[go: up one dir, main page]

WO2020261960A1 - Monitoring system for concentrating photovoltaic power generation device, method for detecting tracking deviation, and program for detecting tracking deviation - Google Patents

Monitoring system for concentrating photovoltaic power generation device, method for detecting tracking deviation, and program for detecting tracking deviation Download PDF

Info

Publication number
WO2020261960A1
WO2020261960A1 PCT/JP2020/022519 JP2020022519W WO2020261960A1 WO 2020261960 A1 WO2020261960 A1 WO 2020261960A1 JP 2020022519 W JP2020022519 W JP 2020022519W WO 2020261960 A1 WO2020261960 A1 WO 2020261960A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
photovoltaic power
concentrating photovoltaic
deviation
amount
Prior art date
Application number
PCT/JP2020/022519
Other languages
French (fr)
Japanese (ja)
Inventor
真士 田村
塁 三上
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020261960A1 publication Critical patent/WO2020261960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Definitions

  • the present disclosure relates to a monitoring system for a concentrating photovoltaic power generation device, a tracking deviation detection method, and a tracking deviation detection program.
  • a large number of modules which are an aggregate of optical units that collect the sunlight condensed by a Fresnel lens in a cell to generate electricity, are arranged to form an array.
  • the array is supported by a support device and driven to track the sun on two axes, azimuth and elevation (see, for example, Patent Document 1).
  • the monitoring system of the concentrating photovoltaic power generation device of the present disclosure is Multiple concentrating photovoltaic power generation devices that make up the power generation facility, A monitoring device for acquiring information on the amount of power generated from each of the concentrating photovoltaic power generation devices is provided.
  • the monitoring device converts the amount of generated power acquired for all the concentrating photovoltaic power generation devices in operation into a standard deviation, compares the standard deviation with the determination value of the tracking deviation, and determines the presence or absence of the tracking deviation. judge.
  • the tracking deviation detection method of the present disclosure is described. For each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility, the amount of power generated per unit time is calculated for each unit. The value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time. For all the concentrating photovoltaic power generation devices in operation, the daily power generation coefficient is converted into the standard deviation. The presence or absence of tracking deviation is determined by comparing the standard deviation with the determination value of tracking deviation.
  • the tracking deviation detection program of the present disclosure is A function to obtain the amount of power generated per unit time for each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility.
  • FIG. 1 is a perspective view of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the condensing photovoltaic power generation device in a completed state.
  • FIG. 2 is a perspective view of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the condensing photovoltaic power generation device in a state during assembly.
  • FIG. 3 is a perspective view showing the posture of the array facing the sun.
  • FIG. 4 is a plan view of a concentrating photovoltaic power generation device installed in an outdoor area as a power generation facility (power plant) for business use.
  • FIG. 5 is a diagram showing an example of connection of a concentrating photovoltaic power generation device to a commercial power system and connection to a monitoring system.
  • FIG. 6 is a flowchart showing the processing contents executed by the computer of the monitoring device.
  • FIG. 7 is a graph showing changes in the amount of power generated per day by dividing all the concentrating photovoltaic power generation devices into five groups.
  • FIG. 8 is an example of a daily report printed out on time every day.
  • an object of the present disclosure is to make it possible to easily detect a small tracking deviation in a concentrating photovoltaic power generation device.
  • Embodiments of the present disclosure include at least the following as a gist thereof.
  • the monitoring system of the concentrating photovoltaic power generation device of the present disclosure is the amount of power generated from each of the plurality of concentrating photovoltaic power generation devices constituting the power generation facility and the concentrating photovoltaic power generation device.
  • the monitoring device includes a monitoring device for acquiring information, and the monitoring device converts the generated electric energy acquired for all the concentrating photovoltaic power generation devices in operation into a standard deviation, and the standard deviation is tracked. The presence or absence of tracking deviation is determined by comparing with the determination value.
  • the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
  • the monitoring device is, for example, one unit of the amount of power generated per unit time for the plurality of concentrating photovoltaic power generation devices.
  • the value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time in one day. It includes a conversion unit that converts the power generation coefficient into the standard deviation, and a determination unit that compares the standard deviation with the determination value to determine the presence or absence of tracking deviation.
  • the standard deviation is larger than the determination value, it is determined as a tracking deviation, and the standard deviation is smaller than the determination value. In that case, it may be determined that there is a possibility of output decrease. In this case, the tracking deviation and the output decrease can be discriminated from each other and detected.
  • the amount of power generated per unit time is obtained for each of a plurality of concentrating photovoltaic power generation devices constituting the power generation facility, and the obtained power generation is obtained.
  • the value obtained by dividing the electric energy by the reference value is used as the power generation coefficient for each unit time, and the daily power generation coefficient is converted into the standard deviation for all the concentrating photovoltaic power generation devices in operation.
  • the presence or absence of tracking deviation is determined by comparing the standard deviation with the determination value of tracking deviation.
  • the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
  • the tracking deviation detection program of the present disclosure is a function of obtaining the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices constituting the power generation facility.
  • a function that uses the value obtained by dividing the amount of power generated by a reference value as the power generation coefficient for each unit time, and the power generation coefficient per day is used as the standard deviation for all the concentrating photovoltaic power generation devices in operation.
  • It is a detection program for realizing a function of converting and a function of comparing the standard deviation with a determination value of tracking deviation and determining the presence or absence of tracking deviation by a computer.
  • the detection program instead of the detection program, it can be expressed as a medium on which the detection program is recorded.
  • the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
  • FIG. 1 and 2 are perspective views of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side.
  • FIG. 1 shows a concentrating photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a condensing photovoltaic power generation device 100 in a state in the middle of assembly.
  • FIG. 2 shows a state in which the skeleton of the tracking mount 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M is attached in the left half.
  • a module concentrating photovoltaic power generation module
  • the concentrating photovoltaic power generation device 100 includes an array (entire photovoltaic power generation panel) 1 having a shape continuous on the upper side and divided into left and right on the lower side, and a support device 2 thereof. ..
  • the array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side.
  • the support device 2 includes a support column 21, a foundation 22, a two-axis drive unit 23, and a horizontal axis 24 (FIG. 2) as a drive axis.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a two-axis drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the two-axis drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • a reinforcing member 25a for reinforcing the tracking mount 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a. Therefore, if the horizontal axis 24 rotates in the direction of the azimuth angle or the elevation angle, the array 1 also rotates in that direction.
  • FIGS. 1 and 2 show the support device 2 that supports the array 1 with one support column 21, the configuration of the support device 2 is not limited to this. In short, any support device can be used as long as it can support the array 1 so as to be movable in two axes (azimuth and elevation).
  • FIG. 3 is a perspective view showing the posture of the array 1 facing the sun as an example. Further, for example, at the time of mid-south near the equator, the array 1 is in a horizontal posture with the light receiving surface facing the sun. At night, for example, the light receiving surface of the array 1 is oriented horizontally toward the ground.
  • FIG. 4 is a plan view of a concentrating photovoltaic power generation device 100 installed in line with the outdoor area 200 as a power generation facility (power plant) 300 for business use.
  • a total of 7 rows of (5), (6), and (7) are arranged in a matrix.
  • E1 it is the condensing type photovoltaic power generation device 100 on the upper right.
  • Speaking of A7 it is the condensing type photovoltaic power generation device 100 at the lower left.
  • the concentrating photovoltaic power generation device 100 is not installed in C4 and A1. Therefore, it is a power generation facility 300 composed of a total of 33 concentrating photovoltaic power generation devices 100. Assuming that the Y direction is the north direction, what is shown in the figure is 33 concentrating photovoltaic power generation devices 100 at the time of south-central time.
  • FIG. 5 is a diagram showing an example of connection of a concentrating photovoltaic power generation device to a commercial power system and connection to a monitoring system. For convenience of illustration, only three concentrating photovoltaic power generation devices 100 are shown. An inverter device 101 that converts electric power from direct current to alternating current is connected to each of the condensing type photovoltaic power generation devices 100. The AC output of each inverter device 101 is connected to the substation equipment 102. The substation equipment 102 is connected to the commercial power system 104 via the watt hour meter 103.
  • Information on the amount of power output by the watt-hour meter 103 is sent to the signal input / output terminal device 105.
  • the voltage and current information output by each inverter device 101 is sent to the signal input / output terminal device 105.
  • the sensor 106 sends various meteorological data such as temperature, rainfall, wind speed, and wind direction to the signal input / output terminal device 105.
  • the signal input / output terminal device 105 A / D-converts an information signal transmitted in an analog amount into a digital signal and sends it to the computer 107.
  • a display 108 and a printer 109 are connected to the computer 107.
  • the computer 107, the display 108, and the printer 109 constitute a monitoring device 110.
  • the computer 107 realizes a necessary control function by executing software (computer program).
  • the software is stored in the storage unit 107m of the computer 107.
  • the storage unit 107m is a non-transient recording medium that can be read by a computer, and is an auxiliary storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), or an HDD (Hard Disk Drive).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the computer 107 obtains electric power based on the voltage and current data sequentially sent from all the inverter devices 101, and the amount of electric power generated per unit time of all the concentrating photovoltaic power generation devices 100 in operation.
  • the monitoring device 110 includes a calculation unit 107c, a conversion unit 107t, and a determination unit 107j as internal functions by software.
  • the calculation unit 107c obtains the amount of power generated per unit time for each of the plurality of concentrating photovoltaic power generation devices 100, and divides the obtained amount of generated power by the reference value for each unit time.
  • the conversion unit 107t converts the power generation coefficient of all the concentrating photovoltaic power generation devices 100 in operation into the standard deviation.
  • the determination unit 107j compares the standard deviation with the determination value to determine the presence or absence of the tracking deviation.
  • the determined information is displayed on the display 108, and is printed as daily data (daily report) by the printer 109 at the scheduled time (for example, midnight) every day.
  • FIG. 6 is a flowchart showing the processing contents executed by the computer 107 of the monitoring device 110.
  • the computer 107 starts processing every day at the scheduled time.
  • those that are known to have no problems such as failure, dirt that affects the amount of power generation, and tracking deviation are set as the reference condensing type photovoltaic power generation device (step S1). ..
  • the computer 107 totals the amount of power generated per hour for all the concentrating photovoltaic power generation devices in operation (step S2), and obtains the amount of power generated per day for each unit. Further, the computer 107 obtains an hourly power generation coefficient for all the concentrating photovoltaic power generation devices (step S3).
  • the power generation coefficient is k
  • the power generation amount of the target concentrating photovoltaic power generation device in the same time zone is W [kWh]
  • the computer 107 as perform operations every 6 o'clock 0 minutes 20 hours, 0 minutes, for example up to 1 hour, to represent the power generation amount coefficient 6:00 with a subscript so that k 6, the power generation amount coefficient daily Is k 6 , k 7 , k 8 , ..., k 18 , k 19 , k 20 Will be. That is, the total number of power generation coefficients in this case is 15.
  • the computer 107 obtains the standard deviation ⁇ by the following equation (2) using 15 power generation coefficients (step S3). Note that every hour is an easy-to-understand example for explanation, and the calculation may be performed every shorter time.
  • the computer 107 acquires the set determination value (threshold value) ⁇ th for determining the tracking deviation (step S5), and compares the standard deviation ⁇ with the determination value ⁇ th (step S6). If the standard deviation ⁇ is equal to or greater than the determination value ⁇ th , the computer 107 determines that it is a tracking deviation and stores it (step S7).
  • the computer 107 for determining the output lowering, to get the set determination value (threshold) i th (Step S9), and compares power generation amount index i and the determination value i th (step S10). If power generation index i is determined value i th or more, the computer 107 determines that the output reduction, and stores (step S11). If power generation index i is smaller than the determination value i th, the computer 107 determines whether, or not determined for all the concentrating solar power generation device (step S12).
  • the computer 107 repeats the processes from steps S4 to S12 in order to make a determination for all the concentrating photovoltaic power generation devices that have been in operation. Then, when the determination for all the condensing type photovoltaic power generation devices is completed, the computer 107 displays the result on the display 108 and prints it by the printer 109 (step S13). This completes the process.
  • FIG. 7 is a graph showing changes in the amount of power generated per day by dividing all the concentrating photovoltaic power generation devices into five groups. Such a graph can be easily obtained by a simple calculation based on the generated power input to the computer 107. For example, each graph is a graph obtained by calculating the amount of electric power per minute, for example, in terms of one hour. In each graph, the data for 6 to 7 units are superimposed and displayed. Actually, the data of each group is displayed in different colors, making it easy to see even if they overlap.
  • the graph of (a) it can be seen that there are times when the amount of power generated by a specific concentrating photovoltaic power generation device is lower than that of other concentrating photovoltaic power generation devices. The cause is likely to be tracking deviation.
  • the amount of power generated by the specific concentrating photovoltaic power generation device is 0 mainly in the morning at a certain time zone. This is because power could not be generated due to maintenance (cleaning).
  • the graph of (c) it can be seen that the amount of power generated by the specific concentrating photovoltaic power generation device becomes 0 in a certain time zone in the afternoon. This is because power could not be generated due to maintenance (manipulation by humans).
  • FIG. 8 is an example of a daily report printed out on time every day.
  • Numerical data is displayed in column (a) (details are omitted).
  • the column (b) shows the amount of power generated in the bar graph of the total number of all units of the concentrating photovoltaic power generation device, and the changes in the continuous curve of direct solar radiation and total solar radiation. If all the units of the concentrating photovoltaic power generation device are normal, the characteristics of the shape of the change locus of solar radiation and the envelope of the amount of generated power generally correspond to each other.
  • Column (c) is a graph of meteorological data such as temperature and wind speed.
  • the column (d) is the guidance of the defect displayed based on the processing of the above-mentioned flowchart.
  • the part surrounded by the frame on the left side represents the target concentrating photovoltaic power generation device.
  • A6 is a concentrating photovoltaic power generation device located in the sixth row of column A in FIG.
  • the part surrounded by the right frame is the probable cause guidance.
  • Track Error is a tracking deviation
  • Output Degradation is a decrease in output.
  • the column (e) shows the concentrating photovoltaic power generation equipment that is the subject of maintenance. In this example, it is shown that the concentrating photovoltaic device at the "B2" position is being cleaned and the concentrating photovoltaic device at the "C2" position is being repaired.
  • the monitoring device 110 has a standard deviation of the amount of generated power acquired for all the concentrating photovoltaic power generation devices 100 in operation. And the standard deviation is compared with the determination value of the tracking deviation to determine the presence or absence of the tracking deviation. As a result, the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from a plurality of condensing photovoltaic power generation devices.
  • the monitoring device 110 includes a calculation unit 107c, a conversion unit 107t, and a determination unit 107j as functional units realized by the computer 107.
  • the calculation unit 107c obtains the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices, and divides the obtained amount of power generated by the reference value for each unit time. Let it be the power generation coefficient.
  • the conversion unit 107t converts the daily power generation coefficient into the standard deviation for all the concentrating photovoltaic power generation devices in operation.
  • the determination unit 107j compares the standard deviation with the determination value to determine whether or not there is a tracking deviation. By obtaining the standard deviation in this way, it is possible to accurately quantify and grasp the state in which the tracking deviation occurs.
  • the standard deviation when the standard deviation is larger than the determination value, it can be determined that there is a tracking deviation, and when the standard deviation is smaller than the determination value, it can be determined that the output may decrease. Therefore, the tracking deviation and the output decrease can be discriminated from each other and detected. Furthermore, by outputting the event name as a tracking deviation or output decrease in the judgment result, the observer does not read it from the numerical value or graph, but directly calls the observer's attention and quickly eliminates the cause. It can be realized.
  • the amount of power generated for each unit time of a plurality of concentrating photovoltaic power generation devices 100 constituting the power generation facility 300 is obtained for each unit, and (ii).
  • the value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time, and (iii) for all the concentrating photovoltaic power generation devices 100 in operation, the daily power generation amount coefficient is the standard deviation.
  • the standard deviation is compared with the determination value of the tracking deviation to determine the presence or absence of the tracking deviation.
  • a tracking deviation detection program (a) a function of obtaining the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices 100 constituting the power generation facility 300, (b). ) A function that uses the obtained power generation amount divided by the reference value as the power generation amount coefficient for each unit time. (C) The daily power generation amount coefficient for all the concentrating photovoltaic power generation devices 100 in operation.
  • a tracking deviation detection program for realizing by a computer a function of converting the standard deviation into a standard deviation and (d) a function of comparing the standard deviation with a determination value of the tracking deviation to determine the presence or absence of the tracking deviation.
  • the detection program may also exist as a recording medium on which the detection program is recorded.
  • a semiconductor memory, an optical disk, a magnetic disk, a magneto-optical disk, or the like can be used.
  • the monitoring device 110 may be installed locally in the vicinity of the power generation facility 300, or may be installed as a server in a remote location via the Internet, for example. Further, the main function of the detection program can be made into a chip to form an LSI (Large Scale Integrated Circuit).
  • LSI Large Scale Integrated Circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This monitoring system for a concentrating photovoltaic power generation device is provided with: a plurality of concentrating photovoltaic power generation devices that constitute power generation equipment; and a monitoring device that obtains information of a power generation amount from each of the concentrating photovoltaic power generation devices. The monitoring device converts, into a standard deviation, obtained power generation amounts for all concentrating photovoltaic power generation devices in operation, and compares the standard deviation with a determination value of a tracking deviation to determine the presence or absence of tracking deviation.

Description

集光型太陽光発電装置の監視システム、追尾ずれの検出方法、及び、追尾ずれの検出プログラムMonitoring system for concentrating photovoltaic power generation equipment, tracking deviation detection method, and tracking deviation detection program
 本開示は、集光型太陽光発電装置の監視システム、追尾ずれの検出方法、及び、追尾ずれの検出プログラムに関する。
 本出願は、2019年6月25日出願の日本出願第2019-117497号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a monitoring system for a concentrating photovoltaic power generation device, a tracking deviation detection method, and a tracking deviation detection program.
This application claims priority based on Japanese Application No. 2019-117497 filed on June 25, 2019, and incorporates all the contents described in the Japanese application.
 集光型太陽光発電装置では、フレネルレンズで集光した太陽光をセルに集めて発電する光学的ユニットの集合体であるモジュールが、さらに多数並べられてアレイを構成している。アレイは支持装置により支持され、かつ、方位角及び仰角の2軸に、太陽を追尾するように駆動される(例えば特許文献1参照。)。 In a condensing photovoltaic power generation device, a large number of modules, which are an aggregate of optical units that collect the sunlight condensed by a Fresnel lens in a cell to generate electricity, are arranged to form an array. The array is supported by a support device and driven to track the sun on two axes, azimuth and elevation (see, for example, Patent Document 1).
特開2014-226025号公報Japanese Unexamined Patent Publication No. 2014-226205
 本開示は、以下の実施形態を含む。但し、本発明は請求の範囲によって定められるものである。 The present disclosure includes the following embodiments. However, the present invention is defined by the claims.
 本開示の集光型太陽光発電装置の監視システムは、
 発電設備を構成する複数基の集光型太陽光発電装置と、
 前記集光型太陽光発電装置の各々から発電電力量の情報を取得する監視装置と、を備え、
 前記監視装置は、稼働中の全ての前記集光型太陽光発電装置について取得した前記発電電力量を標準偏差に変換し、当該標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する。
The monitoring system of the concentrating photovoltaic power generation device of the present disclosure is
Multiple concentrating photovoltaic power generation devices that make up the power generation facility,
A monitoring device for acquiring information on the amount of power generated from each of the concentrating photovoltaic power generation devices is provided.
The monitoring device converts the amount of generated power acquired for all the concentrating photovoltaic power generation devices in operation into a standard deviation, compares the standard deviation with the determination value of the tracking deviation, and determines the presence or absence of the tracking deviation. judge.
 本開示の追尾ずれの検出方法は、
 発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、
 求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とし、
 稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換し、
 前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する。
The tracking deviation detection method of the present disclosure is described.
For each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility, the amount of power generated per unit time is calculated for each unit.
The value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time.
For all the concentrating photovoltaic power generation devices in operation, the daily power generation coefficient is converted into the standard deviation.
The presence or absence of tracking deviation is determined by comparing the standard deviation with the determination value of tracking deviation.
 本開示の追尾ずれの検出プログラムは、
 発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求める機能、
 求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とする機能、
 稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換する機能、及び、
 前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する機能を、
 コンピュータによって実現させるための追尾ずれの検出プログラムである。
The tracking deviation detection program of the present disclosure is
A function to obtain the amount of power generated per unit time for each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility.
A function that uses the value obtained by dividing the obtained power generation amount by the reference value as the power generation amount coefficient for each unit time.
A function to convert the daily power generation coefficient into a standard deviation for all the concentrating photovoltaic power generation devices in operation, and
A function for determining the presence or absence of tracking deviation by comparing the standard deviation with the determination value of tracking deviation.
It is a tracking deviation detection program to be realized by a computer.
図1は、1基分の、集光型太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での集光型太陽光発電装置を示している。FIG. 1 is a perspective view of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the condensing photovoltaic power generation device in a completed state. 図2は、1基分の、集光型太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での集光型太陽光発電装置を示している。FIG. 2 is a perspective view of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the condensing photovoltaic power generation device in a state during assembly. 図3は、一例として、太陽に正対しているアレイの姿勢を示す斜視図である。As an example, FIG. 3 is a perspective view showing the posture of the array facing the sun. 図4は、事業用の発電設備(発電所)として屋外のエリアに整列して設置された集光型太陽光発電装置の平面図である。FIG. 4 is a plan view of a concentrating photovoltaic power generation device installed in an outdoor area as a power generation facility (power plant) for business use. 図5は、集光型太陽光発電装置の商用電力系統への接続と、監視システムとの接続の一例とを示す図である。FIG. 5 is a diagram showing an example of connection of a concentrating photovoltaic power generation device to a commercial power system and connection to a monitoring system. 図6は、監視装置のコンピュータが実行する処理内容を示すフローチャートである。FIG. 6 is a flowchart showing the processing contents executed by the computer of the monitoring device. 図7は、全ての集光型太陽光発電装置について、5群に分けて、1日の発電電力量の変化を示すグラフである。FIG. 7 is a graph showing changes in the amount of power generated per day by dividing all the concentrating photovoltaic power generation devices into five groups. 図8は、毎日定刻にプリントアウトされる日報の一例である。FIG. 8 is an example of a daily report printed out on time every day.
[本開示が解決しようとする課題]
 集光型太陽光発電装置を広大な敷地に多数並べた発電設備(発電所)では、多数の集光型太陽光発電装置の発電電力を監視する監視装置が設けられる。このような場合、例えばディスプレイに表示される数値を漫然と見ていても、小さな追尾ずれの検出は容易でない。しかも多数の集光型太陽光発電装置があると、1つ1つを丹念に監視することは能率が悪く、比較的小さな追尾ずれの検出は、極めて難しいのが実情である。
[Issues to be solved by this disclosure]
In a power generation facility (power plant) in which a large number of concentrating photovoltaic power generation devices are arranged on a vast site, a monitoring device for monitoring the generated power of a large number of concentrating photovoltaic power generation devices is installed. In such a case, it is not easy to detect a small tracking deviation even if the numerical value displayed on the display is casually viewed. Moreover, when there are a large number of concentrating photovoltaic power generation devices, it is inefficient to carefully monitor each one, and it is extremely difficult to detect a relatively small tracking deviation.
 かかる課題に鑑み、本開示は、集光型太陽光発電装置において、小さな追尾ずれを容易に検出できるようにすることを目的とする。 In view of such a problem, an object of the present disclosure is to make it possible to easily detect a small tracking deviation in a concentrating photovoltaic power generation device.
[本開示の効果]
 本開示によれば、集光型太陽光発電装置において、小さな追尾ずれを容易に検出することができる。
[Effect of the present disclosure]
According to the present disclosure, a small tracking deviation can be easily detected in a concentrating photovoltaic power generation device.
 [本開示の実施形態の説明]
 本開示の実施形態には、その要旨として、少なくとも以下のものが含まれる。
[Explanation of Embodiments of the present disclosure]
The embodiments of the present disclosure include at least the following as a gist thereof.
 (1)本開示の集光型太陽光発電装置の監視システムは、発電設備を構成する複数基の集光型太陽光発電装置と、前記集光型太陽光発電装置の各々から発電電力量の情報を取得する監視装置と、を備え、前記監視装置は、稼働中の全ての前記集光型太陽光発電装置について取得した前記発電電力量を標準偏差に変換し、当該標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する。 (1) The monitoring system of the concentrating photovoltaic power generation device of the present disclosure is the amount of power generated from each of the plurality of concentrating photovoltaic power generation devices constituting the power generation facility and the concentrating photovoltaic power generation device. The monitoring device includes a monitoring device for acquiring information, and the monitoring device converts the generated electric energy acquired for all the concentrating photovoltaic power generation devices in operation into a standard deviation, and the standard deviation is tracked. The presence or absence of tracking deviation is determined by comparing with the determination value.
 このような集光型太陽光発電装置の監視システムによれば、発電電力量に基づく標準偏差から追尾ずれの有無を判定できる。従って、複数基の集光型太陽光発電装置の中から、小さな追尾ずれを生じている集光型太陽光発電装置を容易に検出することができる。 According to the monitoring system of such a concentrating photovoltaic power generation device, the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
 (2)前記(1)の集光型太陽光発電装置の監視システムにおいて、前記監視装置は例えば、前記複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とする演算部と、稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を前記標準偏差に変換する変換部と、前記標準偏差を前記判定値と比較して追尾ずれの有無を判定する判定部と、を含む。
 このようにして標準偏差を求めることにより、追尾ずれが発生している状態を的確に数値化して捉えることができる。
(2) In the monitoring system of the concentrating photovoltaic power generation device of the above (1), the monitoring device is, for example, one unit of the amount of power generated per unit time for the plurality of concentrating photovoltaic power generation devices. For each calculation unit and the concentrating photovoltaic power generation device in operation, the value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time in one day. It includes a conversion unit that converts the power generation coefficient into the standard deviation, and a determination unit that compares the standard deviation with the determination value to determine the presence or absence of tracking deviation.
By obtaining the standard deviation in this way, it is possible to accurately quantify and capture the state in which the tracking deviation occurs.
 (3)前記(1)又は(2)の集光型太陽光発電装置の監視システムにおいて、前記標準偏差が前記判定値より大きい場合は追尾ずれと判定し、前記標準偏差が前記判定値より小さい場合は出力低下の可能性ありと判定するようにしてもよい。
 この場合、追尾ずれと出力低下とを互いに識別して検出することができる。
(3) In the monitoring system of the concentrating photovoltaic power generation device according to (1) or (2), if the standard deviation is larger than the determination value, it is determined as a tracking deviation, and the standard deviation is smaller than the determination value. In that case, it may be determined that there is a possibility of output decrease.
In this case, the tracking deviation and the output decrease can be discriminated from each other and detected.
 (4)前記(1)から(3)のいずれかの集光型太陽光発電装置の監視システムにおいて、判定結果を、追尾ずれ又は出力低下として事象名を出力することが好ましい。
 この場合、数値やグラフから監視者が読み取るのではなく、直接的に、監視者の注意を喚起し、原因の除去を迅速に実現することができる。
(4) In the monitoring system of the concentrating photovoltaic power generation device according to any one of (1) to (3) above, it is preferable to output the event name as the determination result as tracking deviation or output reduction.
In this case, the observer can directly call the attention of the observer and quickly eliminate the cause, instead of reading from the numerical value or the graph.
 (5)また、本開示の追尾ずれの検出方法は、発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とし、稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換し、前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する。 (5) Further, in the tracking deviation detection method of the present disclosure, the amount of power generated per unit time is obtained for each of a plurality of concentrating photovoltaic power generation devices constituting the power generation facility, and the obtained power generation is obtained. The value obtained by dividing the electric energy by the reference value is used as the power generation coefficient for each unit time, and the daily power generation coefficient is converted into the standard deviation for all the concentrating photovoltaic power generation devices in operation. The presence or absence of tracking deviation is determined by comparing the standard deviation with the determination value of tracking deviation.
 このような追尾ずれの判定方法によれば、発電電力量に基づく標準偏差から追尾ずれの有無を判定できる。従って、複数基の集光型太陽光発電装置の中から、小さな追尾ずれを生じている集光型太陽光発電装置を容易に検出することができる。 According to such a tracking deviation determination method, the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
 (6)また、本開示の追尾ずれの検出プログラムは、発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求める機能、求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とする機能、稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換する機能、及び、前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する機能を、コンピュータによって実現させるための検出プログラムである。なお、検出プログラムに代えて、当該検出プログラムを記録した媒体と表現することもできる。 (6) Further, the tracking deviation detection program of the present disclosure is a function of obtaining the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices constituting the power generation facility. A function that uses the value obtained by dividing the amount of power generated by a reference value as the power generation coefficient for each unit time, and the power generation coefficient per day is used as the standard deviation for all the concentrating photovoltaic power generation devices in operation. It is a detection program for realizing a function of converting and a function of comparing the standard deviation with a determination value of tracking deviation and determining the presence or absence of tracking deviation by a computer. In addition, instead of the detection program, it can be expressed as a medium on which the detection program is recorded.
 このような追尾ずれの検出プログラムによれば、発電電力量に基づく標準偏差から追尾ずれの有無を判定できる。従って、複数基の集光型太陽光発電装置の中から、小さな追尾ずれを生じている集光型太陽光発電装置を容易に検出することができる。 According to such a tracking deviation detection program, the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from among a plurality of condensing photovoltaic power generation devices.
 [本開示の実施形態の詳細]
 以下、本開示の具体例について、図面を参照して説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Details of Embodiments of the present disclosure]
Hereinafter, specific examples of the present disclosure will be described with reference to the drawings. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 《集光型太陽光発電装置》
 図1及び図2はそれぞれ、1基分の、集光型太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での集光型太陽光発電装置100を示し、図2は、組立途中の状態での集光型太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
《Concentrating solar power generation device》
1 and 2 are perspective views of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side. FIG. 1 shows a concentrating photovoltaic power generation device 100 in a completed state, and FIG. 2 shows a condensing photovoltaic power generation device 100 in a state in the middle of assembly. FIG. 2 shows a state in which the skeleton of the tracking mount 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M is attached in the left half. When actually attaching the module 1M to the tracking pedestal 25, the tracking pedestal 25 is attached while lying on the ground.
 図1において、この集光型太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ(太陽光発電パネル全体)1と、その支持装置2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。 In FIG. 1, the concentrating photovoltaic power generation device 100 includes an array (entire photovoltaic power generation panel) 1 having a shape continuous on the upper side and divided into left and right on the lower side, and a support device 2 thereof. .. The array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side. In the example of FIG. 1, the array 1 is an aggregate of 200 modules 1M in total, consisting of (96 (= 12 × 8) × 2) pieces constituting the left and right wings and 8 pieces in the central crossover portion. It is configured.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。 The support device 2 includes a support column 21, a foundation 22, a two-axis drive unit 23, and a horizontal axis 24 (FIG. 2) as a drive axis. The lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a two-axis drive unit 23.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。従って、水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal. The two-axis drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24). In FIG. 2, a reinforcing member 25a for reinforcing the tracking mount 25 is attached to the horizontal shaft 24. Further, a plurality of horizontal rails 25b are attached to the reinforcing member 25a. Therefore, if the horizontal axis 24 rotates in the direction of the azimuth angle or the elevation angle, the array 1 also rotates in that direction.
 なお、図1,図2では1本の支柱21でアレイ1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、アレイ1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。 Although FIGS. 1 and 2 show the support device 2 that supports the array 1 with one support column 21, the configuration of the support device 2 is not limited to this. In short, any support device can be used as long as it can support the array 1 so as to be movable in two axes (azimuth and elevation).
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、2軸駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 図3は、一例として、太陽に正対しているアレイ1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、アレイ1は受光面を太陽に向けて水平な姿勢となる。夜間は、例えば、アレイ1の受光面を地面に向けて水平な姿勢となる。
Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
During the daytime, the two-axis drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
FIG. 3 is a perspective view showing the posture of the array 1 facing the sun as an example. Further, for example, at the time of mid-south near the equator, the array 1 is in a horizontal posture with the light receiving surface facing the sun. At night, for example, the light receiving surface of the array 1 is oriented horizontally toward the ground.
 《発電設備》
 図4は、事業用の発電設備(発電所)300として屋外のエリア200に整列して設置された集光型太陽光発電装置100の平面図である。図中のX方向に、(A),(B),(C),(D),(E)の合計5列、Y方向に(1),(2),(3),(4),(5),(6),(7)の合計7行のマトリックス配置とする。例えば、E1と言えば、一番右上の集光型太陽光発電装置100である。A7と言えば一番左下の集光型太陽光発電装置100である。この例では、C4及びA1には集光型太陽光発電装置100が設置されていない。従って、全体数33基の集光型太陽光発電装置100によって構成される発電設備300である。Y方向が北方向であるとすると、図示しているのは、南中時の33基の集光型太陽光発電装置100であるということになる。
"Power generation equipment"
FIG. 4 is a plan view of a concentrating photovoltaic power generation device 100 installed in line with the outdoor area 200 as a power generation facility (power plant) 300 for business use. A total of 5 columns of (A), (B), (C), (D), (E) in the X direction in the figure, (1), (2), (3), (4), in the Y direction. A total of 7 rows of (5), (6), and (7) are arranged in a matrix. For example, Speaking of E1, it is the condensing type photovoltaic power generation device 100 on the upper right. Speaking of A7, it is the condensing type photovoltaic power generation device 100 at the lower left. In this example, the concentrating photovoltaic power generation device 100 is not installed in C4 and A1. Therefore, it is a power generation facility 300 composed of a total of 33 concentrating photovoltaic power generation devices 100. Assuming that the Y direction is the north direction, what is shown in the figure is 33 concentrating photovoltaic power generation devices 100 at the time of south-central time.
 《集光型太陽光発電装置の監視システム》
 図5は、集光型太陽光発電装置の商用電力系統への接続と、監視システムとの接続の一例とを示す図である。集光型太陽光発電装置100は、図示の都合上、3基のみを示している。集光型太陽光発電装置100には、それぞれ、直流から交流への電力変換を行うインバータ装置101が接続されている。各インバータ装置101の交流出力は変電設備102に接続されている。変電設備102は、電力量計103を介して、商用電力系統104に接続されている。
<< Monitoring system for concentrating photovoltaic power generation equipment >>
FIG. 5 is a diagram showing an example of connection of a concentrating photovoltaic power generation device to a commercial power system and connection to a monitoring system. For convenience of illustration, only three concentrating photovoltaic power generation devices 100 are shown. An inverter device 101 that converts electric power from direct current to alternating current is connected to each of the condensing type photovoltaic power generation devices 100. The AC output of each inverter device 101 is connected to the substation equipment 102. The substation equipment 102 is connected to the commercial power system 104 via the watt hour meter 103.
 電力量計103の出力する電力量の情報は、信号入出力端末装置105に送られる。各インバータ装置101の出力する電圧及び電流の情報は、信号入出力端末装置105に送られる。センサ106は、気温、雨量、風速、風向等、各種の気象データを信号入出力端末装置105に送る。信号入出力端末装置105は、アナログ量で送られてくる情報信号をデジタル信号にA/D変換し、コンピュータ107に送る。コンピュータ107には、ディスプレイ108及びプリンタ109が接続されている。コンピュータ107,ディスプレイ108及びプリンタ109は、監視装置110を構成している。コンピュータ107は、ソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、コンピュータ107の記憶部107mに格納される。記憶部107mは、コンピュータ読み取り可能な非一過性の記録媒体であり、例えばROM(Read Only Memory)、RAM(Random Access Memory)の他、HDD(Hard Disk Drive)等の補助記憶装置である。 Information on the amount of power output by the watt-hour meter 103 is sent to the signal input / output terminal device 105. The voltage and current information output by each inverter device 101 is sent to the signal input / output terminal device 105. The sensor 106 sends various meteorological data such as temperature, rainfall, wind speed, and wind direction to the signal input / output terminal device 105. The signal input / output terminal device 105 A / D-converts an information signal transmitted in an analog amount into a digital signal and sends it to the computer 107. A display 108 and a printer 109 are connected to the computer 107. The computer 107, the display 108, and the printer 109 constitute a monitoring device 110. The computer 107 realizes a necessary control function by executing software (computer program). The software is stored in the storage unit 107m of the computer 107. The storage unit 107m is a non-transient recording medium that can be read by a computer, and is an auxiliary storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), or an HDD (Hard Disk Drive).
 コンピュータ107は、全てのインバータ装置101から逐次送られてくる電圧、電流のデータに基づいて、電力を求め、稼働している全ての集光型太陽光発電装置100の単位時間毎の発電電力量を記憶する。また、監視装置110は、ソフトウェアによる内部機能として、演算部107c、変換部107t、及び、判定部107jを含んでいる。演算部107cは、複数基の集光型太陽光発電装置100について、単位時間ごとの発電電力量を、1基ごとに求め、求めた発電電力量を基準値で除した値を、単位時間ごとの発電量係数とする。変換部107tは、稼働中の全ての集光型太陽光発電装置100についての発電量係数を標準偏差に変換する。そして、判定部107jは、標準偏差を判定値と比較して追尾ずれの有無を判定する。判定した情報は、ディスプレイ108に表示され、また、毎日定刻(例えば午前0時)になると、プリンタ109により1日のデータ(日報)としてプリントされる。 The computer 107 obtains electric power based on the voltage and current data sequentially sent from all the inverter devices 101, and the amount of electric power generated per unit time of all the concentrating photovoltaic power generation devices 100 in operation. Remember. Further, the monitoring device 110 includes a calculation unit 107c, a conversion unit 107t, and a determination unit 107j as internal functions by software. The calculation unit 107c obtains the amount of power generated per unit time for each of the plurality of concentrating photovoltaic power generation devices 100, and divides the obtained amount of generated power by the reference value for each unit time. The power generation coefficient of. The conversion unit 107t converts the power generation coefficient of all the concentrating photovoltaic power generation devices 100 in operation into the standard deviation. Then, the determination unit 107j compares the standard deviation with the determination value to determine the presence or absence of the tracking deviation. The determined information is displayed on the display 108, and is printed as daily data (daily report) by the printer 109 at the scheduled time (for example, midnight) every day.
 《追尾ずれの検出方法、追尾ずれの検出プログラム》
 次に、上述のコンピュータ107が実行する処理内容について説明する。図6は、監視装置110のコンピュータ107が実行する処理内容を示すフローチャートである。コンピュータ107は、毎日、定刻になると処理を開始する。まず、全基のうち、故障、発電量に影響するほどの汚れ、追尾ずれ等の問題が無いことがわかっているものを、基準となる集光型太陽光発電装置として設定する(ステップS1)。
<< Tracking deviation detection method, tracking deviation detection program >>
Next, the processing contents executed by the above-mentioned computer 107 will be described. FIG. 6 is a flowchart showing the processing contents executed by the computer 107 of the monitoring device 110. The computer 107 starts processing every day at the scheduled time. First, among all the units, those that are known to have no problems such as failure, dirt that affects the amount of power generation, and tracking deviation are set as the reference condensing type photovoltaic power generation device (step S1). ..
 次に、コンピュータ107は、稼働している全ての集光型太陽光発電装置について時間毎の発電電力量を集計し(ステップS2)、1基ごとの1日の発電電力量を求める。また、コンピュータ107は、全ての集光型太陽光発電装置について時間毎の発電量係数を求める(ステップS3)。ここで、発電量係数をk、同じ時間帯における、対象とする集光型太陽光発電装置の発電電力量をW[kWh]、基準となる集光型太陽光発電装置の発電電力量をWr[kWh]とすると、
 k=W/Wr   ・・・(1)
である。基準となる集光型太陽光発電装置についての発電量係数はk=1である。
Next, the computer 107 totals the amount of power generated per hour for all the concentrating photovoltaic power generation devices in operation (step S2), and obtains the amount of power generated per day for each unit. Further, the computer 107 obtains an hourly power generation coefficient for all the concentrating photovoltaic power generation devices (step S3). Here, the power generation coefficient is k, the power generation amount of the target concentrating photovoltaic power generation device in the same time zone is W [kWh], and the power generation amount of the reference concentrating photovoltaic power generation device is Wr. If you say [kWh],
k = W / Wr ・ ・ ・ (1)
Is. The power generation coefficient for the reference concentrating photovoltaic power generation device is k = 1.
 例えば日の出による発電開始時刻が5時台、日没により発電電力が0になる時刻が19時台であるとする。この場合、コンピュータ107が、6時0分から20時0分まで例えば1時間毎に演算を行うとして、6時の発電量係数をkというよう添え字付きで表すと、1日の発電量係数は、
 k,k,k,・・・・,k18,k19,k20
となる。すなわち、この場合の発電量係数の総個数は、15である。コンピュータ107は、15個の発電量係数を用いて、下記の式(2)により標準偏差σを求める(ステップS3)。なお、1時間毎というのは説明上わかりやすい一例であり、より短い時間毎に演算を行ってもよい。
For example, it is assumed that the power generation start time at sunrise is around 5 o'clock and the time when the generated power becomes 0 at sunset is around 19:00. In this case, the computer 107, as perform operations every 6 o'clock 0 minutes 20 hours, 0 minutes, for example up to 1 hour, to represent the power generation amount coefficient 6:00 with a subscript so that k 6, the power generation amount coefficient daily Is
k 6 , k 7 , k 8 , ..., k 18 , k 19 , k 20
Will be. That is, the total number of power generation coefficients in this case is 15. The computer 107 obtains the standard deviation σ by the following equation (2) using 15 power generation coefficients (step S3). Note that every hour is an easy-to-understand example for explanation, and the calculation may be performed every shorter time.
Figure JPOXMLDOC01-appb-I000001

                    ・・・(2)
Figure JPOXMLDOC01-appb-I000001

... (2)
 次に、コンピュータ107は、追尾ずれと判定するための、設定された判定値(閾値)σthを取得し(ステップS5)、標準偏差σを判定値σthと比較する(ステップS6)。標準偏差σが判定値σth以上であれば、コンピュータ107は追尾ずれと判定し、記憶する(ステップS7)。 Next, the computer 107 acquires the set determination value (threshold value) σ th for determining the tracking deviation (step S5), and compares the standard deviation σ with the determination value σ th (step S6). If the standard deviation σ is equal to or greater than the determination value σ th , the computer 107 determines that it is a tracking deviation and stores it (step S7).
 標準偏差σが判定値σthより小さい場合は、次に、コンピュータ107は、1日の発電電力量から発電量指数を求める(ステップS8)。対象とする集光型太陽光発電装置の発電電力量をΣW、基準となる集光型太陽光発電装置の発電電力量をΣWr、発電量指数をiとすると、
 i=ΣW/ΣWr   ・・・(3)
である。
If the standard deviation σ is smaller than the determination value σ th , the computer 107 then obtains the power generation index from the daily power generation (step S8). Assuming that the amount of power generated by the target photovoltaic power generation device is ΣW, the amount of power generated by the reference photovoltaic power generation device is ΣWr, and the power generation index is i.
i = ΣW / ΣWr ・ ・ ・ (3)
Is.
 次に、コンピュータ107は、出力低下と判定するための、設定された判定値(閾値)ithを取得し(ステップS9)、発電量指数iを判定値ithと比較する(ステップS10)。発電量指数iが判定値ith以上であれば、コンピュータ107は出力低下と判定し、記憶する(ステップS11)。発電量指数iが判定値ithより小さければ、コンピュータ107は、全ての集光型太陽光発電装置について判定したか否か、を判定する(ステップS12)。 Next, the computer 107, for determining the output lowering, to get the set determination value (threshold) i th (Step S9), and compares power generation amount index i and the determination value i th (step S10). If power generation index i is determined value i th or more, the computer 107 determines that the output reduction, and stores (step S11). If power generation index i is smaller than the determination value i th, the computer 107 determines whether, or not determined for all the concentrating solar power generation device (step S12).
 以後、稼働していた全ての集光型太陽光発電装置について判定を行うべく、コンピュータ107は、ステップS4からS12までの処理を繰り返す。そして、全ての集光型太陽光発電装置についての判定が終わると、コンピュータ107は、結果をディスプレイ108に表示し、プリンタ109によりプリントする(ステップS13)。これにて、処理は終了となる。 After that, the computer 107 repeats the processes from steps S4 to S12 in order to make a determination for all the concentrating photovoltaic power generation devices that have been in operation. Then, when the determination for all the condensing type photovoltaic power generation devices is completed, the computer 107 displays the result on the display 108 and prints it by the printer 109 (step S13). This completes the process.
 《発電電力量の変化の例示》
 図7は、全ての集光型太陽光発電装置について、5群に分けて、1日の発電電力量の変化を示すグラフである。このようなグラフは、コンピュータ107に入力される発電電力に基づく簡単な演算により容易に取得できる。例えば、各グラフは、例えば1分程度の時間あたりの電力量を1時間換算にて求め、グラフ化したものである。各グラフは6~7基分のデータが重ねて表示されている。実際には各基のデータが色分けして表示され、重なっていても見やすくなっている。
<< Example of changes in generated power >>
FIG. 7 is a graph showing changes in the amount of power generated per day by dividing all the concentrating photovoltaic power generation devices into five groups. Such a graph can be easily obtained by a simple calculation based on the generated power input to the computer 107. For example, each graph is a graph obtained by calculating the amount of electric power per minute, for example, in terms of one hour. In each graph, the data for 6 to 7 units are superimposed and displayed. Actually, the data of each group is displayed in different colors, making it easy to see even if they overlap.
 (a)のグラフによれば、特定の集光型太陽光発電装置における発電電力量が、他の集光型太陽光発電装置より下がっている時間帯があることがわかる。この原因は、追尾ずれである可能性が高い。(b)のグラフによれば、特定の集光型太陽光発電装置における発電電力量が、主として午前中の、ある時間帯において0になっていることがわかる。これは、保守(洗浄)のために発電できなかったからである。(c)のグラフによれば、特定の集光型太陽光発電装置における発電電力量が、午後の、ある時間帯において0になっていることがわかる。これは、保守(人による操作)のために発電できなかったからである。(d)のグラフによれば、対象となる全基は、特に問題なく、良好に発電していることがわかる。(e)のグラフによれば、特定の集光型太陽光発電装置における発電電力量が、他の集光型太陽光発電装置より1日中コンスタントに下がっていることがわかる。 According to the graph of (a), it can be seen that there are times when the amount of power generated by a specific concentrating photovoltaic power generation device is lower than that of other concentrating photovoltaic power generation devices. The cause is likely to be tracking deviation. According to the graph of (b), it can be seen that the amount of power generated by the specific concentrating photovoltaic power generation device is 0 mainly in the morning at a certain time zone. This is because power could not be generated due to maintenance (cleaning). According to the graph of (c), it can be seen that the amount of power generated by the specific concentrating photovoltaic power generation device becomes 0 in a certain time zone in the afternoon. This is because power could not be generated due to maintenance (manipulation by humans). According to the graph of (d), it can be seen that all the target units generate electricity satisfactorily without any particular problem. According to the graph of (e), it can be seen that the amount of power generated by a specific concentrating photovoltaic power generation device is constantly lower than that of other concentrating photovoltaic power generation devices throughout the day.
 (b)及び(c)のグラフのような結果は、予めわかっていることであり、保守が原因である。そして、図6のフローチャートの処理により、(a)の状態と、(e)の状態とを自動的に識別することができる。 The results shown in the graphs of (b) and (c) are known in advance and are due to maintenance. Then, by processing the flowchart of FIG. 6, the state of (a) and the state of (e) can be automatically distinguished.
 《日報の例示》
 図8は、毎日定刻にプリントアウトされる日報の一例である。(a)欄には数値データが表示される(詳細は省略している。)。(b)欄には、集光型太陽光発電装置の全基トータルでの棒グラフの発電電力量と、連続した曲線の直達日射及び全天日射の変化とを示している。集光型太陽光発電装置の全基が正常であれば、日射の変化軌跡と発電電力量の包絡線とは概ね対応した形状の特性になる。(c)欄は温度、風速等の気象データのグラフである。
<< Example of daily report >>
FIG. 8 is an example of a daily report printed out on time every day. Numerical data is displayed in column (a) (details are omitted). The column (b) shows the amount of power generated in the bar graph of the total number of all units of the concentrating photovoltaic power generation device, and the changes in the continuous curve of direct solar radiation and total solar radiation. If all the units of the concentrating photovoltaic power generation device are normal, the characteristics of the shape of the change locus of solar radiation and the envelope of the amount of generated power generally correspond to each other. Column (c) is a graph of meteorological data such as temperature and wind speed.
 そして、(d)欄は、前述のフローチャートの処理に基づいて表示される不具合のガイダンスである。左側の枠で囲んだ部分は、対象となる集光型太陽光発電装置を表している。例えば「A6」は、図4におけるA列の6行目に位置する集光型太陽光発電装置である。右側の枠で囲んだ部分は、推定原因ガイダンスである。「Tracking Error」は追尾ずれであり、「Output Degradation」は出力低下である。このように不具合が生じている集光型太陽光発電装置と、不具合の事象とを文字情報で表すことにより、監視者は、小さな追尾ずれであっても、容易に認知できる。また、追尾ずれとは別に、出力低下も容易に検出できる。従って、追尾ずれと出力低下とを識別して容易に検出することができる。 Then, the column (d) is the guidance of the defect displayed based on the processing of the above-mentioned flowchart. The part surrounded by the frame on the left side represents the target concentrating photovoltaic power generation device. For example, "A6" is a concentrating photovoltaic power generation device located in the sixth row of column A in FIG. The part surrounded by the right frame is the probable cause guidance. "Tracking Error" is a tracking deviation, and "Output Degradation" is a decrease in output. By expressing the concentrating photovoltaic power generation device in which the defect has occurred and the event of the defect in text information, the observer can easily recognize even a small tracking deviation. In addition to the tracking deviation, a decrease in output can be easily detected. Therefore, the tracking deviation and the output decrease can be discriminated and easily detected.
