[go: up one dir, main page]

WO2020252678A1 - 滤波电缆 - Google Patents

滤波电缆 Download PDF

Info

Publication number
WO2020252678A1
WO2020252678A1 PCT/CN2019/091830 CN2019091830W WO2020252678A1 WO 2020252678 A1 WO2020252678 A1 WO 2020252678A1 CN 2019091830 W CN2019091830 W CN 2019091830W WO 2020252678 A1 WO2020252678 A1 WO 2020252678A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
hollow
hollowed
line segment
area
Prior art date
Application number
PCT/CN2019/091830
Other languages
English (en)
French (fr)
Inventor
韩宇南
韩雪莹
Original Assignee
韩宇南
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩宇南 filed Critical 韩宇南
Priority to JP2020564139A priority Critical patent/JP7101261B2/ja
Priority to CN201980060453.4A priority patent/CN112771632B/zh
Priority to CA3096793A priority patent/CA3096793A1/en
Priority to US16/954,886 priority patent/US11929189B2/en
Priority to EP19906589.7A priority patent/EP3780018A4/en
Priority to PCT/CN2019/091830 priority patent/WO2020252678A1/zh
Publication of WO2020252678A1 publication Critical patent/WO2020252678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4608Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated comprising an electrically conductive base or core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0221Coaxially shielded signal lines comprising a continuous shielding layer partially or wholly surrounding the signal lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/037Hollow conductors, i.e. conductors partially or completely surrounding a void, e.g. hollow waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09263Meander
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09881Coating only between conductors, i.e. flush with the conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10356Cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/083Evaporation or sublimation of a compound, e.g. gas bubble generating agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1194Thermal treatment leading to a different chemical state of a material, e.g. annealing for stress-relief, aging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions

Definitions

  • This application relates to the field of cable technology, and in particular to a filter cable.
  • Electromagnetic compatibility means that the equipment meets the requirements in its electromagnetic environment and does not produce intolerable effects on any equipment in its environment. The ability of electromagnetic disturbance, the stronger the electromagnetic compatibility, the more stable the equipment will operate in the electromagnetic environment.
  • the basic structure of a cable includes one or more mutually insulated conductors and an outer insulating protective layer. Based on the basic structure of the cable, power or information can be transmitted from one place to another. Based on the basic structure, the solution to electromagnetic compatibility is as follows:
  • the second is a twisted-pair cable.
  • Its specific structure includes two copper wires with an insulating protective layer.
  • the two copper wires are twisted together at a certain density.
  • the radio waves radiated by each wire during transmission will be It is offset by the electric wave emitted by the other wire, effectively reducing the degree of differential mode signal interference.
  • almost all twisted-pair cables have functional defects in terms of filtering.
  • the third is to install the interface filter circuit, filter magnetic ring, suspension filter rubber pad, feedthrough filter, cavity filter, microstrip filter, etc. through the filter added between the cable and the electronic device, the internal cable interface of the electronic device, etc.
  • the patent document with the publication number CN201120412731.9 discloses a cable that realizes the filtering function through a filter connector.
  • the cable with a filter connector is the representative. Almost all cables with a filter connector exist. The following defects: 1. The filter position is concentrated at one or both ends of the cable, not the filter distributed in the axial direction of the cable, and the filtering performance is poor; 2. The design of the filter function greatly increases the size and weight of the connector, and it is subject to certain restrictions during use. Limitations; 3. Usually low-pass filtering, it is difficult to achieve high-pass, band-pass, and band-stop filtering functions.
  • the patent document with publication number US5686697 discloses a method of filtering the cable transmission signal by installing a rubber pad carrying a suspension filter circuit inside the cable connector.
  • the typical technology is a silicon rubber substrate Connect the X2Y capacitor in series with the aviation insert core wire and the external shield through a thin wire to form a line-to-ground common mode filter, or connect the X2Y capacitor to the two aviation insert core wires through a thin wire to form an inter-line Differential mode filtering, represented by the suspension filter circuit device, almost all suspension filter circuits have the following defects: 1.
  • the filter circuit built with lumped components is limited by the size of the components used and the filter network composed The number of stages is very small, and the filtering performance for higher frequencies is weak; 2.
  • the location of the filter circuit is at one or both ends of the cable connector In the vicinity, the filtering position is concentrated and the effect is poor; 4.
  • the size of the lumped filter element used is small, and the lines that make up the circuit are thin, there is heat dissipation, the interference power that can be filtered is small, and the reliability is poor.
  • the patent document with publication number CN205790739-U discloses an anti-interference cable assembly, which is realized by independently installing ceramic feedthrough filters on the core wires of one or both ends of the shielded cable to achieve the filtering function.
  • the shielded filter cable with ceramic feedthrough filter is representative.
  • Almost all shielded filter cables based on ceramic feedthrough filter have the following defects: 1.
  • the feedthrough filter occupies a large space and increases the weight of the aerial plug And volume, which brings great inconvenience to actual use; 2.
  • the location of the filter circuit is near the connector at one or both ends of the cable, and the filtering position is concentrated, resulting in poor effect; 3.
  • the filtering performance of the feedthrough filter is poor, especially High-frequency filtering performance is poor; 4.
  • the patent documents with publication numbers CN201620666446.2, CN201610365454.8, CN201620087019.9, CN201521009514.X disclose that the filtering function is achieved by adding magnetic materials, carbon fiber, and metal mixtures inside the cable.
  • Materials can include ferrite, nanocrystalline magnets or polymer magnets, etc., represented by this type of electromagnetic energy absorbing materials.
  • Almost all filter cables based on electromagnetic energy absorbing materials have the following defects: 1.
  • the weight of the cable has increased significantly 2.
  • the material layer has a certain degree of hardness or brittleness, which limits the turning radius of the cable and the number of times of bending without damage; 3.
  • the increased material layer affects the temperature stability of the cable.
  • the purpose of this application is to provide a filter cable, which is used to solve the problem that cables in related technologies cannot have good filter performance while ensuring a simple and reasonable structure design.
  • a filter cable in the cross section along the radial direction of the filter cable, a core wire and N layers of defective conductor layers surrounding the core wire are sequentially arranged from the inside to the outside; wherein, the defective conductor layer has an engraving
  • the etching pattern is arranged distributed along the axis of the filter cable; the etching pattern is used to make the filter cable equivalent to a preset filter circuit, and perform the signal transmission in the filter cable Filtering; where the value of N is a positive integer.
  • the signal transmitted in the filter cable can be filtered.
  • the etching pattern on the defective conductor layer can be set according to the needs, and the filter cable is equivalent to the preset filter circuit through the etching pattern to achieve any desired filtering effect
  • the input and output terminals of the filter circuit are distributed at both ends of the filter cable, and there will be no large coupling, and the filtering effect is very good.
  • the filter cable has a certain size, heat dissipation effect, and interference filtering.
  • the defective conductor layer has temperature stability and will not affect the temperature stability of the filter cable.
  • the defective conductor layer has a certain degree of toughness and will not affect performance due to bending.
  • the etching pattern is periodically or non-periodically distributed along the axial direction of the filter cable.
  • the etching area of the etching pattern is hollow or filled with insulating material.
  • the N defective conductor layers are mutually insulated or connected to each other.
  • the etching pattern includes: a plurality of first patterns
  • the first pattern includes: a first hollow line segment arranged along the radial direction of the filter cable, one end of the first hollow line segment is provided with a first spiral hollow pattern, and the other end is provided with a second spiral hollow pattern;
  • the second spiral hollow pattern is symmetrically arranged with the first spiral hollow pattern.
  • the etching pattern includes: a plurality of second patterns
  • the second pattern includes: a first double ring hollow pattern and a second double ring hollow pattern spaced apart from each other;
  • the first double annular hollow pattern and the second double annular hollow pattern are symmetrical, and the symmetry axis is arranged along the radial direction of the filter cable;
  • the outer ring of the first double annular hollow pattern and the second double annular hollow pattern has a first non-hollowed area in the middle of one side close to the axis of symmetry;
  • the inner ring of the first double-ring-shaped hollow pattern and the second double-ring-shaped hollow pattern has a second non-hollowed area in the middle of one side away from the axis of symmetry.
  • the preset filter circuit includes a low-pass filter circuit, a band-stop filter circuit, or a band-pass filter circuit.
  • the preset filter circuit includes a low-pass filter circuit
  • the etching pattern includes a plurality of third patterns; the third pattern includes: a second hollowed-out line segment along the axial direction of the filter cable; the second hollowed-out line segment includes a third hollowed-out line
  • the fourth hollow line segment and the fifth hollow line segment are arranged symmetrically at both ends and the symmetry axis along the radial direction of the filter cable; the sixth hollow line segment is arranged side by side and spaced apart from the second hollow line segment;
  • the area corresponding to the third hollowed-out line segment has a third non-hollowed area, and the area corresponding to the fourth hollowed-out line segment has a first narrowed hollowed area connected to the fourth hollowed-out line segment, and corresponds to the fifth hollowed-out line segment
  • the area of has a second narrowed hollow area connected to the fifth hollow line segment;
  • the etching pattern includes: a plurality of fourth patterns; the fourth pattern includes: two sub-patterns spaced symmetrically with each other and the symmetry axis is arranged along the radial direction of the filter cable; sub-patterns of the fourth pattern It includes a seventh hollow line segment and an eighth hollow line segment arranged side by side along the radial direction of the filter cable; both ends of the seventh hollow line segment are respectively provided with a first single ring hollow pattern; the first single ring hollow pattern is far away from all
  • the seventh hollowed-out line segment has a non-hollowed area in the middle of one side; the two ends of the eighth hollowed-out line segment are respectively provided with a second single-ring hollowed pattern; the second single-ringed hollowed pattern is away from the middle of one side of the eighth hollowed-out line segment Having a non-hollowed area; the area of the area enclosed by the second single ring hollow pattern is larger than the area of the area enclosed by the first single ring hollow pattern;
  • the etching pattern includes: a plurality of fifth patterns; the fifth pattern includes: a ninth hollowed-out line segment and a tenth hollowed-out line segment intersectingly arranged; the ninth hollowed-out line segment is arranged along the axial direction of the filter cable and Both ends are respectively provided with a first widening hollow area; the tenth hollow line segment is arranged along the radial direction of the filter cable and both ends are respectively provided with a second widening hollow area; the area surrounded by the second widening hollow area The area of is larger than the area of the area surrounded by the first widened hollow area;
  • the etching pattern includes: a plurality of sixth patterns; the sixth pattern includes: a first U-shaped hollow pattern, a second U-shaped hollow pattern, and a third U-shaped hollow pattern arranged in sequence; the first The openings of the U-shaped hollow pattern, the second U-shaped hollow pattern, and the third U-shaped hollow pattern are arranged along the radial direction of the filter cable; wherein the opening direction of the second U-shaped hollow pattern is the same as that of the first U-shaped hollow pattern.
  • a U-shaped hollow pattern, the opening direction of the third U-shaped hollow pattern is opposite; one end of the second U-shaped hollow pattern communicates with one end of the first U-shaped hollow pattern, and the other end is connected to the third U-shaped hollow pattern. One end of the hollow pattern is connected;
  • the etching pattern includes: a plurality of seventh patterns; the seventh pattern includes: an eleventh hollow line segment along the radial direction of the filter cable; two ends of the eleventh hollow line segment are respectively set as the first Three-wide hollow area.
  • the preset filter circuit includes a band-stop filter circuit
  • the etching pattern includes: a plurality of eighth patterns; the eighth pattern includes: a twelfth hollowed-out line segment along the radial direction of the filter cable; and a third single line is provided at both ends of the twelfth hollowed-out line segment.
  • An annular hollow pattern; the third single annular hollow pattern has a non-hollowed area on one side close to the twelfth hollow line segment;
  • the etching pattern includes: a plurality of ninth patterns; the ninth pattern includes: a thirteenth hollow line segment arranged along the radial direction of the filter cable, and one end of the thirteenth hollow line segment is provided with a third spiral shape The other end of the hollow pattern is provided with a fourth spiral hollow pattern; the third spiral hollow pattern is asymmetrical to the fourth spiral hollow pattern;
  • the etching pattern includes: a plurality of tenth patterns; the tenth pattern includes: a fourteenth hollow line segment and a fifteenth hollow line segment arranged side by side along the axial direction of the filter cable; The fourteenth hollow line segment and the fifteenth hollow line segment are arranged along the radial direction of the filter cable; the middle of the fourteenth hollow line segment passes through the sixteenth hollow line segment and the fifteenth hollow line segment The middle part is connected; between the fourteenth hollow line segment, the fifteenth hollow line segment, and on both sides of the sixteenth hollow line segment are respectively provided a third single ring hollow pattern; the third single ring hollow pattern is close to the There is a non-hollowed area in the middle of one side of the sixteenth hollow line segment;
  • the etching pattern includes: a plurality of eleventh patterns; the eleventh pattern includes: a rectangular fourth single ring hollow pattern; a pair of edges of the fourth single ring hollow pattern border the filter cable diameter The other pair of edges are arranged along the axial direction of the filter cable; outside the fourth single annular hollow pattern, both ends and the middle of the pair of edges arranged along the axial direction of the filter cable are provided with a seventeenth hollow line segment One end of the seventeenth hollowed-out line segment is connected to the fourth single-circular hollowed-out pattern; two symmetrical L-shaped hollowed out patterns are arranged between the two seventeenth hollowed-out line segments; the L-shaped hollowed out pattern The corner is close to the fourth single annular hollow pattern, one side is close to the seventeenth hollow line segment, is arranged along the radial direction of the filter cable and passes through the hollow line segment arranged along the axial direction of the filter cable and the adjacent seventeenth hollow line segment.
  • the hollowed-out line segments are connected, and the other side is close to the fourth single-loop hollowed pattern and is arranged along the axial direction of the filter cable; the core wire and the area corresponding to the fourth single-ringed hollowed pattern are arranged along the radial direction of the filter cable. Through hole.
  • the preset filter circuit includes a band-pass filter circuit
  • the etching pattern includes: a plurality of twelfth patterns; the twelfth pattern includes: a first sub-pattern and a second sub-pattern spaced apart from each other; the first sub-patterns of the twelfth pattern include: sequentially arranged The fourth U-shaped hollow pattern, the fifth U-shaped hollow pattern, and the sixth U-shaped hollow pattern; the openings of the fourth U-shaped hollow pattern, the fifth U-shaped hollow pattern, and the sixth U-shaped hollow pattern Arranged along the radial direction of the filter cable; wherein the opening direction of the fifth U-shaped hollow pattern is opposite to the opening directions of the fourth U-shaped hollow pattern and the sixth U-shaped hollow pattern; the fifth U One end of the hollow pattern is connected with one end of the fourth U-shaped hollow pattern, and the other end is connected with one end of the sixth U-shaped hollow pattern; the second sub-pattern of the twelfth pattern is the twelfth
  • the first sub-pattern of the pattern is a pattern obtained by rotating
  • the etching pattern includes: a plurality of thirteenth patterns; the thirteenth pattern includes: an earth-shaped hollow pattern; the first vertical edge of the earth-shaped hollow pattern is arranged along the radial direction of the filter cable, and the first The horizontal side and the second horizontal side are respectively arranged along the axial direction of the filter cable; the length of the first horizontal side is smaller than the length of the second horizontal side; one end of the second horizontal side is provided with a fifth spiral hollow The other end is provided with a sixth spiral hollow pattern that is completely symmetrical to the fifth spiral hollow pattern; one end of the first horizontal side is provided with a seventh spiral hollow pattern, the seventh spiral hollow pattern Located in the non-hollowed area of the fifth spiral hollow pattern, the other end is provided with an eighth spiral hollow pattern that is completely symmetrical to the seventh spiral hollow pattern, and the eighth spiral hollow pattern is located in the first The non-hollowed area of the six spiral hollowed out pattern; the area corresponding to the core wire and the vertical side has a second cut-off area, and the second cut-off area
  • the etching pattern includes: a plurality of fourteenth patterns; the fourteenth pattern includes: a Japanese-shaped hollow pattern; the Japanese-shaped hollow pattern includes a pattern along the filter cable
  • the third, fourth, and fifth horizontal sides arranged in the axial direction, the second and third vertical sides arranged in the radial direction of the filter cable; the fourth horizontal side is located in the third horizontal Between the side and the fifth lateral side; the middle part of the fourth lateral side close to the third lateral side has a non-hollowed line segment arranged along the radial direction of the filter cable; the fourth lateral side also has A first L-shaped non-hollowed area, a second L-shaped non-hollowed area, and a third L-shaped non-hollowed area along the axial direction of the filter cable; the long sides of the first L-shaped non-hollowed area and the non-hollowed area
  • the line segments are connected, and the short side is connected with the long side of the second L-shaped non-hollowed area; the short side
  • the etching pattern includes: a plurality of fifteenth patterns; the fifteenth pattern includes: a square wave hollow pattern; both ends of the square wave hollow pattern are respectively provided with a first along the radial direction of the filter cable Four wide open areas.
  • the defective conductor layer is arranged in a winding form.
  • it further includes an M-layer shielding layer disposed outside the N-layer defective conductor layer and insulated from the N-layer defective conductor layer; wherein the value of M is a positive integer.
  • Figure 1 is a schematic structural diagram of a cable provided by an embodiment of the application.
  • FIG. 2 is a schematic side view of a structure of a first defective conductor layer provided by another embodiment of the application;
  • FIG. 3 is a schematic diagram of a front view structure of a first defective conductor layer provided by another embodiment of the application.
  • FIG. 4 is a schematic diagram of an etching pattern of a first defective conductor layer provided by another embodiment of the application.
  • FIG. 5 is a schematic diagram of an equivalent circuit of an etching pattern of a first defective conductor layer provided by another embodiment of the application;
  • FIG. 6 is a schematic side view of a structure of a second defective conductor layer according to another embodiment of the application.
  • FIG. 7 is a schematic diagram of a front view structure of a second defective conductor layer provided by another embodiment of the application.
  • FIG. 8 is a schematic diagram of an etching pattern of a second defective conductor layer provided by another embodiment of the application.
  • FIG. 9 is a schematic diagram of an equivalent circuit of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 10 is a filtering effect diagram of a filtering cable provided by another embodiment of the application.
  • FIG. 11 is a schematic diagram of a side view of a defective conductor layer provided by another embodiment of the application.
  • FIG. 12 is a schematic structural diagram of the etching pattern of the defective conductor layer shown in FIG. 11 provided by another embodiment of the application;
  • FIG. 13 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 14 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 13 provided by another embodiment of the application;
  • 15 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 16 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 15 provided by another embodiment of the application;
  • FIG. 17 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 18 is a schematic diagram of the equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 17 provided by another embodiment of the application;
  • 19 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 20 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 19 provided by another embodiment of the application;
  • 21 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 22 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 21 provided by another embodiment of the application;
  • FIG. 23 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 24 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 23 provided by another embodiment of the application;
  • 25 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • 26 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 27 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 28 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 27 provided by another embodiment of the application;
  • 29 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 30 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 31 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 30 provided by another embodiment of the application;
  • 32 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • FIG. 33 is a schematic diagram of an equivalent circuit structure of the etching pattern of the defective conductor layer shown in FIG. 31 provided by another embodiment of the application.
  • FIG. 34 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • 35 is a schematic structural diagram of an etching pattern of a defective conductor layer provided by another embodiment of the application.
  • This embodiment provides a filter cable.
  • a core wire and N layers of defective conductor layers surrounding the core wire are sequentially arranged from the inside to the outside; wherein the defective conductor layer
  • the specific value of N can be set according to actual needs.
  • the distributed arrangement refers to the dispersive arrangement of the etching patterns at different positions along the cable axis.
  • the etching pattern may be distributed periodically or non-periodically along the axial direction of the filter cable.
  • This solution provides a brand-new filter cable, which is implemented based on a defective conductor layer.
  • the inventor of this application mainly overcomes the following technical difficulties: First, by adding periodic or aperiodic etching on the outside of the cable core
  • the conductor layer can be equivalent to external inductance and capacitance, and change the distributed capacitance and distributed inductance characteristics of the transmission line.
  • the traditional transmission line theory cannot be used for calculation and analysis, and the specific transmission line theory cannot be given.
  • Design guidance, and simulation analysis through computational electromagnetics methods also have the problems of complex modeling, limited simulation accuracy, and long calculation time.
  • multi-layer defective conductor layers For higher filtering performance requirements, it is necessary to use a multilayer defective conductor layer to achieve High-performance filtering function, multi-layer defective conductor layers must be designed in coordination to analyze the impact of specific inter-layer coupling on the filtering performance; fourth, the bending, dragging, stretching and other operations in the cable use environment, high and low temperature, The influence of humidity on the performance of the filter cable should be controlled in a small range, which requires the use of a lightweight, distributed parameter structure to meet the requirements.
  • the inventor of the present application overcomes the above technical difficulties and provides a filter cable based on a defective conductor layer, which achieves a good filtering effect.
  • the defective conductor layer has an etching pattern. Since the etching pattern can make the filter cable equivalent to a preset filter circuit, The signal transmitted in the filter cable is filtered. On the one hand, it realizes the filtering through the structure of the cable itself, without adding other components, and the etching pattern is distributed on the cable, so all parts of the cable have good performance.
  • the etching pattern on the defective conductor layer can be set according to the needs, and the filter cable is equivalent to the preset filter circuit through the etching pattern to achieve any required filtering effect.
  • the filter The input and output ends of the circuit are distributed at both ends of the filter cable, and there will be no large coupling, and the filtering effect is very good.
  • the filter cable has a certain size, heat dissipation effect, filterable interference power, and reliability. Promote. In this way, the normal power or signal transmission of the cable can be ensured, and the weight and size of the cable are not increased too much, so that the cable has good electromagnetic signal filtering characteristics.
  • the defective conductor layer has temperature stability and will not affect the temperature stability of the filter cable.
  • the defective conductor layer has a certain degree of toughness and will not affect performance due to bending.
  • the filter cable provided by this solution can be used for, but not limited to, the interconnection between electronic equipment, the interconnection between electronic equipment and the power supply device, the interconnection between the internal modules of the electronic equipment, the interconnection between the internal modules of the intelligent robot, the internal and Interconnection in the case of external power and signal wired transmission.
  • an electromagnetic connection can be formed with the housing of the electronic device, and electromagnetic interference signals can be effectively filtered.
  • electromagnetic pulse interference such as electronic countermeasure interference, lightning, static electricity, nuclear explosions, high-power microwave weapons, electromagnetic pulse bombs, etc.
  • the filter cable of the present application can effectively suppress the electromagnetic stress coupled on the filter cable, and realize the protection of electronic equipment Protection from electromagnetic interference.
  • the above-mentioned core wire is located in the innermost layer of the cable cross-section.
  • the number of core wires can be one or more.
  • the specific structure of each core wire can include a solid column (such as a cylinder) or a hollow tube.
  • Each core wire can also Including single strand core wire or multiple strand core wire.
  • the material of the core wire may include, but is not limited to, metal, graphene, metal alloy, metal alloy, and metal plating or conductive polymer.
  • the material of the metal wire may include pure copper, copper-plated silver or steel-clad copper-plated silver, etc. .
  • a first filling layer may be provided between the above-mentioned defective conductor layer and the core wire.
  • the material of the first filling layer may include, but is not limited to, polytetrafluoroethylene or polyethylene, etc., which can be evenly wrapped by winding or extrusion foaming. On the outside of the core.
  • the N defective conductor layers are mutually insulated or connected.
  • a second filling layer is provided between the N defective conductor layers.
  • the material of the second filling layer may include, but is not limited to, polytetrafluoroethylene or polyethylene, or may be a flexible printed circuit made of flexible media such as polyimide film or liquid crystal polymer (Liquid Crystal Polymer, LCP) film. Board etc.
  • a typical implementation of the defective conductor layer is a flexible printed circuit board made of flexible media such as polyimide film or LCP film.
  • Flexible printed circuit boards can be substrates for radio frequency, microwave, or millimeter wave applications because they combine excellent electrical properties with good processing properties.
  • the material of the flexible dielectric substrate is uniform, so the dielectric properties of the flexible dielectric substrate are very uniform.
  • the relative dielectric constant of the polyimide film can be between 2.2 and 3.8, and the dielectric loss tangent can be less than 0.008.
  • the relative dielectric constant of the industrialized liquid crystal polymer film is 3.3, and the dielectric loss tangent is less than 0.005.
  • the water absorption rate of the flexible dielectric substrate material is very low (less than 0.04% at 23°C and 50% relative humidity), so the size and dielectric properties of the substrate do not change much under humid conditions. Based on these properties, flexible dielectric substrates can be easily used to design and fabricate different types of defective conductor layers, which can be applied to filter cables with different characteristics.
  • the etched area of the above-mentioned etched pattern in the defective conductor layer can be hollow without any treatment, or can be filled with insulating material, where the filled insulating material can include, but is not limited to, polytetrafluoroethylene or polyethylene.
  • the cable further includes an M-layer shielding layer disposed outside the N-layer defective conductor layer and insulated from the N-layer defective conductor layer.
  • M is a positive integer.
  • the value of M can be set according to actual needs.
  • the shielding layer may include, but is not limited to, a copper-plated silver tape, an ultra-light silver-plated metal braided layer, or a copper-plated silver braided mesh.
  • a third filling layer is provided between the shielding layer and the defective conductor layer for filling.
  • the material of the third filling layer can be, but is limited to, polytetrafluoroethylene or polyethylene, etc., and can be evenly wrapped on the outside of the defective conductor layer by winding or extrusion foaming.
  • the M shielding layers are insulated from each other or connected to each other.
  • the M defective conductor layers are insulated by providing a fourth filling layer.
  • the material of the fourth filling layer may include, but is not limited to, a fluorinated ethylene propylene polymer.
  • the filter cable may also include an outer sheath arranged outside the M-layer shielding layer.
  • the outer sheath is a structure that physically protects the filter cable on the outermost layer of the filter cable and prolongs the service life of the filter cable.
  • the material of the outer sheath can include, but is not limited to, polytetrafluoroethylene, polyethylene, fluorinated ethylene propylene polymer Materials, silicone rubber, polyurethane, stainless steel, RADOX, neoprene or low-smoke halogen-free materials, etc.
  • connectors can be installed at both ends of the filter cable for easy use.
  • the cross section along the radial direction of the filter cable includes a core wire 1, a first filling layer 21 surrounding the core wire 1, and a first defective conductor layer 31 from the inside to the outside.
  • FIG. 1 is only an example of the structure of a filter cable, which is not limited, and other structures may also be used.
  • the first defective conductor layer 31 is a periodic or aperiodic first defective conductor layer etched on the conductor 311 of the first defective conductor layer on the cylindrical surface of the first filling layer 21
  • the etched pattern 312 can be hollowed out or filled with insulating material in situ.
  • the etching pattern 312 obtained by periodically etching away part of the first defective conductor layer is shown in FIG. 4 and includes a spiral etching pattern.
  • the etching pattern includes: a plurality of first patterns; in FIG.
  • the first pattern includes: a first hollowed-out line segment 601 arranged radially along the filter cable, and one end of the first hollowed-out line segment 601 is arranged There is a first spiral hollow pattern 602, and a second spiral hollow pattern 603 is arranged at the other end; the second spiral hollow pattern 603 and the first spiral hollow pattern 601 are symmetrically arranged. Based on this, as shown in FIG.
  • the etched pattern of the first defective conductor layer 31 can make the equivalent circuit of the filter cable as: the intrinsic impedance of the transmission line between the first node P 1 and the second node P 2 Z 0 ( The equivalent electrical length is ⁇ ) parallel access impedance Z 2 equivalent electrical length ⁇ , impedance Z 1 equivalent electrical length 2 ⁇ and impedance Z 2 equivalent electrical length ⁇ short-circuit short harmonic line, and parallel
  • the first inductor L 1 and the first resistor R 1 are connected in parallel.
  • the first node is the input end of the filter cable
  • the second node is the output end of the filter cable
  • the equivalent circuit between the first node P 1 and the second node P 2 varies with different etching patterns.
  • the second filling layer 22 tightly wraps the first defective conductor layer 31 to form a cylindrical structure. Specifically, it is evenly wrapped on the first defective conductor layer by winding or extrusion foaming by insulating materials such as polytetrafluoroethylene or polyethylene. 31 outside.
  • the second defective conductor layer 32 is a periodic or aperiodic first defective conductor layer etched on the second defective conductor layer conductor 321 outside the cylindrical surface of the second filling layer 22
  • the etched pattern 322 can be hollowed out or filled in situ with insulating materials such as polytetrafluoroethylene or polyethylene.
  • the etching pattern 322 obtained by periodically etching away part of the second defective conductor layer is shown in FIG. 8.
  • the etching pattern includes a plurality of second patterns; in FIG.
  • the second pattern includes: a first double ring hollow pattern 604 and a second double ring hollow pattern 605 spaced apart from each other; the first double ring hollow pattern
  • the pattern 604 and the second double ring hollow pattern 605 are symmetrical and the axis of symmetry is arranged along the radial direction of the filter cable; the outer rings of the first double ring hollow pattern 604 and the second double ring hollow pattern 605 are close to symmetry
  • the middle of one side of the shaft has a first non-hollowed area 606; the inner ring of the first double-ring hollowed pattern 604 and the second double-ringed hollowed pattern 605 has a second non-hollowed area 607 at the middle of the side away from the axis of symmetry .
  • first double-ring-shaped hollow pattern 604 and the second double-ring-shaped hollow pattern 605 have a variety of shapes, which may be but not limited to rectangles, which are illustrated as rectangles in the figure.
  • the second defective conductor layer 32 can make the filter cable equivalent to an equivalent circuit as shown in FIG. 9.
  • the equivalent circuit in FIG. 9 includes a second inductor L 2 , a third inductor L 3 , a fourth inductor L 4 , a fifth inductor L 5 , a sixth inductor L 6 , a seventh inductor L 7 , a first capacitor C 1 , The second capacitor C 2 , the third capacitor C 3 , the fourth capacitor C 4 , the fifth capacitor C 5 , the sixth capacitor C 6 , and the seventh capacitor C 7 .
  • the first end of the second inductor L 2 are respectively connected to the first point P 1 and a first terminal of the first capacitor C 1
  • the second inductor L 2 are respectively connected to a second end of the third inductor L 3 of the first end
  • the first end of the second capacitor C 2 ; the second end of the third inductor L 3 is connected to the first end of the fourth inductor L 4 and the first end of the fourth capacitor C 4 ; the second end of the fourth inductor L 4
  • the first end of the fifth inductor L 5 and the first end of the fifth capacitor C 5 are respectively connected, and the second end of the fifth inductor L 5 is respectively connected to the first end of the seventh capacitor C 7 and the second node P 2 .
  • the second end of the second capacitor C 2 is respectively connected to the first end of the sixth inductor L 6 and the first end of the third capacitor C 3 ; the second end of the fifth capacitor C 5 is respectively connected to the first end of the seventh inductor L 7 end, the sixth capacitor C 6 of the first end; a second terminal of the first capacitor C 1, the second end of the sixth inductor L 6, and a second terminal of the third capacitor C 3, the fourth capacitor C 4 of the second end, a second end of the seventh inductor L 7, and the sixth capacitor C 6 of the second terminal, the second terminal of the seventh capacitor C 7 are grounded.
  • the third filling layer 23 tightly wraps the second defective conductor layer 32 to form a cylindrical structure.
  • insulating materials such as polytetrafluoroethylene or polyethylene can be used to evenly wrap the second defective conductor layer 32 by winding or extrusion foaming. Outside the defective conductor layer.
  • the first shielding layer 41 is wrapped with one or more metal shielding layers outside the third insulating layer 23, for example, the first shielding layer is a copper silver-plated tape.
  • the fourth insulating layer 24 tightly wraps the first shielding layer 41 to form a cylindrical structure.
  • the material of the fourth filling layer includes fluorinated ethylene propylene polymer.
  • the second shielding layer 42 is wrapped with one or more metal shielding layers outside the fourth insulating layer 24, for example, the second shielding layer is an ultra-light silver-plated metal braided layer or a copper-plated silver braided mesh.
  • the first defective conductor layer 31, the second defective conductor layer 32, the first shielding layer 41, and the second shielding layer 42 may be connected together as required to form a common ground connection.
  • the insertion loss effect diagram achieved by the filter cable based on the defective conductor layer of this embodiment it can be seen that the filter cable based on the defective conductor layer is a low-pass filter cable, and the length is about 0.1m based on the defective conductor layer
  • the insertion loss effect that the filter cable can achieve is: the insertion loss at 0-2GHz is less than 0.5dB, and the insertion loss at 2.2-8GHz is greater than 30dB.
  • the abscissa represents the frequency, and the unit is GHz (ie, GH), and the ordinate represents the insertion loss (ie, the difference loss), and the unit is dB.
  • etching patterns of various structures can be designed according to actual needs to achieve the effects of various required filter circuits.
  • the preset filter circuit may include a low-pass filter circuit, a band-stop filter circuit, or a band-pass filter circuit.
  • the structure of different etching patterns will be illustrated below with examples.
  • the etching pattern includes a plurality of third patterns.
  • Fig. 12 shows the specific structure of one cycle of the etching pattern (the third pattern shown by the dashed frame A), and the third pattern includes: along the axis of the filter cable
  • the second hollowed-out line segment 608 includes the third hollowed-out line segment 609, the fourth hollowed-out line segment 610 and the fifth hollowed-out line segment 610 symmetrically at both ends of the third hollowed-out line segment and the symmetry axis is arranged along the radial direction of the filter cable.
  • the area corresponding to the fourth hollowed-out line segment 610 has a first narrowed hollowed-out area 614 connected to the fourth hollowed-out line segment 610, and the area corresponding to the fifth hollowed-out line segment 611 has a connection with the fifth hollowed-out line segment 611
  • the second narrowed hollow area 615 The widths of the first narrowed hollow area 614 and the second narrowed hollow area 615 along the radial direction of the filter cable are smaller than the widths of other positions on the sixth hollow line segment 612.
  • a low-pass filter cable based on an asymmetric PI (ie ⁇ )-shaped defective conductor layer is provided, as shown in Figure 11.
  • a polyimide film substrate can be constructed with 10 cascades.
  • the copper layer of the asymmetric PI-shaped third pattern is wrapped around the insulating layer of the filter cable to realize the low-pass filtering function of the filter cable.
  • the third pattern in Fig. 12 is used as a structural diagram of a resonant unit A.
  • the distance W between the two sides away from the second hollow line segment 608 and the sixth hollow line segment 612 4 1.965 mm
  • the filter cable implemented by the structure of this embodiment has a strong transition band (TB), an ultra-wide stopband (stopband, SB), and a high stopband performance.
  • the filter cable proposed in this embodiment has 10 cascaded resonant units
  • the defective conductor layer has a compact size of 100mm ⁇ 2.6mm ⁇ 0.254mm, the insertion loss is less than 1.9dB at 2.2GHz, and has a wide SB greater than 50dB in the range of 2.7GHz to 12GHz.
  • the flexible low-pass filter cable proposed in this embodiment With good transmission and low-pass filtering functions, it is possible to replace traditional radio frequency coaxial cables in wireless terminals.
  • the etching pattern includes a plurality of fourth patterns.
  • the fourth pattern includes two sub-patterns 616 spaced symmetrically with each other and the symmetry axis is arranged along the radial direction of the filter cable.
  • the sub-pattern 616 of the fourth pattern includes a seventh hollow line segment 617 and an eighth hollow line segment 618 arranged side by side along the radial direction of the filter cable; both ends of the seventh hollow line segment 617 are respectively provided with a first single ring hollow Pattern 619; the first single ring hollow pattern 619 has a non-hollowed area in the middle of one side away from the seventh hollow line segment 617; both ends of the eighth hollow line segment 618 are respectively provided with a second single ring hollow pattern 620;
  • the second single annular hollow pattern 620 has a non-hollowed area at the middle of one side away from the eighth hollowed-out line segment 618; the area enclosed by the second single annular hollow pattern 620 is larger than the area enclosed by the first single annular hollow pattern 619 The area of the area.
  • the width of the corresponding hollow line segment of the second annular hollow pattern 619 and the second annular hollow pattern 620 are the same.
  • the seventh hollowed-out line segment, the eighth hollowed-out line segment, the non-hollowed area of the first annular hollowed pattern, and the non-hollowed area of the second annular hollowed pattern have the same width along the axial direction of the filter cable.
  • the fourth pattern as a whole is very similar to a dumbbell structure. It can be considered that the defective conductor layer of the low-pass filter cable provided by this embodiment embeds a T-shaped area on the basis of the dumbbell-shaped structure to form The two transmission zero points produced by the new defective conductor layer structure are lower than the transmission zero points produced by etching the dumbbell-shaped defective conductor layer with the same square area size.
  • the shape of the second single annular hollow pattern 620 and the first single annular hollow pattern 619 may be, but not limited to, a rectangle. In the figure, the rectangle is taken as an example. The corresponding size can be set according to actual needs. For example, the size of the structure shown in FIG.
  • the structure of this embodiment can make the filter cable equivalent to the equivalent circuit shown in FIG. 14.
  • the equivalent circuit shown in FIG. 14 includes a second resistor R 2 , an eighth capacitor C 8 , a ninth capacitor C 9 , a tenth capacitor C 10 , an eleventh capacitor C 11 , an eighth inductor L 8 , and a ninth capacitor. Inductance L 9 .
  • the first end of the second resistor R 2 is respectively connected to the first node P 1 , the first end of the eighth inductor L 8 , the first end of the eighth capacitor C 8 , and the first end of the ninth capacitor C 9 .
  • the two ends are respectively connected to the second node P 2 , the second end of the eighth inductor L 8 , the second end of the eighth capacitor C 8 , and the first end of the tenth capacitor C 10 ;
  • the second end of the ninth capacitor C 9 is respectively Connect the first end of the eleventh capacitor C 11 , the first end of the ninth inductor L 9 and the second end of the tenth capacitor C 10; the second end of the eleventh capacitor C 11 and the second end of the ninth inductor L 9 Both ends are grounded.
  • the filtering performance based on this structure includes: a low-pass filter with a cut-off frequency of 3dB can be obtained, a very sharp cut-off frequency response and an ultra-wide stop band can be shown at 4GHz, and the suppression at 4.2 to 23GHz is higher than 25dB.
  • the etching pattern includes a plurality of fifth patterns.
  • the fifth pattern includes: a ninth hollow line segment 621 and a tenth hollow line segment 623 intersectingly arranged; the ninth hollow line segment 621 is arranged along the axial direction of the filter cable and has a A widened hollow area 622; the tenth hollowed-out line segment 623 is arranged along the radial direction of the filter cable, and two ends are respectively provided with a second widened hollowed area 624; the area of the area surrounded by the second widened hollowed area 623 It is larger than the area of the area surrounded by the first widened hollow area 622.
  • This embodiment provides a low-pass filter cable based on a crossed dumbbell-shaped defective conductor layer. It can be seen from Figure 15 that the low-pass filter cable based on a crossed dumbbell-shaped defective conductor layer is implemented by two cross-shaped dumbbell-shaped structures The low-pass filtering function can achieve higher stop-band suppression and wider band-stop characteristics than the dumbbell structure. Based on the structure of FIG. 15, specific parameters can be set according to actual needs.
  • the structure of this embodiment can make the filter cable equivalent to the equivalent circuit shown in FIG. 16.
  • the circuit in FIG. 16 includes a tenth inductor L 10 , an eleventh inductor L 11 , a twelfth inductor L 12 , a thirteenth inductor L 13 , a fourteenth inductor L 14 , a fifteenth inductor L 15 , and a twelfth inductor.
  • L a first end of the inductor 10 are connected to a tenth node P 1, a first capacitor C twelfth end 12, a second terminal connected to a first terminal of the thirteenth capacitor C 13, inductor eleventh The first end of L 11 and the first end of the fourteenth capacitor C 14 ; the second end of the eleventh inductor L 11 is respectively connected to the second end of the fourteenth capacitor C 14 and the first end of the twelfth inductor L 12
  • the second end of the twelfth inductor L 12 is connected to the first end of the thirteenth inductor L 13 and the first end of the fifteenth capacitor C 15 respectively;
  • the second end of the thirteenth inductor L 13 is connected to the tenth four first end 14 of inductance L, capacitance C sixteenth a first end 16;
  • a fourteenth inductance L are connected to the second end 14 of the second capacitor C sixteenth end 16, 15 of the fifteenth inductance L
  • the etching pattern includes a plurality of sixth patterns; as shown in FIG. 17, the sixth pattern includes: The first U-shaped hollow pattern 625, the second U-shaped hollow pattern 626, and the third U-shaped hollow pattern 627; the first U-shaped hollow pattern 625, the second U-shaped hollow pattern 626 and the third U-shaped hollow pattern
  • the openings of the U-shaped hollow pattern 627 are arranged along the radial direction of the filter cable; wherein the opening direction of the second U-shaped hollow pattern 626 is the same as that of the first U-shaped hollow pattern 625 and the third U-shaped hollow pattern 627.
  • the opening direction is opposite; one end of the second U-shaped hollow pattern 626 communicates with one end of the first U-shaped hollow pattern 625, and the other end communicates with one end of the third U-shaped hollow pattern 627.
  • the sizes of the first U-shaped hollow pattern 625, the second U-shaped hollow pattern 626, and the third U-shaped hollow pattern 627 may be the same.
  • the sixth pattern as a whole is very similar to a W. It can be considered that this embodiment provides a low-pass filter cable based on a W-shaped defective conductor layer. It can be seen from FIG. 17 that a low-pass filter cable based on a W-shaped defective conductor layer passes similarly.
  • the structure of W realizes the function of low-pass filtering, which can realize three transmission zero points, sharp roll-off and wide stop band characteristics. The specific parameters of the structure shown in Fig.
  • the length W 21 along the radial direction of the filter cable, and the length W 20 along the radial direction of the other end of the filter cable 7.76mm.
  • the structure of this embodiment can make the filter cable equivalent to an equivalent circuit as shown in FIG. 18.
  • the equivalent circuit of FIG. 18 The equivalent circuit of FIG.
  • the 18 includes a sixteenth inductance L 16 , a seventeenth inductance L 17 , an eighteenth inductance L 18 , a nineteenth inductance L 19 , a nineteenth capacitor C 19 , and a twentieth capacitor C 20 ,
  • L a first end of the inductor 16 are connected to the sixteenth node P 1, a first end of the nineteenth capacitor C 19, a second terminal connected to the second node P 2, the twenty-second capacitor C 22
  • the first end; the second end of the nineteenth capacitor C 19 is connected to the first end of the twentieth capacitor C 20 and the first end of the twenty-third capacitor C 23 ;
  • the second end of the twentieth capacitor C 20 is respectively Connect the first end of the twenty-first capacitor C 21 and the first end of the twenty-fourth capacitor C 24 ;
  • the second end of the twenty-first capacitor C 21 is connected to the second end of the twenty-second capacitor C 22 ,
  • the first end of the twenty-fifth capacitor C 25 ; the second end of the twenty-third capacitor C 23 is connected to the first end of the twenty-sixth capacitor C 26 and the first end of the seventeenth inductor L 17 ;
  • the second end of the fourteenth capacitor C 24 is respectively connected to the first end of the twenty-seventh capacitor C 27 and the first end of the
  • the filtering performance achieved based on the above structure includes: the transition band is from 3.11GHz (cut-off frequency) to 3.23GHz, the insertion loss changes from -3.02dB to -22.5dB; the stopband insertion loss is 25dB, and the stopband frequency band is always available Extend to 3.4GHz (cut-off frequency).
  • the etching pattern includes a plurality of seventh patterns; as shown in FIG. 19, the seventh pattern includes: The eleventh hollowed-out line segment 628 in the radial direction of the filter cable; both ends of the eleventh hollowed-out line segment 628 are respectively set as third widened hollowed areas 629.
  • the length of the third widened hollow area 629 along the axial direction of the filter cable is greater than the length of other areas of the eleventh hollow line segment 628 along the axial direction of the filter cable, which looks like a dumbbell.
  • This embodiment provides a low-pass filter cable based on a dumbbell-shaped defective conductor layer.
  • the low-pass filter cable based on a dumbbell-shaped defective conductor layer passes through a dumbbell-shaped (or I-type)
  • the structure realizes the low-pass filtering function, which can realize sharp roll-off and wide stop band characteristics.
  • the structure of this embodiment can make the filter cable equivalent to an equivalent circuit as shown in FIG. 20.
  • the equivalent circuit in FIG. 20 includes a twentieth inductor L 20 and a twenty-ninth capacitor C 29 .
  • the first end of the twentieth inductor L20 is respectively connected to the first node P 1 and the first end of the twenty-ninth capacitor C 29 , and the second end is respectively connected to the second node P 2 and the first end of the twenty-ninth capacitor C 29 .
  • the filtering performance based on this structure includes: the transition band is from the passband from DC to 4GHz, the insertion loss is less than 0.2dB, and the stopband is from 4.3GHz to 16.2GHz.
  • the etching pattern includes a plurality of eighth patterns; as shown in FIG. 21, the eighth pattern includes: The twelfth hollow line segment 630 in the radial direction of the filter cable; the two ends of the twelfth hollow line segment 630 are respectively provided with a third single ring hollow pattern 631; the third single ring hollow pattern 631 is close to the twelfth
  • the hollowed-out line segment 630 has a non-hollowed area 632 on one side.
  • the third single annular hollow pattern 631 may be, but is not limited to, a circular hollow pattern.
  • This embodiment provides a band-stop filter cable based on a double-ring bridge-connected defective conductor layer. It can be seen from the figure that the band-stop filter cable based on a double-ring bridge-connected defective conductor layer passes through two etched circles. Annular groove, through a narrow etching gap bridge connection structure to achieve band rejection filter function.
  • the length of the non-hollowed area S 1 0.2 mm
  • the length D 18 of the twelfth hollowed-out line segment 630 along the radial direction of the filter cable is 2 mm.
  • the structure of this embodiment can make the filter cable equivalent to the equivalent circuit shown in FIG. 22.
  • the 22 includes the twenty-first inductor L 21 , the twenty-second inductor L 22 , the third resistor R 3 , the thirtieth capacitor C 30 , the thirty-first capacitor C 31 , and the thirty-second capacitor C 32 .
  • the first end of the twenty-first inductor L 21 is respectively connected to the first node P 1 and the first end of the thirtieth capacitor C30, and the second end is respectively connected to the first end and the twenty-second end of the third resistor R 3
  • the first end of the inductor L 22 and the first end of the thirty-first capacitor C 31 ; the second end of the third resistor R 3 is respectively connected to the second node P 2 , the second end of the twenty-second inductor L 22 , and the The second end of the thirty-first capacitor C 31 and the first end of the thirty-second capacitor C 32 ; the second end of the thirtieth capacitor C 30 and the second end of the thirty-second capacitor C 32 are respectively grounded.
  • the filtering performance based on this structure includes: In the case of a single resonant unit, the stop-band insertion loss of 1.5GHz-1.6GHz can be greater than 20dB, and the stop-band insertion loss will be greatly improved through the cascade. DC-1.4GHz, 1.7GHz-4GHz, the insertion loss in the passband is small, less than 1dB.
  • the etching pattern includes a plurality of ninth patterns; as shown in FIG. 23, the ninth pattern includes:
  • the filter cable has a thirteenth hollow line segment 633 radially arranged, one end of the thirteenth hollow line segment 633 is provided with a third spiral hollow pattern 634, and the other end is provided with a fourth spiral hollow pattern 635; the third spiral shape
  • the hollow pattern 634 is asymmetrical to the fourth spiral hollow pattern 635.
  • This embodiment provides a dual band rejection filter cable based on an asymmetric bridge connected to a spiral defective conductor layer.
  • a band rejection filter cable based on an asymmetric bridge connected to a spiral defective conductor layer passes through two etched The asymmetric spiral gap, through a narrow etching gap bridge connection structure, realizes the dual-band band-stop filter function.
  • the length of the thirteenth hollow line segment 633 along the axial direction of the filter cable W 26 0.2 mm
  • the length D 19 of the thirteenth hollow line segment 633 along the radial direction of the filter cable 2.4mm
  • the length of the third spiral hollow pattern 634 along the axial direction of the filter cable D 20 3.2mm
  • the length D 22 of the fourth spiral hollow pattern 635 along the radial direction of the filter cable 2.4mm
  • the length D 23 along the axial direction of the filter cable of the fourth spiral hollow pattern 635 2.6mm.
  • the structure of this embodiment can make the filter cable equivalent to an equivalent circuit as shown in FIG. 24.
  • the equivalent circuit in Figure 24 includes: the fourth resistor R 4 , the fifth resistor R 5 , the twenty-third inductance L 23 , the twenty-fourth inductance L 24 , the thirty-third capacitor C 33 , and the thirty-fourth Capacitance C 34 .
  • a first end of the fourth resistor R 4 1 are connected, a first end of a twenty-third inductor L 23 is the first node P, the thirty-third capacitor C 33 of the first terminal, a second terminal connected to a second The second end of the thirteenth inductor L 23 , the second end of the thirty-third capacitor C 33 , the first end of the fifth resistor R 5 , the first end of the twenty-fourth inductor L 24 , and the thirty-fourth capacitor C
  • the first end of the 34 ; the second end of the fifth resistor R 5 is connected to the second end of the twenty-fourth inductor L 24 , the second end of the thirty-fourth capacitor C 34 , and the second node P 2 respectively .
  • the filtering performance based on this structure includes: in the case of a single resonant unit, two stop bands of 3.0 GHz and 4.5 GHz can be obtained, and the stop band insertion loss is greater than 20 dB. Through the cascade connection, the stop band insertion loss will be greatly improved.
  • the insertion loss in the passbands of DC-2.7GHz, 3.2GHz-4.3GHz, 4.7GHz-6GHz is relatively small, less than 1dB.
  • the etching pattern includes a plurality of tenth patterns; as shown in FIG. 25, the tenth pattern includes: The fourteenth hollow line segment 636 and the fifteenth hollow line segment 637 are arranged side by side and spaced apart in the axial direction of the filter cable; between the fourteenth hollow line segment 636 and the fifteenth hollow line segment 637 along the radial direction of the filter cable The sixteenth hollowed-out line segment 638; the middle of the fourteenth hollowed-out line segment 636 is connected to the middle of the fifteenth hollowed-out line segment 637 through the sixteenth hollowed-out line segment 638; in the fourteenth hollowed-out line segment 636, the fifteenth A third single circular hollow pattern 639 is provided between the hollowed line segments 637 and on both sides of the sixteenth hollowed line segment 638; the third single circular hollowed pattern 639 is close to the sixteenth hollowed line segment 638 with a non
  • the tenth pattern is very similar to a symmetric H and two Cs. It can be considered that this embodiment provides a band-stop filter cable based on a symmetric H and C-type defect conductor layer, as shown in Figure 25, based on a symmetric H and C-type defect
  • the band-stop filter cable of the conductor layer is tightly placed between two opposite C-shaped slots through an H-shaped gap to form a mutually coupled resonator to achieve a band-stop filter function, which can significantly reduce the common mode without affecting the differential signal noise.
  • the length of the third single annular hollow pattern 639 near the sixteenth hollow line segment 638 along the axial direction of the filter cable D 26 1.275mm
  • the length W of the tenth pattern along the radial direction of the filter cable 27 6.375mm
  • the length of the third single annular hollow pattern 639 along the radial outer ring of the filter cable W 28 4.76 mm
  • the length of the third single annular hollow pattern 639 along the radial inner ring of the filter cable W 29 3.4 mm
  • the filtering performance based on this structure includes: in the case of a single resonance unit, the center frequency of the stop band is 8.4 GHz, the cut-off frequency is 6.2 GHz, and the bandwidth of the stop band is 73.8%.
  • the common mode insertion loss in the stop band is not less than 15dB, and the differential mode insertion loss is not more than 3dB.
  • the etching pattern includes a plurality of eleventh patterns; as shown in FIG. 26, the eleventh pattern includes: A rectangular fourth single annular hollow pattern 640; a pair of edges of the fourth single annular hollow pattern 640 are arranged radially along the filter cable, and the other pair of edges are arranged axially along the filter cable; the fourth single annular hollow pattern 640 On the outside of the pattern, both ends and the middle of a pair of sides arranged in the axial direction of the filter cable are provided with a seventeenth hollowed-out line segment 641; one end of the seventeenth hollowed-out line segment 641 and the fourth single-ring hollowed-out pattern 640 Are connected; two symmetrical L-shaped hollow patterns 642 are provided between the two seventeenth hollow line segments 641; the corners of the L-shaped hollow patterns 642 are close to the fourth single annular hollow pattern 640, and one side is close to the The seventeenth hollowed-out line segment
  • This embodiment provides a band-stop filter cable based on a symmetric L-shaped defective conductor layer.
  • the band-stop filter cable based on a symmetric L-shaped defective conductor layer is formed by 4 pairs of L-shaped slots symmetrically distributed about the center line.
  • the mutually coupled resonators realize the band rejection filter function.
  • the cable core wire is used to achieve band-stop characteristics through electromagnetic coupling, but the coupling is very weak. Therefore, in order to increase the coupling between the cable core and the defective conductor layer, periodic metal through-hole connections are introduced to produce an improved coupling between the core and the defective conductor layer, thereby forming a good Band stop filter cable.
  • the filtering performance based on this structure includes: in the case of a single resonant unit, the insertion loss can be obtained at 57.1dB at 4.64GHz, 42.6dB at 5.48GHz, and 36.8dB at 6.16GHz.
  • the maximum insertion loss from 0.2 to 3.35 GHz is 0.5 db
  • the maximum insertion loss from 6.89 to 7.98 GHz is 2.0 db
  • the maximum insertion loss from 8.12 to 10.8 GHz is 1.0 db.
  • the attenuation of 4.56-6.29GHz is higher than 28.5dB.
  • RL return loss
  • the return loss in the lower passband, there are three reflection poles, including a near DC operating point, 3.22GHz, 3.84GHz, RL is better than 13dB between 0.2 to 4.01GHz.
  • the upper passband there are three reflection poles of 6.91, 8.55, and 10.61GHz.
  • RL is better than 7.5dB in the range of 6.75 to 11.36GHz.
  • the etching pattern includes a plurality of twelfth patterns; as shown in FIG. 27, the twelfth pattern includes: The first sub-pattern 644 and the second sub-pattern 645 are spaced apart from each other; the first sub-pattern 644 of the twelfth pattern includes: a fourth U-shaped hollow pattern 646, a fifth U-shaped hollow pattern 647, and a sixth U-shaped hollow pattern 648; the openings of the fourth U-shaped hollow pattern, the fifth U-shaped hollow pattern, and the sixth U-shaped hollow pattern are arranged along the radial direction of the filter cable; wherein, the fifth U The opening direction of the hollow pattern is opposite to the opening directions of the fourth U-shaped hollow pattern and the sixth U-shaped hollow pattern; one end of the fifth U-shaped hollow pattern and one end of the fourth U-shaped hollow pattern Connected, the other end is connected with one end of the sixth U-shaped hollow pattern; the second sub-
  • this embodiment provides a bandpass filter cable based on an interdigitated defective conductor layer.
  • the bandpass filter cable based on an interdigitated defective conductor layer has a structure mainly composed of It consists of four parts, namely the core wire (with truncation), the dielectric filling layer (the first dielectric mentioned above), the connection channel between the core wire and the defective conductor layer (indicated by dots in the figure) and the interdigital defect on the defective conductor layer
  • the structure can also be a multilayer structure. The specific parameters of the structure shown in FIG.
  • the length D 33 of the bottom of the fifth U-shaped hollow pattern 647 along the axial direction of the filter cable is 4 mm
  • the end of the fourth U-shaped hollow pattern 646 and the sixth U-shaped hollow pattern 648 that is not connected to the fifth U-shaped hollow pattern 647 is connected to the core
  • the length D 34 of the non-hollowed area along the axial direction of the filter cable corresponding to line 1 2mm
  • the distance D between the two ends of the fourth U-shaped hollow pattern 646, the fifth U-shaped hollow pattern 647, and the sixth U-shaped hollow pattern 648 35 2mm
  • the bottom of the fourth U-shaped hollow pattern 646 and the sixth U-shaped hollow pattern 648 along the filter cable axial length D 36 7mm
  • the structure of this embodiment can make the filter cable equivalent to an equivalent circuit as shown in FIG. 28.
  • the circuit of Figure 28 includes: the thirty-fifth capacitor C 35 , the thirty-sixth capacitor C 36 , the thirty-seventh capacitor C 37 , the thirty-eighth capacitor C 38 , the thirty-ninth capacitor C 39 , and the fourth Ten capacitor C 40 , forty-first capacitor C 41 , twenty-fifth inductance L 25 , twenty-sixth inductance L 26 , twenty-seventh inductance L 27 , twenty-eighth inductance L 28 , and twenty-ninth inductance L 29 , the thirtieth inductance L 30 .
  • the thirty-fifth capacitor C 35 is respectively connected to the first node P 1 , the first end of the thirty-eighth capacitor C 38 , and the first end of the twenty-fifth inductor L 25 , and the second end is respectively connected to the thirtieth node.
  • the first end of the capacitor C 36 , the first end of the thirty-ninth capacitor C 39 , and the first end of the twenty-seventh inductor L 27 are connected; the second end of the thirty-ninth capacitor C 39 is connected to the twenty-sixth
  • the first end of the inductor L 26 is connected; the second end of the thirty-sixth capacitor C 36 is connected to the first end of the twenty-eighth inductor L 28 , the first end of the thirty-seventh capacitor C 37 , and the fortieth capacitor respectively.
  • the first end of C 40 is connected; the second end of the fortieth capacitor C 40 is connected to the first end of the twenty-ninth inductor L 29 ; the second end of the thirty-seventh capacitor C 37 is respectively connected to the second node P 2 , The first end of the thirtieth inductor L 30 and the first end of the forty-first capacitor C 41 are connected; the second end of the thirty-eighth capacitor C 38 , the second end of the twenty-fifth inductor L 25 , and the The second end of the twenty-sixth inductance L 26 , the second end of the twenty-seventh inductance L 27 , the second end of the twenty-eighth inductance L 28 , the second end of the twenty-ninth inductance L 29 , the thirtieth The second end of the inductor L 30 and the second end of the forty-first capacitor C 41 are respectively grounded.
  • the filtering performance based on this structure includes: in the case of a single resonant unit, a band-pass filtering performance with a center frequency of 2.5 GHz and a bandwidth of 14.8%, and the advantages of high selectivity and wide upper stop band. For many communication applications that require high selectivity and wide stopband, it may be a potential bandpass application.
  • the etching pattern includes a plurality of thirteenth patterns; as shown in FIG. 29, the thirteenth pattern includes: The earth-shaped hollow pattern; the first vertical edge of the earth-shaped hollow pattern is arranged along the radial direction of the filter cable, and the first horizontal edge 650 and the second horizontal edge 651 are respectively arranged along the axial direction of the filter cable; the first horizontal The length of the side 650 is less than the length of the second horizontal side 65; one end of the second horizontal side 651 is provided with a fifth spiral hollow pattern 652, and the other end is provided with a fifth spiral hollow pattern 652 completely symmetrical to the fifth spiral hollow pattern 652
  • This embodiment provides a band-pass filter cable based on the defective conductor layer of a zigzag-line multimode resonant unit.
  • the band-pass filter cable based on the defective conductor layer of a zigzag-line multi-mode resonant unit has a structure mainly composed of It consists of three parts, namely the core wire (with truncation), the dielectric filling layer (that is, the above-mentioned second dielectric) and the defective conductor layer (the structure is considered to include several zigzag-line multimode resonant units).
  • the length of the sixth spiral hollow pattern 654 along the axial direction of the filter cable D 41 3.3mm, the non-hollowed area surrounded by the second horizontal side, the first horizontal side and the first vertical side of the earth-shaped hollow pattern is along the axial direction of the filter cable
  • the filtering performance based on this structure includes: in the case of a single resonant unit, two passbands and four transmission zeros can be generated at the same time, a typical case: a dual band pass filter working at 2.45GHz and 5.8GHz (WLAN application), bandwidth Respectively 12.8% and 14.7%, the minimum insertion loss is 1.1dB and 1.0dB, the four transmission zero points produced can improve selectivity.
  • the etching pattern includes a plurality of fourteenth patterns; as shown in FIG. 30 As shown, the fourteenth pattern includes: a Japanese-shaped hollow pattern; the Japanese-shaped hollow pattern includes a third horizontal side 657, a fourth horizontal side 658, and a fifth horizontal side 659 arranged along the axial direction of the filter cable.
  • the second vertical side 660 and the third vertical side 661 are arranged radially of the filter cable; the fourth horizontal side 658 is located between the third horizontal side 657 and the fifth horizontal side 659; the fourth horizontal side The middle part of the side 658 on one side close to the third horizontal side 657 has a non-hollowed line segment 662 arranged along the radial direction of the filter cable; the fourth horizontal side 658 also has a first long side along the axial direction of the filter cable.
  • the fourteenth pattern also looks like a dumbbell. It can be considered that this embodiment provides a differential band-pass filter cable based on a dumbbell-shaped defective conductor layer. As shown in Figure 30, a differential band-pass filter based on a dumbbell-shaped defective conductor layer The structure of the cable is composed of dumbbell-shaped loaded differential transmission lines. In the non-hollowed area surrounded by the hollow, it seems that two capacitive square patches are connected to each other through a thin metal strip. In this structure, the resonance unit will be excited in the case of a differential mode signal, and the vertical component of the electric field of the transmission line is reversed in the differential mode signal transmission.
  • the length W 48 of the short side of the first L-shaped non-hollowed area 663 plus the long side of the second L-shaped non-hollowed area 664 in the radial direction of the filter cable is 1.4 mm.
  • the structure of this embodiment can make the filter cable equivalent to the equivalent circuit shown in FIG. 31.
  • the equivalent circuit in Figure 31 includes: the thirty-first inductance L 31 , the thirty-second inductance L 32 , the thirty-third inductance L 33 , the thirty-fourth inductance L 34 , and the thirty-fifth inductance L 35 , The forty-second capacitor C 42 , the forty-third capacitor C 43 , the forty-fourth capacitor C 44 , the forty-fifth capacitor C 45 , the forty-sixth capacitor C 46 , the forty-seventh capacitor C 47 , the fourth Forty-eight capacitor C 48 , forty-ninth capacitor C 49 .
  • L 31 of the first end of the thirty-first inductor 1 is connected to the node P, a second end connected to a first terminal of the capacitor C 42 of forty; forty second end 42 of the capacitor C, respectively Connected to the first end of the forty-third capacitor C 43 and the first end of the forty-fourth capacitor C 44 ; the second end of the forty-third capacitor C 43 is connected to the first end of the thirty-second inductor L 32 ;
  • the second end of the thirty-second inductor L 32 is connected to the second node P 2 ;
  • the second end of the forty-fourth capacitor C 44 is connected to the first end of the forty-fifth capacitor C 45 and the thirty-third inductor
  • the first end of L 33 is connected;
  • the second end of the thirty-third inductor L 33 is connected to the first end of the forty-sixth capacitor C 46 and the first end of the forty-seventh capacitor C 47 ;
  • the second end of the capacitor C 47 is respectively connected to the first end of the forty-e
  • the differential bandpass filter cable based on the dumbbell-shaped defective conductor layer can realize the high-order bandpass filter function.
  • a typical third-order filter cable has a relative bandwidth of 6% at the center frequency of 1.5GHz, and the insertion loss of the passband differential mode signal is 2.4dB, which can be improved by choosing better flexible substrate materials to obtain lower insertion loss.
  • the tiny passband of the common mode signal is caused by asymmetry caused by manufacturing tolerances.
  • the common mode passband can be reduced by improving the processing accuracy.
  • the etching pattern includes a plurality of fifteenth patterns; as shown in FIG. 32, the fifteenth pattern includes: Square wave hollow pattern 668; both ends of the square wave hollow pattern are respectively provided with a fourth widened hollow area 669 along the radial direction of the filter cable.
  • the square wave hollow pattern looks very tortuous. It can be considered that this embodiment provides a band-pass filter cable with a defective conductor layer based on a zigzag dumbbell structure. As shown in FIG.
  • a defective conductor layer belt based on a zigzag dumbbell structure The structure of the filter cable is composed of a dumbbell-shaped structure based on the zigzag line, the cable core wire and the connection channel between the core wire and the defective conductor layer (indicated by dots in the figure).
  • the structural resonance unit is formed by connecting two square slits and a zigzag line type slit.
  • the bridge between the via hole and the defective conductor layer makes the equivalent inductance and capacitance components negative. These negative components exclude the parasitic right-hand branch, so the transmission line has only a pure left-hand branch response characteristic.
  • FIG. 32 there are two connecting channels with a radius of 0.3mm on the zigzag-shaped interdigitated line to connect to the cable core.
  • the structure of this embodiment can make the filter cable equivalent to an equivalent circuit as shown in FIG. 32.
  • the equivalent circuit of Figure 32 includes: the thirty-sixth inductance L 36 , the thirty-seventh inductance L 37 , the thirty-eighth inductance L 38 , the thirty-ninth inductance L 39 , the fortieth inductance L 40 , and the Forty-first inductor L 41 , fiftieth capacitor C 50 , fifty-first capacitor C 51 , and fifty-second capacitor C 52 .
  • the first end of the thirty-sixth inductor L 36 is connected to the first node P 1 ; the second end of the thirty-sixth inductor L 36 is connected to the first end of the thirty-seventh inductor L 37 and the fiftieth capacitor
  • the first end is connected;
  • the second end of the thirty-seventh inductor L 37 is connected to the first end of the thirty-eighth inductor L 38 , the second end of the fiftieth capacitor C 50 , and the first end of the fifty-first capacitor C 51 .
  • the filtering performance based on this structure includes: the filtering bandwidth is 0.624-3.51GHz, that is, a band-pass filtering cable with a relative bandwidth of 140% is realized.
  • the defective conductor layer is arranged in a winding form. Specifically, it can be achieved by winding a defective conductor layer outside the insulating layer, as shown in FIG. 34 for a filter cable based on a defective conductor layer, and the etching pattern includes a plurality of sixteenth patterns.
  • the sixteenth pattern may refer to the PI-shaped hollow pattern shown in FIG. 12.
  • the defective conductor layer of the PI-shaped hollow pattern is wound outside the insulating layer at a certain angle, which can make the filter cable equivalent to Low-pass filter circuit.
  • the defective conductor layer is wrapped on the outside of the cable in a winding form, which is convenient for industrial mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种滤波电缆,解决相关技术中的电缆不能在具备良好的滤波性能的同时又保证结构设计简单合理的问题,在沿所述滤波电缆径向的横截面中,从内向外依次设置有芯线(1)、包围所述芯线(1)的N层缺陷导体层;其中,所述缺陷导体层上具有刻蚀图案;所述刻蚀图案沿所述滤波电缆轴向分布式设置;所述刻蚀图案用于使得滤波电缆等效成预设的滤波电路,对所述滤波电缆中传输的信号进行滤波。

Description

滤波电缆 技术领域
本申请涉及电缆技术领域,尤其涉及一种滤波电缆。
背景技术
随着信息时代的逐步深入和智能化时代的到来,各种电子设备进入人们的生产、生活,电子设备在运行中,不可避免的会受周围环境的其它设备的电磁干扰并对环境中的其它设备有一定的电磁干扰,基于此,电气设备的电磁兼容性是非常重要的一项指标,电磁兼容性是指设备在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力,电磁兼容性越强,那么设备在电磁环境中运行越稳定。
相关技术中,为了满足设备的电磁兼容性提出了多种解决方案,比如通过对电缆的设计来实现。一般来说,电缆的基本结构包括一根或多根互相绝缘的导体和外包的绝缘保护层,基于该电缆的基本结构,可以将电力或信息从一处传输到另一处,目前,在此基本结构的基础上,解决电磁兼容性的方案如下:
一是、在电缆中设置屏蔽层,其中的屏蔽层包括典型的铝薄膜屏蔽层、铜编织网镀镍屏蔽层等,几乎所有具有完整屏蔽结构的电缆都只能屏蔽来自外部的电磁辐射干扰,对电缆上传输的信号却没有显著的滤波效果。
二是、双绞线结构的电缆,其具体结构包括两根具有绝缘保护层的铜导线,两根铜导线按一定的密度互相绞在一起,其中,每一根导线在传输中辐射的电波会被另一根线上发出的电波抵消,有效降低差模信号干扰的程度,但是,几乎所有双绞线电缆都存在滤波功能方面的功能缺陷。
三是、通过电缆与电子设备间外加的滤波器、电子设备内部电缆接口安装接口滤波电路、滤波磁环、悬置滤波橡胶垫、馈通滤波器、腔体滤波器、微带滤波器等结构来增加滤波功能,但是会增加结构的复杂度,并且电缆线的前后端存在一定的串扰等问题。
比如,公开号为CN201120412731.9的专利文件中,公开了一种通过滤波连接器实现滤波功能的电缆,以加装滤波连接器的电缆为代表,几乎所有的加装滤波连接器的电缆都存在如下缺陷:1、滤波位置集中在电缆一端或两端,并不是分布在电缆轴向上的滤波,滤波性能较差;2、滤波功能的设计大大增加连接器的尺寸和重量,使用时受到一定限制;3、多为低通滤波,较难实现高通、带通、带阻的滤波功能。
再比如,公开号为US5686697的专利文件中,公开了一种通过在电缆接插件内部安装一种承载悬置滤波电路的橡胶垫,实现对电缆传输信号的滤波方法,典型技术为在硅橡胶基板内通过细导线将X2Y电容串联接入航插芯线和外部屏蔽体之间形成线对地的共模滤波,或通过细导线将X2Y电容接入两根航插芯线之间形成线间的差模滤波,以该悬置滤波电路装置为代表,几乎所有的悬置滤波电路都存在如下缺陷:1、采用集总元件搭建的滤波电路,由于所使用元件的尺寸限制且组成的滤波网络的级数非常少,对较高频率的滤波性能较弱;2、滤波电路的输入和输出端电缆存在较大的耦合,大大降低滤波效果;3、滤波电路的位置在电缆一端或两端的接插件附近,滤波位置集中导致效果较差;4、采用的集总滤波元件尺寸较小,且构成电路的线条较细,存在散热、可滤波的干扰功率较小、可靠性 较差。
又比如,公开号为CN205790739-U的专利文件,公开了一种抗干扰的电缆组件,其实现方式是在屏蔽电缆的一端或两端的芯线上独立安装陶瓷馈通滤波器实现滤波功能,以该安装陶瓷馈通滤波器的屏蔽滤波电缆为代表,几乎所有的基于陶瓷馈通滤波器的屏蔽滤波电缆都存在如下缺陷:1、馈通滤波器占用较大的空间,增加了航插的重量和体积,给实际使用带来较大不便;2、滤波电路的位置在线缆一端或两端的接插件附近,滤波位置集中导致效果较差;3、馈通滤波器的滤波性能较差,特别是高频滤波性能较差;4、多为低通滤波器,较难实现高通、带通、带阻的滤波功能。
又比如,公开号分别为CN201620666446.2、CN201610365454.8、CN201620087019.9、CN201521009514.X的专利文件,公开了通过在线缆内部加入磁性材料、碳纤和金属混合物等方式实现滤波功能,其中的磁性材料可以包括铁氧体、纳米晶磁体或者高分子磁体等,以这类加入电磁能吸收材料为代表,几乎所有的基于电磁能吸收材料的滤波电缆存在如下缺陷:1、电缆的重量有显著增加;2、材料层有一定的硬度或脆性,限制电缆的转弯半径和无损伤弯折的次数;3、增加的材料层影响电缆的温度稳定性。
发明内容
本申请的目的是提供一种滤波电缆,用于解决相关技术中的电缆不能在具备良好的滤波性能的同时又保证结构设计简单合理的问题。
本申请的目的是通过如下技术方案实现的:
一种滤波电缆,在沿所述滤波电缆径向的横截面中,从内向外依次设置有芯线、包围与所述芯线的N层缺陷导体层;其中,所述缺陷导体层上具有刻蚀图案;所述刻蚀图案沿所述滤波电缆轴向分布式设置;所述刻蚀图案用于使得所述滤波电缆等效成预设的滤波电路,对所述滤波电缆中传输的信号进行滤波;其中,N的取值为正整数。
通过上述滤波电缆,可以对所述滤波电缆中传输的信号进行滤波,一方面,实现了通过电缆本身的结构实现滤波,无需额外增加其它部件,并且刻蚀图案在电缆上分布式设置,所以电缆的各个部分都具有良好的滤波特性,实施中,可以根据需要设置缺陷导体层上的刻蚀图案,通过刻蚀图案使得滤波电缆等效成预设的滤波电路,达到任一所需要的滤波效果,另一方面,滤波电路的输入和输出端分布在滤波电缆的两端,不会存在较大的耦合,滤波效果非常好,又一方面,滤波电缆有一定尺寸,散热效果、可滤波的干扰功率、可靠性上也有提升。如此,可以保证电缆正常的电力或信号传输的情况下,且在不过多增加电缆重量、尺寸的情况下,使得的电缆具备很好的电磁信号滤波特性。另外,缺陷导体层具有温度稳定性,也不会影响滤波电缆的温度稳定性,缺陷导体层有一定的韧性,不会因弯曲影响性能。
在一种可能的设计中,所述刻蚀图案沿所述滤波电缆轴向呈周期性或者非周期性地分布式设置。
在一种可能的设计中,所述刻蚀图案的刻蚀区呈镂空状或者填充有绝缘材料。
在一种可能的设计中,N层缺陷导体层之间相互绝缘设置或连通设置。
在一种可能的设计中,若N的取值为1,所述刻蚀图案包括:多个第一图案;
所述第一图案包括:沿所述滤波电缆径向设置的第一镂空线段,第一镂空线段的一端 设置有第一螺旋形镂空图案,另一端设置有第二螺旋形镂空图案;
所述第二螺旋形镂空图案与所述第一螺旋形镂空图案对称设置。
在一种可能的设计中,所述刻蚀图案包括:多个第二图案;
所述第二图案包括:相互间隔的第一双环形镂空图案和第二双环形镂空图案;
所述第一双环形镂空图案和所述第二双环形镂空图案对称且对称轴沿所述滤波电缆径向设置;
所述第一双环形镂空图案和所述第二双环形镂空图案的外环上靠近对称轴的一侧中部具有第一非镂空区;
所述第一双环形镂空图案和所述第二双环形镂空图案的内环上远离对称轴的一侧中部具有第二非镂空区。
在一种可能的设计中,所述预设的滤波电路包括低通滤波电路、带阻滤波电路或者带通滤波电路。
在一种可能的设计中,若N的取值为1,且所述预设的滤波电路包括低通滤波电路;
所述刻蚀图案包括:多个第三图案;所述第三图案包括:沿所述滤波电缆轴向的第二镂空线段;所述第二镂空线段包括第三镂空线段、在第三镂空线段两端对称且对称轴沿所述滤波电缆径向设置的第四镂空线段和第五镂空线段;与所述第二镂空线段并排间隔设置的第六镂空线段;所述第六镂空线段上与所述第三镂空线段对应的区域具有第三非镂空区,与所述第四镂空线段对应的区域具有与所述第四镂空线段连通的第一窄化镂空区,与所述第五镂空线段对应的区域具有与所述第五镂空线段连通的第二窄化镂空区;
或者,所述刻蚀图案包括:多个第四图案;所述第四图案包括:两个相互间隔对称且对称轴沿所述滤波电缆径向设置的子图案;所述第四图案的子图案包括沿所述滤波电缆径向并排设置的第七镂空线段和第八镂空线段;所述第七镂空线段的两端分别设置有第一单环形镂空图案;所述第一单环形镂空图案远离所述第七镂空线段的一边中部具有非镂空区;所述第八镂空线段的两端分别设置有第二单环形镂空图案;所述第二单环形镂空图案远离所述第八镂空线段的一边中部具有非镂空区;所述第二单环形镂空图案所包围区域的面积大于所述第一单环形镂空图案所包围区域的面积;
或者,所述刻蚀图案包括:多个第五图案;所述第五图案包括:交叉设置的第九镂空线段和第十镂空线段;所述第九镂空线段沿所述滤波电缆轴向设置且两端分别设置有第一宽化镂空区;所述第十镂空线段沿所述滤波电缆径向设置且两端分别设置有第二宽化镂空区;所述第二宽化镂空区所包围区域的面积大于所述第一宽化镂空区所包围区域的面积;
或者,所述刻蚀图案包括:多个第六图案;所述第六图案包括:依次设置的第一U形镂空图案、第二U形镂空图案和第三U形镂空图案;所述第一U形镂空图案、所述第二U形镂空图案和所述第三U形镂空图案的开口沿所述滤波电缆径向设置;其中,所述第二U形镂空图案的开口方向与所述第一U形镂空图案、所述第三U形镂空图案的开口方向相反;所述第二U形镂空图案的一端与所述第一U形镂空图案的一端连通,另一端与所述第三U形镂空图案的一端连通;
或者,所述刻蚀图案包括:多个第七图案;所述第七图案包括:沿所述滤波电缆径向的第十一镂空线段;所述第十一镂空线段的两端分别设置成第三宽化镂空区。
在一种可能的设计中,若N的取值为1,且所述预设的滤波电路包括带阻滤波电路;
所述刻蚀图案包括:多个第八图案;所述第八图案包括:沿所述滤波电缆径向的第十二镂空线段;所述第十二镂空线段的两端分别设置有第三单环形镂空图案;所述第三单环形镂空图案靠近所述第十二镂空线段的一侧具有非镂空区;
或者,所述刻蚀图案包括:多个第九图案;所述第九图案包括:沿所述滤波电缆径向设置的第十三镂空线段,第十三镂空线段的一端设置有第三螺旋形镂空图案,另一端设置有第四螺旋形镂空图案;所述第三螺旋形镂空图案与所述第四螺旋形镂空图案不对称;
或者,所述刻蚀图案包括:多个第十图案;所述第十图案包括:沿所述滤波电缆轴向并排间隔设置的第十四镂空线段、第十五镂空线段;在所述第十四镂空线段、第十五镂空线段之间沿所述滤波电缆径向设置的第十六镂空线段;所述第十四镂空线段的中部通过所述第十六镂空线段与第十五镂空线段的中部连通;在所述第十四镂空线段、第十五镂空线段之间、所述第十六镂空线段两侧分别设置有第三单环形镂空图案;所述第三单环形镂空图案靠近所述第十六镂空线段的一边中部具有非镂空区;
或者,所述刻蚀图案包括:多个第十一图案;所述第十一图案包括:矩形的第四单环形镂空图案;所述第四单环形镂空图案的一对边沿所述滤波电缆径向设置,另一对边沿所述滤波电缆轴向设置;所述第四单环形镂空图案外侧,沿所述滤波电缆轴向设置的一对边的两端、中部均设置有第十七镂空线段;所述第十七镂空线段的一端与所述第四单环形镂空图案连通;两个所述第十七镂空线段之间设置有两个对称的L形镂空图案;所述L形镂空图案的拐角靠近所述第四单环形镂空图案,一边靠近所述第十七镂空线段、沿所述滤波电缆径向设置并通过沿所述滤波电缆轴向设置的镂空线段与靠近的所述第十七镂空线段连通,另一边靠近所述第四单环形镂空图案沿所述滤波电缆轴向设置;所述芯线与所述第四单环形镂空图案对应的区域设置有沿所述滤波电缆径向的通孔。
在一种可能的设计中,且所述预设的滤波电路包括带通滤波电路;
所述刻蚀图案包括:多个第十二图案;所述第十二图案包括:相互间隔的第一子图案和第二子图案;所述第十二图案的第一子图案包括:依次设置的第四U形镂空图案、第五U形镂空图案和第六U形镂空图案;所述第四U形镂空图案、所述第五U形镂空图案和所述第六U形镂空图案的开口沿所述滤波电缆径向设置;其中,所述第五U形镂空图案的开口方向与所述第四U形镂空图案、所述第六U形镂空图案的开口方向相反;所述第五U形镂空图案的一端与所述第四U形镂空图案的一端连通,另一端与所述第六U形镂空图案的一端连通;所述第十二图案的第二子图案为所述第十二图案的第一子图案沿所述滤波电缆径向旋转180得到的图案;所述芯线与所述第十二图案的第一子图案、第二子图案之间的间隔对应的区域有第一截断区;所述第一截断区填充有第一电介质;所述第十二图案的第一子图案和第二子图案与所述芯线对应的边界上具有非镂空区;所述第一截断区两侧的所述芯线与所述缺陷导体层连接;
或者,所述刻蚀图案包括:多个第十三图案;所述第十三图案包括:土字形镂空图案;所述土字形镂空图案的第一竖边沿所述滤波电缆径向设置,第一横边和第二横边分别沿所述滤波电缆轴向设置;所述第一横边的长度小于所述第二横边的长度;所述第二横边的一端设置有第五螺旋形镂空图案,另一端设置有与所述第五螺旋形镂空图案完全对称的第六螺旋形镂空图案;所述第一横边的一端设置有第七螺旋形镂空图案,所述第七螺旋形镂空图案位于所述第五螺旋形镂空图案的非镂空区内,另一端设置有与所述第七螺旋形镂空图 案完全对称的第八螺旋形镂空图案,所述第八螺旋形镂空图案位于所述第六螺旋形镂空图案的非镂空区内;所述芯线与所述竖边对应的区域具有第二截断区,所述第二截断区填充有第二电介质;
或者,所述芯线的数量为2,所述刻蚀图案包括:多个第十四图案;所述第十四图案包括:日字形镂空图案;所述日字形镂空图案包括沿所述滤波电缆轴向设置的第三横边、第四横边和第五横边,沿所述滤波电缆径向设置的第二竖边和第三竖边;所述第四横边位于所述第三横边和所述第五横边中间;所述第四横边靠近所述第三横边的一侧中部具有沿所述滤波电缆径向设置的非镂空线段;所述第四横边上还具有长边沿所述滤波电缆轴向的第一L形非镂空区、第二L形非镂空区、第三L形非镂空区;所述第一L形非镂空区的长边与所述非镂空线段连通,短边与所述第二L形非镂空区的长边连通;所述第二L形非镂空区的短边与所述第三L形非镂空区的长边连通;两条所述芯线中,一条所述芯线位于所述第三横边与所述第四横边之间的非镂空区域且具有第三截断区,另一条所述芯线位于所述第三横边与所述第五横边之间的非镂空区域,且具有第四截断区;所述第三截断区填充有第三电介质;所述第四截断区填充有第四电介质;
或者,所述刻蚀图案包括:多个第十五图案;所述第十五图案包括:方波形镂空图案;所述方波形镂空图案的两端分别设置有沿所述滤波电缆径向的第四宽化镂空区。
在一种可能的设计中,所述缺陷导体层以缠绕形式设置。
在一种可能的设计中,还包括设置在所述N层缺陷导体层外的与所述N层缺陷导体层绝缘的M层屏蔽层;其中,M的取值为正整数。
附图说明
图1为本申请一个实施例提供的一种电缆的结构示意图;
图2为本申请另一个实施例提供的一种第一层缺陷导体层的侧视结构示意图;
图3为本申请另一个实施例提供的一种第一缺陷导体层的正视结构示意图;
图4为本申请另一个实施例提供的一种第一缺陷导体层的刻蚀图案的示意图;
图5为本申请另一个实施例提供的一种第一缺陷导体层的刻蚀图案等效电路示意图;
图6为本申请另一个实施例提供的一种第二缺陷导体层的侧视结构示意图;
图7为本申请另一个实施例提供的一种第二缺陷导体层正视结构示意图;
图8为本申请另一个实施例提供的一种第二缺陷导体层的刻蚀图案的示意图;
图9为本申请另一个实施例提供的一种缺陷导体层的刻蚀图案的等效电路示意图;
图10为本申请另一个实施例提供的一种滤波电缆的滤波效果图;
图11为本申请另一个实施例提供的一种缺陷导体层的侧视结构示意图;
图12为本申请另一个实施例提供的图11所示的缺陷导体层的刻蚀图案的结构示意图;
图13为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图14为本申请另一个实施例提供的图13所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图15为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图16为本申请另一个实施例提供的图15所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图17为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图18为本申请另一个实施例提供的图17所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图19为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图20为本申请另一个实施例提供的图19所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图21为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图22为本申请另一个实施例提供的图21所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图23为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图24为本申请另一个实施例提供的图23所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图25为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图26为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图27为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图28为本申请另一个实施例提供的图27所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图29为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图30为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图31为本申请另一个实施例提供的图30所示的缺陷导体层的刻蚀图案的等效电路结构示意图;
图32为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图;
图33为本申请另一个实施例提供的图31所示的缺陷导体层的刻蚀图案的等效电路结构示意图。
图34为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图。
图35为本申请另一个实施例提供的缺陷导体层的刻蚀图案的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
实施例
本实施例提供一种滤波电缆,在沿所述滤波电缆径向的横截面中,从内向外依次设置有芯线、包围所述芯线的N层缺陷导体层;其中,所述缺陷导体层上具有刻蚀图案;所述刻蚀图案沿所述滤波电缆轴向分布式设置;所述刻蚀图案用于使得滤波电缆等效成预设的滤波电路,对所述滤波电缆中传输的信号进行滤波;其中,N的取值为正整数。
实施中,N的具体数值可以根据实际需要进行设置。
其中,分布式设置是指刻蚀图案沿电缆轴向的不同位置分散设置。具体的,所述刻蚀图案沿所述滤波电缆轴向可以呈周期性或者非周期性地分布式设置。
本方案中提供了一种全新的滤波电缆,该滤波电缆是基于缺陷导体层实现的。相关技术中没有通过基于缺陷导体层实现具有滤波功能的电缆的方案,本申请的发明人主要克服了如下技术难点:一是、通过在电缆的芯线外部增加蚀刻的周期性或非周期性的导体层,能够等效为外加电感与电容,并改变传输线的分布电容和分布电感特性,但由于缺陷结构的复杂性,不能用传统的传输线理论进行计算分析,无法通过传输线基础理论给出具体的设计指导,且通过计算电磁学方法进行仿真分析也存在建模复杂、仿真精度有限、计算时间长的问题,往往无法得到合适的缺陷导体层的具体结构;二是、通过缺陷导体层使电缆达到特定的低通、带通、带阻或高通形式的滤波性能,需要非常复杂的缺陷导体层的结构,需要在导体上蚀刻较复杂的结构且各结构之间存在相互影响,任意结构之间均有分布电容和电感,对实现滤波电缆功能有很大的影响;三是、单层缺陷导体层实现的滤波功能比较有限,对于滤波性能要求较高的情况下,需要采用多层缺陷导体层实现高性能滤波功能,多层缺陷导体层之间必须协同设计,分析具体的层间耦合问题对滤波性能的影响;四是、电缆使用环境中的弯曲、拖拽、拉伸等操作、高低温、湿度,对滤波电缆的性能影响应控制在较小范围,这就需要采用轻型、分布式参数的结构方式才能达到使用要求。本申请的发明人克服了以上技术难点,提供了基于缺陷导体层的滤波电缆,达到了良好的滤波效果。
本方案提供的滤波电缆中,通过在芯线外增加缺陷导体层,所述缺陷导体层上具有刻蚀图案,由于所述刻蚀图案能够使得滤波电缆等效成预设的滤波电路,所以可以对所述滤波电缆中传输的信号进行滤波,一方面,实现了通过电缆本身的结构实现滤波,无需额外增加其它部件,并且刻蚀图案在电缆上分布式设置,所以电缆的各个部分都具有良好的滤波特性,实施中,可以根据需要设置缺陷导体层上的刻蚀图案,通过刻蚀图案使得滤波电缆等效成预设的滤波电路,达到任一所需要的滤波效果,另一方面,滤波电路的输入和输出端分布在滤波电缆的两端,不会存在较大的耦合,滤波效果非常好,又一方面,滤波电缆有一定尺寸,散热效果、可滤波的干扰功率、可靠性上也有提升。如此,可以保证电缆正常的电力或信号传输的情况下,且在不过多增加电缆重量、尺寸的情况下,使得的电缆具备很好的电磁信号滤波特性。另外,缺陷导体层具有温度稳定性,也不会影响滤波电缆的温度稳定性,缺陷导体层有一定的韧性,不会因弯曲影响性能。
本方案提供的滤波电缆可以但不限于用于电子设备之间互联、电子设备与供电装置间 互连、电子设备内部模块间互连、智能机器人内部模组间互连、智能数控机床的内部及外部等需要电力和信号有线传输情况下的互连。通过安装本申请的滤波电缆的接插件能够与电子设备壳体形成电磁连接,能够有效滤除电磁干扰信号。在遭受电子对抗干扰、雷电、静电、核爆炸、高功率微波武器、电磁脉冲弹等电磁脉冲干扰情况下,本申请的滤波电缆能够对滤波电缆上耦合的电磁应力进行有效抑制,实现保护电子设备免受电磁干扰的功能。
上述芯线位于电缆横截面的最内层,芯线的数量可以是一根或多根,每根芯线的具体结构可以包括实心柱状(如圆柱体)或者空心管状,每根芯线还可以包括单股芯线或者多股芯线。具体的,芯线的材料可以但不限于包括金属、石墨烯、金属合金、金属合金及金属镀层或导电聚合物,比如,金属丝的材料可以包括纯铜、铜镀银或者钢包铜镀银等。
实施中,上述缺陷导体层与芯线之间可以设置第一填充层,第一填充层的材料可以但不限于包括聚四氟乙烯或者聚乙烯等,可以采用缠绕或挤压发泡方式均匀包裹于芯线外侧。
若缺陷导体层的层数N的取值大于或者等于2,N层缺陷导体层之间相互绝缘设置或连接设置。具体的,N层缺陷导体层之间通过设置第二填充层。其中,第二填充层的材料可以但不限于包括聚四氟乙烯或者聚乙烯,或者,可以采用聚酰亚胺薄膜或液晶聚合物(Liquid Cystal Polymer,LCP)薄膜等柔性介质制作的柔性印刷电路板等。
缺陷导体层的典型实施方式是采用聚酰亚胺薄膜或LCP薄膜等柔性介质制作的柔性印刷电路板。柔性印刷电路板可以是用于射频、微波或毫米波应用的基板,因为它们结合了优异的电性能和良好的加工性能。柔性介质基片的材料是均匀的,因此柔性介质基片的介电性能非常均匀。对于不同的材料公式,聚酰亚胺薄膜的相对介电常数可以在2.2到3.8之间,介电损耗正切值可以低于0.008。工业化液晶高分子薄膜的相对介电常数为3.3,介电损耗正切值小于0.005。另外,柔性介质基片材料的吸水率很低(23℃,50%相对湿度时,小于0.04%),因此在潮湿条件下尺寸和介电性能变化不大。基于这些性能,可以很容易地用柔性介质基板设计和制作不同类型的缺陷导体层,应用于不同特性的滤波电缆。
缺陷导体层中的上述刻蚀图案的刻蚀区可以呈镂空状,不做任何处理,或者可以填充有绝缘材料,其中,填充的绝缘材料可以但不限于包括聚四氟乙烯或者聚乙烯等。
在一种可能的设计中,电缆上还包括设置在所述N层缺陷导体层外的与所述N层缺陷导体层绝缘的M层屏蔽层。其中,M的取值为正整数。实施中,M的取值可以根据实际需要进行设置。
其中,屏蔽层可以但不限于包括铜镀银带、超轻镀银金属编织层或者铜镀银编织网。
实施中,屏蔽层与缺陷导体层之间通过设置第三填充层进行填充。第三填充层的材料可以但限于聚四氟乙烯或者聚乙烯等,可以采用缠绕或挤压发泡方式均匀包裹于缺陷导体层外侧。
若屏蔽层的层数M的取值大于或者等于2,M层屏蔽层之间相互绝缘设置或连接设置。具体的,M层缺陷导体层之间通过设置第四填充层进行绝缘。其中,第四填充层的材料可以但不限于包括氟化乙烯丙烯聚合物等。
为了对滤波电缆进行保护,滤波电缆上还可以包括设置在M层屏蔽层外的外护套。外护套是在滤波电缆最外层对滤波电缆进行物理的防护,延长滤波电缆的使用寿命的结构,外护套的材料可以但不限于包括聚四氟乙烯、聚乙烯、氟化乙烯丙烯聚合物、硅橡胶、聚氨酯、不锈钢、RADOX、氯丁橡胶或者低烟无卤料等。
实施应用中,滤波电缆的两端可以安装接插件,便于使用。
下面以一种具体的滤波电缆的结构进行举例说明。
如图1所示,本实施例提供的滤波电缆中,沿滤波电缆径向的横截面从内侧至外侧依次包括芯线1、包围芯线1的第一填充层21、第一缺陷导体层31、第二填充层22、第二缺陷导体层32、第三填充层23、第一屏蔽层41、第四填充层24、第二屏蔽层42、外护套5。图1中仅是举例示意的一种滤波电缆的结构,并非限定,也可以采用其它的结构。
如图2、3、4所示,第一缺陷导体层31是在第一填充层21的圆柱面的第一缺陷导体层的导体311上蚀刻了周期性或非周期性的第一缺陷导体层的刻蚀图案312,被蚀刻掉的部分可以镂空或在原位填充绝缘材料。本实施案例中,第一缺陷导体层的导体311的圆柱面上,周期性地蚀刻掉部分第一缺陷导体层得到的刻蚀图案312如图4所示,包括螺旋形的蚀刻图案。具体的,所述刻蚀图案包括:多个第一图案;图4中,所述第一图案包括:沿所述滤波电缆径向设置的第一镂空线段601,第一镂空线段601的一端设置有第一螺旋形镂空图案602,另一端设置有第二螺旋形镂空图案603;所述第二螺旋形镂空图案603与所述第一螺旋形镂空图案601对称设置。基于此,如图5所示,第一缺陷导体层31的刻蚀图案可以使得滤波电缆等效电路为:在第一节点P 1和第二节点P 2上之间的传输线本质阻抗Z 0(等效电长度为φ)并联接入阻抗为Z 2等效电长度为θ、阻抗为Z 1等效电长度为2θ和阻抗为Z 2等效电长度为θ的短路短谐线,以及并联第一电感L 1和并联第一电阻R 1
其中,第一节点为滤波电缆的输入端,第二节点为滤波电缆的输出端,第一节点P 1和第二节点P 2之间的等效电路随着刻蚀图案不同而不同。
第二填充层22紧密包裹第一缺陷导体层31,共同形成圆柱体结构,具体的,通过聚四氟乙烯或者聚乙烯等绝缘材料采用缠绕或挤压发泡方式均匀包裹于第一缺陷导体层31外侧。
如图6、7、8所示,第二缺陷导体层32是在第二填充层22的圆柱面外的第二缺陷导体层导体321上蚀刻了周期性或非周期性的第一缺陷导体层的刻蚀图案322,被蚀刻掉的部分可以镂空或在原位填充聚四氟乙烯或者聚乙烯等绝缘材料。本实施例中,第二缺陷导体层导体321的圆柱面上,周期性地蚀刻掉的部分第二缺陷导体层得到的刻蚀图案322如图8所示。所述刻蚀图案包括:多个第二图案;图8中,所述第二图案包括:相互间隔的第一双环形镂空图案604和第二双环形镂空图案605;所述第一双环形镂空图案604和所述第二双环形镂空图案605对称且对称轴沿所述滤波电缆径向设置;所述第一双环形镂空图案604和所述第二双环形镂空图案605的外环上靠近对称轴的一侧中部具有第一非镂空区606;所述第一双环形镂空图案604和所述第二双环形镂空图案605的内环上远离对称轴的一侧中部具有第二非镂空区607。
其中,所述第一双环形镂空图案604和所述第二双环形镂空图案605的形状有多种,可以但不限于是矩形,图中以矩形进行示意。
所述第二缺陷导体层32可以使得滤波电缆等效成如图9所示的等效电路。图9中的等效电路包括第二电感L 2、第三电感L 3、第四电感L 4、第五电感L 5、第六电感L 6、第七电感L 7、第一电容C 1、第二电容C 2、第三电容C 3、第四电容C 4、第五电容C 5、第六电容C 6、第七电容C 7。其中,第二电感L 2的第一端分别连接第一节点P 1和第一电容C 1的第一端,第二电感L 2的第二端分别连接第三电感L 3的第一端、第二电容C 2的第一端;第三电感L 3 的第二端分别连接第四电感L 4的第一端、第四电容C 4的第一端;第四电感L 4的第二端分别连接第五电感L 5的第一端和第五电容C 5的第一端,第五电感L 5的第二端分别连接第七电容C 7的第一端和第二节点P 2。第二电容C 2的第二端分别连接第六电感L 6的第一端、第三电容C 3的第一端;第五电容C 5的第二端分别连接第七电感L 7的第一端、第六电容C 6的第一端;第一电容C 1的第二端、第六电感L 6的第二端、第三电容C 3的第二端、第四电容C 4的第二端、第七电感L 7的第二端、第六电容C 6的第二端、第七电容C 7的第二端均接地。
所述第三填充层23紧密包裹第二缺陷导体层32,共同形成圆柱体结构,具体的,可以采用聚四氟乙烯或者聚乙烯等绝缘材料采用缠绕或挤压发泡方式均匀包裹于第二缺陷导体层外侧。
所述第一屏蔽层41是在第三绝缘层23外侧包裹了一层或多层金属屏蔽层,比如,第一屏蔽层是铜镀银带。
所述第四绝缘层24紧密包裹第一屏蔽层41,共同形成圆柱体结构,比如,第四填充层的材料包括氟化乙烯丙烯聚合物。
所述第二屏蔽层42是在第四绝缘层24外侧包裹了一层或多层金属屏蔽层,比如,第二屏蔽层是超轻镀银金属编织层或者铜镀银编织网。
所述第一缺陷导体层31、第二缺陷导体层32、所述第一屏蔽层41、第二屏蔽层42可以根据需要连接在一起,形成共地连接。
如图10所示,为本实施例基于缺陷导体层的滤波电缆达到的插入损耗效果图,可以看到基于缺陷导体层的滤波电缆为低通滤波电缆,长度约为0.1m的基于缺陷导体层的滤波电缆能达到的插损效果是:在0-2GHz的插损小于0.5dB,2.2-8GHz的插损大于30dB。图10中,横坐标表示频率,单位是GHz(即GH),纵坐标表示插入损耗(即差损),单位是dB。
具体实施中,可以根据实际需要设计各种结构的刻蚀图案,达到各种需要的滤波电路的效果。在一种可能的设计中,所述预设的滤波电路可以包括低通滤波电路、带阻滤波电路或者带通滤波电路。以下对不同的刻蚀图案的结构进行举例说明。
结构一:
若N的取值为1,且所述预设的滤波电路包括低通滤波电路,所述刻蚀图案包括:多个第三图案。
如图11和图12所示,图12中示出了刻蚀图案的一个周期即(虚线框A所示的第三图案)的具体结构,所述第三图案包括:沿所述滤波电缆轴向的第二镂空线段608;所述第二镂空线段608包括第三镂空线段609、在第三镂空线段两端对称且对称轴沿所述滤波电缆径向设置的第四镂空线段610和第五镂空线段611;与所述第二镂空线段608并排间隔设置的第六镂空线段612;所述第六镂空线段612上与所述第三镂空线段609对应的区域具有第三非镂空区613,与所述第四镂空线段610对应的区域具有与所述第四镂空线段610连通的第一窄化镂空区614,与所述第五镂空线段611对应的区域具有与所述第五镂空线段611连通的第二窄化镂空区615。其中,第一窄化镂空区614、第二窄化镂空区615的沿滤波电缆径向的宽度比第六镂空线段612上的其它位置的宽度小。
本实施例中提供的是基于非对称PI(即π)形缺陷导体层的低通滤波电缆,如图11所示,具体实现时,可以在聚酰亚胺薄膜基板上构造具有10个级联不对称PI形第三图案的铜 层,包裹在滤波电缆的绝缘层外,实现了滤波电缆的低通滤波功能。图12中的第三图案作为一个谐振单元A的结构图,其中结构参数的典型值是:聚酰亚胺薄膜基板的相对介电常数为εr=3.8,损耗角正切tanδ=0.008,基板尺寸长Lsub×宽Wsub×高Hsub=100mm×2.6mm×0.254mm。谐振单元的尺寸:第二镂空线段608沿滤波电缆轴向的长度D 1=9.3mm,第三图案的周期间隔距离D 2=0.7mm,第四镂空线段610沿滤波电缆轴向的长度D 3=3.9mm,第一窄化镂空区614用于连通的区域、第二窄化镂空区615用于连通的区域沿滤波电缆轴向的长度D 4=0.3mm,第六镂空线段612上位于第一窄化镂空区614与第三非镂空区613之间的长度、以及第六镂空线段612上位于第二窄化镂空区615与第三非镂空区613之间的长度D 5=1.5mm,滤波电缆绝缘层直径Dr=1.07mm,内导体直径Di=0.5mm。第二镂空线段608沿滤波电缆径向的长度W 1=0.465mm,第二镂空线段608与第六镂空线段612相靠近的两个边之间的距离W 2=1mm,第一窄化镂空区614和第二窄化镂空区615比第六镂空线段612上的其它位置的线宽窄W 3=0.4mm,第二镂空线段608与第六镂空线段612相远离的两个边之间的距离W 4=1.965mm,第六镂空线段612远离第二镂空线段608的一侧至少具有非镂空区域沿滤波电缆径向的长度W 5=0.45mm。参数D 1和D 3变大能够降低响应的频率。如果滤波电缆半径小,滤波的谐振频率更低,且效果变好。本实施例的结构实现的滤波电缆具有很强的过渡带(TB)、超宽的阻带(stopband,SB)和很高的阻带性能,本实施例提出的具有10个级联谐振单元的缺陷导体层具有100mm×2.6mm×0.254mm的紧凑尺寸,在2.2GHz下插入损耗小于1.9dB,在2.7GHz到12GHz范围内具有大于50dB的宽SB,本实施例所提出的柔性低通滤波电缆具有良好的传输和低通滤波功能,有可能在无线终端中取代传统的射频同轴电缆。
结构二:
若N的取值为1,且所述预设的滤波电路包括低通滤波电路,所述刻蚀图案包括:多个第四图案。
如图13所示,所述第四图案包括:两个相互间隔对称且对称轴沿所述滤波电缆径向设置的子图案616。所述第四图案的子图案616包括沿所述滤波电缆径向并排设置的第七镂空线段617和第八镂空线段618;所述第七镂空线段617的两端分别设置有第一单环形镂空图案619;所述第一单环形镂空图案619远离所述第七镂空线段617的一边中部具有非镂空区;所述第八镂空线段618的两端分别设置有第二单环形镂空图案620;所述第二单环形镂空图案620远离所述第八镂空线段618的一边中部具有非镂空区;所述第二单环形镂空图案620所包围区域的面积大于所述第一单环形镂空图案619所包围区域的面积。其中,所述第二环形镂空图案619与所述第二环形镂空图案620对应镂空线段的宽度一致。所述第七镂空线段、所述第八镂空线段、所述第一环形镂空图案的非镂空区和所述第二环形镂空图案的非镂空区沿滤波电缆轴向的宽度一致。
从图13可以看出,第四图案整体非常像哑铃结构,可以认为,本实施例提供的低通滤波电缆的缺陷导体层通过在哑铃型结构的基础上,嵌入了一个T型的区域,形成的新缺陷导体层结构产生的两个传输零点都低于刻蚀相同方形区域尺寸的哑铃形缺陷导体层产生的传输零点。实施中,第二单环形镂空图案620、所述第一单环形镂空图案619的形状可以但不限于是矩形。图中以矩形为例进行示意。相应的尺寸可以根据实际需要进行设置,比如,图13所示的结构的尺寸:第一单环形镂空图案619的外环的轴向长度D 6=5mm,第一单环 形镂空图案619与第二单环形镂空图案620之间的距离D 7=6mm,第二单环形镂空图案620的外环的宽度D 8=8mm,两个子图案的第二单环形镂空图案620之间的距离D 9=6mm,第一单环形镂空图案619的内环沿滤波电缆轴向的长度D 10=4mm,第二单环形镂空图案620的内环沿滤波电缆轴向的长度D 11=7mm,第一单环形镂空图案619的外环沿滤波电缆径向的长度W 6=3mm,第二单环形镂空图案620的外环沿滤波电缆径向的长度W 7=5mm,第一单环形镂空图案619具有非镂空区的一边沿滤波电缆径向的长度W 8=1mm,第二单环形镂空图案620具有非镂空区的一边沿滤波电缆径向的长度W 9=1mm,第一单环形镂空图案619的内环沿滤波电缆径向的长度W 10=1.5mm,第二单环形镂空图案620的内环沿滤波电缆径向的长度W 11=3.5mm,第七镂空线段和第八镂空线段沿滤波电缆径向的长度W 12=1.5mm,第七镂空线段沿滤波电缆径向的宽度g 1=第八镂空线段沿滤波电缆经向的宽度g 2=第一单环形镂空图案619具有的非镂空区沿滤波电缆轴向的长度g 3=第二单环形镂空图案620具有的非镂空区沿滤波电缆轴向的长度g 4=0.4mm。本实施例的结构可以使得滤波电缆等效成如图14所示的等效电路。图14所示的等效电路中,包括第二电阻R 2、第八电容C 8、第九电容C 9、第十电容C 10、第十一电容C 11、第八电感L 8、第九电感L 9。其中,第二电阻R 2的第一端分别连接第一节点P 1、第八电感L 8的第一端、第八电容C 8的第一端、第九电容C 9的第一端,第二端分别连接第二节点P 2、第八电感L 8的第二端、第八电容C 8的第二端、第十电容C 10的第一端;第九电容C 9的第二端分别连接第十一电容C 11的第一端、第九电感L 9的第一端、第十电容C 10的第二端;第十一电容C 11的第二端、第九电感L 9的第二端均接地。基于此结构的滤波性能包括:可以获得截止频率为3dB的低通滤波器,能够在4GHz时表现出非常尖锐的截止频率响应和超宽的阻带,在4.2至23GHz时的抑制高于25dB。
结构三:
若N的取值为1,且所述预设的滤波电路包括低通滤波电路,所述刻蚀图案包括:多个第五图案。如图15所示,所述第五图案包括:交叉设置的第九镂空线段621和第十镂空线段623;所述第九镂空线段621沿所述滤波电缆轴向设置且两端分别设置有第一宽化镂空区622;所述第十镂空线段623沿所述滤波电缆径向设置且两端分别设置有第二宽化镂空区624;所述第二宽化镂空区623所包围区域的面积大于所述第一宽化镂空区622所包围区域的面积。
本实施例提供的是基于交叉哑铃型缺陷导体层的低通滤波电缆,从图15中可以看出,基于交叉哑铃型缺陷导体层的低通滤波电缆通过两个十字形交叉的哑铃型结构实现低通滤波功能,能够实现相对哑铃型结构更高的阻带抑制和更宽频段的阻带特性。基于图15的结构,具体的参数可以根据实际需要进行设置,比如,一些实施例中,具体参数为:第二宽化镂空区624沿滤波电缆轴向的长度W 13=12mm,第一宽化镂空区622沿滤波电缆轴向的长度W 14=3mm,第十镂空线段623沿滤波电缆轴向的长度W 15=第九镂空线段621沿滤波电缆经向的长度W 16=2mm,第二宽化镂空区624沿滤波电缆径向的长度W 17=5mm,第一宽化镂空区622沿滤波电缆径向的长度W 18=5mm。本实施例的结构可以使得滤波电缆等效成如图16所示的等效电路。图16中的电路包括第十电感L 10、第十一电感L 11、第十二电感L 12、第十三电感L 13、第十四电感L 14、第十五电感L 15、第十二电容C 12、第十三电容C 13、第十四电容C 14、第十五电容C 15、第十六电容C 16、第十七电容C 17、第十八电容C 18。其中,第十电感L 10的第一端分别连接第一节点P 1、第十二电容C 12的第一端,第二端分别 连接第十三电容C 13的第一端、第十一电感L 11的第一端、第十四电容C 14的第一端;第十一电感L 11的第二端分别连接第十四电容C 14的第二端、第十二电感L 12的第一端;第十二电感L 12的第二端分别连接第十三电感L 13的第一端、第十五电容C 15的第一端;第十三电感L 13的第二端分别连接第十四电感L 14的第一端、第十六电容C 16的第一端;第十四电感L 14的第二端分别连接第十六电容C 16的第二端、第十五电感L 15的第一端、第十七电容C 17的第一端;第十五电感L 15的第二端分别连接第二节点P 2、第十八电容C 18的第一端;第十二电容C 12的第二端、第十三电容C 13的第二端、第十五电容C 15的第二端、第十七电容C 17的第二端、第十八电容C 18的第二端分别接地。基于此结构实现的滤波性能包括:从直流到3.5GHz插损小于2dB,从4.3到15.8GHz抑制高于20dB。
结构四:
若N的取值为1,且所述预设的滤波电路包括低通滤波电路,所述刻蚀图案包括:多个第六图案;如图17所示,所述第六图案包括:依次设置的第一U形镂空图案625、第二U形镂空图案626和第三U形镂空图案627;所述第一U形镂空图案625、所述第二U形镂空图案626和所述第三U形镂空图案627的开口沿所述滤波电缆径向设置;其中,所述第二U形镂空图案626的开口方向与所述第一U形镂空图案625、所述第三U形镂空图案627的开口方向相反;所述第二U形镂空图案626的一端与所述第一U形镂空图案625的一端连通,另一端与所述第三U形镂空图案627的一端连通。所述第一U形镂空图案625、所述第二U形镂空图案626和所述第三U形镂空图案627的尺寸可以一致。
第六图案整体非常像一个W,可以认为,本实施例提供的是基于W型缺陷导体层的低通滤波电缆,从图17可以看出,基于W型缺陷导体层的低通滤波电缆通过类似W的结构实现低通滤波功能,能够实现三个传输零点、锐利的滚降和较宽的阻带特性。图17所示的结构的具体参数为:第六图案沿滤波电缆轴向的长度D 12=5mm,U形镂空图案的一端沿电缆轴向的长度D 13=U形镂空图案的另一端沿电缆轴向的长度D 14=0.2mm,U形镂空图案的两端之间的距离D 15=1.4mm,U形镂空图案沿滤波电缆径向的长度W 19=13.64mm,U形镂空图案的一端沿滤波电缆径向的长度W 21、另一端沿滤波电缆径向的长度W 20=7.76mm。本实施例的结构可以使得滤波电缆等效成如图18所示的等效电路。图18的等效电路中,包括第十六电感L 16、第十七电感L 17、第十八电感L 18、第十九电感L 19、第十九电容C 19、第二十电容C 20、第二十一电容C 21、第二十二电容C 22、第二十三电容C 23、第二十四电容C 24、第二十五电容C 25、第二十六电容C 26、第二十七电容C 27、第二十八电容C 28。其中,第十六电感L 16的第一端分别连接第一节点P 1、第十九电容C 19的第一端,第二端分别连接第二节点P 2、第二十二电容C 22的第一端;第十九电容C 19的第二端分别连接第二十电容C 20的第一端、第二十三电容C 23的第一端;第二十电容C 20的第二端分别连接第二十一电容C 21的第一端、第二十四电容C 24的第一端;第二十一电容C 21的第二端分别连接第二十二电容C 22的第二端、第二十五电容C 25的第一端;第二十三电容C 23的第二端分别连接第二十六电容C 26的第一端、第十七电感L 17的第一端;第二十四电容C 24的第二端分别连接第二十七电容C 27的第一端、第十八电感L 18的第一端;第二十五电容C 25的第二端分别连接第二十八电容C 28的第一端、第十九电感L 19的第一端;第二十六电容C 26的第二端、第十七电感L 17的第二端、第二十七电容C 27的第二端、第十八电感L 18的第二端、第二十八电容C 28的第二端、第十九电感L 19的第二端分别接地。基于上述结构实现的滤波性能包括:过渡带 是从3.11GHz(为截止频率)到3.23GHz,插损的变化为-3.02dB到-22.5dB;阻带插损为25dB,且阻带频段一直可扩展至3.4GHz(为截止频率)。
结构五:
若N的取值为1,且所述预设的滤波电路包括低通滤波电路,所述刻蚀图案包括:多个第七图案;如图19所示,所述第七图案包括:沿所述滤波电缆径向的第十一镂空线段628;所述第十一镂空线段628的两端分别设置成第三宽化镂空区629。其中,第三宽化镂空区629沿滤波电缆轴向的长度大于第十一镂空线段628其它区域沿滤波电缆轴向的长度,看起来像个哑铃。
本实施例提供的是基于哑铃型缺陷导体层的低通滤波电缆,从图19可以看出,本实施例中,基于哑铃型缺陷导体层的低通滤波电缆通过类似哑铃型(或I型)的结构实现低通滤波功能,能够实现锐利的滚降和较宽的阻带特性。图19所示的结构的具体参数为:第三宽化镂空区629沿滤波电缆轴向的长度D 16=2.5mm,第十一镂空线段628沿滤波电缆轴向的长度D 17=0.5mm,第三宽化镂空区629沿滤波电缆径向的长度W 22=2.6mm,第十一镂空线段628沿滤波电缆径向的长度W 23=2.0mm。本实施例的结构可以使得滤波电缆等效成如图20所示的等效电路。图20的等效电路中,包括第二十电感L 20、第二十九电容C 29。其中,第二十电感L20的第一端分别连接第一节点P 1、第二十九电容C 29的第一端,第二端分别连接第二节点P 2、第二十九电容C 29的第二端。基于此结构的滤波性能包括:过渡带是从通带为直流到4GHz,插损小于0.2dB,阻带为4.3GHz到16.2GHz。
结构六:
若N的取值为1,且所述预设的滤波电路包括带阻滤波电路,所述刻蚀图案包括:多个第八图案;如图21所示,所述第八图案包括:沿所述滤波电缆径向的第十二镂空线段630;所述第十二镂空线段630的两端分别设置有第三单环形镂空图案631;所述第三单环形镂空图案631靠近所述第十二镂空线段630的一侧具有非镂空区632。其中,第三单环形镂空图案631可以但不限于是圆环形镂空图案。
本实施例提供的是基于双圆环桥连接型缺陷导体层的带阻滤波电缆,从图中可以看出,基于双圆环桥连接型缺陷导体层的带阻滤波电缆通过两个蚀刻的圆环形槽、通过一个狭窄的蚀刻间隙桥连接结构实现带阻滤波功能。本实施例的结构的具体参数为:第十二镂空线段630沿滤波电缆轴向的长度W 24=第三单环形镂空图案631的环形线宽W 25=0.4mm,第三单环形镂空图案631的非镂空区的长度S 1=0.2mm,第三单环形镂空图案631的外环半径R=4mm,第十二镂空线段630沿滤波电缆径向的长度D 18=2mm。本实施例的结构可以使得滤波电缆等效成如图22所示的等效电路。图22的电路中,包括第二十一电感L 21、第二十二电感L 22、第三电阻R 3、第三十电容C 30、第三十一电容C 31、第三十二电容C 32。其中,第二十一电感L 21的第一端分别连接第一节点P 1、第三十电容C30的第一端,第二端分别连接第三电阻R 3的第一端、第二十二电感L 22的第一端、第三十一电容C 31的第一端;第三电阻R 3的第二端分别连接第二节点P 2、第二十二电感L 22的第二端、第三十一电容C 31的第二端、第三十二电容C 32的第一端;第三十电容C 30的第二端、第三十二电容C 32的第二端分别接地。基于此结构的滤波性能包括:单个谐振单元情况下,能够获得1.5GHz-1.6GHz的阻带插损大于20dB,通过级联的情况,阻带插损还会大大提高。DC-1.4GHz,1.7GHz-4GHz,通带内的插损较小,小于1dB。
结构七:
若N的取值为1,且所述预设的滤波电路包括带阻滤波电路,所述刻蚀图案包括:多个第九图案;如图23所示,所述第九图案包括:沿所述滤波电缆径向设置的第十三镂空线段633,第十三镂空线段633的一端设置有第三螺旋形镂空图案634,另一端设置有第四螺旋形镂空图案635;所述第三螺旋形镂空图案634与所述第四螺旋形镂空图案635不对称。
本实施例提供的是基于不对称桥连接螺旋型缺陷导体层的双频段带阻滤波电缆,如图23所示,基于不对称桥连接螺旋型缺陷导体层的带阻滤波电缆通过两个蚀刻的不对称螺旋形缝隙、通过一个狭窄的蚀刻间隙桥连接结构实现双频段带阻滤波功能。图23所示的结构的具体参数为:第十三镂空线段633沿滤波电缆轴向的长度W 26=0.2mm,第三螺旋形镂空图案的螺距、第四螺旋形镂空图案的螺距均为S 2=0.2mm,第十三镂空线段633沿滤波电缆径向的长度D 19=2.4mm,第三螺旋形镂空图案634沿滤波电缆轴向的长度D 20=3.2mm,第三螺旋形镂空图案634沿滤波电缆径向的长度D 21=3.0mm,第四螺旋形镂空图案635沿滤波电缆径向的长度D 22=2.4mm,第四螺旋形镂空图案635沿滤波电缆轴向的长度D 23=2.6mm。本实施例的结构可以使得滤波电缆等效成如图24所示的等效电路。图24的等效电路中,包括:第四电阻R 4、第五电阻R 5、第二十三电感L 23、第二十四电感L 24、第三十三电容C 33、第三十四电容C 34。其中,第四电阻R 4的第一端分别连接第一节点P 1、第二十三电感L 23的第一端、第三十三电容C 33的第一端,第二端分别连接第二十三电感L 23的第二端、第三十三电容C 33的第二端、第五电阻R 5的第一端、第二十四电感L 24的第一端、第三十四电容C 34的第一端;第五电阻R 5的第二端分别连接第二十四电感L 24的第二端、第三十四电容C 34的第二端、第二节点P 2。基于此结构的滤波性能包括:单个谐振单元情况下,能够获得3.0GHz和4.5GHz两个阻带,且阻带插损大于20dB,通过级联的情况,阻带插损还会大大提高。DC-2.7GHz,3.2GHz-4.3GHz,4.7GHz-6GHz通带内的插损较小,小于1dB。
结构八:
若N的取值为1,且所述预设的滤波电路包括带阻滤波电路,所述刻蚀图案包括:多个第十图案;如图25所示,所述第十图案包括:沿所述滤波电缆轴向并排间隔设置的第十四镂空线段636、第十五镂空线段637;在所述第十四镂空线段636、第十五镂空线段637之间沿所述滤波电缆径向设置的第十六镂空线段638;所述第十四镂空线段636的中部通过所述第十六镂空线段638与第十五镂空线段637的中部连通;在所述第十四镂空线段636、第十五镂空线段637之间、所述第十六镂空线段638两侧分别设置有第三单环形镂空图案639;所述第三单环形镂空图案639靠近所述第十六镂空线段638的一边中部具有非镂空区。
第十图案非常像一个对称H和两个C,可以认为,本实施例提供的是基于对称H和C型缺陷导体层的带阻滤波电缆,如图25所示,基于对称H和C型缺陷导体层的带阻滤波电缆通过H形缝隙紧密地置于两个相对的C形缝隙之间,构成相互耦合的谐振器实现带阻滤波功能,能够在不影响差分信号的情况下显著降低共模噪声。图25所示的结构的具体参数为:第十四镂空线段636、第十五镂空线段637沿滤波电缆轴向的长度均为D 24=6.375mm,第三单环形镂空图案639沿滤波电缆轴向的长度D 25=2.55mm,第三单环形镂空图案639靠近第十六镂空线段638的一侧沿滤波电缆轴向的长度D 26=1.275mm,第十图案沿滤波电缆径向的长度W 27=6.375mm,第三单环形镂空图案639沿滤波电缆径向外环的长度W 28=4.76mm,第三单环形镂空图案639沿滤波电缆径向内环的长度W 29=3.4mm,第三单环形镂 空图案639的非镂空区与第十四镂空线段636靠近第三单环形镂空图案639一侧的非镂空区之间的距离W 30=2.04mm,第十六镂空线段638沿滤波电缆轴向的长度S 3=0.255mm,第三单环形镂空图案639远离第十六镂空线段638的一侧沿滤波电缆轴向的长度S 4=0.3mm,第十四镂空线段636、第十五镂空线段沿滤波电缆径向的长度S 5=0.2mm。基于此结构的滤波性能包括:单个谐振单元情况下,能够获得阻带中心频率为8.4GHz,截止频率为6.2GHz,阻带的带宽为73.8%。阻带内共模插入损耗不小于15dB,差模插入损耗不大于3dB。
结构九:
若N的取值为1,且所述预设的滤波电路包括带阻滤波电路,所述刻蚀图案包括:多个第十一图案;如图26所示,所述第十一图案包括:矩形的第四单环形镂空图案640;所述第四单环形镂空图案640的一对边沿所述滤波电缆径向设置,另一对边沿所述滤波电缆轴向设置;所述第四单环形镂空图案外侧,沿所述滤波电缆轴向设置的一对边的两端、中部均设置有第十七镂空线段641;所述第十七镂空线段641的一端与所述第四单环形镂空图案640连通;两个所述第十七镂空线段641之间设置有两个对称的L形镂空图案642;所述L形镂空图案642的拐角靠近所述第四单环形镂空图案640,一边靠近所述第十七镂空线段641、沿所述滤波电缆径向设置并通过沿所述滤波电缆轴向设置的镂空线段与靠近的所述第十七镂空线段641连通,另一边靠近所述第四单环形镂空图案640沿所述滤波电缆轴向设置;所述芯线与所述第四单环形镂空图案640对应的区域设置有沿所述滤波电缆径向的通孔643。
本实施例提供的是基于对称L型缺陷导体层的带阻滤波电缆,如图26所示,基于对称L型缺陷导体层的带阻滤波电缆,通过关于中线对称分布的4对L型缝隙构成相互耦合的谐振器实现带阻滤波功能。为了更好获得带阻响应,利用电缆芯线通过电磁耦合来实现带阻特性,但是耦合非常弱。因此,为了增加电缆芯线和缺陷导体层之间的耦合,引入了周期性的金属通孔连接,在芯线和缺陷导体层之间产生了一种改进的耦合,从而形成了一条很好的带阻滤波电缆。图26所示的结构的具体参数为:两个L形镂空图案642靠近所述第十七镂空线段641一边之间的距离D 27=6.4mm,L形镂空图案642靠近第四单环形镂空图案640的一边沿滤波电缆轴向的长度D 28=2.9mm,;连通L形镂空图案642与第十七镂空线段641的镂空线段沿滤波电缆轴向的长度D 29=0.9mm,第十一图案沿滤波电缆轴向的长度D 30=15.8mm,两个通孔的中心之间的距离D 31=1.0mm,第十七镂空线段的长度W 31=3.7mm,L形镂空图案642靠近所述第十七镂空线段641一边沿滤波电缆径向的长度W 32=2.6mm,L形镂空图案642靠近第四单环形镂空图案640的一边沿滤波电缆径向的长度W 33=0.2mm,通孔的直径d=0.5mm。基于此结构的滤波性能包括:单个谐振单元情况下,能够获得插入损耗在4.64GHz时为57.1dB,5.48GHz时为42.6dB,6.16GHz时为36.8dB。在低通带内,0.2至3.35GHz的最大插入损耗为0.5db,在高通带内,6.89至7.98GHz的最大插入损耗为2.0db,而8.12至10.8GHz的最大插入损耗为1.0db。此外,在阻带内,4.56-6.29GHz的衰减高于28.5dB。对于回波损耗(Rerurn Loss,RL),在较低通带内,有三个反射极点,包括一个近直流工作点,3.22GHz,3.84GHz,RL在0.2到4.01GHz之间优于13dB。在上通带内,还有6.91、8.55、10.61GHz三个反射极点,RL在6.75至11.36GHz范围内优于7.5dB。
结构十:
若N的取值为1,且所述预设的滤波电路包括带通滤波电路,所述刻蚀图案包括:多 个第十二图案;如图27所示,所述第十二图案包括:相互间隔的第一子图案644和第二子图案645;所述第十二图案的第一子图案644包括:依次设置的第四U形镂空图案646、第五U形镂空图案647和第六U形镂空图案648;所述第四U形镂空图案、所述第五U形镂空图案和所述第六U形镂空图案的开口沿所述滤波电缆径向设置;其中,所述第五U形镂空图案的开口方向与所述第四U形镂空图案、所述第六U形镂空图案的开口方向相反;所述第五U形镂空图案的一端与所述第四U形镂空图案的一端连通,另一端与所述第六U形镂空图案的一端连通;所述第十二图案的第二子图案645为所述第十二图案的第一子图案644沿所述滤波电缆径向旋转180得到的图案;所述芯线1与所述第十二图案的第一子图案643、第二子图案644之间的间隔对应的区域有第一截断区649;所述第一截断区648填充有第一电介质(图中未示意);所述第十二图案的第一子图案644和第二子图案645与所述芯线1对应的边界上具有非镂空区;所述第一截断区649两侧的所述芯线1与所述缺陷导体层连接。
从图27中可以看出,本实施例提供的是基于交指型缺陷导体层的带通滤波电缆,如图27所示,基于交指型缺陷导体层的带通滤波电缆,其结构主要由四部分组成,即芯线(有截断)、介质填充层(即上述第一电介质)、芯线与缺陷导体层的连接通道(图中以圆点示意)和缺陷导体层上的交指型缺陷结构,也可以为多层结构。图27所示的结构的具体参数为:第四U形镂空图案646和第六U形镂空图案648未与第五U形镂空图案647连通的一端沿滤波电缆轴向的长度D 32=4mm,第五U形镂空图案647的底部沿滤波电缆轴向的长度D 33=4mm,第四U形镂空图案646和第六U形镂空图案648未与第五U形镂空图案647连通的一端与芯线1对应的非镂空区沿滤波电缆轴向的长度D 34=2mm,第四U形镂空图案646、第五U形镂空图案647和第六U形镂空图案648中两端之间的距离D 35=2mm,第四U形镂空图案646和第六U形镂空图案648的底部沿滤波电缆轴向的长度D 36=7mm,第一截断区沿滤波电缆轴向的长度D 37=1mm,第一子图案644和第二子图案645之间的距离D 38=2.4,芯线的直径W 34=2mm,第四U形镂空图案646和第六U形镂空图案648的U形口深度W 35=7.6mm,第五U形镂空图案647的U形口深度W 36=8.7mm,第四U形镂空图案646和第六U形镂空图案648的底部与芯线对应的非镂空区的距离W 37=2.2mm,与芯线对应的非镂空区沿滤波电缆径向的长度W 38=5mm,第四U形镂空图案646和第六U形镂空图案648的端部与芯线对应的非镂空区的距离W 39=5mm。本实施例的结构可以使得滤波电缆等效成如图28所示的等效电路。图28的电路中,包括:第三十五电容C 35、第三十六电容C 36、第三十七电容C 37、第三十八电容C 38、第三十九电容C 39、第四十电容C 40、第四十一电容C 41、第二十五电感L 25、第二十六电感L 26、第二十七电感L 27、第二十八电感L 28、第二十九电感L 29、第三十电感L 30。其中,第三十五电容C 35分别与第一节点P 1、第三十八电容C 38的第一端、第二十五电感L 25的第一端连接,第二端分别与第三十六电容C 36的第一端、第三十九电容C 39的第一端、第二十七电感L 27的第一端连接;第三十九电容C 39的第二端与第二十六电感L 26的第一端连接;第三十六电容C 36的第二端分别与第二十八电感L 28的第一端、第三十七电容C 37的第一端、第四十电容C 40的第一端连接;第四十电容C 40的第二端与第二十九电感L 29的第一端连接;第三十七电容C 37的第二端分别与第二节点P 2、第三十电感L 30的第一端、第四十一电容C 41的第一端连接;第三十八电容C 38的第二端、第二十五电感L 25的第二端、第二十六电感L 26的第二端、第二十七电感L 27的第二端、第 二十八电感L 28的第二端、第二十九电感L 29的第二端、第三十电感L 30的第二端、第四十一电容C 41的第二端分别接地。基于此结构的滤波性能包括:单个谐振单元情况下,具有中心频率为2.5GHz、带宽为14.8%的带通滤波性能,具有高选择性和宽上阻带的优点。对于要求高选择性和宽阻带的许多通信应用来说,它可能是一个潜在的带通应用。
结构十一:
若N的取值为1,且所述预设的滤波电路包括带通滤波电路,所述刻蚀图案包括:多个第十三图案;如图29所示,所述第十三图案包括:土字形镂空图案;所述土字形镂空图案的第一竖边沿所述滤波电缆径向设置,第一横边650和第二横边651分别沿所述滤波电缆轴向设置;所述第一横边650的长度小于所述第二横边65的长度;所述第二横边651的一端设置有第五螺旋形镂空图案652,另一端设置有与所述第五螺旋形镂空图案652完全对称的第六螺旋形镂空图案654;所述第一横边650的一端设置有第七螺旋形镂空图案653,所述第七螺旋形镂空图案653位于所述第五螺旋形镂空图案652的非镂空区内,另一端设置有与所述第七螺旋形镂空图案653完全对称的第八螺旋形镂空图案655,所述第八螺旋形镂空图案655位于所述第六螺旋形镂空图案654的非镂空区内;所述芯线1与所述土字形镂空图案的竖边对应的区域具有第二截断区656,所述第二截断区656填充有第二电介质(图中未示出)。
本实施例提供的是基于曲折线型多模谐振单元缺陷导体层的带通滤波电缆,如图29所示,基于曲折线型多模谐振单元缺陷导体层的带通滤波电缆,其结构主要由三部分组成,即芯线(有截断)、介质填充层(即上述第二电介质)和缺陷导体层(其结构上认为包括若干曲折线型多模谐振单元)。图29所示的结构的具体参数为:第一横边沿滤波电缆轴向的长度D 39=7mm,第十三图案沿滤波电缆径向的长度D 40=6.2mm,第五螺旋形镂空图案652、第六螺旋形镂空图案654沿滤波电缆轴向的长度D 41=3.3mm,土字形镂空图案的第二横边、第一横边、第一竖边包围的非镂空区沿滤波电缆轴向的长度D 42=3mm,所述第二截断区656沿滤波电缆轴向的长度D 43=1mm,第五螺旋形镂空图案和第六螺旋形镂空图案中除端部以外的镂空线宽W 40=0.3mm,沿滤波电缆轴向第五螺旋形镂空图案中的镂空线段与第七螺旋形镂空图案中的镂空线段之间的距离以及第六螺旋形镂空图案中的镂空线段与第八螺旋形镂空图案中的镂空线段之间的距离W 41=0.3mm,第一横边与第二横边之间的距离W 42=0.6mm,第七螺旋形镂空图案和第八螺旋形镂空图案中的镂空线宽W 43=0.3mm,第五螺旋形镂空图案和第六螺旋形镂空图案中端部的镂空线宽W 44=0.3mm。基于此结构的滤波性能包括:单个谐振单元情况下,可以同时产生两个通带和四个传输零点,典型情况:工作在2.45GHz和5.8GHz(WLAN应用)下的双频带通滤波器,带宽分别为12.8%和14.7%,最小插入损耗为1.1dB和1.0dB,产生的四个传输零点可以提高选择性。
结构十二:
若N的取值为1,且所述预设的滤波电路包括带通滤波电路,且所述芯线的数量为2,所述刻蚀图案包括:多个第十四图案;如图30所示,所述第十四图案包括:日字形镂空图案;所述日字形镂空图案包括沿所述滤波电缆轴向设置的第三横边657、第四横边658和第五横边659,沿所述滤波电缆径向设置的第二竖边660和第三竖边661;所述第四横边658位于所述第三横边657和所述第五横边659中间;所述第四横边658靠近所述第三横边657的一侧中部具有沿所述滤波电缆径向设置的非镂空线段662;所述第四横边658上还具有长 边沿所述滤波电缆轴向的第一L形非镂空区663、第二L形非镂空区664、第三L形非镂空区665;所述第一L形非镂空区663的长边与所述非镂空线段662连通,短边与所述第二L形非镂空区664的长边连通;所述第二L形非镂空区664的短边与所述第三L形非镂空区665的长边连通;两条所述芯线1中,一条所述芯线1位于所述第三横边657与所述第四横边658之间的非镂空区域且具有第三截断区666,另一条所述芯线1位于所述第四横边658与所述第五横边659之间的非镂空区域,且具有第四截断区667;所述第三截断区填充有第三电介质;所述第四截断区填充有第四电介质。
第十四图案看起来也很像哑铃,可以认为,本实施例提供的是基于哑铃型缺陷导体层的差分带通滤波电缆,如图30所示,基于哑铃型缺陷导体层的差分带通滤波电缆,其结构由哑铃型加载的差分传输线组成,镂空包围的非镂空区域中,看起来由两个电容性方形贴片通过一条薄金属条相互连接而成。在这种结构中,谐振单元将在差模信号情况下被激发,在差模信号传输中传输线电场的垂直分量是反向的。这会在谐振单元的顶部和底部产生一个电偶极矩,从而在谐振单元之间的金属条中产生电流。然而,在共模传输情况下,传输线的电场同样激励顶部和底部的电容性贴片,因此金属条上没有偶极矩和电流,谐振单元不能被激发。图30的结构的具体参数为:第三横边沿滤波电缆轴向的长度D 44=7.6mm,第二L形非镂空区664的长边沿滤波电缆轴向的长度D 45=4.2mm,第二竖边、第三竖边沿滤波电缆轴向的长度D 46=0.2mm,第三截断区、第四截断区的长度D 47=0.6mm,非镂空区域662沿滤波电缆轴向的长度D 48=0.4mm,第十四图案沿滤波电缆径向的长度W 45=15.4mm,两个芯线1间的距离W 46=5.7mm,第四横边沿滤波电缆径向的长度W 47=4.2mm,沿滤波电缆径向第一L形非镂空区663的短边加第二L形非镂空区664的长边的长度W 48=1.4mm。本实施例的结构可以使得滤波电缆等效成如图31所示的等效电路。图31的等效电路中,包括:包括第三十一电感L 31、第三十二电感L 32、第三十三电感L 33、第三十四电感L 34、第三十五电感L 35,第四十二电容C 42、第四十三电容C 43、第四十四电容C 44、第四十五电容C 45、第四十六电容C 46、第四十七电容C 47、第四十八电容C 48、第四十九电容C 49。其中,第三十一电感L 31的第一端与第一节点P 1连接,第二端与第四十二电容C 42的第一端连接;第四十二电容C 42的第二端分别与第四十三电容C 43的第一端、第四十四电容C 44的第一端连接;第四十三电容C 43的第二端与第三十二电感L 32的第一端连接;第三十二电感L 32的第二端与第二节点P 2连接;第四十四电容C 44的第二端分别与第四十五电容C 45的第一端、第三十三电感L 33的第一端连接;第三十三电感L 33的第二端分别与第四十六电容C 46的第一端、第四十七电容C 47的第一端连接;第四十七电容C 47的第二端分别与第四十八电容C 48、第四十九电容C 49的第一端连接;第四十八电容C 48的第二端与第三十四电感L 34的第一端连接,第四十九电容C 49的第二端与第三十五电感L 35的第一端连接,第四十五电容C 45的第二端、第四十六电容C 46的第二端、第三十四电感L 34的第二端、第三十五电感L 35的第二端分别接地。基于哑铃型缺陷导体层的差分带通滤波电缆可实现高阶带通滤波功能,典型的三阶滤波电缆,在1.5GHz中心频率处有6%的相对带宽,通带差模信号的插入损耗为2.4dB,可通过选择更好的柔性基板材料来改善,从而获得更更低的插入损耗。差分通带内有超过57分贝的共模抑制,共模信号的微小通带是由于制造公差引起的不对称性造成的,通过提升加工精度能降低共模通带。
结构十三:
若N的取值为1,且所述预设的滤波电路包括带通滤波电路,所述刻蚀图案包括:多个第十五图案;如图32所示,所述第十五图案包括:方波形镂空图案668;所述方波形镂空图案的两端分别设置有沿所述滤波电缆径向的第四宽化镂空区669。方波形镂空图案看起来很曲折,可以认为,本实施例提供的是基于曲折线型哑铃结构的缺陷导体层带通滤波电缆,如图32所示,基于曲折线型哑铃结构的缺陷导体层带通滤波电缆,其结构由基于曲折线型的哑铃型结构、电缆芯线和芯线与缺陷导体层的连接通道(图中以圆点示意)的组成,图中看起来,基于曲折线型哑铃结构谐振单元由两个方形缝隙和一条曲折线型缝隙相互连接而成。通过过孔与缺陷导体层之间的桥接使得等效电感和电容的分量为负。这些负分量排除了寄生的右手分支,因此传输线只有一个纯左手分支响应特性。如图32所示,曲折线型的交指线上有两个半径为0.3mm的连接通道与电缆芯线相连。图32所示的结构的具体参数为:第十四图案沿滤波电缆轴向的长度D 49=5.2mm,方波形镂空图案668沿滤波电缆轴向的长度D 50=5mm,第四宽化镂空区669沿滤波电缆径向的长度W 49=5mm,方波形镂空图案668的方波线宽W 50=0.1mm,方波形镂空图案668的方波间隔W 51=0.5mm,方波形镂空图案668的周期W 52=1.1mm。本实施例的结构可以使得滤波电缆等效成如图32所示的等效电路。图32的等效电路中,包括:第三十六电感L 36、第三十七电感L 37、第三十八电感L 38、第三十九电感L 39、第四十电感L 40、第四十一电感L 41、第五十电容C 50、第五十一电容C 51、第五十二电容C 52。其中,第三十六电感L 36的第一端与第一节点P 1连接;第三十六电感L 36的第二端分别与第三十七电感L 37的第一端、第五十电容C 50的第一端、第四十一电感L 41的第一端、第四十电感L 40的第一端、第五十一电容C 51的第一端、第五十二电容C 52的第一端连接;第三十七电感L 37的第二端分别与第三十八电感L 38的第一端、第五十电容C 50的第二端、第五十一电容C 51的第二端、第三十九电感L 39的第一端、第四十电感L 40的第二端、第五十二电容C 52的第二端连接;第三十八电感L 38的第二端与第二节点连接;第三十九电感L 39的第二端、第四十一电感L 41的第二端分别接地。基于此结构的滤波性能包括:滤波带宽为0.624-3.51GHz,即实现了相对带宽为140%的带通滤波电缆。
一些实施例中,缺陷导体层的典型实施方式:所述缺陷导体层以缠绕形式设置。具体的,可以通过在绝缘层外缠绕缺陷导体层实现,如图34所示的基于缺陷导体层的滤波电缆,所述刻蚀图案包括:多个第十六图案。第十六图案的具体结构有多种。比如,所述第十六图案可以参考图12所示的PI状镂空图案,如图35所示,PI状镂空图案的缺陷导体层以一定角度缠绕在绝缘层外,可以使得滤波电缆等效成低通滤波电路。本实施例中,将缺陷导体层通过缠绕形式包裹在电缆外侧,便于工业批量生产。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种滤波电缆,其特征在于,在沿所述滤波电缆径向的横截面中,从内向外依次设置有芯线、包围所述芯线的N层缺陷导体层;其中,所述缺陷导体层上具有刻蚀图案;所述刻蚀图案沿所述滤波电缆轴向分布式设置;所述刻蚀图案用于使得所述滤波电缆等效成预设的滤波电路,对所述滤波电缆中传输的信号进行滤波;其中,N的取值为正整数。
  2. 根据权利要求1所述的滤波电缆,其特征在于,所述刻蚀图案沿所述滤波电缆轴向呈周期性或者非周期性地分布式设置。
  3. 根据权利要求1所述的滤波电缆,其特征在于,所述刻蚀图案的刻蚀区呈镂空状或者填充有绝缘材料。
  4. 根据权利要求1所述的滤波电缆,其特征在于,若N的取值大于或者等于2,N层缺陷导体层之间相互绝缘设置或连通设置。
  5. 根据权利要求1所述的滤波电缆,其特征在于,若N的取值为1,所述刻蚀图案包括:多个第一图案;
    所述第一图案包括:沿所述滤波电缆径向设置的第一镂空线段,第一镂空线段的一端设置有第一螺旋形镂空图案,另一端设置有第二螺旋形镂空图案;
    所述第二螺旋形镂空图案与所述第一螺旋形镂空图案对称设置。
  6. 根据权利要求1所述的滤波电缆,其特征在于,若N的取值为1,所述刻蚀图案包括:多个第二图案;
    所述第二图案包括:相互间隔的第一双环形镂空图案和第二双环形镂空图案;
    所述第一双环形镂空图案和所述第二双环形镂空图案对称且对称轴沿所述滤波电缆径向设置;
    所述第一双环形镂空图案和所述第二双环形镂空图案的外环上靠近对称轴的一侧中部具有第一非镂空区;
    所述第一双环形镂空图案和所述第二双环形镂空图案的内环上远离对称轴的一侧中部具有第二非镂空区。
  7. 根据权利要求1所述的滤波电缆,其特征在于,所述预设的滤波电路包括低通滤波电路、带阻滤波电路或者带通滤波电路。
  8. 根据权利要求7所述的滤波电缆,其特征在于,若N的取值为1,且所述预设的滤波电路包括低通滤波电路;
    所述刻蚀图案包括:多个第三图案;所述第三图案包括:沿所述滤波电缆轴向的第二镂空线段;所述第二镂空线段包括第三镂空线段、在第三镂空线段两端对称且对称轴沿所述滤波电缆径向设置的第四镂空线段和第五镂空线段;与所述第二镂空线段并排间隔设置的第六镂空线段;所述第六镂空线段上与所述第三镂空线段对应的区域具有第三非镂空区,与所述第四镂空线段对应的区域具有与所述第四镂空线段连通的第一窄化镂空区,与所述第五镂空线段对应的区域具有与所述第五镂空线段连通的第二窄化镂空区;
    或者,所述刻蚀图案包括:多个第四图案;所述第四图案包括:两个相互间隔对称且对称轴沿所述滤波电缆径向设置的子图案;所述第四图案的子图案包括沿所述滤波电缆径向并排设置的第七镂空线段和第八镂空线段;所述第七镂空线段的两端分别设置有第一单环形镂空图案;所述第一单环形镂空图案远离所述第七镂空线段的一边中部具有非镂空区; 所述第八镂空线段的两端分别设置有第二单环形镂空图案;所述第二单环形镂空图案远离所述第八镂空线段的一边中部具有非镂空区;所述第二单环形镂空图案所包围区域的面积大于所述第一单环形镂空图案所包围区域的面积;
    或者,所述刻蚀图案包括:多个第五图案;所述第五图案包括:交叉设置的第九镂空线段和第十镂空线段;所述第九镂空线段沿所述滤波电缆轴向设置且两端分别设置有第一宽化镂空区;所述第十镂空线段沿所述滤波电缆径向设置且两端分别设置有第二宽化镂空区;所述第二宽化镂空区所包围区域的面积大于所述第一宽化镂空区所包围区域的面积;
    或者,所述刻蚀图案包括:多个第六图案;所述第六图案包括:依次设置的第一U形镂空图案、第二U形镂空图案和第三U形镂空图案;所述第一U形镂空图案、所述第二U形镂空图案和所述第三U形镂空图案的开口沿所述滤波电缆径向设置;其中,所述第二U形镂空图案的开口方向与所述第一U形镂空图案、所述第三U形镂空图案的开口方向相反;所述第二U形镂空图案的一端与所述第一U形镂空图案的一端连通,另一端与所述第三U形镂空图案的一端连通;
    或者,所述刻蚀图案包括:多个第七图案;所述第七图案包括:沿所述滤波电缆径向的第十一镂空线段;所述第十一镂空线段的两端分别设置成第三宽化镂空区。
  9. 根据权利要求7所述的滤波电缆,其特征在于,若N的取值为1,且所述预设的滤波电路包括带阻滤波电路;
    所述刻蚀图案包括:多个第八图案;所述第八图案包括:沿所述滤波电缆径向的第十二镂空线段;所述第十二镂空线段的两端分别设置有第三单环形镂空图案;所述第三单环形镂空图案靠近所述第十二镂空线段的一侧具有非镂空区;
    或者,所述刻蚀图案包括:多个第九图案;所述第九图案包括:沿所述滤波电缆径向设置的第十三镂空线段,第十三镂空线段的一端设置有第三螺旋形镂空图案,另一端设置有第四螺旋形镂空图案;所述第三螺旋形镂空图案与所述第四螺旋形镂空图案不对称;
    或者,所述刻蚀图案包括:多个第十图案;所述第十图案包括:沿所述滤波电缆轴向并排间隔设置的第十四镂空线段、第十五镂空线段;在所述第十四镂空线段、第十五镂空线段之间沿所述滤波电缆径向设置的第十六镂空线段;所述第十四镂空线段的中部通过所述第十六镂空线段与第十五镂空线段的中部连通;在所述第十四镂空线段、第十五镂空线段之间、所述第十六镂空线段两侧分别设置有第三单环形镂空图案;所述第三单环形镂空图案靠近所述第十六镂空线段的一边中部具有非镂空区;
    或者,所述刻蚀图案包括:多个第十一图案;所述第十一图案包括:矩形的第四单环形镂空图案;所述第四单环形镂空图案的一对边沿所述滤波电缆径向设置,另一对边沿所述滤波电缆轴向设置;所述第四单环形镂空图案外侧,沿所述滤波电缆轴向设置的一对边的两端、中部均设置有第十七镂空线段;所述第十七镂空线段的一端与所述第四单环形镂空图案连通;两个所述第十七镂空线段之间设置有两个对称的L形镂空图案;所述L形镂空图案的拐角靠近所述第四单环形镂空图案,一边靠近所述第十七镂空线段、沿所述滤波电缆径向设置并通过沿所述滤波电缆轴向设置的镂空线段与靠近的所述第十七镂空线段连通,另一边靠近所述第四单环形镂空图案沿所述滤波电缆轴向设置;所述芯线与所述第四单环形镂空图案对应的区域设置有沿所述滤波电缆径向的通孔。
  10. 根据权利要求7所述的滤波电缆,其特征在于,若N的取值为1,且所述预设的 滤波电路包括带通滤波电路;
    所述刻蚀图案包括:多个第十二图案;所述第十二图案包括:相互间隔的第一子图案和第二子图案;所述第十二图案的第一子图案包括:依次设置的第四U形镂空图案、第五U形镂空图案和第六U形镂空图案;所述第四U形镂空图案、所述第五U形镂空图案和所述第六U形镂空图案的开口沿所述滤波电缆径向设置;其中,所述第五U形镂空图案的开口方向与所述第四U形镂空图案、所述第六U形镂空图案的开口方向相反;所述第五U形镂空图案的一端与所述第四U形镂空图案的一端连通,另一端与所述第六U形镂空图案的一端连通;所述第十二图案的第二子图案为所述第十二图案的第一子图案沿所述滤波电缆径向旋转180得到的图案;所述芯线与所述第十二图案的第一子图案、第二子图案之间的间隔对应的区域有第一截断区;所述第一截断区填充有第一电介质;所述第十二图案的第一子图案和第二子图案与所述芯线对应的边界上具有非镂空区;所述第一截断区两侧的所述芯线与所述缺陷导体层连接;
    或者,所述刻蚀图案包括:多个第十三图案;所述第十三图案包括:土字形镂空图案;所述土字形镂空图案的第一竖边沿所述滤波电缆径向设置,第一横边和第二横边分别沿所述滤波电缆轴向设置;所述第一横边的长度小于所述第二横边的长度;所述第二横边的一端设置有第五螺旋形镂空图案,另一端设置有与所述第五螺旋形镂空图案完全对称的第六螺旋形镂空图案;所述第一横边的一端设置有第七螺旋形镂空图案,所述第七螺旋形镂空图案位于所述第五螺旋形镂空图案的非镂空区内,另一端设置有与所述第七螺旋形镂空图案完全对称的第八螺旋形镂空图案,所述第八螺旋形镂空图案位于所述第六螺旋形镂空图案的非镂空区内;所述芯线与所述竖边对应的区域具有第二截断区,所述第二截断区填充有第二电介质;
    或者,所述芯线的数量为2,所述刻蚀图案包括:多个第十四图案;所述第十四图案包括:日字形镂空图案;所述日字形镂空图案包括沿所述滤波电缆轴向设置的第三横边、第四横边和第五横边,沿所述滤波电缆径向设置的第二竖边和第三竖边;所述第四横边位于所述第三横边和所述第五横边中间;所述第四横边靠近所述第三横边的一侧中部具有沿所述滤波电缆径向设置的非镂空线段;所述第四横边上还具有长边沿所述滤波电缆轴向的第一L形非镂空区、第二L形非镂空区、第三L形非镂空区;所述第一L形非镂空区的长边与所述非镂空线段连通,短边与所述第二L形非镂空区的长边连通;所述第二L形非镂空区的短边与所述第三L形非镂空区的长边连通;两条所述芯线中,一条所述芯线位于所述第三横边与所述第四横边之间的非镂空区域且具有第三截断区,另一条所述芯线位于所述第三横边与所述第五横边之间的非镂空区域,且具有第四截断区;所述第三截断区填充有第三电介质;所述第四截断区填充有第四电介质;
    或者,所述刻蚀图案包括:多个第十五图案;所述第十五图案包括:方波形镂空图案;所述方波形镂空图案的两端分别设置有沿所述滤波电缆径向的第四宽化镂空区。
  11. 根据权利要求1所述的滤波电缆,其特征在于,所述缺陷导体层以缠绕形式设置。
  12. 根据权利要求1~11任一项所述的滤波电缆,其特征在于,还包括设置在所述N层缺陷导体层外的与所述N层缺陷导体层绝缘的M层屏蔽层;其中,M的取值为正整数。
PCT/CN2019/091830 2019-06-19 2019-06-19 滤波电缆 WO2020252678A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020564139A JP7101261B2 (ja) 2019-06-19 2019-06-19 フィルタケーブル
CN201980060453.4A CN112771632B (zh) 2019-06-19 2019-06-19 滤波电缆
CA3096793A CA3096793A1 (en) 2019-06-19 2019-06-19 Filtering cable
US16/954,886 US11929189B2 (en) 2019-06-19 2019-06-19 Filtering cable
EP19906589.7A EP3780018A4 (en) 2019-06-19 2019-06-19 FILTER CABLE
PCT/CN2019/091830 WO2020252678A1 (zh) 2019-06-19 2019-06-19 滤波电缆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091830 WO2020252678A1 (zh) 2019-06-19 2019-06-19 滤波电缆

Publications (1)

Publication Number Publication Date
WO2020252678A1 true WO2020252678A1 (zh) 2020-12-24

Family

ID=74036598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091830 WO2020252678A1 (zh) 2019-06-19 2019-06-19 滤波电缆

Country Status (6)

Country Link
US (1) US11929189B2 (zh)
EP (1) EP3780018A4 (zh)
JP (1) JP7101261B2 (zh)
CN (1) CN112771632B (zh)
CA (1) CA3096793A1 (zh)
WO (1) WO2020252678A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714245A (zh) * 2021-08-23 2023-02-24 华为技术有限公司 一种滤波器、天线、基站以及滤波器的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207867A1 (zh) * 2020-04-13 2021-10-21 韩宇南 滤波电缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131236A (ja) * 1993-10-29 1995-05-19 Fujikura Ltd 漏洩同軸ケーブル
US5686697A (en) 1995-01-06 1997-11-11 Metatech Corporation Electrical circuit suspension system
KR100817981B1 (ko) * 2006-11-20 2008-03-31 엘에스전선 주식회사 광대역 누설 동축 케이블
CN201303038Y (zh) * 2008-11-14 2009-09-02 中天日立射频电缆有限公司 短节距交错混合开槽辐射型漏泄同轴电缆
CN102341867A (zh) * 2009-03-03 2012-02-01 泛达公司 制造用于通信电缆的马赛克带的方法和设备
CN205140595U (zh) * 2015-11-13 2016-04-06 中国西电集团公司 一种宽频漏泄同轴电缆
CN205790739U (zh) 2016-05-11 2016-12-07 安徽远征电缆科技有限公司 一种抗干扰电缆组件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312774A (en) * 1965-02-10 1967-04-04 John D Drinko Semi-insulating shielding for cables and the like and comprising discrete "floating"patches of semi-conductive material
FR2176574B1 (zh) * 1972-03-24 1974-08-02 Prache Marie Pi Rre
US4223287A (en) * 1977-02-14 1980-09-16 Murata Manufacturing Co., Ltd. Electrical filter employing transverse electromagnetic mode coaxial resonators
US7031327B2 (en) * 2001-08-24 2006-04-18 Permeo Technologies, Inc. Network application association
JP4833571B2 (ja) * 2004-03-31 2011-12-07 ニッタ株式会社 電磁波吸収体
DE102004042656B3 (de) * 2004-09-03 2005-12-29 Draka Comteq Germany Gmbh & Co. Kg Mehrlagige, streifenförmige Abschirmfolie für elektrische Leitungen und damit ausgerüstetes elektrisches Kabel, insbesondere Datenübertragungskabel
EP2592631B1 (en) * 2005-03-28 2020-03-25 Leviton Manufacturing Co., Inc. Discontinous cable shield system
US7923641B2 (en) * 2006-08-11 2011-04-12 Superior Essex Communications LLP Communication cable comprising electrically isolated patches of shielding material
CN100508076C (zh) * 2007-02-12 2009-07-01 孟莉 去耦屏蔽电缆的连接方法
US8217267B2 (en) * 2008-03-06 2012-07-10 Panduit Corp. Communication cable with improved crosstalk attenuation
US8183462B2 (en) * 2008-05-19 2012-05-22 Panduit Corp. Communication cable with improved crosstalk attenuation
US8354590B2 (en) * 2008-11-10 2013-01-15 Panduit Corp. Communication cable with improved crosstalk attenuation
EP2287964A1 (en) * 2009-08-19 2011-02-23 Alcatel Lucent Device for filtering radio frequency signals and system thereof
JP2011066094A (ja) * 2009-09-15 2011-03-31 Nitta Corp 電磁波吸収体、パーティション、電波暗箱、建材、無線通信システムおよび無線通信方法
CN102629703A (zh) * 2012-05-08 2012-08-08 重庆大学 一种缺陷微带线结构的微带低通滤波器
US10530072B2 (en) 2015-10-09 2020-01-07 Ppc Broadband, Inc. Mini isolator
US10186350B2 (en) * 2016-07-26 2019-01-22 General Cable Technologies Corporation Cable having shielding tape with conductive shielding segments
US20220181046A1 (en) * 2020-12-04 2022-06-09 Dongguan Ching Tai Electric Wire & Cable Co.,Ltd. Manufacturing method of a screening tape for an unshielded signal transmission cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131236A (ja) * 1993-10-29 1995-05-19 Fujikura Ltd 漏洩同軸ケーブル
US5686697A (en) 1995-01-06 1997-11-11 Metatech Corporation Electrical circuit suspension system
KR100817981B1 (ko) * 2006-11-20 2008-03-31 엘에스전선 주식회사 광대역 누설 동축 케이블
CN201303038Y (zh) * 2008-11-14 2009-09-02 中天日立射频电缆有限公司 短节距交错混合开槽辐射型漏泄同轴电缆
CN102341867A (zh) * 2009-03-03 2012-02-01 泛达公司 制造用于通信电缆的马赛克带的方法和设备
CN205140595U (zh) * 2015-11-13 2016-04-06 中国西电集团公司 一种宽频漏泄同轴电缆
CN205790739U (zh) 2016-05-11 2016-12-07 安徽远征电缆科技有限公司 一种抗干扰电缆组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780018A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714245A (zh) * 2021-08-23 2023-02-24 华为技术有限公司 一种滤波器、天线、基站以及滤波器的制造方法
WO2023024814A1 (zh) * 2021-08-23 2023-03-02 华为技术有限公司 一种滤波器、天线、基站以及滤波器的制造方法

Also Published As

Publication number Publication date
EP3780018A4 (en) 2021-07-21
CA3096793A1 (en) 2020-12-19
CN112771632B (zh) 2022-08-02
US11929189B2 (en) 2024-03-12
CN112771632A (zh) 2021-05-07
EP3780018A1 (en) 2021-02-17
JP2021532612A (ja) 2021-11-25
JP7101261B2 (ja) 2022-07-14
US20220199292A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
CN108879044B (zh) 一种具有宽阻带和高选择性的超宽带带通滤波器结构
CN112953431A (zh) 一种适用于微波与毫米波的ipd滤波器芯片
WO2020252678A1 (zh) 滤波电缆
JP2786204B2 (ja) 帯域阻止フイルタ
Liu et al. Design of a novel low-pass filter cable utilizing a defected conductor transmission structure with cascaded isosceles U-shaped resonators
CN116759779B (zh) 一种5g毫米波滤波功分模块
US11929536B2 (en) Filter cable
CN220474866U (zh) 一种n阶四分之一波长高带外抑制滤波器结构及滤波器
CN219677536U (zh) 一种扇形微带低通滤波装置及滤波器
CN218005215U (zh) 一种带通介质滤波器
CN114498041B (zh) 一种传输线组件、天线组件和移动终端
Han et al. A tunable bandstop filtering cable for wide-bandwidth interference suppression
CN112713370B (zh) 一种圆波导Ku波段电磁波的TM0n模式滤波器
CN113097671B (zh) 一种小型化宽带五频带的带通滤波器
CN104332685B (zh) 一种具有陡峭过渡和改善阻带的低通滤波器
Liu et al. Miniaturized quarter-wavelength resonator for common-mode filter based on pattern ground structure
Kunwer et al. High performance wide stopband lowpass filter using complementary split ring resonators as defected ground plane
Almalkawi et al. Compact realization of combline bandpass filter integrated with defected microstrip structure bandstop filter
Khalid et al. Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator
CN107834136B (zh) 带通滤波器
CN113922018A (zh) 一种高通滤波器及通信设备
CN117154409A (zh) 一种传输线组件、天线组件和移动终端
Shaman et al. Recent development of ultra-wideband (UWB) bandpass filters using distributed stub transmission line structures
CN115939706A (zh) 一种阻带增强型低通同轴滤波器
JP2021052345A (ja) 帯域通過フィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019906589

Country of ref document: EP

Effective date: 20200706

ENP Entry into the national phase

Ref document number: 2020564139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE