WO2020213623A1 - Movable device - Google Patents
Movable device Download PDFInfo
- Publication number
- WO2020213623A1 WO2020213623A1 PCT/JP2020/016514 JP2020016514W WO2020213623A1 WO 2020213623 A1 WO2020213623 A1 WO 2020213623A1 JP 2020016514 W JP2020016514 W JP 2020016514W WO 2020213623 A1 WO2020213623 A1 WO 2020213623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- case
- movable
- field transmission
- main body
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 137
- 239000000696 magnetic material Substances 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 8
- 230000004048 modification Effects 0.000 description 31
- 238000012986 modification Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
Definitions
- the present invention relates to a movable device such as a movable mirror.
- a scanning device has been known to obtain various information about an object in a predetermined region by emitting light while deflecting it to a predetermined region and detecting the light returned from the predetermined region.
- a movable mirror such as a MEMS (Micro Electro Mechanical System) mirror is provided as a portion for deflecting light.
- Patent Document 1 discloses an optical scanning device in which a mirror oscillator and a permanent magnet are surrounded by upper and lower covers.
- a movable part in a movable device such as a movable mirror moves in a controlled manner in a region prepared for the movement by receiving various forces from the outside of the movable part, for example. For example, reciprocating motion, rocking motion, rotating motion, etc.) are performed.
- the movable device performs stable operation in various environments, and for example, it is preferable that the movable device can perform stable operation even when it is used for a long time in a high temperature or high humidity environment.
- the movable force is accurately and highly efficiently applied to the movable part, and parts such as the movable part deteriorate. It is preferable that it can be easily replaced.
- the present invention has been made in view of the above points, and one of the objects of the present invention is to provide a movable device capable of performing stable operation with high quality and low power consumption.
- the invention according to claim 1 includes a main body portion including a movable portion, a support portion that rotatably supports the movable portion, and a magnetic element that rotates the movable portion in response to a change in a magnetic field, and the main body portion. It is characterized by having a case portion that forms an internal space and a magnetic field transmission member that is held by the case portion and transmits a magnetic field generated by a magnetic field generation source outside the case portion to a magnetic element.
- the invention according to claim 10 includes a movable portion, a support portion that rotatably supports the movable portion, and a main body portion including a magnetic element that rotates the movable portion in response to a change in a magnetic field, and the main body portion.
- a magnetic material having a case portion forming an internal space to be accommodated, a first end portion facing the magnetic element, and a second end portion facing outward of the case portion and held in the case portion. It is characterized by having.
- FIG. It is a figure which shows the whole structure of the MEMS apparatus which concerns on Example 1.
- FIG. It is a perspective view of the main body part of the MEMS apparatus which concerns on Example 1.
- FIG. It is sectional drawing of the main body part of the MEMS apparatus which concerns on Example 1.
- FIG. It is a top view of the case part of the MEMS apparatus which concerns on Example 1.
- FIG. It is sectional drawing of the MEMS apparatus which concerns on Example 1.
- FIG. It is sectional drawing of the MEMS apparatus which concerns on modification 1 of Example 1.
- FIG. It is sectional drawing of the MEMS apparatus which concerns on the modification 2 of Example 1.
- FIG. It is sectional drawing of the MEMS apparatus which concerns on modification 3 of Example 1.
- FIG. It is a figure which shows the whole structure of the MEMS apparatus which concerns on Example 2.
- FIG. It is a perspective view of the main body part of the MEMS apparatus which concerns on Example 1.
- FIG. is sectional drawing of the main body part of the MEMS apparatus which concerns on Example 1.
- FIG. 1 is a schematic perspective view showing the overall configuration of the MEMS (Micro Electro Mechanical System) device 10 according to the first embodiment.
- the MEMS device 10 is a MEMS mirror including a mirror that deflects light by periodically swinging.
- the overall configuration of the MEMS apparatus 10 will be described with reference to FIG.
- the MEMS device 10 transmits the MEMS main body (hereinafter, simply referred to as the main body) 20 that performs light deflection, the case 30 that houses the main body 20, and the magnetic field generated outside the case 30 to the main body 20. It has a magnetic field transmitting unit 40 for generating a magnetic field and a magnetic field generating source 50 for generating a magnetic field.
- FIG. 1 is a schematic development view of the MEMS device 10.
- the MEMS device 10 is a magnetically driven MEMS device in which the main body 20 operates according to a change in a magnetic field.
- the magnetic field generation source 50 has a C-shaped (U-shaped) core 51 made of a soft magnetic material, for example, a metal material, and a coil 52 wound around the core 51.
- the core 51 has two ends for generating a magnetic field (hereinafter, referred to as magnetic field generating ends).
- the magnetic field generation sources 50 are arranged side by side in a direction orthogonal to the direction in which the two magnetic field generation ends are arranged in the plane formed by the two magnetic field generation ends in the core 51. It has a core 53 having a magnetic field generating end and a coil 54 wound around the core 53.
- the magnetic field generation source 50 has a drive circuit 55 that generates a magnetic field from the cores 51 and 53 by applying a current as a drive signal to each of the coils 52 and 54.
- the drive circuit 55 applies an independent alternating current as a drive signal to each of the coils 52 and 54.
- an independent alternating magnetic field is generated from each of the cores 51 and 53.
- the core 51 and the coil 52 function as electromagnets by being driven by the drive circuit 55.
- the core 53 and the coil 54 function as electromagnets by being driven by the drive circuit 55.
- the magnetic field generation source 50 has two electromagnets, each of which generates an alternating magnetic field.
- the magnetic field transmission unit 40 has first and second magnetic field transmission members 41 and 42 that transmit the magnetic fields generated from the two magnetic field generation ends of the core 51 in the magnetic field generation source 50 to the main body unit 20, respectively. Further, the magnetic field transmission unit 40 has third and fourth magnetic field transmission members 43 and 44 that transmit the magnetic fields generated from the two magnetic field generation ends of the core 53 in the magnetic field generation source 50 to the main body unit 20, respectively.
- the magnetic field transmission unit 40 is made of a soft magnetic material, for example, a metal material. Further, each of the first to fourth magnetic field transmission members 41 to 44 has a rod-like shape and is partially bent. Further, the magnetic field transmission unit 40 is held by the case unit 30, and in this embodiment, a part of the magnetic field transmission unit 40 is exposed in the internal space of the case unit 30.
- the first to fourth magnetic field transmission members 41 to 44 of the magnetic field transmission unit 40 are made of the same material as the cores 51 and 53 of the magnetic field generation source 50. Further, the first and second magnetic field transmission members 41 and 42 are magnetically coupled to the two magnetic field generation ends in the core 51, respectively. Further, the third and fourth magnetic field transmission members 43 and 44 are magnetically coupled to the two magnetic field generation ends in the core 53, respectively.
- the core 51, the first magnetic field transmission member 41, and the second magnetic field transmission member 42 constitute a magnetic yoke as a whole.
- the core 51 is the main body of the magnetic yoke
- each of the first and second magnetic field transmitting members 41 and 42 is the tip of the magnetic yoke.
- the core 53, the third and fourth magnetic field transmission members 43 and 44 have the core 53 as the main body and the third and fourth magnetic field transmission members 43 and 44 as the tip portions. Make up the yoke.
- FIG. 2 is a schematic perspective view of the main body 20.
- FIG. 3 is a cross-sectional view of the main body portion 20, and is a cross-sectional view taken along the line 3-3 in FIG. The configuration of the main body 20 will be described with reference to FIGS. 2 and 3.
- the main body 20 has a light reflecting surface 20S that is reflective to a predetermined light, and the light reflecting surface 20S swings around the first and second swing axes AY and AX. It is a moving MEMS mirror.
- the main body portion 20 includes a support portion 21, a movable portion 22 oscillatingly supported by the support portion 21, and a permanent magnet 23.
- the support portion 21 is fixed to the case portion 30.
- the permanent magnet 23 swings the movable portion 22 in response to a change in the magnetic field.
- the movable portion 22 has a movable frame 22A supported by the support portion 21 in a swingable state around the first swing shaft AY.
- the movable frame 22A is an annular frame body, and is connected to and supported by the support portion 21 by a torsion bar 21Y extending along the first swing frame AY.
- the movable portion 22 has a movable plate 22B which is arranged inside the movable frame 22A and is supported by the movable frame 22A in a state where it can swing around the second swing frame AX.
- the movable plate 22B is a flat plate-shaped member, and one of its main surfaces functions as a light reflecting surface 20S.
- the movable plate 22B is connected to and supported by the movable frame 22A by a torsion bar 22X extending along the second swing shaft AX.
- the movable frame 22A and the movable plate 22B swing around the first swing frame AY while being supported by the support portion 21. To do. Further, when a magnetic field is applied to the permanent magnet 23 so that the torsion bars 21Y and 22X are twisted in the circumferential direction thereof, the movable frame 22A swings around the first and swinging frames AY, and the movable plate 22B moves. It swings around the first and second swing frames AY and AX.
- the permanent magnet 23 is fixed on the other main surface of the movable plate 22B (the main surface opposite to the main surface functioning as the light reflecting surface 20S).
- the support portion 21 and the movable portion 22 in the main body portion 20 are made of a semiconductor material, and can be formed by, for example, processing a semiconductor wafer.
- FIG. 4 is a schematic top view of the case portion 30.
- FIG. 4 is a top view of the MEMS device 10 when the light reflecting surface 20S of the main body 20 is viewed.
- FIG. 5 is a cross-sectional view of the MEMS device 10, and is a cross-sectional view taken along the line 5-5 in FIG. A detailed arrangement configuration of the MEMS device 10 will be described with reference to FIGS. 4 and 5.
- the case portion 30 has a case main body 31 and a case cover 32 that forms an internal space for accommodating the main body portion 20 together with the case main body 31.
- the case cover 32 has translucency with respect to light that can be reflected by the light reflecting surface 20S of the main body 20.
- the main body portion 20 is housed in the case portion 30 so that the light reflecting surface 20S and the case cover 32 face each other.
- the first magnetic field transmission member 41 has an end portion (hereinafter, referred to as the first end portion) 41A facing the permanent magnet 23 and an end portion (hereinafter, the second end portion) facing outward of the case portion 30. (Referred to as) 41B and.
- the second magnetic field transmission member 42 has an end portion (hereinafter, referred to as the first end portion) 42A facing the permanent magnet 23 and an end portion (hereinafter, the second) facing outward of the case portion 30. 42B (referred to as the end of the).
- the third magnetic field transmission member 43 has the first and second ends 43A and 43B (not shown), and the fourth magnetic field transmission member 44 has the first and second ends 44A and 44B.
- each of the first to fourth magnetic field transmission members 41 to 44 is arranged so as to penetrate the case portion 30. Therefore, a part of each of the first to fourth magnetic field transmission members 41 to 44 is exposed inside the case portion 30, and the other portion is exposed to the outside of the case portion 30.
- the case portion 30 has an opening through which the first to fourth magnetic field transmitting members 41 to 44 can be fitted into the portion (hereinafter referred to as the bottom portion) of the case body 31 on the permanent magnet 23 side. It has parts 31A, 31B, 31C (not shown) and 31D.
- the first end portions 41A to 44A of each of the first to fourth magnetic field transmission members 41 to 44 are exposed in the internal space of the case portion 30.
- Each of the first to fourth magnetic field transmission members 41 to 44 is held.
- the case portion 30 transmits the first to fourth magnetic fields so that the second end portions 41B to 44B of each of the first to fourth magnetic field transmission members 41 to 44 are exposed to the outside of the case portion 30.
- Each of the members 41 to 44 is held.
- the core 51 in the magnetic field generation source 50 has a first magnetic field generation end 51A facing the second end 41B of the first magnetic field transmission member 41 and a second end of the second magnetic field transmission member 42. It has a second magnetic field generating end 51B facing 42B.
- first and second magnetic field generating ends 51A and 52B When an alternating current is applied to the coil 52, magnetic fields of opposite polarities are alternately generated from the first and second magnetic field generating ends 51A and 52B.
- the first end portion 41A of the first magnetic field transmission member 41 and the first end portion 42A of the second magnetic field transmission member 42 are arranged along the second swing axis AX. Has been done. Therefore, the first and second magnetic field transmitting members 41 and 42 permanently transmit a magnetic field from the first ends 41A and 42A that causes the light reflecting surface 20S to swing around the first swing frame AY. It is applied to the magnet 23.
- the core 53 of the magnetic field generation source 50 has a first magnetic field generation end 53A (not shown) facing a second end 43B (not shown) of the third magnetic field transmission member 43 and a fourth. It has a second magnetic field generating end 53B facing the second end 43B of the magnetic field transmitting member 44 of the above.
- first end portions 43A and 44A of the third and fourth magnetic field transmission members 43 and 44 are arranged along the first swing axis AY. Therefore, the third and fourth magnetic field transmitting members 43 and 44 permanently transmit a magnetic field from the first ends 43A and 44A that causes the light reflecting surface 20S to swing around the second swing frame AX. It is applied to the magnet 23.
