipment | |
JP6379260B2 (en) | Endoscope device | |
JP6386939B2 (en) | Endoscope light source device, endoscope system, and operation method of endoscope light source device | |
JP2022031393A (en) | Endoscope apparatus | |
JP2015091351A (en) | Endoscope device | |
JP2020078667A (en) | Endoscope apparatus | |
JP2014121630A (en) | Endoscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19937748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19937748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |