[go: up one dir, main page]

WO2021005730A1 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
WO2021005730A1
WO2021005730A1 PCT/JP2019/027237 JP2019027237W WO2021005730A1 WO 2021005730 A1 WO2021005730 A1 WO 2021005730A1 JP 2019027237 W JP2019027237 W JP 2019027237W WO 2021005730 A1 WO2021005730 A1 WO 2021005730A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ion source
mass spectrometer
sample
flow
Prior art date
Application number
PCT/JP2019/027237
Other languages
English (en)
French (fr)
Inventor
石黒 浩二
吉成 清美
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to EP19936872.1A priority Critical patent/EP3998624A4/en
Priority to JP2021530412A priority patent/JP7138247B2/ja
Priority to PCT/JP2019/027237 priority patent/WO2021005730A1/ja
Priority to US17/597,245 priority patent/US12087565B2/en
Priority to CN201980097858.5A priority patent/CN114026671B/zh
Publication of WO2021005730A1 publication Critical patent/WO2021005730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures

Definitions

  • the present invention relates to a mass spectrometer using an ion source.
  • Ionization by the ESI method is performed by the following procedure.
  • a sample solution is flowed through a capillary to which a high voltage is applied, a sample is ejected from the tip of the capillary, a heated gas is sprayed from the periphery, and the sample solution is sprayed to generate charged droplets. Ions are generated by the evaporation and division of these charged droplets.
  • ions generated from an ion source these ions are drawn into a low vacuum drawn by a vacuum pump by an electric field or the like. This ion is guided to the quadrupole analyzer after passing through an ion lens having various roles.
  • the quadrupole analyzer has four metal rods, and high frequency voltage and DC voltage are applied to these metal rods, and the ratio of mass (m) and charge (z) of a specific ion is m /. The specific ion is separated by passing only z.
  • the components are analyzed by detecting the separated ions with an ion detector.
  • a quadrupole analysis unit composed of three units is called a triple quadrupole analysis type. In this configuration, mass separation is performed in the first and third stages, and collision-induced dissociation (CID) is performed in the second stage.
  • CID collision-induced dissociation
  • Patent Document 1 has a second gas source that supplies a second gas to an ionization region (a region between an ion source and a collection conduit) at a predetermined flow rate.
  • the second gas is supplied from a direction perpendicular to the direction in which the ion source releases the gas.
  • the ESI ion source and the APCI (Atmospheric Pressure Chemical Ionization) ion source are arranged in the same ion source container, and the distance between the ionization probe outlet end and the heating chamber is changed by a driving device.
  • the throughput of the device is increased by rapidly changing the ESI mode and the APCI mode in which the two ionization methods are individually implemented.
  • the sample solution is not discharged smoothly inside the ion source, remains for a long time, and the sample to be analyzed next is of the same type, the amount of the previous residual component overlaps with the analysis result, and the amount of detected signal increases. Will be done. That is, the accuracy of the quantitative analysis is reduced. Further, since the background component that becomes noise remains, the S (signal) / N (noise) ratio changes. If the sample to be analyzed next is different from the previous sample and the previous sample remains, the signal of the sample that should not be there is detected. That is, it results in false positives.
  • the amount of sample inside the ion source increases and the amount of sample flowing into the ion lens on the downstream side increases.
  • the amount of the sample adhering to the ion source wall surface and the ion lens increases, and the maintenance cycle for removing the sample is shortened.
  • problems such as a decrease in processing throughput of the device and an increase in maintenance cost occur.
  • Patent Documents 1 and 2 do not give special consideration to the problems caused by the sample solution remaining in the ion source for a long time as described above.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a mass spectrometer capable of preventing a sample from remaining in an ion source container for a long time.
  • the second gas flowing toward the exhaust portion along the inner wall of the ion source container is supplied inside the ion source container.
  • the mass spectrometer According to the mass spectrometer according to the present invention, it is possible to generate a second gas flow (curtain gas flow) along the wall surface of the ion source container and prevent a circulating flow such as a vortex from being generated inside the ion source. As a result, the amount of the sample adhering to the wall surface or the like can be reduced.
  • a second gas flow curtain gas flow
  • FIG. It is sectional drawing which shows the structure of the mass spectrometer 100 which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the result of simulating the flow inside the ion source of the conventional method. The result of simulating the flow in the ion source container 15 when the length of the exhaust pipe 18 is lengthened in order to reduce the backflow as compared with FIG. 2 is shown. The result of simulating the flow in the ion source container 15 when the centralized exhaust pipe 45 is added to the structure of FIG. 2 is shown. It is the schematic of the centralized exhaust pipe 45. It is a figure which shows the state of the flow inside the ion source container 15 in Embodiment 1. FIG.
  • FIG. 1 It is a figure which shows the state of the flow inside the ion source container 15 when the centralized exhaust pipe 45 is added to the structure of FIG. It is a figure which shows the structure of the gas supply member 48. It is a block diagram of the mass spectrometer 100 which concerns on Embodiment 2. The processing flow diagram explaining the procedure for checking the action of the curtain gas 41 is shown.
  • FIG. 1 is a cross-sectional view showing the configuration of the mass spectrometer 100 according to the first embodiment of the present invention.
  • the mass spectrometer 100 is a device that analyzes the components of a sample by the ions ionized by the ion source 3. A pressure of several tens of megapascals or less is applied to the sample solution 1 in which the sample (analyzed object) is dissolved in a solvent such as methanol or water by the syringe pump 2, and the pressure is applied to the capillary 4 in the ion source 3 to which a high voltage is applied. The liquid is sent via the peak tube 5.
  • the tip of the capillary 4 is an ultrafine tube having an inner diameter of several tens to several hundreds of micrometers.
  • the sample solution 1 is ejected from the tip of the capillary 4.
  • a positive or negative voltage of several kilovolts is applied to the capillary 4.
  • a nebulizer gas pipe 6 having a concentric shaft is provided on the outer periphery of the capillary 4.
  • a nebulizer gas (atomized gas) 7 flows in the nebulizer gas pipe 6 at a speed of several liters / minute. Downstream of the capillary 4, fine droplets charged with the same sign as the voltage applied to the capillary 4 are generated.
  • the auxiliary heating gas pipe 8 is heated by a heater having a capacity of several hundred watts (not shown), and the auxiliary heating gas 9 such as nitrogen gas is injected at a flow rate of several tens of liters / minute. This further accelerates the vaporization and miniaturization of the droplets.
  • the auxiliary heating gas 9 such as nitrogen gas is injected at a flow rate of several tens of liters / minute. This further accelerates the vaporization and miniaturization of the droplets.
  • the surface electric field of the finely divided droplets increases and the repulsive force between the charges exceeds the surface tension of the liquid, the droplets split.
  • ions 10 are generated in the ion generation region 11.
  • the ion generation region 11 is formed in a downstream region where the sample solution 1 is ejected.
  • Ions 10 are taken in by the electric field of a counter plate 12 with a hole having a diameter of several millimeters in the shape of a triangular pyramid.
  • Neutral particles other than ions 10 and a sample in a liquid state that has not been vaporized are also taken in from the counter plate 12 to the downstream side by the flow generated by the vacuum difference.
  • Neutral particles other than ions and the liquid sample solution 1 that has not been vaporized cause contamination. Therefore, the counter gas 13 is used at a flow rate of several liters / minute so as not to put them inside the counter plate 12 as much as possible. It flows back to the ion source 3 side.
  • the surface of the counter plate 12, the first pore 21, and the axially displaced portion 22 is heated to about 200 ° C. with a heater (not shown) in order to reduce contamination due to sample adhesion as much as possible. In some cases, subsequent ion lenses (for example, ion guide 25) are also heated.
  • the sample solution 1 or the like that was not taken into the counter plate 12 passes through the exhaust pipe 18 on the air flow by the blower 17 and is discharged (19).
  • the flow rate of the nebulizer gas 7 is about 3 liters / minute
  • the flow rate of the auxiliary heating gas 9 is about 10 liters / minute
  • the flow rate of the counter gas 13 is about 5 liters / minute
  • the flow rate downstream from the counter plate 12 is Since it is about 5 liters / minute
  • the difference of about 13 liters / minute is discharged from the blower 17.
  • About 30% of the gas flow rate including the sample solution 1 is flowing to the blower 17 side.
  • the blower 17 may have a constant performance (air volume-pressure loss value) in rotation speed, supply voltage, and frequency, or may have an exhaust performance that can be changed by changing the rotation speed.
  • the ion source container 15, the exhaust pipe 18, and the blower 17 to which the sample adheres should also be heated to a high temperature of about 200 ° C. so that the sample does not adhere, but the required heater capacity becomes a large value.
  • the sample solution 1 adheres to the ion source container 15, the exhaust pipe 18, the blower 17, and the like. After the sample solution 1 adheres, it separates and floats, and when this component is detected, it causes a false detection in which a component that is not originally detected is detected.
  • the next detected amount will be increased from the originally correct amount, and the measurement accuracy of the quantitative analysis will be lowered. Further, the amount of components flowing into the ion lens downstream from the counter plate 12 increases, and it becomes necessary to shorten the maintenance cycle, which causes problems such as an increase in maintenance cost and a decrease in device throughput.