- the MEMS device 10 has a main body portion 20 housed in the case portion 30 and a magnetic field generation source 50 provided outside the case portion 30. Further, the MEMS device 10 has a magnetic field transmission unit 40 that transmits the magnetic field generated by the magnetic field generation source 50 to the permanent magnet 23.
- the case portion 30 has openings 31A to 31D that communicate the inside and the outside of the case portion 30.
- the magnetic field transmitting portion 40 is exposed to the inside of the case portion 30 through the openings 31A to 31D of the case portion 30, and the first end portions 41A to 41D facing the permanent magnet 23 of the main body portion 20 and the case. It has first to fourth magnetic field transmission members 41 to 44 having second ends 41B to 44B exposed to the outside of the portion 30 and facing the cores 51 and 53 of the magnetic field generation source 50.
- the environment of the space in which the movable portion 22 of the main body portion 20 is arranged is stabilized. Therefore, stable operation can be performed even when operating in various environments.
- the internal space of the case 30 may be sealed by inserting the magnetic field transmission unit 40 into the openings 31A to 31D of the case 30. preferable.
- the case portion 30 preferably has openings 31A to 31D for fitting and holding the first to fourth magnetic field transmission members 41 to 44. Further, in the first to fourth magnetic field transmission members 41 to 44, the first to fourth magnetic field transmission members 41 to 44 are fitted into the openings 31A to 31D to seal the main body 20 together with the case portion 30. It is preferably configured to form a sealing structure to stop.
- the magnetic field generation source 50 outside the case portion 30, it is possible to suppress the increase in size of the case portion 30, and it is possible to replace the magnetic field generation source 50 and the main body portion 20 individually. .. Therefore, even if some parts of the MEMS device 10 are deteriorated, it is not necessary to replace all the parts. Therefore, maintenance is facilitated and the cost for maintenance is reduced.
- the magnetic field transmission unit 40 between the magnetic field generation source 50 and the permanent magnet 23 the magnetic field generated from the magnetic field generation source 50 can be applied to the permanent magnet 23 with high efficiency. Therefore, even when the magnetic field generation source 50 is provided outside the case portion 30, it is possible to suppress an increase in power consumption for driving the MEMS device 10.
- the configuration of the magnetic field transmission unit 40 is not limited to this.
- FIG. 6 is a cross-sectional view of the MEMS device 10A according to the first modification of this embodiment.
- the MEMS device 10A has the same configuration as the MEMS device 10 except that the magnetic field transmission unit 40 and the magnetic field generation source 50 are coupled inside the openings 31A to 31D of the case unit 30.
- the second ends 41B to 44B of the first to fourth magnetic field transmission members 41 to 44 are not exposed to the outside of the case portion 30. Further, the cores 51 and 53 of the magnetic field generation source 50 are partially inserted into the openings 31A to 31D of the case portion 30.
- the magnetic field transmission unit 40 does not have to be exposed to the outside of the case unit 30. Even in this case, for example, as shown in FIG. 6, by bringing the magnetic field generation source 50 and the magnetic field transmission member 40 close to each other or in contact with each other, highly efficient magnetic field transmission and magnetic field application can be performed.
- FIG. 7 is a cross-sectional view of the MEMS device 10B according to the second modification of this embodiment.
- the MEMS device 10A has the same configuration as the MEMS device 10 except for the configuration of the case portion 30A.
- the case portion 30A has a case body 33 that does not have an opening and forms a closed internal space together with the case cover 32.
- the second ends 41B to 44B of the first to fourth magnetic field transmission members 41 to 44 in the magnetic field transmission unit 40 are connected to the magnetic field generation source 50 via the bottom portion of the case unit 33. It is arranged so as to face and approach the magnetic field generating ends 51A and 51B of the core 51 and the magnetic field generating ends 53A and 53B of the core 53.
- the case portion 30A does not have to have an opening.
- the magnetic field transmission unit 40 is completely housed inside the case unit 30A. Even in such a case, for example, by arranging the magnetic field transmission unit 40 so as to be close to the magnetic field generation source 50, highly efficient magnetic field transmission and magnetic field application can be performed. Further, in this case, since the movable space of the main body 20 is almost completely sealed, the operation of the main body 20 is stable.
- FIG. 8 is a cross-sectional view of the MEMS device 10C according to the third modification of this embodiment.
- the MEMS device 10C has the same configuration as the MEMS device 10 except for the configuration of the case portion 30B.
- the case portion 30B has a case body 34 having recesses 34A to 34D on the surface of the bottom portion while sealing the internal space of the case portion 30B together with the case cover 32.
- the case portion 30B has recesses 34A to 34D on the bottom surface for holding the magnetic field transmission portion 40.
- the first to fourth magnetic field transmission members 41 to 44 are held in the case portion 30B so that each of the second end portions 41B to 44B is embedded in the recesses 34A to 34D.
- the case portion 30B has recesses 34A to 34D that fit and hold the first to fourth magnetic field transmission members 41 to 44 while sealing the main body portion 20.
- the case portion 30B has a portion (thin portion) having a small case thickness at the bottom as recesses 34A to 34D while sealing the accommodation space of the main body portion 20.
- the magnetic field transmission unit 40 and the magnetic field generation source 50 so as to face each other via the thin portion, the operation stability of the main body unit 20 and the magnetic field transmission efficiency can be improved.
- the first to fourth magnetic field transmission members 41 to 44 of the magnetic field transmission unit 40 are held by the case unit 30 (or the case unit 30A or 30B).
- the magnetic field generated by the magnetic field generation source 50 outside the case portion 30 is transmitted to the permanent magnet 23. Therefore, it is possible to provide the MEMS apparatus 10 (or the MEMS apparatus 10A to 10C) which is of high quality and capable of performing stable operation with low power consumption.
- the magnetic field transmission unit 40 may have at least one magnetic field transmission member. That is, for example, the MEMS device 10 may have the first magnetic field transmission member 41 as the magnetic field transmission member.
- the MEMS device 10 has the magnetic field generation source 50 has been described.
- the MEMS device 10 is not limited to the case where the magnetic field generation source 50 is provided.
- the magnetic field transmission units 40 first to fourth magnetic field transmission members 41 to 44 are configured to transmit magnetic fields generated by various magnetic field generation sources outside the case unit 30 to the permanent magnets 23. Just do it.
- the movable portion 22 may be a portion that operates to fulfill various purposes.
- the movable portion 22 may be rotatably supported by the support portion 21. Therefore, in this case, the MEMS device 10 may be not a MEMS mirror and a MEMS device, but various movable devices in which the main body 20 has a movable portion 22.
- the main body portion 20 has the permanent magnet 23
- the main body 20 is not limited to having the permanent magnet 23, and may have various magnetic elements that rotate the movable portion 22 in response to a change in the magnetic field, for example.
- the movable device has a support portion 21 that rotatably supports the movable portion 22, and a magnet that rotates the movable portion 22 in response to a change in the magnetic field.
- a main body 20 including an element (permanent magnet 23), a case 30 forming an internal space for accommodating the main body 20, and a magnetic field held by the case 30 and generated by a magnetic field generation source 50 outside the case 30. It has a magnetic field transmission member (first to fourth magnetic field transmission members 41 to 44) for transmitting the above to the magnetic element. Therefore, for example, it is possible to provide a MEMS device 10 (or a MEMS device 10A to 10C) capable of performing stable operation with high quality and low power consumption.
- the magnetic field transmission unit 40 is configured to transmit the magnetic field generated by the magnetic field generation source 50 to the permanent magnet 23 .
- the magnetic field transmission unit 40 may be, for example, a magnetic material held by the case unit 30. Even in this case, when a magnetic field is generated at a position where the magnetic material is affected by the magnetic field outside, the magnetic field is transmitted to the permanent magnet 23 by the magnetic material. As a result, the MEMS device 10 can perform stable operation with low power consumption.
- the movable device has a support portion 21 that rotatably supports the movable portion 22, and a magnet that rotates the movable portion 22 in response to a change in a magnetic field.
- a main body portion 20 including an element (permanent magnet 23), a case portion 30 forming an internal space for accommodating the main body portion 20, and a first end portion (first end portions 41A to 44A) facing the magnetic element.
- a magnetic material first to fourth magnetic field transmitting members 41
- second end portions 41B to 44B facing outward of the case portion 30 and held by the case portion 30.
- FIG. 9 is a diagram showing the overall configuration of the MEMS device 10D according to the second embodiment.
- FIG. 9 has the same configuration as that of FIG. 1 in the MEMS device 10D.
- the MEMS device 10D has a main body portion 20A in which the light reflecting surface 20S swings around only one swing shaft, and a magnetic field transmission portion 40A and a magnetic field generation source 50A having a configuration associated with the main body portion 20A.
- the main body portion 20A has a movable portion having a light reflecting surface 20S that swings around the first swing shaft AY.
- the magnetic field transmission unit 40A includes only the first and second magnetic field transmission members 41 and 42.
- the magnetic field generation source 50A includes only a core 51, a coil 52, and a drive circuit 55A that applies a current to the coil 52.
- the main body 20A may have a movable portion configured to swing around only one swing shaft. Even in this case, the magnetic field generated by the magnetic field generation source 50A is transmitted to the main body 20A with high efficiency by the magnetic field transmission unit 40A held in the case unit 30. Therefore, it is possible to provide the MEMS device 10D which is of high quality and capable of performing stable operation with low power consumption.
- FIG. 10 is a cross-sectional view of the MEMS device 10E according to the first modification of this embodiment.
- the MEMS device 10E has the same configuration as the MEMS device 10D except that the case portion 30C is configured.
- the case portion 30C has a convex portion that partially protrudes from the outer wall surface on the opposite side of the bottom surface, and the concave portion 35A that is recessed beyond the outer wall surface in the bottom surface portion corresponding to the convex portion. And has a case body 35 with 35B.
- the case portion 30C has a bottom surface shape that is bent so as to partially protrude to the outside.
- the magnetic field transmission unit 40B is fixed to the recessed portion from the inside of the bent bottom surface portion of the case portion 30C, and the magnetic field generation source 50A is arranged at the corresponding position to perform highly efficient magnetic field transmission. be able to.
- FIG. 11 is a cross-sectional view of the MEMS device 10F according to the second modification of this embodiment.
- the MEMS device 10F has the same configuration as the MEMS device 10D except that the main body portion 20B and the case portion 30D are configured.
- the main body 20B has a permanent magnet 24 composed of a plurality of magnet pieces 24A and 24B (two in this modification).
- the first end 41A of the first magnetic field transmission member 41 is arranged so as to face the magnet piece 24A, and the first end 42A of the second magnetic field transmission member 42 faces the magnet piece 24B. It suffices if it is arranged so as to do. That is, the magnetic element that swings (rotates) the movable portion 22 may have various configurations.
- the case portion 30D has a case main body 36 having recesses 36A and 36B recessed from the outside at the bottom portion. That is, the case portion 30D may have recesses 36A and 36B on the outer wall surface. Further, the magnetic field transmission unit 40A may be held by the case unit 30D outside the case unit 30D.
- the magnetic field transmission portion 40A is held by the case portion 30D so that the first end portions 41A and 42A fit into the recesses 36A and 36B of the case portion 30D.
- the case unit 30D can be significantly reduced in size.
- parts can be replaced independently in each of the case portion 30D, the magnetic field transmission portion 40A, and the magnetic field generation source 50A.
- the accommodation space of the main body portion 20 is securely sealed by the case portion 30D. Therefore, it is possible to provide the MEMS device 10F which is of high quality and capable of performing stable operation with low power consumption.
- FIG. 12 is a diagram showing the overall configuration of the MEMS device 10G according to the third embodiment.
- FIG. 12 is a diagram similar to FIGS. 1 and 9 in the MEMS device 10G.
- the MEMS device 10G has the same configuration as the MEMS device 10 except for the configuration of the magnetic field transmission unit 40B and the magnetic field generation source 50B.
- the magnetic field transmission unit 40B has first to fourth magnetic field transmission members 45, 46, 47 and 48 having tapered second end portions 45B, 46B, 47B and 48B. That is, in this embodiment, the first to fourth magnetic field transmission members 45, 46, 47 and 48 have the first ends 45A, 46A, 47A and 48A facing the permanent magnet 23 (magnetic element), respectively.
- the case portion 30 faces outward and has a tip-shaped second end portion 45B, 46B, 47B, and 48B.
- the magnetic field generation source 50B includes a core 55 having magnetic field generation ends 55A and 55B having recesses engaged with the second ends 45B and 46B of the first and second magnetic field transmission members 45 and 46, and a third. And a core 55 having magnetic field generating ends 56A and 56B having recesses engaged with the second ends 47B and 48B of the fourth magnetic field transmitting members 47 and 48.
- the magnetic field transmission unit 40B and the magnetic field generation source 50B have complementary shapes. Therefore, the magnetic field transmission unit 40B and the magnetic field generation source 50B have a relationship of physically engaging with each other.
- the magnetic field transmission unit 40B and the magnetic field generation source 50B are configured in this way, by contacting the magnetic field transmission unit 40B and the magnetic field generation source 50B so as to engage with each other, magnetic coupling, that is, the efficiency of magnetic field transmission can be improved. improves. Therefore, it is possible to perform highly efficient magnetic field transmission.
- the four magnetic field generation ends 55A, 55B, 56A and 56B in the magnetic field generation source 50B each have a shape complementary to the four second ends 45B to 58B in the magnetic field transmission unit 40B. Therefore, for example, when the case portion 30 and its housing parts (main body portion 20 and magnetic field transmission portion 40B in this embodiment) are replaced, the magnetic field generation source 50B and the case portion 30 are easily and reliably aligned. be able to.
- all of the second ends 45B to 48B of the first to fourth magnetic field transmission members in the magnetic field transmission unit 40B have tapered convex portions, and the magnetic field generation unit 50B.
- the case where all of the magnetic field generating ends 55A and 55B of the core 55 and the magnetic field generating ends 56A and 56B of the magnetic field generating end 56 of the core 56 have a concave portion engaging with the convex portion has been described.
- the shape of each end of the magnetic field transmission unit 40B and the magnetic field generation source 50B and the connection mode between the two are not limited to the above cases.
- the magnetic field generating ends 55A and 55B of the core 55 in the magnetic field generating portion 50B and a part or all of the magnetic field generating ends 56A and 56B of the magnetic field generating end 56 of the core 56 have tapered convex portions, and the magnetic field transmitting portion 40B.
- the second end corresponding to the magnetic field generating end having the recess of the second ends 45B to 48B of each of the first to fourth magnetic field transmission members in the above has a recess that engages with the recess. You may be.
- the second end portions 45B to 48B of the magnetic field transmission portion 40B may have convex portions or concave portions. That is, for example, the second ends 45B to 48B of the first to fourth magnetic field transmitting members 45 to 48 are directed toward the inside of the case portion 30 and the convex portion protruding outward of the case portion 30. If any of the recesses is provided, the transmission efficiency of the magnetic field is improved as compared with the case of, for example, a flat shape.
- FIG. 13 is a diagram having an overall configuration of the MEMS device 10H according to a modified example of this embodiment.
- the MEMS device 10H has the same configuration as the MEMS device 10G except that the magnetic field transmission unit 40BM and the magnetic field generation source 50BM are configured.
- the magnetic field transmission unit 40BM is the second end of the first to fourth magnetic field transmission members 45M to 48M having the second end portions 45C, 46C, 47C and 48C having a key-shaped hook structure.
- the magnetic field generation source 50BM has magnetic field generation ends 55C, 55D, 56C and 56D having a key-shaped hook structure that engages with the second ends 45C to 48C of the first to fourth magnetic field transmission members 45M to 48M.
- each of the second ends 45C to 48C in the magnetic field transmission unit 40BM and the magnetic field generation ends 55C, 55D, 56C and 56D in the magnetic field generation source 50BM are key-shaped hook structures. Will bond with high bond strength. Therefore, for example, it is possible to configure the MEMS device 10H having high resistance to a force that positions the two from the outside, for example, impact resistance.
- At least the second ends 45C to 48C of the first to fourth magnetic field transmission members 45M to 48M may have a hook structure.
- the transmission efficiency of the magnetic field is improved as compared with the case where the second ends 45C to 48C are flat, for example.
- FIG. 14 is a cross-sectional view of the MEMS device 10I according to the fourth embodiment.
- the MEMS device 10I has the same configuration as the MEMS device 10 except for the configuration of the magnetic field transmission unit 40M.
- the first to fourth magnetic field transmission members 41M to 44M are provided at the second end portions 41B to 44B and are made of a soft magnetic material, and the opening of the case portion 30. It has sheet portions 41C to 44C that form a sealing structure that seals the main body portion 20 together with the case portion 30 by being adhered to the case portion 30 so as to close the portions 31A to 31D.
- the sheet portions 41C to 44C are adhered to the case portion 30 so as to close the openings 31A to 31D from the outside of the case portion 30.
- the second ends 41B to 44B of the first to fourth magnetic field transmission members 41M to 44M are held by the case portion 30 in a state of being inserted into the openings 31A to 31D of the case portion 30. ..
- the sealing function of the main body 20 in the case 30 is improved. Therefore, the operation of the main body 20 is stable. Further, by forming the sheet portions 41C to 44C with a soft magnetic material, the efficiency of magnetic field transmission between the magnetic field transmission portion 40M and the magnetic field generation source 50 is also stable.
- FIG. 15 is a cross-sectional view of the MEMS device 10J according to a modified example of this embodiment.
- the MEMS device 10J has the same configuration as the MEMS device 10I except for the configuration of the magnetic field transmission unit 40MA.
- the first to fourth magnetic field transmission members 41MA to 44MA are the sheet portions 41D adhered to the case portion 30 so as to close the openings 31A to 31D of the case portion 30 from the inside of the case portion 30. It has ⁇ 44D.
- the magnetic field generation source 50 may be partially inserted into the openings 31A to 31D of the case portion 30.
- the case portion 30 has openings 31A to 31D.
- the first to fourth magnetic field transmission members 41M to 44M are made of a soft magnetic material, and are adhered to the case portion 30 so as to close the openings 31A to 31D to seal the main body portion 20 together with the case portion 30. It has sheet portions 41C to 44C that form a sealing structure for stopping. Further, the case portion 30 holds the first to fourth magnetic field transmission members 41M to 44M via the seat portions 41C to 41D. Therefore, it is possible to provide the MEMS device 10I which is of high quality and capable of performing stable operation with low power consumption.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
Abstract
The present invention has: a body part that includes a movable part, a support part for turnably supporting the movable part, and a magnetic element that causes the movable part to turn in accordance with changes in a magnetic field; a case part that forms an internal space in which the body part is accommodated; and a magnetic field transmission member that is held by the case part and transmits, to the magnetic element, a magnetic field generated by a magnetic field generator outside of the case part.
Description
本発明は、例えば可動ミラーなどの可動デバイスに関する。
The present invention relates to a movable device such as a movable mirror.
従来から、光を所定の領域に偏向しつつ向けて出射し、当該所定の領域から戻って来た光を検出することで、当該所定の領域内の物体に関する種々の情報を得る走査装置が知られている。当該走査装置においては、光を偏向する部分として、MEMS(Micro Electro Mechanical System)ミラーなどの可動式のミラーが設けられている。例えば、特許文献1には、ミラー振動子及び永久磁石が上下カバーにより包囲された光走査装置が開示されている。
Conventionally, a scanning device has been known to obtain various information about an object in a predetermined region by emitting light while deflecting it to a predetermined region and detecting the light returned from the predetermined region. Has been done. In the scanning device, a movable mirror such as a MEMS (Micro Electro Mechanical System) mirror is provided as a portion for deflecting light. For example, Patent Document 1 discloses an optical scanning device in which a mirror oscillator and a permanent magnet are surrounded by upper and lower covers.
可動ミラーなどのような可動式のデバイスにおける可動部分は、例えば、当該可動部分の外部から種々の力を受けることで、動作用に用意された領域内を、制御された態様で移動する動作(例えば往復運動や揺動運動、回動運動など)を行う。
A movable part in a movable device such as a movable mirror moves in a controlled manner in a region prepared for the movement by receiving various forces from the outside of the movable part, for example. For example, reciprocating motion, rocking motion, rotating motion, etc.) are performed.
ここで、可動デバイスは、種々の環境下で安定した動作を行うことが好ましく、例えば高温又は高湿の環境下で長時間使用する場合であっても安定した動作を行うことができることが好ましい。
Here, it is preferable that the movable device performs stable operation in various environments, and for example, it is preferable that the movable device can perform stable operation even when it is used for a long time in a high temperature or high humidity environment.
従って、例えば、可動部分が動作する空間の環境が大きく変化しないこと、当該可動部分に対して可動力が正確にかつ高効率で与えられること、また、当該可動部分などの部品が劣化した場合でも容易に交換できることが好ましい。
Therefore, for example, even if the environment of the space in which the movable part operates does not change significantly, the movable force is accurately and highly efficiently applied to the movable part, and parts such as the movable part deteriorate. It is preferable that it can be easily replaced.
本発明は上記した点に鑑みてなされたものであり、高品質であり、低消費電力で安定した動作を行うことが可能な可動デバイスを提供することを目的の1つとしている。
The present invention has been made in view of the above points, and one of the objects of the present invention is to provide a movable device capable of performing stable operation with high quality and low power consumption.
請求項1に記載の発明は、可動部、可動部を回動可能に支持する支持部、及び磁界の変化に応じて可動部を回動させる磁気素子を含む本体部と、本体部を収容する内部空間を形成するケース部と、ケース部に保持されてケース部の外部の磁界発生源によって発生した磁界を磁気素子に伝達する磁界伝達部材と、を有することを特徴とする。
The invention according to claim 1 includes a main body portion including a movable portion, a support portion that rotatably supports the movable portion, and a magnetic element that rotates the movable portion in response to a change in a magnetic field, and the main body portion. It is characterized by having a case portion that forms an internal space and a magnetic field transmission member that is held by the case portion and transmits a magnetic field generated by a magnetic field generation source outside the case portion to a magnetic element.
また、請求項10に記載の発明は、可動部、可動部を回動可能に支持する支持部、及び磁界の変化に応じて可動部を回動させる磁気素子を含む本体部と、本体部を収容する内部空間を形成するケース部と、磁気素子に対向する第1の端部とケース部の外方を向いた第2の端部とを有しかつケース部に保持された磁性体と、を有することを特徴とする。
The invention according to claim 10 includes a movable portion, a support portion that rotatably supports the movable portion, and a main body portion including a magnetic element that rotates the movable portion in response to a change in a magnetic field, and the main body portion. A magnetic material having a case portion forming an internal space to be accommodated, a first end portion facing the magnetic element, and a second end portion facing outward of the case portion and held in the case portion. It is characterized by having.
以下に本発明の実施例について詳細に説明する。
Examples of the present invention will be described in detail below.
図1は、実施例1に係るMEMS(Micro Electro Mechanical System)装置10の全体構成を示す模式的な斜視図である。本実施例においては、MEMS装置10は、周期的に揺動することで光の偏向動作を行うミラーを含むMEMSミラーである。図1を用いて、MEMS装置10の全体構成について説明する。
FIG. 1 is a schematic perspective view showing the overall configuration of the MEMS (Micro Electro Mechanical System) device 10 according to the first embodiment. In this embodiment, the MEMS device 10 is a MEMS mirror including a mirror that deflects light by periodically swinging. The overall configuration of the MEMS apparatus 10 will be described with reference to FIG.
MEMS装置10は、光偏向を行うMEMS本体部(以下、単に本体部と称する)20と、本体部20を収容するケース部30と、ケース部30の外部で発生した磁界を本体部20に伝達する磁界伝達部40と、磁界を発生させる磁界発生源50と、を有する。
The MEMS device 10 transmits the MEMS main body (hereinafter, simply referred to as the main body) 20 that performs light deflection, the case 30 that houses the main body 20, and the magnetic field generated outside the case 30 to the main body 20. It has a magnetic field transmitting unit 40 for generating a magnetic field and a magnetic field generating source 50 for generating a magnetic field.
図1においては、図の明確さのため、本体部20と磁界伝達部40とを実際の配置状態から離して示し、磁界伝達部40と磁界発生源50とを実際の配置状態から離して示している。換言すれば、図1は、MEMS装置10の模式的な展開図である。
In FIG. 1, for the sake of clarity of the figure, the main body 20 and the magnetic field transmission unit 40 are shown away from the actual arrangement state, and the magnetic field transmission unit 40 and the magnetic field generation source 50 are shown away from the actual arrangement state. ing. In other words, FIG. 1 is a schematic development view of the MEMS device 10.
本実施例においては、本体部20は、磁界発生源50によって発生した磁界が磁界伝達部40によって本体部20に伝達され、本体部20に磁界が印加されることで、本体部20が動作(本実施例においては揺動)する。換言すれば、MEMS装置10は、磁界の変化によって本体部20が動作する磁気駆動型のMEMS装置である。
In this embodiment, in the main body 20, the magnetic field generated by the magnetic field generation source 50 is transmitted to the main body 20 by the magnetic field transmission unit 40, and the magnetic field is applied to the main body 20 to operate the main body 20 ( In this embodiment, it swings). In other words, the MEMS device 10 is a magnetically driven MEMS device in which the main body 20 operates according to a change in a magnetic field.
本実施例においては、磁界発生源50は、軟質磁性体材料、例えば金属材料からなるC字型(U字型)のコア51と、コア51に巻き付けられたコイル52と、を有する。コア51は、磁界を発生させる2つの端部(以下、磁界発生端と称する)を有する。
In this embodiment, the magnetic field generation source 50 has a C-shaped (U-shaped) core 51 made of a soft magnetic material, for example, a metal material, and a coil 52 wound around the core 51. The core 51 has two ends for generating a magnetic field (hereinafter, referred to as magnetic field generating ends).
また、本実施例においては、磁界発生源50は、コア51における2つの磁界発生端が形成する面内において当該2つの磁界発生端が並ぶ方向とは直交する方向に並んで配置された2つの磁界発生端を有するコア53と、コア53に巻き付けられたコイル54と、を有する。
Further, in the present embodiment, the magnetic field generation sources 50 are arranged side by side in a direction orthogonal to the direction in which the two magnetic field generation ends are arranged in the plane formed by the two magnetic field generation ends in the core 51. It has a core 53 having a magnetic field generating end and a coil 54 wound around the core 53.
また、本実施例においては、磁界発生源50は、コイル52及び54の各々に駆動信号として電流を印加することでコア51及び53から磁界を発生させる駆動回路55を有する。本実施例においては、駆動回路55は、コイル52及び54の各々に対し、駆動信号として、独立した交流電流を印加する。これによって、コア51及び53の各々からは、それぞれ独立した交流磁界が発生する。
Further, in the present embodiment, the magnetic field generation source 50 has a drive circuit 55 that generates a magnetic field from the cores 51 and 53 by applying a current as a drive signal to each of the coils 52 and 54. In this embodiment, the drive circuit 55 applies an independent alternating current as a drive signal to each of the coils 52 and 54. As a result, an independent alternating magnetic field is generated from each of the cores 51 and 53.
本実施例においては、コア51及びコイル52は、駆動回路55によって駆動されることで、電磁石として機能する。同様に、コア53及びコイル54は、駆動回路55によって駆動されることで、電磁石として機能する。換言すれば、本実施例においては、磁界発生源50は、各々が交流磁界を発生させる2つの電磁石を有する。
In this embodiment, the core 51 and the coil 52 function as electromagnets by being driven by the drive circuit 55. Similarly, the core 53 and the coil 54 function as electromagnets by being driven by the drive circuit 55. In other words, in this embodiment, the magnetic field generation source 50 has two electromagnets, each of which generates an alternating magnetic field.
磁界伝達部40は、磁界発生源50におけるコア51の2つの磁界発生端から発生した磁界をそれぞれ本体部20に伝達する第1及び第2の磁界伝達部材41及び42を有する。また、磁界伝達部40は、磁界発生源50におけるコア53の2つの磁界発生端から発生した磁界をそれぞれ本体部20に伝達する第3及び第4の磁界伝達部材43及び44を有する。
The magnetic field transmission unit 40 has first and second magnetic field transmission members 41 and 42 that transmit the magnetic fields generated from the two magnetic field generation ends of the core 51 in the magnetic field generation source 50 to the main body unit 20, respectively. Further, the magnetic field transmission unit 40 has third and fourth magnetic field transmission members 43 and 44 that transmit the magnetic fields generated from the two magnetic field generation ends of the core 53 in the magnetic field generation source 50 to the main body unit 20, respectively.
また、本実施例においては、磁界伝達部40は、軟質磁性体材料、例えば金属材料からなる。また、第1~第4の磁界伝達部材41~44の各々は、棒状の形状を有し、部分的に屈曲している。また、磁界伝達部40は、ケース部30に保持されており、本実施例においては、一部がケース部30の内部空間中に露出している。
Further, in this embodiment, the magnetic field transmission unit 40 is made of a soft magnetic material, for example, a metal material. Further, each of the first to fourth magnetic field transmission members 41 to 44 has a rod-like shape and is partially bent. Further, the magnetic field transmission unit 40 is held by the case unit 30, and in this embodiment, a part of the magnetic field transmission unit 40 is exposed in the internal space of the case unit 30.
また、本実施例においては、磁界伝達部40の第1~第4の磁界伝達部材41~44は、磁界発生源50のコア51及び53と同様の材料からなる。また、第1及び第2の磁界伝達部材41及び42は、コア51における2つの磁界発生端にそれぞれ磁気的に結合する。また、第3及び第4の磁界伝達部材43及び44は、コア53における2つの磁界発生端にそれぞれ磁気的に結合する。
Further, in the present embodiment, the first to fourth magnetic field transmission members 41 to 44 of the magnetic field transmission unit 40 are made of the same material as the cores 51 and 53 of the magnetic field generation source 50. Further, the first and second magnetic field transmission members 41 and 42 are magnetically coupled to the two magnetic field generation ends in the core 51, respectively. Further, the third and fourth magnetic field transmission members 43 and 44 are magnetically coupled to the two magnetic field generation ends in the core 53, respectively.
また、本実施例においては、コア51、第1の磁界伝達部材41及び第2の磁界伝達部材42は、全体として、磁気ヨークを構成する。本実施例においては、コア51は磁気ヨークの本体となり、第1及び第2の磁界伝達部材41及び42の各々は磁気ヨークの先端部となる。同様に、本実施例においては、コア53、第3及び第4の磁界伝達部材43及び44は、コア53を本体とし、第3及び第4の磁界伝達部材43及び44を先端部とする磁気ヨークを構成する。
Further, in the present embodiment, the core 51, the first magnetic field transmission member 41, and the second magnetic field transmission member 42 constitute a magnetic yoke as a whole. In this embodiment, the core 51 is the main body of the magnetic yoke, and each of the first and second magnetic field transmitting members 41 and 42 is the tip of the magnetic yoke. Similarly, in the present embodiment, the core 53, the third and fourth magnetic field transmission members 43 and 44 have the core 53 as the main body and the third and fourth magnetic field transmission members 43 and 44 as the tip portions. Make up the yoke.
図2は、本体部20の模式的な斜視図である。また、図3は、本体部20の断面図であり、図2における3-3線に沿った断面図である。図2及び図3を用いて、本体部20の構成について説明する。
FIG. 2 is a schematic perspective view of the main body 20. Further, FIG. 3 is a cross-sectional view of the main body portion 20, and is a cross-sectional view taken along the line 3-3 in FIG. The configuration of the main body 20 will be described with reference to FIGS. 2 and 3.
本実施例においては、本体部20は、所定の光に対して反射性を有する光反射面20Sを有し、光反射面20Sが第1及び第2の揺動軸AY及びAXの周りに揺動するMEMSミラーである。
In this embodiment, the main body 20 has a light reflecting surface 20S that is reflective to a predetermined light, and the light reflecting surface 20S swings around the first and second swing axes AY and AX. It is a moving MEMS mirror.
より具体的には、本実施例においては、本体部20は、支持部21と、支持部21によって揺動可能に支持された可動部22と、永久磁石23と、を含む。支持部21は、ケース部30に対して固定されている。また、永久磁石23は、磁界の変化に応じて可動部22を揺動させる。
More specifically, in this embodiment, the main body portion 20 includes a support portion 21, a movable portion 22 oscillatingly supported by the support portion 21, and a permanent magnet 23. The support portion 21 is fixed to the case portion 30. Further, the permanent magnet 23 swings the movable portion 22 in response to a change in the magnetic field.
本実施例においては、可動部22は、第1の揺動軸AYの周りに揺動可能な状態で支持部21に支持された可動枠22Aを有する。本実施例においては、可動枠22Aは、環状の枠体であり、第1の揺動枠AYに沿って延びるトーションバー21Yによって支持部21に接続及び支持されている。
In this embodiment, the movable portion 22 has a movable frame 22A supported by the support portion 21 in a swingable state around the first swing shaft AY. In this embodiment, the movable frame 22A is an annular frame body, and is connected to and supported by the support portion 21 by a torsion bar 21Y extending along the first swing frame AY.
また、可動部22は、可動枠22Aの内側に配置され、第2の揺動枠AXの周りに揺動可能な状態で可動枠22Aに支持された可動板22Bを有する。本実施例においては、可動板22Bは、平板状の部材であり、その主面の一方が光反射面20Sとして機能する。また、可動板22Bは、第2の揺動軸AXに沿って延びるトーションバー22Xによって可動枠22Aに接続及び支持されている。
Further, the movable portion 22 has a movable plate 22B which is arranged inside the movable frame 22A and is supported by the movable frame 22A in a state where it can swing around the second swing frame AX. In this embodiment, the movable plate 22B is a flat plate-shaped member, and one of its main surfaces functions as a light reflecting surface 20S. Further, the movable plate 22B is connected to and supported by the movable frame 22A by a torsion bar 22X extending along the second swing shaft AX.
トーションバー21Yがその周方向にねじれるように永久磁石23に磁界が印加されると、可動枠22A及び可動板22Bは、支持部21に支持されつつ第1の揺動枠AYの周りに揺動する。また、トーションバー21Y及び22Xがその周方向にねじれるように永久磁石23に磁界が印加されると、可動枠22Aが第1及びの揺動枠AYの周りに揺動し、かつ可動板22Bが第1及び第2の揺動枠AY及びAXの周りに揺動する。
When a magnetic field is applied to the permanent magnet 23 so that the torsion bar 21Y twists in its circumferential direction, the movable frame 22A and the movable plate 22B swing around the first swing frame AY while being supported by the support portion 21. To do. Further, when a magnetic field is applied to the permanent magnet 23 so that the torsion bars 21Y and 22X are twisted in the circumferential direction thereof, the movable frame 22A swings around the first and swinging frames AY, and the movable plate 22B moves. It swings around the first and second swing frames AY and AX.
また、本実施例においては、永久磁石23は、可動板22Bにおける他方の主面(光反射面20Sとして機能する主面とは反対側の主面)上に固定されている。また、例えば、本体部20における支持部21及び可動部22は、半導体材料からなり、例えば半導体ウェハを加工することで形成することができる。
Further, in the present embodiment, the permanent magnet 23 is fixed on the other main surface of the movable plate 22B (the main surface opposite to the main surface functioning as the light reflecting surface 20S). Further, for example, the support portion 21 and the movable portion 22 in the main body portion 20 are made of a semiconductor material, and can be formed by, for example, processing a semiconductor wafer.
図4は、ケース部30の模式的な上面図である。図4は、本体部20の光反射面20Sを見たときのMEMS装置10の上面図である。また、図5は、MEMS装置10の断面図であり、図4における5-5線に沿った断面図である。図4及び図5を用いて、MEMS装置10の詳細な配置構成について説明する。
FIG. 4 is a schematic top view of the case portion 30. FIG. 4 is a top view of the MEMS device 10 when the light reflecting surface 20S of the main body 20 is viewed. Further, FIG. 5 is a cross-sectional view of the MEMS device 10, and is a cross-sectional view taken along the line 5-5 in FIG. A detailed arrangement configuration of the MEMS device 10 will be described with reference to FIGS. 4 and 5.
まず、ケース部30の構成について説明する。ケース部30は、ケース本体31と、ケース本体31と共に本体部20を収容する内部空間を形成するケースカバー32とを有する。ケースカバー32は、本体部20における光反射面20Sが反射可能な光に対して透光性を有する。本体部20は、光反射面20Sとケースカバー32とが対向するように、ケース部30内に収容されている。
First, the configuration of the case portion 30 will be described. The case portion 30 has a case main body 31 and a case cover 32 that forms an internal space for accommodating the main body portion 20 together with the case main body 31. The case cover 32 has translucency with respect to light that can be reflected by the light reflecting surface 20S of the main body 20. The main body portion 20 is housed in the case portion 30 so that the light reflecting surface 20S and the case cover 32 face each other.
次に、磁界伝達部40について説明する。第1の磁界伝達部材41は、永久磁石23に対向する端部(以下、第1の端部と称する)41Aと、ケース部30の外方を向いた端部(以下、第2の端部と称する)41Bと、を有する。
Next, the magnetic field transmission unit 40 will be described. The first magnetic field transmission member 41 has an end portion (hereinafter, referred to as the first end portion) 41A facing the permanent magnet 23 and an end portion (hereinafter, the second end portion) facing outward of the case portion 30. (Referred to as) 41B and.
同様に、第2の磁界伝達部材42は、永久磁石23に対向する端部(以下、第1の端部と称する)42Aと、ケース部30の外方を向いた端部(以下、第2の端部と称する)42Bと、を有する。また、第3の磁界伝達部材43は第1及び第2の端部43A及び43Bを有し(図示せず)、第4の磁界伝達部材44は第1及び第2の端部44A及び44Bを有する。
Similarly, the second magnetic field transmission member 42 has an end portion (hereinafter, referred to as the first end portion) 42A facing the permanent magnet 23 and an end portion (hereinafter, the second) facing outward of the case portion 30. 42B (referred to as the end of the). Further, the third magnetic field transmission member 43 has the first and second ends 43A and 43B (not shown), and the fourth magnetic field transmission member 44 has the first and second ends 44A and 44B. Have.
また、本実施例においては、第1~第4の磁界伝達部材41~44の各々は、ケース部30を貫通するように配置されている。従って、第1~第4の磁界伝達部材41~44の各々は、その一部がケース部30内に露出し、その他の部分がケース部30の外部に露出している。
Further, in the present embodiment, each of the first to fourth magnetic field transmission members 41 to 44 is arranged so as to penetrate the case portion 30. Therefore, a part of each of the first to fourth magnetic field transmission members 41 to 44 is exposed inside the case portion 30, and the other portion is exposed to the outside of the case portion 30.
より具体的には、ケース部30は、そのケース本体31における永久磁石23側の部分(以下、底部と称する)に、第1~第4の磁界伝達部材41~44がそれぞれ嵌通可能な開口部31A、31B、31C(図示せず)及び31Dを有する。
More specifically, the case portion 30 has an opening through which the first to fourth magnetic field transmitting members 41 to 44 can be fitted into the portion (hereinafter referred to as the bottom portion) of the case body 31 on the permanent magnet 23 side. It has parts 31A, 31B, 31C (not shown) and 31D.
これによって、本実施例においては、ケース部30は、第1~第4の磁界伝達部材41~44の各々における第1の端部41A~44Aがケース部30の内部空間中に露出されるように第1~第4の磁界伝達部材41~44の各々を保持している。また、ケース部30は、第1~第4の磁界伝達部材41~44の各々における第2の端部41B~44Bがケース部30の外部に露出されるように第1~第4の磁界伝達部材41~44の各々を保持している。
As a result, in the present embodiment, in the case portion 30, the first end portions 41A to 44A of each of the first to fourth magnetic field transmission members 41 to 44 are exposed in the internal space of the case portion 30. Each of the first to fourth magnetic field transmission members 41 to 44 is held. Further, the case portion 30 transmits the first to fourth magnetic fields so that the second end portions 41B to 44B of each of the first to fourth magnetic field transmission members 41 to 44 are exposed to the outside of the case portion 30. Each of the members 41 to 44 is held.
また、磁界発生源50におけるコア51は、第1の磁界伝達部材41の第2の端部41Bに対向する第1の磁界発生端51Aと、第2の磁界伝達部材42の第2の端部42Bに対向する第2の磁界発生端51Bと、を有する。コイル52に交流電流が印加されると、第1及び第2の磁界発生端51A及び52Bからは、互いに反対の極性の磁界が交番で発生する。
Further, the core 51 in the magnetic field generation source 50 has a first magnetic field generation end 51A facing the second end 41B of the first magnetic field transmission member 41 and a second end of the second magnetic field transmission member 42. It has a second magnetic field generating end 51B facing 42B. When an alternating current is applied to the coil 52, magnetic fields of opposite polarities are alternately generated from the first and second magnetic field generating ends 51A and 52B.
また、本実施例においては、第1の磁界伝達部材41の第1の端部41A及び第2の磁界伝達部材42の第1の端部42Aは、第2の揺動軸AXに沿って配列されている。従って、第1及び第2の磁界伝達部材41及び42は、その第1の端部41A及び42Aから、光反射面20Sを第1の揺動枠AYの周りに揺動させるような磁界を永久磁石23に印加する。
Further, in the present embodiment, the first end portion 41A of the first magnetic field transmission member 41 and the first end portion 42A of the second magnetic field transmission member 42 are arranged along the second swing axis AX. Has been done. Therefore, the first and second magnetic field transmitting members 41 and 42 permanently transmit a magnetic field from the first ends 41A and 42A that causes the light reflecting surface 20S to swing around the first swing frame AY. It is applied to the magnet 23.
同様に、磁界発生源50のコア53は、第3の磁界伝達部材43の第2の端部43B(図示せず)に対向する第1の磁界発生端53A(図示せず)と、第4の磁界伝達部材44の第2の端部43Bに対向する第2の磁界発生端53Bと、を有する。
Similarly, the core 53 of the magnetic field generation source 50 has a first magnetic field generation end 53A (not shown) facing a second end 43B (not shown) of the third magnetic field transmission member 43 and a fourth. It has a second magnetic field generating end 53B facing the second end 43B of the magnetic field transmitting member 44 of the above.
また、第3及び第4の磁界伝達部材43及び44における第1の端部43A及び44Aは、第1の揺動軸AYに沿って配列されている。従って、第3及び第4の磁界伝達部材43及び44は、その第1の端部43A及び44Aから、光反射面20Sを第2の揺動枠AXの周りに揺動させるような磁界を永久磁石23に印加する。
Further, the first end portions 43A and 44A of the third and fourth magnetic field transmission members 43 and 44 are arranged along the first swing axis AY. Therefore, the third and fourth magnetic field transmitting members 43 and 44 permanently transmit a magnetic field from the first ends 43A and 44A that causes the light reflecting surface 20S to swing around the second swing frame AX. It is applied to the magnet 23.
このように、本実施例においては、MEMS装置10は、ケース部30に収容された本体部20と、ケース部30の外部に設けられた磁界発生源50と、を有する。また、MEMS装置10は、磁界発生源50によって発生した磁界を永久磁石23に伝達する磁界伝達部40を有する。
As described above, in this embodiment, the MEMS device 10 has a main body portion 20 housed in the case portion 30 and a magnetic field generation source 50 provided outside the case portion 30. Further, the MEMS device 10 has a magnetic field transmission unit 40 that transmits the magnetic field generated by the magnetic field generation source 50 to the permanent magnet 23.
また、本実施例においては、ケース部30は、ケース部30の内部及び外部を連通する開口部31A~31Dを有する。また、磁界伝達部40は、ケース部30の開口部31A~31Dを介してケース部30の内部に露出して本体部20の永久磁石23に対向する第1の端部41A~41Dと、ケース部30の外部に露出して磁界発生源50のコア51及び53に対向する第2の端部41B~44Bと、を有する第1~第4の磁界伝達部材41~44を有する。
Further, in the present embodiment, the case portion 30 has openings 31A to 31D that communicate the inside and the outside of the case portion 30. Further, the magnetic field transmitting portion 40 is exposed to the inside of the case portion 30 through the openings 31A to 31D of the case portion 30, and the first end portions 41A to 41D facing the permanent magnet 23 of the main body portion 20 and the case. It has first to fourth magnetic field transmission members 41 to 44 having second ends 41B to 44B exposed to the outside of the portion 30 and facing the cores 51 and 53 of the magnetic field generation source 50.
従って、まず、本体部20がケース部30に収容されることで、本体部20の可動部22が配置される空間の環境が安定する。従って、種々の環境下で動作する場合であっても安定した動作を行うことができる。
Therefore, first, by accommodating the main body portion 20 in the case portion 30, the environment of the space in which the movable portion 22 of the main body portion 20 is arranged is stabilized. Therefore, stable operation can be performed even when operating in various environments.
なお、本体部20を安定して動作させることを考慮すると、ケース部30の開口部31A~31Dは、磁界伝達部40が挿入されることでケース部30の内部空間が封止されることが好ましい。
Considering that the main body 20 is operated stably, the internal space of the case 30 may be sealed by inserting the magnetic field transmission unit 40 into the openings 31A to 31D of the case 30. preferable.
換言すれば、ケース部30は、第1~第4の磁界伝達部材41~44を嵌通させて保持するための開口部31A~31Dを有することが好ましい。また、第1~第4の磁界伝達部材41~44は、第1~第4の磁界伝達部材41~44が開口部31A~31Dに嵌通されることでケース部30と共に本体部20を封止する封止構造を構成するように構成されていることが好ましい。
In other words, the case portion 30 preferably has openings 31A to 31D for fitting and holding the first to fourth magnetic field transmission members 41 to 44. Further, in the first to fourth magnetic field transmission members 41 to 44, the first to fourth magnetic field transmission members 41 to 44 are fitted into the openings 31A to 31D to seal the main body 20 together with the case portion 30. It is preferably configured to form a sealing structure to stop.
また、ケース部30の外部に磁界発生源50を配置することで、ケース部30の大型化を抑制することができ、また磁界発生源50及び本体部20を個別に交換することが可能となる。従って、MEMS装置10の一部の部品が劣化した場合でも、全ての部品を交換する必要がない。従って、維持管理が容易となり、また維持管理にかかるコストが低減する。
Further, by arranging the magnetic field generation source 50 outside the case portion 30, it is possible to suppress the increase in size of the case portion 30, and it is possible to replace the magnetic field generation source 50 and the main body portion 20 individually. .. Therefore, even if some parts of the MEMS device 10 are deteriorated, it is not necessary to replace all the parts. Therefore, maintenance is facilitated and the cost for maintenance is reduced.
さらに、磁界伝達部40を磁界発生源50と永久磁石23との間に設けることで、磁界発生源50から発生した磁界を高効率で永久磁石23に印加することができる。従って、磁界発生源50をケース部30の外部に設けた場合でも、MEMS装置10の駆動にかかる消費電力が増大することが抑制される。
Further, by providing the magnetic field transmission unit 40 between the magnetic field generation source 50 and the permanent magnet 23, the magnetic field generated from the magnetic field generation source 50 can be applied to the permanent magnet 23 with high efficiency. Therefore, even when the magnetic field generation source 50 is provided outside the case portion 30, it is possible to suppress an increase in power consumption for driving the MEMS device 10.
なお、本実施例においては、磁界伝達部40がケース部30を貫通するようにケース部30に保持される場合について説明した。しかし、磁界伝達部40の構成はこれに限定されない。
In this embodiment, the case where the magnetic field transmission unit 40 is held by the case unit 30 so as to penetrate the case unit 30 has been described. However, the configuration of the magnetic field transmission unit 40 is not limited to this.
図6は、本実施例の変形例1に係るMEMS装置10Aの断面図である。MEMS装置10Aは、ケース部30の開口部31A~31Dの内部で磁界伝達部40及び磁界発生源50が結合している点を除いては、MEMS装置10と同様の構成を有する。
FIG. 6 is a cross-sectional view of the MEMS device 10A according to the first modification of this embodiment. The MEMS device 10A has the same configuration as the MEMS device 10 except that the magnetic field transmission unit 40 and the magnetic field generation source 50 are coupled inside the openings 31A to 31D of the case unit 30.
本変形例においては、第1~第4の磁界伝達部材41~44における第2の端部41B~44Bは、ケース部30の外部に露出していない。また、磁界発生源50のコア51及び53がケース部30の開口部31A~31Dに部分的に挿入されている。
In this modification, the second ends 41B to 44B of the first to fourth magnetic field transmission members 41 to 44 are not exposed to the outside of the case portion 30. Further, the cores 51 and 53 of the magnetic field generation source 50 are partially inserted into the openings 31A to 31D of the case portion 30.
本変形例のように、磁界伝達部40はケース部30の外部に露出していなくてもよい。この場合でも、例えば図6に示すように、磁界発生源50と磁界伝達部材40を近接又は接触させることで、高効率な磁界伝達及び磁界印加を行うことができる。
As in this modification, the magnetic field transmission unit 40 does not have to be exposed to the outside of the case unit 30. Even in this case, for example, as shown in FIG. 6, by bringing the magnetic field generation source 50 and the magnetic field transmission member 40 close to each other or in contact with each other, highly efficient magnetic field transmission and magnetic field application can be performed.
図7は、本実施例の変形例2に係るMEMS装置10Bの断面図である。MEMS装置10Aは、ケース部30Aの構成を除いては、MEMS装置10と同様の構成を有する。本変形例においては、ケース部30Aは、開口部を有さず、ケースカバー32と共に閉塞した内部空間を形成するケース本体33を有する。
FIG. 7 is a cross-sectional view of the MEMS device 10B according to the second modification of this embodiment. The MEMS device 10A has the same configuration as the MEMS device 10 except for the configuration of the case portion 30A. In this modification, the case portion 30A has a case body 33 that does not have an opening and forms a closed internal space together with the case cover 32.
また、本変形例においては、磁界伝達部40における第1~第4の磁界伝達部材41~44の第2の端部41B~44Bは、ケース部33の底部を介して、磁界発生源50におけるコア51の磁界発生端51A及び51B並びにコア53の磁界発生端53A及び53Bに対向して近接するように配置されている。
Further, in this modification, the second ends 41B to 44B of the first to fourth magnetic field transmission members 41 to 44 in the magnetic field transmission unit 40 are connected to the magnetic field generation source 50 via the bottom portion of the case unit 33. It is arranged so as to face and approach the magnetic field generating ends 51A and 51B of the core 51 and the magnetic field generating ends 53A and 53B of the core 53.
本変形例のように、ケース部30Aが開口部を有さなくてもよい。この場合、磁界伝達部40が完全にケース部30Aの内部に収容される。このような場合であっても、例えば磁界伝達部40を磁界発生源50と近接するように配置することで、高効率な磁界伝達及び磁界印加を行うことができる。また、この場合、本体部20の可動空間がほぼ完全に密閉されるため、本体部20の動作が安定する。
As in this modification, the case portion 30A does not have to have an opening. In this case, the magnetic field transmission unit 40 is completely housed inside the case unit 30A. Even in such a case, for example, by arranging the magnetic field transmission unit 40 so as to be close to the magnetic field generation source 50, highly efficient magnetic field transmission and magnetic field application can be performed. Further, in this case, since the movable space of the main body 20 is almost completely sealed, the operation of the main body 20 is stable.
図8は、本実施例の変形例3に係るMEMS装置10Cの断面図である。MEMS装置10Cは、ケース部30Bの構成を除いては、MEMS装置10と同様の構成を有する。本変形例においては、ケース部30Bは、ケースカバー32と共にケース部30Bの内部空間を封止しつつ、底部の表面に凹部34A~34Dを有するケース本体34を有する。
FIG. 8 is a cross-sectional view of the MEMS device 10C according to the third modification of this embodiment. The MEMS device 10C has the same configuration as the MEMS device 10 except for the configuration of the case portion 30B. In this modification, the case portion 30B has a case body 34 having recesses 34A to 34D on the surface of the bottom portion while sealing the internal space of the case portion 30B together with the case cover 32.
本変形例においては、ケース部30Bは、底面に磁界伝達部40を保持するための凹部34A~34Dを有する。第1~第4の磁界伝達部材41~44は、第2の端部41B~44Bの各々が凹部34A~34Dに埋め込まれるように、ケース部30Bに保持されている。換言すれば、ケース部30Bは、本体部20を封止しつつ第1~第4の磁界伝達部材41~44を嵌合させて保持する凹部34A~34Dを有する。
In this modification, the case portion 30B has recesses 34A to 34D on the bottom surface for holding the magnetic field transmission portion 40. The first to fourth magnetic field transmission members 41 to 44 are held in the case portion 30B so that each of the second end portions 41B to 44B is embedded in the recesses 34A to 34D. In other words, the case portion 30B has recesses 34A to 34D that fit and hold the first to fourth magnetic field transmission members 41 to 44 while sealing the main body portion 20.
本変形例においては、ケース部30Bは、本体部20の収容空間を封止しつつ、凹部34A~34Dとして底部にケース厚みが小さい部分(薄い部分)を有する。この場合、当該薄い部分を介して磁界伝達部40及び磁界発生源50を対向させて配置することで、本体部20の動作安定性及び磁界の伝達効率を向上させることができる。
In this modified example, the case portion 30B has a portion (thin portion) having a small case thickness at the bottom as recesses 34A to 34D while sealing the accommodation space of the main body portion 20. In this case, by arranging the magnetic field transmission unit 40 and the magnetic field generation source 50 so as to face each other via the thin portion, the operation stability of the main body unit 20 and the magnetic field transmission efficiency can be improved.
このように、本実施例及びその種々の変形例においては、磁界伝達部40の第1~第4の磁界伝達部材41~44は、ケース部30(又はケース部30Aもしくは30B)によって保持されており、ケース部30の外部の磁界発生源50によって発生した磁界を永久磁石23に伝達する。従って、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10(又はMEMS装置10A~10C)を提供することができる。
As described above, in the present embodiment and various modifications thereof, the first to fourth magnetic field transmission members 41 to 44 of the magnetic field transmission unit 40 are held by the case unit 30 (or the case unit 30A or 30B). The magnetic field generated by the magnetic field generation source 50 outside the case portion 30 is transmitted to the permanent magnet 23. Therefore, it is possible to provide the MEMS apparatus 10 (or the MEMS apparatus 10A to 10C) which is of high quality and capable of performing stable operation with low power consumption.
なお、本実施例においては、磁界伝達部40が第1~第4の磁界伝達部材41~44を有する場合について説明した。しかし、磁界伝達部40の構成はこれに限定されない。磁界伝達部40は、少なくとも1つの磁界伝達部材を有していればよい。すなわち、例えば、MEMS装置10は、第1の磁界伝達部材41を磁界伝達部材として有していればよい。
In this embodiment, the case where the magnetic field transmission unit 40 has the first to fourth magnetic field transmission members 41 to 44 has been described. However, the configuration of the magnetic field transmission unit 40 is not limited to this. The magnetic field transmission unit 40 may have at least one magnetic field transmission member. That is, for example, the MEMS device 10 may have the first magnetic field transmission member 41 as the magnetic field transmission member.
また、本実施例においては、MEMS装置10が磁界発生源50を有している場合について説明した。しかし、MEMS装置10は、磁界発生源50を有する場合に限定されない。この場合、磁界伝達部40(第1~第4の磁界伝達部材41~44)は、ケース部30の外部の種々の磁界発生源で発生した磁界を永久磁石23に伝達するように構成されていればよい。
Further, in this embodiment, the case where the MEMS device 10 has the magnetic field generation source 50 has been described. However, the MEMS device 10 is not limited to the case where the magnetic field generation source 50 is provided. In this case, the magnetic field transmission units 40 (first to fourth magnetic field transmission members 41 to 44) are configured to transmit magnetic fields generated by various magnetic field generation sources outside the case unit 30 to the permanent magnets 23. Just do it.
また、本実施例においては、MEMS装置10の本体部20が可動部22として可動ミラーを有する場合について説明した。しかし、可動部22の構成はこれに限定されない。例えば、可動部22は、種々の目的を果たすために稼働する部分であればよい。例えば、可動部22は、支持部21に回動可能に支持されていればよい。従って、この場合、MEMS装置10は、MEMSミラー及びMEMS装置ではなく、本体部20が可動部22を有する種々の可動デバイスであればよい。
Further, in this embodiment, the case where the main body 20 of the MEMS device 10 has a movable mirror as the movable portion 22 has been described. However, the configuration of the movable portion 22 is not limited to this. For example, the movable portion 22 may be a portion that operates to fulfill various purposes. For example, the movable portion 22 may be rotatably supported by the support portion 21. Therefore, in this case, the MEMS device 10 may be not a MEMS mirror and a MEMS device, but various movable devices in which the main body 20 has a movable portion 22.
また、本実施例においては、本体部20が永久磁石23を有している場合について説明した。しかし、本体部20は、永久磁石23を有する場合に限定されず、例えば、磁界の変化に応じて可動部22を回動させる種々の磁気素子を有していればよい。
Further, in this embodiment, the case where the main body portion 20 has the permanent magnet 23 has been described. However, the main body 20 is not limited to having the permanent magnet 23, and may have various magnetic elements that rotate the movable portion 22 in response to a change in the magnetic field, for example.
このように、本実施例においては、例えば、可動デバイス(MEMS装置10)は、可動部22を回動可能に支持する支持部21、及び磁界の変化に応じて可動部22を回動させる磁気素子(永久磁石23)を含む本体部20と、本体部20を収容する内部空間を形成するケース部30と、ケース部30に保持されてケース部30の外部の磁界発生源50によって発生した磁界を当該磁気素子に伝達する磁界伝達部材(第1~第4の磁界伝達部材41~44)と、を有する。従って、例えば、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10(又はMEMS装置10A~10C)を提供することができる。
As described above, in the present embodiment, for example, the movable device (MEMS device 10) has a support portion 21 that rotatably supports the movable portion 22, and a magnet that rotates the movable portion 22 in response to a change in the magnetic field. A main body 20 including an element (permanent magnet 23), a case 30 forming an internal space for accommodating the main body 20, and a magnetic field held by the case 30 and generated by a magnetic field generation source 50 outside the case 30. It has a magnetic field transmission member (first to fourth magnetic field transmission members 41 to 44) for transmitting the above to the magnetic element. Therefore, for example, it is possible to provide a MEMS device 10 (or a MEMS device 10A to 10C) capable of performing stable operation with high quality and low power consumption.
また、本実施例においては、磁界伝達部40が磁界発生源50によって発生した磁界を永久磁石23に伝達するように構成されている場合について説明した。しかし、磁界伝達部40は、例えば、ケース部30に保持された磁性体であればよい。この場合でも、外部で当該磁性体が磁界の影響を受ける位置に磁界が生じた場合、当該磁界は当該磁性体によって永久磁石23に伝達される。これによって、MEMS装置10は、低消費電力で安定した動作を行うことができる。
Further, in this embodiment, the case where the magnetic field transmission unit 40 is configured to transmit the magnetic field generated by the magnetic field generation source 50 to the permanent magnet 23 has been described. However, the magnetic field transmission unit 40 may be, for example, a magnetic material held by the case unit 30. Even in this case, when a magnetic field is generated at a position where the magnetic material is affected by the magnetic field outside, the magnetic field is transmitted to the permanent magnet 23 by the magnetic material. As a result, the MEMS device 10 can perform stable operation with low power consumption.
換言すれば、例えば、本実施例においては、可動デバイス(MEMS装置10)は、可動部22を回動可能に支持する支持部21、及び磁界の変化に応じて可動部22を回動させる磁気素子(永久磁石23)を含む本体部20と、本体部20を収容する内部空間を形成するケース部30と、当該磁気素子に対向する第1の端部(第1の端部41A~44A)とケース部30の外方を向いた第2の端部(第2の端部41B~44B)とを有しかつケース部30に保持された磁性体(第1~第4の磁界伝達部材41~44)と、を有する。従って、例えば、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10(又はMEMS装置10A~10C)を提供することができる。
In other words, for example, in this embodiment, the movable device (MEMS device 10) has a support portion 21 that rotatably supports the movable portion 22, and a magnet that rotates the movable portion 22 in response to a change in a magnetic field. A main body portion 20 including an element (permanent magnet 23), a case portion 30 forming an internal space for accommodating the main body portion 20, and a first end portion (first end portions 41A to 44A) facing the magnetic element. And a magnetic material (first to fourth magnetic field transmitting members 41) having a second end portion (second end portions 41B to 44B) facing outward of the case portion 30 and held by the case portion 30. ~ 44) and. Therefore, for example, it is possible to provide a MEMS device 10 (or a MEMS device 10A to 10C) capable of performing stable operation with high quality and low power consumption.
図9は、実施例2に係るMEMS装置10Dの全体構成を示す図である。図9は、MEMS装置10Dにおける図1と同様の構成を有する。MEMS装置10Dは、光反射面20Sが1つの揺動軸のみの周りに揺動する本体部20Aを有する点、これに付随する構成の磁界伝達部40A及び磁界発生源50Aを有する点を除いては、MEMS装置10と同様の構成を有する。
FIG. 9 is a diagram showing the overall configuration of the MEMS device 10D according to the second embodiment. FIG. 9 has the same configuration as that of FIG. 1 in the MEMS device 10D. The MEMS device 10D has a main body portion 20A in which the light reflecting surface 20S swings around only one swing shaft, and a magnetic field transmission portion 40A and a magnetic field generation source 50A having a configuration associated with the main body portion 20A. Has the same configuration as the MEMS device 10.
本実施例においては、本体部20Aは、第1の揺動軸AYの周りに揺動する光反射面20Sを有する可動部を有する。また、磁界伝達部40Aは、第1及び第2の磁界伝達部材41及び42のみからなる。また、磁界発生源50Aは、コア51及びコイル52と、コイル52に電流を印加する駆動回路55Aのみからなる。
In this embodiment, the main body portion 20A has a movable portion having a light reflecting surface 20S that swings around the first swing shaft AY. Further, the magnetic field transmission unit 40A includes only the first and second magnetic field transmission members 41 and 42. Further, the magnetic field generation source 50A includes only a core 51, a coil 52, and a drive circuit 55A that applies a current to the coil 52.
本実施例のように、本体部20Aが1つの揺動軸のみの周りに揺動するように構成された可動部を有していてもよい。この場合においても、磁界発生源50Aによって発生した磁界は、ケース部30に保持された磁界伝達部40Aによって高効率で本体部20Aに伝達される。従って、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10Dを提供することができる。
As in the present embodiment, the main body 20A may have a movable portion configured to swing around only one swing shaft. Even in this case, the magnetic field generated by the magnetic field generation source 50A is transmitted to the main body 20A with high efficiency by the magnetic field transmission unit 40A held in the case unit 30. Therefore, it is possible to provide the MEMS device 10D which is of high quality and capable of performing stable operation with low power consumption.
図10は、本実施例の変形例1に係るMEMS装置10Eの断面図である。MEMS装置10Eは、ケース部30Cの構成を除いては、MEMS装置10Dと同様の構成を有する。本変形例においては、ケース部30Cは、底面の反対側の外壁面に部分的に突出した凸部を有し、当該凸部に対応する底面部分において、当該外壁面を超えて窪んだ凹部35A及び35Bを有するケース本体35を有する。
FIG. 10 is a cross-sectional view of the MEMS device 10E according to the first modification of this embodiment. The MEMS device 10E has the same configuration as the MEMS device 10D except that the case portion 30C is configured. In this modification, the case portion 30C has a convex portion that partially protrudes from the outer wall surface on the opposite side of the bottom surface, and the concave portion 35A that is recessed beyond the outer wall surface in the bottom surface portion corresponding to the convex portion. And has a case body 35 with 35B.
本変形例においては、ケース部30Cが部分的に外部に飛び出るように屈曲する底面形状を有する。この場合、ケース部30Cにおける当該屈曲した底面部分の内部から窪んだ部分に磁界伝達部40Bを固定し、これに対応する位置に磁界発生源50Aを配置することで、高効率な磁界伝達を行うことができる。
In this modified example, the case portion 30C has a bottom surface shape that is bent so as to partially protrude to the outside. In this case, the magnetic field transmission unit 40B is fixed to the recessed portion from the inside of the bent bottom surface portion of the case portion 30C, and the magnetic field generation source 50A is arranged at the corresponding position to perform highly efficient magnetic field transmission. be able to.
図11は、本実施例の変形例2に係るMEMS装置10Fの断面図である。MEMS装置10Fは、本体部20B及びケース部30Dの構成を除いては、MEMS装置10Dと同様の構成を有する。
FIG. 11 is a cross-sectional view of the MEMS device 10F according to the second modification of this embodiment. The MEMS device 10F has the same configuration as the MEMS device 10D except that the main body portion 20B and the case portion 30D are configured.
