WO2021005912A1 - ポリウレタン及び硬化性組成物 - Google Patents
ポリウレタン及び硬化性組成物 Download PDFInfo
- Publication number
- WO2021005912A1 WO2021005912A1 PCT/JP2020/021410 JP2020021410W WO2021005912A1 WO 2021005912 A1 WO2021005912 A1 WO 2021005912A1 JP 2020021410 W JP2020021410 W JP 2020021410W WO 2021005912 A1 WO2021005912 A1 WO 2021005912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane
- curable composition
- mass
- less
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6633—Compounds of group C08G18/42
- C08G18/6659—Compounds of group C08G18/42 with compounds of group C08G18/34
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3215—Polyhydroxy compounds containing aromatic groups or benzoquinone groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/348—Hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4045—Mixtures of compounds of group C08G18/58 with other macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1515—Three-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
Definitions
- the present invention relates to polyurethane, a curable composition, a cured product, an overcoat film, a flexible wiring board, and a method for producing the same.
- the flexible wiring board is coated with an overcoat film to protect the surface.
- This overcoat film is formed by applying a curable composition to the surface of a flexible substrate on which wiring is formed by a printing method or the like and curing it.
- the curable composition for forming the overcoat film causes the overcoat film to warp as compared with the conventional one. Difficult performance is required. If the overcoat film is warped, the flexible wiring board will be warped, and as a result, in the mounting process for mounting the IC chip on the flexible wiring board, the alignment accuracy of the mounting position of the IC chip will be adversely affected. Yield may be low.
- Patent Document 1 contains polyurethane obtained by reacting a diisocyanate compound with a plurality of types of diol compounds. Curable compositions are disclosed. By using the curable composition disclosed in Patent Document 1, it is possible to obtain an overcoat film for a flexible wiring board which is excellent in low warpage, flexibility, long-term insulation reliability, and wire breakage suppression property.
- the distance (pitch) between wirings of the flexible wiring board will be further narrowed (for example, 20 ⁇ m or less), so that the overcoat film and the flexible wiring board have low warpage, and Further improvement in the ability to suppress disconnection of the wiring of the flexible wiring board has been desired.
- the present invention has excellent curing performance that makes it difficult for the overcoat film and the flexible wiring board to warp and suppresses the disconnection of the wiring of the flexible wiring board (hereinafter, also referred to as "wiring disconnection suppressing property").
- An object of the present invention is to provide a sex composition.
- the present invention also provides a polyurethane capable of imparting to a curable composition the performance of preventing warping of the overcoat film and the flexible wiring board and the performance of suppressing disconnection of the wiring of the flexible wiring board. To be an issue.
- Another object of the present invention is to provide a cured product and an overcoat film having excellent low warpage property and wire disconnection suppressing property.
- Another object of the present invention is to provide a flexible wiring board having low warpage and excellent ability to suppress disconnection of wiring and a method for manufacturing the same.
- a first urethane structural unit represented by the following formula (1) a second urethane structural unit represented by the following formula (2), and a third urethane structure represented by the following formula (3).
- X number of R 1 in formula (1) each independently represent a divalent organic group having 6 to 14 carbon atoms
- x number of p is an integer of 2 or more independently
- x q is an integer of 2 or more independently
- x is an integer of 1 or more.
- Z number of R 5 of the following formula (3) each independently represent a divalent organic group having 6 to 14 carbon atoms
- the z number of R 6 are each independently a methyl group or an ethyl group Shown
- z is an integer of 1 or more, polyurethane.
- the polyurethane (a) according to any one of [1] to [5], the solvent (b), and the epoxy compound (c) having two or more epoxy groups in one molecule are used. Curable composition to contain. [7] The ratio of the content of the solvent (b) to the total amount of the polyurethane (a), the solvent (b) and the epoxy compound (c) is 25% by mass or more and 75% by mass or less, and the polyurethane ( The ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) is 40% by mass or more and 99% by mass or less, and the total amount of the polyurethane (a) and the epoxy compound (c). The curable composition according to [6], wherein the ratio of the content of the epoxy compound (c) to the epoxy compound (c) is 1% by mass or more and 60% by mass or less.
- the ratio of the content of the solvent (b) to the total amount of the polyurethane (a), the solvent (b), the epoxy compound (c) and the fine particles (d) is 25% by mass or more and 75% by mass or less.
- the ratio of the content of the fine particles (d) is 0.1% by mass or more and 60% by mass or less.
- the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) is 40% by mass or more and 99% by mass or less, and the ratio of the content of the epoxy compound (c) is 1% by mass.
- the curable composition according to any one of [8] to [10], which is% or more and 60% by mass or less.
- the curable composition according to the present invention is excellent in the ability to prevent warpage of the overcoat film and the flexible wiring board and the ability to suppress disconnection of the wiring of the flexible wiring board.
- the polyurethane according to the present invention can impart to the curable composition the performance of preventing the overcoat film and the flexible wiring board from warping and the performance of suppressing the disconnection of the wiring of the flexible wiring board.
- the cured product, the overcoat film, and the flexible wiring board according to the present invention are excellent in low warpage property and wire disconnection suppressing property.
- the method for manufacturing a flexible wiring board according to the present invention can manufacture a flexible wiring board having excellent low warpage property and wire disconnection suppressing property.
- the present inventors have obtained an overcoat film obtained by curing the curable composition by using a curable composition containing polyurethane having a specific structure. It has been found that the flexible wiring board having an overcoat film obtained by curing the curable composition is less likely to be warped and the wiring of the flexible wiring board is less likely to be broken. It came to be completed.
- polyurethane of the present embodiment is represented by the first urethane structural unit represented by the above formula (1), the second urethane structural unit represented by the above formula (2), and the above formula (3). It has a third urethane structural unit.
- other structural units may be further provided as long as the effects of the present invention are not impaired.
- X number of R 1 in the formula (1) each independently represent a divalent organic group having 6 to 14 carbon atoms
- x number of p is an integer of 2 or more independently
- the x qs are independently integers of 2 or more
- x is an integer of 1 or more.
- x is preferably 1 or more and 15 or less, more preferably 2 or more and 12 or less, and further preferably 3 or more and 10 or less.
- the y-number of R 2 in formula (2) each independently represent a divalent organic group having 6 to 14 carbon atoms, (n ⁇ y) number of R 3, the number of carbon atoms independently 6 to 14 show the following divalent organic radical, [(n + 1) ⁇ y] number of R 4 indicates a divalent hydrocarbon group having 3 to 9 carbon atoms independently.
- y n are independently integers of 0 or more and 50 or less. However, y n are not all 0.
- y is an integer of 1 or more. y is preferably 1 or more and 15 or less, more preferably 2 or more and 12 or less, and further preferably 3 or more and 10 or less.
- Z number of R 5 in the formula (3) each independently represent a divalent organic group having 6 to 14 carbon atoms
- the z number of R 6 are each independently a methyl group or an ethyl group Shown.
- z is an integer of 1 or more.
- z is preferably 1 or more and 15 or less, more preferably 2 or more and 12 or less, and further preferably 3 or more and 10 or less.
- the polyurethane of the present embodiment has the first urethane structural unit represented by the above formula (1), more specifically, it has a fluorene structure and a polyoxyethylene structure, so that it is an overcoat film. And the ability to prevent the flexible wiring board from warping and the ability to suppress the disconnection of the wiring of the flexible wiring board can be imparted to the curable composition. Therefore, if the curable composition containing polyurethane of the present embodiment is cured to produce an overcoat film or a flexible wiring board, an overcoat film having low warpage (small warpage), low warpage, and wiring can be produced. It is possible to obtain a flexible wiring board having excellent wire breakage suppression properties.
- x pieces of R 1 in the formula (1) are each independently exhibit a divalent organic group having 6 to 14 carbon atoms, the divalent organic group having 6 to 14 carbon atoms
- a chain aliphatic divalent organic group, a divalent organic group having an aromatic ring, a divalent organic group having an alicyclic structure, and the like can be mentioned.
- Examples of the divalent organic group of the chain aliphatic group include the following formulas (4) to (7).
- Examples of the divalent organic group having an aromatic ring include the following formulas (8) to (11).
- Examples of the divalent organic group having an alicyclic structure include the following formulas (12) to (16).
- x number of R 1 is entirely may be the same, partially different to all other parts may be the same or may be entirely different.
- x p and q in the above equation (1) are all integers of 2 or more, but are preferably integers of 4 or more and 10 or less independently, and are integers of 5 or more and 8 or less. More preferably.
- x p and q in the above formula (1) are within the above range, an overcoat film having better low warpage and a flexible wiring board having better low warpage and wire breakage suppression can be obtained. Obtainable.
- the x ps in the above formula (1) may be all the same, some may be different, all other parts may be the same, or all may be different.
- the x qs of the above may be all the same, some may be different, all other parts may be the same, or all may be different. Further, p and q in the above formula (1) may be the same or different.
- Y-number of R 2 in the formula (2) is an example of independently exhibit a divalent organic group having 6 to 14 carbon atoms, a divalent organic group having 6 to 14 carbon atoms, It is the same as R 1 in the above formula (1).
- y-number of R 2 is, wholly may be the same, partially different to all other parts may be the same or may be entirely different.
- R 3 in the formula (2) each independently is a divalent organic group having 6 to 14 carbon atoms, a phenylene group, phenylene group having a substituent group are preferred, A 1,2-phenylene group and a 1,2-phenylene group having a substituent are more preferable.
- the substituent include an alkyl group having 1 to 5 carbon atoms, a halogen atom and the like.
- R 3 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 3-methyl-1,2-phenylene group, 4-methyl-1,2-phenylene group.
- At least one R 3 out of (n ⁇ y) R 3 is a 1,2-phenylene group, a 1,3-phenylene group, a 3-methyl-1,2-phenylene group, 4-. is preferably any one group selected from the group consisting of methyl-1,2-phenylene group and 4-methyl-1,3-phenylene group, at least one of the (n ⁇ y) number of R 3 It is more preferable that R 3 is a 1,2-phenylene group or a 1,3-phenylene group, and at least one R 3 out of (n ⁇ y) R 3 is a 1,2-phenylene group. Is even more preferable.
- the formula (2) in the [(n + 1) ⁇ y] number of R 4 indicates a divalent hydrocarbon group having 3 to 9 carbon atoms independently.
- the divalent hydrocarbon group having 3 or more and 9 or less carbon atoms an alkylene group and a cycloalkylene group are preferable, and an alkylene group is more preferable.
- Preferred alkylene groups include, for example, groups represented by the following formulas (17) to (27).
- [(N + 1) ⁇ y] number of R 4 is entirely may be the same, partially different to all other parts may be the same or may be entirely different.
- At least one of R 4 of the above formula (2) in [(n + 1) ⁇ y] number of R 4 is a compound represented by the following formula (20), equation (21) is represented by any one of formula (22) is preferably that group, a group at least one R 4 of the above formula (2) in the [(n + 1) ⁇ y] number of R 4 is represented by the formula (21) or formula (22) more preferably in, it is more preferably a group all of the above formula (2) in the [(n + 1) ⁇ y] number of R 4 is represented by the formula (21) or formula (22).
- the y n in the above formula (2) are independently integers of 0 or more and 50 or less, but it is preferable that they are independently integers of 1 or more and 20 or less.
- Z number of R 5 in the formula (3) is an example of independently exhibit a divalent organic group having 6 to 14 carbon atoms, a divalent organic group having 6 to 14 carbon atoms, It is the same as R 1 in the above formula (1).
- z number of R 5 is entirely may be the same, partially different to all other parts may be the same or may be entirely different.
- the method for synthesizing polyurethane of the present embodiment is not particularly limited, but is, for example, a diisocyanate compound having two isocyanato groups in one molecule in the presence or absence of a urethanization catalyst such as dibutyltin dilaurylate. (That is, OCN-R 1- NCO, OCN-R 2- NCO, OCN-R 5- NCO) and three types of diol compounds represented by the following formulas (28), (29), and (30). Examples thereof include a method of polymerizing in a solvent.
- R 1 , R 2 , and R 5 of the diisocyanate compounds are included in the above formulas (1), (2), and (3). Since it is the same as R 1 , R 2 , and R 5 of the above, the description thereof will be omitted. Further, since p and q in the above formula (28) are the same as p and q in the above formula (1), the description thereof will be omitted. Furthermore, R 3, R 4, n in the above formula (29) is the same as R 3, R 4, n in the above formula (2), description thereof is omitted. Further, R 6 in the formula (30) is the same as R 6 in the formula (3), description thereof is omitted.
- diol compound represented by the above formula (29) at least one selected from the group of the following dicarboxylic acids and at least one selected from the group of the following diols are combined and subjected to an esterification reaction.
- polyester polyols to be produced examples include orthophthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1, Examples thereof include 3-dicarboxylic acid, 5-methyl-benzene-1,3-dicarboxylic acid, 2-methyl-benzene-1,4-dicarboxylic acid and the like.
- orthophthalic acid and 3-methyl are considered to be able to suppress the crystallinity and the hydrolyzability of the ester bond at the same time for the development of low warpage and good long-term insulation reliability.
- -Benzen-1,2-dicarboxylic acid and 4-methyl-benzene-1,2-dicarboxylic acid are more preferable, and orthophthalic acid is further preferable.
- diol examples include 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1,5. -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol and the like can be mentioned. it can.
- 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1,5-pentanediol are more preferable, and 1 , 6-Hexanediol, 3-methyl-1,5-pentanediol is more preferable, and 1,6-hexanediol is particularly preferable.
- the diol compound represented by the above formula (29) one type may be used alone, or two or more types may be used in combination.
- the number average molecular weight of the diol compound represented by the above formula (29) is preferably 800 or more and 5000 or less, more preferably 800 or more and 3000 or less, and further preferably 900 or more and 2500 or less.
- the diol compound represented by the above formula (30) is 2,2-dimethylolpropionic acid or 2,2-dimethylolbutanoic acid.
- the polyurethane of the present embodiment is represented by the above formulas (28), (29) and (30) together with the three types of diol compounds represented by the above formulas (28), (29) and (30).
- a low molecular weight polyol other than the three diol compounds for example, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol , 1,6-Hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, diethylene glycol, dipropylene glycol, glycerin, and trimethylolpropane can be used.
- 1,6-hexanediol and 3-methyl-1,5-pentanediol are more preferable.
- One of these polyols may be used alone, or two or more thereof may be used in combination.
- the number average molecular weight of the polyurethane of the present embodiment is not particularly limited, but is preferably 10,000 or more and 50,000 or less in consideration of the ease of adjusting the viscosity of the curable composition of the present embodiment described later. It is more preferably 40,000 or more, and further preferably 10,000 or more and 30,000 or less.
- the ratios of x in the above formula (1), y in the above formula (2), and z in the above formula (3) to x + y + z satisfy the following conditions, respectively. 0.01 ⁇ x / (x + y + z) ⁇ 0.4 0.1 ⁇ y / (x + y + z) ⁇ 0.9 0.01 ⁇ z / (x + y + z) ⁇ 0.4
- the ratios of x in the above formula (1), y in the above formula (2), and z in the above formula (3) to x + y + z satisfy the following conditions, respectively. 0.02 ⁇ x / (x + y + z) ⁇ 0.3 0.2 ⁇ y / (x + y + z) ⁇ 0.8 0.02 ⁇ z / (x + y + z) ⁇ 0.3
- the "number average molecular weight" referred to here is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (hereinafter referred to as "GPC").
- GPC gel permeation chromatography
- the acid value of the polyurethane of the present embodiment is not particularly limited, but is preferably 10 mgKOH / g or more and 70 mgKOH / g or less, more preferably 10 mgKOH / g or more and 50 mgKOH / g or less, and 15 mgKOH / g. It is more preferably 35 mgKOH / g or less.
- the polyurethane of the present embodiment has sufficient reactivity with the epoxy group. Therefore, in the curable composition described later, the reactivity with other components such as an epoxy compound having two or more epoxy groups in one molecule is unlikely to be insufficient, and thus the heat resistance of the cured product of the curable composition.
- the cured product of the curable composition does not become too hard and brittle. In addition, it becomes easy to balance the solvent resistance of the overcoat film described later with the warp of the flexible wiring board described later.
- the acid value of polyurethane is the value of the acid value measured by the potentiometric titration method specified in JIS K0070.
- the aromatic ring concentration of the polyurethane of the present embodiment is not particularly limited, but is preferably 0.1 mmol / g or more and 5.0 mmol / g or less, and 0.5 mmol / g or more and 4.5 mmol / g or less. More preferably, it is more preferably 1.0 mmol / g or more and 4.0 mmol / g or less.
- the aromatic ring concentration is within the above range, it becomes easy to balance the solvent resistance of the overcoat film described later and the warp of the flexible wiring board described later.
- the aromatic ring concentration means the number (number of moles) of aromatic rings contained in 1 g of the compound. For example, if a polyurethane having a molecular weight of 438.5 as a repeating unit (structural unit) has four aromatic rings (for example, phenyl groups) per repeating unit, the number of repeating units in 1 g of this polyurethane is 2. Since it is .28 mmol, the aromatic ring concentration is 9.12 mmol / g (4 ⁇ 2.28 mmol / 1 g).
- the type of aromatic ring is not particularly limited as long as it is a cyclic functional group having aromaticity with 3 or more ring members, and for example, a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, or a fluorene group.
- a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, or a fluorene group.
- examples thereof include a polycyclic aromatic hydrocarbon group such as, a condensed ring aromatic hydrocarbon group such as a naphthalene group and an indenyl group, and a heteroaromatic hydrocarbon group such as a pyridyl group.
- the number of aromatic rings is not one but the number of cyclic structural parts.
- a fluorene group has two benzene rings which are cyclic structure sites
- the number of aromatic rings possessed by the polyurethane is 1 repeating unit. Two per piece.
- the number of aromatic rings is 2, in the case of an anthracene group or phenanthrene group, the number of aromatic rings is 3, and in the case of a triphenylene group or binaphthyl group, the number of aromatic rings is 4.
- the aromatic ring concentration can be calculated from the charging ratio of the monomers, but can be obtained by 1 H-NMR analysis after determining the structure of the polyurethane by spectroscopic methods such as 1 H-NMR, 13 C-NMR, and IR. It can also be calculated by comparing the number of protons derived from the aromatic ring with the number of protons derived from one repeating unit using the integration curve.
- the polymerization reaction for synthesizing the polyurethane of the present embodiment may be carried out in a solvent, but the type of solvent used as the polymerization solvent when carried out in the solvent is any solvent capable of dissolving the polyurethane of the present embodiment.
- the solvent used for synthesizing the polyurethane of the present embodiment include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, and triethylene glycol dimethyl ether.
- Ether solvents such as triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol mono Ethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, Examples thereof include ester solvents such as ⁇ -butyrolactone, hydrocarbon solvents such as decahydronaphthalin, and ketone solvents such as cyclohe
- ⁇ -butyrolactone, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate, and diethylene glycol are considered in consideration of the ease of adjusting the molecular weight of polyurethane and the printability of the curable composition described below during screen printing.
- Monomethyl ether acetate is preferable
- ⁇ -butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether are more preferable, a single solvent of ⁇ -butyrolactone, a mixed solvent of ⁇ -butyrolactone and diethylene glycol monoethyl ether acetate, ⁇ -butyrolactone and diethylene glycol.
- a two-kind mixed solvent of diethyl ether and a three-kind mixed solvent of ⁇ -butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether are preferable.
- the solid content concentration of the polyurethane solution of the present embodiment is not particularly limited, but is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 70% by mass or less, and 20% by mass or more and 60% by mass or less. % Or less is more preferable.
- the viscosity of the polyurethane solution is determined by the measurement conditions described later in the section of Examples. In, for example, it is preferably 5,000 mPa ⁇ s or more and one million mPa ⁇ s or less from the viewpoint of uniform dispersion.
- the order in which the raw materials such as monomers are charged into the reaction vessel when the polymerization reaction for synthesizing the polyurethane of the present embodiment is carried out is not particularly limited, but may be charged in the following order, for example. That is, the three diol compounds represented by the above formulas (28), (29) and (30) and, if desired, the three diols represented by the above formulas (28), (29) and (30). a polyol other than the compound was dissolved in a solvent in a reaction vessel, at 30 ° C. or higher 140 ° C. or less, preferably at 60 ° C. or higher 120 ° C.
- the diisocyanate compound (OCN-R 1 -NCO, OCN -R 2 - NCO, OCN-R 5 -NCO) is added little by little to the reaction vessel, and each of the above monomers is reacted at 50 ° C. or higher and 160 ° C. or lower, preferably 60 ° C. or higher and 150 ° C. or lower to carry out polymerization.
- the molar ratio of the monomer charged is adjusted according to the molecular weight, acid value, and ratio of x, y, and z of the target polyurethane.
- a monohydroxy compound may be used as a raw material for the polyurethane of the present embodiment in order to adjust the molecular weight of the polyurethane. In that case, when the molecular weight of the polyurethane being polymerized reaches the target number average molecular weight (or approaches the target number average molecular weight) by the above method, the isocyanato group at the molecular end of the polyurethane being polymerized is sealed.
- a monohydroxy compound is added for the purpose of stopping and suppressing a further increase in the number average molecular weight.
- the total number of hydroxy groups obtained by subtracting the total number of hydroxy groups of the monohydroxy compound from the total number of hydroxy groups of all the raw materials of polyurethane that is, two in one molecule which is the raw material of polyurethane.
- the total number of isocyanato groups contained in all the raw materials of polyurethane may be smaller, the same, or larger than the total number of hydroxy groups contained in the above compounds having hydroxy groups.
