[go: up one dir, main page]

WO2020258992A1 - 阵列基板的制备方法及阵列基板、显示面板 - Google Patents

阵列基板的制备方法及阵列基板、显示面板 Download PDF

Info

Publication number
WO2020258992A1
WO2020258992A1 PCT/CN2020/084315 CN2020084315W WO2020258992A1 WO 2020258992 A1 WO2020258992 A1 WO 2020258992A1 CN 2020084315 W CN2020084315 W CN 2020084315W WO 2020258992 A1 WO2020258992 A1 WO 2020258992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base substrate
planarization layer
array substrate
away
Prior art date
Application number
PCT/CN2020/084315
Other languages
English (en)
French (fr)
Inventor
李鑫
樊星
温向敏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020258992A1 publication Critical patent/WO2020258992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present disclosure relates to the technical field of display devices, in particular to a method for preparing an array substrate, an array substrate, and a display panel.
  • OLED organic electroluminescence
  • the embodiment of the present disclosure provides a method for preparing an array substrate, including:
  • an anode layer, a light-emitting function layer and a cathode layer with the same undulating structure are sequentially formed on the surface of the planarization layer on the side away from the base substrate.
  • forming a planarization layer mixed with nano-spheres on the side of each film layer contained in the pixel circuit away from the base substrate which specifically includes:
  • the planarization layer mixed with nano-spheres is obtained.
  • Also before coating a whole layer of colloidal layer mixed with nano-balls on the side of each film layer included in the pixel circuit away from the base substrate ,Also includes:
  • the thickness of the planarization layer mixed with nano-spheres is smaller than the thickness of the pure planarization layer.
  • the material of the nanospheres is polystyrene;
  • the material of the colloidal layer is polymethylmethacrylate, polymethylglutarimide And one or more of phenolic resin;
  • the removal of the nano-spheres adjacent to the planarization layer on the side surface away from the base substrate specifically includes:
  • the chlorobenzene solution spraying is used to clean the surface of the planarization layer facing away from the base substrate, and remove the nanospheres adjacent to the surface of the planarization layer facing away from the base substrate.
  • the method before using the chlorobenzene solution spraying to clean the surface of the planarization layer that faces away from the base substrate, the method further includes:
  • planarization layer on the side surface of the planarization layer facing away from the base substrate is removed to expose the nanospheres adjacent to the planarization layer on the side surface away from the base substrate.
  • the planarization layer on the side surface of the planarization layer facing away from the base substrate is removed by exposure.
  • the thickness of the planarization layer mixed with nano-spheres is greater than the diameter of the nano-spheres.
  • the diameter of the nanospheres is 10 nm to 200 nm; and the thickness of the planarization layer mixed with the nanospheres is 50 nm to 300 nm.
  • forming each film layer included in the pixel circuit on the base substrate specifically includes:
  • a first buffer layer, an active layer, a gate insulating layer, a first gate metal layer, an interlayer insulating layer, a second gate metal layer, a second buffer layer, and a source and drain metal layer are sequentially formed on the base substrate.
  • forming a light-emitting function layer on the surface of the anode layer facing away from the base substrate specifically includes:
  • a hole transport layer, an organic light emitting layer, a hole blocking layer, and an electron transport layer are sequentially formed on the surface of the anode layer on the side away from the base substrate.
  • an array substrate including:
  • the pixel circuit is located on the base substrate;
  • a planarization layer located on a side of the pixel circuit away from the base substrate, and a surface of the planarization layer away from the base substrate has an undulating structure
  • the anode layer is located on the side of the planarization layer away from the base substrate and has the same undulating structure
  • the light-emitting function layer is located on the side of the anode layer away from the base substrate and has the same undulating structure
  • the cathode layer is located on the side of the light-emitting function layer away from the base substrate and has the same undulating structure.
  • nano-spheres are mixed in the planarization layer.
  • the above-mentioned array substrate provided by the embodiment of the present disclosure further includes: a pure planarization layer located between the planarization layer and the pixel circuit, the pure planarization layer and the planarization layer
  • the main body material is the same.
  • the material of the nanospheres is polystyrene; the main material of the planarization layer is polymethylmethacrylate, polymethylglutaryl One or more of imine and phenolic resin.
  • the thickness of the planarization layer is smaller than the thickness of the pure planarization layer.
  • the embodiment of the present disclosure also provides a display panel, including the above-mentioned array substrate provided by the above-mentioned embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a manufacturing method of an array substrate provided by an embodiment of the disclosure
  • FIGS. 2 to 4 are respectively structural schematic diagrams after execution of each step in the method for manufacturing the array substrate provided by the embodiments of the disclosure;
  • FIG. 5 is a schematic structural diagram of an array substrate provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a partial film layer in an array substrate provided by an embodiment of the disclosure.
  • OLED devices are limited by high refractive index components, and the light extraction efficiency is only about 20%, and about 80% of the light is restricted inside the device and eventually absorbed. Improving the light extraction of OLED devices is a research direction that has always been the focus of researchers.