まず、本変形例においては、本体部20Bが複数(本変形例においては2つ)の磁石片24A及び24Bからなる永久磁石24を有する。例えばこの場合、第1の磁界伝達部材41の第1の端部41Aが磁石片24Aに対向するように配置され、第2の磁界伝達部材42の第1の端部42Aが磁石片24Bに対向するように配置されていればよい。すなわち、可動部22を揺動させる(回動させる)磁気素子は、種々の構成を有し得る。
First, in this modification, the main body 20B has a permanent magnet 24 composed of a plurality of magnet pieces 24A and 24B (two in this modification). For example, in this case, the first end 41A of the first magnetic field transmission member 41 is arranged so as to face the magnet piece 24A, and the first end 42A of the second magnetic field transmission member 42 faces the magnet piece 24B. It suffices if it is arranged so as to do. That is, the magnetic element that swings (rotates) the movable portion 22 may have various configurations.
また、本変形例においては、ケース部30Dは、底部において外側から窪んだ凹部36A及び36Bを有するケース本体36を有する。すなわち、ケース部30Dは、外壁面に凹部36A及び36Bを有していてもよい。また、磁界伝達部40Aは、ケース部30Dの外部でケース部30Dに保持されていてもよい。
Further, in this modification, the case portion 30D has a case main body 36 having recesses 36A and 36B recessed from the outside at the bottom portion. That is, the case portion 30D may have recesses 36A and 36B on the outer wall surface. Further, the magnetic field transmission unit 40A may be held by the case unit 30D outside the case unit 30D.
本変形例においては、磁界伝達部40Aは、第1の端部41A及び42Aがケース部30Dの凹部36A及び36Bに嵌合するように、ケース部30Dに保持されている。このように磁界伝達部40Aを配置する場合、ケース部30Dを大幅に小型化することができる。また、ケース部30D、磁界伝達部40A及び磁界発生源50Aのそれぞれで、独立して部品交換を行うことができる。また、本体部20の収容空間は、ケース部30Dによって確実に封止される。従って、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10Fを提供することができる。
In this modification, the magnetic field transmission portion 40A is held by the case portion 30D so that the first end portions 41A and 42A fit into the recesses 36A and 36B of the case portion 30D. When the magnetic field transmission unit 40A is arranged in this way, the case unit 30D can be significantly reduced in size. In addition, parts can be replaced independently in each of the case portion 30D, the magnetic field transmission portion 40A, and the magnetic field generation source 50A. Further, the accommodation space of the main body portion 20 is securely sealed by the case portion 30D. Therefore, it is possible to provide the MEMS device 10F which is of high quality and capable of performing stable operation with low power consumption.
図12は、実施例3に係るMEMS装置10Gの全体構成を示す図である。図12は、MEMS装置10Gにおける図1及び図9と同様の図である。MEMS装置10Gは、磁界伝達部40B及び磁界発生源50Bの構成を除いては、MEMS装置10と同様の構成を有する。
FIG. 12 is a diagram showing the overall configuration of the MEMS device 10G according to the third embodiment. FIG. 12 is a diagram similar to FIGS. 1 and 9 in the MEMS device 10G. The MEMS device 10G has the same configuration as the MEMS device 10 except for the configuration of the magnetic field transmission unit 40B and the magnetic field generation source 50B.
本実施例においては、磁界伝達部40Bは、テーパ形状の第2の端部45B、46B、47B及び48Bを有する第1~第4の磁界伝達部材45、46、47及び48を有する。すなわち、本実施例においては、第1~第4の磁界伝達部材45、46、47及び48は、それぞれ、永久磁石23(磁気素子)に対向する第1の端部45A、46A、47A及び48Aと、ケース部30の外方を向いており、尖端形状の第2の端部45B、46B、47B及び48Bと、を有する。
In this embodiment, the magnetic field transmission unit 40B has first to fourth magnetic field transmission members 45, 46, 47 and 48 having tapered second end portions 45B, 46B, 47B and 48B. That is, in this embodiment, the first to fourth magnetic field transmission members 45, 46, 47 and 48 have the first ends 45A, 46A, 47A and 48A facing the permanent magnet 23 (magnetic element), respectively. The case portion 30 faces outward and has a tip-shaped second end portion 45B, 46B, 47B, and 48B.
また、磁界発生源50Bは、第1及び第2の磁界伝達部材45及び46の第2の端部45B及び46Bに係合する凹部を有する磁界発生端55A及び55Bを有するコア55と、第3及び第4の磁界伝達部材47及び48の第2の端部47B及び48Bに係合する凹部を有する磁界発生端56A及び56Bを有するコア55と、を有する。
Further, the magnetic field generation source 50B includes a core 55 having magnetic field generation ends 55A and 55B having recesses engaged with the second ends 45B and 46B of the first and second magnetic field transmission members 45 and 46, and a third. And a core 55 having magnetic field generating ends 56A and 56B having recesses engaged with the second ends 47B and 48B of the fourth magnetic field transmitting members 47 and 48.
本実施例においては、磁界伝達部40B及び磁界発生源50Bが互いに相補的な形状を有する。従って、磁界伝達部40B及び磁界発生源50Bは、互いに物理的に係合する関係を有する。このように磁界伝達部40B及び磁界発生源50Bが構成されている場合、磁界伝達部40B及び磁界発生源50Bを係合させるように接触させることで、磁気的な結合、すなわち磁界伝達の効率が向上する。従って、高効率な磁界伝達を行うことが可能となる。
In this embodiment, the magnetic field transmission unit 40B and the magnetic field generation source 50B have complementary shapes. Therefore, the magnetic field transmission unit 40B and the magnetic field generation source 50B have a relationship of physically engaging with each other. When the magnetic field transmission unit 40B and the magnetic field generation source 50B are configured in this way, by contacting the magnetic field transmission unit 40B and the magnetic field generation source 50B so as to engage with each other, magnetic coupling, that is, the efficiency of magnetic field transmission can be improved. improves. Therefore, it is possible to perform highly efficient magnetic field transmission.
また、磁界発生源50Bにおける4つの磁界発生端55A、55B、56A及び56Bは、それぞれ磁界伝達部40Bにおける4つの第2の端部45B~58Bと相補的な形状を有する。従って、例えばケース部30及びその収容部品(本実施例においては本体部20及び磁界伝達部40B)を交換する際において、磁界発生源50Bとケース部30との位置合わせを容易にかつ確実に行うことができる。
Further, the four magnetic field generation ends 55A, 55B, 56A and 56B in the magnetic field generation source 50B each have a shape complementary to the four second ends 45B to 58B in the magnetic field transmission unit 40B. Therefore, for example, when the case portion 30 and its housing parts (main body portion 20 and magnetic field transmission portion 40B in this embodiment) are replaced, the magnetic field generation source 50B and the case portion 30 are easily and reliably aligned. be able to.
なお、本実施例においては、磁界伝達部40Bにおける第1~第4の磁界伝達部材の各々の第2の端部45B~48Bの全てがテーパ形状の凸部を有し、磁界発生部50Bにおけるコア55の磁界発生端55A及び55B並びにコア56の磁界発生端56の磁界発生端56A及び56Bの全てが当該凸部に係合する凹部を有する場合について説明した。しかし、磁界伝達部40B及び磁界発生源50Bの各々の端部形状及び両者の接続態様は、上記した場合に限定されない。
In this embodiment, all of the second ends 45B to 48B of the first to fourth magnetic field transmission members in the magnetic field transmission unit 40B have tapered convex portions, and the magnetic field generation unit 50B. The case where all of the magnetic field generating ends 55A and 55B of the core 55 and the magnetic field generating ends 56A and 56B of the magnetic field generating end 56 of the core 56 have a concave portion engaging with the convex portion has been described. However, the shape of each end of the magnetic field transmission unit 40B and the magnetic field generation source 50B and the connection mode between the two are not limited to the above cases.
例えば、磁界発生部50Bにおけるコア55の磁界発生端55A及び55B並びにコア56の磁界発生端56の磁界発生端56A及び56Bの一部又は全部がテーパ形状の凸部を有し、磁界伝達部40Bにおける第1~第4の磁界伝達部材の各々の第2の端部45B~48Bのうちの当該凹部を有する磁界発生端に対応する第2の端部が当該凹部に係合する凹部を有していてもよい。
For example, the magnetic field generating ends 55A and 55B of the core 55 in the magnetic field generating portion 50B and a part or all of the magnetic field generating ends 56A and 56B of the magnetic field generating end 56 of the core 56 have tapered convex portions, and the magnetic field transmitting portion 40B. The second end corresponding to the magnetic field generating end having the recess of the second ends 45B to 48B of each of the first to fourth magnetic field transmission members in the above has a recess that engages with the recess. You may be.
また、磁界発生源50Bの端部形状に関わらず、例えば、磁界伝達部40Bの第2の端部45B~48Bに凸部又は凹部を有していればよい。すなわち、例えば、第1~第4の磁界伝達部材45~48の第2の端部45B~48Bは、ケース部30の外方に向かって突出する凸部、及びケース部30の内方に向かって陥没する凹部のいずれかを有していれば、例えば平坦な形状の場合に比べ、磁界の伝達効率が向上する。
Further, regardless of the shape of the end portion of the magnetic field generation source 50B, for example, the second end portions 45B to 48B of the magnetic field transmission portion 40B may have convex portions or concave portions. That is, for example, the second ends 45B to 48B of the first to fourth magnetic field transmitting members 45 to 48 are directed toward the inside of the case portion 30 and the convex portion protruding outward of the case portion 30. If any of the recesses is provided, the transmission efficiency of the magnetic field is improved as compared with the case of, for example, a flat shape.
図13は、本実施例の変形例に係るMEMS装置10Hの全体構成を有する図である。MEMS装置10Hは、磁界伝達部40BM及び磁界発生源50BMの構成を除いては、MEMS装置10Gと同様の構成を有する。
FIG. 13 is a diagram having an overall configuration of the MEMS device 10H according to a modified example of this embodiment. The MEMS device 10H has the same configuration as the MEMS device 10G except that the magnetic field transmission unit 40BM and the magnetic field generation source 50BM are configured.
本変形例においては、磁界伝達部40BMは、鍵型のフック構造を有する第2の端部45C、46C、47C及び48Cを有する第1~第4の磁界伝達部材45M~48Mの第2の端部を有する。また、磁界発生源50BMは、第1~第4の磁界伝達部材45M~48Mの第2の端部45C~48Cに係合する鍵型のフック構造を有する磁界発生端55C、55D、56C及び56Dを有するコア55M及び56Mを有する。
In this modification, the magnetic field transmission unit 40BM is the second end of the first to fourth magnetic field transmission members 45M to 48M having the second end portions 45C, 46C, 47C and 48C having a key-shaped hook structure. Has a part. Further, the magnetic field generation source 50BM has magnetic field generation ends 55C, 55D, 56C and 56D having a key-shaped hook structure that engages with the second ends 45C to 48C of the first to fourth magnetic field transmission members 45M to 48M. Has cores 55M and 56M with.
本変形例のように、磁界伝達部40BM及び磁界発生源50BMが構成されている場合でも、両者の物理的な結合が増強され、磁界伝達の効率が向上する。また、本変形例においては、磁界伝達部40BMにおける第2の端部45C~48Cのそれぞれと、磁界発生源50BMにおける磁界発生端55C、55D、56C及び56Dのそれぞれと、が鍵型のフック構造によって高い結合強度で結合することとなる。従って、例えば外部から両者を位置的にずらす力への耐性、例えば衝撃耐性の高いMEMS装置10Hを構成することができる。
Even when the magnetic field transmission unit 40BM and the magnetic field generation source 50BM are configured as in this modification, the physical coupling between the two is strengthened and the efficiency of magnetic field transmission is improved. Further, in this modification, each of the second ends 45C to 48C in the magnetic field transmission unit 40BM and the magnetic field generation ends 55C, 55D, 56C and 56D in the magnetic field generation source 50BM are key-shaped hook structures. Will bond with high bond strength. Therefore, for example, it is possible to configure the MEMS device 10H having high resistance to a force that positions the two from the outside, for example, impact resistance.
なお、本変形例においても、例えば、少なくとも第1~第4の磁界伝達部材45M~48Mの第2の端部45C~48Cがフック構造を有していればよい。これによって、例えば第2の端部45C~48Cが平坦な場合に比べ、磁界の伝達効率が向上する。
Also in this modification, for example, at least the second ends 45C to 48C of the first to fourth magnetic field transmission members 45M to 48M may have a hook structure. As a result, the transmission efficiency of the magnetic field is improved as compared with the case where the second ends 45C to 48C are flat, for example.
図14は、実施例4に係るMEMS装置10Iの断面図である。MEMS装置10Iは、磁界伝達部40Mの構成を除いては、MEMS装置10と同様の構成を有する。本実施例においては、磁界伝達部40Mにおいては、第1~第4の磁界伝達部材41M~44Mは、第2の端部41B~44Bに設けられ、軟質磁性体からなり、ケース部30の開口部31A~31Dを閉塞するようにケース部30に接着されることでケース部30と共に本体部20を封止する封止構造を構成するシート部41C~44Cを有する。
FIG. 14 is a cross-sectional view of the MEMS device 10I according to the fourth embodiment. The MEMS device 10I has the same configuration as the MEMS device 10 except for the configuration of the magnetic field transmission unit 40M. In the present embodiment, in the magnetic field transmission unit 40M, the first to fourth magnetic field transmission members 41M to 44M are provided at the second end portions 41B to 44B and are made of a soft magnetic material, and the opening of the case portion 30. It has sheet portions 41C to 44C that form a sealing structure that seals the main body portion 20 together with the case portion 30 by being adhered to the case portion 30 so as to close the portions 31A to 31D.
本実施例においては、シート部41C~44Cは、ケース部30の外側から開口部31A~31Dを閉塞するようにケース部30に接着されている。この場合、例えば、第1~第4の磁界伝達部材41M~44Mの第2の端部41B~44Bは、ケース部30の開口部31A~31Dに挿入された状態でケース部30に保持される。
In this embodiment, the sheet portions 41C to 44C are adhered to the case portion 30 so as to close the openings 31A to 31D from the outside of the case portion 30. In this case, for example, the second ends 41B to 44B of the first to fourth magnetic field transmission members 41M to 44M are held by the case portion 30 in a state of being inserted into the openings 31A to 31D of the case portion 30. ..
この場合、ケース部30における本体部20の封止機能が向上する。従って、本体部20の動作が安定する。また、シート部41C~44Cを軟質磁性体で構成することで、磁界伝達部40Mと磁界発生源50との間の磁界伝達の効率も安定する。
In this case, the sealing function of the main body 20 in the case 30 is improved. Therefore, the operation of the main body 20 is stable. Further, by forming the sheet portions 41C to 44C with a soft magnetic material, the efficiency of magnetic field transmission between the magnetic field transmission portion 40M and the magnetic field generation source 50 is also stable.
図15は、本実施例の変形例に係るMEMS装置10Jの断面図である。MEMS装置10Jは、磁界伝達部40MAの構成を除いては、MEMS装置10Iと同様の構成を有する。
FIG. 15 is a cross-sectional view of the MEMS device 10J according to a modified example of this embodiment. The MEMS device 10J has the same configuration as the MEMS device 10I except for the configuration of the magnetic field transmission unit 40MA.
本変形例においては、第1~第4の磁界伝達部材41MA~44MAは、ケース部30の内側からケース部30の開口部31A~31Dを閉塞するようにケース部30に接着されたシート部41D~44Dを有する。本変形例においては、磁界発生源50はケース部30の開口部31A~31Dに部分的に挿入されてもよい。
In this modification, the first to fourth magnetic field transmission members 41MA to 44MA are the sheet portions 41D adhered to the case portion 30 so as to close the openings 31A to 31D of the case portion 30 from the inside of the case portion 30. It has ~ 44D. In this modification, the magnetic field generation source 50 may be partially inserted into the openings 31A to 31D of the case portion 30.
このように、本実施例においては、ケース部30は、開口部31A~31Dを有する。また、第1~第4の磁界伝達部材41M~44Mは、軟質磁性体からなり、開口部31A~31Dを閉塞するようにケース部30に接着されることでケース部30と共に本体部20を封止する封止構造を構成するシート部41C~44Cを有する。また、ケース部30は、シート部41C~41Dを介して第1~第4の磁界伝達部材41M~44Mを保持する。従って、高品質であり、低消費電力で安定した動作を行うことが可能なMEMS装置10Iを提供することができる。
As described above, in this embodiment, the case portion 30 has openings 31A to 31D. Further, the first to fourth magnetic field transmission members 41M to 44M are made of a soft magnetic material, and are adhered to the case portion 30 so as to close the openings 31A to 31D to seal the main body portion 20 together with the case portion 30. It has sheet portions 41C to 44C that form a sealing structure for stopping. Further, the case portion 30 holds the first to fourth magnetic field transmission members 41M to 44M via the seat portions 41C to 41D. Therefore, it is possible to provide the MEMS device 10I which is of high quality and capable of performing stable operation with low power consumption.
10、10A~10J MEMS装置
20、20A、20B 本体部
30、30A~30D ケース部
40、40A、40B 磁界伝達部 10, 10A to 10J MEMS device 20, 20A, 20B Main body 30, 30A to 30D Case 40, 40A, 40B Magnetic field transmission
20、20A、20B 本体部
30、30A~30D ケース部
40、40A、40B 磁界伝達部 10, 10A to
Claims (10)
- 可動部、前記可動部を回動可能に支持する支持部、及び磁界の変化に応じて前記可動部を回動させる磁気素子を含む本体部と、
前記本体部を収容する内部空間を形成するケース部と、
前記ケース部に保持されて前記ケース部の外部の磁界発生源によって発生した磁界を前記磁気素子に伝達する磁界伝達部材と、を有することを特徴とする可動デバイス。 A movable portion, a support portion that rotatably supports the movable portion, and a main body portion including a magnetic element that rotates the movable portion in response to a change in a magnetic field.
A case portion that forms an internal space for accommodating the main body portion,
A movable device comprising: a magnetic field transmission member held by the case portion and transmitting a magnetic field generated by a magnetic field generation source outside the case portion to the magnetic element. - 前記磁界伝達部材は、前記磁気素子に対向する第1の端部と前記ケース部の外方を向いた第2の端部を有する軟質磁性体からなることを特徴とする請求項1に記載の可動デバイス。 The first aspect of the present invention, wherein the magnetic field transmitting member is made of a soft magnetic material having a first end portion facing the magnetic element and a second end portion facing the outside of the case portion. Movable device.
- 前記ケース部は、前記磁界伝達部材の前記第1の端部が前記ケース部の前記内部空間中に露出されるように前記磁界伝達部材を保持することを特徴とする請求項2に記載の可動デバイス。 The movable case according to claim 2, wherein the case portion holds the magnetic field transmission member so that the first end portion of the magnetic field transmission member is exposed in the internal space of the case portion. device.
- 前記ケース部は、前記磁界伝達部材の前記第2の端部が前記ケース部の外部に露出されるように前記磁界伝達部材を保持することを特徴とする請求項2又は3に記載の可動デバイス。 The movable device according to claim 2 or 3, wherein the case portion holds the magnetic field transmission member so that the second end portion of the magnetic field transmission member is exposed to the outside of the case portion. ..
- 前記ケース部は、前記磁界伝達部材を嵌通させて保持するための開口部を有し、
前記磁界伝達部材は、前記磁界伝達部材が前記開口部に嵌通されることで前記ケース部と共に前記本体部を封止する封止構造を構成することを特徴とする請求項4に記載の可動デバイス。 The case portion has an opening for fitting and holding the magnetic field transmission member.
The movable according to claim 4, wherein the magnetic field transmitting member constitutes a sealing structure for sealing the main body together with the case portion by inserting the magnetic field transmitting member into the opening. device. - 前記磁界伝達部材の前記第2の端部は、前記ケース部の外方に向かって突出する凸部、及び前記ケース部の内方に向かって陥没する凹部のいずれかを有することを特徴とする請求項4又は5に記載の可動デバイス。 The second end portion of the magnetic field transmitting member is characterized by having either a convex portion protruding outward from the case portion and a concave portion recessing toward the inside of the case portion. The movable device according to claim 4 or 5.
- 前記磁界伝達部材の前記第2の端部は、フック構造を有することを特徴とする請求項4又は5に記載の可動デバイス。 The movable device according to claim 4 or 5, wherein the second end portion of the magnetic field transmission member has a hook structure.
- 前記ケース部は、開口部を有し、
前記磁界伝達部材は、軟質磁性体からなり、前記開口部を閉塞するように前記ケース部に接着されることで前記ケース部と共に前記本体部を封止する封止構造を構成するシート部を有し、
前記ケース部は、前記シート部を介して前記磁界伝達部材を保持することを特徴とする請求項2に記載の可動デバイス。 The case portion has an opening and has an opening.
The magnetic field transmission member is made of a soft magnetic material, and has a sheet portion that constitutes a sealing structure for sealing the main body portion together with the case portion by being adhered to the case portion so as to close the opening. And
The movable device according to claim 2, wherein the case portion holds the magnetic field transmission member via the seat portion. - 前記ケース部は、前記本体部を封止しつつ前記磁界伝達部材を嵌合させて保持する凹部を有することを特徴と請求項2に記載の可動デバイス。 The movable device according to claim 2, wherein the case portion has a recess for fitting and holding the magnetic field transmission member while sealing the main body portion.
- 可動部、前記可動部を回動可能に支持する支持部、及び磁界の変化に応じて前記可動部を回動させる磁気素子を含む本体部と、
前記本体部を収容する内部空間を形成するケース部と、
前記磁気素子に対向する第1の端部と前記ケース部の外方を向いた第2の端部とを有しかつ前記ケース部に保持された磁性体と、を有することを特徴とする可動デバイス。 A movable portion, a support portion that rotatably supports the movable portion, and a main body portion including a magnetic element that rotates the movable portion in response to a change in a magnetic field.
A case portion that forms an internal space for accommodating the main body portion,
Movable, having a first end facing the magnetic element and a second end facing outward of the case and holding a magnetic material in the case. device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-080011 | 2019-04-19 | ||
JP2019080011 | 2019-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020213623A1 true WO2020213623A1 (en) | 2020-10-22 |
Family
ID=72837553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016514 WO2020213623A1 (en) | 2019-04-19 | 2020-04-15 | Movable device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020213623A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210088777A1 (en) * | 2019-09-25 | 2021-03-25 | Nidec Corporation | Actuator and optical scanning device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341285A (en) * | 2001-03-16 | 2002-11-27 | Ricoh Co Ltd | Method, module, and device for optical scanning, and image forming device |
US7388700B1 (en) * | 2006-04-28 | 2008-06-17 | Bae Systems Information And Electronic Systems Integration Inc. | Ball joint gimbal mirror with actuator assembly |
JP2009069676A (en) * | 2007-09-14 | 2009-04-02 | Ricoh Co Ltd | Optical scanner |
JP2010049259A (en) * | 2008-08-21 | 2010-03-04 | Samsung Electronics Co Ltd | Micro electro-mechanical system mirror, mirror scanner, optical scanning unit and image forming device using optical scanning unit |
JP2016033613A (en) * | 2014-07-31 | 2016-03-10 | 株式会社豊田中央研究所 | MEMS device |
-
2020
- 2020-04-15 WO PCT/JP2020/016514 patent/WO2020213623A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341285A (en) * | 2001-03-16 | 2002-11-27 | Ricoh Co Ltd | Method, module, and device for optical scanning, and image forming device |
US7388700B1 (en) * | 2006-04-28 | 2008-06-17 | Bae Systems Information And Electronic Systems Integration Inc. | Ball joint gimbal mirror with actuator assembly |
JP2009069676A (en) * | 2007-09-14 | 2009-04-02 | Ricoh Co Ltd | Optical scanner |
JP2010049259A (en) * | 2008-08-21 | 2010-03-04 | Samsung Electronics Co Ltd | Micro electro-mechanical system mirror, mirror scanner, optical scanning unit and image forming device using optical scanning unit |
JP2016033613A (en) * | 2014-07-31 | 2016-03-10 | 株式会社豊田中央研究所 | MEMS device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210088777A1 (en) * | 2019-09-25 | 2021-03-25 | Nidec Corporation | Actuator and optical scanning device |
US11662573B2 (en) * | 2019-09-25 | 2023-05-30 | Nidec Corporation | Actuator and optical scanning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7678374B2 (en) | Rotary and reciprocating actuator | |
KR100671849B1 (en) | Vibration Type Linear Actuator | |
CN105849618B (en) | Micro mirror device | |
KR102035280B1 (en) | Kinetic energy generator | |
US8618701B2 (en) | Actuator and electric toothbrush using actuator | |
JP4426969B2 (en) | Small electric appliance with drive mechanism for generating oscillating motion | |
US8587162B2 (en) | Actuator and electric toothbrush utilizing same | |
EP3442103B1 (en) | Linear oscillatory actuator | |
KR101345288B1 (en) | 2-axis driving electromagnetic scanner | |
CN106030374B (en) | Mirror device and projection arrangement | |
EP3952079A1 (en) | Rotary reciprocating drive actuator | |
JP6287546B2 (en) | Actuators, air pumps, hairdressing equipment, laser scanning equipment | |
CN107070308B (en) | Magnetic suspension vibration motor | |
WO2020213623A1 (en) | Movable device | |
WO2019130705A1 (en) | Vibration actuator | |
JP4679902B2 (en) | Small electric appliance with drive mechanism for generating oscillating motion | |
JP2019530019A (en) | Micromirror device and method of operating micromirror device | |
US3538358A (en) | Oscillating armature motor | |
CN103503299B (en) | Inertial drive actuator | |
CN209860768U (en) | Vertical linear vibration motor and electronic product | |
JP4862587B2 (en) | Optical scanning device and image display device | |
CN101536294B (en) | Mirror drive device and associated method for projection system | |
EP4022762A1 (en) | Piezoelectric drive unit | |
JP2013102600A (en) | Planar type electromagnetic actuator | |
JP2025100095A (en) | Oscillating actuator and optical scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20790582 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20790582 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |