[go: up one dir, main page]

WO2020262418A1 - Charge-transporting varnish - Google Patents

Charge-transporting varnish Download PDF

Info

Publication number
WO2020262418A1
WO2020262418A1 PCT/JP2020/024702 JP2020024702W WO2020262418A1 WO 2020262418 A1 WO2020262418 A1 WO 2020262418A1 JP 2020024702 W JP2020024702 W JP 2020024702W WO 2020262418 A1 WO2020262418 A1 WO 2020262418A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
charge
transporting
organic
thin film
Prior art date
Application number
PCT/JP2020/024702
Other languages
French (fr)
Japanese (ja)
Inventor
倉田 陽介
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080045353.7A priority Critical patent/CN114008808A/en
Priority to KR1020227001763A priority patent/KR102794314B1/en
Priority to JP2021527666A priority patent/JP7491311B2/en
Publication of WO2020262418A1 publication Critical patent/WO2020262418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a charge transporting varnish.
  • the method for forming an organic functional layer such as a hole injection layer used in an organic electroluminescence (EL) device is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, at present, the area of organic EL displays is being increased, and a hole injection layer that can be formed by a wet process is desired.
  • the applicant has applied a charge transporting material that can be applied to various wet processes and provides a thin film capable of realizing excellent EL device characteristics when applied to a hole injection layer of an organic EL device.
  • we have been developing compounds with good solubility in organic solvents used for them see, for example, Patent Documents 1 to 3).
  • the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see, for example, Patent Document 6).
  • the applicant has already found a material for a wet process that suppresses coloring in the visible region and provides a charge-transporting thin film having excellent transparency (see, for example, Patent Documents 6 and 7), but of an organic EL display.
  • a partition wall (bank) is generally provided so as to surround the layer forming region, and the partition wall is opened.
  • Organic functional ink is applied to the inside of the part.
  • the ink applied in the opening may crawl up on the side surface of the partition wall, and the thickness of the peripheral portion of the coating film in contact with the side surface of the partition wall may be thicker than that of the central portion of the coating film, so-called crawling phenomenon may occur. ..
  • crawling phenomenon occurs, the plurality of organic functional layers formed between the electrodes do not function in the order of stacking, causing a situation in which a leak current path is formed.
  • Patent Documents 8 and 9 propose means for suppressing the crawling phenomenon, but in response to the recent situation in which the development of organic EL displays using a wet process is further accelerated, the suppression of such a crawling phenomenon is suppressed.
  • the demand for technology related to is increasing.
  • the present invention has been made in view of the above circumstances, and is a charge that suppresses the creeping phenomenon, provides a thin film having a high refractive index and high transparency, and provides a charge transporting thin film suitable as a functional layer of an organic EL element. It is intended to provide a transportable varnish.
  • the present inventor is obtained from a charge transport varnish containing zirconia particles surface-modified with a surface treatment agent, a monodisperse charge transport organic compound, and an organic solvent.
  • the thin film exhibits high charge transportability, high transparency (low k value) and high refractive index (high n value), and when the varnish is applied into the partition wall by a wet process, the varnish creeping up is extremely suppressed.
  • the present invention has been completed by finding that a thin film can be produced.
  • the present invention provides the following charge transporting varnish.
  • a charge-transporting varnish containing (A) zirconia particles surface-modified with a surface treatment agent, (B) a monodisperse charge-transporting organic compound, and (C) an organic solvent.
  • a charge-transporting varnish having an average particle size of 2 to 100 nm for zirconia particles surface-modified with the surface treatment agent.
  • the charge-transporting varnish of the present invention By using the charge-transporting varnish of the present invention, it is possible to produce a charge-transporting thin film in which the varnish creeps up (so-called pile-up) is extremely suppressed even when it is applied into the partition wall by a wet process. Further, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention is excellent in flatness and charge-transporting property, and has high transparency and high refractive index. Therefore, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention can be suitably used as a thin film for electronic devices such as organic EL devices.
  • FIG. 1 It is a figure which shows the shape of the charge transport thin film in the partition wall of the substrate with a charge transport thin film obtained in Example 4.
  • FIG. 1 shows the shape of the charge transport thin film in the partition wall of the substrate with a charge transport thin film obtained in Example 4.
  • the charge-transporting varnish of the present invention includes (A) zirconia particles surface-modified with a surface treatment agent (hereinafter, also referred to as surface-modified zirconia particles), (B) a monodisperse charge-transporting organic compound, and (C). It contains an organic solvent.
  • a surface treatment agent hereinafter, also referred to as surface-modified zirconia particles
  • B a monodisperse charge-transporting organic compound
  • C contains an organic solvent.
  • the surface-modified zirconia (ZrO 2 ) particles of the component (A) are obtained by surface-treating the nuclear particles made of zirconia with a surface treatment agent.
  • the surface treatment agent include n-propyltrimethoxysilane, n-propyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, phenyltrimethoxysilane, and 2- [methoxy (polyethyleneoxy) propyl].
  • Alcohols such as; glycol ethers such as triethylene glycol monomethyl ether; carboxylic acids such as octanoic acid, acetic acid, propionic acid, 2- [2- (2-methoxyethoxy) ethoxy] acetic acid, oleic acid, stearic acid, benzoic acid and the like. Can be mentioned.
  • the average particle size of the nuclear particles is preferably 1 to 90 nm, more preferably 2 to 45 nm, and even more preferably 3 to 18 nm.
  • Examples of the method for measuring the average particle size of the nuclear particles include a method using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Various methods for measuring the average particle size using TEM are known, and one example thereof is a method based on the equivalent circle diameter. This is a method of obtaining the equivalent circle diameter of each particle by processing the projected image of the particles obtained by using TEM with image processing software, and obtaining the average particle diameter as the number average of the equivalent circle diameters. ..
  • the equivalent circle diameter also called the Haywood diameter, is the diameter of a circle that has the same area as the projected image of the particles.
  • the projected image is typically processed using image processing software created by the manufacturer and distributor of the TEM, which is provided with the TEM.
  • the surface-modified zirconia particles preferably have an average particle diameter of 2 to 100 nm, more preferably 3 to 50 nm, and even more preferably 5 to 20 nm.
  • the average particle size of the surface-modified zirconia particles is a particle size (median diameter D 50 ) at which the cumulative frequency distribution in the volume-based particle size distribution measurement by the dynamic light scattering method is 50%.
  • the surface-modified zirconia particles commercially available products or those surface-treated thereof can be used, and specific examples thereof include EP zirconium oxide, SPZ zirconium oxide, and UEP manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.
  • Nanouse registered trademark
  • ZR-40BL Dispersed liquids of surface-modified zirconia particles such as ZR-30AL, ZSL-10A manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., ZSL-10T, ZSL-20N, and ZSL00014, or surface-treated ones thereof.
  • the surface-modified zirconia particles may be produced by a known method.
  • the content of the surface-modified zirconia particles of the component (A) is usually about 1 to 98% by mass, preferably about 5 to 90% by mass, and more preferably about 10 to 80% by mass in the solid content.
  • the solid content means a component other than the solvent among the components contained in the varnish.
  • the charge-transporting organic compound for example, those used in the field of organic EL and the like can be used.
  • arylamine derivatives aniline derivatives
  • oligoaniline derivatives N, N'-diarylbenzidine derivatives, N, N, N', N'-tetraarylbenzidine derivatives, oligothiophene derivatives, and thienothiophene derivatives.
  • Thionophen derivatives such as thienobenzothiophene derivatives
  • various charge-transporting organic compounds such as pyrrole derivatives such as oligopyrrole.
  • arylamine derivatives and thiophene derivatives are preferable.
  • Examples of the charge-transporting organic compound include JP-A-2002-151272, International Publication No. 2004/105446, International Publication No. 2005/043962, International Publication No. 2008/032617, International Publication No. 2008/032616, and International Publication No. 2013/0426223, International Publication 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. 2015 / 146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, etc. can be used.
  • the charge-transporting organic compound needs to be monodisperse (that is, the molecular weight distribution is 1).
  • the molecular weight of the charge-transporting organic compound is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness, but 300 from the viewpoint of obtaining a thin film having more excellent charge-transporting property.
  • the above is preferable, 400 or more is more preferable, and from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness with better reproducibility, 8,000 or less is preferable, 7,000 or less is more preferable, and 6,000 or less is preferable. Even more preferably, 5,000 or less is even more preferable.
  • the charge transporting organic compound a monodisperse charge transporting organic compound may be used alone, or two or more different monodisperse charge transporting organic compounds may be used in combination, but the creeping phenomenon From the viewpoint of suppressing reproducibility, the monodisperse charge-transporting organic compound used is preferably 1 to 3 types, and more preferably 1 or 2 types from the viewpoint of facilitating varnish preparation. More preferably, it is one kind.
  • Ph is a phenyl group and DPA is a diphenylamino group.
  • the content of the charge-transporting organic compound in the solid content is usually about 2 to 99% by mass, preferably about 10 to 95% by mass, and more preferably about 20 to 90% by mass.
  • Organic solvent is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and each of the optional components described below, but it is preferable to use a low-polarity solvent in terms of excellent process compatibility.
  • a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz
  • a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
  • low polar solvent examples include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like.
  • Alibo alcohol solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc.
  • Solvents Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dimethyl phthalate, diisopropyl malate, dibutyl maleate, dibutyl oxalate, hexyl acetate, propylene glycol monomethyl ether
  • ester solvents such as acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate.
  • Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
  • Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone; Cyano solvent such as acetonitrile and 3-methoxypropionitrile; Ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, Polyhydric alcohol solvents such as 2,3-butanediol; diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyl Monohydric alcohol solvents other than aliphatic alcohols such as oxyethanol, 3-phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol; sulfoxide solvents such as dimethyl sulfoxide and the like can be mentioned.
  • Ketone solvent such as ethyl methyl ketone, isophor
  • the amount of the organic solvent used is such that the solid content concentration in the varnish of the present invention is usually about 0.1 to 20% by mass from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge-transporting organic compound.
  • the amount is preferably 0.5 to 10% by mass.
  • the organic solvent may be used alone or in combination of two or more.
  • the charge-transporting varnish of the present invention can also contain water as a solvent, but the water content is preferably higher than that of the solvent contained in the varnish from the viewpoint of obtaining an organic EL element having excellent durability with good reproducibility. From the viewpoint of obtaining a charge-transporting thin film having 3% by mass or less and suppressed pile-up with good reproducibility, it is preferable to use only an organic solvent as the solvent.
  • “only the organic solvent” means that only the organic solvent is used as the solvent, and even the existence of "water” contained in a trace amount in the organic solvent used, the solid content, etc. is denied. It's not something to do.
  • the charge-transporting varnish of the present invention may contain a dopant for the purpose of improving the charge-transporting property of the thin film obtained from the charge-transporting varnish of the present invention.
  • the dopant is not particularly limited as long as it is soluble in at least one solvent used for varnish, and either an inorganic dopant or an organic dopant can be used.
  • the dopant first develops its function as a dopant by removing a part of the molecule due to an external stimulus such as heating during firing. It may be a substance that becomes improved, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
  • Heteropolyacid is preferable as the inorganic dopant, and specific examples thereof include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, phosphotungstic acid, and silicate tungstic acid.
  • the heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type chemical structure represented by the following formula (HPA1) or a Dawson type chemical structure represented by the following formula (HPA2). It is a polyacid formed by condensing isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and oxygen acid of a different element. Examples of such dissimilar element oxygen acids include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
  • heteropolyacid examples include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, and phosphotungstic acid. These may be used individually by 1 type or in combination of 2 or more type.
  • the heteropolyacid used in the present invention is available as a commercially available product, and can also be synthesized by a known method. In particular, when one kind of heteropolyacid is used, phosphotungstic acid or phosphomolybdic acid is preferable as the one kind of heteropolyacid, and phosphotungstic acid is most suitable.
  • one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • the heteropolyacid in quantitative analysis such as elemental analysis, even if the number of elements of the heteropolyacid is large or small from the structure represented by the general formula, the heteropolyacid is obtained as a commercially available product or a known synthesis method. As long as it is properly synthesized according to the above, it can be used in the present invention.
  • phosphotungsic acid is generally represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O
  • phosphomolybdic acid is generally represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, or As long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
  • organic dopant examples include aryl sulfonic acid, aryl sulfonic acid ester, an ionic compound composed of a predetermined anion and its counter cation, a tetracyanoquinodimethane derivative, a benzoquinone derivative and the like.
  • the aryl sulfonic acid compound is preferably represented by the following formula (A) or (B) from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
  • a 1 is -O- or -S-, but -O- is preferable.
  • a 2 is a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
  • a 3 is a 2- to tetravalent perfluorobiphenyl group.
  • p 1 is the number of bonds between A 1 and A 3, and is an integer satisfying 2 ⁇ p 1 ⁇ 4, but A 3 is a divalent group derived from perfluorobiphenyl and p 1 Is preferably 2.
  • p 2 is the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ⁇ p 2 ⁇ 4, but 2 is preferable.
  • a 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms or 2 to 2 carbon atoms, respectively. There are 20 halogenated alkenyl groups, but at least 3 of A 4 to A 8 are halogen atoms.
  • q is the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ⁇ q ⁇ 4, but 2 to 4 is preferable, and 2 is more preferable.
  • alkyl halide group having 1 to 20 carbon atoms examples include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, and a 3,3,3-trifluoropropyl group, 2,2, 3,3,3-Pentafluoropropyl group, perfluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3, Examples thereof include 4,4,4-heptafluorobutyl group and perfluorobutyl group.
  • halogenated alkenyl group having 2 to 20 carbon atoms examples include a perfluoroethenyl group, a 1-perfluoropropenyl group, a perfluoroallyl group, a perfluorobutenyl group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group having 1 to 20 carbon atoms include the same ones as mentioned in the description of R A and R B of formula (6).
  • a 4 to A 8 include a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or an alkenyl halide having 2 to 10 carbon atoms.
  • a group it is preferable that at least three fluorine atoms of a 4 - a 8, a hydrogen atom, a fluorine atom, fluorinated cyano group, an alkyl group having 1 to 5 carbon atoms, 5 It is more preferably an alkyl group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, and 1 to 1 carbon atoms.
  • the perfluoroalkyl group of 5 or the perfluoroalkenyl group having 1 to 5 carbon atoms is, and A 4 , A 5 and A 8 are fluorine atoms.
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
  • Suitable aryl sulfonic acids include, but are not limited to, those shown below.
  • the aryl sulfonic acid ester compound As the aryl sulfonic acid ester compound, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, International Publication No. 2017/217457, from the viewpoint of the transparency of the thin film obtained from the charge transport varnish of the present invention. Examples thereof include the aryl sulfonic acid ester compound disclosed in No. 2, the aryl sulfonic acid ester compound described in Japanese Patent Application No. 2017-243631 and the like.
  • the aryl sulfonic acid ester compound is preferably represented by the following formulas (C) to (E).
  • a 11 is an m-valent group derived from perfluorobiphenyl (ie, a group obtained by removing m fluorine atoms from perfluorobiphenyl).
  • a 12 is —O— or —S—, but —O— is preferred.
  • a 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing (n + 1) hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable. ..
  • R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 is optionally substituted carbon. It is a monovalent hydrocarbon group of numbers 2 to 20.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. , N-Hexyl group and the like. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl.
  • Examples include an alkyl group such as a group, a sec-butyl group and a tert-butyl group; and an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group.
  • R s1 to R s4 it is preferable that R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms and the rest are hydrogen atoms. Further, it is preferable that R s1 is a linear alkyl group having 1 to 3 carbon atoms and R s2 to R s4 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • a 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted.
  • the hydrocarbon group is a group obtained by removing m hydrogen atoms from a hydrocarbon having one or more aromatic rings and having 6 to 20 carbon atoms.
  • Examples of the hydrocarbon include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
  • a part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro.
  • Group cyano group, hydroxy group, amino group, silanol group, thiol group, carboxy group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, monovalent hydrocarbon group, organo Examples thereof include an oxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. Of these, as A 14 , a group derived from benzene, biphenyl, or the like is preferable.
  • a 15 is —O— or —S—, but —O— is preferred.
  • a 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s6 and R s7 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups.
  • R s8 is a linear or branched monovalent aliphatic hydrocarbon group.
  • the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more.
  • the upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • linear or branched monovalent aliphatic hydrocarbon group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-.
  • Alkyl group having 1 to 20 carbon atoms such as butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a methyl-2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group.
  • R s6 A hydrogen atom is preferable as R s6
  • R s7 and R s8 an alkyl group having 1 to 6 carbon atoms is preferable as R s7 and R s8 .
  • R s7 and R s8 may be the same or different.
  • m is an integer satisfying 1 ⁇ m ⁇ 4, but 2 is preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. It is a halogenated alkenyl group having 2 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl.
  • the alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with halogen atoms.
  • the alkyl halide group may be linear, branched or cyclic, and specific examples thereof include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, 1,1,2,2, 2-Pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl Group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1 , 2,2,3,3,4,4,4-nonafluorobutyl group and the like.
  • the halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms.
  • Specific examples thereof include a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro-3-butenyl group. And so on.
  • R s9 a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, an alkenyl halide group having 2 to 10 carbon atoms and the like are preferable, and a nitro group, a cyano group and 1 to 10 carbon atoms are preferable.
  • the alkyl halide group of 4 and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group, the perfluoropropenyl group and the like are even more preferable.
  • R s10 to R s13 a halogen atom is preferable, and a fluorine atom is more preferable.
  • a 17 is —O—, —S— or —NH—, but —O— is preferred.
  • a 18 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • the monovalent aliphatic hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or ⁇ OR s19 .
  • R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
  • Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 .
  • R s18 is a monovalent aliphatic hydrocarbon group
  • R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Is even more preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 includes an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group. And so on. Of these, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • Suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
  • the ionic compound represented by the following formula (F) is preferable from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
  • E is a Group 13 element of the long periodic table
  • Ar 1 to Ar 4 are independently aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms.
  • a group such as a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group. It may be substituted with an alkylated group.
  • a boron atom, an aluminum atom, and a gallium atom are preferable, and a boron atom is more preferable.
  • the aryl group having 6 to 20 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group and a 2-phenanthryl group. Examples thereof include a 3-phenanthryl group, a 4-phenanthryl group, and a 9-phenanthryl group.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group and 3-.
  • Isooxazolyl group 4-isoxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, 4- Examples thereof include an imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group.
  • M + is an onium ion.
  • the onium ion include iodonium ion, sulfonium ion, ammonium ion, phosphonium ion and the like, and iodonium ion represented by the following formula (G) is particularly preferable.
  • R 1 and R 2 independently have an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, and 6 to 20 carbon atoms, respectively.
  • tetracyanoquinodimethane derivative examples include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro.
  • benzoquinone derivative examples include tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and the like.
  • aryl sulfonic acid compounds and aryl sulfonic acid ester compounds are preferable because they have a large effect of suppressing the creep-up phenomenon.
  • the charge-transporting varnish of the present invention contains a dopant
  • the content thereof varies depending on the type of dopant, the desired charge-transporting property, and the like, and therefore cannot be unconditionally defined.
  • the dopant for the charge-transporting organic compound (H) (H) is usually about 0.01 to 50 in terms of molar ratio, preferably about 0.1 to 10, and more preferably 1.
  • the amount is about 0 to 5.0.
  • the charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical characteristics of the obtained charge-transporting thin film.
  • organic silane compound examples include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound.
  • a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
  • the organic silane compound may be used alone or in combination of two or more.
  • the content thereof is usually about 0.1 to 50% by mass in the solid content, but the flatness of the obtained thin film is improved and the decrease in charge transportability is suppressed. In consideration of such a balance, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.
  • the charge-transporting varnish of the present invention may contain an amine compound from the viewpoint of dissolving a charge-transporting organic compound or a dopant in an organic solvent to obtain a highly uniform varnish, and the content thereof is usually in the solid content. It is about 0.1 to 50% by mass.
  • the method for preparing the charge-transporting varnish is not particularly limited, and examples thereof include a method of adding a charge-transporting organic compound, surface-modified zirconia particles, and if necessary, a dopant or the like to the organic solvent in any order or at the same time.
  • a charge-transporting organic compound, surface-modified zirconia particles, and if necessary, a dopant or the like may be dissolved or dispersed in one organic solvent, and another organic solvent may be added thereto.
  • a charge-transporting organic compound, surface-modified zirconia particles, and, if necessary, a dopant and the like may be dissolved or dispersed sequentially or simultaneously in a mixed solvent of a plurality of organic solvents.
  • a charge transporting varnish may be prepared using a dispersion of surface-modified zirconia particles.
  • the mixing order is not particularly limited, but a mixture is prepared by mixing components other than the surface-modified zirconia particles (charge-transporting organic compound, etc.) with an organic solvent, and the surface-modified zirconia particles prepared in advance in the mixture are prepared. Examples thereof include a method of adding a dispersion and a method of adding a mixture thereof to a prepared dispersion of surface-modified zirconia particles.
  • an additional organic solvent may be added at the end, or a part of the components relatively easily soluble in the organic solvent may be added at the end without being included in the mixture.
  • a dispersion containing surface-modified zirconia particles in a good dispersed state or a good dissolved state and a mixture containing other components are prepared. It is preferable to prepare separately, mix the two, and then stir well. It should be noted that surface-modified zirconia particles, charge-transporting organic compounds, etc. may aggregate or precipitate when mixed depending on the type and amount of the organic solvent mixed together.
  • the charge transporting varnish it may be appropriately heated as long as the components do not decompose or deteriorate.
  • the charge-transporting varnish of the present invention is a submicrometer-order filter after dissolving a charge-transporting organic compound and, if necessary, a dopant or the like in an organic solvent from the viewpoint of obtaining a thin film having higher flatness with good reproducibility. It is desirable to filter using such as.
  • the viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C.
  • the viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd.
  • the surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.
  • the viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.
  • the charge-transporting organic substance monodisperse in the charge-transporting varnish of the present invention.
  • the compound and, if contained, the dopant and the like are uniformly dissolved in the organic solvent, and the zirconia particles surface-modified with the surface treatment agent are uniformly dispersed in the organic solvent.
  • the charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.
  • varnish coating method examples include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.
  • the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and it is possible to obtain a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can. Depending on the type of dopant used together, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
  • the firing temperature is usually set appropriately within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, and the like.
  • a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
  • the thickness of the charge transporting thin film is not particularly limited, but when used as a functional layer between the anode and the light emitting layer such as a hole injection layer, a hole transport layer, or a hole injection transport layer of an organic EL element, 5
  • the lower limit is preferably 10 nm, more preferably 20 nm, still more preferably 30 nm, still more preferably 40 nm, and even more preferably, from the viewpoint of obtaining a charge-transporting thin film having excellent flatness with good reproducibility.
  • Is 45 nm and the upper limit thereof is preferably 250 nm, more preferably 200 nm, even more preferably 150 nm, still more preferably 100 nm, and even more preferably 75 nm from the viewpoint of obtaining a thin film having excellent transparency with good reproducibility. .. If the particle size of the surface-modified zirconia particles is larger than the film thickness, a thin film having excellent flatness cannot be obtained. Therefore, the particle size of the surface-modified zirconia particles to be used is determined in consideration of the desired film thickness. Usually, the average particle diameter (nm) of the surface-modified zirconia particles is 3 nm or more smaller than the thickness (nm) of the charge-transporting thin film. Examples of the method of changing the film thickness include a method of changing the solid content concentration in the varnish and a method of changing the amount of liquid on the substrate at the time of coating.
  • the charge-transporting thin film of the present invention exhibits a refractive index (n) of 1.67 or more and an extinction coefficient (k) of 0.040 or less on average in the wavelength region of 400 to 800 nm, but in some embodiments. It exhibits a refractive index of 1.69 or higher, in some other embodiments a refractive index of 1.72 or higher, and in yet another embodiment a refractive index of 1.73 or higher. Further, in one embodiment, the extinction coefficient is 0.030 or less, in another aspect, the extinction coefficient is 0.025 or less, and in yet another aspect, the extinction coefficient is 0.020 or less.
  • the charge-transporting thin film of the present invention can be formed by the method described above, but by using the charge-transporting varnish of the present invention, the charge-transporting thin film can be suitably formed in the partition wall of the substrate with a partition wall.
  • the substrate with a partition wall is not particularly limited as long as it is a substrate on which a predetermined pattern is formed by a known photolithography method or the like. Normally, there are a plurality of openings defined by the partition wall on the substrate. Usually, the size of the opening is 100 to 210 ⁇ m on the long side, 40 ⁇ m ⁇ 100 ⁇ m on the short side, and the bank taper angle is 20 to 80 °.
  • the material of the substrate is not particularly limited, but is a transparent electrode material typified by indium tin oxide (ITO) and indium zinc oxide (IZO) used as an anode material of an electronic element; aluminum, gold, Metal anode materials composed of metals typified by silver, copper, indium, etc. or alloys thereof; polymer anode materials such as polythiophene derivatives and polyaniline derivatives having high charge transport properties, etc., are subjected to flattening treatment. Is preferable.
  • the charge transporting varnish of the present invention is applied to the inside of the partition wall of the substrate with a partition wall by an inkjet method, then depressurized, and further heated if necessary to remove the solvent from the charge transporting varnish coated inside the partition wall.
  • a charge-transporting thin film can be produced to produce a substrate with a charge-transporting thin film, and further, by laminating other functional films on the charge-transporting thin film, an electronic element such as an organic EL element can be formed. Can be manufactured.
  • the atmosphere at the time of coating with the inkjet is not particularly limited, and may be any of an air atmosphere, an atmosphere of an inert gas such as nitrogen, and a reduced pressure.
  • the degree of decompression (vacuum degree) at the time of depressurization is not particularly limited as long as the solvent of the varnish evaporates, but is usually 1,000 Pa or less, preferably 100 Pa or less, more preferably 50 Pa or less, still more preferably 25 Pa or less, and further. It is preferably 10 Pa or less.
  • the depressurizing time is also not particularly limited as long as the solvent evaporates, but is usually about 0.1 to 60 minutes, preferably about 1 to 30 minutes.
  • the conditions for firing (heating) are the same as the above-mentioned conditions.
  • the pile-up index described later is usually a high value of 84% or more, preferably 87% or more, more preferably 90% or more, even more preferably 93% or more, still more preferably 96% or more, and pile. Up can be suppressed.
  • the pile-up index is when the partition wall (bank) width is A ( ⁇ m) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B ( ⁇ m). It can be derived from the formula (B / A) ⁇ 100 (%).
  • the organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f).
  • an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of.
  • an arbitrary functional layer can be provided between the layers.
  • Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) Electron / hole injection transport layer / light emitting layer / cathode
  • the "hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and a layer of hole transporting material between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is the “hole injection layer”, and the other layers are the “hole transport layers”.
  • the hole injection (transport) layer a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
  • the "electron injection layer”, “electron transport layer” and “electron transport layer” are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injection transporting layer”, and two layers of electron transporting material are provided between the light emitting layer and the cathode. When the above is provided, the layer close to the cathode is the “electron injection layer”, and the other layers are the “electron transport layer”.
  • the "light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted.
  • the host material mainly has a function of promoting the recombination of electrons and holes and confining the excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.
  • the materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.
  • a hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited.
  • a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include transparent electrodes typified by ITO and IZO, metals typified by aluminum, and metal anodes composed of alloys thereof, and those subjected to flattening treatment are preferable.
  • Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used.
  • other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-.
  • Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.
  • the light emitting layer When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.
  • Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
  • Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.
  • cathode material examples include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • hole-transporting polymer examples include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,4-diamino).
  • Phenylene poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis ⁇ 1'-penten-5'-yl ⁇ fluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like
  • luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH).
  • PDAF poly (9,9-dialkylfluorene)
  • MEH poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene)
  • -PPV polyphenylene vinylene derivatives
  • PAT poly (3-alkylthiophene)
  • PVCz polyvinylcarbazole
  • the materials forming the anode and cathode and the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..
  • a transparent anode is used on the substrate side to extract light from the substrate side
  • a reflective anode made of metal is used and the direction is opposite to that of the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.
  • the charge transporting thin film of the present invention can be used as a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, an organic integrated circuit, and an organic Electric field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes, organic Plasmon light emitting devices, etc. It can also be used as a functional layer of an electronic device.
  • the equipment used is as follows. (1) MALDI-TOF-MS: Bruker's autoflex III smart beam (2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd. (3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method) (4) Varnish application: Spin coater MS-A100 manufactured by Mikasa Co., Ltd. (5) Film thickness measurement and surface shape measurement: Fine shape measuring machine surf coder ET-4000A manufactured by Kosaka Laboratory Co., Ltd. (6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
  • Measurement of element current density Multi-channel IVL measuring device manufactured by EHC Co., Ltd.
  • MMA Methyl methacrylate
  • HEMA 2-Hydroxyethyl methacrylate
  • HPMA 4-Hydroxyphenyl methacrylate
  • HPMA-QD Condensation reaction of 1 mol of 4-hydroxyphenyl methacrylate with 1.1 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride
  • Compound CHMI N-cyclohexylmaleimide
  • PFHMA 2- (perfluorohexyl) ethyl methacrylate
  • MAA AIBN methacrylate: ⁇ , ⁇ '-azobisisobutyronitrile
  • QD1 ⁇ , ⁇ , ⁇ '-tris (4) -Hydroxyphenyl
  • GT-401 Tetrabutanetetracarboxylate (Tetrabutantetracarboxylate) 3,4-Epoxycyclohexylmethyl) modified ⁇ -caprolactone (trade name: Epolide GT-401, manufactured by Daicel Co., Ltd.)
  • PGME Propylene glycol monomethyl ether
  • PGMEA Propylene glycol monomethyl ether acetate
  • CHN Cyclohexanone
  • TMAH Tetramethylammonium hydroxide
  • TBSCl tert-butyldimethylchlorosilane
  • THF tetrahydrofuran
  • Pdba) 2 Bis (dibenzylideneacetone) Palladium (0) [(t-Bu) 3 PH]
  • BF 4 Tritert-butylphosphnium tetrafluoroborate
  • t-BuONa tert-sodium butoxy TBAF: tetrabutylammonium fluor
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the acrylic polymers P1 and P2 were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Chromatograph GPC device LC-20AD manufactured by Shimadzu Corporation -Column: Shodex KF-804L and 803L (manufactured by Showa Denko KK) and TSK-GEL (manufactured by Tosoh Corporation) are connected in series.
  • the thin film was immersed in a 1.0 mass% TMAH aqueous solution for 120 seconds for development, and then the thin film was washed with running water for 20 seconds using ultrapure water. Next, the thin film on which this rectangular pattern was formed was post-baked (230 ° C., 30 minutes) and cured to prepare a substrate with a partition wall.
  • the visible region average refractive index n and the visible region average extinction coefficient k were measured at a wavelength of 400 to 800 nm. The results are shown in Table 1.
  • the thin film obtained from the charge-transporting varnish of the present invention showed a higher refractive index and a lower extinction coefficient than the thin film of the comparative example containing no particles.
  • a single-layer device was produced by forming an aluminum film at 0.2 nm / sec at 80 nm on the ITO substrate on which the thin film was formed, using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa). did.
  • the elements were sealed with a sealing substrate and then their characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the elements are placed between the sealing substrates, and the sealing substrates are bonded with an adhesive (Morresco Moisture Cut WB90US (P) manufactured by MORESCO Corporation).
  • a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the element.
  • the bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • a substrate with a charge-transporting thin film was obtained.
  • the charge-transporting thin film was discharged so that the film thickness near the center of the opening was 60 to 80 nm.
  • the shape of the surface of the charge-transporting thin film was measured with respect to the substrate with the charge-transporting thin film obtained in Example 4. The results are shown in FIG. In addition, the pile-up index was calculated for the prepared charge-transporting thin film.
  • the pile-up index is (B) when the partition wall (bank) width is A ( ⁇ m) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B ( ⁇ m). It was calculated as / A) ⁇ 100 (%).
  • Table 3 In Example 4, the pile-up index was calculated with the short side as the partition width.
  • the charge-transporting thin film shows good flatness and the pile-up index is 98. It showed a high value exceeding%.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a charge-transporting varnish which comprises (A) zirconia particles which are surface modified with a surface treating agent, (B) a monodispersed charge-transporting organic compound, and (C) an organic solvent.

Description

電荷輸送性ワニスCharge transport varnish

 本発明は、電荷輸送性ワニスに関する。 The present invention relates to a charge transporting varnish.

 有機エレクトロルミネッセンス(EL)素子に用いられる正孔注入層等の有機機能層の形成方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別される。これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。このような事情に鑑み、本出願人は、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば、特許文献1~3参照)。 The method for forming an organic functional layer such as a hole injection layer used in an organic electroluminescence (EL) device is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, at present, the area of organic EL displays is being increased, and a hole injection layer that can be formed by a wet process is desired. In view of these circumstances, the applicant has applied a charge transporting material that can be applied to various wet processes and provides a thin film capable of realizing excellent EL device characteristics when applied to a hole injection layer of an organic EL device. In addition, we have been developing compounds with good solubility in organic solvents used for them (see, for example, Patent Documents 1 to 3).

 一方、これまで、有機EL素子を高性能化するために様々な取り込みがなされてきている。例えば、光取出し効率を向上させる等の目的で、用いる機能膜の屈折率を調整する取り組みがなされている。具体的には、素子の全体構成や隣接する他の部材の屈折率を考慮して、相対的に高い、あるいは低い屈折率の正孔注入層や正孔輸送層を用いることで、素子の高効率化を図る試みがなされている(例えば、特許文献4、5参照)。このように、屈折率は有機EL素子の設計上重要な要素であり、有機EL素子用材料では屈折率も考慮すべき重要な物性値と考えられている。 On the other hand, various incorporations have been made so far in order to improve the performance of organic EL elements. For example, efforts are being made to adjust the refractive index of the functional film used for the purpose of improving the light extraction efficiency. Specifically, the height of the device is increased by using a hole injection layer or a hole transport layer having a relatively high or low refractive index in consideration of the overall configuration of the device and the refractive index of other adjacent members. Attempts have been made to improve efficiency (see, for example, Patent Documents 4 and 5). As described above, the refractive index is an important factor in the design of the organic EL element, and in the material for the organic EL element, the refractive index is also considered to be an important physical property value to be considered.

 また、有機EL素子に用いられる電荷輸送性薄膜の着色は、有機EL素子の色純度及び色再現性を低下させる等の事情から、近年、有機EL素子用の電荷輸送性薄膜は、可視領域での透過率が高く、高透明性を有することが望まれている(例えば、特許文献6参照)。本出願人は、可視領域での着色が抑制され、透明性に優れた電荷輸送性薄膜を与えるウェットプロセス用材料を既に見出しているが(例えば、特許文献6、7参照)、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスを用いた有機ELディスプレイの実用化に向けてその開発が精力的に行われており、高透明性の電荷輸送性薄膜を与えるウェットプロセス用材料は常に求められている。 Further, in recent years, the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see, for example, Patent Document 6). The applicant has already found a material for a wet process that suppresses coloring in the visible region and provides a charge-transporting thin film having excellent transparency (see, for example, Patent Documents 6 and 7), but of an organic EL display. Currently, as the area is being increased, the development of organic EL displays using the wet process is being vigorously carried out, and the materials for the wet process that provide a highly transparent charge-transporting thin film are available. Always sought after.

 ところで、有機ELディスプレイの製造において、ウェットプロセスで正孔注入層やその他の有機機能層を形成する場合、一般的に、層の形成領域を取り囲むように隔壁(バンク)を設け、その隔壁の開口部内に有機機能インクが塗布される。この際、開口部内に塗布されたインクが隔壁の側面を這い上がり、隔壁の側面と接触する塗膜周縁部の厚みが塗膜中央部よりも厚くなる、いわゆる這い上がり現象が発生することがある。このような這い上がり現象が起こると、電極間に形成された複数の有機機能層がその積層順に機能せず、リーク電流路が形成されるという事態を引き起こす。その結果、所望の素子特性が実現できないこととなる。また、這い上がった正孔注入層等の有機機能層は、得られる有機EL素子の発光ムラを引き起こすことがある。特許文献8、9には這い上がり現象を抑制する手段が提案されているが、ウェットプロセスを用いた有機ELディスプレイの開発がより一層加速する昨今の状況を受け、このような這い上がり現象の抑制に関する技術への要求は更に高まっている。 By the way, in the manufacture of an organic EL display, when a hole injection layer or another organic functional layer is formed by a wet process, a partition wall (bank) is generally provided so as to surround the layer forming region, and the partition wall is opened. Organic functional ink is applied to the inside of the part. At this time, the ink applied in the opening may crawl up on the side surface of the partition wall, and the thickness of the peripheral portion of the coating film in contact with the side surface of the partition wall may be thicker than that of the central portion of the coating film, so-called crawling phenomenon may occur. .. When such a crawling phenomenon occurs, the plurality of organic functional layers formed between the electrodes do not function in the order of stacking, causing a situation in which a leak current path is formed. As a result, the desired device characteristics cannot be realized. Further, the organic functional layer such as the crawling hole injection layer may cause uneven light emission of the obtained organic EL element. Patent Documents 8 and 9 propose means for suppressing the crawling phenomenon, but in response to the recent situation in which the development of organic EL displays using a wet process is further accelerated, the suppression of such a crawling phenomenon is suppressed. The demand for technology related to is increasing.

国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/217457号International Publication No. 2017/217457 特表2007-536718号公報Special Table 2007-536718 特表2017-501585号公報Special Table 2017-501585 国際公開第2013/042623号International Publication No. 2013/0426223 国際公開第2008/032616号International Publication No. 2008/032616 特開2009-104859号公報JP-A-2009-104859 特開2011-103222号公報Japanese Unexamined Patent Publication No. 2011-103222

 本発明は、前記事情に鑑みなされたものであり、這い上がり現象が抑制され、高屈折率かつ高透明性を有する薄膜を与え、有機EL素子の機能層として好適な電荷輸送性薄膜を与える電荷輸送性ワニスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a charge that suppresses the creeping phenomenon, provides a thin film having a high refractive index and high transparency, and provides a charge transporting thin film suitable as a functional layer of an organic EL element. It is intended to provide a transportable varnish.

 本発明者は、前記目的を達成するために鋭意検討を重ねた結果、表面処理剤で表面修飾されたジルコニア粒子、単分散の電荷輸送性有機化合物及び有機溶媒を含む電荷輸送性ワニスから得られる薄膜が、高い電荷輸送性、高い透明性(低いk値)及び高い屈折率(高いn値)を示し、前記ワニスをウェットプロセスで隔壁内に塗布した場合に、ワニスの這い上がりが極めて抑制された薄膜を作製できることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventor is obtained from a charge transport varnish containing zirconia particles surface-modified with a surface treatment agent, a monodisperse charge transport organic compound, and an organic solvent. The thin film exhibits high charge transportability, high transparency (low k value) and high refractive index (high n value), and when the varnish is applied into the partition wall by a wet process, the varnish creeping up is extremely suppressed. The present invention has been completed by finding that a thin film can be produced.

 すなわち、本発明は、下記電荷輸送性ワニスを提供する。
1.(A)表面処理剤で表面修飾されたジルコニア粒子、(B)単分散の電荷輸送性有機化合物及び(C)有機溶媒を含む電荷輸送性ワニス。
2.前記表面処理剤で表面修飾されたジルコニア粒子の平均粒子径が、2~100nmである1の電荷輸送性ワニス。
3.前記電荷輸送性有機化合物が、アリールアミン誘導体、チオフェン誘導体及びピロール誘導体から選ばれる少なくとも1種を含む1又は2の電荷輸送性ワニス。
4.前記電荷輸送性有機化合物が、アリールアミン誘導体を含む3の電荷輸送性ワニス。
5.前記電荷輸送性有機化合物の分子量が、200~9,000である1~4のいずれかの電荷輸送性ワニス。
6.前記電荷輸送性有機化合物が、前記有機溶媒に溶解している1~5のいずれかの電荷輸送性ワニス。
7.更に、(D)ドーパントを含む1~6のいずれかの電荷輸送性ワニス。
8.(D)ドーパントが、アリールスルホン酸エステル化合物である7の電荷輸送性ワニス。
9.1~8のいずれかの電荷輸送性ワニスから得られる電荷輸送性薄膜。
10.9の電荷輸送性薄膜を備える有機EL素子。
11.前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である10の有機EL素子。
That is, the present invention provides the following charge transporting varnish.
1. 1. A charge-transporting varnish containing (A) zirconia particles surface-modified with a surface treatment agent, (B) a monodisperse charge-transporting organic compound, and (C) an organic solvent.
2. 2. A charge-transporting varnish having an average particle size of 2 to 100 nm for zirconia particles surface-modified with the surface treatment agent.
3. 3. One or two charge-transporting varnish in which the charge-transporting organic compound contains at least one selected from an arylamine derivative, a thiophene derivative and a pyrrole derivative.
4. 3. The charge-transporting varnish in which the charge-transporting organic compound contains an arylamine derivative.
5. A charge-transporting varnish according to any one of 1 to 4, wherein the charge-transporting organic compound has a molecular weight of 200 to 9,000.
6. The charge-transporting varnish according to any one of 1 to 5, wherein the charge-transporting organic compound is dissolved in the organic solvent.
7. Further, the charge transporting varnish according to any one of 1 to 6 containing (D) dopant.
8. (D) A charge-transporting varnish of 7 in which the dopant is an aryl sulfonic acid ester compound.
A charge-transporting thin film obtained from the charge-transporting varnish according to any one of 9.1 to 8.
An organic EL device including a charge transporting thin film of 10.9.
11. Ten organic EL devices in which the charge transporting thin film is a hole injection layer or a hole transport layer.

 本発明の電荷輸送性ワニスを用いることで、ウェットプロセスで隔壁内に塗布した場合でも、ワニスの這い上がり(いわゆるパイルアップ)が極めて抑制された電荷輸送性薄膜を作製できる。また、本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜は、平坦性及び電荷輸送性に優れ、高い透明性及び高い屈折率を有する。したがって、本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜は、有機EL素子をはじめとする電子素子用薄膜として好適に用いることができる。 By using the charge-transporting varnish of the present invention, it is possible to produce a charge-transporting thin film in which the varnish creeps up (so-called pile-up) is extremely suppressed even when it is applied into the partition wall by a wet process. Further, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention is excellent in flatness and charge-transporting property, and has high transparency and high refractive index. Therefore, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention can be suitably used as a thin film for electronic devices such as organic EL devices.

実施例4で得られた電荷輸送性薄膜付き基板の隔壁内の電荷輸送性薄膜の形状を示す図である。It is a figure which shows the shape of the charge transport thin film in the partition wall of the substrate with a charge transport thin film obtained in Example 4. FIG.

[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、(A)表面処理剤で表面修飾されたジルコニア粒子(以下、表面修飾ジルコニア粒子ともいう。)、(B)単分散の電荷輸送性有機化合物、及び(C)有機溶媒を含むものである。
[Charge transport varnish]
The charge-transporting varnish of the present invention includes (A) zirconia particles surface-modified with a surface treatment agent (hereinafter, also referred to as surface-modified zirconia particles), (B) a monodisperse charge-transporting organic compound, and (C). It contains an organic solvent.

[(A)表面修飾ジルコニア粒子]
 (A)成分の表面修飾ジルコニア(ZrO2)粒子は、ジルコニアからなる核粒子を表面処理剤で表面処理して得られるものである。前記表面処理剤としては、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、フェニルトリメトキシシラン、2-[メトキシ(ポリエチレンオキシ)プロピル]-トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-(メタクリロイルオキシ)プロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシラン、グリシドキシプロピルトリメトキシシラン等のシランカップリング剤;ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール等のアルコール;トリエチレングリコールモノメチルエーテル等のグリコールエーテル;オクタン酸、酢酸、プロピオン酸、2-[2-(2-メトキシエトキシ)エトキシ]酢酸、オレイン酸、ステアリン酸、安息香酸等のカルボン酸等が挙げられる。
[(A) Surface-modified zirconia particles]
The surface-modified zirconia (ZrO 2 ) particles of the component (A) are obtained by surface-treating the nuclear particles made of zirconia with a surface treatment agent. Examples of the surface treatment agent include n-propyltrimethoxysilane, n-propyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, phenyltrimethoxysilane, and 2- [methoxy (polyethyleneoxy) propyl]. -Trimethoxysilane, methoxytri (ethyleneoxy) propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- (methacryloyloxy) propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane , 3-Isocyanatopropyltrimethoxysilane, silane coupling agents such as glycidoxypropyltrimethoxysilane; heptanol, hexanol, octanol, benzyl alcohol, phenol, ethanol, propanol, butanol, oleyl alcohol, dodecyl alcohol, octadecanol. Alcohols such as; glycol ethers such as triethylene glycol monomethyl ether; carboxylic acids such as octanoic acid, acetic acid, propionic acid, 2- [2- (2-methoxyethoxy) ethoxy] acetic acid, oleic acid, stearic acid, benzoic acid and the like. Can be mentioned.

 前記核粒子の平均粒子径は、好ましくは1~90nm、より好ましくは2~45nm、より一層好ましくは3~18nmである。なお、前記核粒子の平均粒子径を測定する方法としては、例えば、透過型電子顕微鏡(TEM)を用いる方法等が挙げられる。TEMを用いる平均粒子径の測定方法は種々知られているが、その一例として、円相当径に基づく方法を挙げることができる。これは、TEMを用いて得られる粒子の投影画像を画像処理ソフトウェアで処理することにより、各粒子の円相当径を求め、それらの円相当径の数平均として、平均粒子径を求める方法である。円相当径はヘイウッド径とも呼ばれ、粒子の投影画像の面積と同じ面積を持つ円の直径である。この方法では、典型的には、TEMと共に提供される、TEMの製造販売元が作成した画像処理ソフトウェアを用いて、投影画像の処理を行う。 The average particle size of the nuclear particles is preferably 1 to 90 nm, more preferably 2 to 45 nm, and even more preferably 3 to 18 nm. Examples of the method for measuring the average particle size of the nuclear particles include a method using a transmission electron microscope (TEM). Various methods for measuring the average particle size using TEM are known, and one example thereof is a method based on the equivalent circle diameter. This is a method of obtaining the equivalent circle diameter of each particle by processing the projected image of the particles obtained by using TEM with image processing software, and obtaining the average particle diameter as the number average of the equivalent circle diameters. .. The equivalent circle diameter, also called the Haywood diameter, is the diameter of a circle that has the same area as the projected image of the particles. In this method, the projected image is typically processed using image processing software created by the manufacturer and distributor of the TEM, which is provided with the TEM.

 前記表面修飾ジルコニア粒子は、その平均粒子径が、2~100nmのものが好ましく、3~50nmのものがより好ましく、5~20nmのものがより一層好ましい。なお、前記表面修飾ジルコニア粒子の平均粒子径は、動的光散乱法による体積基準の粒度分布測定における累積頻度分布が50%になる粒子径(メジアン径D50)である。 The surface-modified zirconia particles preferably have an average particle diameter of 2 to 100 nm, more preferably 3 to 50 nm, and even more preferably 5 to 20 nm. The average particle size of the surface-modified zirconia particles is a particle size (median diameter D 50 ) at which the cumulative frequency distribution in the volume-based particle size distribution measurement by the dynamic light scattering method is 50%.

 前記表面修飾ジルコニア粒子としては市販品又はそれらを表面処理したものを使用することができ、その具体例としては、第一稀元素化学工業(株)製EP酸化ジルコニウム、同SPZ酸化ジルコニウム、同UEP酸化ジルコニウム、同SRP-2酸化ジルコニウム、同UEP-100酸化ジルコニウム、新日本電工(株)製PCS、同N-PC、同OGS、同H4、昭和電工(株)製ショウジルコニアRZ(#42/100、#100/200、#200F、#280F、#325F、#3000F)等の固体粒子や、Pixelligent Technologies社製PixClear(登録商標)シリーズ、日産化学(株)ナノユース(登録商標)ZR-40BL、同ZR-30AL、第一稀元素化学工業(株)製ZSL-10A、同ZSL-10T、同ZSL-20N、ZSL00014等の表面修飾ジルコニア粒子の分散液、又はそれらを表面処理したものを挙げることができるが、これらに限定されない。また、表面修飾ジルコニア粒子は、公知の方法で製造してもよい。 As the surface-modified zirconia particles, commercially available products or those surface-treated thereof can be used, and specific examples thereof include EP zirconium oxide, SPZ zirconium oxide, and UEP manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. Zirconium oxide, SRP-2 zirconium oxide, UEP-100 zirconium oxide, PCS manufactured by Shin Nippon Denko Co., Ltd., N-PC, OGS, H4, Show Zirconia RZ (# 42 /) Solid particles such as 100, # 100/200, # 200F, # 280F, # 325F, # 3000F), PixClear (registered trademark) series manufactured by Pixelligent Technologies, Nissan Chemical Co., Ltd. Nanouse (registered trademark) ZR-40BL, Dispersed liquids of surface-modified zirconia particles such as ZR-30AL, ZSL-10A manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., ZSL-10T, ZSL-20N, and ZSL00014, or surface-treated ones thereof. However, it is not limited to these. Further, the surface-modified zirconia particles may be produced by a known method.

 (A)成分の表面修飾ジルコニア粒子の含有量は、固形分中、通常1~98質量%程度であり、好ましくは5~90質量%程度、より好ましくは10~80質量%程度である。なお、固形分とは、ワニスに含まれる成分のうち溶媒以外の成分を意味する。 The content of the surface-modified zirconia particles of the component (A) is usually about 1 to 98% by mass, preferably about 5 to 90% by mass, and more preferably about 10 to 80% by mass in the solid content. The solid content means a component other than the solvent among the components contained in the varnish.

 本発明において、電荷輸送性有機化合物としては、例えば有機ELの分野等で用いられるものを用いることができる。その具体例としては、オリゴアニリン誘導体、N,N'-ジアリールベンジジン誘導体、N,N,N',N'-テトラアリールベンジジン誘導体等のアリールアミン誘導体(アニリン誘導体)、オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体、オリゴピロール等のピロール誘導体等の各種電荷輸送性有機化合物が挙げられる。これらのうち、アリールアミン誘導体、チオフェン誘導体が好ましい。 In the present invention, as the charge-transporting organic compound, for example, those used in the field of organic EL and the like can be used. Specific examples thereof include arylamine derivatives (aniline derivatives) such as oligoaniline derivatives, N, N'-diarylbenzidine derivatives, N, N, N', N'-tetraarylbenzidine derivatives, oligothiophene derivatives, and thienothiophene derivatives. , Thionophen derivatives such as thienobenzothiophene derivatives, and various charge-transporting organic compounds such as pyrrole derivatives such as oligopyrrole. Of these, arylamine derivatives and thiophene derivatives are preferable.

 前記電荷輸送性有機化合物としては、特開2002-151272号公報、国際公開第2004/105446号、国際公開第2005/043962号、国際公開第2008/032617号、国際公開第2008/032616、国際公開第2013/042623号、国際公開第2014/141998号、国際公開第2014/185208号、国際公開第2015/050253号、国際公開第2015/137391号、国際公開第2015/137395号、国際公開第2015/146912号、国際公開第2015/146965号、国際公開第2016/190326号、国際公開第2016/136544号、国際公開第2016/204079号等に開示されたものを使用することができる。 Examples of the charge-transporting organic compound include JP-A-2002-151272, International Publication No. 2004/105446, International Publication No. 2005/043962, International Publication No. 2008/032617, International Publication No. 2008/032616, and International Publication No. 2013/0426223, International Publication 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. 2015 / 146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, etc. can be used.

 本発明において、前記電荷輸送性有機化合物は、単分散である(すなわち、分子量分布が1である)必要がある。分子量分布を有するオリゴマーやポリマーを使用すると、這い上がり現象を抑制する効果が不十分となる。前記電荷輸送性有機化合物の分子量は、平坦性の高い薄膜を与える均一なワニスを調製する観点から、通常200~9,000程度であるが、より電荷輸送性に優れる薄膜を得る観点から、300以上が好ましく、400以上がより好ましく、平坦性の高い薄膜をより再現性よく与える均一なワニスを調製する観点から、8,000以下が好ましく、7,000以下がより好ましく、6,000以下がより一層好ましく、5,000以下が更に好ましい。 In the present invention, the charge-transporting organic compound needs to be monodisperse (that is, the molecular weight distribution is 1). When an oligomer or polymer having a molecular weight distribution is used, the effect of suppressing the creep-up phenomenon becomes insufficient. The molecular weight of the charge-transporting organic compound is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness, but 300 from the viewpoint of obtaining a thin film having more excellent charge-transporting property. The above is preferable, 400 or more is more preferable, and from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness with better reproducibility, 8,000 or less is preferable, 7,000 or less is more preferable, and 6,000 or less is preferable. Even more preferably, 5,000 or less is even more preferable.

 前記電荷輸送性有機化合物としては、単分散の電荷輸送性有機化合物を1種単独で用いることもでき、異なる単分散の電荷輸送性有機化合物を2種以上組み合わせ用いてもよいが、這い上がり現象を再現性よく抑制する観点から、用いる単分散の電荷輸送性有機化合物は、好ましくは1~3種であり、ワニス調製を容易にする観点等から、より好ましくは1又は2種であり、より一層好ましくは1種である。 As the charge transporting organic compound, a monodisperse charge transporting organic compound may be used alone, or two or more different monodisperse charge transporting organic compounds may be used in combination, but the creeping phenomenon From the viewpoint of suppressing reproducibility, the monodisperse charge-transporting organic compound used is preferably 1 to 3 types, and more preferably 1 or 2 types from the viewpoint of facilitating varnish preparation. More preferably, it is one kind.

 以下、本発明において好適な電荷輸送性有機化合物の具体例を挙げるが、これらに限定されない。なお、下記式中、Phはフェニル基であり、DPAはジフェニルアミノ基である。

Figure JPOXMLDOC01-appb-C000001
Hereinafter, specific examples of charge-transporting organic compounds suitable in the present invention will be given, but the present invention is not limited thereto. In the following formula, Ph is a phenyl group and DPA is a diphenylamino group.
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

 前記電荷輸送性有機化合物の固形分中の含有量は、通常2~99質量%程度であり、好ましくは10~95質量%程度、より好ましくは20~90質量%程度である。 The content of the charge-transporting organic compound in the solid content is usually about 2 to 99% by mass, preferably about 10 to 95% by mass, and more preferably about 20 to 90% by mass.

[有機溶媒]
 前記有機溶媒としては、前述した各成分や後述する各任意成分を溶解又は分散可能なものであれば、特に限定されないが、プロセス適合性に優れている点で低極性溶媒を用いることが好ましい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものを、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。
[Organic solvent]
The organic solvent is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and each of the optional components described below, but it is preferable to use a low-polarity solvent in terms of excellent process compatibility. In the present invention, a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz, and a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.

 前記低極性溶媒としては、例えば、クロロホルム、クロロベンゼン等の塩素系溶媒;トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジメチル、マロン酸ジイソプロピル、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒等が挙げられる。 Examples of the low polar solvent include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like. Alibo alcohol solvents; ethers such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc. Solvents: Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dimethyl phthalate, diisopropyl malate, dibutyl maleate, dibutyl oxalate, hexyl acetate, propylene glycol monomethyl ether Examples thereof include ester solvents such as acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate.

 前記高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;エチルメチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒等が挙げられる。 Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone. System solvent: Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone; Cyano solvent such as acetonitrile and 3-methoxypropionitrile; Ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, Polyhydric alcohol solvents such as 2,3-butanediol; diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyl Monohydric alcohol solvents other than aliphatic alcohols such as oxyethanol, 3-phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol; sulfoxide solvents such as dimethyl sulfoxide and the like can be mentioned.

 前記有機溶媒の使用量は、電荷輸送性有機化合物の析出を抑制しつつ十分な膜厚を確保する観点から、本発明のワニス中の固形分濃度が、通常0.1~20質量%程度、好ましくは0.5~10質量%となる量である。前記有機溶媒は、1種単独で又は2種以上を混合して用いてもよい。 The amount of the organic solvent used is such that the solid content concentration in the varnish of the present invention is usually about 0.1 to 20% by mass from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge-transporting organic compound. The amount is preferably 0.5 to 10% by mass. The organic solvent may be used alone or in combination of two or more.

 本発明の電荷輸送性ワニスは、溶媒として水も含むことができるが、耐久性に優れる有機EL素子を再現性よく得る観点から、水の含有量は、ワニスに含まれる溶媒に対して好ましくは3質量%以下であり、更に、パイルアップが抑制された電荷輸送性薄膜を再現性よく得る観点から、溶媒として有機溶媒のみを用いることが好ましい。なお、この場合における「有機溶媒のみ」とは、溶媒として用いるものが有機溶媒だけであることを意味し、使用する有機溶媒や固形分等に微量に含まれる「水」の存在までをも否定するものではない。 The charge-transporting varnish of the present invention can also contain water as a solvent, but the water content is preferably higher than that of the solvent contained in the varnish from the viewpoint of obtaining an organic EL element having excellent durability with good reproducibility. From the viewpoint of obtaining a charge-transporting thin film having 3% by mass or less and suppressed pile-up with good reproducibility, it is preferable to use only an organic solvent as the solvent. In this case, "only the organic solvent" means that only the organic solvent is used as the solvent, and even the existence of "water" contained in a trace amount in the organic solvent used, the solid content, etc. is denied. It's not something to do.

[ドーパント]
 本発明の電荷輸送性ワニスは、本発明の電荷輸送性ワニスから得られる薄膜の電荷輸送性を向上させる等の目的で、ドーパントを含んでもよい。ドーパントとしては、ワニスに使用する少なくとも一種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント、有機系のドーパントのいずれも使用できる。更に、ドーパントは、ワニスから固体膜である電荷輸送性薄膜を得る過程で、例えば、焼成時の加熱といった外部からの刺激によって、分子内の一部が外れることによってドーパントとしての機能が初めて発現又は向上するようになる物質、例えば、スルホン酸基が脱離しやすい基で保護されたアリールスルホン酸エステル化合物であってもよい。
[Dopant]
The charge-transporting varnish of the present invention may contain a dopant for the purpose of improving the charge-transporting property of the thin film obtained from the charge-transporting varnish of the present invention. The dopant is not particularly limited as long as it is soluble in at least one solvent used for varnish, and either an inorganic dopant or an organic dopant can be used. Further, in the process of obtaining a charge-transporting thin film which is a solid film from a varnish, the dopant first develops its function as a dopant by removing a part of the molecule due to an external stimulus such as heating during firing. It may be a substance that becomes improved, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.

 前記無機系ドーパントとしては、ヘテロポリ酸が好ましく、その具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸、ケイタングステン酸等が挙げられる。 Heteropolyacid is preferable as the inorganic dopant, and specific examples thereof include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, phosphotungstic acid, and silicate tungstic acid.

 ヘテロポリ酸とは、代表的に下記式(HPA1)で示されるKeggin型又は下記式(HPA2)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。

Figure JPOXMLDOC01-appb-C000003
The heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type chemical structure represented by the following formula (HPA1) or a Dawson type chemical structure represented by the following formula (HPA2). It is a polyacid formed by condensing isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and oxygen acid of a different element. Examples of such dissimilar element oxygen acids include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
Figure JPOXMLDOC01-appb-C000003

 前記ヘテロポリ酸としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられる。これらは1種単独で又は2種以上を組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。特に、1種類のヘテロポリ酸を用いる場合、その1種類のヘテロポリ酸は、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、2種類以上のヘテロポリ酸を用いる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。 Examples of the heteropolyacid include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, and phosphotungstic acid. These may be used individually by 1 type or in combination of 2 or more type. The heteropolyacid used in the present invention is available as a commercially available product, and can also be synthesized by a known method. In particular, when one kind of heteropolyacid is used, phosphotungstic acid or phosphomolybdic acid is preferable as the one kind of heteropolyacid, and phosphotungstic acid is most suitable. When two or more kinds of heteropolyacids are used, one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.

 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。 In addition, in quantitative analysis such as elemental analysis, even if the number of elements of the heteropolyacid is large or small from the structure represented by the general formula, the heteropolyacid is obtained as a commercially available product or a known synthesis method. As long as it is properly synthesized according to the above, it can be used in the present invention.

 すなわち、例えば、一般的にリンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ表されるが、定量分析において、この式中のP(リン)、O(酸素)又はW(タングステン)若しくはMo(モリブデン)の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態及び公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。 That is, for example, phosphotungsic acid is generally represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O, and phosphomolybdic acid is generally represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O. In the quantitative analysis, even if the number of P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, or As long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention. In this case, the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.

 前記有機系ドーパントとしては、アリールスルホン酸、アリールスルホン酸エステル、所定のアニオンとその対カチオンとからなるイオン化合物、テトラシアノキノジメタン誘導体、ベンゾキノン誘導体等が挙げられる。 Examples of the organic dopant include aryl sulfonic acid, aryl sulfonic acid ester, an ionic compound composed of a predetermined anion and its counter cation, a tetracyanoquinodimethane derivative, a benzoquinone derivative and the like.

 前記アリールスルホン酸化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、下記式(A)又は(B)で表されるものが好ましい。

Figure JPOXMLDOC01-appb-C000004
The aryl sulfonic acid compound is preferably represented by the following formula (A) or (B) from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
Figure JPOXMLDOC01-appb-C000004

 式(A)中、A1は、-O-又は-S-であるが、-O-が好ましい。A2は、ナフタレン環又はアントラセン環であるが、ナフタレン環が好ましい。A3は、2~4価のパーフルオロビフェニル基である。p1は、A1とA3との結合数であり、2≦p1≦4を満たす整数であるが、A3がパーフルオロビフェニルから誘導される2価の基であり、かつ、p1が2であることが好ましい。p2は、A2に結合するスルホン酸基数であり、1≦p2≦4を満たす整数であるが、2が好適である。 In the formula (A), A 1 is -O- or -S-, but -O- is preferable. A 2 is a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable. A 3 is a 2- to tetravalent perfluorobiphenyl group. p 1 is the number of bonds between A 1 and A 3, and is an integer satisfying 2 ≤ p 1 ≤ 4, but A 3 is a divalent group derived from perfluorobiphenyl and p 1 Is preferably 2. p 2 is the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ≦ p 2 ≦ 4, but 2 is preferable.

 式(B)中、A4~A8は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基又は炭素数2~20のハロゲン化アルケニル基であるが、A4~A8のうち少なくとも3つはハロゲン原子である。qは、ナフタレン環に結合するスルホン酸基数であり、1≦q≦4を満たす整数であるが、2~4が好ましく、2がより好ましい。 In the formula (B), A 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms or 2 to 2 carbon atoms, respectively. There are 20 halogenated alkenyl groups, but at least 3 of A 4 to A 8 are halogen atoms. q is the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ≦ q ≦ 4, but 2 to 4 is preferable, and 2 is more preferable.

 前記炭素数1~20のハロゲン化アルキル基としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、パーフルオロブチル基等が挙げられる。前記炭素数2~20のハロゲン化アルケニル基としては、パーフルオロエテニル基、1-パーフルオロプロペニル基、パーフルオロアリル基、パーフルオロブテニル基等が挙げられる。 Examples of the alkyl halide group having 1 to 20 carbon atoms include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, and a 3,3,3-trifluoropropyl group, 2,2, 3,3,3-Pentafluoropropyl group, perfluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3, Examples thereof include 4,4,4-heptafluorobutyl group and perfluorobutyl group. Examples of the halogenated alkenyl group having 2 to 20 carbon atoms include a perfluoroethenyl group, a 1-perfluoropropenyl group, a perfluoroallyl group, a perfluorobutenyl group and the like.

 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、フッ素原子が好ましい。前記炭素数1~20のアルキル基としては、式(6)のRA及びRBの説明において述べたものと同様のものが挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable. The alkyl group having 1 to 20 carbon atoms include the same ones as mentioned in the description of R A and R B of formula (6).

 これらのうち、A4~A8としては、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基又は炭素数2~10のハロゲン化アルケニル基であり、かつA4~A8のうち少なくとも3つはフッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のアルキル基、炭素数1~5のフッ化アルキル基又は炭素数2~5のフッ化アルケニル基であり、かつA4~A8のうち少なくとも3つはフッ原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のパーフルオロアルキル基又は炭素数1~5のパーフルオロアルケニル基であり、かつA4、A5及びA8がフッ素原子であることがより一層好ましい。なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。 Among these, A 4 to A 8 include a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or an alkenyl halide having 2 to 10 carbon atoms. a group, and it is preferable that at least three fluorine atoms of a 4 - a 8, a hydrogen atom, a fluorine atom, fluorinated cyano group, an alkyl group having 1 to 5 carbon atoms, 5 It is more preferably an alkyl group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, and 1 to 1 carbon atoms. It is even more preferable that the perfluoroalkyl group of 5 or the perfluoroalkenyl group having 1 to 5 carbon atoms is, and A 4 , A 5 and A 8 are fluorine atoms. The perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.

 好適なアリールスルホン酸の具体例としては、以下に示すものが挙げられるが、これらに限定されない。

Figure JPOXMLDOC01-appb-C000005
Specific examples of suitable aryl sulfonic acids include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000005

 前記アリールスルホン酸エステル化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、国際公開第2017/217455号に開示されたアリールスルホン酸エステル化合物、国際公開第2017/217457号に開示されたアリールスルホン酸エステル化合物、特願2017-243631に記載のアリールスルホン酸エステル化合物等が挙げられる。 As the aryl sulfonic acid ester compound, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, International Publication No. 2017/217457, from the viewpoint of the transparency of the thin film obtained from the charge transport varnish of the present invention. Examples thereof include the aryl sulfonic acid ester compound disclosed in No. 2, the aryl sulfonic acid ester compound described in Japanese Patent Application No. 2017-243631 and the like.

 具体的には、低極性溶媒への溶解性の観点から、アリールスルホン酸エステル化合物としては、下記式(C)~(E)で表されるものが好ましい。

Figure JPOXMLDOC01-appb-C000006
Specifically, from the viewpoint of solubility in a low polar solvent, the aryl sulfonic acid ester compound is preferably represented by the following formulas (C) to (E).
Figure JPOXMLDOC01-appb-C000006

 式(C)中、A11は、パーフルオロビフェニルから誘導されるm価の基(すなわち、パーフルオロビフェニルからm個のフッ素原子を取り除いて得られる基)である。A12は、-O-又は-S-であるが、-O-が好ましい。A13は、ナフタレン又はアントラセンから誘導される(n+1)価の基(すなわち、ナフタレン又はアントラセンから(n+1)個の水素原子を取り除いて得られる基)であるが、ナフタレンから誘導される基が好ましい。 In formula (C), A 11 is an m-valent group derived from perfluorobiphenyl (ie, a group obtained by removing m fluorine atoms from perfluorobiphenyl). A 12 is —O— or —S—, but —O— is preferred. A 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing (n + 1) hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable. ..