  • the main forms of light loss include: substrate mode, waveguide mode and plasma mode.
  • the quasi-periodic wrinkle structure can effectively improve the light extraction of the substrate mode and the waveguide mode. Therefore, template imprinting is often used in the related art to prepare wrinkle or periodic concave-convex structures, and OLED display devices are mostly AMOLED top-emitting devices with bottom
  • the fine TFT backplane structure and the small pixel size make it difficult to realize the uneven structure by embossing.
  • the method for preparing an array substrate provided by an embodiment of the present disclosure specifically includes the following steps:
  • a first buffer layer 21, an active layer 22, a gate insulating layer 23, a first gate metal layer 24, an interlayer insulating layer 25, and a second layer can be sequentially formed on the base substrate 1.
  • FIG. 2 is illustrated by taking the pixel circuit 2 including a top-gate thin film transistor as an example.
  • the film structure of the pixel circuit 2 is not limited to the above-mentioned film layer and film layer stacking relationship.
  • a whole colloidal layer mixed with nano-spheres can be coated on the side of each film layer contained in the pixel circuit 2 away from the base substrate 1; afterwards, the colloidal layer mixed with the nano-spheres is cured. , The planarization layer 4 mixed with nano-spheres is obtained.
  • it may further include: coating a whole colloidal layer on the side of each film layer contained in the pixel circuit 2 away from the base substrate 1; afterwards, the colloidal layer is cured to obtain Pure planarization layer 3, as shown in Figure 3. That is, before the planarization layer 4 mixed with nano-spheres is formed, a colloidal material that does not contain nano-spheres is used to level the film layer and then cured to form a pure planarization layer 3. In addition, the thickness of the planarization layer 4 mixed with nanospheres is generally smaller than the thickness of the pure planarization layer 3.
  • the colloidal layer can be cured by heating.
  • S103 Remove the nanospheres adjacent to the surface of the planarization layer 4 facing away from the base substrate 1 so that the surface of the planarization layer 4 facing away from the base substrate 1 has an undulating structure, as shown in FIG. 4.
  • the material of the nanospheres may be polystyrene; the material of the colloid layer may be one or more of polymethylmethacrylate, polymethylglutarimide, and phenolic resin.
  • the polystyrene nanospheres can be re-dissolved by chlorobenzene, and the material of the colloid layer is insoluble in chlorobenzene.
  • the surface of the planarization layer 4 facing away from the base substrate 1 can be cleaned by spraying with a chlorobenzene solution. , Removing the nano-spheres adjacent to the surface of the planarization layer 4 facing away from the base substrate 1, so that the surface of the remaining planarization layer 4 forms an undulating structure.
  • an anode layer 5 After patterning the planarization layer 4, an anode layer 5, a light-emitting function layer 6 and a cathode layer 7 with the same undulating structure are sequentially formed on the surface of the planarization layer 4 facing away from the base substrate 1, as shown in FIG.
  • the anode layer 5 and the cathode layer 7 may be formed by physical vapor deposition, and the light-emitting function layer 6 may be formed by evaporation.
  • a pixel definition layer 8 for defining the light-emitting area of the pixel is also formed on the side of the anode layer 5 away from the base substrate 1. It is worth noting that the part of the light-emitting function layer 6 and the cathode layer 7 in the opening area of the pixel definition layer 8 has the same undulating structure as the surface of the planarization layer 4, and the part above the pixel definition layer 8 serves as an invalid area and is Smooth structure (only the parts of the light-emitting function layer 6 and the cathode layer 7 in the opening area of the pixel definition layer 8 are shown in FIG. 5).
  • forming a light-emitting function layer 6 on the surface of the anode layer 5 on the side facing away from the base substrate 1, as shown in FIG. 6, may include: sequentially forming a hole transport layer on the surface of the anode layer 5 on the side facing away from the base substrate 1. 61.
  • FIG. 6 only shows each film layer in the opening area of the pixel definition layer 8.
  • the planarization layer 4 mixed with nano-spheres is formed on the side of each film layer contained in the pixel circuit 2 away from the base substrate 1, and then the adjacent planarization layer 4 is removed.
  • the nanospheres on the surface of the flattening layer 4 facing away from the base substrate 1 make the surface of the flattening layer 4 facing away from the base substrate 1 have an undulating structure, so that the flattening layer 4 faces away from the base substrate 1
  • the anode layer 5, the light-emitting function layer 6 and the cathode layer 7 formed in sequence on the side surface have the same undulating structure, which can double the light-emitting efficiency of the light-emitting device, increase the isotropy of the light-emitting device, and greatly improve the The visual role deviation caused by the microcavity effect.
  • the preparation method provided by the embodiments of the present disclosure has a simple process, is more suitable for preparing an array substrate in an AMOLED top-emitting device, and can better improve light extraction efficiency.
  • step S103 before removing the nano-spheres adjacent to the planarization layer 4 on the side facing away from the base substrate 1, first Remove the planarization layer 4 on the surface of the planarization layer 4 facing away from the base substrate 1 to better expose the nanospheres on the surface of the planarization layer 4 facing away from the base substrate 1 so as to use chlorine.
  • the benzene solution dissolves the exposed nanospheres.
  • the material of the colloidal layer used has photosensitive characteristics. Therefore, during the preparation process, an exposure method can be used to remove a portion of the planarization layer 4 that faces away from the base substrate 1.
  • the planarization layer 4 on the side surface is convenient and efficient to prepare.
  • the thickness of the planarization layer 4 mixed with nano-spheres may be greater than the diameter of the nano-spheres, and the nano-spheres are wrapped by the colloid in the planarization layer 4, so It is necessary to remove the part of the planarization layer 4 away from the surface of the base substrate 1 first, and then remove the exposed nanospheres.
  • the thickness of the planarization layer 4 mixed with nanospheres may also be less than or equal to the diameter of the nanospheres. The surface of the nanospheres facing away from the base substrate 1 will protrude from the planarization layer 4 away from the base substrate 1. Therefore, the exposed nanospheres can be directly removed.
  • the diameter of the nanospheres may be 10 nm to 200 nm.
  • the diameter of the nanospheres may be: 20 nm, 40 nm, 60 nm, 80 nm, 110 nm, 130 nm, 150 nm, 180 nm, 190 nm, etc., which are not limited here.
  • the thickness of the planarization layer 4 mixed with nano-spheres may be 50 nm to 300 nm.
  • an array substrate as shown in FIG. 5, including:
  • the pixel circuit 2 is located on the base substrate 1;
  • the planarization layer 4 is located on the side of the pixel circuit 2 away from the base substrate 1, and the surface of the planarization layer 4 away from the base substrate 1 has an undulating structure;
  • the anode layer 5 is located on the side of the planarization layer 4 away from the base substrate 1 and has the same undulating structure;
  • the light-emitting function layer 6 is located on the side of the anode layer 5 away from the base substrate 1 and has the same undulating structure;
  • the cathode layer 7 is located on the side of the light-emitting function layer 6 away from the base substrate 1 and has the same undulating structure.
  • the above-mentioned array substrate provided by the embodiment of the present disclosure is prepared by the above-mentioned preparation method, wherein the anode layer 5, the light-emitting function layer 6 and the cathode layer 7 on the surface of the planarization layer 4 facing away from the base substrate 1 have the same flatness.
  • the same undulating structure on the surface of the chemical layer 4 can double the light-emitting efficiency of the light-emitting device, and can also increase the isotropy of the light from the device, and can greatly improve the apparent deviation caused by the microcavity effect.
  • the pixel circuit 2 may include a first buffer layer 21, an active layer 22, and a gate insulating layer which are sequentially stacked on the base substrate 1.
  • Layer 23 first gate metal layer 24, interlayer insulating layer 25, second gate metal layer 26, second buffer layer 27, source and drain metal layer 28 and other film layers.
  • the nanospheres adjacent to the planarization layer 4 facing away from the base substrate 1 are removed. Later, there may remain mixed nano-spheres inside the planarization layer 4.
  • the material of the nanospheres may be polystyrene; the main material of the planarization layer 4 may be polymethylmethacrylate, polymethylglutarimide One or more of amine and phenolic resin.
  • it may further include: a pure planarization layer 3 located between the planarization layer 4 and the pixel circuit 2, a pure planarization layer 3 and The material of the main body of the planarization layer 4 is the same.
  • the thickness of the planarization layer 4 is generally smaller than the thickness of the pure planarization layer 3.
  • the light-emitting function layer 6, as shown in FIG. 6, may include: hole transport layers stacked in sequence on the surface of the anode layer 5 facing away from the base substrate 1.
  • Layer 61 organic light emitting layer 62, hole blocking layer 63, electron transport layer 64 and other film layers.
  • it may further include: a pixel definition layer 8 between the anode layer 5 and the light-emitting function layer 6 for defining the light-emitting area of the pixel.
  • the present disclosure also provides a display panel, including the above-mentioned array substrate provided by the embodiments of the present disclosure.
  • an array substrate provided with a planarization layer 4 having an undulating structure and a light emitting device having the same undulating structure as the planarization layer 4 is used, so that the display panel can be used In the process, the luminous efficiency is greatly improved, the isotropy of the light emitted by the device is increased, and the visual role deviation caused by the microcavity effect is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种阵列基板的制备方法及阵列基板、显示面板,通过在像素电路所包含的各膜层背离衬底基板的一侧形成混合有纳米小球的平坦化层,之后去除邻近平坦化层中背离衬底基板的一侧表面的纳米小球,使平坦化层背离衬底基板一侧的表面具有起伏结构的方式,实现在平坦化层背离衬底基板一侧的表面依次形成的阳极层、发光功能层和阴极层具有相同起伏结构,能够使发光器件的出光效率提高一倍左右,还可以增加器件出光的各向同性,能够大幅地改善由于微腔效应产生的视角色偏。相比于压印工艺制作褶皱或周期性凹凸结构较难实现,本公开实施例提供的制备方法工艺简单、更适用于制备AMOLED顶发射器件中的阵列基板,且能够更好的提高出光效率。

Description

阵列基板的制备方法及阵列基板、显示面板
相关申请的交叉引用
本公开要求在2019年06月25日提交中国专利局、申请号为201910555671.7、申请名称为“一种阵列基板的制备方法及阵列基板、显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示设备技术领域,特别涉及一种阵列基板的制备方法及阵列基板、显示面板。
背景技术
有机电致发光(OLED)器件发光原理如下:电子和空穴由分别从器件阴、阳极注入有机功能层,在“发光层”发生复合并以发光辐射的方式将电能转化为光能出射到器件外。OLED作为一种自发光器件由于其优异的电致发光特性,在智能手机及车载等户外显示器件领域有较高的吸引力。
发明内容
本公开实施例提供了一种阵列基板的制备方法,包括:
在衬底基板上形成像素电路所包含的各膜层;
在所述像素电路所包含的各膜层背离所述衬底基板的一侧形成混合有纳米小球的平坦化层;
除去邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球,使所述平坦化层背离所述衬底基板一侧的表面具有起伏结构;
对所述平坦化层构图后,在所述平坦化层背离所述衬底基板一侧的表面依次形成具有相同起伏结构的阳极层、发光功能层和阴极层。
可选地,在本公开实施例提供的上述制备方法中,在所述像素电路所包 含的各膜层背离所述衬底基板的一侧形成混合有纳米小球的平坦化层,具体包括:
在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层混合有纳米小球的胶体层;
对所述混合有纳米小球的胶体层进行固化后,得到所述混合有纳米小球的平坦化层。
可选地,在本公开实施例提供的上述制备方法中,在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层混合有纳米小球的胶体层之前,还包括:
在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层胶体层;
对所述胶体层进行固化后,得到纯平坦化层。
可选地,在本公开实施例提供的上述制备方法中,所述混合有纳米小球的平坦化层的厚度小于所述纯平坦化层的厚度。
可选地,在本公开实施例提供的上述制备方法中,所述纳米小球的材质为聚苯乙烯;所述胶体层的材质为聚甲基丙烯酸甲酯、聚甲基戊二酰亚胺和酚醛树脂中的一种或多种;
除去邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球,具体包括:
采用氯苯溶液喷涂清洗所述平坦化层中背离所述衬底基板的一侧表面,去除邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球。
可选地,在本公开实施例提供的上述制备方法中,采用氯苯溶液喷涂清洗所述平坦化层中背离所述衬底基板的一侧表面之前,还包括:
去除所述平坦化层中背离所述衬底基板的一侧表面的平坦化层,以暴露出邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球。
可选地,在本公开实施例提供的上述制备方法中,采用曝光的方式去除所述平坦化层中背离所述衬底基板的一侧表面的平坦化层。
可选地,在本公开实施例提供的上述制备方法中,所述混合有纳米小球的平坦化层的厚度大于所述纳米小球的直径。
可选地,在本公开实施例提供的上述制备方法中,所述纳米小球的直径为10nm至200nm;所述混合有纳米小球的平坦化层的厚度为50nm至300nm。
可选地,在本公开实施例提供的上述制备方法中,在衬底基板上形成像素电路所包含的各膜层,具体包括:
在衬底基板上依次形成第一缓冲层、有源层、栅绝缘层、第一栅极金属层、层间绝缘层、第二栅极金属层、第二缓冲层、源漏极金属层。
可选地,在本公开实施例提供的上述制备方法中,在所述阳极层背离所述衬底基板一侧的表面形成发光功能层,具体包括:
在所述阳极层背离所述衬底基板一侧的表面依次形成空穴传输层、有机发光层、空穴阻挡层、电子传输层。
本公开实施例还提供了一种阵列基板,包括:
衬底基板;
像素电路,位于所述衬底基板上;
平坦化层,位于所述像素电路背离所述衬底基板的一侧,所述平坦化层背离所述衬底基板的一侧表面具有起伏结构;
阳极层,位于所述平坦化层背离所述衬底基板的一侧且与具有相同起伏结构;
发光功能层,位于所述阳极层背离所述衬底基板的一侧且与具有相同起伏结构;
阴极层,位于所述发光功能层背离所述衬底基板的一侧且与具有相同起伏结构。
可选地,在本公开实施例提供的上述阵列基板中,所述平坦化层内部混合有纳米小球。
可选地,在本公开实施例提供的上述阵列基板中,还包括:位于所述平坦化层与所述像素电路之间的纯平坦化层,所述纯平坦化层和所述平坦化层 的主体材质相同。
可选地,在本公开实施例提供的上述阵列基板中,所述纳米小球的材质为聚苯乙烯;所述平坦化层的主体材质为聚甲基丙烯酸甲酯、聚甲基戊二酰亚胺和酚醛树脂中的一种或多种。
可选地,在本公开实施例提供的上述阵列基板中,所述平坦化层的厚度小于所述纯平坦化层的厚度。
本公开实施例还提供了一种显示面板,包括上述本公开实施例提供的上述阵列基板。
附图说明
图1为本公开实施例提供的一种阵列基板的制备方法的流程示意图;
图2至图4分别为本公开实施例提供的阵列基板的制备方法中各步骤执行后的结构示意图;
图5为本公开实施例提供的阵列基板的结构示意图;
图6为本公开实施例提供的阵列基板中局部膜层的示意图。
具体实施方式
通常来说,OLED器件受到高折射率组分限制,光取出效率仅在20%左右,约80%左右的光在器件内部被限制,最终被吸收。提升OLED器件的光取出是一直以来被研究者关注的研究方向。其中,出光损耗主要的形式包括:衬底模式,波导模式和等离子体模式。采取准周期的褶皱结构能有效的提升衬底模式和波导模式的光取出,因此,相关技术中常使用模板压印制备褶皱或周期性凹凸结构,而OLED显示器件多为AMOLED顶发射器件,底部存在精细的TFT背板结构,且像素尺寸小,较难通过压印实现凹凸结构。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供的一种阵列基板的制备方法,如图1所示,具体包括以下步骤:
S101、在衬底基板1上形成像素电路2所包含的各膜层。
具体地,如图2所示,可以在衬底基板1上依次形成第一缓冲层21、有源层22、栅绝缘层23、第一栅极金属层24、层间绝缘层25、第二栅极金属层26、第二缓冲层27、源漏极金属层28等膜层。图2是以像素电路2包含顶栅型薄膜晶体管为例进行说明,像素电路2的膜层结构不限于上述膜层和膜层层叠关系。
S102、在像素电路2所包含的各膜层背离衬底基板1的一侧形成混合有纳米小球的平坦化层4,如图3所示。
具体地,可以在像素电路2所包含的各膜层背离衬底基板1的一侧涂覆一整层混合有纳米小球的胶体层;之后,对混合有纳米小球的胶体层进行固化后,得到混合有纳米小球的平坦化层4。
可选地,在执行步骤S102之前,还可以包括:在像素电路2所包含的各膜层背离衬底基板1的一侧涂覆一整层胶体层;之后,对胶体层进行固化后,得到纯平坦化层3,如图3所示。即在形成混合有纳米小球的平坦化层4之前,先采用不含纳米小球的胶体材料对膜层进行流平后固化形成纯平坦化层3。并且,混合有纳米小球的平坦化层4的厚度一般小于纯平坦化层3的厚度。
具体地,可以采用加热的方式对胶体层进行固化。
S103、除去邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球,使平坦化层4背离衬底基板1一侧的表面具有起伏结构,如图4所示。
具体地,纳米小球的材质可以为聚苯乙烯;胶体层的材质可以为聚甲基丙烯酸甲酯、聚甲基戊二酰亚胺和酚醛树脂中的一种或多种。其中,聚苯乙烯纳米小球能被氯苯重分溶解,而胶体层的材质不溶于氯苯,基于此,可以采用氯苯溶液喷涂清洗平坦化层4中背离衬底基板1的一侧表面,去除邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球,以使保留下的平坦化 层4表面形成起伏结构。
S104、对平坦化层4构图后,在平坦化层4背离衬底基板1一侧的表面依次形成具有相同起伏结构的阳极层5、发光功能层6和阴极层7,如图5所示。
具体地,可以采用物理气相沉积法形成阳极层5和阴极层7,可以采用蒸镀的方式形成发光功能层6。
具体地,在形成阳极层5之后,且形成发光功能层6之前,还会在阳极层5背离衬底基板1的一侧形成用于限定像素发光区的像素定义层8。值得注意的是,发光功能层6和阴极层7在像素定义层8的开口区域内的部分具有与平坦化层4表面相同的起伏结构,在像素定义层8之上的部分作为无效区域且为平滑结构(在图5中仅示出了发光功能层6和阴极层7在像素定义层8的开口区域内的部分)。
具体地,在阳极层5背离衬底基板1一侧的表面形成发光功能层6,如图6所示,可以包括:在阳极层5背离衬底基板1一侧的表面依次形成空穴传输层61、有机发光层62、空穴阻挡层63、电子传输层64。图6仅示出了像素定义层8开口区域内的各膜层。
具体地,在本公开实施例提供的上述制备方法中,通过在像素电路2所包含的各膜层背离衬底基板1的一侧形成混合有纳米小球的平坦化层4,之后去除邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球,使平坦化层4背离衬底基板1一侧的表面具有起伏结构的方式,实现在平坦化层4背离衬底基板1一侧的表面依次形成的阳极层5、发光功能层6和阴极层7具有相同起伏结构,能够使发光器件的出光效率提高一倍左右,还可以增加器件出光的各向同性,能够大幅地改善由于微腔效应产生的视角色偏。相比于相关技术在阵列基板上采用模板压印工艺制备褶皱或周期性凹凸结构,由于AMOLED顶发射器件中的阵列基板结构更为精细、像素尺寸较小,由压印工艺制作褶皱或周期性凹凸结构较难实现,本公开实施例提供的制备方法工艺简单、更适用于制备AMOLED顶发射器件中的阵列基板,且能够更好的提高 出光效率。
可选地,在本公开实施例提供的上述制备方法中,如图3所示,在上述步骤S103除去邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球之前,可以先去除平坦化层4中背离衬底基板1的一侧表面的平坦化层4,以更好的暴露出邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球,以便采用氯苯溶液溶解暴露出的纳米小球。
可选地,在本公开实施例提供的上述制备方法中,所采用的胶体层的材质具备光敏特性,因此,制备过程中可以采用曝光的方式去除平坦化层4中背离衬底基板1的一侧表面的平坦化层4,制备方便且高效。
可选地,在本公开实施例提供的上述制备方法中,混合有纳米小球的平坦化层4的厚度可以大于纳米小球的直径,纳米小球被平坦化层4中的胶体包裹,因此,需要先去除平坦化层4背离衬底基板1一侧表面的部分后,再去除暴露出的纳米小球。或者,混合有纳米小球的平坦化层4的厚度也可以小于或等于纳米小球的直径,纳米小球背离衬底基板1一侧的表面会凸出平坦化层4背离衬底基板1一侧的表面,因此,可以直接除去暴露出的纳米小球即可。
可选地,在本公开实施例提供的上述制备方法中,纳米小球的直径可以为10nm至200nm。具体地,纳米小球的直径可以为:20nm、40nm、60nm、80nm、110nm、130nm、150nm、180nm或190nm等等,在此不做限定。
可选地,在本公开实施例提供的上述制备方法中,混合有纳米小球的平坦化层4的厚度可以为50nm至300nm。
基于同一发明构思,本公开实施例还提供了一种阵列基板,如图5所示,包括:
衬底基板1;
像素电路2,位于衬底基板1上;
平坦化层4,位于像素电路2背离衬底基板1的一侧,平坦化层4背离衬底基板1的一侧表面具有起伏结构;
阳极层5,位于平坦化层4背离衬底基板1的一侧且与具有相同起伏结构;
发光功能层6,位于阳极层5背离衬底基板1的一侧且与具有相同起伏结构;
阴极层7,位于发光功能层6背离衬底基板1的一侧且与具有相同起伏结构。
具体地,本公开实施例提供的上述阵列基板采用上述制备方法制备而成,其中在平坦化层4背离衬底基板1一侧表面的阳极层5、发光功能层6和阴极层7具有与平坦化层4表面相同的起伏结构,能够使发光器件的出光效率提高一倍左右,还可以增加器件出光的各向同性,能够大幅地改善由于微腔效应产生的视角色偏。
可选地,在本公开实施例提供的上述阵列基板中,如图5所示,像素电路2可以包括在衬底基板1上依次层叠设置的第一缓冲层21、有源层22、栅绝缘层23、第一栅极金属层24、层间绝缘层25、第二栅极金属层26、第二缓冲层27、源漏极金属层28等膜层。
可选地,在本公开实施例提供的上述阵列基板中,当平坦化层4的厚度大于纳米小球时,在除去邻近平坦化层4中背离衬底基板1的一侧表面的纳米小球后,平坦化层4的内部可能残留混合有纳米小球。
可选地,在本公开实施例提供的上述阵列基板中,纳米小球的材质可以为聚苯乙烯;平坦化层4的主体材质可以为聚甲基丙烯酸甲酯、聚甲基戊二酰亚胺和酚醛树脂中的一种或多种。
可选地,在本公开实施例提供的上述阵列基板中,如图5所示,还可以包括:位于平坦化层4与像素电路2之间的纯平坦化层3,纯平坦化层3和平坦化层4的主体材质相同。
可选地,在本公开实施例提供的上述阵列基板中,如图5所示,平坦化层4的厚度一般小于纯平坦化层3的厚度。
可选地,在本公开实施例提供的上述阵列基板中,发光功能层6,如图6所示,可以包括:在阳极层5背离衬底基板1一侧的表面依次层叠设置的空 穴传输层61、有机发光层62、空穴阻挡层63、电子传输层64等膜层。
可选地,在本公开实施例提供的上述阵列基板中,如图5所示,还可以包括:在阳极层5和发光功能层6之间的用于限定像素发光区的像素定义层8。
基于同一发明构思,本公开还提供了一种显示面板,包括本公开实施例提供的上述阵列基板。
具体地,本公开实施例提供的上述显示面板中由于采用了设置有具有起伏结构的平坦化层4和与平坦化层4具有相同起伏结构的发光器件的阵列基板,使得该显示面板能够在使用过程中大幅提高了发光效率、且增加了器件出光的各向同性、大幅地改善了由于微腔效应产生的视角色偏。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种阵列基板的制备方法,其中,包括:
    在衬底基板上形成像素电路所包含的各膜层;
    在所述像素电路所包含的各膜层背离所述衬底基板的一侧形成混合有纳米小球的平坦化层;
    除去邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球,使所述平坦化层背离所述衬底基板一侧的表面具有起伏结构;
    对所述平坦化层构图后,在所述平坦化层背离所述衬底基板一侧的表面依次形成具有相同起伏结构的阳极层、发光功能层和阴极层。
  2. 根据权利要求1所述的阵列基板的制备方法,其中,在所述像素电路所包含的各膜层背离所述衬底基板的一侧形成混合有纳米小球的平坦化层,具体包括:
    在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层混合有纳米小球的胶体层;
    对所述混合有纳米小球的胶体层进行固化后,得到所述混合有纳米小球的平坦化层。
  3. 根据权利要求2所述的阵列基板的制备方法,其中,在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层混合有纳米小球的胶体层之前,还包括:
    在所述像素电路所包含的各膜层背离所述衬底基板的一侧涂覆一整层胶体层;
    对所述胶体层进行固化后,得到纯平坦化层。
  4. 根据权利要求3所述的阵列基板的制备方法,其中,所述混合有纳米小球的平坦化层的厚度小于所述纯平坦化层的厚度。
  5. 根据权利要求3所述的阵列基板的制备方法,其中,所述纳米小球的材质为聚苯乙烯;所述胶体层的材质为聚甲基丙烯酸甲酯、聚甲基戊二酰亚 胺和酚醛树脂中的一种或多种;
    除去邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球,具体包括:
    采用氯苯溶液喷涂清洗所述平坦化层中背离所述衬底基板的一侧表面,去除邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球。
  6. 根据权利要求5所述的阵列基板的制备方法,其中,采用氯苯溶液喷涂清洗所述平坦化层中背离所述衬底基板的一侧表面之前,还包括:
