[go: up one dir, main page]

WO2020258137A1 - 一种低成本的滤波器 - Google Patents

一种低成本的滤波器 Download PDF

Info

Publication number
WO2020258137A1
WO2020258137A1 PCT/CN2019/093207 CN2019093207W WO2020258137A1 WO 2020258137 A1 WO2020258137 A1 WO 2020258137A1 CN 2019093207 W CN2019093207 W CN 2019093207W WO 2020258137 A1 WO2020258137 A1 WO 2020258137A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
coupled
substrate
filter capacitor
ground via
Prior art date
Application number
PCT/CN2019/093207
Other languages
English (en)
French (fr)
Inventor
唐开余
阎利杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19935747.6A priority Critical patent/EP3982480A4/en
Priority to PCT/CN2019/093207 priority patent/WO2020258137A1/zh
Priority to CN201980097910.7A priority patent/CN114026740B/zh
Publication of WO2020258137A1 publication Critical patent/WO2020258137A1/zh
Priority to US17/562,530 priority patent/US11996819B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1018Means associated with receiver for limiting or suppressing noise or interference noise filters connected between the power supply and the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • This application relates to circuit technology, in particular to a low-cost filter.
  • LPF low pass filter
  • LPF usually includes multiple capacitors and inductors.
  • Figure 1 is a circuit structure diagram of an LPF in the prior art, in which a capacitor C11 and an inductor L11 connected in series, and a capacitor C12 and inductor L12 connected in series are connected in parallel at the node between the input terminal Vin and the inductor L14.
  • the capacitor C13 and the inductor L13 are connected in series.
  • One end of the capacitor C13 is coupled to the output terminal Vout and coupled to one end of the inductor L14.
  • One end of the inductor L13 is coupled to the capacitor C13, and the other end is grounded. .
  • the LPF corresponds to three resonant frequencies, so the above capacitance and inductance values can be adjusted to determine three resonant frequency points, so as to filter out the harmonics of the corresponding frequency.
  • the LPF in Figure 1 uses 3 capacitive devices and 4 inductive devices. As the cost of SMD stacked capacitors and inductors continues to rise, and the cost of stacked inductors is higher than that of stacked capacitors, how to reduce the cost of inductors while ensuring LPF performance has become an urgent problem to be solved.
  • the embodiment of the present application provides a filter, which can replace the filter inductance device with a ground via, thereby reducing the cost of the filter.
  • a filter which includes a first filter capacitor disposed in a substrate or disposed on the surface of the substrate, the first end of which is coupled with the input or output end of the filter; and
  • the first ground via in the above-mentioned substrate has a first end coupled with the second end of the first filter capacitor, and a second end of the first ground via is coupled with the ground.
  • the aforementioned input terminal is used to receive radio frequency signals, and the output terminal is used to output filtered radio frequency signals.
  • the aforementioned filter capacitor may be a capacitive device provided on the signal layer of the substrate.
  • the above-mentioned first ground via produces a parasitic inductance effect, which is equivalent to a parasitic inductance, and the wire between the first ground via and the first filter capacitor also produces parasitic inductance, which can be used as an inductance during resonance. . Therefore, the first ground via can be substituted for the filter inductance device on the substrate in the prior art.
  • the parasitic inductance value can be adjusted by changing the parameters of the first ground via, the first ground via can realize the function of the filter inductance device, which reduces the area occupied by the original filter inductance device, and at the same time reduces the device the cost of.
  • the above-mentioned filter further includes at least one second ground via that is provided in the substrate and connected in parallel with the first ground via, that is, the first end of each second ground via is connected to the first ground via.
  • the second end of the filter capacitor is coupled, and the second end is coupled to the ground. Setting the second ground via on the basis of the first via can reduce the equivalent parasitic inductance value, which facilitates more flexible adjustment of the parasitic inductance value.
  • the above-mentioned filter further includes a first filter inductor disposed in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled with the output end, and the first end of the first filter capacitor The first filter inductor is coupled with the input terminal.
  • the above-mentioned filter further includes a first filter inductor disposed in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled with the input end, and the first end of the first filter capacitor The first filter inductor is coupled to the output terminal.
  • the above-mentioned filter further includes a second filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled to the input end through the second filter inductor.
  • the second filter inductor can further improve the filter performance of the filter.
  • the above-mentioned filter further includes a second filter capacitor arranged in the substrate or on the surface of the substrate, and a second ground via hole arranged in the substrate, wherein the first end of the second filter capacitor and the output The first end of the second filter capacitor is coupled to the input terminal through the first filter inductor; the first end of the second grounding via is coupled to the second end of the second filter capacitor, and the first end of the second grounding via The two ends are coupled to the ground.
  • the filter includes two resonant frequencies. One resonant frequency is mainly determined by the parasitic inductance of the first filter capacitor and the first ground via, and the other resonant frequency is mainly determined by the parasitic inductance of the second filter capacitor and the second ground via. Set the above two resonance frequencies to the frequency of the desired harmonics to filter out the harmonics of the corresponding frequency.
  • the above-mentioned filter further includes a third filter capacitor provided in the substrate or on the surface of the substrate, and a third ground via provided in the substrate, wherein the first end of the third filter capacitor is connected to the input Terminal coupled, and the first terminal of the third filter capacitor is coupled to the output terminal through the first filter inductor; the first terminal of the third grounded via is coupled with the second terminal of the third filter capacitor, and the first terminal of the third grounded via The two ends are coupled to the ground.
  • the filter also contains a third resonance frequency, which is mainly determined by the parasitic inductance of the third filter capacitor and the third ground via. Set the above three resonance frequencies to the frequency of the desired harmonics to filter out the harmonics of the corresponding frequency.
  • the above-mentioned filter further includes a second filter inductor disposed in the substrate or on the surface of the substrate, wherein the second filter inductor is coupled to the first end of the second filter capacitor and the first end of the third filter capacitor. end.
  • the second filter inductor can further improve the filter performance of the filter.
  • the first terminal of the first filter capacitor is coupled with the input terminal, and the second terminal of the first filter capacitor is coupled with the output terminal.
  • the above-mentioned filter further includes a second filter capacitor and a first filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled to the ground, and the The second end is coupled to the output end, the first end of the first grounding via, and the first end of the second filter capacitor through the first filter inductor, and the second end of the second filter capacitor is coupled to the ground.
  • the second filter capacitor, the first filter inductor, the first filter capacitor and the first ground via form a band-pass filter, which can filter out signals outside a certain frequency range in the radio frequency signal.
  • the above-mentioned filter further includes a second filter capacitor and a first filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor passes through the second filter capacitor and the first filter capacitor connected in parallel.
  • a filter inductor is coupled with the input terminal, and the first terminal of the first filter capacitor is coupled with the output terminal.
  • the second filter capacitor, the first filter inductor, the first filter capacitor, and the first ground via form a band-stop filter, which can filter out signals within a certain frequency range in the radio frequency signal.
  • the main frequency range of the above radio frequency signal is 1 to 3 GHz.
  • the main frequency of the radio frequency signal is in the above range, the debugging consistency of the filter is better.
  • the main frequency bandwidth of the above radio frequency signal is less than 100 MHz.
  • the filtering effect of the filter is better.
  • At least one of the first ground via, the second ground via, the third ground via and the fourth ground via is a through hole.
  • the above-mentioned substrate is a substrate realized by using a copper clad laminate.
  • the above-mentioned substrate may be an interposer implemented by a passive silicon wafer.
  • a low-cost filter which includes a first filter capacitor, a first filter inductor, and a first ground via.
  • the first end of the first filter capacitor is connected to the filter
  • the input terminal is coupled with the output terminal, and the second terminal is coupled with the ground through the first ground via hole; the first filter inductor is coupled between the input terminal and the output terminal.
  • the first filter capacitor and the first filter inductor are arranged in the substrate or on the surface of the substrate; the first grounding via is arranged in the substrate.
  • the above-mentioned first ground via produces a parasitic inductance effect, which is equivalent to a parasitic inductance, and the wire between the first ground via and the first filter capacitor also produces parasitic inductance, which can be used as an inductance during resonance. . Therefore, the first ground via can be substituted for the filter inductance device on the substrate in the prior art.
  • the parasitic inductance value can be adjusted by changing the parameters of the first ground via, the first ground via can realize the function of the filter inductance device, which reduces the area occupied by the original filter inductance device, and at the same time reduces the device the cost of.
  • the above-mentioned filter further includes a second filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled to the input end through the second filter inductor.
  • the second filter inductor can further improve the filter performance of the filter.
  • the above-mentioned filter further includes a second filter capacitor arranged in the substrate or on the surface of the substrate, and a second ground via hole arranged in the substrate, wherein the first end of the second filter capacitor and the output The first end of the second filter capacitor is coupled to the input terminal through the first filter inductor; the first end of the second grounding via is coupled to the second end of the second filter capacitor, and the first end of the second grounding via The two ends are coupled to the ground.
  • the filter includes two resonant frequencies. One resonant frequency is mainly determined by the parasitic inductance of the first filter capacitor and the first ground via, and the other resonant frequency is mainly determined by the parasitic inductance of the second filter capacitor and the second ground via. Set the above two resonance frequencies to the frequency of the desired harmonics to filter out the harmonics of the corresponding frequency.
  • the above-mentioned filter further includes a third filter capacitor provided in the substrate or on the surface of the substrate, and a third ground via provided in the substrate, wherein the first end of the third filter capacitor is connected to the input Terminal coupled, and the first terminal of the third filter capacitor is coupled to the output terminal through the first filter inductor; the first terminal of the third grounded via is coupled with the second terminal of the third filter capacitor, and the first terminal of the third grounded via The two ends are coupled to the ground.
  • the filter also contains a third resonance frequency, which is mainly determined by the parasitic inductance of the third filter capacitor and the third ground via. Set the above three resonance frequencies to the frequency of the desired harmonics to filter out the harmonics of the corresponding frequency.
  • the above-mentioned filter further includes a second filter inductor disposed in the substrate or on the surface of the substrate, wherein the second filter inductor is coupled to the first end of the second filter capacitor and the first end of the third filter capacitor. end.
  • the second filter inductor can further improve the filter performance of the filter.
  • the first terminal of the first filter capacitor is coupled with the input terminal, and the second terminal of the first filter capacitor is coupled with the output terminal.
  • the above-mentioned filter further includes a second filter capacitor and a first filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor is coupled to the ground, and the The second end is coupled to the output end, the first end of the first grounding via, and the first end of the second filter capacitor through the first filter inductor, and the second end of the second filter capacitor is coupled to the ground.
  • the second filter capacitor, the first filter inductor, the first filter capacitor and the first ground via form a band-pass filter, which can filter out signals outside a certain frequency range in the radio frequency signal.