 なお、(e)欄は、保守の対象となっている集光型太陽光発電装置を表示している。この例では、「B2」の位置にある集光型太陽光発電装置が洗浄中であり、「C2」の位置にある集光型太陽光発電装置が修理中であることが示されている。 The column (e) shows the concentrating photovoltaic power generation equipment that is the subject of maintenance. In this example, it is shown that the concentrating photovoltaic device at the "B2" position is being cleaned and the concentrating photovoltaic device at the "C2" position is being repaired.
 《開示のまとめ》
 以上、詳述したように、本開示の集光型太陽光発電装置の監視システムでは、監視装置110は、稼働中の全ての集光型太陽光発電装置100について取得した発電電力量を標準偏差に変換し、当該標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する。これにより、発電電力量に基づく標準偏差から追尾ずれの有無を判定できる。従って、複数基の集光型太陽光発電装置の中から、小さな追尾ずれを生じている集光型太陽光発電装置を容易に検出することができる。
<< Summary of Disclosure >>
As described in detail above, in the monitoring system of the concentrating photovoltaic power generation device of the present disclosure, the monitoring device 110 has a standard deviation of the amount of generated power acquired for all the concentrating photovoltaic power generation devices 100 in operation. And the standard deviation is compared with the determination value of the tracking deviation to determine the presence or absence of the tracking deviation. As a result, the presence or absence of tracking deviation can be determined from the standard deviation based on the amount of generated power. Therefore, it is possible to easily detect a concentrating photovoltaic power generation device having a small tracking deviation from a plurality of condensing photovoltaic power generation devices.
 より具体的には、監視装置110は、コンピュータ107により実現する機能部として、演算部107cと、変換部107tと、判定部107jとを備えている。演算部107cは、複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、求めた発電電力量を基準値で除した値を、単位時間ごとの発電量係数とする。変換部107tは、稼働中の全ての集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換する。判定部107jは、標準偏差を判定値と比較して追尾ずれの有無を判定する。このようにして標準偏差を求めることにより、追尾ずれが発生している状態を的確に数値化して捉えることができる。 More specifically, the monitoring device 110 includes a calculation unit 107c, a conversion unit 107t, and a determination unit 107j as functional units realized by the computer 107. The calculation unit 107c obtains the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices, and divides the obtained amount of power generated by the reference value for each unit time. Let it be the power generation coefficient. The conversion unit 107t converts the daily power generation coefficient into the standard deviation for all the concentrating photovoltaic power generation devices in operation. The determination unit 107j compares the standard deviation with the determination value to determine whether or not there is a tracking deviation. By obtaining the standard deviation in this way, it is possible to accurately quantify and grasp the state in which the tracking deviation occurs.
 また、標準偏差が判定値より大きい場合は追尾ずれと判定し、標準偏差が判定値より小さい場合は出力低下の可能性ありと判定することができる。従って、追尾ずれと出力低下とを互いに識別して検出することができる。
 さらに、判定結果を、追尾ずれ又は出力低下として事象名を出力することにより、数値やグラフから監視者が読み取るのではなく、直接的に、監視者の注意を喚起し、原因の除去を迅速に実現することができる。
Further, when the standard deviation is larger than the determination value, it can be determined that there is a tracking deviation, and when the standard deviation is smaller than the determination value, it can be determined that the output may decrease. Therefore, the tracking deviation and the output decrease can be discriminated from each other and detected.
Furthermore, by outputting the event name as a tracking deviation or output decrease in the judgment result, the observer does not read it from the numerical value or graph, but directly calls the observer's attention and quickly eliminates the cause. It can be realized.
 追尾ずれの検出方法として表現すれば、(i)発電設備300を構成する複数基の集光型太陽光発電装置100について、単位時間ごとの発電電力量を、1基ごとに求め、(ii)求めた発電電力量を基準値で除した値を、単位時間ごとの発電量係数とし、(iii)稼働中の全ての集光型太陽光発電装置100について、1日の発電量係数を標準偏差に変換し、(iv)標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定することである。 Expressed as a method for detecting tracking deviation, (i) the amount of power generated for each unit time of a plurality of concentrating photovoltaic power generation devices 100 constituting the power generation facility 300 is obtained for each unit, and (ii). The value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time, and (iii) for all the concentrating photovoltaic power generation devices 100 in operation, the daily power generation amount coefficient is the standard deviation. (Iv) The standard deviation is compared with the determination value of the tracking deviation to determine the presence or absence of the tracking deviation.
 追尾ずれの検出プログラムとして表現すれば、(a)発電設備300を構成する複数基の集光型太陽光発電装置100について、単位時間ごとの発電電力量を、1基ごとに求める機能、(b)求めた発電電力量を基準値で除した値を、単位時間ごとの発電量係数とする機能、(c)稼働中の全ての集光型太陽光発電装置100について、1日の発電量係数を標準偏差に変換する機能、及び、(d)標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する機能を、コンピュータによって実現させるための追尾ずれの検出プログラムである。なお、検出プログラムは、当該検出プログラムを記録した記録媒体としても存在し得る。記録媒体としては、半導体メモリ、光ディスク、磁気ディスク、光磁気ディスク等を用いることができる。 Expressed as a tracking deviation detection program, (a) a function of obtaining the amount of power generated per unit time for each of a plurality of concentrating photovoltaic power generation devices 100 constituting the power generation facility 300, (b). ) A function that uses the obtained power generation amount divided by the reference value as the power generation amount coefficient for each unit time. (C) The daily power generation amount coefficient for all the concentrating photovoltaic power generation devices 100 in operation. Is a tracking deviation detection program for realizing by a computer a function of converting the standard deviation into a standard deviation and (d) a function of comparing the standard deviation with a determination value of the tracking deviation to determine the presence or absence of the tracking deviation. The detection program may also exist as a recording medium on which the detection program is recorded. As the recording medium, a semiconductor memory, an optical disk, a magnetic disk, a magneto-optical disk, or the like can be used.
 《その他》
 なお、監視装置110は発電設備300に近接してローカルに設けられていてもよいし、例えばインターネット経由で遠隔地にサーバとして設けられていてもよい。
 また、検出プログラムの主な機能をチップ化してLSI(大規模集積回路)とすることもできる。
《Others》
The monitoring device 110 may be installed locally in the vicinity of the power generation facility 300, or may be installed as a server in a remote location via the Internet, for example.
Further, the main function of the detection program can be made into a chip to form an LSI (Large Scale Integrated Circuit).
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<< Supplement >>
It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 アレイ
 1M 集光型太陽光発電モジュール(モジュール)
 2 支持装置
 21 支柱
 22 基礎
 23 2軸駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 100 集光型太陽光発電装置
 101 インバータ装置
 102 変電設備
 103 電力量計
 104 商用電力系統
 105 信号入出力端末装置
 106 センサ
 107 コンピュータ
 107c 演算部
 107j 判定部
 107t 変換部
 107m 記憶部
 108 ディスプレイ
 109 プリンタ
 110 監視装置
 200 エリア
 300 発電設備
1 array 1M concentrating photovoltaic power generation module (module)
2 Support device 21 Strut 22 Foundation 23 2-axis drive unit 24 Horizontal axis 25 Tracking stand 25a Reinforcing material 25b Rail 100 Concentrating solar power generation device 101 Inverter device 102 Substation equipment 103 Electricity meter 104 Commercial power system 105 Signal input / output terminal Equipment 106 Sensor 107 Computer 107c Calculation unit 107j Judgment unit 107t Conversion unit 107m Storage unit 108 Display 109 Printer 110 Monitoring device 200 Area 300 Power generation equipment