 式(C)中、Rs1~Rs4は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基であり、Rs5は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In the formula (C), R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 is optionally substituted carbon. It is a monovalent hydrocarbon group of numbers 2 to 20.

 前記直鎖状又は分岐状の炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基等が挙げられる。これらのうち、炭素数1~3のアルキル基が好ましい。 Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. , N-Hexyl group and the like. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.

 前記炭素数2~20の1価炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;フェニル基、ナフチル基、フェナントリル基等のアリール基等が挙げられる。 The monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. Examples include an alkyl group such as a group, a sec-butyl group and a tert-butyl group; and an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group.

 Rs1~Rs4のうち、Rs1又はRs3が炭素数1~3の直鎖アルキル基であり、残りが水素原子であることが好ましい。更に、Rs1が炭素数1~3の直鎖アルキル基であり、Rs2~Rs4が水素原子であることが好ましい。前記炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。また、Rs5としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。 Of R s1 to R s4 , it is preferable that R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms and the rest are hydrogen atoms. Further, it is preferable that R s1 is a linear alkyl group having 1 to 3 carbon atoms and R s2 to R s4 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.

 式(C)中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (C), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.

 式(D)中、A14は、置換されていてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基である。前記炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素からm個の水素原子を取り除いて得られる基である。前記炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等が挙げられる。 In formula (D), A 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted. The hydrocarbon group is a group obtained by removing m hydrogen atoms from a hydrocarbon having one or more aromatic rings and having 6 to 20 carbon atoms. Examples of the hydrocarbon include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.

 また、前記炭化水素基は、その水素原子の一部又は全部が、更に置換基で置換されていてもよく、このような置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシ基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホ基等が挙げられる。これらのうち、A14としては、ベンゼン、ビフェニル等から誘導される基が好ましい。 In addition, a part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro. Group, cyano group, hydroxy group, amino group, silanol group, thiol group, carboxy group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, monovalent hydrocarbon group, organo Examples thereof include an oxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. Of these, as A 14 , a group derived from benzene, biphenyl, or the like is preferable.

 式(D)中、A15は、-O-又は-S-であるが、-O-が好ましい。 In formula (D), A 15 is —O— or —S—, but —O— is preferred.

 式(D)中、A16は、炭素数6~20の(n+1)価の芳香族炭化水素基である。前記芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらのうち、A16としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In formula (D), A 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms. The aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.

 式(D)中、Rs6及びRs7は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基である。Rs8は、直鎖状又は分岐状の1価脂肪族炭化水素基である。ただし、Rs6、Rs7及びRs8の炭素数の合計は6以上である。Rs6、Rs7及びRs8の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。 In formula (D), R s6 and R s7 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups. R s8 is a linear or branched monovalent aliphatic hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.

 前記直鎖状又は分岐状の1価脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、デシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。 Specific examples of the linear or branched monovalent aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-. Alkyl group having 1 to 20 carbon atoms such as butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a methyl-2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group.

 Rs6としては水素原子が好ましく、Rs7及びRs8としては炭素数1~6のアルキル基が好ましい。この場合、Rs7及びRs8は、同一であっても異なっていてもよい。 A hydrogen atom is preferable as R s6 , and an alkyl group having 1 to 6 carbon atoms is preferable as R s7 and R s8 . In this case, R s7 and R s8 may be the same or different.

 式(D)中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (D), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.

 式(E)中、Rs9~Rs13は、それぞれ独立に、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、又は炭素数2~10のハロゲン化アルケニル基である。 In the formula (E), R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. It is a halogenated alkenyl group having 2 to 10 carbon atoms.

 前記炭素数1~10のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. Group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like. Be done.

 前記炭素数1~10のハロゲン化アルキル基は、前記炭素数1~10のアルキル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されない。前記ハロゲン化アルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with halogen atoms. The alkyl halide group may be linear, branched or cyclic, and specific examples thereof include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, 1,1,2,2, 2-Pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl Group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1 , 2,2,3,3,4,4,4-nonafluorobutyl group and the like.

 前記炭素数2~10のハロゲン化アルケニル基としては、炭素数2~10のアルケニル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されない。その具体例としては、パーフルオロビニル基、パーフルオロ-1-プロペニル基、パーフルオロ-2-プロペニル基、パーフルオロ-1-ブテニル基、パーフルオロ-2-ブテニル基、パーフルオロ-3-ブテニル基等が挙げられる。 The halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms. Specific examples thereof include a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro-3-butenyl group. And so on.

 これらのうち、Rs9としては、ニトロ基、シアノ基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のハロゲン化アルケニル基等が好ましく、ニトロ基、シアノ基、炭素数1~4のハロゲン化アルキル基、炭素数2~4のハロゲン化アルケニル基等がより好ましく、ニトロ基、シアノ基、トリフルオロメチル基、パーフルオロプロペニル基等がより一層好ましい。また、Rs10~Rs13としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Of these, as R s9 , a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, an alkenyl halide group having 2 to 10 carbon atoms and the like are preferable, and a nitro group, a cyano group and 1 to 10 carbon atoms are preferable. The alkyl halide group of 4 and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group, the perfluoropropenyl group and the like are even more preferable. Further, as R s10 to R s13 , a halogen atom is preferable, and a fluorine atom is more preferable.

 式(E)中、A17は、-O-、-S-又は-NH-であるが、-O-が好ましい。 In formula (E), A 17 is —O—, —S— or —NH—, but —O— is preferred.

 式(E)中、A18は、炭素数6~20の(n+1)価の芳香族炭化水素基である。前記芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらのうち、A18としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In formula (E), A 18 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms. The aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.

 式(E)中、Rs14~Rs17は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基である。前記1価脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。これらのうち、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 In the formula (E), R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms. The monovalent aliphatic hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. , Se-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl Alkyl group having 1 to 20 carbon atoms such as group, n-dodecyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a butenyl group, a 3-butenyl group and a hexenyl group. Of these, an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.

 式(E)中、Rs18は、直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基、又は-ORs19である。Rs19は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In formula (E), R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or −OR s19 . R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.

 Rs18で表される直鎖状又は分岐状の炭素数1~20の1価脂肪族炭化水素基としては、Rs14~Rs17の説明において述べたものと同様のものが挙げられる。Rs18が1価脂肪族炭化水素基である場合、Rs18としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 . When R s18 is a monovalent aliphatic hydrocarbon group, R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Is even more preferable.

 Rs19で表される炭素数2~20の1価炭化水素基としては、前述した1価脂肪族炭化水素基のうちメチル基以外のもののほか、フェニル基、ナフチル基、フェナントリル基等のアリール基等が挙げられる。これらのうち、Rs19としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。なお、前記1価炭化水素基が有していてもよい置換基としては、フッ素原子、炭素数1~4のアルコキシ基、ニトロ基、シアノ基等が挙げられる。 The monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 includes an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group. And so on. Of these, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.

 式(E)中、nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (E), n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.

 好適なアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。

Figure JPOXMLDOC01-appb-C000007
Specific examples of suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000007

 前記所定のアニオンとその対カチオンとからなるイオン化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、下記式(F)で表されるイオン化合物が好ましい。

Figure JPOXMLDOC01-appb-C000008
As the ionic compound composed of the predetermined anion and its counter cation, the ionic compound represented by the following formula (F) is preferable from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
Figure JPOXMLDOC01-appb-C000008

 式(F)中、Eは、長周期型周期表の第13族元素であり、Ar1~Ar4は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、フッ素原子、塩素原子、臭素原子等のハロゲン原子、シアノ基、ニトロ基、アセチル基等の炭素数2~12のアシル基、又はトリフルオロメチル基等の炭素数1~10のハロゲン化アルキル基で置換されていてもよい。 In the formula (F), E is a Group 13 element of the long periodic table, and Ar 1 to Ar 4 are independently aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms. A group, such as a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group. It may be substituted with an alkylated group.

 前記第13族元素としては、ホウ素原子、アルミニウム原子、ガリウム原子が好ましく、ホウ素原子がより好ましい。前記炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等挙げられる。前記炭素数2~20のヘテロアリール基としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 As the Group 13 element, a boron atom, an aluminum atom, and a gallium atom are preferable, and a boron atom is more preferable. Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group and a 2-phenanthryl group. Examples thereof include a 3-phenanthryl group, a 4-phenanthryl group, and a 9-phenanthryl group. Examples of the heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group and 3-. Isooxazolyl group, 4-isoxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, 4- Examples thereof include an imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group.

 式(F)中、M+は、オニウムイオンである。前記オニウムイオンとしては、ヨードニウムイオン、スルホニウムイオン、アンモニウムイオン、ホスホニウムイオン等が挙げられるが、特に、下記式(G)で表されるヨードニウムイオンが好ましい。

Figure JPOXMLDOC01-appb-C000009
In formula (F), M + is an onium ion. Examples of the onium ion include iodonium ion, sulfonium ion, ammonium ion, phosphonium ion and the like, and iodonium ion represented by the following formula (G) is particularly preferable.
Figure JPOXMLDOC01-appb-C000009

 式(G)中、R1及びR2は、それぞれ独立に、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、ハロゲン原子、シアノ基、ニトロ基、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基で置換されていてもよい。 In formula (G), R 1 and R 2 independently have an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, and 6 to 20 carbon atoms, respectively. Aryl group or heteroaryl group having 2 to 20 carbon atoms, halogen atom, cyano group, nitro group, alkyl group having 1 to 12 carbon atoms, alkenyl group having 2 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms. , It may be substituted with an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.

 前記テトラシアノキノジメタン誘導体としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)や2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)、テトラクロロ-7,7,8,8-テトラシアノキノジメタン、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2-クロロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジクロロ-7,7,8,8-テトラシアノキノジメタン等が挙げられる。 Examples of the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro. -7,7,8,8-Tetracyanoquinodimethane, Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4TCNQ), Tetrachloro-7,7,8,8-Tetracyanoquinodimethane Methane, 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2-chloro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8, Examples thereof include 8-tetracyanoquinodimethane, 2,5-dichloro-7,7,8,8-tetracyanoquinodimethane.

 前記ベンゾキノン誘導体としては、テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)等が挙げられる。 Examples of the benzoquinone derivative include tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and the like.

 これらのドーパントのうち、這い上がり現象を抑制する効果が大きいことから、アリールスルホン酸化合物及びアリールスルホン酸エステル化合物が好ましい。 Of these dopants, aryl sulfonic acid compounds and aryl sulfonic acid ester compounds are preferable because they have a large effect of suppressing the creep-up phenomenon.

 本発明の電荷輸送性ワニスがドーパントを含む場合、その含有量は、ドーパントの種類、所望の電荷輸送性等に応じて異なるため一概に規定できないが、電荷輸送性有機化合物(H)に対するドーパント(D)の含有量の比(D/H)が、モル比で、通常0.01~50程度となる量であり、好ましくは0.1~10程度となる量であり、より好ましくは1.0~5.0程度となる量である。 When the charge-transporting varnish of the present invention contains a dopant, the content thereof varies depending on the type of dopant, the desired charge-transporting property, and the like, and therefore cannot be unconditionally defined. However, the dopant for the charge-transporting organic compound (H) (H) The content ratio (D / H) of D) is usually about 0.01 to 50 in terms of molar ratio, preferably about 0.1 to 10, and more preferably 1. The amount is about 0 to 5.0.

[その他の成分]
 本発明の電荷輸送性ワニスは、得られる電荷輸送性薄膜の膜物性の調整等の目的で、更に有機シラン化合物を含んでもよい。前記有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物又はテトラアルコキシシラン化合物が挙げられる。とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物又はトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。有機シラン化合物は、1種単独で又は2種以上を組み合わせて用いてもよい。
[Other ingredients]
The charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical characteristics of the obtained charge-transporting thin film. Examples of the organic silane compound include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound. In particular, as the organic silane compound, a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable. The organic silane compound may be used alone or in combination of two or more.

 本発明のワニスが有機シラン化合物を含む場合、その含有量は、固形分中、通常0.1~50質量%程度であるが、得られる薄膜の平坦性の向上や電荷輸送性の低下の抑制等のバランスを考慮すると、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%程度である。 When the varnish of the present invention contains an organic silane compound, the content thereof is usually about 0.1 to 50% by mass in the solid content, but the flatness of the obtained thin film is improved and the decrease in charge transportability is suppressed. In consideration of such a balance, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.

 本発明の電荷輸送性ワニスは、電荷輸送性有機化合物やドーパントを有機溶媒に溶解させて均一性の高いワニスを得る観点から、アミン化合物を含んでもよく、その含有量は、固形分中、通常0.1~50質量%程度である。 The charge-transporting varnish of the present invention may contain an amine compound from the viewpoint of dissolving a charge-transporting organic compound or a dopant in an organic solvent to obtain a highly uniform varnish, and the content thereof is usually in the solid content. It is about 0.1 to 50% by mass.

 電荷輸送性ワニスの調製方法は、特に限定されないが、例えば、電荷輸送性有機化合物、表面修飾ジルコニア粒子及び必要に応じてドーパント等を任意の順で又は同時に有機溶媒に加える方法が挙げられる。また、有機溶媒が複数ある場合は、まず電荷輸送性有機化合物、表面修飾ジルコニア粒子及び必要に応じてドーパント等を1種の有機溶媒に溶解又は分散させ、そこへ他の有機溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、電荷輸送性有機化合物、表面修飾ジルコニア粒子及び必要に応じてドーパント等を順次又は同時に溶解又は分散させてもよい。 The method for preparing the charge-transporting varnish is not particularly limited, and examples thereof include a method of adding a charge-transporting organic compound, surface-modified zirconia particles, and if necessary, a dopant or the like to the organic solvent in any order or at the same time. When there are a plurality of organic solvents, a charge-transporting organic compound, surface-modified zirconia particles, and if necessary, a dopant or the like may be dissolved or dispersed in one organic solvent, and another organic solvent may be added thereto. Often, a charge-transporting organic compound, surface-modified zirconia particles, and, if necessary, a dopant and the like may be dissolved or dispersed sequentially or simultaneously in a mixed solvent of a plurality of organic solvents.

 また、本発明においては、表面修飾ジルコニア粒子の分散液を用いて電荷輸送性ワニスを調製してもよい。この場合も、その混合順序は特に限定されないが、表面修飾ジルコニア粒子以外の成分(電荷輸送性有機化合物等)を有機溶媒と混ぜて混合物を調製し、その混合物に予め準備した表面修飾ジルコニア粒子の分散液を加える方法や、その混合物を予め準備しておいた表面修飾ジルコニア粒子の分散液に加える方法が挙げられる。この際、必要であれば、最後に更に有機溶媒を追加で加えたり、有機溶媒に比較的溶けやすい一部の成分を混合物中に含めないでそれを最後に加えたりしてもよい。構成成分の凝集や分離を抑制し、均一性に優れるワニスを再現性よく調製する観点から、良好な分散状態又は良好な溶解状態の表面修飾ジルコニア粒子の分散液及びその他の成分を含む混合物をそれぞれ別に準備し、両者を混ぜ、その後良く撹拌することが好ましい。なお、表面修飾ジルコニア粒子や電荷輸送性有機化合物等は、共に混ぜられる有機溶媒の種類や量によっては、混ぜられた際に凝集又は沈殿する可能性がある点に留意する。また、分散液を用いてワニスを調製する場合、最終的に得られる電荷輸送性ワニス中の表面修飾ジルコニア粒子が所望の量となるように、分散液の濃度やその使用量を決める必要がある点にも留意する。電荷輸送性ワニスを調製する際、成分が分解したり変質したりしない範囲で、適宜加熱してもよい。 Further, in the present invention, a charge transporting varnish may be prepared using a dispersion of surface-modified zirconia particles. In this case as well, the mixing order is not particularly limited, but a mixture is prepared by mixing components other than the surface-modified zirconia particles (charge-transporting organic compound, etc.) with an organic solvent, and the surface-modified zirconia particles prepared in advance in the mixture are prepared. Examples thereof include a method of adding a dispersion and a method of adding a mixture thereof to a prepared dispersion of surface-modified zirconia particles. At this time, if necessary, an additional organic solvent may be added at the end, or a part of the components relatively easily soluble in the organic solvent may be added at the end without being included in the mixture. From the viewpoint of suppressing aggregation and separation of constituents and preparing varnish with excellent uniformity with good reproducibility, a dispersion containing surface-modified zirconia particles in a good dispersed state or a good dissolved state and a mixture containing other components are prepared. It is preferable to prepare separately, mix the two, and then stir well. It should be noted that surface-modified zirconia particles, charge-transporting organic compounds, etc. may aggregate or precipitate when mixed depending on the type and amount of the organic solvent mixed together. When preparing a varnish using a dispersion, it is necessary to determine the concentration of the dispersion and the amount to be used so that the surface-modified zirconia particles in the finally obtained charge-transporting varnish have a desired amount. Also note the point. When preparing the charge transporting varnish, it may be appropriately heated as long as the components do not decompose or deteriorate.

 本発明の電荷輸送性ワニスは、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性有機化合物及び必要に応じてドーパント等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過することが望ましい。 The charge-transporting varnish of the present invention is a submicrometer-order filter after dissolving a charge-transporting organic compound and, if necessary, a dopant or the like in an organic solvent from the viewpoint of obtaining a thin film having higher flatness with good reproducibility. It is desirable to filter using such as.

 本発明の電荷輸送性ワニスの粘度は、通常、25℃で1~50mPa・sである。また、本発明の電荷輸送性ワニスの表面張力は、通常、25℃で20~50mN/mである。なお、粘度は、東機産業(株)製TVE-25形粘度計で測定した値である。表面張力は、協和界面科学(株)製、自動表面張力計CBVP-Z型で測定した値である。ワニスの粘度と表面張力は、所望の膜厚等の各種要素を考慮して、前述した溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。 The viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa · s at 25 ° C. The surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C. The viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd. The surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. The viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.

 平坦性に優れる電荷輸送性薄膜を再現性よく得る観点、均一な光学物性を有する電荷輸送性薄膜を再現性よく得る観点等から、本発明の電荷輸送性ワニス中、単分散の電荷輸送性有機化合物及び含まれる場合にはドーパント等は、有機溶媒に均一に溶解し、かつ表面処理剤で表面修飾されたジルコニア粒子は、有機溶媒に均一に分散している。 From the viewpoint of obtaining a charge-transporting thin film having excellent flatness with good reproducibility, and from the viewpoint of obtaining a charge-transporting thin film having uniform optical characteristics with good reproducibility, the charge-transporting organic substance monodisperse in the charge-transporting varnish of the present invention. The compound and, if contained, the dopant and the like are uniformly dissolved in the organic solvent, and the zirconia particles surface-modified with the surface treatment agent are uniformly dispersed in the organic solvent.

[電荷輸送性薄膜]
 本発明の電荷輸送性薄膜は、本発明の電荷輸送性ワニスを基材上に塗布し、焼成することで形成することができる。
[Charge transport thin film]
The charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.

 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。 Examples of the varnish coating method include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.

 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されず、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面及び高い電荷輸送性を有する薄膜を得ることができる。共に用いるドーパントの種類によっては、ワニスを大気雰囲気下で焼成することで、より高い電荷輸送性を有する薄膜が再現性よく得られる場合がある。 Further, the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and it is possible to obtain a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can. Depending on the type of dopant used together, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.

 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、通常100~260℃程度の範囲内で適宜設定される。なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。 The firing temperature is usually set appropriately within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, and the like. At the time of firing, a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.

 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層、正孔輸送層又は正孔注入輸送層等の陽極と発光層との間の機能層として用いる場合、5~300nmが好ましいが、平坦性に優れる電荷輸送性薄膜を再現性よく得る観点から、その下限値は、好ましくは10nm、より好ましくは20nm、より一層好ましくは30nm、更に好ましくは40nm、更に一層好ましくは45nmであり、透明性に優れる薄膜を再現性よく得る観点から、その上限値は、好ましくは250nm、より好ましくは200nm、より一層好ましくは150nm、更に好ましくは100nm、更に一層好ましくは75nmである。なお、表面修飾ジルコニア粒子の粒子径が膜厚よりも大きくなると平坦性に優れる薄膜を得ることができないため、所望の膜厚を考慮して、用いる表面修飾ジルコニア粒子の粒子径を決定する。通常、表面修飾ジルコニア粒子の平均粒子径(nm)は、電荷輸送性薄膜の厚さ(nm)よりも3nm以上小さいものとする。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の液量を変化させたりする等の方法が挙げられる。 The thickness of the charge transporting thin film is not particularly limited, but when used as a functional layer between the anode and the light emitting layer such as a hole injection layer, a hole transport layer, or a hole injection transport layer of an organic EL element, 5 The lower limit is preferably 10 nm, more preferably 20 nm, still more preferably 30 nm, still more preferably 40 nm, and even more preferably, from the viewpoint of obtaining a charge-transporting thin film having excellent flatness with good reproducibility. Is 45 nm, and the upper limit thereof is preferably 250 nm, more preferably 200 nm, even more preferably 150 nm, still more preferably 100 nm, and even more preferably 75 nm from the viewpoint of obtaining a thin film having excellent transparency with good reproducibility. .. If the particle size of the surface-modified zirconia particles is larger than the film thickness, a thin film having excellent flatness cannot be obtained. Therefore, the particle size of the surface-modified zirconia particles to be used is determined in consideration of the desired film thickness. Usually, the average particle diameter (nm) of the surface-modified zirconia particles is 3 nm or more smaller than the thickness (nm) of the charge-transporting thin film. Examples of the method of changing the film thickness include a method of changing the solid content concentration in the varnish and a method of changing the amount of liquid on the substrate at the time of coating.

 本発明の電荷輸送性薄膜は、400~800nmの波長領域の平均値で、1.67以上の屈折率(n)と0.040以下の消衰係数(k)を示すが、ある態様においては1.69以上の屈折率を、その他のある態様においては1.72以上の屈折率を、更に別のある態様においては1.73以上の屈折率を示す。また、ある態様においては0.030以下の消衰係数を、その他のある態様においては0.025以下の消衰係数を、更に別のある態様においては0.020以下の消衰係数を示す。 The charge-transporting thin film of the present invention exhibits a refractive index (n) of 1.67 or more and an extinction coefficient (k) of 0.040 or less on average in the wavelength region of 400 to 800 nm, but in some embodiments. It exhibits a refractive index of 1.69 or higher, in some other embodiments a refractive index of 1.72 or higher, and in yet another embodiment a refractive index of 1.73 or higher. Further, in one embodiment, the extinction coefficient is 0.030 or less, in another aspect, the extinction coefficient is 0.025 or less, and in yet another aspect, the extinction coefficient is 0.020 or less.

 以上説明した方法によって、本発明の電荷輸送性薄膜を形成できるが、本発明の電荷輸送性ワニスを用いることで、隔壁付き基板の隔壁内に電荷輸送性薄膜を好適に形成できる。 The charge-transporting thin film of the present invention can be formed by the method described above, but by using the charge-transporting varnish of the present invention, the charge-transporting thin film can be suitably formed in the partition wall of the substrate with a partition wall.

 このような隔壁付基板としては、公知のフォトリソグラフィー法等によって所定のパターンが形成された基板であれば特に限定されない。なお、通常、基板上において隔壁によって規定される開口部は複数存在する。通常、開口部の大きさは、長辺100~210μm、短辺40μm×100μmであり、バンクテーパー角度は20~80°である。基板の材質としては、特に限定されるものではないが、電子素子の陽極材料として用いられるインジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極材料;アルミニウム、金、銀、銅、インジウム等に代表される金属又はこれらの合金等から構成される金属陽極材料;高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体等のポリマー陽極材料等が挙げられ、平坦化処理を行ったものが好ましい。 The substrate with a partition wall is not particularly limited as long as it is a substrate on which a predetermined pattern is formed by a known photolithography method or the like. Normally, there are a plurality of openings defined by the partition wall on the substrate. Usually, the size of the opening is 100 to 210 μm on the long side, 40 μm × 100 μm on the short side, and the bank taper angle is 20 to 80 °. The material of the substrate is not particularly limited, but is a transparent electrode material typified by indium tin oxide (ITO) and indium zinc oxide (IZO) used as an anode material of an electronic element; aluminum, gold, Metal anode materials composed of metals typified by silver, copper, indium, etc. or alloys thereof; polymer anode materials such as polythiophene derivatives and polyaniline derivatives having high charge transport properties, etc., are subjected to flattening treatment. Is preferable.

 本発明の電荷輸送性ワニスを隔壁付基板の隔壁内にインクジェット法で塗布した後、減圧し、更に必要に応じて加熱することで、隔壁内に塗布された電荷輸送性ワニスから溶媒を除去して電荷輸送性薄膜を作製して電荷輸送性薄膜付き基板を製造することができ、更には、この電荷輸送性薄膜上にその他の機能膜を積層することで、有機EL素子等の電子素子を製造することができる。この際、インクジェット塗布時の雰囲気は特に限定されず、大気雰囲気、窒素等の不活性ガス雰囲気、減圧下のいずれでもよい。 The charge transporting varnish of the present invention is applied to the inside of the partition wall of the substrate with a partition wall by an inkjet method, then depressurized, and further heated if necessary to remove the solvent from the charge transporting varnish coated inside the partition wall. A charge-transporting thin film can be produced to produce a substrate with a charge-transporting thin film, and further, by laminating other functional films on the charge-transporting thin film, an electronic element such as an organic EL element can be formed. Can be manufactured. At this time, the atmosphere at the time of coating with the inkjet is not particularly limited, and may be any of an air atmosphere, an atmosphere of an inert gas such as nitrogen, and a reduced pressure.

 減圧時の減圧度(真空度)は、ワニスの溶媒が蒸発する限り特に限定されないが、通常1,000Pa以下であり、好ましくは100Pa以下、より好ましくは50Pa以下、より一層好ましくは25Pa以下、更に好ましくは10Pa以下である。減圧時間も、溶媒が蒸発する限り特に制限はないが、通常0.1~60分程度、好ましくは1~30分程度である。なお、焼成(加熱)をする場合の条件は、前述した条件と同じである。 The degree of decompression (vacuum degree) at the time of depressurization is not particularly limited as long as the solvent of the varnish evaporates, but is usually 1,000 Pa or less, preferably 100 Pa or less, more preferably 50 Pa or less, still more preferably 25 Pa or less, and further. It is preferably 10 Pa or less. The depressurizing time is also not particularly limited as long as the solvent evaporates, but is usually about 0.1 to 60 minutes, preferably about 1 to 30 minutes. The conditions for firing (heating) are the same as the above-mentioned conditions.

 以上説明した方法によれば、隔壁内おいて、ワニスの這い上がりを効果的に抑制できる。具体的には、後述のパイルアップ指数として、通常84%以上、好ましくは87%以上、より好ましくは90%以上、より一層好ましくは93%以上、更に好ましくは96%以上という高い値で、パイルアップを抑制することができる。なお、パイルアップ指数は、隔壁(バンク)幅をA(μm)とし、隔壁(バンク)中央部の電荷輸送性薄膜の膜厚から+10%の膜厚の範囲をB(μm)とした場合における(B/A)×100(%)との式から導き出すことができる。 According to the method described above, the creeping up of the varnish can be effectively suppressed in the partition wall. Specifically, the pile-up index described later is usually a high value of 84% or more, preferably 87% or more, more preferably 90% or more, even more preferably 93% or more, still more preferably 96% or more, and pile. Up can be suppressed. The pile-up index is when the partition wall (bank) width is A (μm) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B (μm). It can be derived from the formula (B / A) × 100 (%).

[有機EL素子]
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、本発明の電荷輸送性薄膜からなる機能層を有するものである。
[Organic EL element]
The organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.

 有機EL素子の代表的な構成としては、以下の(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層又は電子注入輸送層がホールブロック層等としての機能を兼ね備えていてもよい。更に、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configuration, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of. Further, if necessary, an arbitrary functional layer can be provided between the layers.
(A) Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) Electron / hole injection transport layer / light emitting layer / cathode

 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。 The "hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and a layer of hole transporting material between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is the "hole injection layer", and the other layers are the "hole transport layers". In particular, as the hole injection (transport) layer, a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.

 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。 The "electron injection layer", "electron transport layer" and "electron transport layer" are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an "electron injection transporting layer", and two layers of electron transporting material are provided between the light emitting layer and the cathode. When the above is provided, the layer close to the cathode is the "electron injection layer", and the other layers are the "electron transport layer".

 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料とを含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。 The "light emitting layer" is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly has a function of promoting the recombination of electrons and holes and confining the excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function. In the case of a phosphorescent device, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.

 本発明の電荷輸送性薄膜は、有機EL素子において、陽極と発光層との間に設けられる機能層として好適に用いることができ、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適に用いることができ、正孔注入層としてより一層好適に用いることができる。 The charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.

 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されない。 The materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.

 本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜からなる正孔注入層を有する有機EL素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。 An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.

 陽極基板上に、前記方法により、本発明の電荷輸送性ワニスを用いて正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成するかわりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。 A hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.

 前記陽極材料としては、ITO、IZOに代表される透明電極や、アルミニウムに代表される金属、又はこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されない。 Examples of the anode material include transparent electrodes typified by ITO and IZO, metals typified by aluminum, and metal anodes composed of alloys thereof, and those subjected to flattening treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.

 前記正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等が挙げられる。 Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-. Bis (phenyl) -benzidine (α-NPD), 4,4', 4''-tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4', 4''- Triarylamines such as tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5''-bis- {4- [bis (4-methylphenyl) amino] phenyl} -2 , 2': 5', 2''-oligothiophenes such as turthiophene (BMA-3T) and the like can be mentioned.

 前記発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。 Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl). Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.

 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、前記発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。 When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.

 前記電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.

 前記電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物などが挙げられるが、これらに限定されない。 Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.

 前記陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。 Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.

 前記電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。 Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.

 前記正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of the hole-transporting polymer include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diamino). Phenylene)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like can be mentioned.

 前記発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH). -PPV) and other polyphenylene vinylene derivatives, poly (3-alkylthiophene) (PAT) and other polythiophene derivatives, polyvinylcarbazole (PVCz) and the like can be mentioned.

 陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料を選択する。 The materials forming the anode and cathode and the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..

 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。 Normally, in an element having a bottom emission structure, a transparent anode is used on the substrate side to extract light from the substrate side, whereas in an element having a top emission structure, a reflective anode made of metal is used and the direction is opposite to that of the substrate. Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.

 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等と共に封止してもよい。 The organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.

 本発明の電荷輸送性薄膜は、前述したとおり、有機EL素子の機能層として用いることができるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオード及び有機プラスモン発光素子等の電子素子の機能層としても用いることができる。 As described above, the charge transporting thin film of the present invention can be used as a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, an organic integrated circuit, and an organic Electric field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes, organic Plasmon light emitting devices, etc. It can also be used as a functional layer of an electronic device.

 以下、合成例、製造例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to synthetic examples, production examples, examples and comparative examples, but the present invention is not limited to the following examples.

 使用した装置は、以下のとおりである。
(1)MALDI-TOF-MS:ブルカー社製autoflex III smartbeam
(2)1H-NMR:日本電子(株)製JNM-ECP300 FT NMR SYSTEM
(3)基板洗浄:長州産業(株)製基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製スピンコーターMS-A100
(5)膜厚測定及び表面形状測定:(株)小坂研究所製微細形状測定機サーフコーダET-4000A
(6)素子の作製:長州産業(株)製多機能蒸着装置システムC-E2L1G1-N
(7)素子の電流密度の測定:(株)イーエッチシー製多チャンネルIVL測定装置
(8)屈折率(n)の測定:ジェー・エー・ウーラム社製多入社角分光エリプソメーターVASE
(9)消衰係数(k)の測定:ジェー・エー・ウーラム社製多入社角分光エリプソメーターVASE
(10)インクジェット装置:クラスターテクノロジー(株)製専用ドライバWAVE BUILDER(型番:PIJD-1)、カメラ付き観測装置inkjetlado、自動ステージInkjet Designer及びインクジェットヘッドPIJ-25NSET
The equipment used is as follows.
(1) MALDI-TOF-MS: Bruker's autoflex III smart beam
(2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd.
(3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method)
(4) Varnish application: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement and surface shape measurement: Fine shape measuring machine surf coder ET-4000A manufactured by Kosaka Laboratory Co., Ltd.
(6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of element current density: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Measurement of refractive index (n): Multi-entry angle spectroscopic ellipsometer VASE manufactured by JA Woolam Co., Ltd.
(9) Measurement of extinction coefficient (k): Multi-entry angle spectroscopic ellipsometer VASE manufactured by JA Woolam
(10) Inkjet device: Dedicated driver WAVE BUILDER (model number: PIJD-1) manufactured by Cluster Technology Co., Ltd., observation device with camera inkjetlado, automatic stage Inkjet Designer and inkjet head PIJ-25NSET

 使用した試薬は、以下のとおりである。
MMA:メチルメタクリレート
HEMA:2-ヒドロキシエチルメタクリレート
HPMA:4-ヒドロキシフェニルメタクリレート
HPMA-QD:4-ヒドロキシフェニルメタクリレート1molと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド1.1molとの縮合反応によって合成した化合物
CHMI:N-シクロヘキシルマレイミド
PFHMA:2-(パーフルオロヘキシル)エチルメタクリレート
MAA:メタクリル酸
AIBN:α,α'-アゾビスイソブチロニトリル
QD1:α,α,α'-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン1molと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド1.5molとの縮合反応によって合成した化合物
GT-401:ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(商品名:エポリードGT-401、(株)ダイセル製)
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
CHN:シクロヘキサノン
TMAH:テトラメチルアンモニウムヒドロキシド
TBSCl:tert-ブチルジメチルクロロシラン
THF:テトラヒドロフラン
Pd(dba)2:ビス(ジベンジリデンアセトン)パラジウム(0)
[(t-Bu)3PH]BF4:トリtert-ブチルホスフニウムテトラフルオロボラート
t-BuONa:tert-ブトキシナトリウム
TBAF:テトラブチルアンモニウムフルオリド
The reagents used are as follows.
MMA: Methyl methacrylate HEMA: 2-Hydroxyethyl methacrylate HPMA: 4-Hydroxyphenyl methacrylate HPMA-QD: Condensation reaction of 1 mol of 4-hydroxyphenyl methacrylate with 1.1 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride Compound CHMI: N-cyclohexylmaleimide PFHMA: 2- (perfluorohexyl) ethyl methacrylate MAA: AIBN methacrylate: α, α'-azobisisobutyronitrile QD1: α, α, α'-tris (4) -Hydroxyphenyl) A compound synthesized by a condensation reaction of 1 mol of -1-ethyl-4-isopropylbenzene and 1.5 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride. GT-401: Tetrabutanetetracarboxylate (Tetrabutantetracarboxylate) 3,4-Epoxycyclohexylmethyl) modified ε-caprolactone (trade name: Epolide GT-401, manufactured by Daicel Co., Ltd.)
PGME: Propylene glycol monomethyl ether PGMEA: Propylene glycol monomethyl ether acetate CHN: Cyclohexanone TMAH: Tetramethylammonium hydroxide TBSCl: tert-butyldimethylchlorosilane THF: tetrahydrofuran
Pd (dba) 2 : Bis (dibenzylideneacetone) Palladium (0)
[(t-Bu) 3 PH] BF 4 : Tritert-butylphosphnium tetrafluoroborate
t-BuONa: tert-sodium butoxy TBAF: tetrabutylammonium fluoride

[1]隔壁(バンク)付基板の作製
(1)アクリル重合体の合成
[合成例1-1]
 MMA(10.0g)、HEMA(12.5g)、CHMI(20.0g)、HPMA(2.50g)、MAA(5.00g)及びAIBN(3.20g)をPGME(79.8g)に溶解し、60~100℃にて20時間反応させることにより、アクリル重合体P1溶液(固形分濃度40質量%)を得た。アクリル重合体P1のMnは3,700、Mwは6,100であった。
[1] Preparation of substrate with partition wall (bank) (1) Synthesis of acrylic polymer [Synthesis Example 1-1]
MMA (10.0 g), HEMA (12.5 g), CHMI (20.0 g), HPMA (2.50 g), MAA (5.00 g) and AIBN (3.20 g) are dissolved in PGME (79.8 g). Then, the reaction was carried out at 60 to 100 ° C. for 20 hours to obtain an acrylic polymer P1 solution (solid content concentration: 40% by mass). The Mn of the acrylic polymer P1 was 3,700 and the Mw was 6,100.

[合成例1-2]
 HPMA-QD(2.50g)、PFHMA(7.84g)、MAA(0.70g)、CHMI(1.46g)及びAIBN(0.33g)をCHN(51.3g)に溶解し、110℃にて20時間撹拌して反応させることにより、アクリル重合体P2溶液(固形分濃度20質量%)を得た。アクリル重合体P2のMnは4,300、Mwは6,300であった。
[Synthesis Example 1-2]
HPMA-QD (2.50 g), PFHMA (7.84 g), MAA (0.70 g), CHMI (1.46 g) and AIBN (0.33 g) were dissolved in CHN (51.3 g) and heated to 110 ° C. The mixture was stirred for 20 hours and reacted to obtain an acrylic polymer P2 solution (solid content concentration: 20% by mass). The Mn of the acrylic polymer P2 was 4,300 and the Mw was 6,300.

 なお、アクリル重合体P1及びP2の数平均分子量(Mn)及び重量平均分子量(Mw)は、下記条件によるゲルパーミエーションクロマトグラフィー(GPC)のよって測定した。
・クロマトグラフ:(株)島津製作所製GPC装置LC-20AD
・カラム:Shodex KF-804L及び803L(昭和電工(株)製)並びにTSK-GEL(東ソー(株)製)を直列接続
・カラム温度:40℃ 
・検出器:UV検出器(254nm)及びRI検出器
・溶離液:テトラヒドロフラン
・カラム流速:1mL/分
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the acrylic polymers P1 and P2 were measured by gel permeation chromatography (GPC) under the following conditions.
・ Chromatograph: GPC device LC-20AD manufactured by Shimadzu Corporation
-Column: Shodex KF-804L and 803L (manufactured by Showa Denko KK) and TSK-GEL (manufactured by Tosoh Corporation) are connected in series.-Column temperature: 40 ° C
-Detector: UV detector (254 nm) and RI detector-Eluent: tetrahydrofuran-Column flow rate: 1 mL / min

(2)ポジ型感光性樹脂組成物の製造
[製造例1]
 アクリル重合体P1溶液(5.04g)、アクリル重合体P2溶液(0.05g)、QD1(0.40g)、GT-401(0.09g)及びPGMEA(6.42g)を混合し、室温で3時間撹拌して均一な溶液とし、ポジ型感光性樹脂組成物を得た。
(2) Production of Positive Photosensitive Resin Composition [Production Example 1]
Acrylic polymer P1 solution (5.04 g), acrylic polymer P2 solution (0.05 g), QD1 (0.40 g), GT-401 (0.09 g) and PGMEA (6.42 g) are mixed and at room temperature. The mixture was stirred for 3 hours to obtain a uniform solution to obtain a positive photosensitive resin composition.

(3)隔壁(バンク)付基板の作製
[製造例2]
 (株)テクノビジョン製UV-312を用いて10分間オゾン洗浄したITO-ガラス基板上に、スピンコーターを用いて、製造例1で得られたポジ型感光性樹脂組成物を塗布した後、基板をホットプレート上でプリベーク(100℃、120秒間)し、膜厚1.2μmの薄膜を形成した。この薄膜に、長辺200μm、短辺100μmの長方形が多数描かれたパターンのマスクを介して、キヤノン(株)製紫外線照射装置PLA-600FAにより、波長365nmの紫外線を用いて175mJ/cm2で露光した。その後、薄膜を1.0質量%TMAH水溶液に120秒間浸漬して現像を行った後、超純水を用いて薄膜の流水洗浄を20秒間行った。次いで、この長方形パターンが形成された薄膜をポストベーク(230℃、30分間)して硬化させ、隔壁付基板を作製した。
(3) Fabrication of Substrate with Partition (Bank) [Manufacturing Example 2]
The positive photosensitive resin composition obtained in Production Example 1 was applied to an ITO-glass substrate that had been ozone-cleaned for 10 minutes using UV-312 manufactured by Technovision Co., Ltd. using a spin coater, and then the substrate. Was prebaked (100 ° C., 120 seconds) on a hot plate to form a thin film having a film thickness of 1.2 μm. At 175 mJ / cm 2 using ultraviolet rays with a wavelength of 365 nm by the ultraviolet irradiation device PLA-600FA manufactured by Canon Inc. through a mask with a pattern in which a large number of rectangles with a long side of 200 μm and a short side of 100 μm are drawn on this thin film. Exposed. Then, the thin film was immersed in a 1.0 mass% TMAH aqueous solution for 120 seconds for development, and then the thin film was washed with running water for 20 seconds using ultrapure water. Next, the thin film on which this rectangular pattern was formed was post-baked (230 ° C., 30 minutes) and cured to prepare a substrate with a partition wall.

[2]電荷輸送性有機化合物の合成
[合成例2]アニリン誘導体Aの合成
(1)中間体1の合成

Figure JPOXMLDOC01-appb-C000010
[2] Synthesis of charge-transporting organic compound [Synthesis example 2] Synthesis of aniline derivative A (1) Synthesis of intermediate 1
Figure JPOXMLDOC01-appb-C000010

 60%水素化ナトリウム(4.8g、120mmol)のTHF懸濁液(150mL)に、氷冷下、2-ブロモカルバゾール(24.6g、100mmol)のTHF溶液(200mL)を滴下した後、室温で30分撹拌した。氷冷下、TBSCl(18.1g、120mmol)のTHF溶液(40mL)を滴下し、室温で2時間撹拌した。水(66mL)を加え、酢酸エチル(50mL)で3回抽出した後、得られた有機層を硫酸マグネシウムで乾燥させ、ろ過で硫酸マグネシウムを取り除き、得られたろ液から溶媒留去し、淡褐色固体を得た。得られた淡褐色固体にヘキサン(150mL)を加え、ろ過した。ろ物にメタノール(333mL)を加え、30分還流させた後、室温まで冷却し、ろ過し、ろ物を回収することにより、中間体1を白色固体として得た(収量27.1g、収率75%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, CDCl3) δ [ppm]: 0.75(s, 6H), 1.04(s, 9H), 7.24(t, J=7.5Hz, 1H), 7.34(d, J=8.0Hz, 1H), 7.38(t, J=7.5Hz, 1H), 7.59(d, J=8.5Hz, 1H), 7.73(s, 1H), 7.90(d, J=8.5Hz, 1H), 8.02(d, J=7.5Hz, 1H).
A THF solution (200 mL) of 2-bromocarbazole (24.6 g, 100 mmol) was added dropwise to a THF suspension (150 mL) of 60% sodium hydride (4.8 g, 120 mmol) under ice-cooling, and then at room temperature. The mixture was stirred for 30 minutes. A THF solution (40 mL) of TBSCl (18.1 g, 120 mmol) was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 2 hours. After adding water (66 mL) and extracting with ethyl acetate (50 mL) three times, the obtained organic layer was dried over magnesium sulfate, magnesium sulfate was removed by filtration, the solvent was distilled off from the obtained filtrate, and the mixture was light brown. Obtained a solid. Hexane (150 mL) was added to the obtained light brown solid and filtered. Methanol (333 mL) was added to the filter, and the mixture was refluxed for 30 minutes, cooled to room temperature, filtered, and the filter was recovered to obtain Intermediate 1 as a white solid (yield 27.1 g, yield). 75%). 1 The measurement results of 1 H-NMR are shown below.
1 1 H-NMR (500MHz, CDCl 3 ) δ [ppm]: 0.75 (s, 6H), 1.04 (s, 9H), 7.24 (t, J = 7.5Hz, 1H), 7.34 (d, J = 8.0Hz, 1H), 7.38 (t, J = 7.5Hz, 1H), 7.59 (d, J = 8.5Hz, 1H), 7.73 (s, 1H), 7.90 (d, J = 8.5Hz, 1H), 8.02 (d, J = 7.5Hz, 1H).

(2)中間体2の合成

Figure JPOXMLDOC01-appb-C000011
(2) Synthesis of intermediate 2
Figure JPOXMLDOC01-appb-C000011

 4,4'-ジアミノジフェニルアミン(3g、15mmol)及び中間体1(11.1g、30.75mmol)のトルエン溶液(60mL)に、Pd(dba)2(173mg、0.3mmol)、[(t-Bu)3PH]BF4(174mg、0.6mmol)、t-BuONa(3.17g、33mmol)を加え、80℃で2時間加熱撹拌した。飽和食塩水(60mL)で洗浄後、得られた有機層を硫酸ナトリウムで乾燥し、ろ過で硫酸ナトリウムを取り除き、得られたろ液から溶媒を留去し、カラムクロマトグラフィーで精製することにより、中間体2を白色固体として得た(収量3.6g、収率32%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ [ppm]: 0.67(s, 12H), 0.96(s, 18H), 6.85(d, J=8.5Hz, 2H), 7.02(d, J=8.5Hz, 4H), 7.08(d, J=8.5Hz, 4H), 7.11(t, J=7.5Hz, 2H), 7.18-7.22(m, 4H), 7.53(d, J=8.0Hz, 2H), 7.76(brs, 1H), 7.87(d, J=8.5Hz, 2H), 7.90(d, J=7.5Hz, 2H), 7.96(brs, 2H).
Pd (dba) 2 (173 mg, 0.3 mmol), [(t-t-) in a toluene solution (60 mL) of 4,4'-diaminodiphenylamine (3 g, 15 mmol) and intermediate 1 (11.1 g, 30.75 mmol). Bu) 3 PH] BF 4 (174 mg, 0.6 mmol) and t-BuONa (3.17 g, 33 mmol) were added, and the mixture was heated and stirred at 80 ° C. for 2 hours. After washing with saturated brine (60 mL), the obtained organic layer is dried over sodium sulfate, sodium sulfate is removed by filtration, the solvent is distilled off from the obtained filtrate, and the mixture is purified by column chromatography. Body 2 was obtained as a white solid (yield 3.6 g, yield 32%). 1 The measurement results of 1 H-NMR are shown below.
1 1 H-NMR (500MHz, DMSO-d 6 ) δ [ppm]: 0.67 (s, 12H), 0.96 (s, 18H), 6.85 (d, J = 8.5Hz, 2H), 7.02 (d, J = 8.5) Hz, 4H), 7.08 (d, J = 8.5Hz, 4H), 7.11 (t, J = 7.5Hz, 2H), 7.18-7.22 (m, 4H), 7.53 (d, J = 8.0Hz, 2H), 7.76 (brs, 1H), 7.87 (d, J = 8.5Hz, 2H), 7.90 (d, J = 7.5Hz, 2H), 7.96 (brs, 2H).

(3)中間体3の合成

Figure JPOXMLDOC01-appb-C000012
(3) Synthesis of intermediate 3
Figure JPOXMLDOC01-appb-C000012

 中間体2(3.45g、4.56mmol)及び2-ブロモ-9-フェニルカルバゾール(4.63g、14.36mmol)のトルエン溶液(35mL)に、Pd(dba)2(155mg、0.27mmol)、[(t-Bu)3PH]BF4(160mg、0.55mmol)、t-BuONa(1.84g、19.15mmol)を加え、90℃で2時間加熱撹拌した。得られた反応混合物を飽和食塩水(35mL)で洗浄し、有機層をシリカゲルカラム(90g、溶離液:トルエン)で精製した。得られた溶液を140gまで濃縮した後、酢酸エチル(260mL)/メタノール(780mL)の混合液に滴下し、室温で2時間撹拌した。析出した固体をろ過することにより、中間体3を黄色固体(5.35g、収率:79%)として得た。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, THF-d8) δ [ppm]: 0.50(s, 12H), 0.86(s, 18H), 7.03-7.08(m, 15H), 7.11-7.21(m, 8H), 7.26-7.34(m, 10H), 7.42-7.58(m, 15H), 7.88(d, J=8.5Hz, 2H), 7.92(d, J=7.5Hz, 2H), 8.00-8.06(m, 6H).
Pd (dba) 2 (155 mg, 0.27 mmol) in a toluene solution (35 mL) of Intermediate 2 (3.45 g, 4.56 mmol) and 2-bromo-9-phenylcarbazole (4.63 g, 14.36 mmol). , [(T-Bu) 3 PH] BF 4 (160 mg, 0.55 mmol) and t-BuONa (1.84 g, 19.15 mmol) were added, and the mixture was heated and stirred at 90 ° C. for 2 hours. The obtained reaction mixture was washed with saturated brine (35 mL), and the organic layer was purified by silica gel column (90 g, eluent: toluene). The obtained solution was concentrated to 140 g, added dropwise to a mixed solution of ethyl acetate (260 mL) / methanol (780 mL), and stirred at room temperature for 2 hours. The precipitated solid was filtered to give Intermediate 3 as a yellow solid (5.35 g, yield: 79%). 1 The measurement results of 1 H-NMR are shown below.
1 H-NMR (500MHz, THF-d 8 ) δ [ppm]: 0.50 (s, 12H), 0.86 (s, 18H), 7.03-7.08 (m, 15H), 7.11-7.21 (m, 8H), 7.26 -7.34 (m, 10H), 7.42-7.58 (m, 15H), 7.88 (d, J = 8.5Hz, 2H), 7.92 (d, J = 7.5Hz, 2H), 8.00-8.06 (m, 6H).

(4)アニリン誘導体Aの合成

Figure JPOXMLDOC01-appb-C000013
(4) Synthesis of aniline derivative A
Figure JPOXMLDOC01-appb-C000013

 中間体3(5.28g、3.56mmol)のTHF溶液(25mL)に、氷冷下、1mol/LのTBAFのTHF溶液(10.7mL、10.7mmol)を滴下し、室温で2時間撹拌した。反応液をメタノール(90mL)に滴下し、析出した固体をろ過することにより、アニリン誘導体Aを黄色固体として得た(収量4.16g、収率93%)。1H-NMR及びMALDI-TOF-MSの測定結果を以下に示す。
1H-NMR(500MHz, THF-d8) δ [ppm]: 6.96-7.12(m, 17H), 7.17-7.35(m, 18H), 7.41-7.60(m, 13H), 7.89-7.94(m, 4H), 7.99-8.05(m, 6H), 10.00(brs, 2H).
MALDI-TOF-MS m/Z found: 1253.52 ([M+H]+ calcd: 1253.49)
A 1 mol / L TBAF THF solution (10.7 mL, 10.7 mmol) was added dropwise to a THF solution (25 mL) of Intermediate 3 (5.28 g, 3.56 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hours. did. The reaction solution was added dropwise to methanol (90 mL), and the precipitated solid was filtered to obtain an aniline derivative A as a yellow solid (yield 4.16 g, yield 93%). 1 The measurement results of 1 H-NMR and MALDI-TOF-MS are shown below.
1 H-NMR (500MHz, THF-d 8 ) δ [ppm]: 6.96-7.12 (m, 17H), 7.17-7.35 (m, 18H), 7.41-7.60 (m, 13H), 7.89-7.94 (m, 4H), 7.99-8.05 (m, 6H), 10.00 (brs, 2H).
MALDI-TOF-MS m / Z found: 1253.52 ([M + H] + calcd: 1253.49)

[3]ドーパントの合成
[合成例3]アリールスルホン酸エステルCの合成
 国際公開第2017/217455号に記載された方法に従って、下記式で表されるアリールスルホン酸エステルCを合成した。

Figure JPOXMLDOC01-appb-C000014
[3] Synthesis of dopant [Synthesis Example 3] Synthesis of aryl sulfonic acid ester C Aryl sulfonic acid ester C represented by the following formula was synthesized according to the method described in International Publication No. 2017/217455.
Figure JPOXMLDOC01-appb-C000014

[4]電荷輸送性ワニスの調製
[実施例1]
 アニリン誘導体A0.117g及びアリールスルホン酸エステルC0.233gの混合物(D/H=2.0(モル比))に、トリエチレングリコールブチルメチルエーテル5.425g、マロン酸ジイソプロピル3.022g及びフタル酸ジメチル2.170gを加え、室温で撹拌して溶解させた。そこへ、ジルコニア粒子のPGME分散液(Pixelligent Technologies社製PixClear、平均粒子径7~10nm、ジルコニア濃度:50質量%)0.467gを加え、電荷輸送性ワニスAを調製した。
[4] Preparation of charge-transporting varnish [Example 1]
A mixture of 0.117 g of the aniline derivative A and 0.233 g of the aryl sulfonic acid ester C (D / H = 2.0 (molar ratio)), 5.425 g of triethylene glycol butyl methyl ether, 3.022 g of diisopropyl malonic acid and dimethyl phthalate. 2.170 g was added and stirred at room temperature to dissolve. To this, 0.467 g of a PGME dispersion of zirconia particles (PixClear manufactured by Pixelligent Technologies, average particle diameter 7 to 10 nm, zirconia concentration: 50% by mass) was added to prepare a charge-transporting varnish A.

[比較例1]
 アニリン誘導体A0.167g及びアリールスルホン酸エステルC0.333g(D/H=2.0(モル比))の混合物に、トリエチレングリコールブチルメチルエーテル4.75g、マロン酸ジイソプロピル2.85g及びフタル酸ジメチル1.9gを加え、室温で撹拌して溶解させ、電荷輸送性ワニスBを調製した。
[Comparative Example 1]
A mixture of 0.167 g of aniline derivative A and 0.333 g of aryl sulfonic acid ester C (D / H = 2.0 (molar ratio)), 4.75 g of triethylene glycol butyl methyl ether, 2.85 g of diisopropyl malonic acid and dimethyl phthalate. 1.9 g was added, and the mixture was stirred and dissolved at room temperature to prepare a charge-transporting varnish B.

[5]薄膜の製造及び光学物性評価
[実施例2]
 電荷輸送性ワニスAを、スピンコーターを用いて石英基板に塗布した後、大気下、120℃で1分間乾燥し、次いで200℃で15分間焼成し、石英基板上に50nmの均一な薄膜を形成した。
[5] Production of thin film and evaluation of optical characteristics [Example 2]
The charge-transporting varnish A is applied to a quartz substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film of 50 nm on the quartz substrate. did.

[比較例2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例2と同様の方法で石英基板上に50nmの均一な薄膜を形成した。
[Comparative Example 2]
A uniform thin film of 50 nm was formed on the quartz substrate by the same method as in Example 2 except that the charge transporting varnish B was used instead of the charge transporting varnish A.

 得られた膜付き石英基板を用いて、波長400~800nmにおける可視域平均屈折率nおよび可視域平均消衰係数kの測定を行った。結果を表1に示す。 Using the obtained quartz substrate with a film, the visible region average refractive index n and the visible region average extinction coefficient k were measured at a wavelength of 400 to 800 nm. The results are shown in Table 1.

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

 表1に示したように、本発明の電荷輸送性ワニスから得られた薄膜は、粒子を含まない比較例の薄膜に比べ、高い屈折率と低い消衰係数を示した。 As shown in Table 1, the thin film obtained from the charge-transporting varnish of the present invention showed a higher refractive index and a lower extinction coefficient than the thin film of the comparative example containing no particles.

[6]単層素子の作製及び特性評価
[実施例3]
 電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。ITO基板としては、パターニングされた厚さ50nmのITO膜が表面に形成された、25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いて、アルミニウムを0.2nm/秒にて80nm成膜することで、単層素子を作製した。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[6] Fabrication of single-layer device and evaluation of characteristics [Example 3]
The charge-transporting varnish A is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film of 50 nm on the ITO substrate. did. As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate having a patterned ITO film having a thickness of 50 nm formed on the surface was used, and the surface was subjected to an O 2 plasma cleaning device (150 W, 30 seconds) before use. The above impurities were removed. Next, a single-layer device was produced by forming an aluminum film at 0.2 nm / sec at 80 nm on the ITO substrate on which the thin film was formed, using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa). did.
In order to prevent deterioration of characteristics due to the influence of oxygen, water, etc. in the air, the elements were sealed with a sealing substrate and then their characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the elements are placed between the sealing substrates, and the sealing substrates are bonded with an adhesive (Morresco Moisture Cut WB90US (P) manufactured by MORESCO Corporation). It was. At this time, a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.

 実施例3で得られた単層素子を5Vで駆動した場合の電流密度を測定した。結果を表3に示す。 The current density when the single-layer element obtained in Example 3 was driven at 5 V was measured. The results are shown in Table 3.

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

 表2に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示すことがわかった。 As shown in Table 2, it was found that the thin film prepared from the charge-transporting varnish of the present invention exhibited good charge-transporting property.

[7]インクジェット塗布による電荷輸送性薄膜付き基板の作製
[実施例4]
 電荷輸送性ワニスAを、固形分濃度が2.3質量%となるように溶媒で希釈し、製造例2で作製した隔壁付基板上の長方形の開口部(膜形成領域)に、インクジェット装置を用いて吐出した。なお、電荷輸送性ワニスを希釈する際に、ワニス中の混合溶媒の組成比率が変化しないように、トリエチレングリコールブチルメチルエーテル、マロン酸ジイソプロピル及びフタル酸ジメチルを加えた。得られた塗膜を、その後すぐに、常温で10Pa以下の減圧度(真空度)で15分間減圧乾燥し、次いで常圧で、200℃15分間乾燥して隔壁内に電荷輸送性薄膜を形成し、電荷輸送性薄膜付き基板を得た。なお、電荷輸送性薄膜の開口部中央付近の膜厚が60~80nmとなるように吐出した。
[7] Fabrication of a substrate with a charge-transporting thin film by coating with an inkjet [Example 4]
The charge-transporting varnish A is diluted with a solvent so that the solid content concentration is 2.3% by mass, and an inkjet device is placed in a rectangular opening (film forming region) on the partition substrate prepared in Production Example 2. Discharged using. When diluting the charge-transporting varnish, triethylene glycol butyl methyl ether, diisopropyl malonic acid and dimethyl phthalate were added so that the composition ratio of the mixed solvent in the varnish did not change. Immediately thereafter, the obtained coating film was dried under reduced pressure (vacuum degree) of 10 Pa or less at room temperature for 15 minutes, and then dried at 200 ° C. for 15 minutes at normal pressure to form a charge-transporting thin film in the partition wall. A substrate with a charge-transporting thin film was obtained. The charge-transporting thin film was discharged so that the film thickness near the center of the opening was 60 to 80 nm.

 実施例4で得られた電荷輸送性薄膜付き基板について、電荷輸送性薄膜表面の形状を測定した。結果を図1に示す。また、作製した電荷輸送性薄膜についてパイルアップ指数を求めた。パイルアップ指数は、隔壁(バンク)幅をA(μm)とし、隔壁(バンク)中央部の電荷輸送性薄膜の膜厚から+10%の膜厚の範囲をB(μm)とした場合における(B/A)×100(%)として求めた。結果を表3に示す。なお、実施例4は、短辺を隔壁幅としてパイルアップ指数を算出した。 The shape of the surface of the charge-transporting thin film was measured with respect to the substrate with the charge-transporting thin film obtained in Example 4. The results are shown in FIG. In addition, the pile-up index was calculated for the prepared charge-transporting thin film. The pile-up index is (B) when the partition wall (bank) width is A (μm) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B (μm). It was calculated as / A) × 100 (%). The results are shown in Table 3. In Example 4, the pile-up index was calculated with the short side as the partition width.

Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017

 図1及び表3に示したように、本発明の電荷輸送性ワニスを用いて作製した電荷輸送性薄膜付き基板については、その電荷輸送性薄膜が良好な平坦性を示し、パイルアップ指数も98%を超える高い値を示した。 As shown in FIGS. 1 and 3, for the substrate with the charge-transporting thin film produced by using the charge-transporting varnish of the present invention, the charge-transporting thin film shows good flatness and the pile-up index is 98. It showed a high value exceeding%.

Claims (11)

 (A)表面処理剤で表面修飾されたジルコニア粒子、(B)単分散の電荷輸送性有機化合物及び(C)有機溶媒を含む電荷輸送性ワニス。 A charge-transporting varnish containing (A) zirconia particles surface-modified with a surface treatment agent, (B) a monodisperse charge-transporting organic compound, and (C) an organic solvent.  前記表面処理剤で表面修飾されたジルコニア粒子の平均粒子径が、2~100nmである請求項1記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 1, wherein the zirconia particles surface-modified with the surface treatment agent have an average particle diameter of 2 to 100 nm.  前記電荷輸送性有機化合物が、アリールアミン誘導体、チオフェン誘導体及びピロール誘導体から選ばれる少なくとも1種を含む請求項1又は2記載の電荷輸送性ワニス。 The charge-transporting varnish according to claim 1 or 2, wherein the charge-transporting organic compound contains at least one selected from an arylamine derivative, a thiophene derivative, and a pyrrole derivative.  前記電荷輸送性有機化合物が、アリールアミン誘導体を含む請求項3記載の電荷輸送性ワニス。 The charge-transporting varnish according to claim 3, wherein the charge-transporting organic compound contains an arylamine derivative.  前記電荷輸送性有機化合物の分子量が、200~9,000である請求項1~4のいずれか1項記載の電荷輸送性ワニス。 The charge-transporting varnish according to any one of claims 1 to 4, wherein the charge-transporting organic compound has a molecular weight of 200 to 9,000.  前記電荷輸送性有機化合物が、前記有機溶媒に溶解している請求項1~5のいずれか1項記載の電荷輸送性ワニス。 The charge-transporting varnish according to any one of claims 1 to 5, wherein the charge-transporting organic compound is dissolved in the organic solvent.  更に、(D)ドーパントを含む請求項1~6のいずれか1項記載の電荷輸送性ワニス。 The charge transporting varnish according to any one of claims 1 to 6, further comprising (D) a dopant.  (D)ドーパントが、アリールスルホン酸エステル化合物である請求項7記載の電荷輸送性ワニス。 The charge-transporting varnish according to claim 7, wherein the dopant (D) is an aryl sulfonic acid ester compound.  請求項1~8のいずれか1項記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。 A charge-transporting thin film obtained from the charge-transporting varnish according to any one of claims 1 to 8.  請求項9記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 The organic electroluminescence device including the charge transporting thin film according to claim 9.  前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である請求項10記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 10, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
PCT/JP2020/024702 2019-06-26 2020-06-24 Charge-transporting varnish WO2020262418A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080045353.7A CN114008808A (en) 2019-06-26 2020-06-24 Charge-transporting varnish
KR1020227001763A KR102794314B1 (en) 2019-06-26 2020-06-24 Charge-transporting varnish
JP2021527666A JP7491311B2 (en) 2019-06-26 2020-06-24 Charge Transporting Varnish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-118135 2019-06-26
JP2019118135 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262418A1 true WO2020262418A1 (en) 2020-12-30

Family

ID=74060610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024702 WO2020262418A1 (en) 2019-06-26 2020-06-24 Charge-transporting varnish

Country Status (4)

Country Link
JP (1) JP7491311B2 (en)
CN (1) CN114008808A (en)
TW (1) TWI861135B (en)
WO (1) WO2020262418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209892A1 (en) * 2021-03-31 2022-10-06 日産化学株式会社 Charge-transporting varnish

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781550B1 (en) * 2004-12-30 2010-08-24 E. I. Du Pont De Nemours And Company Charge transport compositions and their use in electronic devices
JP2013171968A (en) * 2012-02-21 2013-09-02 Konica Minolta Inc Organic electroluminescent element, lighting system, display device, and method for manufacturing organic electroluminescent element
WO2017217457A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560161B2 (en) * 2004-08-09 2009-07-14 Xerox Corporation Inorganic material surface grafted with charge transport moiety
WO2013105556A1 (en) * 2012-01-10 2013-07-18 三菱化学株式会社 Coating composition, porous film, light-scattering film, and organic electroluminescent element
US20190359832A1 (en) * 2017-01-18 2019-11-28 Nissan Chemical Corporation Charge transporting varnish and charge transporting thin film using the same
WO2019049867A1 (en) * 2017-09-06 2019-03-14 日産化学株式会社 Ink composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781550B1 (en) * 2004-12-30 2010-08-24 E. I. Du Pont De Nemours And Company Charge transport compositions and their use in electronic devices
JP2013171968A (en) * 2012-02-21 2013-09-02 Konica Minolta Inc Organic electroluminescent element, lighting system, display device, and method for manufacturing organic electroluminescent element
WO2017217457A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209892A1 (en) * 2021-03-31 2022-10-06 日産化学株式会社 Charge-transporting varnish
KR20230164092A (en) 2021-03-31 2023-12-01 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish

Also Published As

Publication number Publication date
JPWO2020262418A1 (en) 2020-12-30
TWI861135B (en) 2024-11-11
JP7491311B2 (en) 2024-05-28
TW202110799A (en) 2021-03-16
KR20220027970A (en) 2022-03-08
CN114008808A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6168142B2 (en) Hole transport varnish for metal anode and composite metal anode
JP6460093B2 (en) Oligoaniline derivative, charge transporting varnish, and organic electroluminescence device
JP6424835B2 (en) Aryl sulfonic acid compound and use thereof
JP6593334B2 (en) Charge transport varnish
EP3101003B1 (en) Aryl sulfonic acid compound and use thereof
WO2017150412A1 (en) Charge-transporting varnish
JP7491311B2 (en) Charge Transporting Varnish
JP7351314B2 (en) Charge transport varnish
WO2014188998A1 (en) Triphenylamine derivative and use therefor
TWI856118B (en) Charge transport coatings
TWI855047B (en) Fluorine derivatives and their use
KR20230164092A (en) Charge-transporting varnish
US10193075B2 (en) Aniline derivative and use thereof
KR102794314B1 (en) Charge-transporting varnish
JP7334741B2 (en) Method for manufacturing substrate with organic functional film
KR102794329B1 (en) Charge-transporting varnish
WO2020196154A1 (en) Arylamine compound and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227001763

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20831689

Country of ref document: EP

Kind code of ref document: A1