  • the above-mentioned filter further includes a second filter capacitor and a first filter inductor arranged in the substrate or on the surface of the substrate, wherein the first end of the first filter capacitor passes through the second filter capacitor and the first filter capacitor connected in parallel.
  • a filter inductor is coupled with the input terminal, and the first terminal of the first filter capacitor is coupled with the output terminal.
  • the second filter capacitor, the first filter inductor, the first filter capacitor, and the first ground via form a band-stop filter, which can filter out signals within a certain frequency range in the radio frequency signal.
  • the main frequency range of the above radio frequency signal is 1 to 3 GHz.
  • the main frequency of the radio frequency signal is in the above range, the debugging consistency of the filter is better.
  • the main frequency bandwidth of the above radio frequency signal is less than 100 MHz.
  • the filtering effect of the filter is better.
  • At least one of the first ground via, the second ground via, the third ground via and the fourth ground via is a through hole.
  • the above-mentioned substrate is a substrate realized by using a copper clad laminate.
  • the above-mentioned substrate may be an interposer implemented by a passive silicon wafer.
  • a low-cost filter for filtering radio frequency signals, including a first filter capacitor and a first ground via, and the first end of the first filter capacitor is connected to The input end of the filter is coupled, the second end is coupled to the output end, and is coupled to the ground through the first ground via.
  • the first filter capacitor is arranged in the substrate or on the surface of the substrate, and the first grounding via is arranged in the substrate.
  • an embodiment of the present application provides a low-cost filter for filtering radio frequency signals, including a first filter capacitor, a first ground via, a second filter capacitor, and a first filter inductor,
  • the first end of the first filter capacitor is coupled to ground, the second end is coupled to the output end of the filter, and is coupled to the input end through the second filter capacitor and the first filter inductance connected in series; the first grounding via hole
  • the terminal is coupled with the second terminal of the first filter capacitor, and the second terminal of the first ground via is coupled with the ground.
  • the first filter capacitor, the second filter capacitor and the first filter inductor are arranged in the substrate or on the surface of the substrate, and the first ground via is arranged in the substrate.
  • a low-cost filter for filtering radio frequency signals, including a first filter capacitor, a first ground via, a second filter capacitor, and a first filter inductor,
  • the first terminal of the first filter capacitor is coupled to the input terminal through the parallel second filter capacitor and the first filter inductor, and is coupled to the output terminal; the second terminal of the first filter capacitor is connected to the ground through the above-mentioned first grounding via hole. coupling.
  • the first filter capacitor, the second filter capacitor and the first filter inductor are arranged in the substrate or on the surface of the substrate, and the first ground via is arranged in the substrate.
  • a radio frequency signal processing circuit including a signal amplifier and a filter, wherein: the output end of the signal amplifier is coupled with the input end of the filter, and the filter is such as A filter in any one possible implementation manner of the first aspect to the fifth aspect.
  • Figure 1 is a circuit structure diagram of an LPF in the prior art.
  • Fig. 2 is a communication device in an embodiment of the application.
  • Figure 3a is a cross-sectional view of a filter in an embodiment of the application.
  • Figure 3b is a cross-sectional view of another filter in an embodiment of the application.
  • 4a is a circuit structure diagram of a filter in an embodiment of the application.
  • Fig. 4b is an equivalent circuit diagram of a filter in an embodiment of the application.
  • FIG. 5 is a circuit structure diagram of another filter in an embodiment of the application.
  • FIG. 6 is a circuit structure diagram of a specific filter in an embodiment of the application.
  • FIG. 7 is a circuit structure diagram of another filter in an embodiment of the application.
  • FIG. 8 is a circuit structure diagram of another filter in an embodiment of the application.
  • FIG. 9 is a circuit structure diagram of another filter in an embodiment of the application.
  • FIG. 10 is a circuit structure diagram of another filter in an embodiment of the application.
  • FIG. 11 is a circuit structure diagram of another filter in an embodiment of the application.
  • the embodiment of the present application provides a communication device 200 as shown in FIG. 2.
  • the communication device 200 can be a mobile phone, a fixed phone, or a tablet computer, a portable computer, a smart watch, a smart home, or other devices with wireless communication functions.
  • the communication device 200 may include a Base Band (BB) chip 210, a Radio Frequency (RF) chip 220, a Low Noise Amplifier (LNA) 230, a Power Amplifier (PA) 240, an antenna switch ( Switch 250, filter 260 and antenna (Antenna) 270.
  • BB Base Band
  • RF Radio Frequency
  • LNA Low Noise Amplifier
  • PA Power Amplifier
  • Switch 250 filter 260
  • antenna antenna switch
  • the communication device 200 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the baseband chip 210 can be used to support the processing of the protocol stack, through its internal digital signal processor (Digital Signal Processor, DSP), microcontroller (Micro Controller Unit, MCU), memory and other components to support multiple Communication standards that provide multimedia functions and related interfaces for multimedia displays, image sensors and audio equipment.
  • the baseband chip 210 may be coupled with the radio frequency chip 220, and the radio frequency chip 220 may include components such as a mixer, a transformer, and a variable gain amplifier.
  • the radio frequency chip 220 is used to up-convert the baseband or intermediate frequency signal provided by the baseband chip 210 into an RF signal for transmission to the PA 240, and down-convert the RF signal sent by the LNA 230 into a baseband or intermediate frequency signal for the baseband chip 210 to process.
  • PA240 can be used to amplify the RF signal of the sending channel
  • LNA230 can be used to amplify the RF signal of the receiving channel.
  • the antenna switch 250 can be used to switch between RF signal reception and transmission, and switch between different frequency bands.
  • the filter 260 may be used to retain signals in a specific frequency band, and filter out signals outside the specific frequency band.
  • the filter 260 can be used to implement the function of a low-pass filter to filter out harmonic signals; it can also be used to implement a high-pass filter, a band-pass filter, or a band-stop filter. The function of the band reject filter.
  • the antenna 270 is used to radiate and receive wireless signals.
  • the communication device 200 may provide solutions including wireless communication such as 2G/3G/4G/5G.
  • the embodiment of the present application provides a filter 260 for filtering radio frequency signals, including an input terminal, an output terminal, a first filter capacitor, and a first ground via.
  • the input terminal, output terminal, and first filter capacitor are set In the substrate, or a surface of the substrate, the above-mentioned first ground via is provided in the substrate.
  • the input terminal is used to receive radio frequency signals
  • the output terminal is used to output filtered radio frequency signals.
  • the first filter capacitor may be disposed on the signal layer, the first end of which is coupled with the aforementioned input or output end, the second end is coupled with the first end of the first ground via, and the second end of the first ground via is coupled with Formation coupling.
  • FIG. 3a is a cross-sectional view of a filter 260.
  • the first filter capacitor 363 and the input terminal (or output terminal) 266 may be disposed on the signal layer 264 on the surface of the substrate 261, wherein The first end of the first ground via 262 and the second end of the first filter capacitor 263 are coupled on the first signal layer 264 through a wire 2681, the second end of the first ground via 262 is coupled with the ground layer 265, and the first filter The first terminal of the capacitor 263 and the input terminal (or output terminal) 266 are coupled through a wire 2682.
  • FIG. 3b is a cross-sectional view of another filter 260.
  • the above-mentioned first filter capacitor 263 may be disposed on the signal layer 264 on the surface of the substrate 261, wherein the first ground via 262 The first terminal and the second terminal of the first filter capacitor 263 are coupled at the first signal layer 264 through a wire 2681. The second end of the first ground via 262 is coupled with the ground layer 265. The first terminal of the first filter capacitor 263 and the output terminal 2662 are coupled through a wire 2682, and the first terminal of the first filter capacitor 263 is coupled with the input terminal 2661 through a wire 2683, a filter inductor 267 and a wire 2684. It is understandable that the cross-sectional views shown in FIGS.
  • coupling may refer to a direct connection between various devices, ports, nodes or other devices, or may be electrically connected through wires, or electrically connected through other devices, such as electrical connections formed by resistors and capacitors.
  • the filter 260 may be disposed on a PCB (Printed Circuit Board, printed circuit board) as a discrete device, the first filter capacitor 263 may be a chip capacitor, and the substrate 261 may be copper-clad. Substrate realized by foil laminate.
  • the filter 260 may be packaged in an ASIC (Application-Specific Integrated Circuit), and the substrate 261 may be an interposer implemented by a passive silicon chip.
  • the above-mentioned ground via may be a through hole, a buried hole or a blind hole.
  • the filter achieves the function of filtering out signals in a certain frequency range through filter capacitors and filter inductors. For example, by adjusting the capacitance value of the filter capacitor and the inductance value of the filter inductor in the low-pass filter to determine the resonance frequency f of the low-pass filter, the harmonics with the frequency f can be filtered out.
  • the above-mentioned first ground via 262 when the frequency of the radio frequency signal is within a certain range, the above-mentioned first ground via 262 generates a parasitic inductance effect, that is, the first ground via 262 is equivalent to a parasitic inductance connected in series with the first filter capacitor.
  • the controllable parasitic inductance generated by the first ground via 262 can be used to replace the inductance device in the prior art, so that The filter 260 uses fewer inductance devices, thereby reducing the area of the filter 260 and reducing the cost.
  • the frequency range of the main frequency of the above-mentioned radio frequency signal is 1 to 3 GHz, and in this case, the tuning consistency of the filter is better.
  • the bandwidth of the main frequency of the radio frequency signal is less than 100 MHz.
  • the filter has better filtering performance for radio frequency signals whose dominant frequency bandwidth is less than 100MHz.
  • the filter capacitors and filter inductors in the embodiments of the present application can be provided on a surface of the substrate, for example, in the signal layer on the top layer of the substrate, or in the substrate, for example, in the signal layer inside the substrate.
  • the ground vias in the embodiment of the present application are provided in the substrate.
  • a filter 400 provided by an embodiment of the present application can realize the function of low-pass filtering.
  • the filter 400 includes a filter inductor L41, a filter capacitor C41, and a ground via VIA41.
  • the first terminal of the filter capacitor C41 is coupled to the output terminal Vout, and is also coupled to the input terminal Vin through the filter inductor L41.
  • the ground via VIA41 One end is coupled with the second end of the filter capacitor C41, and the second end of the ground via VIA41 is coupled with the ground.
  • the filter inductor L41 and the filter capacitor C41 are arranged in the substrate or on the surface of the substrate, and the ground via VIA41 is arranged in the substrate.
  • the equivalent circuit of the filter 400 is shown in FIG. 4b.
  • the ground via VIA41 can be equivalent to a parallel parasitic capacitance Cs, parasitic inductance Ls and parasitic resistance Rs.
  • the inductance value of the parasitic inductance Ls can be changed mainly by adjusting H.
  • the filter capacitor C41 and the filter inductance L41 are coupled through a wire.
  • the filter inductor L41 and the filter capacitor C41 will resonate, and the time when the voltage across them changes for one cycle is the resonant period, and the reciprocal of the resonant period is the resonant frequency f.
  • the formula for calculating the resonance frequency f is:
  • the resonant frequency of the filter 400 can be determined by adjusting the values of L and C, thereby determining the frequency of the harmonics that can be filtered out.
  • the equivalent parasitic capacitance Cs of the ground via VIA41 will affect the above resonant frequency.
  • the ground via VIA41 itself generates parasitic capacitance, and its capacitance value can be expressed as Cs ⁇ 1.41 ⁇ H ⁇ D1/(D2-D1)pf, where ⁇ is the dielectric constant of the substrate, and H (unit is mm ) Is the distance from the first end of the ground via VIA41 (the end far from the ground) to the ground, D1 (in inches) is the diameter (ie, outer diameter) of the ground via VIA41, and D2 (in inches) is the ground The diameter of the solder mask of the hole VIA41 on the ground.
