WO2020211012A1 - 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 - Google Patents
一种面向混杂纤维复合材料板壳结构的快速协同优化方法 Download PDFInfo
- Publication number
- WO2020211012A1 WO2020211012A1 PCT/CN2019/083031 CN2019083031W WO2020211012A1 WO 2020211012 A1 WO2020211012 A1 WO 2020211012A1 CN 2019083031 W CN2019083031 W CN 2019083031W WO 2020211012 A1 WO2020211012 A1 WO 2020211012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optimization
- design
- model
- materials
- fiber composite
- Prior art date
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 95
- 239000000835 fiber Substances 0.000 title claims abstract description 82
- 239000002131 composite material Substances 0.000 title claims abstract description 71
- 238000013461 design Methods 0.000 claims abstract description 105
- 239000000463 material Substances 0.000 claims abstract description 103
- 238000004458 analytical method Methods 0.000 claims abstract description 24
- 238000005192 partition Methods 0.000 claims abstract description 16
- 230000009467 reduction Effects 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 230000004044 response Effects 0.000 claims abstract description 10
- 238000009472 formulation Methods 0.000 claims abstract 3
- 239000000203 mixture Substances 0.000 claims abstract 3
- 230000008569 process Effects 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 238000000638 solvent extraction Methods 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 5
- 229920001410 Microfiber Polymers 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 claims description 2
- 238000000265 homogenisation Methods 0.000 claims description 2
- 239000003658 microfiber Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000003733 fiber-reinforced composite Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Definitions
- the invention belongs to the technical field of composite material structure optimization design, and relates to a rapid collaborative optimization method for a hybrid fiber composite material plate and shell structure.
- Fiber-reinforced composite materials are composite materials formed by reinforcing fiber materials, such as glass fiber, carbon fiber, aramid fiber, etc., and matrix materials through forming processes such as winding, molding or pultrusion. Because fiber reinforced composite materials have the following characteristics: (1) high specific strength and large specific modulus; (2) material performance can be designed; (3) corrosion resistance and durability; (4) thermal expansion coefficient and concrete similar. These characteristics enable fiber-reinforced composite materials to meet the needs of modern structures for large-span, towering, heavy-load, light-weight and high-strength, and work under harsh conditions. At the same time, it can also meet the requirements of the industrial development of modern building construction. It is widely used in various civil buildings, bridges, highways, oceans, hydraulic structures and underground structures.
- Hybrid fiber composite materials There are many types of fiber-reinforced composite materials. Each type of fiber-reinforced composite material has its own advantages and disadvantages. For example, carbon fiber composite materials have high specific strength and high specific stiffness, but they are expensive and have low elongation. Therefore, they appeared in the 1970s. Hybrid fiber composite materials. Hybrid fiber composite material is a strong and tough structural material formed by two or more fibers through different hybrid methods. It not only retains the respective characteristics of the fiber and is compatible with different properties, but also shows some unique advantages. Currently, hybrid fiber composite materials are widely used in aviation, aerospace, automobiles, ships, medical and other fields. The design freedom of hybrid composite materials is greater than that of single fiber composite materials.
- hybrid composite component technology is more than that of single fiber composite material, which further expands the design freedom of components. If the rigidity of the wingtip of the glass fiber composite aircraft wing is not enough, carbon fiber can be appropriately used in the wingtip to make a hybrid composite member to increase the rigidity. Moreover, the design of this hybrid composite material component is not difficult to achieve in the process.
- Hybrid fiber composite materials can be designed according to the structural performance requirements, through different types of fibers, the relative content of different fibers, and different hybrid methods to meet the requirements for both composite structure and function. Where performance permits, replacing some high-priced fibers with low-priced fibers to make hybrid composite components can reduce material costs.
- hybrid fiber composite materials expands the freedom of structural design and the scope of application of materials, can reduce structural quality, reduce material costs, and improve economic benefits. Therefore, the invention of an efficient optimization design method suitable for the structure of hybrid fiber composite materials is becoming more and more important. This is also an effective way to give full play to the potential advantages of hybrid fiber composite materials and a necessary means to promote the wide application of hybrid fiber composite materials.
- the invention mainly solves the problem that the hybrid fiber composite material structure is difficult to carry out cross-scale design variable collaborative optimization, and solves the problem of low efficiency of large-scale structural calculation and optimization in engineering, and proposes a rapid collaborative optimization method for hybrid fiber composite material plate and shell structure.
- Use discrete material optimization methods to achieve collaborative optimization of hybrid fiber composite structures to solve different structural functional requirements Integrated design of composite materials.
- geometric partition and model reduction technology to improve the efficiency of numerical analysis and optimization, to solve the problem of low efficiency in large-scale structural optimization.
- This method fully considers the influence of the coupling relationship between variables of different scales on the macro response of the structure.
- a macro-variable stiffness innovative design is obtained, which expands the design space and can fully tap the potential of the hybrid fiber composite material to meet the design requirements And reduce the material cost of the innovative design configuration, thereby improving economic efficiency.
- a rapid collaborative optimization method for hybrid fiber composite plate and shell structure which specifically includes the following steps:
- the first step is to establish a library of candidate materials.
- the analytical method is a mixed formula method, and the numerical method includes a homogenization method, a representative voxel method, and the like.
- the second step is to establish a three-dimensional finite element numerical model and perform geometric partitioning.
- a three-dimensional finite element numerical model of composite plate and shell structure is established, and the finite element numerical model is geometrically partitioned according to the geometric shape and functional requirements of the structure.
- the geometric partition can not only accelerate the optimization process, but also make the optimization results meet the manufacturing process, and obtain a novel structural design form that is easy to process and manufacture.
- the partition optimization design of the plate and shell structure can expand the design space of the structure, and subsequent optimization of discrete materials can obtain a variable stiffness plate and shell structure with different candidate materials for each adjacent area.
- the third step is to use the model reduction method to establish a reduced-order numerical analysis model.
- model reduction methods to reduce the dimensions of the finite element numerical model and reduce the value Analyze the computational cost to achieve rapid collaborative optimization design of hybrid composite materials.
- the model reduction methods include: feature orthovalent intrinsic orthogonal decomposition (Proper Orthogonal Decomposition, POD) method, and dynamic mode decomposition (Dynamic Mode Decomposition, DMD) method.
- the steps to establish a reduced-order model mainly include: First, use sampling methods such as Latin hypercube and orthogonal sampling to extract a certain number of sample points in the discrete design space, and perform fine finite element numerical analysis on the selected sample points, based on the above-mentioned fine analysis As a result, an initial reduction base is established. Secondly, the key components of the structure are extracted from the initial reduced basis through mathematical methods such as principal component analysis, and the reduced basis vector is constructed. Finally, based on the reduced basis vector, the degree of freedom of the fine finite element numerical model is reduced, and a reduced-order model is constructed, so that the reduced-order model can calculate the response to the accuracy while reducing the analysis time.
- the fourth step is to establish an optimized column formula and perform an optimized design of discrete materials.
- the objectives and constraints are based on the specific requirements at the initial stage of the design, which generally include mechanical responses such as stiffness, frequency, and buckling.
- the general form of the optimized column is as follows:
- x is the design variable
- x i is the i-th component of the design variable
- L is the number of design variables
- u is the mechanical control equation
- F is the objective function
- G is the constraint function.
- the discrete materials in the candidate material library obtained in the first step are used as design variables, and a continuous interpolation function is used to characterize the discrete materials in the candidate material library.
- the partitioned three-dimensional finite element numerical model obtained in the second step is used as the geometric model of the design, and the design variables are allocated according to the geometric partition of the model and the optimization objectives and constraints.
- Use the reduced-order model obtained in the third step as the numerical analysis model used in the optimization process use the reduced-order model to perform numerical calculations to obtain the target and constraint response, and perform the discrete material optimization design to realize the fiber body fraction, fiber angle, and layer sequence
- the collaborative optimization design of other multi-scale variables obtains the optimal design configuration that meets the functional requirements.
- the specific steps include:
- C e is the element constitutive matrix
- w i is the weight coefficient of the candidate material
- C i is the equivalent shell stiffness matrix of the candidate material
- material units e j corresponding to the design variable i is an alternative numbers
- n e is the number of the finite element model unit
- p is the penalty value.
- the calculation methods of sensitivity information include direct method, adjoint method and difference method.
- the optimization methods include Newton's method, quasi-Newton's method, moving asymptote method and so on.
- the beneficial effects of the present invention are: in view of the cross-scale and multi-level design variables of the hybrid fiber composite material structure, the present invention unifies the design variables of different scales to the same level by establishing a candidate material library, and develops discrete material optimization design to obtain Novel structural material layout configuration, so as to realize the collaborative optimization design of hybrid fiber composite materials. And through geometric partition and model reduction methods, the optimization process is accelerated, and rapid optimization design is realized.
- the method proposed in the present invention can realize the integrated design of the hybrid fiber composite material structure, realize the cross-scale and multivariable collaborative optimization design of structure topology, fiber content, fiber angle, layup sequence, etc., and meet the needs of structural functions while reducing the structure Quality, reduce material costs and improve economic efficiency.
- FIG. 1 is an implementation flow chart of a method for rapid collaborative optimization of hybrid fiber composite material plate and shell structure provided by an embodiment of the present invention
- Figure 2 is a conceptual diagram of optimization results provided by an example of the rectangular thin plate of the present invention.
- (a) is the macroscopic material distribution of the hybrid fiber composite plate;
- (b) is the order of fiber angle layup and the internal fiber body and fiber distribution.
- Fig. 3 is a schematic diagram of the design domain, load boundary and geometric division of the rectangular thin plate of the present invention.
- Figure 4 is the initial design configuration provided by the example of the rectangular thin plate of the present invention; (a) is the angle distribution of the first layer of the laminate; (b) is the angle distribution of the second layer of the laminate;
- Figure 5 is a schematic diagram of an innovative configuration obtained in a method for rapid collaborative optimization of hybrid fiber composite slab and shell structure provided by the example of the rectangular thin plate of the present invention; (a) is the angle distribution diagram of the first layer of the laminate; (b) ) Is the angle distribution diagram of the second layer of laminate;
- Fig. 1 is a flow chart of the implementation of a method for rapid collaborative optimization of hybrid fiber composite material slab and shell structure provided by an embodiment of the present invention.
- a method for rapid collaborative optimization of hybrid fiber composite slab-shell structure provided by an embodiment of the present invention includes: 1) establishing a candidate material library; 2) establishing a three-dimensional finite element numerical model and performing geometric partitioning; 3) Use the model reduction method to establish a reduced-order numerical analysis model; 4) Establish an optimized formula to optimize the design of discrete materials.
- the first step is to establish a library of candidate materials.
- FIG. 1 is a conceptual diagram of the results of collaborative optimization of hybrid composite structures.
- the second step is to establish a three-dimensional finite element numerical model and perform geometric partitioning.
- the example of the present invention is the optimized design of the hybrid fiber rectangular thin plate. Based on commercial finite element software such as ANASYS, ABAQUS or self-compiled finite element program, a three-dimensional finite element numerical model of the structure is established, boundary conditions and loads are applied, and geometrical partitioning is performed according to experience and functional requirements.
- the partition in this example is a 5*5 rectangular regular partition.
- Figure 3 is a schematic diagram of the boundary conditions and geometric partitions of the finite element model.
- the third step is to use the model reduction method to establish a reduced-order numerical analysis model.
- This example uses the Proper Orthogonal Decomposition (POD) method to analyze and extract the main components of the model, construct a reduced base vector, establish a reduced-order model, and achieve rapid numerical analysis.
- POD Proper Orthogonal Decomposition
- the fourth step is to establish an optimized column formula and perform an optimized design of discrete materials.
- P is the buckling load of the structure
- ⁇ j is the j-th eigenvalue obtained from linear buckling analysis
- N ⁇ is the total number of degrees of freedom of the model
- K is the model stiffness matrix
- K ⁇ is the geometric stiffness matrix of the model
- ⁇ j is The eigenvector corresponding to the j-th eigenvalue
- x i is the design variable
- x i is the lower limit of the design variable
- C is the material cost of the structure
- Constraint for the upper limit of material cost is the material cost of the structure.
- C e is the element constitutive matrix
- w i is the weight coefficient of the candidate material
- C i is the equivalent shell stiffness matrix of the candidate material
- material units e j corresponding to the design variable, i is an alternative numbers
- n e is the number of the finite element model unit
- p is the penalty value.