    去除所述平坦化层中背离所述衬底基板的一侧表面的平坦化层,以暴露出邻近所述平坦化层中背离所述衬底基板的一侧表面的纳米小球。
  7. 根据权利要求6所述的阵列基板的制备方法,其中,采用曝光的方式去除所述平坦化层中背离所述衬底基板的一侧表面的平坦化层。
  8. 根据权利要求6所述的阵列基板的制备方法,其中,所述混合有纳米小球的平坦化层的厚度大于所述纳米小球的直径。
  9. 根据权利要求8所述的阵列基板的制备方法,其中,所述纳米小球的直径为10nm至200nm;所述混合有纳米小球的平坦化层的厚度为50nm至300nm。
  10. 根据权利要求1-9任一项所述的阵列基板的制备方法,其中,在衬底基板上形成像素电路所包含的各膜层,具体包括:
    在衬底基板上依次形成第一缓冲层、有源层、栅绝缘层、第一栅极金属层、层间绝缘层、第二栅极金属层、第二缓冲层、源漏极金属层。
  11. 根据权利要求1-9任一项所述的阵列基板的制备方法,其中,在所述阳极层背离所述衬底基板一侧的表面形成发光功能层,具体包括:
    在所述阳极层背离所述衬底基板一侧的表面依次形成空穴传输层、有机发光层、空穴阻挡层、电子传输层。
  12. 一种阵列基板,其中,包括:
    衬底基板;
    像素电路,位于所述衬底基板上;
    平坦化层,位于所述像素电路背离所述衬底基板的一侧,所述平坦化层背离所述衬底基板的一侧表面具有起伏结构;
    阳极层,位于所述平坦化层背离所述衬底基板的一侧且与具有相同起伏结构;
    发光功能层,位于所述阳极层背离所述衬底基板的一侧且与具有相同起伏结构;
    阴极层,位于所述发光功能层背离所述衬底基板的一侧且与具有相同起伏结构。
  13. 根据权利要求12所述的阵列基板,其中,所述平坦化层内部混合有纳米小球。
  14. 根据权利要求12或13所述的阵列基板,其中,还包括:位于所述平坦化层与所述像素电路之间的纯平坦化层,所述纯平坦化层和所述平坦化层的主体材质相同。
  15. 根据权利要求14所述的阵列基板,其中,所述纳米小球的材质为聚苯乙烯;所述平坦化层的主体材质为聚甲基丙烯酸甲酯、聚甲基戊二酰亚胺和酚醛树脂中的一种或多种。
  16. 根据权利要求14所述的阵列基板,其中,所述平坦化层的厚度小于所述纯平坦化层的厚度。
  17. 一种显示面板,其中,包括权利要求12-16任一项所述的阵列基板。
PCT/CN2020/084315 2019-06-25 2020-04-10 阵列基板的制备方法及阵列基板、显示面板 WO2020258992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910555671.7A CN110246884B (zh) 2019-06-25 2019-06-25 一种阵列基板的制备方法及阵列基板、显示面板
CN201910555671.7 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258992A1 true WO2020258992A1 (zh) 2020-12-30

Family

ID=67889533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084315 WO2020258992A1 (zh) 2019-06-25 2020-04-10 阵列基板的制备方法及阵列基板、显示面板

Country Status (2)

Country Link
CN (1) CN110246884B (zh)
WO (1) WO2020258992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256313A (zh) * 2021-12-13 2022-03-29 合肥维信诺科技有限公司 显示面板和显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246884B (zh) * 2019-06-25 2021-08-06 京东方科技集团股份有限公司 一种阵列基板的制备方法及阵列基板、显示面板
CN111554715A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 显示面板及其制作方法
CN112234086B (zh) 2020-10-15 2024-07-16 京东方科技集团股份有限公司 显示面板的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444426A (zh) * 2002-03-04 2003-09-24 三洋电机株式会社 电致发光显示装置及其制造方法
US20050127367A1 (en) * 2003-11-20 2005-06-16 Samsung Electronics Co., Ltd. Thin film transistor and thin film transistor array panel
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN103594245A (zh) * 2013-11-08 2014-02-19 溧阳市江大技术转移中心有限公司 一种粗化表面的透明电容的制造方法
CN104762593A (zh) * 2015-04-09 2015-07-08 云南大学 硅基底上溅射制备有序锗量子点的方法
KR20190054420A (ko) * 2017-11-13 2019-05-22 엘지디스플레이 주식회사 표시패널, 표시장치 및 표시패널의 제조방법
CN109980116A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 一种场效应晶体管及其制备方法
CN110246884A (zh) * 2019-06-25 2019-09-17 京东方科技集团股份有限公司 一种阵列基板的制备方法及阵列基板、显示面板
CN110767817A (zh) * 2018-07-25 2020-02-07 Tcl集团股份有限公司 集成发光器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594594B (zh) * 2013-11-08 2016-09-07 溧阳市江大技术转移中心有限公司 具有粗化透明电极的倒装发光二极管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444426A (zh) * 2002-03-04 2003-09-24 三洋电机株式会社 电致发光显示装置及其制造方法
US20050127367A1 (en) * 2003-11-20 2005-06-16 Samsung Electronics Co., Ltd. Thin film transistor and thin film transistor array panel
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN103594245A (zh) * 2013-11-08 2014-02-19 溧阳市江大技术转移中心有限公司 一种粗化表面的透明电容的制造方法
CN104762593A (zh) * 2015-04-09 2015-07-08 云南大学 硅基底上溅射制备有序锗量子点的方法
KR20190054420A (ko) * 2017-11-13 2019-05-22 엘지디스플레이 주식회사 표시패널, 표시장치 및 표시패널의 제조방법
CN109980116A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 一种场效应晶体管及其制备方法
CN110767817A (zh) * 2018-07-25 2020-02-07 Tcl集团股份有限公司 集成发光器件及其制备方法
CN110246884A (zh) * 2019-06-25 2019-09-17 京东方科技集团股份有限公司 一种阵列基板的制备方法及阵列基板、显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256313A (zh) * 2021-12-13 2022-03-29 合肥维信诺科技有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN110246884B (zh) 2021-08-06
CN110246884A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020258992A1 (zh) 阵列基板的制备方法及阵列基板、显示面板
CN105655346B (zh) 薄膜晶体管阵列基板
TWI549329B (zh) 有機發光裝置及其製造方法
US10332944B2 (en) OLED pixel unit with photonic crystal array and method of producing the same
KR102067376B1 (ko) 유기 발광 표시 장치 및 그 제조방법
CN104538357B (zh) 制作阵列基板的方法和阵列基板
CN108321312B (zh) 显示基板及其制造方法、显示装置
CN107464827B (zh) 有机发光显示设备及其制造方法
CN108574056B (zh) 有机发光显示装置及其制造方法
US9343514B2 (en) Organic light emitting diode display and method of manufacturing the same
WO2019196679A1 (zh) 显示基板及其制备方法和显示装置
WO2019196587A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
CN105097831A (zh) 低温多晶硅背板及其制造方法和发光器件
CN107706209B (zh) 有机电致发光显示面板及其制作方法
WO2018112992A1 (zh) 有机发光器件及其制作方法
CN106783953A (zh) 薄膜晶体管及其制作方法
KR20140033636A (ko) 발광보조층의 구조가 개선된 유기발광 표시장치 및 그 제조방법
JP2018536961A (ja) 有機エレクトロルミネッセンス素子及びその作製方法、表示装置
CN110416257A (zh) 显示面板背板结构、其制备方法及顶发射型显示面板
Kim et al. Save energy on OLED lighting by a simple yet powerful technique
CN103972423B (zh) 一种oled发光器件及其制备方法、显示装置
KR101119046B1 (ko) 유기전계발광표시장치 및 그의 제조방법
US20250107320A1 (en) Organic light-emitting transistor and preparation method therefor, and display panel
US10811477B2 (en) Flexible organic light emitting display device and manufacturing method thereof
US10505140B2 (en) OLED display panel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830688

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20830688

Country of ref document: EP

Kind code of ref document: A1