  • the resonance frequency f may shift, so the size of the filter capacitor C41 needs to be adjusted according to the actual measurement situation. If the resonance frequency f is too large, the value of the filter capacitor C41 can be increased to reduce the resonance frequency f; correspondingly, when the resonance frequency f is too small, the value of the filter capacitor C41 can be reduced to increase the resonance frequency f.
  • the ground via VIA41 and the wire between the ground via VIA41 and the filter capacitor C41 can generate parasitic inductance. Therefore, the ground via VIA41 can be substituted for the filter inductance device on the substrate in the prior art. On the basis that the parasitic inductance value can be flexibly adjusted by the above method, the ground via VIA41 can replace the original filter inductance device to realize the function of the filter inductance device, reduce the area occupied by the original filter inductance device, and reduce the filter at the same time Device cost.
  • the filter 400 may further include at least one parallel ground via.
  • the above-mentioned parallel ground via is in parallel with the ground via VIA41, that is, one end is coupled to the connection point of the ground via VIA41 and the filter capacitor C41, and the other end is coupled to the ground.
  • the aforementioned at least one parallel ground via is connected in parallel with the ground via VIA41, so that the total inductance value becomes smaller. Therefore, the number of parallel grounding vias can be adjusted according to the frequency of the harmonics to be filtered out to reduce the resonant frequency of the filter.
  • the above-mentioned ground via is a through hole. Since the through-hole processing in the form of through-holes has better consistency and is easy to debug, it can further reduce the cost and facilitate mass production.
  • the aforementioned features of the parallel ground via and the ground via VIA41 are not limited to the aforementioned filter 400.
  • the calculation method of the parasitic inductance Ls, the wire parasitic inductance value L0, the resonance frequency, and the characteristics of the ground via VIA41 and the parallel ground via can be applied to any embodiment of the present application.
  • the filter 500 includes a filter inductor L51, a filter capacitor C51, and a ground via VIA51.
  • the first end of the filter capacitor C51 is coupled to the input terminal Vin, and is also coupled to the output terminal Vout through the filter inductor L51, and the first terminal of the ground via VIA51 One end is coupled with the second end of the filter capacitor C51, and the second end of the ground via VIA51 is coupled with the ground.
  • the filter inductor L51 and the filter capacitor C51 are arranged in the substrate or the surface of the substrate, and the ground via VIA51 is arranged in the substrate.
  • FIG. 6 is a more specific filter 600 provided by an embodiment of the present application.
  • the filter 600 is similar to the filter 500.
  • the filter 600 also includes a filter inductor L62, which is coupled to the input terminal Vin and the first end of the filter inductor L51, that is, the first end of the filter capacitor C51 passes through the
  • the filter inductor L62 is coupled with the input terminal Vin.
  • the filter inductor L62 makes the filter performance of the filter 600 better.
  • the aforementioned filter inductor L62 is arranged in the substrate or on the surface of the substrate.
  • FIG. 7 is another filter 700 provided by an embodiment of the present application.
  • the filter 700 is similar to the filter 500.
  • the filter 700 also includes a filter capacitor C72 and a ground via VIA72.
  • the first end of the filter capacitor C72 is coupled to the output terminal Vout, and is coupled to the input terminal Vin through the filter inductor L51;
  • the first end of the ground via VIA72 is coupled to the second end of the filter capacitor C72, and the ground via VIA72
  • the second end is coupled to the ground.
  • the aforementioned filter capacitor C72 is arranged in the substrate or on the surface of the substrate, and the ground via VIA72 is arranged in the substrate.
  • the filter 700 includes two resonant frequencies.
  • One resonant frequency is determined by the filter capacitor C51, the parasitic inductance of the ground via VIA51, and the parasitic inductance of the wire between the filter capacitor C51 and the ground via VIA51; the other resonant frequency is determined by the filter
  • the capacitor C72, the parasitic inductance of the ground via VIA72, and the parasitic inductance of the wire between the filter capacitor C72 and the ground via VIA72 are determined. Set the above two resonance frequencies to the frequency of the desired harmonics to filter out the harmonics of the corresponding frequency.
  • FIG. 8 is another filter 800 provided by an embodiment of the present application.
  • the filter 800 is similar to the filter 700 except that the filter 800 also includes a filter capacitor C83 and a ground via VIA83.
  • the first end of the filter capacitor C83 is coupled with the input terminal Vin, and is coupled with the output terminal Vout through the filter inductor L51;
  • the first end of the ground via VIA83 is coupled with the second end of the filter capacitor C83, and the ground via VIA83
  • the second end is coupled to the ground.
  • the filter capacitor C83 is arranged in the substrate or the surface of the substrate, and the ground via VIA83 is arranged in the substrate.
  • the filter 800 contains three resonant frequencies.
  • the first resonant frequency is determined by the filter capacitor C51, the parasitic inductance of the ground via VIA51, and the parasitic inductance of the wire between the filter capacitor C51 and the ground via VIA51;
  • the second resonance The frequency is determined by the filter capacitor C72, the parasitic inductance of the ground via VIA72, and the parasitic inductance of the wire between the filter capacitor C72 and the ground via VIA72;
  • the third resonance frequency is determined by the filter capacitor C83, the parasitic inductance of the ground via VIA83, And the parasitic inductance of the wire between the filter capacitor C83 and the ground via VIA83 is determined.
  • the filter 800 may further include a filter inductor coupled between the first end of the filter capacitor C83 and the first end of the filter capacitor C51 to further improve the filtering performance of the filter 800.
  • the characteristics of the ground vias described above can not only realize the function of low-pass filtering, but also realize the functions of high-pass filtering, band-pass filtering or band-stop filtering.
  • FIG. 9 is another filter 900 provided by an embodiment of the present application, which can realize the function of high-pass filtering.
  • the filter 900 includes a filter capacitor C91 and a ground via VIA91, wherein the first end of the filter capacitor C91 is coupled to the input terminal Vin, the second end is coupled to the output terminal Vout, and is coupled to the first end of the ground via VIA91, grounded The second end of the via VIA91 is coupled to the ground.
  • the aforementioned filter capacitor C91 is arranged in the substrate or on the surface of the substrate, and the ground via VIA91 is arranged in the substrate.
  • the filter 900 shown in FIG. 9 is only an implementation manner of a filter that implements high-pass filtering. In practical applications, you can decide whether to connect more ground vias in parallel or connect more filter capacitors in series according to the frequency of the signal to be filtered, performance requirements, and design cost.
  • the filter 1000 includes a filter capacitor C101, a ground via VIA101, a filter capacitor C102 and a filter inductor L101.
  • the first end of the filter capacitor C101 is coupled to the ground, the second end is coupled to the input terminal Vin through the series filter capacitor C102 and the filter inductor L101, and is coupled to the output terminal Vout;
  • the first end of the ground via VIA101 is coupled to the filter
  • the second end of the capacitor C101 is coupled, and the second end of the ground via VIA101 is coupled to the ground.
  • the filter inductor L101, the filter capacitor C101, and the filter capacitor C102 are arranged in the substrate or on the surface of the substrate, and the ground via VIA101 is arranged in the substrate.
  • the filter 1000 shown in FIG. 10 is only an implementation of a filter for band-pass filtering. In practical applications, you can decide whether to connect more ground vias in parallel or connect more filter capacitors in series according to the frequency of the signal to be filtered, performance requirements, and design cost.
  • the filter 1100 includes a filter capacitor C111, a ground via VIA111, a filter capacitor C112 and a filter inductor L111.
  • the first end of the filter capacitor C111 is coupled to the output terminal Vout, and is coupled to the input terminal Vin through the parallel filter capacitor C112 and the filter inductor L111; the first end of the ground via VIA111 is coupled to the second end of the filter capacitor C111 , And the second end of the ground via VIA111 is coupled with the ground.
  • the filter inductor L111, the filter capacitor C111 and the filter capacitor C112 are arranged in the substrate or the surface of the substrate, and the ground via VIA111 is arranged in the substrate.
  • the filter 1100 shown in FIG. 11 is only an implementation of a filter for band rejection filtering. In practical applications, you can decide whether to connect more ground vias in parallel or connect more filter capacitors in series according to the frequency of the signal to be filtered, performance requirements, and design cost.
  • An embodiment of the present application also provides a filter, including a first filter capacitor, a filter inductor, and a first ground via.
  • the first end of the first filter capacitor is coupled with the input and output ends of the filter, and the second end passes through
  • the first ground via is coupled with the ground;
  • the filter inductor is coupled between the input terminal and the output terminal.
  • the first filter capacitor and the filter inductor are provided in the substrate or on the surface of the substrate; the first ground via is provided in the substrate.
  • the filter inductance is coupled between the input terminal and the first end of the first filter capacitor; in another embodiment, the filter inductance is coupled between the output terminal and the first end of the first filter capacitor. between.
  • the foregoing first filter capacitor may be C41 or C51 in the foregoing embodiment of the application
  • the filter inductor may be L41 or L51 in the foregoing embodiment of this application
  • the first ground via may be the foregoing embodiment of the application.
  • the filter may further include at least one set of second filter capacitors connected in series and a second grounding via hole, wherein the first end of the second filter capacitor is coupled to the input end of the filter and passes through the filter inductor and the output end. Coupling, the second end of the second filter capacitor is coupled to the ground through the second ground via.
  • the foregoing second filter capacitor may be C72 or C83 in the embodiment of the application, and the second ground via may be VIA72 or VIA83 in the embodiment of the application.
  • An embodiment of the present application also provides a filter, including a first filter capacitor and a first ground via.
  • the first end of the first filter capacitor is coupled to the input end of the filter, and the second end is coupled to the output end and passes through The first ground via is coupled with the ground.
  • the foregoing first filter capacitor may be C91 in the foregoing embodiment of this application, and the first ground via may be VIA91 in the foregoing embodiment of this application.
  • the embodiment of the present application also provides a filter, including a first filter capacitor, a first ground via, a second filter capacitor, and a filter inductor, wherein the first end of the first filter capacitor is coupled to ground, and the second end of the first filter capacitor is coupled to the filter.
  • the output terminal is coupled to the input terminal through the second filter capacitor and the filter inductor connected in series; the first terminal of the first grounding via is coupled to the second terminal of the first filter capacitor, and the second terminal of the first grounding via The terminal is coupled to the ground.
  • the foregoing first filter capacitor may be C101 in the foregoing embodiment of this application
  • the first ground via may be VIA101 in the foregoing embodiment of this application
  • the second filter capacitor may be C102 in the foregoing embodiment of this application.
  • the filter inductor may be This is L101 in the above embodiment of this application.
  • the embodiment of the present application also provides a filter, including a first filter capacitor, a first ground via, a second filter capacitor, and a filter inductor, wherein the first end of the first filter capacitor passes through the second filter capacitor and the filter inductor connected in parallel Coupled with the input terminal and coupled with the output terminal; the second terminal of the first filter capacitor is coupled with the ground through the first grounding via.
  • the foregoing first filter capacitor may be C111 in the foregoing embodiment of this application
  • the first ground via may be VIA111 in the foregoing embodiment of this application
  • the second filter capacitor may be C112 in the foregoing embodiment of this application
  • the filter inductor may be L111 in the above embodiment of this application.
  • An embodiment of the application also provides a radio frequency signal processing circuit, including a signal amplifier and a filter, wherein the output end of the signal amplifier is coupled with the input end of the filter, and the filter may be any filter described in the embodiments of the application. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)

Abstract

本申请实施例提供了一种滤波器,其输入端用于接收射频信号,输出端用于输出滤波后的射频信号。该滤波器包括第一滤波电容和第一接地过孔,其中第一滤波电容设置于基板中或基板的一表面,其第一端与滤波器的输入端或输出端耦合,第二端与设置于基板中的第一接地过孔的一端耦合,且第一接地过孔的另一端与地耦合。本申请利用第一接地过孔产生的寄生电感效应,将第一接地过孔等效的寄生电感代替现有的电感器件,减少了滤波器中电感器件的使用,从而减小了滤波器的面积并降低了其设计成本。

Description

一种低成本的滤波器 技术领域
本申请涉及电路技术,尤其涉及一种低成本的滤波器。
背景技术
随着无线通信技术的快速发展,无线通信系统中信号发射设备需要满足更加严格的要求。在信号发射设备中,由于功率放大器(Power Amplifier,PA)的非线性特性,其输出的射频(Radio Frequency,RF)信号会携带以二次谐波和三次谐波为主的谐波信号,从而影响无线通信系统的性能。通过在功率放大器的输出端耦合一个匹配电路,以实现低通滤波器(Low Pass Filter,LPF),可以抑制上述二次谐波和三次谐波。LPF可以通过集成电路来实现,但其成本较高。目前,更多的厂家倾向于使用电容和电感器件来搭建LPF,从而满足相关的滤波需求。
LPF通常包括多个电容和电感。如图1所示的是现有技术中的一种LPF的电路结构图,其中串联的电容C11和电感L11,以及串联的电容C12和电感L12并联在输入端Vin和电感L14之间的节点,电容C13和电感L13串联,其中电容C13的一端与输出端Vout耦合,且与电感L14一端耦合,电感L13的一端与电容C13耦合,另一端接地。。该LPF对应三个谐振频率,因此可以调整上述电容和电感值,分别确定三个谐振频率点,从而滤除对应频率的谐波。图1中的LPF使用了3个电容器件和4个电感器件。由于贴片层叠电容和电感的成本不断上升,且层叠电感的成本高于层叠电容,因此如何在保证LPF性能的同时减少电感器件带来的成本,成为亟需解决的问题。
发明内容
本申请实施例提供一种滤波器,可以通过接地过孔代替滤波电感器件,从而降低滤波器成本。
第一方面,在本申请的实施例中提供一种滤波器,包括设置于基板中或设置于基板表面的第一滤波电容,其第一端与滤波器的输入端或输出端耦合;以及设置于上述基板中的第一接地过孔,其第一端与第一滤波电容的第二端耦合,第一接地过孔的第二端与地耦合。上述输入端用于接收射频信号,输出端用于输出滤波后的射频信号。上述滤波电容可以为设置在基板信号层上的电容器件。
上述第一接地过孔产生寄生电感效应,即等效为一个寄生电感,且该第一接地过孔和第一滤波电容之间的导线也会产生寄生电感,这些寄生电感可以作为谐振时的电感。因此可以将第一接地过孔替代现有技术中基板上的滤波电感器件。在寄生电感值可以通过改变第一接地过孔的参数等方法来调节的基础上,第一接地过孔可以实现滤波电感器件的功能,减小了原本滤波电感器件占用的面积,同时降低了器件的成本。
在一种可能的实施方式中,上述滤波器还包括设置于基板中的至少一个与第一接地过孔并联的第二接地过孔,即每个第二接地过孔的第一端与第一滤波电容的第二端耦合,且其第二端与地耦合。在第一过孔的基础上设置第二接地过孔,可以使得等效的寄生电感值 变小,便于更加灵活地调节寄生电感值。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第一滤波电感,其中第一滤波电容的第一端与输出端耦合,且第一滤波电容的第一端通过第一滤波电感与输入端耦合。第一滤波电感与第一滤波电容以及第一接地过孔形成低通滤波器,可以滤除射频信号中的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第一滤波电感,其中第一滤波电容的第一端与输入端耦合,且第一滤波电容的第一端通过第一滤波电感与输出端耦合。第一滤波电感与第一滤波电容以及第一接地过孔形成低通滤波器,可以滤除射频信号中的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电感,其中第一滤波电容的第一端通过第二滤波电感与输入端耦合。第二滤波电感可以进一步提高滤波器的滤波性能。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容,以及设置于基板中的第二接地过孔,其中第二滤波电容的第一端与输出端耦合,且第二滤波电容的第一端通过第一滤波电感与上述输入端耦合;第二接地过孔的第一端与第二滤波电容的第二端耦合,第二接地过孔的第二端与地耦合。滤波器包含两个谐振频率,其中一个谐振频率主要通过第一滤波电容和第一接地过孔的寄生电感确定,另一个谐振频率主要通过第二滤波电容和第二接地过孔的寄生电感确定。将上述两个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第三滤波电容,以及设置于基板中的第三接地过孔,其中第三滤波电容的第一端与输入端耦合,且第三滤波电容的第一端通过第一滤波电感与输出端耦合;上述第三接地过孔的第一端与第三滤波电容的第二端耦合,第三接地过孔的第二端与地耦合。滤波器还包含第三个谐振频率,主要通过第三滤波电容和第三接地过孔的寄生电感确定。将上述三个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电感,其中第二滤波电感耦合于第二滤波电容的第一端和第三滤波电容的第一端。第二滤波电感可以进一步提高滤波器的滤波性能。
在一种可能的实施方式中,上述第一滤波电容的第一端与输入端耦合,第一滤波电容的第二端与输出端耦合。第一滤波电感与第一滤波电容以及第一接地过孔形成高通滤波器,可以滤除射频信号中的低频分量。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容和第一滤波电感,其中第一滤波电容的第一端与地耦合,第一滤波电容的第二端通过上述第一滤波电感分别与上述输出端、第一接地过孔的第一端和第二滤波电容的第一端耦合,上述第二滤波电容的第二端与上述地耦合。第二滤波电容、第一滤波电感与第一滤波电容以及第一接地过孔形成带通滤波器,可以滤除射频信号中某一频率范围以外的信号。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容和第一滤波电感,其中第一滤波电容的第一端通过并联的第二滤波电容和第一滤波电感 与输入端耦合,且第一滤波电容的第一端与输出端耦合。第二滤波电容、第一滤波电感与第一滤波电容以及第一接地过孔形成带阻滤波器,可以滤除射频信号中某一频率范围以内的信号。
在一种可能的实施方式中,上述射频信号的主频范围为1~3GHz。在射频信号处于的主频处于上述范围时,滤波器的调试一致性较好。
在一种可能的实施方式中,上述射频信号的主频带宽小于100MHz。在射频信号处于的主频带宽小于100MHz时,滤波器的滤波效果较好。
在一种可能的实施方式中,上述第一接地过孔、第二接地过孔、第三接地过孔和第四接地过孔中的至少一个为通孔。
在一种可能的实施方式中,上述基板为采用覆铜箔层压板实现的基板。
在一种可能的实施方式中,上述基板可以为采用无源硅片实现的中介层。
第二方面,在本申请的实施例中提供一种低成本的滤波器,包括第一滤波电容、第一滤波电感和第一接地过孔,该第一滤波电容的第一端与滤波器的输入端和输出端耦合,第二端通过上述第一接地过孔与地耦合;上述第一滤波电感耦合于输入端和输出端之间。上述第一滤波电容和第一滤波电感设置于基板中,或设置于基板的表面;上述第一接地过孔设置于基板中。
上述第一接地过孔产生寄生电感效应,即等效为一个寄生电感,且该第一接地过孔和第一滤波电容之间的导线也会产生寄生电感,这些寄生电感可以作为谐振时的电感。因此可以将第一接地过孔替代现有技术中基板上的滤波电感器件。在寄生电感值可以通过改变第一接地过孔的参数等方法来调节的基础上,第一接地过孔可以实现滤波电感器件的功能,减小了原本滤波电感器件占用的面积,同时降低了器件的成本。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电感,其中第一滤波电容的第一端通过第二滤波电感与输入端耦合。第二滤波电感可以进一步提高滤波器的滤波性能。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容,以及设置于基板中的第二接地过孔,其中第二滤波电容的第一端与输出端耦合,且第二滤波电容的第一端通过第一滤波电感与上述输入端耦合;第二接地过孔的第一端与第二滤波电容的第二端耦合,第二接地过孔的第二端与地耦合。滤波器包含两个谐振频率,其中一个谐振频率主要通过第一滤波电容和第一接地过孔的寄生电感确定,另一个谐振频率主要通过第二滤波电容和第二接地过孔的寄生电感确定。将上述两个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第三滤波电容,以及设置于基板中的第三接地过孔,其中第三滤波电容的第一端与输入端耦合,且第三滤波电容的第一端通过第一滤波电感与输出端耦合;上述第三接地过孔的第一端与第三滤波电容的第二端耦合,第三接地过孔的第二端与地耦合。滤波器还包含第三个谐振频率,主要通过第三滤波电容和第三接地过孔的寄生电感确定。将上述三个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电 感,其中第二滤波电感耦合于第二滤波电容的第一端和第三滤波电容的第一端。第二滤波电感可以进一步提高滤波器的滤波性能。
在一种可能的实施方式中,上述第一滤波电容的第一端与输入端耦合,第一滤波电容的第二端与输出端耦合。第一滤波电感与第一滤波电容以及第一接地过孔形成高通滤波器,可以滤除射频信号中的低频分量。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容和第一滤波电感,其中第一滤波电容的第一端与地耦合,第一滤波电容的第二端通过上述第一滤波电感分别与上述输出端、第一接地过孔的第一端和第二滤波电容的第一端耦合,上述第二滤波电容的第二端与上述地耦合。第二滤波电容、第一滤波电感与第一滤波电容以及第一接地过孔形成带通滤波器,可以滤除射频信号中某一频率范围以外的信号。
在一种可能的实施方式中,上述滤波器还包括设置于基板中或基板表面的第二滤波电容和第一滤波电感,其中第一滤波电容的第一端通过并联的第二滤波电容和第一滤波电感与输入端耦合,且第一滤波电容的第一端与输出端耦合。第二滤波电容、第一滤波电感与第一滤波电容以及第一接地过孔形成带阻滤波器,可以滤除射频信号中某一频率范围以内的信号。
在一种可能的实施方式中,上述射频信号的主频范围为1~3GHz。在射频信号处于的主频处于上述范围时,滤波器的调试一致性较好。
在一种可能的实施方式中,上述射频信号的主频带宽小于100MHz。在射频信号处于的主频带宽小于100MHz时,滤波器的滤波效果较好。
在一种可能的实施方式中,上述第一接地过孔、第二接地过孔、第三接地过孔和第四接地过孔中的至少一个为通孔。
在一种可能的实施方式中,上述基板为采用覆铜箔层压板实现的基板。
在一种可能的实施方式中,上述基板可以为采用无源硅片实现的中介层。
第三方面,在本申请实施例中提供一种低成本的滤波器,用于对射频信号进行滤波处理,包括第一滤波电容和第一接地过孔,该第一滤波电容的第一端与滤波器的输入端耦合,第二端与输出端耦合,并通过第一接地过孔与地耦合。上述第一滤波电容设置于基板中或设置于基板的表面,上述第一接地过孔设置于基板中。
第四方面,在本申请实施例中提供一种低成本的滤波器,用于对射频信号进行滤波处理,包括第一滤波电容、第一接地过孔、第二滤波电容和第一滤波电感,其中第一滤波电容的第一端与地耦合,第二端与滤波器的输出端耦合,并通过串联的第二滤波电容和第一滤波电感与输入端耦合;第一接地过孔的第一端与第一滤波电容的第二端耦合,且第一接地过孔的第二端与地耦合。上述第一滤波电容、第二滤波电容和第一滤波电感设置于基板中或设置于基板的表面,上述第一接地过孔设置于基板中。
第五方面,在本申请实施例中提供一种低成本的滤波器,用于对射频信号进行滤波处理,包括第一滤波电容、第一接地过孔、第二滤波电容和第一滤波电感,其中第一滤波电容的第一端通过并联的第二滤波电容和第一滤波电感与输入端耦合,且并与输出端耦合;第一滤波电容的第二端通过上述第一接地过孔与地耦合。上述第一滤波电容、第二滤波电容和第一滤波电感设置于基板中或设置于基板的表面,上述第一接地过孔设置于基板中。
第六方面,在本申请实施例中提供一种射频信号处理电路,包括信号放大器和滤波器,其中:所述信号放大器的输出端与所述滤波器的输入端耦合,所述滤波器为如第一方面至第五方面中任意一种可能的实施方式中的滤波器。
附图说明
图1为现有技术中一种LPF的电路结构图。
图2为本申请实施例中一种通信设备。
图3a为本申请实施例中一种滤波器的剖视图;
图3b为本申请实施例中另一种滤波器的剖视图。
图4a为本申请实施例中一种滤波器的电路结构图;
图4b为本申请实施例中一种滤波器的等效电路图。
图5为本申请实施例中另一种滤波器的电路结构图。
图6为本申请实施例中一种具体的滤波器的电路结构图。
图7为本申请实施例中又一种滤波器的电路结构图。
图8为本申请实施例中又一种滤波器的电路结构图。
图9为本申请实施例中又一种滤波器的电路结构图。
图10为本申请实施例中又一种滤波器的电路结构图。
图11为本申请实施例中又一种滤波器的电路结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供如图2所示的一种通信设备200。该通信设备200可以为手机、固定电话,或带有无线通信功能的平板电脑、便携式电脑、智能手表、智能家居等设备。通信设备200可以包括基带(Base Band,BB)芯片210、射频(Radio Frequency,RF)芯片220、低噪声放大器(Low Noise Amplifier,LNA)230、功率放大器(Power Amplifier,PA)240、天线开关(Switch)250、滤波器260和天线(Antenna)270。可以理解的是,本申请实施例示意的部件并不构成对通信设备200的具体限定。在本申请另一些实施例中,通信设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
具体地,基带芯片210可以用于支持协议栈的处理,通过其内部的数字信号处理器(Digital Signal Processor,DSP)、微控制器(Micro Controller Unit,MCU)、内存等部件来实现支持多种通信标准,提供多媒体功能以及用于多媒体显示器、图像传感器和音频设备相关的接口。基带芯片210可以与射频芯片220进行耦合,该射频芯片220可以包括混频器、变压器和可变增益放大器等部件。射频芯片220用于将基带芯片210提供的基带或中频信号上变频为RF信号以发送给PA240,以及将LNA230发送的RF信号下变频为基带或中频信号以供基带芯片210处理。PA240可以用于发送通道的RF信号的放大,LNA230可以用于接收通道的RF信号的放大。天线开关250可以用于实现RF信号接收与发射的切换, 以及不同频段间的切换。滤波器260可以用于保留特定频段内的信号,而将特定频段外的信号滤除。例如,滤波器260可以用于实现低通滤波器的功能,以滤除谐波信号;还可以用于实现高通滤波器(high pass filter)、带通滤波器(band pass filter)或带阻滤波器(band reject filter)的功能。天线270用于辐射和接收无线信号。通信设备200可以提供包括2G/3G/4G/5G等无线通信的解决方案。
本申请实施例提供一种滤波器260,用于对射频信号进行滤波处理,包括输入端、输出端、第一滤波电容和第一接地过孔,上述输入端、输出端和第一滤波电容设置于基板中,或基板的一表面,上述第一接地过孔设置于基板中。上述输入端用于接收射频信号,上述输出端用于输出滤波后的射频信号。第一滤波电容可以设置于信号层上,其第一端与上述输入端或输出端耦合,第二端与第一接地过孔的第一端耦合,且第一接地过孔的第二端与地层耦合。
如图3a所示的是一种滤波器260的剖视图,在一种实施方式中,上述第一滤波电容363、输入端(或输出端)266可以设置在位于基板261表面的信号层264,其中第一接地过孔262的第一端与第一滤波电容263的第二端在第一信号层264上通过导线2681耦合,第一接地过孔262的第二端与地层265耦合,第一滤波电容263的第一端与输入端(或输出端)266通过导线2682耦合。如图3b所示的是另一种滤波器260的剖视图,在另一种实施方式中,上述第一滤波电容263可以设置在位于基板261表面的信号层264,其中第一接地过孔262的第一端与第一滤波电容263的第二端在第一信号层264通过导线2681耦合。第一接地过孔262的第二端与地层265耦合。第一滤波电容263的第一端与输出端2662通过导线2682耦合,且第一滤波电容263的第一端通过导线2683、滤波电感267和导线2684与输入端2661耦合。可以理解的是,图3a和图3b所示的剖视图仅为一种示例,本申请不对基板中的布线层、地层、电源层或导线的布局和位置作任何限定。此外,在本申请中,耦合可以指各个器件、端口、节点或其他器件之间直接的连接,也可以为通过导线电连接,或者通过其他器件电连接,例如通过电阻、电容形成电连接。
在一种实施方式中,上述滤波器260可以作为分立器件设置于PCB(Printed Circuit Board,印制电路板)上,上述第一滤波电容263可以为贴片电容,上述基板261可以为采用覆铜箔层压板实现的基板。在另一种实施方式中,上述滤波器260可以被封装于一个ASIC(Application-Specific Integrated Circuit,专用集成电路)中,上述基板261可以为采用无源硅片实现的中介层(interposer)。在一种实施方式中,上述接地过孔可以是通孔、埋孔或盲孔。
滤波器通过滤波电容和滤波电感来实现滤除某一频率范围的信号的功能。例如,通过调节低通滤波器中的滤波电容的电容值和滤波电感的电感值,从而确定低通滤波器的谐振频率f,则可以滤除频率为f的谐波。在本申请实施例中,当射频信号的频率处于一定范围时,上述第一接地过孔262产生寄生电感效应,即第一接地过孔262等效为一个与第一滤波电容串联的寄生电感。由于该寄生电感的电感值可以通过调整第一接地过孔262的高度和直径来调整,因此第一接地过孔262产生的可控的寄生电感可以用于代替现有技术中的电感器件,使得滤波器260使用更少的电感器件,从而减小滤波器260的面积,降低成本。
在一种可能的实施方式中,上述射频信号的主频的频率范围为1~3GHz,此时滤波器的 调试一致性较好。
在一种可能的实施方式中,上述射频信号的主频的带宽小于100MHz。滤波器对主频带宽小于100MHz的射频信号具有较好的滤波性能。
需要注意的是,本申请实施例中的滤波电容、滤波电感可以设置于基板的一表面,例如位于基板顶层的信号层中,也可以设置于基板中,例如位于基板内部的信号层中。本申请实施例中的接地过孔设置于基板中。
如图4a所示的是本申请实施例提供的一种滤波器400,可以实现低通滤波的功能。滤波器400包括滤波电感L41,滤波电容C41,以及接地过孔VIA41,其中滤波电容C41的第一端与输出端Vout耦合,并且还通过滤波电感L41与输入端Vin耦合,接地过孔VIA41的第一端与滤波电容C41的第二端耦合,接地过孔VIA41的第二端与地耦合。上述滤波电感L41和滤波电容C41设置于基板中或基板的表面,接地过孔VIA41设置于基板中。
如图4b所示的是滤波器400的等效电路。接地过孔VIA41可以等效为并联的寄生电容Cs、寄生电感Ls和寄生电阻Rs。具体来说,寄生电感Ls的电感值可以表示为Ls=H/5×[ln(4H/D)+1]nH,其中H(单位为mm)是接地过孔VIA41的第一端(即远离地层的一端)到地层的距离,D(单位为mm)是接地过孔VIA41的钻孔直径(即内径)。从Ls的表达式可知,寄生电感值Ls受H的影响较大,受D的影响较小,因此主要可以通过调整H来改变寄生电感Ls的电感值。此外,滤波电容C41和滤波电感L41之间通过导线来耦合,该导线也会产生一个与接地过孔VIA41串联的导线寄生电感L0,且该导线寄生电感值可以表示为L0=2×l×[ln(2×l/w)+0.5+0.2235×w/l]nH,其中l是滤波电容C41和滤波电感L41之间的导线的长度(单位为cm),w是该导线的宽度(单位为cm)。综上,通过计算寄生电感Ls和导线寄生电感L0的和,可以得到总的电感值为L=Ls+L0。
在滤波器400进行滤波时,滤波电感L41和滤波电容C41会产生谐振,其两端的电压变化一个周期的时间为谐振周期,该谐振周期的倒数为谐振频率f。其中谐振频率f计算公式为:
Figure PCTCN2019093207-appb-000001
其中L为上述总的电感值L=Ls+L0,C为滤波电容的电容值C41。因此,根据上述公式,可以通过调整L和C的值,确定滤波器400的谐振频率,从而确定可以滤除的谐波的频率。
此外,接地过孔VIA41等效的寄生电容Cs会影响上述谐振频率。具体地,接地过孔VIA41本身会产生寄生电容,其电容值可以表示为Cs≈1.41×ε×H×D1/(D2-D1)pf,其中ε为基板的介电常数,H(单位为mm)是接地过孔VIA41的第一端(即远离地的一端)到地层的距离,D1(单位为inch)为接地过孔VIA41的直径(即外径),D2(单位为inch)为接地过孔VIA41在地层上的阻焊区的直径。由于寄生电容Cs的存在,谐振频率f可能会偏移,因此需要根据实测情况调整滤波电容C41的大小。如果谐振频率f偏大,则可以增加滤波电容C41的值以减小谐振频率f;相应的,当谐振频率f偏小时,则可以减小滤波电容C41的值以增大谐振频率f。
接地过孔VIA41以及该接地过孔VIA41和滤波电容C41之间的导线可以产生寄生电感,因此可以将接地过孔VIA41替代现有技术中基板上的滤波电感器件。在寄生电感值可 以通过上述方法灵活调节的基础上,接地过孔VIA41可以替代原有的滤波电感器件以实现滤波电感器件的功能,减小了原本滤波电感器件占用的面积,同时降低了滤波器的器件成本。
在一种实施方式中,滤波器400还可以包括至少一个并联接地过孔。上述并联接地过孔与接地过孔VIA41并联,即一端耦合于接地过孔VIA41与滤波电容C41的连接点,另一端与地耦合。上述至少一个并联接地过孔与接地过孔VIA41并联,使得总的电感值变小。因此,可以根据所需要滤除的谐波的频率调整并联接地过孔的个数,以减小滤波器的谐振频率。
在一种实施方式中,上述接地过孔为通孔。由于通孔形式的过孔加工的一致性比较好,且便于调试,因此可以进一步降低成本,便于量产。
可以理解的是,并联接地过孔和接地过孔VIA41的上述特征不仅限于上述滤波器400。在本申请中,上述寄生电感Ls、导线寄生电感值L0、谐振频率的计算方法,以及接地过孔VIA41和并联接地过孔的特征可以适用于本申请任一实施例。
如图5所示的是本申请实施例提供的另一种滤波器500,可以实现低通滤波的功能。滤波器500包括滤波电感L51,滤波电容C51,以及接地过孔VIA51,其中滤波电容C51的第一端与输入端Vin耦合,并且还通过滤波电感L51与输出端Vout耦合,接地过孔VIA51的第一端与滤波电容C51的第二端耦合,接地过孔VIA51的第二端与地耦合。上述滤波电感L51和滤波电容C51设置于基板中或基板的表面,接地过孔VIA51设置于基板中。
如图6所示的是本申请实施例提供的一种更为具体的滤波器600。滤波器600与滤波器500相似,不同的是,滤波器600还包括滤波电感L62,该滤波电感L62耦合于输入端Vin和滤波电感L51的第一端,即滤波电容C51的第一端通过该滤波电感L62与输入端Vin耦合。滤波电感L62使得滤波器600的滤波性能更好。上述滤波电感L62设置于基板中或基板的表面。
如图7所示的是本申请实施例提供的又一种滤波器700。滤波器700与滤波器500相似,不同的是,滤波器700还包括滤波电容C72和接地过孔VIA72。其中,滤波电容C72的第一端与输出端Vout耦合,并通过滤波电感L51与输入端Vin耦合;接地过孔VIA72的第一端与滤波电容C72的第二端耦合,且接地过孔VIA72的第二端与地耦合。上述滤波电容C72设置于基板中或基板的表面,接地过孔VIA72设置于基板中。
滤波器700包含两个谐振频率,其中一个谐振频率通过滤波电容C51,接地过孔VIA51的寄生电感,以及滤波电容C51和接地过孔VIA51之间的导线的寄生电感确定;另一个谐振频率通过滤波电容C72,接地过孔VIA72的寄生电感,以及滤波电容C72和接地过孔VIA72之间的导线的寄生电感确定。将上述两个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
如图8所示的是本申请实施例提供的又一种滤波器800。滤波器800与滤波器700相似,不同的是,滤波器800还包括滤波电容C83和接地过孔VIA83。其中,滤波电容C83的第一端与输入端Vin耦合,并通过滤波电感L51与输出端Vout耦合;接地过孔VIA83的第一端与滤波电容C83的第二端耦合,且接地过孔VIA83的第二端与地耦合。上述滤波电容C83设置于基板中或基板的表面,接地过孔VIA83设置于基板中。
滤波器800包含三个谐振频率,其中第一个谐振频率通过滤波电容C51,接地过孔VIA51的寄生电感,以及滤波电容C51和接地过孔VIA51之间的导线的寄生电感确定;第二个谐振频率通过滤波电容C72,接地过孔VIA72的寄生电感,以及滤波电容C72和接地过孔VIA72之间的导线的寄生电感确定;第三个谐振频率通过滤波电容C83,接地过孔VIA83的寄生电感,以及滤波电容C83和接地过孔VIA83之间的导线的寄生电感确定。将上述三个谐振频率设定在期望去除的谐波的频率上,即可滤除对应频率的谐波。
在一种实施方式中,滤波器800还可以包括一个耦合于滤波电容C83的第一端与滤波电容C51的第一端之间的滤波电感,以进一步提升滤波器800的滤波性能。
上述接地过孔的特性不仅可以实现低通滤波的功能,也可以实现高通滤波、带通滤波或带阻滤波的功能。如图9所示的是本申请实施例提供的又一种滤波器900,可以实现高通滤波的功能。滤波器900包括滤波电容C91和接地过孔VIA91,其中滤波电容C91的第一端与输入端Vin耦合,第二端与输出端Vout耦合,且并与接地过孔VIA91的第一端耦合,接地过孔VIA91的第二端与地耦合。上述滤波电容C91设置于基板中或基板的表面,接地过孔VIA91设置于基板中。
容易理解的是,图9所示的滤波器900仅为一种实现高通滤波的滤波器的实现方式。在实际应用中,可以根据需要滤除的信号的频率、性能的需求和设计成本,决定是否并联更多的接地过孔,或者串联更多的滤波电容。
如图10所示的是本申请实施例提供的又一种滤波器1000,可以实现带通滤波的功能。滤波器1000包括滤波电容C101、接地过孔VIA101、滤波电容C102和滤波电感L101。其中,滤波电容C101的第一端与地耦合,第二端通过串联的滤波电容C102和滤波电感L101与输入端Vin耦合,且并与输出端Vout耦合;接地过孔VIA101的第一端与滤波电容C101的第二端耦合,且接地过孔VIA101的第二端与地耦合。上述滤波电感L101,滤波电容C101和滤波电容C102设置于基板中或基板的表面,接地过孔VIA101设置于基板中。
容易理解的是,图10所示的滤波器1000仅为一种实现带通滤波的滤波器的实现方式。在实际应用中,可以根据需要滤除的信号的频率、性能的需求和设计成本,决定是否并联更多的接地过孔,或者串联更多的滤波电容。
如图11所示的是本申请实施例提供的又一种滤波器1100,可以实现带阻滤波的功能。滤波器1100包括滤波电容C111、接地过孔VIA111、滤波电容C112和滤波电感L111。其中,滤波电容C111的第一端与输出端Vout耦合,且并通过并联的滤波电容C112和滤波电感L111与输入端Vin耦合;接地过孔VIA111的第一端与滤波电容C111的第二端耦合,且接地过孔VIA111的第二端与地耦合。上述滤波电感L111,滤波电容C111和滤波电容C112设置于基板中或基板的表面,接地过孔VIA111设置于基板中。
容易理解的是,图11所示的滤波器1100仅为一种实现带阻滤波的滤波器的实现方式。在实际应用中,可以根据需要滤除的信号的频率、性能的需求和设计成本,决定是否并联更多的接地过孔,或者串联更多的滤波电容。
本申请实施例还提供一种滤波器,包括第一滤波电容、滤波电感和第一接地过孔,该第一滤波电容的第一端与滤波器的输入端和输出端耦合,第二端通过上述第一接地过孔与地耦合;上述滤波电感耦合于输入端和输出端之间。上述第一滤波电容和滤波电感设置于 基板中,或设置于基板的表面;上述第一接地过孔设置于基板中。在一种实施方式中,上述滤波电感耦合于输入端和第一滤波电容的第一端之间;在另一种实施方式中,上述滤波电感耦合于输出端和第一滤波电容的第一端之间。具体的,上述第一滤波电容可以为本申请上述实施例中的C41或C51,滤波电感可以为本申请上述实施例中的L41或L51,第一接地过孔可以为本申请上述实施例中的VIA41或VIA51。
上述滤波器还可以包括至少一组串联的第二滤波电容和第二接地过孔,其中该第二滤波电容的第一端与上述滤波器的输入端耦合,且并通过上述滤波电感与输出端耦合,第二滤波电容的第二端通过上述第二接地过孔与地耦合。具体的,上述第二滤波电容可以为本申请实施例中的C72或C83,第二接地过孔可以为本申请实施例中的VIA72或VIA83。
本申请实施例还提供一种滤波器,包括第一滤波电容和第一接地过孔,该第一滤波电容的第一端与滤波器的输入端耦合,第二端与输出端耦合,并通过第一接地过孔与地耦合。上述第一滤波电容可以为本申请上述实施例中的C91,第一接地过孔可以为本申请上述实施例中的VIA91。
本申请实施例还提供一种滤波器,包括第一滤波电容、第一接地过孔、第二滤波电容和滤波电感,其中第一滤波电容的第一端与地耦合,第二端与滤波器的输出端耦合,并通过串联的第二滤波电容和滤波电感与输入端耦合;第一接地过孔的第一端与第一滤波电容的第二端耦合,且第一接地过孔的第二端与地耦合。上述第一滤波电容可以为本申请上述实施例中的C101,第一接地过孔可以为本申请上述实施例中的VIA101,第二滤波电容可以为本申请上述实施例中的C102,滤波电感可以为本申请上述实施例中的L101。
本申请实施例还提供一种滤波器,包括第一滤波电容、第一接地过孔、第二滤波电容和滤波电感,其中第一滤波电容的第一端通过并联的第二滤波电容和滤波电感与输入端耦合,且并与输出端耦合;第一滤波电容的第二端通过上述第一接地过孔与地耦合。上述第一滤波电容可以为本申请上述实施例中的C111,第一接地过孔可以为本申请上述实施例中的VIA111,第二滤波电容可以为本申请上述实施例中的C112,滤波电感可以本申请上述实施例中的L111。
本申请实施例还提供一种射频信号处理电路,包括信号放大器和滤波器,其中信号放大器的输出端与滤波器的输入端耦合,滤波器可以为本申请实施例所述的任意一种滤波器。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种滤波器,其特征在于,所述滤波器包括:
    第一滤波电容,所述第一滤波电容设置于基板中或所述基板的表面,所述第一滤波电容的第一端与所述滤波器的输入端或输出端耦合,所述输入端用于接收射频信号,所述输出端用于输出滤波后的射频信号;以及
    第一接地过孔,所述第一接地过孔设置于所述基板中,所述第一接地过孔的第一端与所述第一滤波电容的第二端耦合,所述第一接地过孔的第二端与地耦合。
  2. 如权利要求1所述的滤波器,其特征在于,所述滤波器还包括:
    至少一个第二接地过孔,所述至少一个第二接地过孔设置于所述基板中,其中每个所述第二接地过孔的第一端与所述第一滤波电容的第二端耦合,每个所述第二接地过孔的第二端与所述地耦合。
  3. 如权利要求1或2所述的滤波器,其特征在于,所述滤波器还包括第一滤波电感,其中:
    所述第一滤波电感设置于所述基板中或所述基板的表面,所述第一滤波电容的第一端与所述输出端耦合,且所述第一滤波电容的第一端通过所述第一滤波电感与所述输入端耦合。
  4. 如权利要求1或2所述的滤波器,其特征在于,所述滤波器还包括第一滤波电感,其中:
    所述第一滤波电感设置于所述基板中或所述基板的表面,所述第一滤波电容的第一端与所述输入端耦合,且所述第一滤波电容的第一端通过所述第一滤波电感与所述输出端耦合。
  5. 如权利要求4所述的滤波器,其特征在于,所述滤波器还包括第二滤波电感,其中:
    所述第二滤波电感设置于所述基板中或所述基板的表面,所述第一滤波电容的第一端通过所述第二滤波电感与所述输入端耦合。
  6. 如权利要求4所述的滤波器,其特征在于,所述滤波器还包括第二滤波电容和第三接地过孔,其中:
    所述第二滤波电容设置于所述基板中或所述基板的表面,所述第二滤波电容的第一端与所述输出端耦合,且所述第二滤波电容的第一端通过所述第一滤波电感与所述输入端耦合;
    所述第三接地过孔设置于所述基板中,所述第三接地过孔的第一端与所述第二滤波电容的第二端耦合,所述第三接地过孔的第二端与所述地耦合。
  7. 如权利要求6所述的滤波器,其特征在于,所述滤波器还包括第三滤波电容和第四 接地过孔,其中:
    所述第三滤波电容设置于所述基板中或所述基板的表面,所述第三滤波电容的第一端与所述输入端耦合,且所述第三滤波电容的第一端通过所述第一滤波电感与所述输出端耦合;
    所述第四接地过孔设置于所述基板中,所述第四接地过孔的第一端与所述第三滤波电容的第二端耦合,所述第四接地过孔的第二端与所述地耦合。
  8. 如权利要求6或7所述的滤波器,其特征在于,所述滤波器还包括第二滤波电感,其中:
    所述第二滤波电感设置于所述基板中或所述基板的表面,所述第二滤波电感耦合于所述第二滤波电容的第一端和所述第三滤波电容的第一端。
  9. 如权利要求1或2所述的滤波器,其特征在于,所述第一滤波电容的第一端与所述输入端耦合,所述第一滤波电容的第二端与所述输出端耦合。
  10. 如权利要求1或2所述的滤波器,其特征在于,所述滤波器还包括第二滤波电容和第一滤波电感,其中:
    所述第二滤波电容设置于所述基板中或所述基板的表面,所述第一滤波电感设置于所述基板中或所述基板的表面,所述第一滤波电容的第一端与所述输入端耦合,所述第一滤波电容的第二端通过所述第一滤波电感分别与所述输出端、所述第一接地过孔的第一端和所述第二滤波电容的第一端耦合,所述第二滤波电容的第二端与所述地耦合。
  11. 如权利要求1或2所述的滤波器,其特征在于,所述滤波器还包括第二滤波电容和第一滤波电感,其中:
    所述第二滤波电容设置于所述基板中或所述基板的表面,所述第一滤波电感设置于所述基板中或所述基板的表面,所述第一滤波电容的第一端通过并联的所述第二滤波电容和第一滤波电感与所述输入端耦合,且所述第一滤波电容的第一端与所述输出端耦合。
  12. 如权利要求1至11任意一项所述的滤波器,其特征在于,所述射频信号的主频范围为1~3GHz。
  13. 如权利要求1至12任意一项所述的滤波器,其特征在于,所述射频信号的主频带宽小于100MHz。
  14. 一种射频信号处理电路,包括信号放大器和滤波器,其中:
    所述信号放大器的输出端与所述滤波器的输入端耦合,所述滤波器为如权利要求1-13任意一项所述的滤波器。
PCT/CN2019/093207 2019-06-27 2019-06-27 一种低成本的滤波器 WO2020258137A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19935747.6A EP3982480A4 (en) 2019-06-27 2019-06-27 COST-EFFECTIVE FILTER
PCT/CN2019/093207 WO2020258137A1 (zh) 2019-06-27 2019-06-27 一种低成本的滤波器
CN201980097910.7A CN114026740B (zh) 2019-06-27 2019-06-27 一种低成本的滤波器
US17/562,530 US11996819B2 (en) 2019-06-27 2021-12-27 Low-cost filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093207 WO2020258137A1 (zh) 2019-06-27 2019-06-27 一种低成本的滤波器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,530 Continuation US11996819B2 (en) 2019-06-27 2021-12-27 Low-cost filter

Publications (1)

Publication Number Publication Date
WO2020258137A1 true WO2020258137A1 (zh) 2020-12-30

Family

ID=74059894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093207 WO2020258137A1 (zh) 2019-06-27 2019-06-27 一种低成本的滤波器

Country Status (4)

Country Link
US (1) US11996819B2 (zh)
EP (1) EP3982480A4 (zh)
CN (1) CN114026740B (zh)
WO (1) WO2020258137A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119070766A (zh) * 2023-05-31 2024-12-03 江苏蓝昭科技有限公司 一种通频带可调的滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514094A (zh) * 2016-01-29 2016-04-20 宜确半导体(苏州)有限公司 一种射频天线开关芯片
US9564872B2 (en) * 2014-09-09 2017-02-07 Hon Hai Precision Industry Co., Ltd. Splitter circuit and front-end circuit
CN107658532A (zh) * 2017-10-23 2018-02-02 石家庄创天电子科技有限公司 滤波器
CN108988816A (zh) * 2018-10-15 2018-12-11 深圳飞骧科技有限公司 谐波抑制功率合成器及射频功率放大器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368553A (ja) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp 高周波増幅器およびそれを用いた無線送信装置
CN101295808B (zh) * 2007-04-29 2012-07-25 倪其良 一种可变换类别与可调频的宽带滤波器的设计方法
JP2009021725A (ja) * 2007-07-11 2009-01-29 Sharp Corp フィルタ装置
KR100998720B1 (ko) * 2007-12-07 2010-12-07 삼성전기주식회사 전자기 밴드갭 구조물 및 인쇄회로기판
CN101953069B (zh) * 2008-01-17 2013-01-16 株式会社村田制作所 叠层型谐振器和叠层型滤波器
JP4530181B2 (ja) * 2008-01-29 2010-08-25 Tdk株式会社 積層型ローパスフィルタ
CN101246983B (zh) * 2008-03-17 2012-08-22 南京大学 基于简化左手传输线结构的超宽带滤波器
US8781430B2 (en) * 2009-06-29 2014-07-15 Qualcomm Incorporated Receiver filtering devices, systems, and methods
US9093731B2 (en) * 2013-02-21 2015-07-28 Empower RF Systems, Inc. Combiner for an RF power amplifier
CN103595364A (zh) * 2013-10-31 2014-02-19 中国电子科技集团公司第四十一研究所 一种准分布参数微带高通滤波器
WO2015119176A1 (ja) * 2014-02-10 2015-08-13 株式会社村田製作所 フィルタ回路および無線通信装置
JP6406362B2 (ja) * 2015-02-02 2018-10-17 株式会社村田製作所 可変フィルタ回路、高周波モジュール回路、および、通信装置
JP6547707B2 (ja) * 2016-07-29 2019-07-24 株式会社村田製作所 積層フィルタ
CN106099280B (zh) * 2016-08-22 2019-10-11 西安电子科技大学 一种基于硅通孔耦合电容分配的lc带通滤波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564872B2 (en) * 2014-09-09 2017-02-07 Hon Hai Precision Industry Co., Ltd. Splitter circuit and front-end circuit
CN105514094A (zh) * 2016-01-29 2016-04-20 宜确半导体(苏州)有限公司 一种射频天线开关芯片
CN107658532A (zh) * 2017-10-23 2018-02-02 石家庄创天电子科技有限公司 滤波器
CN108988816A (zh) * 2018-10-15 2018-12-11 深圳飞骧科技有限公司 谐波抑制功率合成器及射频功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982480A4 *

Also Published As

Publication number Publication date
US20220123707A1 (en) 2022-04-21
EP3982480A1 (en) 2022-04-13
CN114026740A (zh) 2022-02-08
CN114026740B (zh) 2023-06-27
US11996819B2 (en) 2024-05-28
EP3982480A4 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP3800504B2 (ja) フロントエンドモジュール
US8018299B2 (en) Band-pass filter circuit and multi-layer structure and method thereof
US7982557B2 (en) Layered low-pass filter capable of producing a plurality of attenuation poles
US10277192B2 (en) Phase shifter, impedance matching circuit, and communication terminal apparatus
US10348265B2 (en) Transformer-type phase shifter, phase-shift circuit, and communication terminal apparatus
US20050248418A1 (en) Multi-band RF transceiver with passive reuse in organic substrates
JP2016527705A (ja) ベクトルインダクタのための装置および方法
US7999634B2 (en) Layered low-pass filter having a conducting portion that connects a grounding conductor layer to a grounding terminal
US11201602B1 (en) Apparatus and methods for tunable filtering
CN103956985A (zh) 一种具有多层结构的带通滤波器
CN106716634A (zh) 高频元器件
US20230170870A1 (en) Filter device and radio-frequency front-end circuit including the same
CN107947752A (zh) 一种带通滤波器
CN103986435B (zh) 小型化宽阻带抑制ltcc低通滤波器
CN111247739A (zh) 匹配电路以及通信装置
WO2020258137A1 (zh) 一种低成本的滤波器
CN111262545B (zh) 低通滤波器
US20240235516A1 (en) Filter device, antenna device, and antenna module
CN105789785A (zh) 中心频率与带宽可调的基片集成波导滤波器
CN106450630B (zh) 一种小型化高抑制多层巴伦
CN104966879A (zh) 内置吸收电阻超小型功率分配器
US10447227B2 (en) Radio frequency transceiver circuit with distributed inductor and method thereof
CN112583373B (zh) 一种具有频率相关复数源和负载的带通滤波器芯片
CN103606722A (zh) 叠层介质三工器
CN207559957U (zh) 一种带通滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019935747

Country of ref document: EP

Effective date: 20220105