- the present invention provides a rapid collaborative optimization method for hybrid fiber composite material plate and shell structure, aiming at the problem of cross-scale and multi-level design variables of hybrid fiber composite material structure, and unified design variables of different scales to the same by establishing a candidate material library
- a rapid collaborative optimization method for hybrid fiber composite material plate and shell structure aiming at the problem of cross-scale and multi-level design variables of hybrid fiber composite material structure, and unified design variables of different scales to the same by establishing a candidate material library
- the method proposed in the present invention can realize the integrated design of the hybrid fiber composite material structure, realize the cross-scale and multivariable collaborative optimization design of structure topology, fiber content, fiber angle, layup sequence, etc., and meet the needs of structural functions while reducing the structure Quality, reduce material costs and improve economic efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Logic Circuits (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
一种面向混杂纤维复合材料板壳结构的快速协同优化方法,属于复合材料结构优化设计技术领域,步骤为:1)建立备选材料库;2)建立三维有限元数值模型并进行几何分区;3)使用模型降阶方法建立降阶数值分析模型;4)建立优化列式,进行离散材料优化设计。采用连续插值函数表征材料库中的离散材料,依据模型的几何分区和优化目标及约束分配设计变量,采用降阶模型进行数值计算获得目标和约束响应,进行离散材料优化设计,实现多变量协同优化,获得最优设计构型。该方法能够实现混杂纤维复合材料结构的一体化设计,实现结构拓扑、纤维含量、纤维角度、铺层顺序等多层级变量的协同优化设计,满足结构功能需要的同时,减轻结构质量,降低材料成本。
Description
本发明属于复合材料结构优化设计技术领域,涉及一种面向混杂纤维复合材料板壳结构的快速协同优化方法。
纤维增强复合材料是由增强纤维材料,如玻璃纤维、碳纤维、芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。由于纤维增强复合材料具有如下特点:(1)比强度高,比模量大;(2)材料性能具有可设计性;(3)抗腐蚀性和耐久性能好;(4)热膨胀系数与混凝土的相近。这些特点使得纤维增强复合材料能满足现代结构向大跨、高耸、重载、轻质高强以及在恶劣条件下工作发展的需要,同时也能满足现代建筑施工工业化发展的要求,因此被越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。纤维增强复合材料种类很多,每种增强纤维复合材料都有各自的有点和不足,比如碳纤维复合材料比强度大、比刚度高,但价格昂贵,并且延伸率低,因此在20世纪70年代出现了混杂纤维复合材料。混杂纤维复合材料是由两种及两种以上的纤维通过不同的混杂方式,形成的一种强韧性结构材料。它不仅保留了纤维的各自特点,兼容不同的属性,又表现出一些独特的优势。目前,混杂纤维复合材料被广泛应用于航空、航天、汽车、船舶、医疗等领域。混杂复合材料构件的设计自由度较单一纤维复合材料要大。混杂复合材料构件工艺实现的可能性超过单一纤维复合材料,相应又进一步扩大了构件的设计自由度。如玻璃纤维复合材料飞机机翼的翼尖部位刚度不够,可在翼尖部位适当使用碳纤维,制成混杂复合材料构件来增加刚度。而且这种混杂复合材料构件的设计在工艺上是不难实现的。混杂纤维复合材料可以根据结构使用性能要求, 通过不同类型纤维、不同纤维的相对含量、不同的混杂方式进行设计,以满足对复合材料结构和功能兼备的要求。在性能允许的情况下,用价格低的纤维取代部分高价纤维制成混杂复合材料构件可以降低材料成本。另一方面,使用适量高价但高性能的纤维制成混杂复合材料构件,获得材料的高性能/价格比,同样获得大的经济效益。混杂纤维复合材料的使用扩大了结构设计的自由度和材料的适用范围,能够减轻结构质量,降低材料成本,提高经济效益。因此,发明适用于混杂纤维复合材料结构的高效优化设计方法越发重要,这也是充分发挥混杂纤维复合材料潜在优势的有效途径,推动混杂纤维复合材料广泛应用的必要手段。
随着有限元等数值分析方法的快速发展,基于数值模型的结构优化方法已成为复合材料结构优化设计的重要途径之一。在常规的复合材料结构设计中,一般按照拓扑、形状、尺寸优化的顺序,将复合材料的纤维角度、纤维含量、铺层顺序作为设计变量,逐级分步的将不同尺度的设计变量进行解耦式优化。变量分组解耦的方式虽然提高了优化效率,但忽视了变量间耦合关系对结构响应的影响,限制了设计空间,不能充分发挥混杂纤维复合材料的优势。根据文献调研,目前还缺少有效的混杂纤维板壳结构高效优化设计方法。因此,亟需发明一种面向混杂纤维复合材料板壳结构的快速协同优化方法,同时实现混杂复合材料结构拓扑、纤维含量、纤维角度、铺层顺序等跨尺度变量的高效协同优化设计,满足结构功能需要的同时,减轻结构质量,降低材料成本,提高经济效益。
发明内容
本发明主要解决混杂纤维复合材料结构难以进行跨尺度设计变量协同优化问题,并解决工程中大规模结构计算优化效率低的问题,提出一种面向混杂纤 维复合材料板壳结构的快速协同优化方法。将纤维含量、纤维角度、拓扑变量等跨尺度、多层级设计变量统一到同一宏观尺度并建立备选材料库,使用离散材料优化方法实现混杂纤维复合材料结构的协同优化,解决不同结构功能要求下的复合材料一体化设计。并结合几何分区和模型降阶技术提高数值分析及优化效率,解决大规模结构优化效率低的问题。该方法充分考虑了不同尺度变量耦合关系对结构宏观响应的影响,通过材料分区布局优化得到一种宏观变刚度创新设计,扩大了设计空间,能够充分挖掘混杂纤维复合材料的潜力,提供满足设计要求并降低材料成本的创新设计构型,从而提高经济效益。
为了达到上述目的,本发明的技术方案为:
一种面向混杂纤维复合材料板壳结构的快速协同优化方法,具体包括以下步骤:
第一步,建立备选材料库。
采用实验方法、解析方法或数值计算方法获得具有不同纤维体分比、不同微观纤维分布的复合材料的材料属性,并使用经典层合板理论计算不同纤维角度及铺层顺序层合板的一般壳刚度系数。将不同组合层合板的壳刚度系数作为备选材料(离散材料优化中的设计变量),建立混杂纤维复合材料的备选材料库,为后续的离散材料优化做好准备。建立备选材料库,将具有不同强弱水平的材料收入备选材料库是本专利实现跨尺度协同优化的关键技术,可以将不同尺度的设计变量统一到同一层级,并充分考虑不同尺度变量间的耦合关系,从而实现混杂纤维复合材料结构的跨尺度、多层级变量协同优化设计。
所述的解析方法为混合公式法,数值方法包括均匀化方法、代表体元法等。
第二步,建立三维有限元数值模型并进行几何分区。
建立复合材料板壳结构三维有限元数值模型,根据结构的几何形状、功能 要求将有限元数值模型进行几何分区处理。几何分区不仅可以加速优化进程,还可以使优化结果满足加工制造工艺,得到易于加工制造的新颖的结构设计形式。对板壳结构进行分区优化设计可以扩大结构的设计空间,后续通过离散材料优化可以获得每个相邻区域都为不同备选材料的变刚度板壳结构。
第三步,使用模型降阶方法,建立降阶数值分析模型。
对于具有复杂结构细节的混杂纤维板壳结构,基于精细模型开展有限元分析需要大量的计算资源和计算时长,为加速优化进程,本发明使用模型降阶的方法降低有限元数值模型的维度,降低数值分析的计算成本,从而实现混杂复合材料快速协同优化设计。所述的模型降阶方法包括:特征正价本征正交分解(Proper Orthogonal Decomposition,POD)方法、动力学模态分解(Dynamic Mode Decomposition,DMD)方法。
建立降阶模型步骤主要包括:首先,使用拉丁超立方、正交采样等抽样方法在离散设计空间中抽取一定数目的样本点,并对选取样本点进行精细有限元数值分析,基于上述精细分析的结果建立初始减缩基。其次,通过主成分分析等数学方法从初始减缩基中提取结构的关键成分,构造减缩基向量。最后,基于减缩基向量,对精细有限元数值模型进行自由度减缩,构造出降阶模型,使降阶模型在能计算满足精度响应的同时减少分析时间。
第四步,建立优化列式,进行离散材料优化设计。
根据设计要求建立优化列式和离散材料优化模型,目标和约束依据设计初期的具体要求,一般包括刚度、频率、屈曲等力学响应。优化列式的一般形式如下:
优化目标:minF(u(x),x)
优化约束:G
i(x)≤0 (1)
0≤x
i≤1,i=1,...,L
其中,x为设计变量,x
i为设计变量第i个分量,L为设计变量的数量,u为力学控制方程,F为目标函数,G为约束函数。
将第一步获得的备选材料库中的离散材料作为设计变量,使用连续插值函数表征备选材料库中的离散材料。将第二步获得的分区化三维有限元数值模型作为设计的几何模型,依据模型的几何分区和优化目标及约束分配设计变量。将第三步获得的降阶模型作为优化过程中使用的数值分析模型,使用降阶模型进行数值计算获得目标和约束响应,进行离散材料优化设计,实现纤维体分比、纤维角度、铺层顺序等多尺度变量的协同优化设计,获得满足功能要求的最优设计构型。具体步骤包括:
(1)使用连续插值公式将离散材料连续化表征,材料插值格式如公式(2)所示。
(2)基于有限元降阶模型计算目标函数和约束,并计算灵敏度信息。其中灵敏度信息的计算方法包括直接法,伴随法和差分法。
(3)使用梯度类优化方法求解优化问题,直至优化问题收敛。其中优化方法包括牛顿法、拟牛顿法、移动渐近线法等。
(4)消除优化结果中的中间密度,获得材料选择明确的设计结果。
本发明的有益效果为:本发明针对混杂纤维复合材料结构具有跨尺度、多层级设计变量问题,通过建立备选材料库将不同尺度的设计变量统一至同一层级,通过开展离散材料优化设计,获得新颖的结构材料布局构型,从而实现混杂纤维复合材料的协同优化设计。并通过几何分区和模型降阶方法,加速了优化进程,实现快速优化设计。本发明提出的方法能实现混杂纤维复合材料结构的一体化设计,实现结构拓扑、纤维含量、纤维角度、铺层顺序等跨尺度、多变量的协同优化设计,满足结构功能需要的同时,减轻结构质量,降低材料成本,提高经济效益。
图1为本发明实施例提供的一种面向混杂纤维复合材料板壳结构的快速协同优化方法的实现流程图;
图2为本发明矩形薄板实例提供的优化结果概念图;(a)为混杂纤维复合材料板宏观材料分布;(b)为纤维角度铺层顺序及内部纤维体和纤维分布。
图3为本发明矩形薄板实例提供设计域,载荷边界及几何分区示意图;
图4为本发明矩形薄板实例提供的初始设计构型;(a)为层合板第一层铺层角度分布图;(b)为层合板第二层铺层角度分布图;
图5为本发明矩形薄板实例提供的一种面向混杂纤维复合材料板壳结构的快速协同优化方法中获得的创新构型示意图;(a)为层合板第一层铺层角度分布图;(b)为层合板第二层铺层角度分布图;
为使本发明解决的方法问题、采用的方法方案和达到的方法效果更加清楚,下面结合附图和实施例对本发明作进一步的详细说明。
图1为本发明实施例提供的一种面向混杂纤维复合材料板壳结构的快速协 同优化方法的实现流程图。如图1所示,本发明实施例提供的一种面向混杂纤维复合材料板壳结构的快速协同优化方法包括:1)建立备选材料库;2)建立三维有限元数值模型并进行几何分区;3)使用模型降阶方法,建立降阶数值分析模型;4)建立优化列式,进行离散材料优化设计。使用连续插值函数表征离散备选材料库中的离散材料,依据模型的几何分区和优化目标及约束分配设计变量,使用降阶模型进行数值计算获得目标和约束响应,进行离散材料优化设计,实现纤维体分比、纤维角度、铺层顺序等多变量协同优化,获得满足功能要求的最优设计构型。具体步骤如下:
第一步,建立备选材料库。
确定混杂纤维复合材料可选的纤维体分比和纤维角度,使用解析法计算不同纤维体分比的材料属性,并基于经典层合理论计算拥有不同纤维角度和铺层顺序排列组合层合板的等效壳刚度系数,将所有设计变量统一至宏观尺度,建立备选材料库,供后续离散材料优化使用。图2为混杂复合材料结构协同优化结果的概念示意图。
第二步,建立三维有限元数值模型并进行几何分区。
本发明实例为混杂纤维矩形薄板优化设计。基于ANASYS,ABAQUS等商用有限元软件或者自编有限元程序建立结构的三维有限元数值模型,施加边界条件和载荷,并按照经验和功能需求进行几何分区。本实例中分区为5*5的矩形规则分区。图3为有限元模型的边界条件和几何分区示意图。
第三步,使用模型降阶方法,建立降阶数值分析模型。
首先,在离散设计域中使用最优拉丁超立方方法抽取一百个样本点,基于样本点进行线性屈曲分析,获取初始向量基。本实例使用本征正交分解(Proper Orthogonal Decomposition,POD)方法分析提取模型的主要成分,构造减缩基向 量,建立降阶模型,实现快速数值分析。
第四步,建立优化列式,进行离散材料优化设计。
建立以最大屈曲载荷为优化目标,材料成本为约束的优化列式:
其中,P为结构的屈曲载荷,λ
j为线性屈曲分析得到的第j个特征值,N
λ为模型的自由度总数,K为模型刚度矩阵,K
σ为模型的几何刚度矩阵,Φ
j为第j个特征值对应的特征向量,x
i为设计变量,
x
i
为设计变量的下限值,
为设计变量的上限值,C为结构的材料成本,
为材料成本上限约束。
将第一步获得的备选材料库中的离散材料作为设计变量,使用连续插值函数表征备选材料库中的离散材料;将第二步获得的分区化三维有限元数值模型作为设计的几何模型,依据模型的几何分区和优化目标及约束分配设计变量;将第三步获得的降阶模型作为优化过程中使用的数值分析模型,使用降阶模型进行数值计算获得目标和约束响应,进行离散材料优化设计,实现纤维体分比、纤维角度、铺层顺序等多尺度变量的协同优化设计,获得满足功能要求的最优设计构型。图4为初始设计构型,图5为优化后创新构型设计,优化具体步骤包括:
(1)使用连续插值公式将离散材料连续化表征,材料插值格式如下所示。
(2)基于有限元降阶模型进行线性屈曲分析,计算结构的屈曲载荷,并使用伴随法计算灵敏度信息。
(3)使用数学规划方法中的移动渐近线(MMA)方法对优化问题进行求解,直至优化问题收敛。
(4)消除优化结果中的中间密度,获得材料选择明确的设计结果,如图5所示。
本发明提供一种面向混杂纤维复合材料板壳结构的快速协同优化方法,针对混杂纤维复合材料结构具有跨尺度、多层级设计变量问题,通过建立备选材料库将不同尺度的设计变量统一至同一层级,通过开展离散材料优化设计,获得新颖的结构材料布局构型,从而实现混杂纤维复合材料的协同优化设计。并通过几何分区和模型降阶方法,加速了优化进程,实现快速优化设计。本发明提出的方法能实现混杂纤维复合材料结构的一体化设计,实现结构拓扑、纤维含量、纤维角度、铺层顺序等跨尺度、多变量的协同优化设计,满足结构功能需要的同时,减轻结构质量,降低材料成本,提高经济效益。
最后应说明的是:以上各实施例仅用以说明本发明的方法方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通方法人员应当理解:其对前述各实施例所记载的方法方案进行修改,或者对其中部分或者全部方法特征进行等同替换,并不使相应方法方案的本质脱离本发明各实施例方法方案的范围。
Claims (5)
- 一种面向混杂纤维复合材料板壳结构的快速协同优化方法,其特征在于包括以下步骤:第一步,建立备选材料库;采用实验方法、解析方法或数值计算方法获得具有不同纤维体分比、不同微观纤维分布的复合材料的材料属性,并使用经典层合板理论计算不同纤维角度及铺层顺序层合板的一般壳刚度系数;将不同组合层合板的壳刚度系数作为离散材料优化中的设计变量,建立混杂纤维复合材料的备选材料库,为后续的离散材料优化做好准备;通过建立备选材料库,将具有不同强弱水平的材料收入备选材料库,将不同尺度的设计变量统一到同一层级,以实现混杂纤维复合材料结构的跨尺度、多层级变量协同优化设计;第二步,建立三维有限元数值模型并进行几何分区;建立复合材料板壳结构三维有限元数值模型,根据板壳结构的几何形状、功能要求将有限元数值模型进行几何分区处理;对板壳结构进行分区优化设计可以扩大结构的设计空间,后续通过离散材料优化可以获得每个相邻区域都为不同备选材料的变刚度板壳结构;第三步,使用模型降阶方法,建立降阶数值分析模型;使用模型降阶的方法降低有限元数值模型的维度,降低数值分析的计算成本,实现混杂复合材料快速协同优化设计;第四步,建立优化列式,进行离散材料优化设计;根据设计要求建立优化列式和离散材料优化模型,目标和约束依据设计初期的具体要求,包括刚度、频率、屈曲力学响应;优化列式的一般形式如下:优化目标:min F(u(x),x)优化约束:G i(x)≤0 (1)0≤x i≤1,i=1,...,L其中,x为设计变量,x i为设计变量第i个分量,L为设计变量的数量,u为力学控制方程,F为目标函数,G为约束函数;将第一步获得的备选材料库中的离散材料作为设计变量,使用连续插值函数表征备选材料库中的离散材料;将第二步获得的分区化三维有限元数值模型作为设计的几何模型,依据模型的几何分区和优化目标及约束分配设计变量;将第三步获得的降阶模型作为优化过程中使用的数值分析模型,使用降阶模型进行数值计算获得目标和约束响应,进行离散材料优化设计,同时进行混杂纤维复合材料纤维体分比、纤维角度、铺层顺序多变量、跨尺度协同优化设计,获得满足功能要求的最优设计构型。
- 根据权利要求1所述的一种面向混杂纤维复合材料板壳结构的快速协同优化方法,其特征在于,第四步具体步骤包括:(1)使用连续插值公式将离散材料连续化表征,材料插值格式如公式(2)所示;(2)基于有限元降阶模型计算目标函数和约束,并计算灵敏度信息;其中 灵敏度信息的计算方法包括直接法,伴随法和差分法;(3)使用梯度类优化方法求解优化问题,直至优化问题收敛;其中优化方法包括牛顿法、拟牛顿法、移动渐近线法等;(4)消除优化结果中的中间密度,获得材料选择明确的设计结果。
- 根据权利要求1或2所述的一种面向混杂纤维复合材料板壳结构的快速协同优化方法,其特征在于,第一步中所述的解析方法为混合公式法,数值方法包括均匀化方法、代表体元法。
- 根据权利要求1或2所述的一种面向混杂纤维复合材料板壳结构的快速协同优化方法,其特征在于,第二步中所述的模型降阶方法包括:特征正价本征正交分解POD方法、动力学模态分解DMD方法。
- 根据权利要求3所述的一种面向混杂纤维复合材料板壳结构的快速协同优化方法,其特征在于,第二步中所述的模型降阶方法包括:特征正价本征正交分解POD方法、动力学模态分解DMD方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/083031 WO2020211012A1 (zh) | 2019-04-17 | 2019-04-17 | 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 |
JP2021549096A JP7058902B2 (ja) | 2019-04-17 | 2019-04-17 | ハイブリッド繊維複合材料の板巻きシェル構造に対する高速協調最適化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/083031 WO2020211012A1 (zh) | 2019-04-17 | 2019-04-17 | 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020211012A1 true WO2020211012A1 (zh) | 2020-10-22 |
Family
ID=72836754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083031 WO2020211012A1 (zh) | 2019-04-17 | 2019-04-17 | 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7058902B2 (zh) |
WO (1) | WO2020211012A1 (zh) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112257266A (zh) * | 2020-10-23 | 2021-01-22 | 中国科学院微小卫星创新研究院 | 复合材料层合板的重要性分析系统及方法 |
CN112364546A (zh) * | 2020-12-03 | 2021-02-12 | 华中科技大学 | 一种基于双边滤波的纤维增强复合材料结构优化设计方法 |
CN112395705A (zh) * | 2020-11-19 | 2021-02-23 | 苏州科技大学 | 基于生物胞元的机械结构仿生拓扑设计方法 |
CN112613137A (zh) * | 2020-12-14 | 2021-04-06 | 大连理工大学 | 一种基于刚度等效和模型降阶的减振优化快速计算方法 |
CN112818576A (zh) * | 2021-01-28 | 2021-05-18 | 华中科技大学 | 一种曲线纤维复合结构设计多层级优化方法 |
CN113240160A (zh) * | 2021-04-25 | 2021-08-10 | 中土木(北京)技术检测有限公司 | 一种混凝土配合比的成本优化模型和成本优化方法 |
CN113434921A (zh) * | 2021-07-05 | 2021-09-24 | 西安交通大学 | 一种考虑介纳观尺度效应的结构等几何拓扑优化方法 |
CN113722860A (zh) * | 2021-09-07 | 2021-11-30 | 上海交通大学 | 基于降阶模型的瞬态热力状态在线评估方法、设备及介质 |
CN114023400A (zh) * | 2021-10-19 | 2022-02-08 | 上海索辰信息科技股份有限公司 | 一种快速预测不同体积分数下复合材料等效特性的方法 |
CN114228190A (zh) * | 2021-11-29 | 2022-03-25 | 吉林大学 | 一种连续纤维增强复合材料零件变厚度铺层参数化设计方法 |
CN114329800A (zh) * | 2021-07-08 | 2022-04-12 | 上海理工大学 | 变刚度可降解复合结构优化设计方法 |
CN114417523A (zh) * | 2021-12-24 | 2022-04-29 | 山东产研先进材料研究院有限公司 | 一种海洋结构物的一体化设计方法 |
CN114486518A (zh) * | 2021-12-31 | 2022-05-13 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN114547791A (zh) * | 2022-01-25 | 2022-05-27 | 武汉理工大学 | 复合材料层合板构件铺层多级优化设计方法 |
CN114722509A (zh) * | 2022-06-09 | 2022-07-08 | 华中科技大学 | 基于纤维连续性模型的锥形加筋舱铺层顺序优化方法 |
CN114741846A (zh) * | 2022-03-15 | 2022-07-12 | 中国民航大学 | 一种超低热膨胀复合材料支撑结构的设计方法 |
CN114758735A (zh) * | 2022-04-18 | 2022-07-15 | 天津大学 | 机器学习加速的表面催化结构全局优化的混合进化方法 |
CN114925565A (zh) * | 2022-05-16 | 2022-08-19 | 吉林大学 | 纤维增强橡胶复合材料的纤维角度优化方法 |
CN116050283A (zh) * | 2023-03-07 | 2023-05-02 | 中国石油大学(华东) | 复合材料柔性管铺层多目标优化设计方法及设备 |
WO2023078475A1 (zh) * | 2021-11-08 | 2023-05-11 | 南京航空航天大学 | 一种基于三维正交机织复合材料的高超音速飞行器前缘热防护设计方法 |
CN117421996A (zh) * | 2023-12-12 | 2024-01-19 | 西北工业大学 | 基于bp神经网络的纤维增强复合材料变刚度优化方法 |
CN117592338A (zh) * | 2023-12-06 | 2024-02-23 | 湖南科技大学 | 一种考虑材料非线性的应变beso混凝土构件优化方法 |
CN119222011A (zh) * | 2024-12-04 | 2024-12-31 | 西北工业大学 | 一种复合材料多维变刚度机匣结构 |
CN119557549A (zh) * | 2025-01-22 | 2025-03-04 | 中国飞机强度研究所 | 一种离散连续优化变量插值计算方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8494819B2 (en) * | 2010-08-25 | 2013-07-23 | Livermore Software Technology Corp. | Efficient data management for shell finite elements representing layered composite materials |
CN103310274A (zh) * | 2013-06-04 | 2013-09-18 | 内蒙古金岗重工有限公司 | 一种纤维增强压力容器壳体铺层结构的遗传算法优化方法 |
CN103870629A (zh) * | 2014-01-12 | 2014-06-18 | 太原理工大学 | 气动弹性纤维增强复合板壳结构的多目标优化设计方法 |
CN105184016A (zh) * | 2015-09-30 | 2015-12-23 | 上海海洋大学 | 海洋工程中基于Spark的FG-CNT增强复合材料板振动控制方法 |
KR20160059655A (ko) * | 2014-11-19 | 2016-05-27 | 목포해양대학교 산학협력단 | 탄소섬유강화복합소재 다층쉘 선체 구조재 개발을 위한 최적 탄소섬유량 결정 방법 및 시스템 |
CN106066913A (zh) * | 2016-05-31 | 2016-11-02 | 西北工业大学 | 复杂复合材料结构等效材料性能多尺度计算方法 |
CN107220461A (zh) * | 2017-06-26 | 2017-09-29 | 大连理工大学 | 一种变刚度复合材料板壳结构高效优化方法 |
CN107357974A (zh) * | 2017-03-31 | 2017-11-17 | 华侨大学 | 非均匀纤维增强复合材料分布优化设计方法 |
CN107679343A (zh) * | 2017-10-31 | 2018-02-09 | 吉林大学 | 连续纤维增强热固性复合材料座椅骨架优化方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6989889B2 (ja) * | 2017-06-05 | 2022-02-03 | 株式会社岩間工業所 | 複合構造体の設計方法及び複合構造体 |
JP6955930B2 (ja) * | 2017-08-09 | 2021-10-27 | 三菱重工業株式会社 | 複合材の設計方法、及び複合材 |
EP3447717A1 (en) * | 2017-08-24 | 2019-02-27 | Tata Consultancy Services Limited | Systems and methods for determining properties of composite materials for predicting behaviour of structures |
-
2019
- 2019-04-17 JP JP2021549096A patent/JP7058902B2/ja active Active
- 2019-04-17 WO PCT/CN2019/083031 patent/WO2020211012A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8494819B2 (en) * | 2010-08-25 | 2013-07-23 | Livermore Software Technology Corp. | Efficient data management for shell finite elements representing layered composite materials |
CN103310274A (zh) * | 2013-06-04 | 2013-09-18 | 内蒙古金岗重工有限公司 | 一种纤维增强压力容器壳体铺层结构的遗传算法优化方法 |
CN103870629A (zh) * | 2014-01-12 | 2014-06-18 | 太原理工大学 | 气动弹性纤维增强复合板壳结构的多目标优化设计方法 |
KR20160059655A (ko) * | 2014-11-19 | 2016-05-27 | 목포해양대학교 산학협력단 | 탄소섬유강화복합소재 다층쉘 선체 구조재 개발을 위한 최적 탄소섬유량 결정 방법 및 시스템 |
CN105184016A (zh) * | 2015-09-30 | 2015-12-23 | 上海海洋大学 | 海洋工程中基于Spark的FG-CNT增强复合材料板振动控制方法 |
CN106066913A (zh) * | 2016-05-31 | 2016-11-02 | 西北工业大学 | 复杂复合材料结构等效材料性能多尺度计算方法 |
CN107357974A (zh) * | 2017-03-31 | 2017-11-17 | 华侨大学 | 非均匀纤维增强复合材料分布优化设计方法 |
CN107220461A (zh) * | 2017-06-26 | 2017-09-29 | 大连理工大学 | 一种变刚度复合材料板壳结构高效优化方法 |
CN107679343A (zh) * | 2017-10-31 | 2018-02-09 | 吉林大学 | 连续纤维增强热固性复合材料座椅骨架优化方法 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112257266B (zh) * | 2020-10-23 | 2024-02-02 | 中国科学院微小卫星创新研究院 | 复合材料层合板的重要性分析系统及方法 |
CN112257266A (zh) * | 2020-10-23 | 2021-01-22 | 中国科学院微小卫星创新研究院 | 复合材料层合板的重要性分析系统及方法 |
CN112395705B (zh) * | 2020-11-19 | 2024-03-15 | 苏州科技大学 | 基于生物胞元的机械结构仿生拓扑设计方法 |
CN112395705A (zh) * | 2020-11-19 | 2021-02-23 | 苏州科技大学 | 基于生物胞元的机械结构仿生拓扑设计方法 |
CN112364546A (zh) * | 2020-12-03 | 2021-02-12 | 华中科技大学 | 一种基于双边滤波的纤维增强复合材料结构优化设计方法 |
CN112364546B (zh) * | 2020-12-03 | 2024-04-19 | 华中科技大学 | 一种基于双边滤波的纤维增强复合材料结构优化设计方法 |
CN112613137A (zh) * | 2020-12-14 | 2021-04-06 | 大连理工大学 | 一种基于刚度等效和模型降阶的减振优化快速计算方法 |
CN112613137B (zh) * | 2020-12-14 | 2024-05-17 | 大连理工大学 | 一种基于刚度等效和模型降阶的减振优化快速计算方法 |
CN112818576A (zh) * | 2021-01-28 | 2021-05-18 | 华中科技大学 | 一种曲线纤维复合结构设计多层级优化方法 |
CN112818576B (zh) * | 2021-01-28 | 2024-04-19 | 华中科技大学 | 一种曲线纤维复合结构设计多层级优化方法 |
CN113240160A (zh) * | 2021-04-25 | 2021-08-10 | 中土木(北京)技术检测有限公司 | 一种混凝土配合比的成本优化模型和成本优化方法 |
CN113240160B (zh) * | 2021-04-25 | 2023-12-29 | 中土木(北京)技术检测有限公司 | 一种混凝土配合比的成本优化模型和成本优化方法 |
CN113434921A (zh) * | 2021-07-05 | 2021-09-24 | 西安交通大学 | 一种考虑介纳观尺度效应的结构等几何拓扑优化方法 |
CN114329800A (zh) * | 2021-07-08 | 2022-04-12 | 上海理工大学 | 变刚度可降解复合结构优化设计方法 |
CN113722860B (zh) * | 2021-09-07 | 2024-02-23 | 上海交通大学 | 基于降阶模型的瞬态热力状态在线评估方法、设备及介质 |
CN113722860A (zh) * | 2021-09-07 | 2021-11-30 | 上海交通大学 | 基于降阶模型的瞬态热力状态在线评估方法、设备及介质 |
CN114023400A (zh) * | 2021-10-19 | 2022-02-08 | 上海索辰信息科技股份有限公司 | 一种快速预测不同体积分数下复合材料等效特性的方法 |
WO2023078475A1 (zh) * | 2021-11-08 | 2023-05-11 | 南京航空航天大学 | 一种基于三维正交机织复合材料的高超音速飞行器前缘热防护设计方法 |
CN114228190A (zh) * | 2021-11-29 | 2022-03-25 | 吉林大学 | 一种连续纤维增强复合材料零件变厚度铺层参数化设计方法 |
CN114228190B (zh) * | 2021-11-29 | 2024-04-26 | 吉林大学 | 一种连续纤维增强复合材料零件变厚度铺层参数化设计方法 |
CN114417523A (zh) * | 2021-12-24 | 2022-04-29 | 山东产研先进材料研究院有限公司 | 一种海洋结构物的一体化设计方法 |
CN114486518A (zh) * | 2021-12-31 | 2022-05-13 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN114486518B (zh) * | 2021-12-31 | 2024-06-11 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN114547791B (zh) * | 2022-01-25 | 2024-08-06 | 武汉理工大学 | 复合材料层合板构件铺层多级优化设计方法 |
CN114547791A (zh) * | 2022-01-25 | 2022-05-27 | 武汉理工大学 | 复合材料层合板构件铺层多级优化设计方法 |
CN114741846B (zh) * | 2022-03-15 | 2023-12-01 | 中国民航大学 | 一种超低热膨胀复合材料支撑结构的设计方法 |
CN114741846A (zh) * | 2022-03-15 | 2022-07-12 | 中国民航大学 | 一种超低热膨胀复合材料支撑结构的设计方法 |
CN114758735A (zh) * | 2022-04-18 | 2022-07-15 | 天津大学 | 机器学习加速的表面催化结构全局优化的混合进化方法 |
CN114925565A (zh) * | 2022-05-16 | 2022-08-19 | 吉林大学 | 纤维增强橡胶复合材料的纤维角度优化方法 |
CN114722509B (zh) * | 2022-06-09 | 2022-09-09 | 华中科技大学 | 基于纤维连续性模型的锥形加筋舱铺层顺序优化方法 |
CN114722509A (zh) * | 2022-06-09 | 2022-07-08 | 华中科技大学 | 基于纤维连续性模型的锥形加筋舱铺层顺序优化方法 |
CN116050283A (zh) * | 2023-03-07 | 2023-05-02 | 中国石油大学(华东) | 复合材料柔性管铺层多目标优化设计方法及设备 |
CN117592338A (zh) * | 2023-12-06 | 2024-02-23 | 湖南科技大学 | 一种考虑材料非线性的应变beso混凝土构件优化方法 |
CN117421996B (zh) * | 2023-12-12 | 2024-03-12 | 西北工业大学 | 基于bp神经网络的纤维增强复合材料变刚度优化方法 |
CN117421996A (zh) * | 2023-12-12 | 2024-01-19 | 西北工业大学 | 基于bp神经网络的纤维增强复合材料变刚度优化方法 |
CN119222011A (zh) * | 2024-12-04 | 2024-12-31 | 西北工业大学 | 一种复合材料多维变刚度机匣结构 |
CN119557549A (zh) * | 2025-01-22 | 2025-03-04 | 中国飞机强度研究所 | 一种离散连续优化变量插值计算方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022521907A (ja) | 2022-04-13 |
JP7058902B2 (ja) | 2022-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020211012A1 (zh) | 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 | |
CN110083900B (zh) | 一种面向混杂纤维复合材料板壳结构的快速协同优化方法 | |
Lund | Discrete material and thickness optimization of laminated composite structures including failure criteria | |
Hao et al. | Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters | |
Blom et al. | Design of variable-stiffness conical shells for maximum fundamental eigenfrequency | |
Catapano et al. | A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties | |
CN107220461B (zh) | 一种变刚度复合材料板壳结构高效优化方法 | |
Brooks et al. | High-fidelity multipoint aerostructural optimization of a high aspect ratio tow-steered composite wing | |
Krysko et al. | Topological optimization of thermoelastic composites with maximized stiffness and heat transfer | |
Ma et al. | Generative design of stiffened plates based on homogenization method | |
Bohrer et al. | Optimization of composite plates subjected to buckling and small mass impact using lamination parameters | |
Lai et al. | Parameterized finite element modeling and buckling analysis of six typical composite grid cylindrical shells | |
Papadrakakis et al. | Multi-objective optimization of skeletal structures under static and seismic loading conditions | |
de Quadros et al. | A Lagrange parametrization for the design of variable stiffness laminates | |
You et al. | Structural similitude design for a scaled composite wing box based on optimised stacking sequence | |
Park et al. | An integrated optimisation for the weight, the structural performance and the cost of composite structures | |
Ercument et al. | Machine Learning and Optimization Algorithms for Vibration, Bending and Buckling Analyses of Composite/Nanocomposite Structures: A Systematic and Comprehensive Review: DB Ercument et al. | |
Garofano et al. | On the use of double‐double design philosophy in the redesign of composite fuselage barrel frame components | |
Keller | Global laminate optimization on geometrically partitioned shell structures | |
Qiao et al. | Optimization of transverse shear moduli for composite honeycomb cores | |
Yao et al. | A concurrent subspace collaborative optimization architecture to structural synthetical optimization design | |
Dong et al. | Discrete optimization design for cabin-skeleton coupling structure of blended-wing-body underwater glider | |
CN110659525B (zh) | 一种复材结构优化设计方法 | |
Wu et al. | An integrated approach to shape and laminate stacking sequence optimization of free-form FRP shells | |
Si-zhong et al. | AN EFFICIENT ASSESSMENT METHOD FOR INTELLIGENT DESIGN RESULTS OF SHEAR WALL STRUCTURE BASED ON MECHANICAL PERFORMANCE, MATERIAL CONSUMPTION, AND EMPIRICAL RULES. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021549096 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19925268 Country of ref document: EP Kind code of ref document: A1 |