  • the ion source 3 includes a capillary 4, a nebulizer gas pipe 6, an auxiliary heating gas pipe 8, a heater (not shown), a high voltage applied structure, an electric insulator, a gas introduction structure, a capillary in the XYZ axis direction shown in FIG. It is composed of a stage (not shown) that adjusts the position of the gas by several millimeters. This stage adjusts the position of the capillary 4 so that the performance such as device sensitivity is optimized. Nitrogen gas (first gas) whose flow rate and pressure are controlled is supplied to the nebulizer gas pipe 6 and the auxiliary heating gas pipe 8 from a gas control unit (not shown).
  • the ion source 3 is fixed to the ion source container 15 by fixing the stage portion with screws.
  • the ion source container 15 is made of a metal such as aluminum or stainless steel.
  • a monitoring window 16 made of transparent glass, resin, or the like is arranged on the side surface of the ion source container 15.
  • the peak tube 5 is removed and only the capillary 4 is replaced, or the capillary 4 is taken out together with the nebulizer gas tube 6 and replaced with a new one.
  • first pore 21 Downstream of the counter plate 12, there is a first pore 21 having a hole diameter of less than 1 mm and a length of several tens of millimeters. The large flow path resistance of this hole limits the amount of inflow into the first pore 21.
  • a quadrupole-quadrupole ion guide 25 for focusing ions is arranged downstream of the axis shift portion 22.
  • High-frequency potentials of positive and negative opposites are applied to the Q rod (round bar of metal or ceramics) adjacent to the ion guide 25, and the ion 10 is captured in the region surrounded by the Q rod.
  • the axis of the octupole and the axis of the quadrupole are offset from each other by a few millimeters in the direction orthogonal to the ion traveling axis, thereby removing neutral particles and removing only the necessary ion components. It is moved downstream by the electric field in the direction.
  • the first pore 21, the axially displaced portion 22, the ion guide 25, and the second pore 26 are arranged in the first differential exhaust chamber 23.
  • the first differential exhaust chamber 23 is evacuated by the dry pump 32 and maintained at a degree of vacuum of about several hundred pascals.
  • an ion thermalizer 27 collision attenuator
  • ion thermalizer 27 collision attenuator
  • Similar to the ion guide 25, high frequency potentials of positive and negative are applied to the adjacent Q rods, and the ions 10 are captured in the region surrounded by the Q rods. The kinetic energy of the ions 10 decreases due to the collision with the residual gas, and the ions are focused near the ion traveling axis.
  • the second pore 26, the ion thermalizer 27, and the third pore 28 are arranged in the second differential exhaust chamber 30.
  • the second differential exhaust chamber 30 is connected to the first exhaust port of the turbo molecular pump 29 and is maintained at a vacuum degree of several pascals.
  • a triple quadrupole (mass filter) 31 Downstream of the third pore 28 is a triple quadrupole (mass filter) 31.
  • An ion detector composed of a triple quadrupole 31, a conversion dynode 36, a scintillator 37, a photomultiplier tube 38, and the like is arranged in the analysis chamber 33.
  • the analysis chamber 33 is evacuated from the second exhaust port of the turbo molecular pump 29 and maintained at a degree of vacuum of 1E- 3 pascal or less.
  • the downstream side of the turbo molecular pump 29 is connected to the dry pump 32 and is exhausted.
  • the triple quadrupole 31 is composed of a first quadrupole, a collision chamber, and a second quadrupole from the upstream side.
  • the first quadrupole allows only precursor ions of a specific mass-to-charge ratio (m / z) to pass by controlling the applied high frequency voltage.
  • Ions 10 are guided to a collision chamber in which a collision gas (helium, nitrogen gas, etc.) located downstream thereof is introduced.
  • Ion 10 collides with the gas and cleaves at a site where the chemical bond is weak.
  • the cleaved ion 10 is called a product ion.
  • Ion 10 is incident on the second quadrupole downstream of the ion 10 and is mass-separated, enabling highly sensitive quantitative analysis.
  • Ion 10 is incident on the conversion dynode 36 by the electric field. Secondary electrons are generated by ion collision and are drawn by an electric field to enter the scintillator 37. Photoelectrons are generated, amplified by the electron multiplier tube 38, and converted by the analog / digital converter 39. The mass spectrum based on this digital value is displayed on the monitor 40. Sample components are identified by collation with known data collected in advance. With these configurations, the first differential exhaust chamber 23 in FIG. 1 and each component arranged on the downstream side of the first differential exhaust chamber 23 function as an ion measuring unit.
  • Gas 42 (preferably an inert gas such as nitrogen) is allowed to flow from the upstream side of the ion generation region 11.
  • the gas 42 flows in through a hole or the like provided in the ion source container 15.
  • a spacer is partially inserted in the mounting surface between the fixed flange of the ion source 3 and the ion source container 15, and the gas 42 flows in through the gap between the fixed flange and the ion source container 15.
  • nitrogen gas is desirable is to prevent an organic solvent such as methanol from exploding in a certain oxygen concentration region and causing ignition.
  • a through hole may be provided in a part of the ion source 3 to allow the gas 42 to flow into the ion source container 15.
  • the inflow amount of the gas 42 is (a) the area of the hole, the area of the gap, the flow path resistance of the flow, the flow path resistance value at each part determined by the structure inside the ion source container 15, and (b) the first. Discharge capacity determined by the flow rate downstream from the pores 21, (c) the flow rate of the nebulizer gas 7, (d) the flow rate of the auxiliary heating gas 9, (e) the flow rate of the sample solution 1, and (f) the rotation speed of the blower 17. , Etc.
  • the area of the hole, the area of the gap, the shape of the ion source container 15, and the structure inside the ion source container 15 have almost fixed values once the device is manufactured.
  • the flow rate flowing downstream from the first pore 21 is the product of the pressure difference between the upstream (atmosphere) and the downstream of the first pore 21 and the conductance value determined by the shape of the elongated hole.
  • the flow rate of the nebulizer gas 7 and the flow rate of the auxiliary heating gas 9 are determined.
  • the gas 42 flows in from the outer peripheral side (inner wall surface side of the ion source container 15) with respect to the ion generation region 11, and flows as a curtain gas 41 flowing toward the exhaust pipe 18 along the inner wall surface of the ion source container 15.
  • the curtain gas 41 is mainly flowed to the outside of the ion generation region 11.
  • the reason for flowing to the outside is that since the ion generation region 11 contains a large amount of ions 10 and the sample solution 1, it disturbs the flow in this region and is likely to reduce the device sensitivity. Another reason is that a gas flow toward the inner wall of the ion source container 15 is generated, the amount of the sample adhering to the inner wall of the ion source container 15 is increased, and the above-mentioned problems occur.
  • FIG. 2 is a schematic view showing the result of simulating the flow inside the conventional ion source.
  • the dashed arrow in the figure indicates the direction of the gas flow 44. The length of the arrow is not proportional to the flow velocity.
  • the calculation conditions are that the flow rate of the nebulizer gas 7 is 2 liters / minute, the flow rate of the auxiliary heating gas 9 is 10 liters / minute, and the flow rate of the counter gas 13 is 5 liters / minute.
  • the flow rate flowing out of the first pore 21 is about 5 liters / minute.
  • the discharge amount of the blower 17 is about 12 liters / minute.
  • the flow velocity at the outlet of the nebulizer gas pipe 6 is about 380 m / sec, which exceeds the speed of sound.
  • the flow velocity at the outlet of the auxiliary heating gas pipe 8 is about 4 m / sec, which is a large difference of about 100 times.
  • the distance from the nebulizer gas tube 6 to the ion source container 15 is several tens of millimeters. Assuming that the flow velocity at the outlet of the nebulizer gas pipe 6 is maintained as it is and proceeds, it reaches the inner wall of the ion source container 15 in less than 1 millisecond. Within that short time, some of the ions are taken into the counter plate 12 by the electric field.
  • the gas containing the sample solution 1 collides with the lower part of the exhaust pipe 18 to generate a backflow, forming a circulating flow (vortex) 43.
  • the gas containing the sample solution 1 collides with the ion source container 15 and the monitoring window 16 at a temperature lower than about 200 ° C., and some of them adhere to each other.
  • a part of the sample solution 1 continues to be supplied to the circulating flow (vortex) 43, and the sample adheres to the inner surface of the ion source container 15 for a long time.
  • FIG. 3 shows the result of simulating the flow in the ion source container 15 when the length of the exhaust pipe 18 is increased in order to reduce the backflow as compared with FIG.
  • the flow velocity of the gas containing the sample is reduced at the lower part of the exhaust pipe 18, and backflow is less likely to occur.
  • the length of the exhaust pipe 18 is limited.
  • the backflow region is reduced, but the circulating flow (vortex) 43 is present. Therefore, as in FIG. 2, the sample adheres to the ion source container 15. Although the amount of adhesion can be reduced, the above-mentioned problems still occur.
  • FIG. 4 shows the result of simulating the flow in the ion source container 15 when the centralized exhaust pipe 45 is added to the structure of FIG.
  • the centralized exhaust pipe 45 makes it possible to reduce the backflow generated when the gas collides with the lower part of the exhaust pipe 18, but on the other hand, a part of the gas containing the sample solution 1 collides with the centralized exhaust pipe 45 and is shown in the figure.
  • the circulating flow (vortex) 43 shown in (1) is generated. In the calculation, two circulating flows (vortices) 43 shown in the figure were generated. Similar to FIG. 2, a part of the sample solution 1 continues to be supplied to the circulating flow (vortex) 43, and the sample adheres to the inner surface of the ion source container 15 for a long time.
  • FIG. 5 is a schematic view of the centralized exhaust pipe 45.
  • the centralized exhaust pipe 45 is a metal pipe having an outermost diameter of about 30 mm and a height of about 60 mm, and the diameter of the tip portion is tapered and reduced.
  • the centralized exhaust pipe 45 is arranged in the vicinity of the counter plate 12.
  • the centralized exhaust pipe 45 is kept at a high temperature by heat-insulating and heating with a heater.
  • FIG. 6 is a diagram showing a state of flow inside the ion source container 15 in the first embodiment.
  • the gas 42 was introduced at a flow rate of 20 liters / minute. Other calculation conditions are the same as in FIG. A part of the gas 42 becomes a flow of the curtain gas 41 along the inner wall of the ion source container 15.
  • the curtain gas 41 acts to push the circulating flow (vortex) 43 shown in FIG. 2 toward the downstream side. This makes it possible to reduce the amount of the sample adhering to the inner wall surface of the ion source container 15, and it is possible to take measures against problems caused by the adhesion.
  • FIG. 7 is a diagram showing a state of flow inside the ion source container 15 when the centralized exhaust pipe 45 is added to the structure of FIG.
  • the flow rate of the gas 42 is 20 liters / minute as in FIG. Other calculation conditions are the same as in FIG.
  • the intake port of the centralized exhaust pipe 45 is arranged at a position where the central axis of the ion source 3 is extended.
  • the branched circulating flow (vortex) 43 shown in FIG. 4 is small. Further, the flow does not reach the inner wall of the ion source container 15. This makes it possible to take measures against problems caused by sample adhesion.
  • FIG. 8 is a diagram showing the structure of the gas supply member 48.
  • the gas supply member 48 is a member for uniformly irradiating the gas 42, and is arranged at an inlet portion where the gas 42 flows into the ion source container 15.
  • Gas 42 is supplied into the ion source container 15 from a gas source 52 such as a nitrogen gas cylinder to the inlet hole 47 of the gas supply member 48 via a mass flow controller 51 (gas supply device) at a required pressure and flow rate.
  • the gas 42 spreads inside the gas supply member 48.
  • On the lower surface of the gas supply member 48 there are a large number of outlet holes 49 having a diameter smaller than that of the inlet hole 47. The number of outlet holes 49 is larger than that of the inlet holes 47.
  • V31 gas outlet flow velocity in each section
  • V32 gas outlet flow velocity
  • V3m outlet flow velocity
  • V1 inlet flow velocity
  • the reason why the gas is uniformly irradiated in a shower shape is to create a flow of curtain gas 41 with less turbulence in the ion source container 15. Desirably, it creates a laminar flow. If the flow is turbulent, the sample adhering to the inner wall of the ion source container 15 can be easily detached, and the problems already described can easily occur. Therefore, it can be said that the curtain gas 41 is preferably a laminar flow with less turbulence.
  • the inlet holes for attaching the gas source 52, the mass flow controller 51, the gas supply member 48, and the gas supply member 48 function as a gas supply unit (second air supply unit) for supplying the gas 42 to the inside of the ion source container 15. ..
  • the discharge port (outlet hole 49) of the gas 42 is on the upstream side of the ion generation region 11 and outside the central axis of the ion source 3 (the side close to the inner wall of the ion source container 15) in the direction along the gas flow. It will be placed in.
  • the inlet hole for supplying the nebulizer gas 7 and the like, the gas source, and the like function as a gas supply unit (first air supply unit) for supplying these gases to the ion source 3.
  • the mass spectrometer 100 causes the gas 42 to flow toward the exhaust pipe 18 along the inner wall of the ion source container 15. As a result, the circulating flow 43 of the sample solution 1 can be suppressed, and the sample can be discharged smoothly. As a result, it is possible to prevent the sample solution 1 from adhering to the inner wall of the ion source container 15 and shorten the residence time of the residual sample inside the ion source container 15. Therefore, when the same sample is continuously analyzed, the residual time and amount of the sample are reduced, so that the quantitative analysis accuracy is improved and the S / N ratio is improved.
  • the mass spectrometer 100 even when different samples are analyzed, the influence of the previous sample can be reduced and the risk of erroneous detection / erroneous determination can be reduced. Furthermore, the amount of dirt adhering to the downstream ion lens can be minimized, and the maintenance cycle can be lengthened. As a result, the processing throughput of the device can be improved, and the maintenance cost for a certain period (for example, per year) can be reduced.
  • the gas supply member 48 can make the flow velocity of the curtain gas 41 slower than that of other gases such as the nebulizer gas 7.
  • the mass flow controller 51 which will be described later, may adjust the flow velocity of the gas 42 to similarly slow down the flow velocity of the curtain gas 41.
  • FIG. 9 is a block diagram of the mass spectrometer 100 according to the second embodiment of the present invention.
  • the ion source container 15 has a cylindrical shape having an axis in the axial direction of the counter plate 12. A flat portion is provided in this cylindrical shape, and the ion source 3 is mounted on the flat surface.
  • a guide plate 55 is further provided in addition to the configuration described in the first embodiment.
  • the guide plate 55 is curved along the inner circumference of the cylinder of the ion source container 15, thereby guiding the curtain gas 41 along the inner wall of the ion source container 15.
  • the guide plate 55 has a flat portion for fixing and an R surface along the inner wall of the ion source container 15.
  • the flat portion of the guide plate 55 is fixed to the ion source container 15 by, for example, screwing. Other configurations are the same as those in the first embodiment.
  • the curtain gas 41 can be flowed along the inner wall of the ion source container 15 by the guide plate 55. As a result, the curtain gas 41 surely avoids the ion generation region 11, so that the ion generation action in the ion generation region 11 can be prevented from being inhibited.
  • FIG. 10 shows a processing flow diagram illustrating a procedure for checking the action of the curtain gas 41. Each procedure will be described below with reference to FIG.
  • sample A is analyzed using the mass spectrometer 100 (step 1). As the analysis result, the detection signal distribution corresponding to the sample A is obtained.
  • sample B is analyzed (step 2).
  • the residual component of the sample A exceeding the threshold value (judgment value) is detected. It is considered that this residual component is due to the generation of a circulating flow (vortex) 43 inside the ion source container 15.
  • the mass flow controller 51 increases or decreases the inflow amount of the gas 42, or increases or decreases the rotation speed of the blower 17 when the inlet of the gas 42 is open to the atmosphere (step 3). Both of these may be implemented. As a result, the flow rate of the curtain gas 41 inside the ion source container 15 is changed. After that, the remaining amount of sample A is checked again. The operation of changing the flow rate of the curtain gas 41 is repeated until the remaining amount of the sample A becomes equal to or less than the threshold value (determination value) (step 4).
  • step 5 Since sample A is left to flow to the downstream side, the amount detected will decrease steadily. Therefore, even if the residual amount of sample A becomes equal to or less than the threshold value, it may be due to the operator taking time and effort in steps 3 to 4. Therefore, a recheck is performed under the same conditions (step 5). If the residual amount of sample A does not fall below the threshold value, the process returns to step 3 and the same procedure is repeated. If the residual amount of sample A does not fall below the threshold value even after repeating the recheck a predetermined number of times, it is possible that the device is abnormal or the inside of the ion source container 15 is already contaminated. Therefore, an alarm is issued and the mass spectrometer 100 is turned on. Stop it.
  • step 6 If the residual amount of sample A is equal to or less than the threshold value, it is determined that the generation of the circulating flow (vortex) 43 inside the ion source container 15 is suppressed, and this analysis is performed (step 6).
  • the curtain gas 41 is surely acted, and high-precision analysis in which the influence of carryover and cross contamination is suppressed becomes possible.
  • the outlet holes 49 of the gas supply member 48 do not necessarily have to be arranged at equal intervals.
  • the number of outlet holes 49 may be increased in a place where more curtain gas 41 is desired to flow.
  • the number of outlet holes 49 may be increased at a location where the flow velocity of the curtain gas 41 is desired to be slowed down.
  • the ion source 3 using the electrospray ionization method as the ionization method has been described, but in addition, the atmospheric pressure chemical ionization method, the chemical ionization method (CI method), and the electron impact ionization method (Electron Impact) have been described.
  • the ion source 3 using the EI method) or the like may be used.
  • an ECR (microwave) plasma ion source, an inductively coupled plasma ion source, a penning ion source, a laser ion source, or the like may be used.
  • a quadrupole mass spectrometer has been exemplified as the mass spectrometer 100, but a time-of-flight mass spectrometer (Time Of Flight Mass Spectrometer: TOF / MS) and a Fourier-converted ion cyclotron resonance type mass spectrometer (TOF / MS) A Fourier transformion cyclotron mass spectrometer) or a magnetic centor mass spectrometer may be used.
  • Dry pump 33 ... Analysis chamber 36 ... Conversion dynode 37 ... Cinchulator 38 ... Electronic booster 39 ... Analog / digital converter 40 ... Monitor 41 ... Curtain gas 42 ... Gas 43 ... Circulating flow (vortex) 44 ... Gas flow 45 ... Centralized exhaust pipe 48 ... Gas supply member 47 ... Inlet hole 49 ... Outlet hole 51 ... Mass flow controller 52 ... Gas source 55 ... Guide plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明は、イオン源容器の内部における試料の長時間残留を防ぐことができる質量分析装置を提供することを目的とする。本発明に係る質量分析装置は、イオン源がイオン化のために用いる第1ガスに加えて、イオン源容器の内壁に沿って排気部に向かって流れる第2ガスを、イオン源容器の内部において供給する(図1参照)。

Description

質量分析装置
 本発明は、イオン源を用いる質量分析装置に関する。
 ESI法(Electrospray Ionization)によるイオン化は、以下のような手順による。高電圧を印加したキャピラリーに試料溶液を流し、キャピラリー先端から試料を噴出させ、周辺から加熱したガスを吹きかけ、試料溶液を噴霧することにより、帯電液滴を生成させる。この帯電液滴が蒸発と分裂することにより、イオンが発生する。
 イオン源から発生したイオンを用いる質量分析装置においては、電界等により、このイオンを真空ポンプで真空引きした低真空中に引き込む。このイオンは、種々の役目を持つイオンレンズを通過後、4重極分析部に導かれる。4重極分析部には、4本の金属棒があり、この金属棒には高周波電圧と直流電圧が印加されており、ある特定のイオンの質量(m)と電荷(z)の比m/zのみを通過させることにより、その特定イオンを分離する。
 分離したイオンをイオン検出器で検出することにより、成分を分析する。4重極分析部が3連で構成されるものは、3連4重極分析型と呼ばれる。この構成においては、初段と3段目で質量分離を実施し、2段目で衝突誘導解離(CID)を実施する。
 下記特許文献1記載の技術は、イオン化領域(イオン源と収集導管との間の領域)に対して所定の流速で第2ガスを供給する第2ガス源を有する。第2ガスは、イオン源がガスを放出する方向に対して垂直な方向から供給される。
 下記特許文献2においては、ESIイオン源とAPCI(Atmospheric Pressure Chemical Ionization)イオン源を同じイオン源容器内に配置し、駆動装置によりイオン化プローブ出口端と加熱室との間の距離を変更し、2つのイオン化法を個別に実施する、ESIモードとAPCIモードを迅速に変更させることにより、装置のスループットを図っている。
特開2007-066903号公報 特許第6181764号
 イオン源内部において試料溶液がスムーズに排出されず、長時間にわたり残留し、かつ次に分析する試料が同じ種類である場合、分析結果に前の残留成分量が重なり、検出される信号量が増加することになる。つまり定量分析の精度が低下する。また、ノイズとなるバックグランド成分が残留するので、S(シグナル)/N(ノイズ)比が変化する。また次に分析する試料が前の試料と異なり、かつ前の試料が残留している場合、本来あるはずがない試料の信号が検出される。つまり、誤検知の結果になる。
 試料がイオン源内部からすぐに排出されず、長時間にわたり残留する場合、イオン源内部における試料量が増加するとともに、下流側にあるイオンレンズに対して流入する試料量が増大する。これにより、イオン源壁面やイオンレンズに対して試料が付着する量が増大し、これを除去するためのメンテナンス周期が短くなる。これにより、装置の処理スループット低下やメンテナンス費用増大などの課題が発生する。
 特許文献1~2は、上述のようにイオン源内で試料溶液が長時間にわたり残留することによって生じる課題については、格別考慮されていないと考えられる。本発明は、上記のような課題に鑑みてなされたものであり、イオン源容器の内部における試料の長時間残留を防ぐことができる質量分析装置を提供することを目的とする。
 本発明に係る質量分析装置は、イオン源がイオン化のために用いる第1ガスに加えて、イオン源容器の内壁に沿って排気部に向かって流れる第2ガスを、イオン源容器の内部において供給する。
 本発明に係る質量分析装置によれば、イオン源容器の壁面に沿う第2ガスの流れ(カーテンガスの流れ)を発生させ、イオン源内部において渦などの循環流が発生することを防止できる。これにより、試料が壁面などに付着する量を低減させることができる。
実施形態1に係る質量分析装置100の構成を示す断面図である。 従来方式のイオン源内部の流れをシミュレートした結果を示す概略図である。 図2と比較して逆流を小さくするため、排気管18の長さを長くした場合におけるイオン源容器15内の流れをシミュレートした結果を示す。 図2の構造に対して、集中排気管45を追加した場合におけるイオン源容器15内の流れをシミュレートした結果を示す。 集中排気管45の概略図である。 実施形態1におけるイオン源容器15内部の流れの様子を示す図である。 図6の構造に対して集中排気管45を追加した場合におけるイオン源容器15内部の流れの様子を示す図である。 ガス供給部材48の構造を示す図である。 実施形態2に係る質量分析装置100の構成図である。 カーテンガス41の作用をチェックする手順を説明する処理フロー図を示している。
<実施の形態1>
 図1は、本発明の実施形態1に係る質量分析装置100の構成を示す断面図である。質量分析装置100は、イオン源3によってイオン化したイオンにより、試料の成分を分析する装置である。試料(分析対象物)をメタノールや水などの溶媒に溶かした試料溶液1に対してシリンジポンプ2により数十メガパスカル以下の圧力を加え、高電圧が印加されたイオン源3内のキャピラリー4へピーク管5を介して送液する。キャピラリー4の先端は内径が数十~数百マイクロメートルの極細管である。
 試料溶液1はキャピラリー4先端から噴射される。キャピラリー4には数キロボルトの正または負の電圧が印可される。キャピラリー4の外周には同芯軸を有するネブライザーガス管6がある。ネブライザーガス管6内にはネブライザーガス(霧化ガス)7が数リットル/分で流れる。キャピラリー4の下流には、キャピラリー4に対して印可した電圧と同符号に帯電した微細な液滴が生成される。ネブライザーガス管6の外周にはさらに、同芯軸を有する補助ヒーティングガス管8がある。補助ヒーティングガス管8は図示していない数百ワットの容量を有する加熱ヒータによって加熱され、窒素ガスなどの補助ヒーティングガス9を数十リットル/分の流量で噴射する。これによりさらに液滴の気化と微細化が加速する。微細化した液滴の表面電場増加が進み、電荷同士の反発力が液体の表面張力より超えると、液滴は分裂する。次にイオン蒸発が発生し、イオン10がイオン発生領域11において生成される。イオン発生領域11は、試料溶液1が噴出する下流域に形成される。
 イオン10は、三角錐形状に数ミリメートルの直径を有する穴の開いたカウンタープレート12の電界により取り込まれる。イオン10以外の中性粒子と、気化しなかった液体状態の試料も、真空差により発生する流れによってカウンタープレート12から下流側に取り込まれる。イオン以外の中性粒子と気化しなかった液体状態の試料溶液1などは汚染の原因となるので、これらを極力カウンタープレート12内部に入れないように、数リットル/分の流量でカウンターガス13をイオン源3側に逆流させて流す。
 カウンタープレート12、第1細孔21、軸ずらし部22は、試料付着による汚染を極力減らすため、表面を図示していない加熱ヒータで約200℃に加熱している。場合によっては、それ以降のイオンレンズ(例えば、イオンガイド25など)も加熱している。
 カウンタープレート12に取り込まれなかった試料溶液1などは、ブロワ17による気流に乗って排気管18を通過し、排出される(19)。ネブライザーガス7の流量が約3リットル/分、補助ヒーティングガス9の流量が約10リットル/分、カウンターガス13の流量が約5リットル/分であり、カウンタープレート12から下流に流入するのは約5リットル/分であるので、差分の約13リットル/分がブロワ17から排出される。試料溶液1を含むガス流量の約30%がブロワ17側に流れていることになる。
 ブロワ17は、回転数、供給電圧、周波数が一定の性能(風量-圧損値)のものでもよいし、回転数を変えることによって排気性能を変化させることができるものでもよい。
 本来ならば、試料が付着するイオン源容器15、排気管18、ブロワ17も試料が付着しないように約200℃程度までに高温に加熱したい所であるが、必要なヒータ容量が大きな値になり、断熱構造のため複雑な構造を採用することによって装置が大型化するなどの課題が発生し、実際上は実装が困難である。したがって実際には、試料溶液1がイオン源容器15、排気管18、ブロワ17などに付着する。試料溶液1が付着後、離脱および浮遊し、この成分が検知されると、本来は検出されない成分が検出される誤検知の原因になる。また、同じ試料種を分析している場合であっても、次の検出量が本来の正しい量より増加することになり、定量分析の測定精度が低下する。また、カウンタープレート12より下流のイオンレンズに対して流入する成分量が増大し、メンテナンス周期を短くする必要が生じるので、メンテナンス費用の増大、装置スループット低下などの課題が発生する。
 イオン源3は、キャピラリー4、ネブライザーガス管6、補助ヒーティングガス管8、図示していないヒータ、高電圧印可構造物、電気絶縁物、ガス導入構造、図1に示すXYZ軸方向にキャピラリーなどの位置を数ミリメートル程度調整する図示していないステージ、などで構成されている。このステージによりキャピラリー4の位置を装置感度などの性能が最適になるように調整する。ネブライザーガス管6と補助ヒーティングガス管8には、図示していないガス制御ユニットから、流量と圧力を制御した窒素ガス(第1ガス)が供給される。
 イオン源3は、ステージ部分をネジで固定することにより、イオン源容器15に固定される。イオン源容器15はアルミやステンレスなどの金属製である。イオン源容器15内部の状態などを監視するため、イオン源容器15の側面には、透明なガラスや樹脂などでできた監視窓16が配置されている。
 消耗品であるキャピラリー4を交換する際には、ピーク管5を外し、キャピラリー4単体のみを交換するか、または、ネブライザーガス管6とともにキャピラリー4を取りだし、新品と交換する。
 カウンタープレート12の下流には、1ミリメートル未満の穴径で数十ミリメートルの長さの細孔を有する第1細孔21がある。この穴部の大きな流路抵抗により、第1細孔21への流入量を制限している。
 第1細孔21の下流には軸ずらし部22がある。液体状態などの試料溶液1成分は直進するので、軸ずらし部22の内壁に衝突し、除去される。一方、イオンや軽い質量の成分のものは流れに沿って、下流に流れる。
 軸ずらし部22の下流には、イオンを集束する8重極-4重極のイオンガイド25が配置されている。正負逆の高周波電位がイオンガイド25に隣接するQロッド(金属またはセラミックスの丸棒)に対して印可されており、イオン10をQロッドで囲む領域内に補足する。8重極部の軸と4重極部の軸はイオン進行軸に対して直交方向に互いに数ミリメートルだけずれており、これにより中性粒子などを除去し、必要なイオン成分のみをイオン進行軸方向の電界で下流に移動させる。
 イオンガイド25の下流には、直径数ミリメートルの穴を有する板厚みが数ミリメートルの平板形状の第2細孔26がある。細孔を有する板を配置することにより、真空度の異なる部屋を形成するとともに、不要なイオンを細孔部によって遮断し、必要な成分のみを取り出す。第1細孔21、軸ずらし部22、イオンガイド25、第2細孔26は第1差動排気室23内に配置される。第1差動排気室23はドライポンプ32で真空引きされ、数百パスカル程度の真空度に保たれる。
 第2細孔26の下流にはイオンサーマライザ27(衝突減衰器)と呼ばれる4重極がある。イオンガイド25と同じく、正負逆の高周波電位を隣接するQロッドに印可し、イオン10をQロッドで囲む領域内に補足する。イオン10は残留ガスとの衝突によって運動エネルギーが低下し、イオン進行軸近傍にイオンが集束する。イオンサーマライザ27の下流には、直径数ミリメートルの穴を有する板厚みが数ミリメートルの平板形状の第3細孔28がある。第2細孔26とイオンサーマライザ27と第3細孔28は、第2差動排気室30内に配置される。第2差動排気室30はターボ分子ポンプ29の第1排気口に接続されており、数パスカルの真空度に保たれる。
 第3細孔28の下流には三連の4重極(マスフィルタ)31がある。三連の4重極31、コンバージョンダイノード36、シンチレータ37、電子増倍管38等で構成されるイオン検出器は、分析室33内に配置される。分析室33はターボ分子ポンプ29の第2排気口から真空引きされ、1E-3パスカル以下の真空度に保たれている。ターボ分子ポンプ29の下流側はドライポンプ32と接続され、排気されている。三連の4重極31は上流側から第1の四重極、衝突室、第2の四重極で構成される。第1の四重極は、印可する高周波の電圧を制御することにより、特定の質量電荷比(m/z)のプリカーサイオンのみを通過させる。イオン10は、その下流に位置する衝突ガス(へリウム、窒素ガスなど)を導入した衝突室へ導かれる。イオン10はガスと衝突し、化学結合の弱い部位で開裂する。開裂したイオン10はプロダクトイオンと呼ばれる。イオン10は、その下流にある第2の4重極に入射し、質量分離され、高感度な定量分析が可能になる。
 イオン10は、電界によりコンバージョンダイノード36に入射する。2次電子がイオン衝突により発生し、電界によって引き込まれシンチレータ37に入射する。光電子が発生し、電子増倍管38で増幅され、アナログ/デジタルコンバータ39で変換される。このデジタル値によるマススペクトルをモニタ40に表示する。事前に採取されている既知のデータと照合することにより、試料成分が特定される。これらの構成により、図1における第1差動排気室23およびこれよりも下流側に配置されている各構成部は、イオン測定部として機能する。
 ガス42(望ましくは窒素など不活性ガス)をイオン発生領域11より上流側から流す。ガス42は、イオン源容器15に設けた穴部等から流入させる。または、イオン源3の固定フランジとイオン源容器15との間の取り付け面に部分的にスペーサを入れ、固定フランジとイオン源容器15との間の隙間からガス42を流入させる。窒素ガスが望ましい理由は、メタノールなどの有機溶媒はある酸素濃度領域において爆発して発火が発生する可能性があり、これを防止するためである。ガス導入位置としては、イオン源3の一部に貫通穴を設けてガス42をイオン源容器15内部に流入させてもよい。
 ガス42の流入量は、(a)穴部の面積、隙間の面積、流れの流路抵抗、イオン源容器15内部の構造物等で決まる各部分での流路抵抗値、(b)第1細孔21から下流に流れる流量、(c)ネブライザーガス7の流量、(d)補助ヒーティングガス9の流量、(e)試料溶液1の流量、(f)ブロワ17の回転数で決まる排出能力、などによって定められる。
 穴部の面積、隙間の面積、イオン源容器15形状、イオン源容器15内部の構造物は、装置をいったん製作するとほぼ決まった値になる。また、第1細孔21から下流に流れる流量は、第1細孔21の上流(大気)と下流との間の圧力差と、細長い穴の形状で決まるコンダクタンス値との積になる。また、分析条件が決まると、ネブライザーガス7の流量、補助ヒーティングガス9の流量は決まる。イオン源容器15内のガス42による流れの状況を変化させるためには、ガス42の流入量を変化させる必要がある。このためにはブロワ17の回転数を変化させる必要がある。
 ガス42をイオン発生領域11よりも外周側(イオン源容器15の内壁面側)から流入させ、イオン源容器15の内壁面に沿って排気管18へ向かって流れるカーテンガス41として流す。カーテンガス41は主にイオン発生領域11の外側に流す。外側に流す理由は、イオン発生領域11は、イオン10や試料溶液1を多量に含んでいるので、この領域の流れを乱すことになり、装置感度を低下させる可能性が高いからである。また、イオン源容器15の内壁に向かうガスの流れが発生し、イオン源容器15の内壁に付着する試料の量が増大し、すでに記載した不具合が発生することも一因である。
 図2は、従来方式のイオン源内部の流れをシミュレートした結果を示す概略図である。図中の破線の矢印はガスの流れ44の方向を示している。矢印の長さと流速は比例していない。計算条件は、ネブライザーガス7の流量は2リットル/分、補助ヒーティングガス9の流量は10リットル/分、カウンターガス13の流量が5リットル/分。第1細孔21から流出する流量が約5リットル/分である。ブロワ17の排出量は、約12リットル/分である。ネブライザーガス管6の出口での流速は約380メートル/秒で音速を超えている。補助ヒーティングガス管8の出口での流速は約4メートル/秒であり、約100倍もの大きな差がある。ネブライザーガス管6からイオン源容器15までの距離は数十ミリメートルである。ネブライザーガス管6出口での流速をそのまま保ち、進行すると仮定すると、1ミリセカンド未満でイオン源容器15の内壁に達する。その短い時間内でイオンの一部は電界によりカウンタープレート12内部に取り込まれていく。
 試料溶液1を含むガスは排気管18の下部に衝突し、逆流を生じ、循環流(渦)43を形成している。試料溶液1を含むガスが、約200℃より低温部であるイオン源容器15と監視窓16に衝突し、一部のものは付着する。循環流(渦)43に対して、試料溶液1の一部が供給され続け、長時間にわたり、試料がイオン源容器15内面に付着することになる。
 図3は、図2と比較して逆流を小さくするため、排気管18の長さを長くした場合におけるイオン源容器15内の流れをシミュレートした結果を示す。排気管18の長さを長くすることにより、排気管18の下部で試料を含むガスの流速が低下し、逆流が生じ難くなる。ただし装置のサイズは有限であるので、排気管18の長さは限界がある。図3の構造においては、逆流領域は縮小するが循環流(渦)43は存在する。したがって図2と同じくイオン源容器15には試料が付着する。付着量は小さくできるが、上記の不具合は依然として発生する。
 図4は、図2の構造に対して、集中排気管45を追加した場合におけるイオン源容器15内の流れをシミュレートした結果を示す。集中排気管45により、ガスが排気管18下部と衝突して発生する逆流を減らすことが可能になるが、一方で試料溶液1を含むガスの一部が集中排気管45と衝突し、図中に示す循環流(渦)43が発生する。計算では図に示す2つの循環流(渦)43が発生した。図2と同じく、循環流(渦)43に対して試料溶液1の一部が供給され続け、長時間にわたり、試料がイオン源容器15内面に付着することになる。
 図5は、集中排気管45の概略図である。集中排気管45は、最外径が約30ミリメートル、高さは約60ミリメートルの金属製パイプであり、先端部の径が先細り状に小さくなっている。集中排気管45は、カウンタープレート12の近傍に配置される。種々の試料溶液1を用いて分析作業をする場合、集中排気管45に対して試料溶液1の一部が付着する。付着があると誤検知の原因となるので、熱絶縁してヒータで加熱することにより、集中排気管45を高温に保持している。
 図6は、本実施形態1におけるイオン源容器15内部の流れの様子を示す図である。ガス42を流量20リットル/分で流入させた。その他の計算条件は図2と同じである。ガス42の一部はイオン源容器15の内壁に沿うカーテンガス41の流れになる。カーテンガス41は、図2に示す循環流(渦)43を下流側へ押し流すように作用する。これによりイオン源容器15の内壁面に付着する試料の量を減らすことが可能になり、付着に起因する課題を対策できる。
 図7は、図6の構造に対して集中排気管45を追加した場合におけるイオン源容器15内部の流れの様子を示す図である。ガス42の流量は図6と同じく20リットル/分である。その他の計算条件は図2と同じである。集中排気管45の吸気口はイオン源3の中心軸を延伸した位置に配置されている。図4に示した分岐した循環流(渦)43は小さくなっている。また、イオン源容器15の内壁まで流れが到達していない。これにより、試料付着に起因する課題を対策できる。
 図8は、ガス供給部材48の構造を示す図である。ガス供給部材48は、ガス42を均一に照射するための部材であり、ガス42がイオン源容器15内に流入する入口部分に配置されている。ガス供給部材48の入口穴47に対して、窒素ガスボンベなどのガス源52からマスフローコントローラ51(ガス供給装置)を介して、必要な圧力と流量でガス42をイオン源容器15内に供給する。ガス42はガス供給部材48内部に広がる。ガス供給部材48の下面には、入口穴47と比較して直径の小さな多数の出口穴49がある。出口穴49の個数は入口穴47よりも多い。
 ガス供給部材48の流路抵抗を等価電気回路に置き換えると、図8右下図になる。ガス流速は通電流値Iに相当し、マスフローコントローラ51から供給するガス圧とイオン源容器15内部の圧力との間の差は電位差Vに相当する。R1を入口穴47における流路抵抗値、R2n(n=1,2,・・・,n)をガス供給部材48内部の各区画における流路抵抗値、R3m(m=1,2,・・・,m)を出口穴49における流路抵抗値とする。出口穴49の穴径を小さくするか、あるいは細長い流路にすることにより、R3mの流路抵抗値を大きく(コンダクタンスを小さく)する。R1、R2n<<R3mとすることにより、V31(各区画でのガス出口流速)≒V32≒・・・≒V3m<<V1(入口流速)となり、ガス供給部材48の各ガス出口における流出速度を均一化できる。つまり、シャワー状にガス42を照射できる。
 ガスを均一にシャワー状に照射するのは、イオン源容器15内で乱れの少ないカーテンガス41の流れをつくるためである。望ましくは層流の流れをつくる。乱れがある流れだとイオン源容器15の内壁に付着した試料を脱離しやすくなり、すでに記載の課題が発生しやすくなる。したがってカーテンガス41は、乱れの少ない層流とすることが望ましいといえる。
 ガス源52、マスフローコントローラ51、ガス供給部材48、およびガス供給部材48を取り付ける入口穴は、イオン源容器15内部に対してガス42を供給するガス供給部(第2給気部)として機能する。ガス42の排出口(出口穴49)は、ガスの流れに沿った方向において、イオン発生領域11よりも上流側かつイオン源3の中心軸よりも外側(イオン源容器15の内壁に近い側)に配置されていることになる。同様にネブライザーガス7などを供給する入口穴やガス源などは、イオン源3に対してこれらガスを供給するガス供給部(第1給気部)として機能する。
<実施の形態1:まとめ>
 本実施形態1に係る質量分析装置100は、ガス42をイオン源容器15の内壁に沿って排気管18へ向かって流す。これにより試料溶液1の循環流43を抑制することができるとともに、スムーズに試料を排出することができる。これにより、試料溶液1がイオン源容器15の内壁などに付着することを抑制し、イオン源容器15内部における残留試料の滞在時間を短縮化できる。したがって、同じ試料を連続して分析する場合、試料の残留時間と量が減るので、定量分析精度が向上し、S/N比が向上する。
 本実施形態1に係る質量分析装置100によれば、異なる試料を分析する場合であっても、前の試料の影響を低減し、誤検出・誤判定のリスクを低減できる。さらに、下流にあるイオンレンズへの汚れ付着量を最小化でき、メンテナンス周期を長くすることが可能になる。これにより、装置の処理スループットを向上させ、ある一定期間(例えば、1年あたりの)でのメンテナンスコストを低減できる。
 本実施形態1において、ガス供給部材48によって、カーテンガス41の流速をネブライザーガス7などのその他ガスよりも遅くすることができる。これに加えて、後述するマスフローコントローラ51がガス42の流速を調整することにより、カーテンガス41の流速を同様に遅くしてもよい。
<実施の形態2>
 図9は、本発明の実施形態2に係る質量分析装置100の構成図である。イオン源容器15は、カウンタープレート12の軸方向に軸を持つ円筒形状である。この円筒形状に平坦部を設け、この平坦面にイオン源3を搭載している。本実施形態2においては、実施形態1で説明した構成に加えてさらにガイド板55を設けた。ガイド板55は、イオン源容器15の円筒内周に沿って湾曲しており、これによりカーテンガス41をイオン源容器15の内壁に沿ってガイドする。ガイド板55は、固定するための平坦部とイオン源容器15の内壁に沿ったR面を有する。ガイド板55の平坦部は、イオン源容器15に対して例えばねじ止め固定される。その他構成は実施形態1と同様である。
 本実施形態2に係る質量分析装置100によれば、ガイド板55によってカーテンガス41をイオン源容器15の内壁に沿って流すことができる。これによりカーテンガス41はイオン発生領域11を確実に回避することになるので、イオン発生領域11におけるイオン発生作用を阻害しないようにすることができる。
<実施の形態3>
 分析条件である、試料溶液1の流量、イオン源3の温度、ネブライザーガス7の流量、補助ヒーティングガス9の流量、カウンターガス13の流量などは、分析対象によって異なる。したがって分析対象ごとにイオン源容器15内のガス流れが異なる。条件によっては、循環流(渦)43が発生し、これに起因する課題が生じることが予想される。そこで本発明の実施形態3では、カーテンガス41が十分に作用しているか否かをチェックするための動作手順について説明する。質量分析装置100の構成は実施形態1~2と同様である。
 図10は、カーテンガス41の作用をチェックする手順を説明する処理フロー図を示している。以下図10にしたがって各手順を説明する。
 まず質量分析装置100を用いて試料Aを分析する(ステップ1)。分析結果として、試料Aに対応する検出信号分布が得られる。次に試料Bを分析する(ステップ2)。ここでは閾値(判定値)を超えた試料Aの残留成分が検出されたと仮定する。この残留成分は、イオン源容器15内部で循環流(渦)43が発生していることによると考えられる。
 マスフローコントローラ51は、ガス42の流入量を増減させるか、または、ガス42の入口が大気解放になっている場合は、ブロワ17の回転数を増減させる(ステップ3)。これら双方を実施してもよい。これによりイオン源容器15内部におけるカーテンガス41の流量を変化させる。その後、再度、試料Aの残量を確認する。試料Aの残量が閾値(判定値)以下になるまで、カーテンガス41の流量を変化させる操作を繰り返す(ステップ4)。
 試料Aは放置していても下流側に流されていくので、検出量はどんどん減っていく。したがって試料Aの残留量が閾値以下になったとしても、それは作業者がステップ3~ステップ4を手間取ったことに起因する可能性がある。そこで同様の条件で再チェックを実施する(ステップ5)。試料Aの残留量が閾値以下にならなければ、ステップ3へ戻って同様の手順を繰り返す。所定回数再チェックを繰り返しても試料Aの残留量が閾値以下にならない場合、装置異常かまたはすでにイオン源容器15内部が汚染されている事が考えられるので、アラームを出し、質量分析装置100を停止させる。
 試料Aの残留量が閾値以下になれば、イオン源容器15の内部における循環流(渦)43の発生は抑制されたと判断し、本分析を実施する(ステップ6)。以上の手順により、カーテンガス41を確実に作用させ、キャリーオーバーやクロスコンタミネーションの影響を抑制した高精度の分析が可能となる。
<本発明の変形例について>
 以上の実施形態において、ガス供給部材48の出口穴49は、必ずしも均等間隔で配置する必要はない。例えばカーテンガス41をより多く流したい箇所においては、出口穴49の個数を増やしてもよい。同様にカーテンガス41の流速を遅くしたい箇所においては出口穴49の個数を増やしてもよい。
 以上の実施形態においては、イオン化法としてエレクトロスプレーイオン化法を用いるイオン源3を記載したが、その他に大気圧化学イオン化法、化学イオン化法(Chemical Ionization:CI法)、電子衝撃イオン化法(Electron Impact:EI法)などを用いるイオン源3を用いてもよい。イオン源3としてECR(マイクロ波)プラズマイオン源、誘導結合プラズマイオン源、ペニングイオン源、レーザイオン源などを用いてもよい。
 以上の実施形態において、質量分析装置100として4重極質量分析計を例示したが、飛行時間型質量分析計(Time Of Flight Mass Spectrometer:TOF/MS)、フーリエ変換イオンサイクロトロン共鳴型質量分析計(Fourier transform ion cyclotron resonance mass spectrometer)、磁場型質量分析計(magnetic sector mass spectrometer)を用いてもよい。
1…試料溶液
2…シリンジポンプ
3…イオン源
4…キャピラリー
5…ピーク管
6…ネブライザーガス管
7…ネブライザーガス
8…補助ヒーティングガス管
9…補助ヒーティングガス
10…イオン
11…イオン発生領域
12…カウンタープレート
13…カウンターガス
15…イオン源容器
16…監視窓
17…ブロワ
18…排気管
19…排出
21…第1細孔
22…軸ずらし部
23…第1差動排気室
24…ドライポンプ
25…イオンガイド
26…第2細孔
27…イオンサーマライザ
28…第3細孔
29…ターボ分子ポンプ
30…第2差動排気室
31…三連の4重極
32…ドライポンプ
33…分析室
36…コンバージョンダイノード
37…シンチレータ
38…電子増倍管
39…アナログ/デジタルコンバータ
40…モニタ
41…カーテンガス
42…ガス
43…循環流(渦)
44…ガス流れ
45…集中排気管
48…ガス供給部材
47…入口穴
49…出口穴
51…マスフローコントローラ
52…ガス源
55…ガイド板

Claims (13)

  1.  イオンを発生させるイオン源、
     前記イオン源を収容する容器、
     前記イオン源が前記イオンを発生させるために用いる第1ガスを前記イオン源に対して供給する第1給気部、
     前記容器から前記第1ガスを排気する排気部、
     前記容器の内部かつ前記イオン源の外部において前記容器の内壁に沿って前記排気部に向かって流れる第2ガスを供給する第2給気部、
     を備えることを特徴とする質量分析装置。
  2.  前記第2給気部が前記第2ガスを排出する排出口は、前記イオン源が前記第1ガスを排出する排出口よりも、前記第1ガスが流れる方向の上流側に配置されており、
     前記第2給気部は、前記上流側から前記排気部に向かって流れるように、前記第2ガスを供給する
     ことを特徴とする請求項1記載の質量分析装置。
  3.  前記第2給気部は、前記第2ガスを導入する入口穴と、前記第2ガスを排出する出口穴とを備える部材によって構成されており、
     前記出口穴は、前記イオン源の内部を前記第1ガスが通過する流路に対して垂直な平面上において、前記イオン源の中心から見て前記イオン源が前記第1ガスを噴出する噴出口よりも外側に配置されている
     ことを特徴とする請求項2記載の質量分析装置。
  4.  前記出口穴によって生じる流路抵抗は、前記入口穴によって生じる流路抵抗よりも大きい
     ことを特徴とする請求項3記載の質量分析装置。
  5.  前記出口穴の個数は、前記入口穴の個数よりも多い
     ことを特徴とする請求項4記載の質量分析装置。
  6.  前記出口穴の穴径は、前記入口穴の穴径よりも小さい
     ことを特徴とする請求項4記載の質量分析装置。
  7.  前記出口穴の流路長は、前記入口穴の流路長よりも長い
     ことを特徴とする請求項4記載の質量分析装置。
  8.  前記質量分析装置はさらに、前記第2ガスを供給するガス供給装置を備え、
     前記ガス供給装置は、前記第1ガスの流速よりも前記第2ガスの流速が遅くなるように、前記第2ガスを供給する
     ことを特徴とする請求項1記載の質量分析装置。
  9.  前記排気部は、前記排気部から前記イオン源に向かって先細る排気管を備え、
     前記排気管の吸気口は、前記イオン源の中心軸を延伸した位置に配置されている
     ことを特徴とする請求項1記載の質量分析装置。
  10.  前記質量分析装置はさらに、前記第2ガスを前記容器の内壁に沿ってガイドするガイド板を備える
     ことを特徴とする請求項1記載の質量分析装置。
  11.  前記容器の側壁は、湾曲した形状を有し、
     前記ガイド板は、前記湾曲した形状に沿って前記第2ガスをガイドするように湾曲している
     ことを特徴とする請求項10記載の質量分析装置。
  12.  前記質量分析装置はさらに、前記イオンを用いて、試料内に含まれる物質の量を測定する測定部を備え、
     前記質量分析装置はさらに、前記第2ガスの流量または前記排気部からの排気量のうち少なくともいずれかを制御する制御部を備え、
     前記測定部は、第1物質を含む第1試料を測定した後、第2物質を含む第2試料を測定し、
     前記制御部は、前記測定部による前記第2試料の測定結果において、前記第1物質が閾値以上検出された場合は、前記第2ガスの流量を増やすかまたは前記排気部からの排気量を増やすかのうち少なくともいずれかを実施する
     ことを特徴とする請求項1記載の質量分析装置。
  13.  前記制御部は、前記測定部が前記第1物質を検出した量が前記閾値未満になるまで、前記第2ガスの流量を増やすかまたは前記排気部からの排気量を増やすかのうち少なくともいずれかを繰り返し、
     前記測定部が前記第1物質を検出した量が前記閾値未満になった場合、前記測定部は、前記第1試料を再測定した後に前記第2試料を再測定し、
     前記制御部は、前記再測定による前記第2試料の測定結果において、前記第1物質が閾値以上検出された場合は、前記第2ガスの流量を増やすかまたは前記排気部からの排気量を増やすかのうち少なくともいずれかを実施する
     ことを特徴とする請求項12記載の質量分析装置。
PCT/JP2019/027237 2019-07-10 2019-07-10 質量分析装置 WO2021005730A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19936872.1A EP3998624A4 (en) 2019-07-10 2019-07-10 MASS SPECTROMETRY
JP2021530412A JP7138247B2 (ja) 2019-07-10 2019-07-10 質量分析装置
PCT/JP2019/027237 WO2021005730A1 (ja) 2019-07-10 2019-07-10 質量分析装置
US17/597,245 US12087565B2 (en) 2019-07-10 2019-07-10 Mass spectrometer
CN201980097858.5A CN114026671B (zh) 2019-07-10 2019-07-10 质量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027237 WO2021005730A1 (ja) 2019-07-10 2019-07-10 質量分析装置

Publications (1)

Publication Number Publication Date
WO2021005730A1 true WO2021005730A1 (ja) 2021-01-14

Family

ID=74114994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027237 WO2021005730A1 (ja) 2019-07-10 2019-07-10 質量分析装置

Country Status (5)

Country Link
US (1) US12087565B2 (ja)
EP (1) EP3998624A4 (ja)
JP (1) JP7138247B2 (ja)
CN (1) CN114026671B (ja)
WO (1) WO2021005730A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496716A (zh) * 2022-01-24 2022-05-13 天津国科医工科技发展有限公司 一种质谱仪大气压离子源排气装置
EP4322201A4 (en) * 2021-04-05 2025-04-09 Hitachi High Tech Corp MASS SPECTROMETER AND ITS CONTROL METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272375A (ja) * 2000-03-24 2001-10-05 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2004028763A (ja) * 2002-06-25 2004-01-29 Japan Science & Technology Corp 質量分析等に用いるジェット流放電大気圧イオン化方法
WO2014084015A1 (ja) * 2012-11-29 2014-06-05 株式会社日立ハイテクノロジーズ ハイブリッドイオン源、質量分析計及びイオンモビリティ装置
JP6181764B2 (ja) 2013-09-05 2017-08-16 株式会社日立ハイテクノロジーズ ハイブリッドイオン源及び質量分析装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025841B4 (de) 2004-05-24 2015-07-09 Bruker Daltonik Gmbh Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten
JP4782796B2 (ja) 2004-11-09 2011-09-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 質量分析計用イオン源
US7397028B2 (en) 2005-08-30 2008-07-08 Agilent Technologies, Inc. Apparatus and method for gas flow management
US7737395B2 (en) 2006-09-20 2010-06-15 Agilent Technologies, Inc. Apparatuses, methods and compositions for ionization of samples and mass calibrants
JP5718223B2 (ja) * 2008-05-30 2015-05-13 パーキンエルマー ヘルス サイエンス インコーポレイテッドPerkinelmer Health Sciences Inc. 大気圧化学イオン化に使用する単純操作モードと多重操作モードのイオン源
JP5497615B2 (ja) * 2010-11-08 2014-05-21 株式会社日立ハイテクノロジーズ 質量分析装置
AU2012261885B2 (en) * 2011-06-03 2015-09-24 Perkinelmer U.S. Llc Direct sample analysis ion source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272375A (ja) * 2000-03-24 2001-10-05 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2004028763A (ja) * 2002-06-25 2004-01-29 Japan Science & Technology Corp 質量分析等に用いるジェット流放電大気圧イオン化方法
WO2014084015A1 (ja) * 2012-11-29 2014-06-05 株式会社日立ハイテクノロジーズ ハイブリッドイオン源、質量分析計及びイオンモビリティ装置
JP6181764B2 (ja) 2013-09-05 2017-08-16 株式会社日立ハイテクノロジーズ ハイブリッドイオン源及び質量分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998624A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4322201A4 (en) * 2021-04-05 2025-04-09 Hitachi High Tech Corp MASS SPECTROMETER AND ITS CONTROL METHOD
CN114496716A (zh) * 2022-01-24 2022-05-13 天津国科医工科技发展有限公司 一种质谱仪大气压离子源排气装置

Also Published As

Publication number Publication date
US20220319825A1 (en) 2022-10-06
EP3998624A4 (en) 2023-03-29
JP7138247B2 (ja) 2022-09-15
JPWO2021005730A1 (ja) 2021-01-14
EP3998624A1 (en) 2022-05-18
US12087565B2 (en) 2024-09-10
CN114026671B (zh) 2024-12-13
CN114026671A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US6649909B2 (en) Internal introduction of lock masses in mass spectrometer systems
US6586731B1 (en) High intensity ion source apparatus for mass spectrometry
JP5671145B2 (ja) 質量分析計の大気圧イオン化導入口
JP5359827B2 (ja) イオン輸送装置、イオン分析装置、及び、超音速分子ジェット法を用いた分析装置
WO2012071806A1 (zh) 用于质谱分析的真空紫外光电离和化学电离的复合电离源
CN110870042B (zh) 多极离子导向器
JP6685698B2 (ja) 試料原子を生成するための方法、液体試料を分析するための方法及びプラズマ源
EP2808888B1 (en) Mass analysis device
CN108695135B (zh) 用于从气溶胶颗粒生成元素离子的离子源和方法
JP6609379B2 (ja) イオン分析装置
US12087565B2 (en) Mass spectrometer
US9165751B1 (en) Sample atomization with reduced clogging for analytical instruments
US20030062474A1 (en) Electrospray ion source for mass spectrometry with atmospheric pressure desolvating capabilities
JP2004071470A (ja) 大気圧プラズマイオン化源質量分析装置
US9589782B2 (en) Charged droplets generating apparatus including a gas conduit for laminarization of gas flows
US8502162B2 (en) Atmospheric pressure ionization apparatus and method
US20240429037A1 (en) Mass spectrometer for analyzing an analyte sample
WO2021161381A1 (ja) 質量分析装置
JP2001202917A (ja) 質量分析方法及び質量分析装置
JPH05242856A (ja) 誘導プラズマ質量分析装置
JPH10160707A (ja) 液体クロマトグラフ質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019936872

Country of ref document: EP

Effective date: 20220210