- the excess monohydroxy compound may be used as it is as a part of the solvent. Alternatively, it may be removed by an operation such as distillation.
- the reason why the monohydroxy compound is used as a raw material for polyurethane is to suppress an increase in the molecular weight of the polyurethane of the present embodiment (that is, to stop the polymerization reaction), and to add the monohydroxy compound in the reaction solution at 30 ° C. or higher and 150 ° C. or lower. , Preferably added little by little at 70 ° C. or higher and 140 ° C. or lower, and then held at the above temperature to complete the reaction.
- a monoisocyanate compound may be used as a raw material for the polyurethane of the present embodiment in order to adjust the molecular weight of the polyurethane.
- the total number of isocyanato groups contained in all the raw materials of polyurethane is used rather than the total number of hydroxy groups contained in all raw materials of polyurethane so that the molecular terminal of the polyurethane at the time of adding the monoisocyanate compound becomes a hydroxy group.
- the temperature of the polyurethane solution during polyurethane production is set to 30 ° C. or higher and 150 ° C. or lower, preferably 70 ° C. or higher and 140 ° C. or lower, and then the monoisocyanate compound is added little by little to the polyurethane solution and then maintained at the above temperature. Complete the reaction.
- the blending amount of each component of the raw material is preferably as follows.
- the amount of the diol compound represented by the above formula (30) is preferably 1% by mass or more and 20% by mass or less, and 2% by mass or more and 10% by mass, based on the total amount of the total raw materials of the polyurethane of the present embodiment. The following is more preferable.
- the amount of the diol compound represented by the above formula (28) is 3% by mass with respect to the total mass of all the raw materials of the polyurethane of the present embodiment minus the total mass of the monohydroxy compound and the monoisocyanate compound. It is preferably 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less.
- the amount of the diol compound represented by the above formula (28) is 3% by mass or more and 20 with respect to the total mass of the total raw materials of the polyurethane of the present embodiment minus the total mass of the monohydroxy compound and the monoisocyanate compound. When it is in the range of mass% or less, it is possible to balance the low warpage property of the flexible wiring board of the present embodiment described later and the disconnection suppressing property of the wiring.
- the curable composition of the present embodiment comprises the polyurethane (a) of the present embodiment, a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. It is a composition containing.
- Solvent (b) The type of the solvent (b), which is one of the essential components of the curable composition of the present embodiment, is not particularly limited as long as the polyurethane (a) of the present embodiment can be dissolved.
- Examples of the solvent (b) include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, and dipropylene glycol monoethyl ether acetate.
- Examples thereof include ester solvents such as diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, and ⁇ -butyrolactone.
- examples of the solvent (b) include hydrocarbon solvents such as decahydronaphthalene and ketone solvents such as cyclohexanone. One of these solvents may be used alone, or two or more of these solvents may be used in combination.
- ⁇ -butyrolactone, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monomethyl ether acetate are preferable, and ⁇ -butyrolactone and diethylene glycol are preferable in consideration of the balance between printability during screen printing and solvent volatility. More preferably, monoethyl ether acetate and diethylene glycol diethyl ether are a single solvent of ⁇ -butyrolactone, a mixed solvent of ⁇ -butyrolactone and diethylene glycol monoethyl ether acetate, a mixed solvent of ⁇ -butyrolactone and diethylene glycol diethyl ether, and ⁇ -. A three-kind mixed solvent of butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether is more preferable.
- a combination of these preferable solvents is suitable because it is excellent as a solvent for screen printing ink.
- the synthetic solvent used for producing the polyurethane (a) of the present embodiment can be used as it is. This is preferable in terms of process because the curable composition of the present embodiment can be easily produced.
- the content of the solvent (b) in the curable composition of the present embodiment is preferably 25% by mass or more and 75% by mass or less, and 35% by mass or more, based on the total amount of the curable composition of the present embodiment. It is more preferably 65% by mass or less.
- the total amount of the curable composition of the present embodiment is the total amount of the polyurethane (a), the solvent (b), and the epoxy compound (c) having two or more epoxy groups in one molecule. ..
- the total amount of the curable composition of the present embodiment is the polyurethane (a) and the solvent.
- the viscosity of the curable composition is printed by the screen printing method.
- the viscosity is good, and the spread of the curable composition after screen printing due to bleeding is not so large.
- the phenomenon that the printed area of the curable composition actually printed is larger than the portion to which the curable composition is to be applied (that is, the shape of the printing plate) is less likely to occur, which is preferable.
- the epoxy compound (c) which is one of the essential components of the curable composition of the present embodiment, reacts with the carboxy group or the hydroxy group of the polyurethane (a) and functions as a curing agent in the curable composition. is there.
- the type of the epoxy compound (c) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and examples thereof include a novolak type epoxy resin obtained by epoxidizing a novolak resin.
- Specific examples of the novolak type epoxy resin include phenol novolac type epoxy resin and orthocresol novolac type epoxy resin.
- the novolak resin includes phenols such as phenol, cresol, xylenol, resorcin, and catechol, and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde. It is a resin obtained by condensing or co-condensing a compound having an aldehyde group such as the above under an acidic catalyst.
- examples of the epoxy compound (c) having two or more epoxy groups in one molecule include diglycidyl ethers of phenols and glycidyl ethers of alcohols.
- examples of the above-mentioned phenols include bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenols, and stillben-based phenols. That is, the diglycidyl ethers of these phenols are bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, biphenyl type epoxy compound, and stillben type epoxy compound.
- examples of the alcohol include butanediol, polyethylene glycol, polypropylene glycol and the like.
- examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid, and aniline and bis (4).
- glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid, and aniline and bis (4).
- -Aminophenyl Nitrogen contained in glycidyl-type or methylglycidyl-type epoxy resins, which are compounds in which active hydrogen bonded to nitrogen atoms of methane, isocyanuric acid, etc. is replaced with glycidyl groups, and aminophenols such as p-aminophenol.
- Examples thereof include glycidyl-type or methylglycidyl-type epoxy resins, which are compounds in which active hydrogen bonded to an atom and active hydrogen of a phenolic hydroxy group are substituted with glycidyl groups, respectively.
- examples of the epoxy compound (c) having two or more epoxy groups in one molecule include vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 2- (3).
- 4-Epoxy) Cyclohexyl-5,5-Spiro (3,4-Epoxy) Cyclohexane-m-dioxane and other alicyclic epoxy resins can be mentioned.
- These alicyclic epoxy resins are obtained by epoxidizing the olefin bonds of an alicyclic hydrocarbon compound having an olefin bond in the molecule.
- examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ether of paraxylylene and / or metaxylylene-modified phenol resin, glycidyl ether of terpene-modified phenol resin, and dicyclopentadiene-modified phenol resin.
- examples of the epoxy compound (c) having two or more epoxy groups in one molecule include a halogenated phenol novolac type epoxy resin, a hydroquinone type epoxy resin, a trimethylol propane type epoxy resin, and a linear aliphatic epoxy resin.
- a product obtained by oxidizing an olefin bond of a linear aliphatic hydrocarbon compound having an olefin bond in the molecule with a peracid such as peracetic acid and a diphenylmethane type epoxy resin can be mentioned.
- epoxy compound (c) having two or more epoxy groups in one molecule for example, an epoxidized product of an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin, a sulfur atom-containing epoxy resin, or a tricyclo [5.2.1.0 2,6 ]
- an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin
- sulfur atom-containing epoxy resin or a tricyclo [5.2.1.0 2,6 ]
- examples thereof include diglycidyl ether of decandimethanol and an epoxy resin having an adamantan structure.
- Examples of epoxy resins having an adamantane structure include 1,3-bis (1-adamantyl) -4,6-bis (glycidyloyl) benzene, 1- [2', 4'-bis (glycidiroyl) phenyl] adamantane, 1 , 3-Bis (4'-glycidyl phenyl) adamantane, 1,3-bis [2', 4'-bis (glycidyl phenyl) phenyl] adamantane and the like.
- One of these epoxy compounds (c) may be used alone, or two or more thereof may be used in combination.
- an epoxy compound having two or more epoxy groups in one molecule and having an aromatic ring structure and / or an alicyclic structure is preferable.
- a cured product having a low water absorption rate can be obtained. Therefore, one molecule has two or more epoxy groups and has an aromatic ring structure and /.
- a compound having two or more epoxy groups in one molecule and having a tricyclodecane structure and an aromatic ring structure is preferable.
- Specific examples of the compound having two or more epoxy groups in one molecule and having a tricyclodecane structure and an aromatic ring structure include glycidyl ether of a dicyclopentadiene-modified phenol resin (that is, two or more in one molecule).
- epoxy compounds having two or more epoxy groups in one molecule and having an aromatic ring structure and / or an alicyclic structure two in one molecule.
- a compound having the above epoxy group and having an amino group and an aromatic ring structure is preferable.
- glycidyl is an active hydrogen bonded to a nitrogen atom of aniline and bis (4-aminophenyl) methane.
- Glycidyl-type or methylglycidyl-type epoxy resin which is a compound substituted with a group
- glycidyl which is a compound in which active hydrogen bonded to a nitrogen atom of aminophenols and active hydrogen of a phenolic hydroxy group are each substituted with a glycidyl group.
- Examples thereof include type or methylglycidyl type epoxy resins and compounds represented by the following formula (32).
- the compound represented by the following formula (32) is particularly preferable.
- the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is preferably 1% by mass or more and 60% by mass or less. It is more preferably 2% by mass or more and 50% by mass or less, and further preferably 3% by mass or more and 40% by mass or less. That is, the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is preferably 40% by mass or more and 99% by mass or less. , 50% by mass or more and 98% by mass or less, and more preferably 60% by mass or more and 97% by mass or less.
- the overcoat film described later is coated, which will be described later. It is possible to balance the low warpage of the flexible wiring board and the ability to suppress disconnection of the wiring.
- Fine particles (d) At least one kind of fine particles (d) selected from the group consisting of inorganic fine particles and organic fine particles may be added to the curable composition of the present embodiment.
- the fine particles (d) By adding the fine particles (d), the viscosity and thixotropy of the curable composition at the time of printing can be adjusted, and the curable composition (that is, ink) can be suppressed from flowing out.
- the inorganic fine particles include silica (SiO 2 ), alumina (Al 2 O 3 ), titanium (TIO 2 ), titanium oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 N 4 ).
- organic fine particles fine particles of a heat-resistant resin having an amide bond, an imide bond, an ester bond or an ether bond are preferable.
- these resins include polyimide resins or precursors thereof, polyamideimide resins or precursors thereof, or polyamide resins from the viewpoint of heat resistance and mechanical properties.
- silica fine particles and hydrotalcite fine particles are preferable, and the curable composition of the present embodiment preferably contains at least one selected from silica fine particles and hydrotalcite fine particles.
- the silica fine particles used in the curable composition of the present embodiment are in the form of powder, and may be silica fine particles having a coating on the surface or silica fine particles chemically surface-treated with an organic compound.
- the silica fine particles used in the curable composition of the present embodiment are not particularly limited as long as they are dispersed in the curable composition to form a paste, but for example, from Nippon Aerosil Co., Ltd. Examples include Aerosil (trade name) provided. Silica fine particles typified by Aerosil (trade name) are sometimes used to impart printability at the time of screen printing to a curable composition, and in that case, they are used for the purpose of imparting tincture. ..
- Hydrotalcite particles used in the curable composition of the present embodiment is a kind of clay minerals naturally occurring typified by Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O , etc., a layered It is an inorganic compound. Hydrotalcite can also be obtained synthetically. For example, Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 ⁇ mH 2 O and the like can be obtained synthetically. That is, the hydrotalcite is Mg / Al-based layered compound, by ion exchange with carbonate groups in the interlayer, chloride ion - fixing an anion and / or sulfate ions (SO 4 2-) (Cl) Can be converted. Using this feature, chloride ions that cause migration of copper and tin (Cl -) and trapping the sulfate ion (SO 4 2-), it is possible to improve the long-term insulation reliability of the cured product.
- Examples of commercially available hydrotalcite products include STABIACE HT-1, STABIACE HT-7, and STABIACE HT-P of Sakai Chemical Industry Co., Ltd., and DHT-4A, DHT-4A2, and DHT-4C of Kyowa Chemical Industry Co., Ltd. Can be mentioned.
- the mass average particle diameter of these inorganic fine particles and organic fine particles is preferably 0.01 to 10 ⁇ m, and more preferably 0.1 to 5 ⁇ m.
- the content of the fine particles (d) in the curable composition of the present embodiment is 0.1 mass by mass with respect to the total amount of the polyurethane (a), the solvent (b), the epoxy compound (c) and the fine particles (d). % Or more and 60% by mass or less, more preferably 0.5% by mass or more and 40% by mass or less, and further preferably 1% by mass or more and 20% by mass or less.
- the viscosity of the curable composition is good for printing by the screen printing method, and the screen The spread of the curable composition after printing due to bleeding is not so large.
- the phenomenon that the printed area of the curable composition actually printed is larger than the portion to which the curable composition is to be applied (that is, the shape of the printing plate) is less likely to occur, which is preferable.
- the curing accelerator (e) may be added to the curable composition of the present embodiment.
- the type of the curing accelerator is not particularly limited as long as it is a compound that promotes the reaction between the carboxy group of the polyurethane (a) and the epoxy group of the epoxy compound (c), and examples thereof include the following compounds. Be done.
- curing accelerators include melamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, 2,4-methacryloyloxyethyl-s-triazine, and 2,4-diamino.
- examples thereof include triazine compounds such as -6-vinyl-s-triazine and 2,4-diamino-6-vinyl-s-triazine / isocyanuric acid adduct.
- curing accelerators examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1-benzyl-2-methyl.
- Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-ethyl-4-methylimidazole, 1-amino Ethyl-2-methylimidazole, 1- (cyanoethylaminoethyl) -2-methylimidazole, N- [2- (2-methyl-1-imidazolyl) ethyl] urea, 1-cyanoethyl-2-undecylimidazole, 1- Cyanoethyl-2-methylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimerite, 1-cyanoethyl-2-undecylimidazole Rium trimerite, 2,4-dia
- examples of the curing accelerator include cycloamidine compounds such as diazabicycloalkene and salts thereof and derivatives thereof.
- examples of the diazabicycloalkene include 1,5-diazabicyclo (4.3.0) nonene-5 and 1,8-diazabicyclo (5.4.0) undecene-7.
- curing accelerators include triphenylphosphine, diphenyl (p-tryl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (dialkylphenyl).
- Trisphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples include organic phosphine compounds such as alkyldiarylphosphine.
- examples of the curing accelerator include amine compounds such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol, and dicyandiazide.
- amine compounds such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol, and dicyandiazide.
- One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
- melamine imidazole compound, cycloamidine compound and its derivative, phosphine compound, and amine compound are considered in consideration of both the curing promoting action and the electrical insulation performance of the cured product of the present embodiment described later.
- melamine 1,5-diazabicyclo (4.3.0) nonen-5 and a salt thereof, 1,8-diazabicyclo (5.4.0) undecene-7 and a salt thereof are more preferable.
- the content of the curing accelerator (e) in the curable composition of the present embodiment is not particularly limited as long as the curing promoting effect is exhibited, but the curability and the curable composition of the present embodiment From the viewpoint of the electrical insulation characteristics and water resistance of the cured product and overcoat film of the present embodiment, which will be described later, the total amount of the polyurethane (a) and the epoxy compound (c) is 100 parts by mass, and the curing accelerator (e) is 0. It is preferably blended in the range of 05 parts by mass or more and 5 parts by mass or less, and more preferably in the range of 0.1 parts by mass or more and 3 parts by mass or less.
- the curable composition of the present embodiment can be cured in a short time, and the present embodiment will be described later.
- the cured product in the form and the overcoat film have good electrical insulation characteristics and water resistance.
- additives may be added to the curable composition of the present embodiment.
- the additives that can be blended in the curable composition of the present embodiment will be described below.
- the curable composition of the present embodiment is used, for example, for resist ink for insulating and protecting wiring. It can be used as a composition.
- the curable composition of the present embodiment is used as a composition for a resist ink for insulating and protecting wiring (that is, an overcoating agent for a flexible wiring board), the generation of bubbles during printing is prevented or suppressed.
- the antifoaming agent (f) may be added.
- the type of defoaming agent is such that the generation of bubbles can be prevented or suppressed when the curable composition of the present embodiment is printed and applied on the surface of the flexible substrate at the time of manufacturing the flexible wiring board.
- the following antifoaming agents can be mentioned as examples. That is, examples of defoamers include BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN Deformer 470 (manufactured by Sannopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials Co., Ltd.), and silicone oil SH-203 (manufactured by Momentive Performance Materials).
- Silicone defoamers such as Toray Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Acrylic polymerization system defoamers such as Disparon 230HF (manufactured by Kusumoto Kasei Co., Ltd.), Surfinol DF-110D (manufactured by Nisshin Chemical Industry Co., Ltd.), Surfinol DF-37 (manufactured by Nisshin Chemical Industry Co., Ltd.), etc. Examples thereof include an acetylene diol-based defoaming agent and a fluorine-containing silicone-based defoaming agent such as FA-630.
- the content of the defoaming agent (f) in the curable composition of the present embodiment is not particularly limited, but is limited to polyurethane (a), solvent (b), epoxy compound (c), and fine particles (d). ) Is 100 parts by mass, and the defoaming agent (f) is preferably blended in the range of 0.01 part by mass or more and 5 parts by mass or less, and 0.05 parts by mass or more and 4 parts by mass or less. It is more preferable to blend, and it is further preferable to blend in the range of 0.1 parts by mass or more and 3 parts by mass or less.
- the curable composition of the present embodiment may contain a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene black, if necessary. And other colorants can be added.
- a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene black, if necessary.
- a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene black, if necessary.
- other colorants can be added.
- an antioxidant such as a phenolic antioxidant, a phosphite-based antioxidant, or a thioether-based antioxidant. It is preferably added to the curable composition of the embodiment. Further, a flame retardant or a lubricant can be added to the curable composition of the present embodiment, if necessary.
- a part or all of the components to be blended that is, polyurethane (a), solvent (b), epoxy compound (c), fine particles (d), etc.
- the components to be blended that is, polyurethane (a), solvent (b), epoxy compound (c), fine particles (d), etc.
- a part of the components to be blended is mixed, the remaining components can be mixed when the curable composition of the present embodiment is actually used.
- the viscosity of the curable composition of the present embodiment at 25 ° C. is preferably 10,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and more preferably 20,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less.
- the viscosity of the curable composition of the present embodiment at 25 ° C. is determined by using a cone / plate viscometer (manufactured by Brookfield, model DV-II + Pro, spindle model number CPE-52). This is the viscosity measured 7 minutes after the start of rotation under the condition of a rotation speed of 10 rpm.
- ⁇ Thixotropy index of curable composition> When the curable composition of the present embodiment is used as a composition for resist ink for insulating and protecting wiring (that is, an overcoat agent for a flexible wiring board), the printability of the curable composition of the present embodiment is improved. In order to improve the quality, it is preferable that the thixotropy index of the curable composition of the present embodiment is within a certain range.
- the curable composition of the present embodiment is used as an overcoat agent for a flexible wiring board, in order to improve the printability of the curable composition of the present embodiment (for example, printability in screen printing), the present embodiment
- the chixotropy index of the curable composition of No. 1 is preferably 1.1 or more, more preferably 1.1 or more and 3.0 or less, and 1.1 or more and 2.5 or less. It is more preferable to have.
- the curable composition of the present embodiment When the curable composition of the present embodiment is used as an overcoat agent for a flexible wiring board, if the thixotropy index of the curable composition of the present embodiment is within the range of 1.1 or more and 3.0 or less, printing is performed. Since the curable composition of the present embodiment is difficult to flow and can be maintained in the form of a film having a constant thickness, it is easy to maintain the printed pattern.
- Examples of the method for setting the thixotropy index of the curable composition to 1.1 or more include a method of adjusting the thixotropy index using the above-mentioned inorganic fine particles and organic fine particles, a method of adjusting the thixotropy index using a polymer additive, and the like. However, a method of adjusting the thixotropy index using inorganic fine particles or organic fine particles is preferable.
- the thixotropy index of the curable composition of the present embodiment is the ratio of the viscosity measured at a rotation speed of 1 rpm at 25 ° C. to the viscosity measured at a rotation speed of 10 rpm at 25 ° C. ([Rotation speed 1 rpm. [Viscosity in the case of] / [Viscosity in the case of a rotation speed of 10 rpm]).
- These viscosities can be measured using a cone / plate viscometer (Brookfield, model DV-II + Pro, spindle model number CPE-52).
- the cured product of the present embodiment is a cured product obtained by curing the curable composition of the present embodiment, has good low warpage and flexibility, and has excellent long-term insulation reliability. ..
- the method for curing the curable composition of the present embodiment is not particularly limited, and the curable composition can be cured by heat or active energy rays (for example, ultraviolet rays, electron beams, X-rays). Therefore, a polymerization initiator such as a thermal radical generator or a photoradical generator may be added to the curable composition of the present embodiment.
- the cured product of this embodiment can be used as an insulating protective film (overcoat film).
- the cured product of this embodiment can be used as an insulating protective film for wiring by covering all or part of the wiring of a flexible wiring board such as a chip-on film (COF).
- COF chip-on film
- Overcoat film and flexible wiring board and method for manufacturing the overcoat film of the present embodiment is a film containing a cured product of the present embodiment, and can be produced by curing the curable composition of the present embodiment. it can. More specifically, the overcoat film of the present embodiment is formed by forming the curable composition of the present embodiment into a film on all or a part of the surface of the flexible substrate on which the wiring is formed. After the arrangement, it can be produced by curing the film-like curable composition by heating or the like to obtain a film-like cured product.
- the overcoat film of this embodiment is suitable as an overcoat film for a flexible wiring board.
- the flexible wiring board of the present embodiment all or a part of the surface of the flexible substrate on which the wiring is formed is covered with an overcoat film.
- the flexible wiring board of the present embodiment can be manufactured from the curable composition of the present embodiment and a flexible substrate. More specifically, in the flexible wiring board of the present embodiment, the curable composition of the present embodiment is formed into a film on all or a part of the surface of the flexible substrate on which the wiring is formed. After the arrangement, it can be produced by curing the film-like curable composition to form an overcoat film.
- the wiring covered with the overcoat film is preferably tin-plated copper wiring in consideration of antioxidant and economical aspects of the wiring.
- the overcoat film and the flexible wiring board of the present embodiment can be formed, for example, through the following steps 1, 2, and 3.
- Step 1 A printing step of forming a printing film on at least a part of a wiring pattern portion of a flexible substrate by printing the curable composition of the present embodiment on the wiring pattern portion.
- Step 2 A solvent removing step of evaporating part or all of the solvent in the printing film by placing the printing film obtained in step 1 in an atmosphere of 40 to 100 ° C.
- Step 3) A curing step of forming an overcoat film by curing the printing film obtained in step 1 or the printing film obtained in step 2 by heating at 100 to 170 ° C.
- the method for printing the curable composition in step 1 is not particularly limited.
- the curable composition of the present embodiment is coated on a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like.
- the printing film can be obtained.
- Step 2 is an operation performed as needed, and step 3 may be performed immediately after step 1, and the curing reaction and solvent removal may be performed simultaneously in step 3.
- the temperature is preferably 40 ° C. or higher and 100 ° C. or lower, and 60 ° C. or higher and 100 ° C. or lower, in consideration of the evaporation rate of the solvent and the rapid transition to the thermosetting operation. Is more preferable, and it is further preferable that the temperature is 70 ° C. or higher and 90 ° C. or lower.
- the time for evaporating the solvent in step 3 and step 2 is not particularly limited, but is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
- the thermosetting temperature in step 3 is preferably 105 ° C. or higher and 160 ° C. or lower from the viewpoint of preventing diffusion of the plating layer and imparting low warpage and flexibility suitable as a protective film to the overcoat film. , 110 ° C. or higher and 150 ° C. or lower is more preferable.
- the thermosetting time performed in the step 3 is not particularly limited, but is preferably 10 minutes or more and 150 minutes or less, and more preferably 15 minutes or more and 120 minutes or less.
- the flexible wiring board of the present embodiment is also excellent in flexibility and flexibility, and the flexible wiring board is shaken. Even so, it is difficult for wiring to break (excellent in suppressing wiring breaks). Therefore, the flexible wiring board of the present embodiment is less likely to cause cracks, and is suitable for a flexible printed wiring board used in a technique such as chip-on-film (COF).
- COF chip-on-film
- the flexible wiring board of the present embodiment since the curable composition of the present embodiment is less likely to shrink during curing, the flexible wiring board of the present embodiment has a small warp. Therefore, in the process of mounting the IC chip on the flexible wiring board of the present embodiment, it is easy to align the mounting position of the IC chip. Further, since the overcoat film has excellent long-term insulation reliability, the flexible wiring board of the present embodiment also has excellent long-term insulation reliability.
- polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal.
- polyester diol made from acid, 11.8 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
- the fluorene group-containing diol represented by the above formula (33) is a diol compound having p of 5 and q of 6 in the above formula (28). Further, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene is a diol compound in which p is 1 and q is 1 in the above formula (28).
- 51.8 g of methylenebis (4-cyclohexylisocyanate) (Death Module-W (trade name) manufactured by Sumika Bayer Urethane Co., Ltd.), which is a diisocyanate compound, was added to 30 by a dropping funnel. Dropped over a minute.
- the viscosity of the obtained polyurethane solution A1 was 131000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A1 (hereinafter referred to as "polyurethane AU1") is 10000, and the weight average molecular weight (Mw) is 61000.
- the parameter Mz / Mw representing the spread was calculated to be 5.9.
- the acid value of polyurethane AU1 was 23.9 mgKOH / g.
- the solid content concentration in the polyurethane solution A1 was 42.5% by mass.
- the aromatic ring concentration of polyurethane AU1 was 2.51 mmol / g.
- polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal.
- polyester diol made from acid, 11.3 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
- a fluorene group-containing diol represented by the above formula (33) (manufactured by Osaka Gas Chemical Co., Ltd., trade name BPEF-9EO) 37.5 g and a solvent ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) 203.2 g. was charged and heated to 100 ° C. to dissolve all the raw materials.
- Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 1.5 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. Then, after cooling to room temperature, 45.0 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the handleability. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A2”) was obtained.
- polyurethane solution A2 a solution containing a polyurethane having a carboxy group
- the viscosity of the obtained polyurethane solution A2 was 120,000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A2 (hereinafter referred to as "polyurethane AU2") is 12000, and the weight average molecular weight (Mw) is 63000. The parameter Mz / Mw representing the spread was calculated to be 5.3.
- the acid value of polyurethane AU2 was 23.9 mgKOH / g.
- the solid content concentration in the polyurethane solution A2 was 45.7% by mass.
- the aromatic ring concentration of polyurethane AU2 was 2.40 mmol / g.
- polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal
- polyester diol made from acid, 14.9 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
- the viscosity of the obtained polyurethane solution B1 was 120,000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution B1 (hereinafter referred to as “polyurethane BU1”) is 14,000, and the weight average molecular weight (Mw) is 104000. The parameter Mz / Mw representing the spread was calculated to be 7.25.
- the acid value of polyurethane BU1 was 25.0 mgKOH / g.
- the solid content concentration in the polyurethane solution B1 was 39.6% by mass.
- the aromatic ring concentration of polyurethane BU1 was 3.10 mmol / g.
- the number average molecular weight and weight average molecular weight of polyurethane are polystyrene-equivalent number average molecular weight and weight average molecular weight measured by GPC.
- the measurement conditions of GPC are as described above.
- the viscosity of the polyurethane solution was measured using a cone / plate viscometer (manufactured by Brookfield, model DV-II + Pro, spindle model number CPE-52) at a temperature of 25.0 ° C. and a rotation speed of 5 rpm. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Moreover, in the measurement of the viscosity, about 0.8 g of the polyurethane solution was used.
- an antifoaming agent manufactured by Momentive Performance Materials, trade
- polyurethane solutions A2 and B1 and the other components described above were mixed in the same manner as in the main agent formulation C1 according to the formulation composition shown in Table 1 to obtain main agent formulations C2 and D1, respectively.
- the numerical values in Table 1 represent "parts by mass”.
- ⁇ Manufacturing of curable composition 90 parts by mass of the main agent formulation C1 and 4.0 parts by mass of the curing agent solution E were placed in a plastic container, and 5.0 parts by mass of diethylene glycol diethyl ether and 1.5 parts by mass of diethylene glycol ethyl ether acetate were added as solvents. .. The mixture was stirred at room temperature for 5 minutes using a spatula to obtain a curable composition F1. The viscosity of the curable composition F1 at 25 ° C. was 32000 mPa ⁇ s.
- the viscosity of the curable composition was measured using a cone / plate viscometer (manufactured by Brookfield, model DV-II + Pro, spindle model number CPE-52) at a temperature of 25.0 ° C. and a rotation speed of 10 rpm. It should be noted that this measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Moreover, in the measurement of the viscosity, about 0.6 g of the curable composition was used. Curable compositions F2 and G1 were obtained in the same manner as in the case of the curable composition F1 except that either the main agent compound C2 or D1 was used instead of the main agent compound C1 (see Table 2). ). The viscosities of the curable compositions F2 and G1 at 25 ° C. are as shown in Table 2.
- the screen printing plate used is a stainless mesh plate (SUS # 150-wire diameter 60) having a wire diameter of 60 ⁇ m and a mesh number of 150 lines / inch.
- the curable composition was applied onto the flexible wiring board by a screen printing method.
- the thickness of the film of the printed curable composition was set so that the thickness of the film of the curable composition on the polyimide surface after drying was 10 ⁇ m.
- the flexible wiring board thus obtained was placed in a hot air circulation dryer having a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer having a temperature of 120 ° C. for 120 minutes to cure the flexible wiring board formed on the flexible wiring board.
- the film of the sex composition was cured.
- a MIT test was performed by the method described in JIS C5016 to evaluate the disconnection inhibitory property of the wiring of the flexible wiring board.
- the test conditions for the MIT test are as follows.
- the substrate coated with the curable composition thus obtained is placed in a hot air circulation dryer at a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer at a temperature of 120 ° C. for 60 minutes.
- the film of the curable composition formed on the substrate was cured.
- the base material having the cured product film was cut with a circle cutter to obtain a circular base material having a cured product film and having a diameter of 50 mm (hereinafter referred to as “substrate”).
- substrate exhibits a deformation in which the vicinity of the center warps in a convex or concave shape.
- the substrate is placed on a flat plate in a downwardly convex state. That is, the convex portion near the center of the warped substrate is placed on the flat plate with the convex portion facing downward so that the convex portion of the warped substrate is in contact with the horizontal plane of the flat plate. Then, the distance of the portion of the peripheral edge of the warped substrate farthest from the horizontal plane of the flat plate and the distance of the closest portion were measured, the average value was obtained, and the warpage property was evaluated by this average value. The results are shown in Table 3. The numerical values shown in Table 3 indicate the direction of warpage.
- the substrate When the substrate is allowed to stand in a downwardly convex state, if the cured product film is on the upper side with respect to the polyimide base material, it is "+", and on the lower side. If it becomes, it is set to "-". Then, the case where the size of the warp was more than -3.0 mm + less than 3.0 mm was regarded as acceptable.
- the curable composition was applied onto the flexible wiring board by a screen printing method.
- the thickness of the film of the printed curable composition was set so that the thickness of the film of the curable composition on the polyimide surface after drying was 15 ⁇ m.
- the flexible wiring board thus obtained was placed in a hot air circulation dryer having a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer having a temperature of 120 ° C. for 120 minutes to cure the flexible wiring board formed on the flexible wiring board.
- the film of the sex composition was cured.
- the flexible wiring board (Examples 1 and 2) having an overcoat film made of a cured product of the curable compositions F1 and F2 is an overcoat made of a cured product of the curable composition G1.
- a flexible wiring board having a film Comparative Example 1
- a flexible wiring board having an overcoat film made of a cured product of the curable composition G1 and having excellent low warpage and wire disconnection suppressing property Comparative. It had flexibility and long-term insulation reliability equal to or higher than that of Example 1).
- the film made of the cured product of the curable compositions F1 and F2 is useful as an insulating protective film for a flexible wiring board.
- the flexible wiring board (Examples 1 and 2) having an overcoat film made of a cured product of the curable compositions F1 and F2 has excellent low warpage, so that workability is improved in the printing process and the curing process. ..
- the alignment accuracy of the mounting position of the IC chip is improved, so that the yield in the manufacturing process is increased.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
さらに、本発明は、低反り性及び配線の断線抑制性に優れた硬化物及びオーバーコート膜を提供することを併せて課題とする。さらに、本発明は、低反り性及び配線の断線抑制性に優れたフレキシブル配線板及びその製造方法を提供することを併せて課題とする。
[1] 下記式(1)で表される第1のウレタン構造単位、下記式(2)で表される第2のウレタン構造単位、及び下記式(3)で表される第3のウレタン構造単位を有し、
下記式(1)中のx個のR1は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、x個のpは、それぞれ独立して2以上の整数であり、x個のqは、それぞれ独立して2以上の整数であり、xは1以上の整数であり、
下記式(2)中のy個のR2は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、(n×y)個のR3は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、〔(n+1)×y〕個のR4は、それぞれ独立して炭素数3以上9以下の2価の炭化水素基を示し、y個のnは、それぞれ独立して0以上50以下の整数であり、ただしy個のnが全て0であることはなく、yは1以上の整数であり、
下記式(3)中のz個のR5は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、z個のR6は、それぞれ独立してメチル基又はエチル基を示し、zは1以上の整数であるポリウレタン。
0.01≦x/(x+y+z)≦0.4
0.1≦y/(x+y+z)≦0.9
0.01≦z/(x+y+z)≦0.4
[4] 酸価が10mgKOH/g以上70mgKOH/g以下である[1]~[3]のいずれか一項に記載のポリウレタン。
[5] 芳香環濃度が0.1mmol/g以上5.0mmol/g以下である[1]~[4]のいずれか一項に記載のポリウレタン。
[7] 前記ポリウレタン(a)と前記溶剤(b)と前記エポキシ化合物(c)との総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記エポキシ化合物(c)の含有量の割合が1質量%以上60質量%以下である[6]に記載の硬化性組成物。
[9] 前記微粒子(d)がシリカ微粒子を含む[8]に記載の硬化性組成物。
[10] 前記微粒子(d)がハイドロタルサイト微粒子を含む[8]に記載の硬化性組成物。
前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下、前記エポキシ化合物(c)の含有量の割合が1質量%以上60質量%以下である[8]~[10]のいずれか一項に記載の硬化性組成物。
[13] [12]に記載の硬化物を含有するオーバーコート膜。
[14] 配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分が、[13]に記載のオーバーコート膜によって被覆されたフレキシブル配線板。
[15] 前記配線が錫メッキ銅配線である[14]に記載のフレキシブル配線板。
[16] [6]~[11]のいずれか一項に記載の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させてオーバーコート膜とするフレキシブル配線板の製造方法。
本発明に係る硬化物、オーバーコート膜、及びフレキシブル配線板は、低反り性及び配線の断線抑制性が優れている。本発明に係るフレキシブル配線板の製造方法は、低反り性及び配線の断線抑制性に優れたフレキシブル配線板を製造することができる。
本実施形態のポリウレタンは、上記式(1)で表される第1のウレタン構造単位、上記式(2)で表される第2のウレタン構造単位、及び上記式(3)で表される第3のウレタン構造単位を有している。なお、本発明の効果を妨げない範囲内であれば、他の構造単位をさらに有してもよい。
上記式(2)中のy個のnは、それぞれ独立して0以上50以下の整数であるが、それぞれ独立して1以上20以下の整数であることが好ましい。
また、上記の重合反応を無触媒又は少量の触媒の存在下で実施した方が、後述するオーバーコート膜の長期絶縁信頼性が向上するため好ましい。
また、上記式(28)中のp及びqは、上記式(1)中のp及びqと同様であるので、説明は省略する。さらに、上記式(29)中のR3、R4、nは、上記式(2)中のR3、R4、nと同様であるので、説明は省略する。さらに、上記式(30)中のR6は、上記式(3)中のR6と同様であるので、説明は省略する。
ジカルボン酸としては、例えば、オルトフタル酸、イソフタル酸、テレフタル酸、3-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,3-ジカルボン酸、5-メチル-ベンゼン-1,3-ジカルボン酸、2-メチル-ベンゼン-1,4-ジカルボン酸等を挙げることができる。
上記式(29)で表されるジオール化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記式(30)で表されるジオール化合物は、2,2-ジメチロールプロピオン酸又は2,2-ジメチロールブタン酸である。
0.01≦x/(x+y+z)≦0.4
0.1≦y/(x+y+z)≦0.9
0.01≦z/(x+y+z)≦0.4
0.02≦x/(x+y+z)≦0.3
0.2≦y/(x+y+z)≦0.8
0.02≦z/(x+y+z)≦0.3
ここで言う「数平均分子量」とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と記す。)で測定したポリスチレン換算の数平均分子量である。なお、本明細書においては、特に断りのない限り、GPCの測定条件は以下の通りである。
カラム:昭和電工株式会社製ShodexカラムLF-804×3本(直列)
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製RI-2031Plus
温度 :40.0℃
試料量:サンプルループ 100μL
試料濃度:約0.1質量%
なお、本明細書においては、ポリウレタンの酸価は、JIS K0070に規定された電位差滴定法で測定された酸価の値である。
芳香環濃度が上記範囲内であれば、後述するオーバーコート膜の耐溶剤性と後述するフレキシブル配線板の反りのバランスをとることが容易になる。
なお、芳香環濃度は、モノマーの仕込み比から算出できるが、1H-NMR、13C-NMR、IR等の分光学的手法によりポリウレタンの構造を決定した後に、1H-NMR分析により得られる積分曲線を用いて、芳香環由来のプロトン数と1個の繰り返し単位由来のプロトン数とを比較することによっても算出できる。
モノヒドロキシ化合物をポリウレタンの原料として用いるのは、本実施形態のポリウレタンの分子量の増大を抑制(すなわち、重合反応を停止)するためであり、反応溶液中にモノヒドロキシ化合物を30℃以上150℃以下、好ましくは70℃以上140℃以下で少量ずつ加え、その後上記温度で保持して反応を完結させる。
本実施形態の硬化性組成物は、上記本実施形態のポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を含有する組成物である。
本実施形態の硬化性組成物の必須成分の1つである溶剤(b)の種類は、本実施形態のポリウレタン(a)を溶解可能であるならば特に限定されるものではないが、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル系溶剤を挙げることができる。
さらに、溶剤(b)としては、デカヒドロナフタリン等の炭化水素系溶剤や、シクロヘキサノン等のケトン系溶剤を挙げることができる。
これらの溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
また、本実施形態の硬化性組成物が含有する溶剤(b)の一部又は全部として、本実施形態のポリウレタン(a)を製造する際に使用する合成用の溶剤をそのまま使用することが可能であり、その方が本実施形態の硬化性組成物の製造が容易となるためプロセス的に好ましい。
本実施形態の硬化性組成物の必須成分の1つであるエポキシ化合物(c)は、ポリウレタン(a)が有するカルボキシ基又はヒドロキシ基と反応し、硬化性組成物において硬化剤として機能するものである。
これらのエポキシ化合物(c)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
後述する本実施形態の硬化物の長期絶縁性能を重視する場合には、吸水率の低い硬化物が得られることから、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物の中でも、1分子中に2個以上のエポキシ基を有し且つトリシクロデカン構造及び芳香環構造を有する化合物が好ましい。
1分子中に2個以上のエポキシ基を有し且つアミノ基及び芳香環構造を有する化合物の具体例としては、アニリン、ビス(4-アミノフェニル)メタンが有する窒素原子に結合した活性水素をグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、アミノフェノール類が有する窒素原子に結合した活性水素及びフェノール性ヒドロキシ基が有する活性水素をそれぞれグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、下記式(32)で表される化合物が挙げられる。これらの中では、下記式(32)で表される化合物が特に好ましい。
本実施形態の硬化性組成物には、無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)を添加してもよい。微粒子(d)を添加することにより、硬化性組成物の印刷時の粘度及びチクソトロピーを調整し、硬化性組成物(すなわちインク)が流れ出すことを抑制することができる。
無機微粒子としては、例えば、シリカ(SiO2)、アルミナ(Al2O3)、チタニア(TiO2)、酸化タンタル(Ta2O5)、ジルコニア(ZrO2)、窒化珪素(Si3N4)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸、ランタン鉛(PLZT)、酸化ガリウム(Ga2O3)、スピネル(MgO・Al2O3)、ムライト(3Al2O3・2SiO2)、コーディエライト(2MgO・2Al2O3・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2-Al2O3)、イットリア含有ジルコニア(Y2O3-ZrO2)、珪酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、硫酸バリウム(BaSO4)、有機ベントナイト、カーボン(C)、ハイドロタルサイトなどが挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
これらの微粒子の中でもシリカ微粒子、ハイドロタルサイト微粒子が好ましく、本実施形態の硬化性組成物は、シリカ微粒子及びハイドロタルサイト微粒子から選ばれる少なくとも一方を含有することが好ましい。
本実施形態の硬化性組成物に使用されるシリカ微粒子は、硬化性組成物中で分散してペーストを形成するものであれば、特に限定されるものではないが、例えば、日本アエロジル株式会社より提供されているアエロジル(商品名)等を挙げることができる。アエロジル(商品名)に代表されるシリカ微粒子は、硬化性組成物にスクリーン印刷時の印刷性を付与するために使用されることもあり、その場合にはチクソ性の付与を目的として使用される。
これらの無機微粒子、有機微粒子の質量平均粒子径は、好ましくは0.01~10μm、さらに好ましくは0.1~5μmである。
本実施形態の硬化性組成物には硬化促進剤(e)を添加してもよい。硬化促進剤の種類は、ポリウレタン(a)が有するカルボキシ基とエポキシ化合物(c)が有するエポキシ基との反応を促進する化合物であれば特に限定されるものではないが、例えば下記の化合物が挙げられる。
これらの硬化促進剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
本実施形態の硬化性組成物中の硬化促進剤(e)の含有量が上記範囲内であれば、本実施形態の硬化性組成物を短時間で硬化させることができるとともに、後述する本実施形態の硬化物、オーバーコート膜の電気絶縁特性や耐水性が良好である。
本実施形態の硬化性組成物には、微粒子(d)、硬化促進剤(e)の他に各種添加剤を添加してもよい。本実施形態の硬化性組成物に配合可能な添加剤について、以下に説明する。
すなわち、消泡剤の例としては、BYK-077(ビックケミー・ジャパン株式会社製)、SNデフォーマー470(サンノプコ株式会社製)、TSA750S(モメンティブ・パフォーマンス・マテリアルズ社製)、シリコーンオイルSH-203(東レ・ダウコーニング株式会社製)等のシリコーン系消泡剤や、ダッポーSN-348(サンノプコ株式会社製)、ダッポーSN-354(サンノプコ株式会社製)、ダッポーSN-368(サンノプコ株式会社製)、ディスパロン230HF(楠本化成株式会社製)等のアクリル重合体系消泡剤や、サーフィノールDF-110D(日信化学工業株式会社製)、サーフィノールDF-37(日信化学工業株式会社製)等のアセチレンジオール系消泡剤や、FA-630等のフッ素含有シリコーン系消泡剤等を挙げることができる。
さらに、本実施形態の硬化性組成物には、必要に応じて、難燃剤や滑剤を添加することもできる。
本実施形態の硬化性組成物の25℃における粘度は、10000mPa・s以上100000mPa・s以下が好ましく、20000mPa・s以上60000mPa・s以下がより好ましい。
本実施形態の硬化性組成物を、配線の絶縁保護用レジストインキ用途の組成物(すなわち、フレキシブル配線板用オーバーコート剤)として使用する場合は、本実施形態の硬化性組成物の印刷性を良好にするために、本実施形態の硬化性組成物のチクソトロピー指数を一定の範囲内とすることが好ましい。
本実施形態の硬化物は、本実施形態の硬化性組成物を硬化させて得られる硬化物であり、低反り性及び可撓性が良好であり、しかも長期絶縁信頼性が優れている。本実施形態の硬化性組成物を硬化させる方法は特に限定されるものではなく、熱や活性エネルギー線(例えば紫外線、電子線、X線)によって硬化させることができる。よって、本実施形態の硬化性組成物には、熱ラジカル発生剤、光ラジカル発生剤等の重合開始剤を添加してもよい。
本実施形態のオーバーコート膜は、本実施形態の硬化物を含有する膜であり、本実施形態の硬化性組成物を硬化させることによって製造することができる。詳述すると、本実施形態のオーバーコート膜は、本実施形態の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部に膜状に配した後に、膜状の硬化性組成物を加熱等により硬化させて膜状の硬化物とすることによって製造することができる。本実施形態のオーバーコート膜は、フレキシブル配線板用のオーバーコート膜として好適である。
本実施形態のフレキシブル配線板は、本実施形態の硬化性組成物とフレキシブル基板から製造することができる。詳述すると、本実施形態のフレキシブル配線板は、本実施形態の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部に膜状に配した後に、膜状の硬化性組成物を硬化させてオーバーコート膜とすることによって製造することができる。なお、オーバーコート膜によって被覆される配線は、配線の酸化防止及び経済的な面を考慮すると、錫メッキ銅配線であることが好ましい。
(工程1)本実施形態の硬化性組成物を、フレキシブル基板の配線パターン部の少なくとも一部に印刷することで、該配線パターン部上に印刷膜を形成する印刷工程。
(工程2)工程1で得られた印刷膜を40~100℃の雰囲気下におくことで、印刷膜中の溶剤の一部又は全部を蒸発させる溶剤除去工程。
(工程3)工程1で得られた印刷膜又は工程2で得られた印刷膜を、100~170℃で加熱することによって硬化させ、オーバーコート膜を形成する硬化工程。
工程2は必要に応じて行われる操作であり、工程1の後にすぐに工程3を行い、工程3において硬化反応と溶剤の除去とを同時に行ってもよい。工程2を行う場合は、その温度は、溶剤の蒸発速度及び熱硬化の操作への速やかな移行を考慮すると、40℃以上100℃以下であることが好ましく、60℃以上100℃以下であることがより好ましく、70℃以上90℃以下であることがさらに好ましい。工程3や工程2において溶剤を蒸発させる時間は特に限定されるものではないが、10分以上120分以下であることが好ましく、20分以上100分以下であることがより好ましい。
以下に実施例及び比較例を示して、本発明をより詳細に説明する。
<ポリエステルジオールの合成(参考合成例)>
攪拌装置、温度計及び蒸留装置付きコンデンサーを備えた反応容器に、無水フタル酸983.5g(6.74mol)、1,6-ヘキサンジオール879.2g(7.44mol)を投入し、オイルバスを用いて反応容器の内温を140℃に昇温して、攪拌を4時間継続した。その後、攪拌を継続しながら、モノ-n-ブチル錫オキサイド1.74gを添加した。
得られたポリエステルジオールの水酸基価を測定したところ、水酸基価は53.1mgKOH/gであった。
(実施合成例1)
攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)112.0gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)11.8gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)9.79g及び下記式(33)で表されるフルオレン基含有ジオール(大阪ガスケミカル株式会社製、商品名BPEF-9EO)19.62gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)203.1gとを仕込み、100℃に加熱して全ての原料を溶解した。
反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))51.8gを、滴下ロートで30分間かけて滴下した。
x/(x+y+z)=0.24
y/(x+y+z)=0.70
z/(x+y+z)=0.073
攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)106.9gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)11.3gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである上記式(33)で表されるフルオレン基含有ジオール(大阪ガスケミカル株式会社製、商品名BPEF-9EO)37.5gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)203.2gとを仕込み、100℃に加熱して全ての原料を溶解した。
120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.5gを反応溶液に滴下し、さらに80℃で3時間反応を行った。そして、室温まで冷却した後に、ハンドリング性の調整のためにγ-ブチロラクトン45.0gとジエチレングリコールジエチルエーテル43.8gを添加した。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A2」と記す。)を得た。
x/(x+y+z)=0.14
y/(x+y+z)=0.79
z/(x+y+z)=0.069
攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)142.2gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)14.9gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)24.8gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)250.0gとを仕込み、100℃に加熱して全ての原料を溶解した。
120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、エタノール(和光純薬工業株式会社製)1.5gを反応溶液に滴下し、さらに80℃で3時間反応を行った。そして、室温まで冷却した後に、ハンドリング性の調整のためにγ-ブチロラクトン55.8gとジエチレングリコールジエチルエーテル54.0gを添加した。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液B1」と記す。)を得た。
x/(x+y+z)=0.14
y/(x+y+z)=0.78
z/(x+y+z)=0.082
合成したポリウレタンの酸価の測定方法について説明する。ポリウレタン溶液中の溶媒を加熱下で減圧留去してポリウレタンを得て、JIS K0070に規定された電位差滴定法に準拠して酸価を測定した。電位差滴定法による酸価の測定には、例えば、京都電子工業社製の電位差自動滴定装置AT-510と複合ガラス電極C-173を用いることができる。
ポリウレタンの数平均分子量、重量平均分子量は、GPCで測定したポリスチレン換算の数平均分子量、重量平均分子量である。GPCの測定条件は、前述の通りである。
ポリウレタン溶液の粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、温度25.0℃、回転速度5rpmの条件で測定した。なお、測定値は、スピンドルの回転開始から7分経過後に測定した粘度である。また、粘度の測定においては、ポリウレタン溶液を約0.8g使用した。
ポリウレタン溶液A1にγ-ブチロラクトンを添加して固形分濃度を40質量%に調整したもの160.0質量部と、シリカ微粒子(日本アエロジル株式会社製、商品名アエロジルR-974)6.3質量部と、硬化促進剤であるメラミン(日産化学工業株式会社製)0.72質量部と、ジエチレングリコールジエチルエーテル8.4質量部とを、三本ロールミル(株式会社井上製作所製、型式S-4 3/4×11)を用いて混合した。そこに、消泡剤(モメンティブ・パフォーマンス・マテリアルズ社製、商品名TSA750S)2.0質量部を添加して、スパチュラを用いて混合して、主剤配合物C1を得た(表1を参照)。
攪拌機、温度計及びコンデンサーを備えた容器に、上記式(32)で表されるエポキシ化合物(三菱化学株式会社製、グレード名JER604、エポキシ当量120g/eqv)16.85質量部と、ジエチレングリコールジエチルエーテル18.25質量部を投入し、攪拌しながら容器の内温を40℃に昇温した後、30分間攪拌を継続した。エポキシ化合物が完全に溶解したことを確認したら、室温まで冷却し、濃度48質量%のエポキシ化合物溶液を得た。このエポキシ化合物溶液を硬化剤溶液Eとする。
主剤配合物C1 90質量部と硬化剤溶液E 4.0質量部とをプラスチック容器に入れ、そこに、溶媒としてジエチレングリコールジエチルエーテル5.0質量部及びジエチレングリコールエチルエーテルアセテート1.5質量部を添加した。スパーテルを用いて室温で5分間攪拌して、硬化性組成物F1を得た。硬化性組成物F1の25℃での粘度は、32000mPa・sであった。
主剤配合物C1に代えて、主剤配合物C2及びD1のいずれかを用いる点以外は、硬化性組成物F1の場合と同様にして、硬化性組成物F2及びG1を得た(表2を参照)。硬化性組成物F2及びG1の25℃での粘度は、表2に示す通りである。
次に、硬化性組成物F1、F2及びG1の印刷時の消泡性を評価した。評価方法を以下に説明する。
ポリイミド基材(東レ・デュポン社製のカプトン(登録商標))上にスクリーン印刷版を載置し、さらにスクリーン印刷版上に硬化性組成物15gを乗せて、ステージ移動時間0.5秒の条件で仮印刷を行った。その後、別のポリイミド基材上にスクリーン印刷版を移し、さらにスクリーン印刷版上に硬化性組成物15gを乗せて、ステージ移動時間0.5秒の条件で本印刷を行った。このとき、ポリイミド基材上に印刷された硬化性組成物に生じた泡が消失するまでの時間(消泡時間)を、目視により測定した。
なお、使用したスクリーン印刷版は、線径60μm、メッシュ数150本/インチのステンレスメッシュ版(SUS#150-線径60番)である。
次に、硬化性組成物F1、F2及びG1の印刷時の糸引き性を評価した。評価方法を以下に説明する。
上記の消泡性の評価の本印刷時において、スクリーン印刷版をポリイミド基材から引き離すステージ移動の際に、ポリイミド基材上に印刷された硬化性組成物とスクリーン印刷版との間に、繊維状の硬化性組成物が残存する糸引き現象が発生するか否かを観察した。本印刷を9回行うが、糸引き現象が発生するまでの印刷回数により、糸引き性を評価した。結果を表2に示す。
硬化性組成物F1、F2及びG1を用いて、オーバーコート膜を有するフレキシブル配線板(実施例1、2及び比較例1)を製造し、可撓性、配線の断線抑制性、反り性、及び長期絶縁信頼性の評価を行った。
フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックス、銅厚8μm、ポリイミド厚38μm)の銅上に、幅75mm、長さ110mmの大きさで、且つ、硬化後の膜厚が15μmになるように、硬化性組成物をスクリーン印刷により塗工した。硬化性組成物が印刷されたフレキシブル銅張り積層板を、室温で10分間保持した後に、温度120℃の熱風循環式乾燥機に60分間入れて、硬化性組成物を硬化させた。
フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性組成物の膜を硬化させた。そして、この試験片を用いて、JIS C5016に記載の方法によりMIT試験を行って、フレキシブル配線板の配線の断線抑制性を評価した。MIT試験の試験条件は以下の通りである。
折り曲げ速度:10回/分
荷重:200g
折り曲げ角度:±90°
つかみ具先端部の半径:0.5mm
上記試験条件でMIT試験を行い、10回折り曲げるごとに目視にて配線のクラックの有無を観察し、クラックが発生した折り曲げ回数により配線の断線抑制性を評価した。結果を表3に記す。
#180メッシュポリエステル印刷版を用いてスクリーン印刷を行い、ポリイミド基材(東レ・デュポン社製のカプトン(登録商標)100EN、厚さ25μm)上に硬化性組成物を塗工した。
硬化物の膜を有する基材を、サークルカッターを用いてカットして、硬化物の膜を有する直径50mmの円形の基材(以下「基板」と記す)を得た。得られた基板は、中心付近が凸状又は凹状に反る形の変形を呈する。
表3に示す数値の符号は反りの方向を表し、下に凸の状態で基板を静置した際に、ポリイミド基材に対し硬化物の膜が上側になる場合は「+」、下側になる場合は「-」とした。そして、反りの大きさが-3.0mm超過+3.0mm未満の場合を合格とした。
フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性組成物の膜を硬化させた。
温湿度定常試験のスタート初期、スタートしてから100時間後、250時間後、400時間後に、フレキシブル配線板の抵抗値をそれぞれ測定した。結果を表3に示す。
Claims (16)
- 下記式(1)で表される第1のウレタン構造単位、下記式(2)で表される第2のウレタン構造単位、及び下記式(3)で表される第3のウレタン構造単位を有し、
下記式(1)中のx個のR1は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、x個のpは、それぞれ独立して2以上の整数であり、x個のqは、それぞれ独立して2以上の整数であり、xは1以上の整数であり、
下記式(2)中のy個のR2は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、(n×y)個のR3は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、〔(n+1)×y〕個のR4は、それぞれ独立して炭素数3以上9以下の2価の炭化水素基を示し、y個のnは、それぞれ独立して0以上50以下の整数であり、ただしy個のnが全て0であることはなく、yは1以上の整数であり、
下記式(3)中のz個のR5は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、z個のR6は、それぞれ独立してメチル基又はエチル基を示し、zは1以上の整数であるポリウレタン。
- 前記式(1)中のx、前記式(2)中のy、前記式(3)中のzのx+y+zに対する比が、それぞれ下記の条件を満たす請求項1に記載のポリウレタン。
0.01≦x/(x+y+z)≦0.4
0.1≦y/(x+y+z)≦0.9
0.01≦z/(x+y+z)≦0.4 - 数平均分子量が10000以上50000以下である請求項1又は請求項2に記載のポリウレタン。
- 酸価が10mgKOH/g以上70mgKOH/g以下である請求項1~3のいずれか一項に記載のポリウレタン。
- 芳香環濃度が0.1mmol/g以上5.0mmol/g以下である請求項1~4のいずれか一項に記載のポリウレタン。
- 請求項1~5のいずれか一項に記載のポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を含有する硬化性組成物。
- 前記ポリウレタン(a)と前記溶剤(b)と前記エポキシ化合物(c)との総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記エポキシ化合物(c)の含有量の割合が1質量%以上60質量%以下である請求項6に記載の硬化性組成物。
- 無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)をさらに含有する請求項6又は請求項7に記載の硬化性組成物。
- 前記微粒子(d)がシリカ微粒子を含む請求項8に記載の硬化性組成物。
- 前記微粒子(d)がハイドロタルサイト微粒子を含む請求項8に記載の硬化性組成物。
- 前記ポリウレタン(a)と前記溶剤(b)と前記エポキシ化合物(c)と前記微粒子(d)との総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下、前記微粒子(d)の含有量の割合が0.1質量%以上60質量%以下であり、
前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下、前記エポキシ化合物(c)の含有量の割合が1質量%以上60質量%以下である請求項8~10のいずれか一項に記載の硬化性組成物。 - 請求項6~11のいずれか一項に記載の硬化性組成物の硬化物。
- 請求項12に記載の硬化物を含有するオーバーコート膜。
- 配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分が、請求項13に記載のオーバーコート膜によって被覆されたフレキシブル配線板。
- 前記配線が錫メッキ銅配線である請求項14に記載のフレキシブル配線板。
- 請求項6~11のいずれか一項に記載の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させてオーバーコート膜とするフレキシブル配線板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021530523A JPWO2021005912A1 (ja) | 2019-07-08 | 2020-05-29 | |
CN202080049497.XA CN114096579B (zh) | 2019-07-08 | 2020-05-29 | 聚氨酯以及固化性组合物 |
KR1020227003318A KR20220034138A (ko) | 2019-07-08 | 2020-05-29 | 폴리우레탄 및 경화성 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019126906 | 2019-07-08 | ||
JP2019-126906 | 2019-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021005912A1 true WO2021005912A1 (ja) | 2021-01-14 |
Family
ID=74113992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021410 WO2021005912A1 (ja) | 2019-07-08 | 2020-05-29 | ポリウレタン及び硬化性組成物 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2021005912A1 (ja) |
KR (1) | KR20220034138A (ja) |
CN (1) | CN114096579B (ja) |
TW (1) | TWI757764B (ja) |
WO (1) | WO2021005912A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101160A (ja) * | 2006-10-20 | 2008-05-01 | Mitsui Chemicals Polyurethanes Inc | 水性ポリウレタン樹脂、水性インクおよび顔料分散液 |
JP2008201877A (ja) * | 2007-02-19 | 2008-09-04 | Adeka Corp | ノンクロム処理金属材塗料用水系ポリウレタン樹脂組成物、及び該ポリウレタン樹脂組成物を含有する水系ノンクロム処理金属材用塗料 |
CN102101910A (zh) * | 2009-12-18 | 2011-06-22 | 财团法人工业技术研究院 | 聚合物及其制造方法,以及包括其的光学元件及光电装置 |
JP2014177621A (ja) * | 2013-02-13 | 2014-09-25 | Osaka Gas Chem Kk | フルオレン骨格を有するポリウレタン樹脂 |
JP2014189746A (ja) * | 2013-03-28 | 2014-10-06 | Dic Corp | ウレタン樹脂組成物、プライマー、積層体及び画像表示装置 |
JP2015199898A (ja) * | 2014-03-31 | 2015-11-12 | 大阪ガスケミカル株式会社 | フルオレン骨格を有するポリウレタン樹脂 |
WO2017110591A1 (ja) * | 2015-12-25 | 2017-06-29 | 昭和電工株式会社 | 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法 |
WO2017110326A1 (ja) * | 2015-12-25 | 2017-06-29 | 昭和電工株式会社 | 硬化性組成物、硬化物、オーバーコート膜、被覆フレキシブル配線板およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5241023B2 (ja) * | 2009-05-13 | 2013-07-17 | 日本化薬株式会社 | 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物 |
CN107428792B (zh) | 2014-12-15 | 2023-01-24 | 埃默里大学 | 用于治疗乙型肝炎病毒的磷酰胺 |
-
2020
- 2020-05-29 WO PCT/JP2020/021410 patent/WO2021005912A1/ja active Application Filing
- 2020-05-29 KR KR1020227003318A patent/KR20220034138A/ko active Pending
- 2020-05-29 JP JP2021530523A patent/JPWO2021005912A1/ja active Pending
- 2020-05-29 CN CN202080049497.XA patent/CN114096579B/zh active Active
- 2020-06-16 TW TW109120193A patent/TWI757764B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008101160A (ja) * | 2006-10-20 | 2008-05-01 | Mitsui Chemicals Polyurethanes Inc | 水性ポリウレタン樹脂、水性インクおよび顔料分散液 |
JP2008201877A (ja) * | 2007-02-19 | 2008-09-04 | Adeka Corp | ノンクロム処理金属材塗料用水系ポリウレタン樹脂組成物、及び該ポリウレタン樹脂組成物を含有する水系ノンクロム処理金属材用塗料 |
CN102101910A (zh) * | 2009-12-18 | 2011-06-22 | 财团法人工业技术研究院 | 聚合物及其制造方法,以及包括其的光学元件及光电装置 |
JP2014177621A (ja) * | 2013-02-13 | 2014-09-25 | Osaka Gas Chem Kk | フルオレン骨格を有するポリウレタン樹脂 |
JP2014189746A (ja) * | 2013-03-28 | 2014-10-06 | Dic Corp | ウレタン樹脂組成物、プライマー、積層体及び画像表示装置 |
JP2015199898A (ja) * | 2014-03-31 | 2015-11-12 | 大阪ガスケミカル株式会社 | フルオレン骨格を有するポリウレタン樹脂 |
WO2017110591A1 (ja) * | 2015-12-25 | 2017-06-29 | 昭和電工株式会社 | 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法 |
WO2017110326A1 (ja) * | 2015-12-25 | 2017-06-29 | 昭和電工株式会社 | 硬化性組成物、硬化物、オーバーコート膜、被覆フレキシブル配線板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20220034138A (ko) | 2022-03-17 |
TW202108651A (zh) | 2021-03-01 |
CN114096579A (zh) | 2022-02-25 |
JPWO2021005912A1 (ja) | 2021-01-14 |
TWI757764B (zh) | 2022-03-11 |
CN114096579B (zh) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108368336B (zh) | 固化性组合物、固化物、外涂膜、覆盖柔性配线板及其制造方法 | |
JP6901973B2 (ja) | 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法 | |
WO2017183497A1 (ja) | 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜 | |
WO2011096295A1 (ja) | 熱硬化性組成物 | |
WO2010073981A1 (ja) | 硬化性組成物 | |
JP7648863B2 (ja) | 硬化物、オーバーコート膜、及びフレキシブル配線板 | |
JP2021012123A (ja) | 硬化物特性値推定方法 | |
WO2021005912A1 (ja) | ポリウレタン及び硬化性組成物 | |
WO2020246154A1 (ja) | ポリウレタンの製造方法及びフレキシブル配線板用オーバーコート膜の製造方法 | |
TWI753456B (zh) | 硬化性組成物、硬化物、保護膜以及可撓性電路板及其製造方法 | |
WO2020246221A1 (ja) | ポリウレタンの製造方法及びフレキシブル配線板用オーバーコート膜の製造方法 | |
JP2021011545A (ja) | ポリウレタン及び硬化性組成物 | |
WO2020137347A1 (ja) | ポリウレタンの製造方法、硬化性組成物の製造方法、硬化物の製造方法、オーバーコート膜の製造方法、及びフレキシブル配線板の製造方法 | |
JP2021095478A (ja) | ポリウレタン及び硬化性組成物 | |
JP2021095458A (ja) | ポリウレタン及び硬化性組成物 | |
JP2021127375A (ja) | ポリウレタン及び硬化性組成物 | |
JP2025013236A (ja) | 硬化性組成物、硬化物、フレキシブル配線板用オーバーコート膜、フレキシブル配線板、及びフレキシブル配線板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20836943 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021530523 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227003318 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20836943 Country of ref document: EP Kind code of ref document: A1 |