Claims (6)

  1.  発電設備を構成する複数基の集光型太陽光発電装置と、
     前記集光型太陽光発電装置の各々から発電電力量の情報を取得する監視装置と、を備え、
     前記監視装置は、稼働中の全ての前記集光型太陽光発電装置について取得した前記発電電力量を標準偏差に変換し、当該標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する、集光型太陽光発電装置の監視システム。
    Multiple concentrating photovoltaic power generation devices that make up the power generation facility,
    A monitoring device for acquiring information on the amount of power generated from each of the concentrating photovoltaic power generation devices is provided.
    The monitoring device converts the generated power amount acquired for all the concentrating photovoltaic power generation devices in operation into a standard deviation, compares the standard deviation with the determination value of the tracking deviation, and determines the presence or absence of the tracking deviation. A monitoring system for concentrating photovoltaic power generation equipment to judge.
  2.  前記監視装置は、
     前記複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とする演算部と、
     稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を前記標準偏差に変換する変換部と、
     前記標準偏差を前記判定値と比較して追尾ずれの有無を判定する判定部と、
     を含む、請求項1に記載の集光型太陽光発電装置の監視システム。
    The monitoring device
    For each of the plurality of concentrating photovoltaic power generation devices, the amount of power generated per unit time is obtained for each unit, and the value obtained by dividing the obtained amount of generated power by the reference value is the power generation coefficient for each unit time. And the arithmetic unit
    For all the concentrating photovoltaic power generation devices in operation, a conversion unit that converts the daily power generation coefficient into the standard deviation, and
    A determination unit that compares the standard deviation with the determination value to determine the presence or absence of tracking deviation,
    The monitoring system for a concentrating photovoltaic power generation device according to claim 1.
  3.  前記標準偏差が前記判定値より大きい場合は追尾ずれと判定し、前記標準偏差が前記判定値より小さい場合は出力低下の可能性ありと判定する請求項1又は請求項2に記載の、集光型太陽光発電装置の監視システム。 The light collection according to claim 1 or 2, wherein when the standard deviation is larger than the determination value, it is determined to be a tracking deviation, and when the standard deviation is smaller than the determination value, it is determined that there is a possibility of output decrease. Monitoring system for photovoltaic power generation equipment.
  4.  判定結果を、追尾ずれ又は出力低下として事象名を出力する、請求項1から請求項3のいずれか1項に記載の、集光型太陽光発電装置の監視システム。 The monitoring system for a concentrating photovoltaic power generation device according to any one of claims 1 to 3, which outputs the event name as a tracking deviation or a decrease in output of the determination result.
  5.  発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求め、
     求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とし、
     稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換し、
     前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する、
     追尾ずれの検出方法。
    For each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility, the amount of power generated per unit time is calculated for each unit.
    The value obtained by dividing the obtained power generation amount by the reference value is used as the power generation amount coefficient for each unit time.
    For all the concentrating photovoltaic power generation devices in operation, the daily power generation coefficient is converted into the standard deviation.
    The presence or absence of tracking deviation is determined by comparing the standard deviation with the determination value of tracking deviation.
    How to detect tracking deviation.
  6.  発電設備を構成する複数基の集光型太陽光発電装置について、単位時間ごとの発電電力量を、1基ごとに求める機能、
     求めた発電電力量を基準値で除した値を、前記単位時間ごとの発電量係数とする機能、
     稼働中の全ての前記集光型太陽光発電装置について、1日の前記発電量係数を標準偏差に変換する機能、及び、
     前記標準偏差を追尾ずれの判定値と比較して追尾ずれの有無を判定する機能を、
     コンピュータによって実現させるための追尾ずれの検出プログラム。
    A function to obtain the amount of power generated per unit time for each of the multiple concentrating photovoltaic power generation devices that make up the power generation facility.
    A function that uses the value obtained by dividing the obtained power generation amount by the reference value as the power generation amount coefficient for each unit time.
    A function to convert the daily power generation coefficient into a standard deviation for all the concentrating photovoltaic power generation devices in operation, and
    A function for determining the presence or absence of tracking deviation by comparing the standard deviation with the determination value of tracking deviation.
    A tracking deviation detection program to be realized by a computer.
PCT/JP2020/022519 2019-06-25 2020-06-08 Monitoring system for concentrating photovoltaic power generation device, method for detecting tracking deviation, and program for detecting tracking deviation WO2020261960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117497 2019-06-25
JP2019-117497 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261960A1 true WO2020261960A1 (en) 2020-12-30

Family

ID=74060846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022519 WO2020261960A1 (en) 2019-06-25 2020-06-08 Monitoring system for concentrating photovoltaic power generation device, method for detecting tracking deviation, and program for detecting tracking deviation

Country Status (1)

Country Link
WO (1) WO2020261960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276088A (en) * 2022-08-02 2022-11-01 国网甘肃省电力公司经济技术研究院 A method for optimal configuration of heat storage capacity of a solar thermal power station in a combined power generation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216811A (en) * 2010-04-02 2011-10-27 Sharp Corp Solar cell abnormality diagnosis system, solar cell abnormality diagnosis apparatus and solar cell abnormality diagnosis method
JP2015223040A (en) * 2014-05-23 2015-12-10 住友電気工業株式会社 Concentrator photovoltaic power generation system, semiconductor integrated circuit used for the same, tracking deviation detection program and tracking deviation correction program, and tracking deviation detection method and tracking deviation correction method
WO2016166991A1 (en) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 Diagnostic system for photovoltaic power generation equipment, and program
KR20170074832A (en) * 2017-06-12 2017-06-30 박규식 Apparatus for Degradation Diagnosis of Photovoltaic Module
WO2017169473A1 (en) * 2016-03-30 2017-10-05 株式会社ラプラス・システム Power generation diagnosis method and power generation diagnosis device for photovoltaic power generation system
JP2018160430A (en) * 2017-03-23 2018-10-11 大阪瓦斯株式会社 Fuel cell system and operational method thereof
JP2018165653A (en) * 2017-03-28 2018-10-25 三菱重工業株式会社 Blade irregularity detection device, blade irregularity detection system, revolving machine system, and blade irregularity detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216811A (en) * 2010-04-02 2011-10-27 Sharp Corp Solar cell abnormality diagnosis system, solar cell abnormality diagnosis apparatus and solar cell abnormality diagnosis method
JP2015223040A (en) * 2014-05-23 2015-12-10 住友電気工業株式会社 Concentrator photovoltaic power generation system, semiconductor integrated circuit used for the same, tracking deviation detection program and tracking deviation correction program, and tracking deviation detection method and tracking deviation correction method
WO2016166991A1 (en) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 Diagnostic system for photovoltaic power generation equipment, and program
WO2017169473A1 (en) * 2016-03-30 2017-10-05 株式会社ラプラス・システム Power generation diagnosis method and power generation diagnosis device for photovoltaic power generation system
JP2018160430A (en) * 2017-03-23 2018-10-11 大阪瓦斯株式会社 Fuel cell system and operational method thereof
JP2018165653A (en) * 2017-03-28 2018-10-25 三菱重工業株式会社 Blade irregularity detection device, blade irregularity detection system, revolving machine system, and blade irregularity detection method
KR20170074832A (en) * 2017-06-12 2017-06-30 박규식 Apparatus for Degradation Diagnosis of Photovoltaic Module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276088A (en) * 2022-08-02 2022-11-01 国网甘肃省电力公司经济技术研究院 A method for optimal configuration of heat storage capacity of a solar thermal power station in a combined power generation system
CN115276088B (en) * 2022-08-02 2023-08-08 国网甘肃省电力公司经济技术研究院 Thermal power station heat storage capacity optimal configuration method in combined power generation system

Similar Documents

Publication Publication Date Title
US20240019175A1 (en) Sensing and feedback for row on sun tracking method and system
US20110066401A1 (en) System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants
JP5856294B2 (en) Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
Yagi et al. Diagnostic technology and an expert system for photovoltaic systems using the learning method
JP6093465B1 (en) Power generation diagnosis method and power generation diagnosis apparatus for solar power generation system
US20220083079A1 (en) Systems and methods for solar trackers with diffuse light tracking
US20110276269A1 (en) Systems and methods for forecasting solar power
US20120065936A1 (en) Systems and Methods for Identifying Faulty Sensors Within a Power Generation System
CN107341566A (en) Photovoltaic system electricity generation power prediction meanss and its method based on meteorologic parameter Yu solar panel running state parameter
JP2001326375A (en) Method and apparatus for diagnosis of solar light power generation system
Brown et al. Shaping photovoltaic array output to align with changing wholesale electricity price profiles
CN103941754A (en) Variable time interval start-stop sun light tracking system for photovoltaic power generation and method
JP2015223040A (en) Concentrator photovoltaic power generation system, semiconductor integrated circuit used for the same, tracking deviation detection program and tracking deviation correction program, and tracking deviation detection method and tracking deviation correction method
JP2012104750A (en) Photovoltaic power generation diagnostic apparatus
Kebede et al. A techno-economic optimization and performance assessment of a 10 kWP photovoltaic grid-connected system
WO2020261960A1 (en) Monitoring system for concentrating photovoltaic power generation device, method for detecting tracking deviation, and program for detecting tracking deviation
Balfour et al. Advanced photovoltaic system design
JP6823499B2 (en) Information processing device and control method of information processing device
Bajpai et al. Techno-economic performance evaluation among different solar photovoltaic system configurations
Cooper et al. Photovoltaic inverter-based quantification of snow conditions and power loss
Ozden et al. Performance and degradation analyses of two different PV modules in Central Anatolia
WO2014142388A1 (en) Apparatus and method for analyzing power generation of photovoltaic power generation system
KR20080067329A (en) Array- and String-Level Monitor Systems and Methods for Grid-Linked Photovoltaic Energy Systems
Harazin et al. Analysis and study of the potential increase in energy output generated by prototype solar tracking, roof mounted solar panels
AU2018356694A1 (en) Solar power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP