[go: up one dir, main page]

WO2020202928A1 - Solid state battery - Google Patents

Solid state battery Download PDF

Info

Publication number
WO2020202928A1
WO2020202928A1 PCT/JP2020/007846 JP2020007846W WO2020202928A1 WO 2020202928 A1 WO2020202928 A1 WO 2020202928A1 JP 2020007846 W JP2020007846 W JP 2020007846W WO 2020202928 A1 WO2020202928 A1 WO 2020202928A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state battery
face
substrate
view
Prior art date
Application number
PCT/JP2020/007846
Other languages
French (fr)
Japanese (ja)
Inventor
良平 高野
近川 修
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020202928A1 publication Critical patent/WO2020202928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid state battery.
  • the solid-state battery is, for example, a solid-state battery having a laminated structure in which one or more positive electrode layers and one or more negative electrode layers are alternately laminated via a solid electrolyte layer in Patent Documents 1 and 2.
  • a solid-state battery having end face electrodes on its two opposite end faces is disclosed. Such a solid-state battery is mounted by electrically connecting metal terminals to each of the end face electrodes.
  • the solid-state battery has, for example, as shown in FIG. 14, a laminated structure in which one or more positive electrode layers 51 and one or more negative electrode layers 52 are alternately laminated via a solid electrolyte layer 53.
  • a solid-state battery 500A is known, which has end face electrodes 501 (501A, 501B) on its end face.
  • metal terminals 502 (502A, 502B) are electrically connected to each of the end face electrodes 501 (501A, 501B).
  • the metal terminals 502 (502A, 502B) are provided on the surfaces of the end face electrodes 501A and 501B, and extend directly below (that is, directly below) as they are.
  • FIG. 14 is a schematic cross-sectional view of an example of a solid-state battery in the prior art.
  • the metal terminals 502A and 502B are extended along the substrate 503 at the end portion on the substrate side and are electrically connected to the substrate 503.
  • the metal terminals 502A and 502B may extend to the side opposite to the solid-state battery main body 510 as shown in FIG. 15 with respect to the end face electrodes 501A and 501B in cross-sectional view, or as shown in FIG. Even if it extends to the 510 side of the solid-state battery body, a poor connection between the metal terminal and the substrate still occurs.
  • FIG. 15 is a simplified view of the solid-state battery shown in FIG.
  • FIG. 16 is a schematic cross-sectional view of another example of a solid state battery in the prior art.
  • An object of the present invention is to provide a solid-state battery that can be mounted on a substrate such as a circuit and an element, and can more sufficiently suppress the destruction of the connection portion between the metal terminal and the substrate even if charging and discharging are repeated. ..
  • the present invention A solid-state battery including a solid-state battery body and two end face electrodes.
  • the solid-state battery has metal terminals that are electrically connected to each of the two end face electrodes.
  • the metal terminal relates to a solid-state battery that supports the solid-state battery main body provided with the end face electrode while projecting to the side opposite to the solid-state battery main body.
  • the solid-state battery of the present invention is mounted on a substrate such as a circuit and an element, and even if charging and discharging are repeated, the destruction of the connection portion between the metal terminal and the substrate can be more sufficiently suppressed.
  • FIG. 1 It is a schematic cross-sectional view which shows an example when the metal terminal of this invention (for example, the metal terminal of the solid-state battery which concerns on 1st Embodiment of this invention) is distributed.
  • FIG. 1 It is a schematic cross-sectional view of an example of a solid-state battery in the prior art. It is a figure which showed more simplified the solid-state battery shown in FIG. It is a schematic sectional view of another example of the solid-state battery in the prior art.
  • Solid-state battery The present invention provides a solid-state battery and metal terminals for mounting the solid-state battery.
  • solid-state battery refers to a battery in which its components (particularly the electrolyte layer) are composed of solids in a broad sense, and in a narrow sense, the components (particularly all components) are composed of solids. Refers to the "all-solid-state battery” that is configured.
  • the "solid-state battery” as used herein includes a so-called “secondary battery” capable of repeating charging and discharging, and a “primary battery” capable of only discharging.
  • the “solid-state battery” is preferably a "secondary battery”.
  • the “secondary battery” is not overly bound by its name and may also include an electrochemical device such as a "storage device”.
  • plan view refers to an object viewed from above or below (particularly above) along the stacking direction L (or the thickness direction of the solid-state battery) of the layers to be described later, which constitute the solid-state battery. It is a state (plan view, top view or bottom view).
  • cross-sectional view referred to in the present specification is a cross-sectional state (cross-sectional view) when viewed from a direction substantially perpendicular to the stacking direction L (or the thickness direction of the solid-state battery) of each layer constituting the solid-state battery. That is.
  • the cross-sectional view when explaining the metal terminal is a plane parallel to the stacking direction L and a plane passing through the two end face electrodes (particularly a straight line defining the distance between the two end face electrodes). It is a cross-sectional state (cross-sectional view) when a solid-state battery is cut on a parallel surface).
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction” and the opposite direction corresponds to the "upward direction”.
  • the solid-state battery 100 (including 100A to 100I) of the present invention includes, for example, the solid-state battery main body 10 and two end face electrodes 1 (including 1A and 1B) as shown in FIGS. 1 to 9.
  • the solid-state battery main body 10 usually has a layered structure (particularly a laminated structure), and has, for example, a laminated direction L as shown in FIG.
  • the solid-state battery main body 10 has one or more positive electrode layers and one or more negative electrode layers alternately laminated via a solid electrolyte layer, and has end face electrodes 1 (1A, 1B) on the end faces of the laminated structure. ing.
  • the end face of the laminated structure is a surface parallel to the stacking direction (so-called side surface) including the end face of each layer to be laminated.
  • the end face electrodes 1 (1A, 1B) are usually formed on two opposing end faces in a laminated structure.
  • the number of layers of the positive electrode layer and the negative electrode layer is arbitrary and is not particularly limited.
  • the solid-state battery of the present invention may have a parallel structure or a series structure. 1 to 9 are schematic cross-sectional views of the solid-state battery according to the first to ninth embodiments according to the present invention, respectively.
  • the electrode layer includes a positive electrode layer and a negative electrode layer.
  • the electrode layer contains an active material and may further contain an electron conductive material.
  • the positive electrode layer contains a so-called positive electrode active material, and may further contain an electron conductive material, a solid electrolyte material and / or a bonding material described later.
  • the positive electrode layer is usually composed of a sintered body containing positive electrode active material particles and an electron conductive material, and contains positive electrode active material particles, electron conductive material particles, and optionally contained solid electrolyte particles and / or bondability. It may be composed of a sintered body containing the material.
  • the negative electrode layer contains a so-called negative electrode active material, and may further contain an electron conductive material, a solid electrolyte material and / or a bonding material described later.
  • the negative electrode layer is usually composed of a sintered body containing negative electrode active material particles and an electron conductive material, and contains negative electrode active material particles, electron conductive material particles, and optionally contained solid electrolyte particles and / or bondability. It may be composed of a sintered body containing the material.
  • the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer are substances involved in the transfer of electrons in the solid battery, and the ions contained in the solid electrolyte material constituting the solid electrolyte layer are the positive electrode and the negative electrode. Charging and discharging are performed by moving (conducting) between the electrodes and transferring electrons.
  • the positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery of the present invention is preferably a solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode and the negative electrode via the solid electrolyte layer to charge and discharge the battery.
  • the positive electrode active material contained in the positive electrode layer is not particularly limited, and for example, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one selected from the group consisting of lithium-containing oxides and the like having Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of the lithium-containing phosphate compound having an olivine structure, Li 3 Fe 2 (PO 4 ) 3, LiMnPO 4 , and the like.
  • lithium-containing layered oxides examples include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
  • Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
  • the positive electrode active material capable of occluding and releasing sodium ions a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
  • the negative electrode active material contained in the negative electrode layer is not particularly limited, and for example, an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite- At least one selected from the group consisting of lithium compounds, lithium alloys, lithium-containing phosphoric acid compounds having a pearcon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, lithium-containing oxides having a spinel-type structure, and the like. Be done.
  • An example of a lithium alloy is Li—Al or the like.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 .
  • lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
  • the negative electrode active material capable of occluding and releasing sodium ions is a group consisting of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from is mentioned.
  • the electron conductive material contained in the positive electrode layer and the negative electrode layer is not particularly limited, and examples thereof include metal materials such as silver, palladium, gold, platinum, aluminum, copper, and nickel; and carbon materials.
  • metal materials such as silver, palladium, gold, platinum, aluminum, copper, and nickel
  • carbon materials are preferable because it does not easily react with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery.
  • the solid electrolyte material that may be contained in the positive electrode layer and the negative electrode layer may be selected from, for example, the same materials as the solid electrolyte material that can be contained in the solid electrolyte layer described later.
  • the bonding material that may be contained in the positive electrode layer and the negative electrode layer may be selected from, for example, the same materials as the bonding material that can be contained in the bonding site described later.
  • the positive electrode layer and the negative electrode layer may each independently further contain a sintering aid.
  • the sintering aid is not particularly limited, and is, for example, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide. Can be.
  • the thicknesses of the electrode layers are not particularly limited, and are, for example, 2 ⁇ m or more and 50 ⁇ m or less independently of each other, from the viewpoint of further and sufficiently suppressing poor connection between the electrode layer and the end face electrode. It is preferably 5 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the total number of layers of the positive electrode layer and the negative electrode layer is not particularly limited, and may be, for example, 2 or more and 200 or less, particularly 2 or more and 100 or less.
  • the electrode layer (that is, the positive electrode layer and / or the negative electrode layer) may have a current collector layer.
  • the current collector layer may have the form of a foil, but it is preferable to have the form of a sintered body from the viewpoint of reducing the manufacturing cost of the solid-state battery by integral firing and reducing the internal resistance of the solid-state battery.
  • the current collector layer When the current collector layer has the form of a sintered body, it may be composed of, for example, a sintered body containing electron conductive material particles and a sintering aid.
  • the electron conductive material contained in the current collector layer may be selected from, for example, the same materials as the electron conductive material that can be contained in the electrode layer.
  • the sintering aid contained in the current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
  • the thickness of the current collector layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 5 ⁇ m or less, particularly 1 ⁇ m or more and 3 ⁇ m or less.
  • the solid electrolyte layer is composed of a sintered body containing solid electrolyte particles.
  • the solid electrolyte layer is a layer capable of conducting ions (for example, lithium ions).
  • the material of the solid electrolyte particles (that is, the solid electrolyte material) is not particularly limited as long as it can provide ions (for example, lithium ions or sodium ions) that can move (conduct) between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte material include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
  • Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .
  • As an example of an oxide having a perovskite structure La 0.55 Li 0.35 TiO 3 and the like can be mentioned.
  • oxides having a garnet type or a garnet type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like.
  • the sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • the solid electrolyte layer may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • the end face electrode 1 is an electrode formed on the end face of the laminated structure, and is usually two end face electrodes (1A, 1B) on the positive electrode side and the negative electrode side formed on the two opposite end faces in the laminated structure. ..
  • the end face electrodes 1A and 1B may be formed on the entire surface or a part of the end face of the laminated structure, respectively.
  • the end face electrodes 1A and 1B are preferably formed on the entire surface of the end face of the laminated structure from the viewpoint of further and sufficiently suppressing poor connection between the electrode layer and the end face electrode.
  • the end face of the laminated structure is a surface parallel to the stacking direction (so-called side surface) including the end face of each layer to be laminated.
  • the end face electrode 1 is usually composed of a sintered body containing electron conductive material particles and a sintering aid.
  • the electron conductive material contained in the end face electrode 1 may be selected from, for example, the same materials as the electron conductive material that can be contained in the electrode layer.
  • the sintering aid contained in the end face electrode 1 may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
  • the thickness of the end face electrode is not particularly limited, and may be, for example, 1 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • a protective layer is usually arranged on the outermost surface of the electrode layer.
  • the outermost surface of the electrode layer is the uppermost surface of the electrode layer arranged at the top and the lowermost surface of the electrode layer arranged at the bottom.
  • the protective layer is not particularly limited as long as it has electrical insulation and protects the solid-state battery from external impact, and may be made of, for example, a solid electrolyte material.
  • the protective layer is preferably composed of a sintered body containing a solid electrolyte material, and may further contain a sintering aid.
  • the solid electrolyte material that may be contained in the protective layer may be selected from, for example, the same materials as the solid electrolyte material that can be contained in the solid electrolyte layer.
  • the sintering aid that may be contained in the protective layer may be selected from, for example, the same materials as the sintering aid that may be contained in the electrode layer.
  • the thickness of the protective layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, particularly 10 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode layer, negative electrode layer, solid electrolyte layer and end face electrode (and optionally protective layer) are sintered from each other from the viewpoint of further and sufficiently relieving stress due to expansion and contraction (particularly expansion) of the solid-state battery volume. It is preferable that they are integrally sintered with each other.
  • integral sintering of sintered bodies means that two or more members adjacent to each other or in contact with each other are joined by sintering.
  • the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the end face electrode (and, if desired, the protective layer) are all sintered, but integrally sintered. This is because, in the present invention, even in the sintered body, the stress due to expansion and contraction (particularly expansion) can be further and sufficiently relaxed.
  • the solid-state battery 100 (including 100A to 100I) of the present invention includes, for example, the solid-state battery main body 10 and two end face electrodes 1 (1A and 1B) as shown in FIGS. 1 to 9, and the two are included. It has metal terminals 2 (2A, 2B) that are electrically connected to each of the end face electrodes 1 (1A and 1B).
  • the metal terminals 2A and 2B electrically connect the end face electrodes 1A and 1B of the solid state battery to the substrate 3 such as an external circuit and element, and form the solid state battery (particularly the solid state battery body provided with the end face electrodes) on the substrate 3. It is for supporting the part).
  • the metal terminals 2A and 2B may be made of any metal material having electron conductivity. Examples of such metal materials include silver, palladium, gold, platinum, aluminum, copper, nickel and the like. Further, alloys containing these as main components may be appropriately used. It is preferable to use copper or a copper alloy (tough pitch copper, brass, Corson alloy).
  • each of the metal terminals 2A and 2B has Za and Zb on the opposite sides of the end face electrodes 1A and 1B from the solid-state battery main body 10 in a cross-sectional view (and a plan view), as shown in FIGS. It supports the solid-state battery 100 (100A to 100I) (particularly the solid-state battery main body portion provided with the end face electrode) while protruding from the surface.
  • each of the metal terminals 2A and 2B (particularly, the terminal body portions 20A and 20B described later) has end face electrodes (hereinafter, simply referred to as "connection end face electrodes") 1A and 1B to which the metal terminals are electrically connected.
  • FIG. 10 is a schematic plan view of the solid-state battery according to the first embodiment of the present invention.
  • FIG. 11 is a schematic plan view of a modified example of the solid-state battery according to the first embodiment of the present invention.
  • each of the metal terminals 2A and 2B projects to Za and Zb on the opposite side of the solid-state battery body 10 from the metal terminals 2A (or 2B) (particularly the terminal body described later).
  • 20A (or 20B)) is located on the opposite side Za (or Zb) of the connection end face electrode 1A (or 1B) to the solid-state battery 10, but at least in part, beyond the thickness of the metal terminal itself. It means that it extends or protrudes in the side Za (or Zb) direction.
  • each of the metal terminals 2A and 2B supports the solid-state battery 100 (particularly the solid-state battery main body having the end face electrode) means that each of the metal terminals 2A and 2B supports the solid-state battery 100 (particularly the end face electrode) on the substrate 3. It means that it holds the solid-state battery main body).
  • the solid-state battery 100 (particularly the solid-state battery body having the end face electrodes) on the substrate 3.
  • the solid-state battery 100 is supported.
  • the substrate 3 are achieved, the solid-state battery 100 (particularly, the solid-state battery main body portion provided with the end face electrodes) may be movable by an external force.
  • the metal terminal may support the solid-state battery main body portion via the end face electrode.
  • the solid-state battery 10 By supporting the solid-state battery (particularly the solid-state battery main body having the end face electrode) while each of the metal terminals 2A and 2B projects to the opposite side of the solid-state battery main body 10, the solid-state battery 10 (particularly the electrode layer) The stress generated by the expansion and contraction (particularly expansion) of the volume is relaxed or reduced in the overhanging portion of the metal terminal (particularly the terminal body portions 20A and 20B described later) before being transmitted to the connection portion between the metal terminal and the substrate. To.
  • the stress is relaxed or reduced in this way because the transmission path until the stress is transmitted to the connection portion J between the metal terminal 2 (2A, 2B) and the substrate 3 becomes long, and the metal terminal It is considered that the stress is absorbed by the deformation of the overhanging portion (particularly, the terminal body portions 20A and 20B described later).
  • the concentration of the stress on the support point G with the substrate 3 at the metal terminals 2A and 2B is suppressed or relaxed, and the destruction of the connection portion between the metal terminal and the substrate can be sufficiently suppressed. Further, it is possible to suppress the destruction and short circuit of the solid-state battery due to the contact between the adjacent solid-state batteries due to the expansion of the solid-state battery.
  • each of the metal terminals 2A and 2B is one from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. More than (for example, 1 to 5) bent portions r, 1 or more (for example, 1 to 5) curved portions s, 1 or more (for example, 1 to 5) inclined portions t, or a combination thereof. Supports the solid-state battery 100 (particularly, the solid-state battery main body portion provided with the end face electrodes) on the substrate 3.
  • the inclined portion t is a portion that is inclined with respect to the bottom surface E of the solid-state battery 100 in a cross-sectional view.
  • the inclined portion t is based on a parallel line with respect to the bottom surface E passing through the starting point, starting from the end on the electrode side of the connecting end face of the metal terminals 2A and 2B (particularly, the terminal body portions 20A and 20B described later). When, it may be inclined upwards or downwards.
  • Each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) has one or more (for example, 1) from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. It may further have one to five) parallel portions p and / or one or more (eg, one to five) vertical portions q.
  • the parallel portion p is a portion parallel to the bottom surface E of the solid-state battery 100 in a cross-sectional view.
  • the vertical portion q is a portion perpendicular to the bottom surface E of the solid-state battery 10 in a cross-sectional view.
  • each of the metal terminals 2A and 2B is from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side.
  • the solid-state battery 10 is supported on the substrate 3 while having one parallel portion p, one bent portion r, and one vertical portion q in this order. are doing.
  • each of the metal terminals 2A and 2B is from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side.
  • the solid-state battery 10 (particularly, the solid-state battery main body portion provided with the end face electrodes) is supported on the substrate 3 while having one inclined portion s as a whole.
  • each of the metal terminals 2A and 2B extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side.
  • the solid-state battery 10 (particularly the solid-state battery main body portion provided with the end face electrodes) is supported on the substrate 3 while having a portion r and one inclined portion t.
  • each of the metal terminals 2A and 2B extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side.
  • it has one inclined portion t, one bent portion r, one inclined portion t, one bent portion r, one inclined portion t, one bent portion r, and one vertical portion q.
  • the solid-state battery 10 is supported on the substrate 3.
  • each of the metal terminals 2A and 2B extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side.
  • the solid-state battery 10 (particularly the solid-state battery main body having end face electrodes) is mounted on the substrate 3 while having two continuous curved portions s, one bent portion r, and one vertical portion q. I support it.
  • each of the metal terminals 2A and 2B extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side.
  • the solid-state battery 10 (particularly the solid-state battery main body having the end face electrode) is supported on the substrate 3 while having one inclined portion t, one bent portion r, and one inclined portion t. ing.
  • Each of the metal terminals 2A and 2B includes at least the terminal body portions 20A and 20B as shown in FIGS. 1 to 9.
  • each of the metal terminals 2A and 2B preferably further includes end face electrode side mounting portions 21A and 21B and / or substrate side mounting portions 22A and 22B in addition to the terminal body portions 20A and 20B.
  • the metal terminal can be more firmly connected to the end face electrode.
  • each of the metal terminals 2A and 2B further includes a substrate-side mounting portion
  • the metal terminal can be more firmly connected to the substrate, and as a result, a stronger connection of the solid-state battery to the substrate can be achieved. Can be achieved.
  • Each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is electrically connected in contact with the connection end face electrodes 1A and 1B (preferably end face electrode side mounting portions 21A and 21B) at one end, and at the other end. It is a member that comes into contact with the substrate 3 and is electrically connected.
  • Each of the terminal body portions 20A and 20B has both a support function of a solid-state battery (particularly a solid-state battery body portion having an end face electrode) on a substrate by the metal terminal and an electrical conduction function between the substrate and the solid-state battery. It is a member that mainly plays the function of.
  • Each of the end face electrode side mounting portions 21A and 21B of the metal terminals 2A and 2B is electrically connected to one end of the terminal body portions 20A and 20B in cross-sectional view, and is electrically connected to the end face electrodes 1A and 1B. It is a member for.
  • the end face electrode side mounting portions 21A and 21B extend along the connecting end face electrodes 1A and 1B in cross-sectional view at least in a part thereof (preferably the whole), and the end face electrode side mounting portions 21A and 21B and the end face electrode side mounting portions 21A and 21B. Achieves face-to-face connection with the end face electrodes 1A and 1B.
  • the end face electrode side mounting portions 21A and 21B are connected to the end face electrodes 1A and 1B by surface contact.
  • the connection of the end face electrode side mounting portion to the end face electrode may be achieved by a reflow method or a flow method as described later.
  • Each of the board-side mounting portions 22A and 22B of the metal terminals 2A and 2B is electrically connected to the other ends of the terminal body portions 20A and 20B in a cross-sectional view, and is a member for electrical connection with the substrate 3.
  • the board-side mounting portions 22A and 22B extend along the substrate in a cross-sectional view at least in a part thereof (preferably the whole), and achieve a connection between the surfaces of the substrate-side mounting portion and the substrate. ..
  • the board-side mounting portions 22A and 22B are connected to the board 3 by surface contact.
  • the connection of the board-side mounting portion to the board may be achieved by the reflow method or the flow method as described later.
  • Each of the board-side mounting portions 22A and 22B extends in the direction of the solid-state battery main body portion 10 side as shown in FIGS. 1 to 4 and 6 to 9 in a cross-sectional view. As shown, it may extend in the direction opposite to that of the solid-state battery main body 10. From the viewpoint of further and sufficiently suppressing the destruction of the connection portion J between the metal terminal and the substrate, each of the substrate side mounting portions 22A and 22B extends in the direction of the solid-state battery main body portion 10 side in a cross-sectional view. It is preferable to have.
  • One end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B may be connected at any height of the end face electrode side mounting portions 21A and 21B.
  • one end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B is shown in cross-sectional view.
  • the height y of the solid-state battery is 0.3 ⁇ y or more, particularly 0.5, at the end face electrode side mounting portions 21A and 21B, with reference to the bottom surface E of the solid-state battery 100. It is preferable that they are connected at a height of ⁇ y or more.
  • one end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B has a bottom surface E of the solid-state battery 100 as shown in FIGS. 1 to 9 in a cross-sectional view.
  • the height y of the solid-state battery is connected at the height y of the end face electrode side mounting portions 21A and 21B (that is, the upper ends of the end face electrode side mounting portions 21A and 21B).
  • the height y of the solid-state battery is usually 0.5 mm or more and 10 mm or less, particularly 1 mm or more and 5 mm or less.
  • the support points G on the substrate side in each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B may be arranged at any position on the substrate 3 in a cross-sectional view.
  • the support points G on the substrate side of the terminal bodies 20A and 20B of the metal terminals 2A and 2B are the solid-state battery body 10 with respect to the connection end face electrodes 1A and 1B as shown in FIGS. 1 to 8 in a cross-sectional view. It may be arranged on the side opposite to that of the solid-state battery, or may be arranged on the solid-state battery main body 10 side as shown in FIG.
  • the support points G on the substrate side of the terminal body portions 20A and 20B of the metal terminals 2A and 2B are connected in a cross-sectional view. It is preferable that the end face electrodes 1A and 1B are arranged on the side opposite to the solid-state battery main body 10.
  • the support point G on the substrate side of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is the terminal body when the solid-state battery (particularly the solid-state battery body portion having the end face electrode) is supported on the substrate by the metal terminal. This is the point where the portion comes into contact with the substrate, and corresponds to the other ends of the terminal body portions 20A and 20B described above.
  • the distance a between the support point G on the substrate side and the connection end face electrodes 1A and 1B at each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is not particularly limited, but the expansion and contraction (particularly expansion) of the solid-state battery volume ) Is more preferably 0.5% or more and more preferably 2.0% or more with respect to the solid-state battery width dimension b from the viewpoint of further and sufficiently relaxing the stress.
  • the upper limit of the distance a is not particularly limited, and from the viewpoint of improving the energy density (for example, effective use of space), the distance a is preferably 10% or less, and more preferably 5% or less.
  • the distance a is a distance in the linear direction in which the bottom surface E of the solid-state battery is defined in a cross-sectional view.
  • the width dimension b of the solid-state battery is usually 0.1 mm or more and 50 mm or less.
  • the depth dimension of the solid-state battery (dimensions in the front and back directions of the paper surface in FIGS. 1 to 9) is usually 0.1 mm or more and 50 mm or less.
  • connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B) preferably has a folded shape in cross-sectional view.
  • the folded shape is a shape and a form formed by folding back one member having dimensions corresponding to the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B). .. Since the connection portion has a folded shape, the terminal body portion and the end face electrode side mounting portion are formed by simply folding one member without using a connection method such as a reflow method or a flow method. The connections between them are even stronger and the electrical conduction between them is even better. In a cross-sectional view, for example, as shown in FIGS.
  • one end of the terminal body portion 20A (or 20B) and the end portion (that is, the upper end) of the end face electrode side mounting portion 21A (or 21B) are connected.
  • the connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B) can have a folded shape.
  • one end (end) of the terminal body 20A (or 20B) is the end face electrode side mounting portion 21A (or 21B) with respect to the height y of the solid-state battery with reference to the bottom surface E of the solid-state battery in cross-sectional view. It is connected at the height of y in.
  • connection portion between the terminal body portion 20A (or 20B) and the substrate side mounting portion 22A (or 22B) preferably has a folded shape in cross-sectional view.
  • the folded shape is a shape and a form formed by folding back one member having dimensions corresponding to the terminal main body portion 20A (or 20B) and the substrate side mounting portion 22A (or 22B). Since the connection portion has a folded shape, the terminal body portion and the substrate side mounting portion are formed by simply folding back one member without using a connection method such as a reflow method or a flow method. The connections between them are even stronger and the electrical continuity between them is even better.
  • the terminal body 20A (or 20B) and the end of the board side mounting 22A (or 22B) are connected in a cross-sectional view
  • the terminal body 20A (or 20B) and the board side mounting 22A can have a folded shape.
  • a connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B), and a terminal body portion 20A has a folded shape in a cross-sectional view.
  • the folded shape is obtained by folding back one member having dimensions corresponding to the terminal body portion 20A (or 20B), the end face electrode side mounting portion 21A (or 21B), and the substrate side mounting portion 22A (or 22B). It is the shape and form formed.
  • the terminal body portion, the end face electrode side mounting portion, and the substrate side mounting portion simply fold back one member without using a connection method such as a reflow method or a flow method.
  • the connections between them are even stronger and the electrical conduction between them is even better.
  • one end (end) of the terminal body 20A (or 20B) and the end of the end face electrode side mounting portion 21A (or 21B) are connected to each other and the other end of the terminal body 20A (or 20B).
  • the terminal body portion 20A (or 20B), the end face electrode side mounting portion 21A (or 21B), and the board side mounting portion 22A (or 22B) It is possible that the connecting portion of the above has a folded shape.
  • the distance x between the substrate 3 and the solid-state battery 100 becomes 0 in a cross-sectional view.
  • the total length (height) may be large, or the total length (height) may be such that the distance x is 1.0% or more of the height y of the solid-state battery 100.
  • the metal terminals 2A and 2B show the substrate 3 and the solid-state battery 100 (particularly the solid-state battery having the end face electrode) in a cross-sectional view.
  • the distance x from the main body is 1.0% or more, preferably 5.0% or more of the height y of the solid-state battery 100.
  • the upper limit of the distance x is not particularly limited, and from the viewpoint of improving the energy density (for example, effective use of space), the distance x is preferably 20.0% or less of the height y, and 10.0% or less. Is more preferable.
  • Each of the metal terminals 2A and 2B may be a plate-shaped material or a rod-shaped material. From the viewpoint of further and sufficiently relaxing the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume, it is preferable that each of the metal terminals 2A and 2B is a plate-like material.
  • each of the metal terminals 2A and 2B is a plate-like object means that, for example, as shown in FIG. 10, each of the metal terminals 2A and 2B has substantially the same cross-sectional view shape in the depth direction of the cross-sectional view.
  • FIG. 10 is a schematic plan view of the solid-state battery according to the first embodiment of the present invention.
  • each of the metal terminals 2A and 2B is a rod-shaped object means that each of the metal terminals 2A and 2B has a rod shape, for example, as shown in FIG.
  • FIG. 11 is a schematic plan view of a modified example of the solid-state battery according to the first embodiment of the present invention, and is a schematic plan view when the metal terminals 2A and 2B in the solid-state battery according to the first embodiment have a rod shape. It is a figure.
  • the thickness of the metal terminals 2A and 2B is such that the metal terminals sufficiently support the solid-state battery (particularly the solid-state battery main body provided with the end face electrodes) and sufficiently relax the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume. As long as it does, it is not particularly limited.
  • the thickness of the metal terminals 2A and 2B is such that the support of the solid-state battery (particularly the solid-state battery main body provided with the end face electrode) and the relaxation of stress due to the expansion and contraction (particularly expansion) of the volume of the solid-state battery (particularly the solid-state battery main body). From the viewpoint, it is preferably 50 ⁇ m or more and 500 ⁇ m or less, and preferably 100 ⁇ m or more and 300 ⁇ m or less.
  • the diameter (or maximum dimension) of the rod shape in cross-sectional view may be within the range of the above thickness.
  • the solid-state battery 100 of the present invention connects (or fixes) the metal terminals 2 (2A, 2B) to the end face electrodes 1 (1A, 1B) of the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B). , Can be manufactured.
  • the solid-state battery of the present invention is, for example, the solid-state battery 100 as shown in FIG.
  • the metal terminal 2 can be obtained by cutting out a plate material or a bar material.
  • the metal terminals may be obtained by connecting (or fixing) these portions to each other by welding, or as described above.
  • a metal terminal may be obtained by folding back a member having dimensions corresponding to each portion.
  • the metal terminals may be obtained by combining welding or folding methods.
  • the reflow method for obtaining the metal terminal 2 is a reflow soldering method, in which the solder previously applied to the parts at room temperature is later heated and melted to achieve solder connection. The method.
  • the flow method for obtaining the metal terminal 2 is a method in which solder melted by heat is jetted and applied to a component to achieve a connection by solder.
  • the method of connecting (or fixing) the metal terminal 2 to the solid-state battery body 10 is not particularly limited as long as electrical connection and mutual fixing between the metal terminal 2 and the solid-state battery body 10 can be achieved, for example.
  • a method similar to the reflow method and the flow method for obtaining the metal terminals described above can be adopted.
  • a paste-like or cream-like metal paste for example, a copper paste is applied to the metal terminal 2 or It is applied to at least one of the solid-state battery main body 10.
  • the metal terminal 2 and the solid-state battery main body 10 are heated at a temperature at which the sintering of the metal paste proceeds with a metal paste, for example, a copper paste interposed between them. This sinters the metal paste to achieve connection and fixation.
  • a paste for example, a copper paste interposed between them.
  • the metal paste it is preferable to use a paste having the same composition as that of the external terminal.
  • the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B) can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • the printing method is adopted will be described in detail, but it is clear that the method is not limited to this method.
  • the method for manufacturing the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B) is as follows.
  • the step of forming the unfired laminate by a printing method; and the step of firing the unfired laminate are included.
  • a positive electrode layer paste such as a positive electrode layer paste, a negative electrode layer paste, a solid electrolyte layer paste, and an end face electrode paste are used as ink to form a predetermined structure on a substrate.
  • the unfired laminate of No. 1 is formed by a printing method.
  • a protective layer paste may be further used.
  • a laminate in which layers and members other than the end face electrodes are laminated may be formed by a printing method, and an end face electrode may be formed on the end face of the obtained laminate (that is, a laminated structure) by a coating method such as a dip method. ..
  • the end face electrode may be partially or wholly formed by a vapor phase method such as a sputtering method and / or a vapor deposition method.
  • Each paste contains a predetermined constituent material of each layer (member) selected from the group consisting of the above-mentioned positive electrode active material, negative electrode active material, electron conductive material, solid electrolyte material, bonding material, and sintering aid. It can be produced by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent.
  • the organic material contained in the paste is not particularly limited, but polymer compounds such as polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, and polyvinyl alcohol resin can be used.
  • the solvent is not particularly limited as long as the organic material can be dissolved, and for example, toluene, ethanol and the like can be used.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the base material is not particularly limited as long as it can support the unfired laminate, and for example, a polymer material such as polyethylene terephthalate can be used.
  • a polymer material such as polyethylene terephthalate can be used.
  • printing layers are sequentially laminated with a predetermined thickness and pattern shape, and an unfired laminate corresponding to a predetermined solid-state battery structure is formed on the base material.
  • the solid-state battery main body 10 is divided into a predetermined thickness from the lowest to the highest, and a plurality of print layers are sequentially laminated in a predetermined pattern shape. ..
  • a drying treatment that is, a solvent evaporation treatment
  • the unfired laminate After forming the unfired laminate, the unfired laminate may be peeled off from the base material and subjected to a firing step, or the unfired laminate may be subjected to a firing step while being held on the substrate. Good.
  • the unfired laminate is subjected to firing. Firing is carried out by removing the organic material in a nitrogen gas atmosphere containing oxygen gas, for example, at 500 ° C., and then heating in a nitrogen gas atmosphere, for example, at 550 ° C. to 1000 ° C. Firing may usually be performed while pressurizing the unfired laminate in the stacking direction L (in some cases, the stacking direction L and the direction M perpendicular to the stacking direction L).
  • the pressing force is not particularly limited, and may be, for example, 1 kg / cm 2 or more and 1000 kg / cm 2 or less, particularly 5 kg / cm 2 or more and 500 kg / cm 2 or less.
  • the solid-state battery of the present invention can be distributed in various modes.
  • the solid-state battery of the present invention may be distributed as a solid-state battery mounted on the substrate 3 (for example, solid-state batteries 100A to 100I as shown in FIGS. 1 to 9), or the end face before mounting. It may be distributed as a solid-state battery (for example, a solid-state battery 100 as shown in FIG. 12) in which a metal terminal 2 (2A, 2B) is connected (or fixed) to an electrode 1 (1A, 1B).
  • FIG. 12 is a schematic cross-sectional view showing an example when the solid-state battery of the present invention (for example, the solid-state battery according to the first embodiment of the present invention) is distributed.
  • the solid-state battery of the present invention is a solid-state battery set (for example,) of a solid-state battery to which the metal terminals 2 (2A, 2B) are not yet connected (or fixed) and the metal terminals 2 (2A, 2B) before mounting.
  • a set of the metal terminals 2 (2A, 2B) as shown in FIG. 13 and the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B)) may be distributed.
  • FIG. 13 is a schematic cross-sectional view showing an example when the metal terminal of the present invention (for example, the metal terminal of the solid-state battery according to the first embodiment of the present invention) is distributed.
  • the solid-state battery according to the embodiment of the present invention can be used in various fields where storage is expected. Although only an example, the solid-state battery according to the embodiment of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, smart watches, laptop computers, digital cameras, activities, etc.
  • Electric / electronic equipment field or mobile equipment field including small electronic devices such as meter, arm computer, electronic paper, RFID tag, card type electronic money), home / small industrial application (for example, electric tool, golf cart, home)
  • small industrial applications eg forklifts, elevators, bay port cranes
  • transportation systems eg hybrid cars, electric cars, buses, trains, electrically power assisted bicycles, electric (Fields such as motorcycles)
  • power system applications for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.
  • medical applications medical equipment fields such as earphone hearing aids
  • pharmaceutical applications dose management It can be used in fields such as systems), IoT fields, and space / deep sea applications (for example, fields such as space probes and submersible research vessels).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The object of the present invention is to provide a solid state battery which is mounted on a base board comprising a circuit and elements, for example, and with which failure of a connecting portion between a metal terminal and the base board can be adequately suppressed even if charging and discharging occur repeatedly. The present invention relates to a solid state battery 100A including a solid state battery main body portion 10 and two end surface electrodes 1 (1A, 1B), wherein: the solid state battery includes metal terminals 2 (2A or 2B) electrically connected to each of the two end surface electrodes 1 (1A, 1B); and the metal terminals 2 support the solid state battery main body portion provided with the end surface electrodes, while projecting toward the opposite side to the solid state battery main body portion 10 (in the Za direction or the Zb direction).

Description

固体電池Solid state battery
 本発明は固体電池に関する。 The present invention relates to a solid state battery.
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として、有機溶媒等の電解質(電解液)が従来から使用されている。しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性を高めることが求められている。 In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has been increasing. In batteries used for such purposes, an electrolyte (electrolyte solution) such as an organic solvent has been conventionally used as a medium for moving ions. However, in the battery having the above configuration, there is a risk that the electrolytic solution may leak out. Further, the organic solvent and the like used in the electrolytic solution are flammable substances. Therefore, it is required to improve the safety of the battery.
 そこで、電池の安全性を高めるために、電解質として、電解液に代えて、固体電解質を用いた固体電池の研究が進められている。 Therefore, in order to improve the safety of batteries, research on solid-state batteries using solid electrolytes instead of electrolytes as electrolytes is underway.
 固体電池としては、例えば、特許文献1~2において、1つ以上の正極層および1つ以上の負極層が固体電解質層を介して交互に積層されている積層構造を有する固体電池であって、その2つの対向する端面に端面電極を有する固体電池が開示されている。このような固体電池は、端面電極の各々に金属端子を電気的に接続させて実装される。 The solid-state battery is, for example, a solid-state battery having a laminated structure in which one or more positive electrode layers and one or more negative electrode layers are alternately laminated via a solid electrolyte layer in Patent Documents 1 and 2. A solid-state battery having end face electrodes on its two opposite end faces is disclosed. Such a solid-state battery is mounted by electrically connecting metal terminals to each of the end face electrodes.
特開2009-135834号公報JP-A-2009-135834 WO2007/086219号公報WO2007 / 086219
 しかしながら、本発明の発明者等は、固体電池を、回路および素子等の基板に実装した後、充放電を繰り返すと、金属端子と基板との接続部が破壊され、金属端子と基板との接続不良が起き易いことを見い出した。 However, when the inventor of the present invention repeatedly charges and discharges a solid-state battery after mounting it on a substrate such as a circuit and an element, the connection portion between the metal terminal and the substrate is destroyed, and the connection between the metal terminal and the substrate is broken. I found that defects are likely to occur.
 詳しくは、固体電池としては、例えば、図14に示すように、1つ以上の正極層51および1つ以上の負極層52が固体電解質層53を介して交互に積層されている積層構造を有する固体電池であって、その端面に端面電極501(501A、501B)を有する固体電池500Aが知られている。固体電池500Aにおいては、端面電極501(501A、501B)の各々に金属端子502(502A,502B)が電気的に接続されている。金属端子502(502A,502B)は端面電極501A、501Bの表面に設けられ、かつ、そのまま真下(すなわち直下)に延在されている。実装に際しては、固体電池500Aは、このような金属端子502(502A,502B)により、基板503上に支持され、電気的に接続される。このように実装された固体電池500Aにおいて、充放電を繰り返すと、固体電池500A(特に正極層51および負極層52)の体積の膨張および収縮(特に積層方向に対する垂直方向(図中の左右方向)の膨張)により生じる応力が、金属端子502A,502Bの支持点G'に集中し、金属端子502A,502Bと基板503との接続部が比較的早期に破壊され、金属端子と基板との接続不良が起きた。図14は、従来技術における固体電池の一例の模式的断面図である。 Specifically, the solid-state battery has, for example, as shown in FIG. 14, a laminated structure in which one or more positive electrode layers 51 and one or more negative electrode layers 52 are alternately laminated via a solid electrolyte layer 53. A solid-state battery 500A is known, which has end face electrodes 501 (501A, 501B) on its end face. In the solid-state battery 500A, metal terminals 502 (502A, 502B) are electrically connected to each of the end face electrodes 501 (501A, 501B). The metal terminals 502 (502A, 502B) are provided on the surfaces of the end face electrodes 501A and 501B, and extend directly below (that is, directly below) as they are. At the time of mounting, the solid-state battery 500A is supported on the substrate 503 by such metal terminals 502 (502A, 502B) and electrically connected. In the solid-state battery 500A mounted in this way, when charging and discharging are repeated, the volume of the solid-state battery 500A (particularly the positive electrode layer 51 and the negative electrode layer 52) expands and contracts (particularly in the direction perpendicular to the stacking direction (left-right direction in the figure)). The stress generated by (expansion) is concentrated on the support points G'of the metal terminals 502A and 502B, the connection between the metal terminals 502A and 502B and the substrate 503 is broken relatively early, and the connection between the metal terminals and the substrate is poor. Happened. FIG. 14 is a schematic cross-sectional view of an example of a solid-state battery in the prior art.
 固体電池の実装に際し、より詳しくは、金属端子502A,502Bはその基板側の端部において基板503に沿って延在されて基板503と電気的に接続される。このとき、金属端子502A,502Bを、断面視において、端面電極501A,501Bについて、図15に示すように固体電池本体部510とは反対側に延在しても、または図16に示すように固体電池本体部510側に延在しても、金属端子と基板との接続不良がやはり起きた。すなわち、固体電池(特に正極層および負極層)の体積の膨張および収縮(特に膨張)により生じる応力が、金属端子502A,502Bの支持点G´及び電池本体部510と端面電極501(A,B)界面とに集中し、金属端子502A,502Bと基板503との接続部J´が比較的早期に破壊され、金属端子と基板との接続不良及び端面電極と電池内部電極間の接続不良が起きた。図15は図14に示す固体電池をより簡略化して示した図である。図16は従来技術における固体電池の別の一例の模式的断面図である。 In mounting the solid-state battery, more specifically, the metal terminals 502A and 502B are extended along the substrate 503 at the end portion on the substrate side and are electrically connected to the substrate 503. At this time, the metal terminals 502A and 502B may extend to the side opposite to the solid-state battery main body 510 as shown in FIG. 15 with respect to the end face electrodes 501A and 501B in cross-sectional view, or as shown in FIG. Even if it extends to the 510 side of the solid-state battery body, a poor connection between the metal terminal and the substrate still occurs. That is, the stress generated by the expansion and contraction (particularly expansion) of the volume of the solid-state battery (particularly the positive electrode layer and the negative electrode layer) is generated by the support points G'of the metal terminals 502A and 502B, the battery body 510, and the end face electrodes 501 (A, B). ) Concentrated on the interface, the connection part J'between the metal terminals 502A and 502B and the substrate 503 is destroyed relatively early, and the connection failure between the metal terminal and the substrate and the connection failure between the end face electrode and the battery internal electrode occur. It was. FIG. 15 is a simplified view of the solid-state battery shown in FIG. FIG. 16 is a schematic cross-sectional view of another example of a solid state battery in the prior art.
 本発明は、回路および素子等の基板に実装し、充放電を繰り返しても、金属端子と基板との接続部の破壊をより十分に抑制することができる固体電池を提供することを目的とする。 An object of the present invention is to provide a solid-state battery that can be mounted on a substrate such as a circuit and an element, and can more sufficiently suppress the destruction of the connection portion between the metal terminal and the substrate even if charging and discharging are repeated. ..
 本発明は、
 固体電池本体部および2つの端面電極を含む固体電池であって、
 前記固体電池は前記2つの端面電極の各々に電気的に接続されている金属端子を有し、
 前記金属端子は、前記固体電池本体部とは反対側に張り出しながら、前記端面電極を備えた前記固体電池本体部を支持している、固体電池に関する。
The present invention
A solid-state battery including a solid-state battery body and two end face electrodes.
The solid-state battery has metal terminals that are electrically connected to each of the two end face electrodes.
The metal terminal relates to a solid-state battery that supports the solid-state battery main body provided with the end face electrode while projecting to the side opposite to the solid-state battery main body.
 本発明の固体電池は、回路および素子等の基板に実装されて、充放電が繰り返されても、金属端子と基板との接続部の破壊をより十分に抑制することができる。 The solid-state battery of the present invention is mounted on a substrate such as a circuit and an element, and even if charging and discharging are repeated, the destruction of the connection portion between the metal terminal and the substrate can be more sufficiently suppressed.
本発明の第1実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid state battery which concerns on 1st Embodiment of this invention. 本発明の第2実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid state battery which concerns on 2nd Embodiment of this invention. 本発明の第3実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid state battery which concerns on 3rd Embodiment of this invention. 本発明の第4実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid-state battery which concerns on 4th Embodiment of this invention. 本発明の第5実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid-state battery which concerns on 5th Embodiment of this invention. 本発明の第6実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid-state battery which concerns on 6th Embodiment of this invention. 本発明の第7実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid state battery which concerns on 7th Embodiment of this invention. 本発明の第8実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid-state battery which concerns on 8th Embodiment of this invention. 本発明の第9実施態様に係る固体電池の模式的断面図である。It is a schematic sectional view of the solid state battery which concerns on 9th Embodiment of this invention. 本発明の第1実施態様に係る固体電池の模式的平面図である。It is a schematic plan view of the solid-state battery which concerns on 1st Embodiment of this invention. 本発明の第1実施態様に係る固体電池の変形例の模式的平面図である。It is a schematic plan view of the modification of the solid-state battery which concerns on 1st Embodiment of this invention. 本発明の固体電池(例えば、本発明の第1実施態様に係る固体電池)が流通するときの一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example when the solid-state battery of this invention (for example, the solid-state battery which concerns on 1st Embodiment of this invention) is distributed. 本発明の金属端子(例えば、本発明の第1実施態様に係る固体電池の金属端子)が流通するときの一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example when the metal terminal of this invention (for example, the metal terminal of the solid-state battery which concerns on 1st Embodiment of this invention) is distributed. 従来技術における固体電池の一例の模式的断面図である。It is a schematic cross-sectional view of an example of a solid-state battery in the prior art. 図14に示す固体電池をより簡略化して示した図である。It is a figure which showed more simplified the solid-state battery shown in FIG. 従来技術における固体電池の別の一例の模式的断面図である。It is a schematic sectional view of another example of the solid-state battery in the prior art.
[固体電池]
 本発明は固体電池および当該固体電池を実装するための金属端子を提供する。本明細書でいう「固体電池」とは、広義にはその構成要素(特に電解質層)が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている「全固体電池」を指す。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」、および放電のみが可能な「一次電池」を包含する。「固体電池」は好ましくは「二次電池」である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」などの電気化学デバイスも包含し得る。
[Solid-state battery]
The present invention provides a solid-state battery and metal terminals for mounting the solid-state battery. The term "solid-state battery" as used herein refers to a battery in which its components (particularly the electrolyte layer) are composed of solids in a broad sense, and in a narrow sense, the components (particularly all components) are composed of solids. Refers to the "all-solid-state battery" that is configured. The "solid-state battery" as used herein includes a so-called "secondary battery" capable of repeating charging and discharging, and a "primary battery" capable of only discharging. The "solid-state battery" is preferably a "secondary battery". The "secondary battery" is not overly bound by its name and may also include an electrochemical device such as a "storage device".
 本明細書でいう「平面視」とは、固体電池を構成する後述する層の積層方向L(または固体電池の厚み方向)に沿って対象物を上側または下側(特に上側)からみたときの状態(平面図、上面図または下面図)のことである。又、本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向L(または固体電池の厚み方向)に対して略垂直な方向からみたときの断面状態(断面図)のことである。特に、金属端子を説明するときの断面視(または断面図)は、積層方向Lに平行な面であって、2つの端面電極を通る面(特に2つの端面電極間の距離を規定する直線に平行な面)で、固体電池を切ったときの断面状態(断面図)のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 The term "plan view" as used herein refers to an object viewed from above or below (particularly above) along the stacking direction L (or the thickness direction of the solid-state battery) of the layers to be described later, which constitute the solid-state battery. It is a state (plan view, top view or bottom view). Further, the "cross-sectional view" referred to in the present specification is a cross-sectional state (cross-sectional view) when viewed from a direction substantially perpendicular to the stacking direction L (or the thickness direction of the solid-state battery) of each layer constituting the solid-state battery. That is. In particular, the cross-sectional view (or cross-sectional view) when explaining the metal terminal is a plane parallel to the stacking direction L and a plane passing through the two end face electrodes (particularly a straight line defining the distance between the two end face electrodes). It is a cross-sectional state (cross-sectional view) when a solid-state battery is cut on a parallel surface). The "vertical direction" and "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction" and the opposite direction corresponds to the "upward direction".
 本発明の固体電池100(100A~100Iを包含する)は、例えば、図1~図9に示すように、固体電池本体部10および2つの端面電極1(1Aおよび1Bを包含する)を含む。固体電池本体部10は通常、層状構造(特に積層構造)を有し、例えば図1に示すような積層方向Lを有している。固体電池本体部10は、1つ以上の正極層および1つ以上の負極層が固体電解質層を介して交互に積層されており、積層構造の端面に端面電極1(1A,1B)を有している。積層構造の端面とは、積層されている各層の端面を含む、積層方向に平行な面(いわゆる側面)のことである。端面電極1(1A,1B)は通常、積層構造において対向する2つの端面に形成されている。正極層および負極層の積層数は任意であり特に限定されない。本発明の固体電池は並列構造を有していてもよいし、または直列構造を有していてもよい。図1~図9はそれぞれ、本発明に係る第1実施態様~第9実施態様にかかる固体電池の模式的断面図である。 The solid-state battery 100 (including 100A to 100I) of the present invention includes, for example, the solid-state battery main body 10 and two end face electrodes 1 (including 1A and 1B) as shown in FIGS. 1 to 9. The solid-state battery main body 10 usually has a layered structure (particularly a laminated structure), and has, for example, a laminated direction L as shown in FIG. The solid-state battery main body 10 has one or more positive electrode layers and one or more negative electrode layers alternately laminated via a solid electrolyte layer, and has end face electrodes 1 (1A, 1B) on the end faces of the laminated structure. ing. The end face of the laminated structure is a surface parallel to the stacking direction (so-called side surface) including the end face of each layer to be laminated. The end face electrodes 1 (1A, 1B) are usually formed on two opposing end faces in a laminated structure. The number of layers of the positive electrode layer and the negative electrode layer is arbitrary and is not particularly limited. The solid-state battery of the present invention may have a parallel structure or a series structure. 1 to 9 are schematic cross-sectional views of the solid-state battery according to the first to ninth embodiments according to the present invention, respectively.
 まず、本発明の固体電池を構成する基本的な各層および各部材について説明する。 First, each basic layer and each member constituting the solid-state battery of the present invention will be described.
(電極層)
 電極層は正極層および負極層を包含する。電極層は活物質を含み、電子伝導性材料をさらに含んでもよい。
(Electrode layer)
The electrode layer includes a positive electrode layer and a negative electrode layer. The electrode layer contains an active material and may further contain an electron conductive material.
 正極層は、いわゆる正極活物質を含み、電子導電性材料、後述する固体電解質材料および/または接合性材料をさらに含んでもよい。正極層は通常、正極活物質粒子および電子導電性材料を含む焼結体により構成されており、正極活物質粒子、電子伝導性材料粒子、ならびに所望により含有される固体電解質粒子および/または接合性材料を含む焼結体により構成されてもよい。 The positive electrode layer contains a so-called positive electrode active material, and may further contain an electron conductive material, a solid electrolyte material and / or a bonding material described later. The positive electrode layer is usually composed of a sintered body containing positive electrode active material particles and an electron conductive material, and contains positive electrode active material particles, electron conductive material particles, and optionally contained solid electrolyte particles and / or bondability. It may be composed of a sintered body containing the material.
 負極層は、いわゆる負極活物質を含み、電子導電性材料、後述する固体電解質材料および/または接合性材料をさらに含んでもよい。負極層は通常、負極活物質粒子および電子導電性材料を含む焼結体により構成されており、負極活物質粒子、電子伝導性材料粒子、ならびに所望により含有される固体電解質粒子および/または接合性材料を含む焼結体により構成されてもよい。 The negative electrode layer contains a so-called negative electrode active material, and may further contain an electron conductive material, a solid electrolyte material and / or a bonding material described later. The negative electrode layer is usually composed of a sintered body containing negative electrode active material particles and an electron conductive material, and contains negative electrode active material particles, electron conductive material particles, and optionally contained solid electrolyte particles and / or bondability. It may be composed of a sintered body containing the material.
 正極層に含まれる正極活物質および負極層に含まれる負極活物質は、固体電池において電子の受け渡しに関与する物質であり、固体電解質層を構成する固体電解質材料に含まれるイオンが正極と負極との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、本発明の固体電池は、固体電解質層を介してリチウムイオンまたはナトリウムイオンが正極と負極との間で移動して電池の充放電が行われる固体二次電池であることが好ましい。 The positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer are substances involved in the transfer of electrons in the solid battery, and the ions contained in the solid electrolyte material constituting the solid electrolyte layer are the positive electrode and the negative electrode. Charging and discharging are performed by moving (conducting) between the electrodes and transferring electrons. The positive electrode layer and the negative electrode layer are particularly preferably layers capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery of the present invention is preferably a solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode and the negative electrode via the solid electrolyte layer to charge and discharge the battery.
 正極層に含まれる正極活物質としては、特に限定されず、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、LiNi0.5Mn1.5等が挙げられる。 The positive electrode active material contained in the positive electrode layer is not particularly limited, and for example, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one selected from the group consisting of lithium-containing oxides and the like having Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of the lithium-containing phosphate compound having an olivine structure, Li 3 Fe 2 (PO 4 ) 3, LiMnPO 4 , and the like. Examples of lithium-containing layered oxides include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like. Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 Further, as the positive electrode active material capable of occluding and releasing sodium ions, a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing material having a spinel-type structure are contained. At least one selected from the group consisting of oxides and the like can be mentioned.
 負極層に含まれる負極活物質としては、特に限定されず、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。 The negative electrode active material contained in the negative electrode layer is not particularly limited, and for example, an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite- At least one selected from the group consisting of lithium compounds, lithium alloys, lithium-containing phosphoric acid compounds having a pearcon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, lithium-containing oxides having a spinel-type structure, and the like. Be done. An example of a lithium alloy is Li—Al or the like. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 . Examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 The negative electrode active material capable of occluding and releasing sodium ions is a group consisting of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from is mentioned.
 正極層および負極層に含まれる電子伝導性材料としては、特に限定されず、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等の金属材料;および炭素材料が挙げられる。特に、炭素は正極活物質、負極活物質および固体電解質材と反応し難く、固体電池の内部抵抗の低減に効果があるため好ましい。 The electron conductive material contained in the positive electrode layer and the negative electrode layer is not particularly limited, and examples thereof include metal materials such as silver, palladium, gold, platinum, aluminum, copper, and nickel; and carbon materials. In particular, carbon is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery.
 正極層および負極層に含まれてよい固体電解質材料は、例えば、後述の固体電解質層に含まれ得る固体電解質材料と同様の材料から選択されてよい。 The solid electrolyte material that may be contained in the positive electrode layer and the negative electrode layer may be selected from, for example, the same materials as the solid electrolyte material that can be contained in the solid electrolyte layer described later.
 正極層および負極層に含まれてよい接合性材料は、例えば、後述の接合部位に含まれ得る接合性材料と同様の材料から選択されてよい。 The bonding material that may be contained in the positive electrode layer and the negative electrode layer may be selected from, for example, the same materials as the bonding material that can be contained in the bonding site described later.
 正極層および負極層はそれぞれ独立して焼結助剤をさらに含んでよい。焼結助剤は、特に限定されるものではなく、例えば、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマス、および酸化リンからなる群から選択される少なくとも1種であり得る。 The positive electrode layer and the negative electrode layer may each independently further contain a sintering aid. The sintering aid is not particularly limited, and is, for example, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide. Can be.
 電極層(正極層および負極層)の厚みは特に限定されず、例えば、それぞれ独立して、2μm以上50μm以下であり、電極層と端面電極との接続不良のより一層、十分な抑制の観点から、好ましくは5μm以上30μm以下であり、より好ましくは5μm以上20μm以下である。 The thicknesses of the electrode layers (positive electrode layer and negative electrode layer) are not particularly limited, and are, for example, 2 μm or more and 50 μm or less independently of each other, from the viewpoint of further and sufficiently suppressing poor connection between the electrode layer and the end face electrode. It is preferably 5 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less.
 正極層および負極層の合計積層数は特に限定されず、例えば、2個以上200個以下、特に2個以上100個以下であってもよい。 The total number of layers of the positive electrode layer and the negative electrode layer is not particularly limited, and may be, for example, 2 or more and 200 or less, particularly 2 or more and 100 or less.
 本発明において電極層(すなわち正極層および/または負極層)は集電層を有してもよい。集電層は箔の形態を有していてもよいが、一体焼成による固体電池の製造コストの低減および固体電池の内部抵抗の低減の観点から、焼結体の形態を有することが好ましい。 In the present invention, the electrode layer (that is, the positive electrode layer and / or the negative electrode layer) may have a current collector layer. The current collector layer may have the form of a foil, but it is preferable to have the form of a sintered body from the viewpoint of reducing the manufacturing cost of the solid-state battery by integral firing and reducing the internal resistance of the solid-state battery.
 集電層が焼結体の形態を有する場合、例えば、電子伝導性材料粒子および焼結助剤を含む焼結体により構成されてもよい。集電層に含まれる電子伝導性材料は、例えば、電極層に含まれ得る電子伝導性材料と同様の材料から選択されてよい。集電層に含まれる焼結助剤は、例えば、電極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 When the current collector layer has the form of a sintered body, it may be composed of, for example, a sintered body containing electron conductive material particles and a sintering aid. The electron conductive material contained in the current collector layer may be selected from, for example, the same materials as the electron conductive material that can be contained in the electrode layer. The sintering aid contained in the current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
 集電層の厚みは特に限定されず、例えば、1μm以上5μm以下、特に1μm以上3μm以下であってもよい。 The thickness of the current collector layer is not particularly limited, and may be, for example, 1 μm or more and 5 μm or less, particularly 1 μm or more and 3 μm or less.
(固体電解質層)
 固体電解質層は固体電解質粒子を含む焼結体により構成されている。固体電解質層は、イオン(例えば、リチウムイオン)を伝導可能な層である。固体電解質粒子の材料(すなわち固体電解質材料)は、正極層と負極層との間で移動(伝導)し得るイオン(例えばリチウムイオンまたはナトリウムイオン)を提供できる限り特に限定されない。固体電解質材料としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrからなる群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
(Solid electrolyte layer)
The solid electrolyte layer is composed of a sintered body containing solid electrolyte particles. The solid electrolyte layer is a layer capable of conducting ions (for example, lithium ions). The material of the solid electrolyte particles (that is, the solid electrolyte material) is not particularly limited as long as it can provide ions (for example, lithium ions or sodium ions) that can move (conduct) between the positive electrode layer and the negative electrode layer. Examples of the solid electrolyte material include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like. As the lithium-containing phosphoric acid compound having a NASICON structure, Li x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected). Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 . As an example of an oxide having a perovskite structure, La 0.55 Li 0.35 TiO 3 and the like can be mentioned. Examples of oxides having a garnet type or a garnet type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
Examples of the solid electrolyte in which sodium ions can be conducted include sodium-containing phosphoric acid compounds having a pearcon structure, oxides having a perovskite structure, oxides having a garnet type or a garnet type similar structure, and the like. The sodium-containing phosphate compound having a NASICON structure, Na x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
 固体電解質層は焼結助剤を含んでよい。固体電解質層に含まれる焼結助剤は、例えば、電極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte layer may contain a sintering aid. The sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
 固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下、特に1μm以上5μm以下であってもよい。 The thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 μm or more and 15 μm or less, particularly 1 μm or more and 5 μm or less.
(端面電極)
 端面電極1は積層構造の端面に形成される電極であり、通常は積層構造体において対向する2つの端面に形成される正極側および負極側の2つの端面電極(1A、1B)のことである。端面電極1A、1Bはそれぞれ、積層構造の端面における全面に形成されてもよいし、または一部に形成されてもよい。端面電極1A、1Bは、電極層と端面電極との接続不良のより一層、十分な抑制の観点から、積層構造の端面における全面に形成されることが好ましい。積層構造の端面とは、積層されている各層の端面を含む、積層方向に平行な面(いわゆる側面)のことである。
(End face electrode)
The end face electrode 1 is an electrode formed on the end face of the laminated structure, and is usually two end face electrodes (1A, 1B) on the positive electrode side and the negative electrode side formed on the two opposite end faces in the laminated structure. .. The end face electrodes 1A and 1B may be formed on the entire surface or a part of the end face of the laminated structure, respectively. The end face electrodes 1A and 1B are preferably formed on the entire surface of the end face of the laminated structure from the viewpoint of further and sufficiently suppressing poor connection between the electrode layer and the end face electrode. The end face of the laminated structure is a surface parallel to the stacking direction (so-called side surface) including the end face of each layer to be laminated.
 端面電極1は通常、電子伝導性材料粒子および焼結助剤を含む焼結体により構成されている。端面電極1に含まれる電子伝導性材料は、例えば、電極層に含まれ得る電子伝導性材料と同様の材料から選択されてよい。端面電極1に含まれる焼結助剤は、例えば、電極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The end face electrode 1 is usually composed of a sintered body containing electron conductive material particles and a sintering aid. The electron conductive material contained in the end face electrode 1 may be selected from, for example, the same materials as the electron conductive material that can be contained in the electrode layer. The sintering aid contained in the end face electrode 1 may be selected from, for example, the same materials as the sintering aid that can be contained in the electrode layer.
 端面電極の厚みは特に限定されず、例えば、1μm以上50μm以下、特に5μm以上30μm以下であってもよい。 The thickness of the end face electrode is not particularly limited, and may be, for example, 1 μm or more and 50 μm or less, particularly 5 μm or more and 30 μm or less.
(保護層)
 電極層の最外面には通常、保護層が配置されている。電極層の最外面とは、最上に配置される電極層の最上面および最下に配置される電極層の最下面のことである。
(Protective layer)
A protective layer is usually arranged on the outermost surface of the electrode layer. The outermost surface of the electrode layer is the uppermost surface of the electrode layer arranged at the top and the lowermost surface of the electrode layer arranged at the bottom.
 保護層は、電気絶縁性を有し、かつ固体電池を外部からの衝撃から保護する層であれば特に限定されず、例えば、固体電解質材料から構成されてもよい。 The protective layer is not particularly limited as long as it has electrical insulation and protects the solid-state battery from external impact, and may be made of, for example, a solid electrolyte material.
 保護層は固体電解質材料を含む焼結体により構成されていることが好ましく、さらに焼結助剤を含んでもよい。 The protective layer is preferably composed of a sintered body containing a solid electrolyte material, and may further contain a sintering aid.
 保護層に含まれてよい固体電解質材料は、例えば、固体電解質層に含まれ得る固体電解質材料と同様の材料から選択されてよい。保護層に含まれてよい焼結助剤は、例えば、電極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte material that may be contained in the protective layer may be selected from, for example, the same materials as the solid electrolyte material that can be contained in the solid electrolyte layer. The sintering aid that may be contained in the protective layer may be selected from, for example, the same materials as the sintering aid that may be contained in the electrode layer.
 保護層の厚みは特に限定されず、例えば、1μm以上100μm以下、特に10μm以上100μm以下であってもよい。 The thickness of the protective layer is not particularly limited, and may be, for example, 1 μm or more and 100 μm or less, particularly 10 μm or more and 100 μm or less.
 正極層、負極層、固体電解質層および端面電極(ならびに所望により保護層)は、固体電池体積の膨張および収縮(特に膨張)による応力をより一層、十分に緩和する観点から、相互に焼結体同士の一体焼結をなしていることが好ましい。焼結体同士の一体焼結をなしているとは、隣接または接触する2つまたはそれ以上の部材が焼結により接合されているという意味である。ここでは、正極層、負極層、固体電解質層および端面電極(ならびに所望により保護層)はいずれも焼結体でありながら、一体的に焼結されていることが好ましい。本発明においては、焼結体であっても、膨張および収縮(特に膨張)による応力をより一層、十分に緩和できるためである。 The positive electrode layer, negative electrode layer, solid electrolyte layer and end face electrode (and optionally protective layer) are sintered from each other from the viewpoint of further and sufficiently relieving stress due to expansion and contraction (particularly expansion) of the solid-state battery volume. It is preferable that they are integrally sintered with each other. The term "integral sintering of sintered bodies" means that two or more members adjacent to each other or in contact with each other are joined by sintering. Here, it is preferable that the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the end face electrode (and, if desired, the protective layer) are all sintered, but integrally sintered. This is because, in the present invention, even in the sintered body, the stress due to expansion and contraction (particularly expansion) can be further and sufficiently relaxed.
(本発明の固体電池のより重要な特徴的構造)
 本発明の固体電池100(100A~100Iを包含する)は、例えば、図1~図9に示すように、固体電池本体部10および2つの端面電極1(1Aおよび1B)を含み、当該2つの端面電極1(1Aおよび1B)の各々に電気的に接続されている金属端子2(2A,2B)を有している。
(More important characteristic structure of the solid-state battery of the present invention)
The solid-state battery 100 (including 100A to 100I) of the present invention includes, for example, the solid-state battery main body 10 and two end face electrodes 1 (1A and 1B) as shown in FIGS. 1 to 9, and the two are included. It has metal terminals 2 (2A, 2B) that are electrically connected to each of the end face electrodes 1 (1A and 1B).
 金属端子2A,2Bは、固体電池の端面電極1A,1Bと外部の回路、素子等の基板3とを電気的に接続しつつ、基板3上に固体電池(特に端面電極を備えた固体電池本体部)を支持するためのものである。金属端子2A,2Bは、電子伝導性を有するあらゆる金属材料から構成されていてもよい。そのような金属材料として、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等が挙げられる。また、これらを主成分とする合金を適宜用いてもよい。好ましくは銅または銅合金(タフピッチ銅や黄銅、コルソン合金)を用いることが好ましい。 The metal terminals 2A and 2B electrically connect the end face electrodes 1A and 1B of the solid state battery to the substrate 3 such as an external circuit and element, and form the solid state battery (particularly the solid state battery body provided with the end face electrodes) on the substrate 3. It is for supporting the part). The metal terminals 2A and 2B may be made of any metal material having electron conductivity. Examples of such metal materials include silver, palladium, gold, platinum, aluminum, copper, nickel and the like. Further, alloys containing these as main components may be appropriately used. It is preferable to use copper or a copper alloy (tough pitch copper, brass, Corson alloy).
 本発明において、金属端子2A,2Bの各々は、断面視(および平面視)において、図1~図11に示すように、端面電極1A,1Bについて固体電池本体部10とは反対側Za,Zbに張り出しながら、固体電池100(100A~100I)(特に端面電極を備えた固体電池本体部)を支持している。換言すると、金属端子2A,2B(特に後述の端子本体部20A,20B)の各々は、当該金属端子が電気的に接続される端面電極(以下、単に「接続端面電極」という)1A,1Bを基準として、固体電池本体部10とは反対側Za,Zbに延在または突出しながら、基板3上で固体電池100(特に端面電極を備えた固体電池本体部)を支持している。図10は、本発明の第1実施態様に係る固体電池の模式的平面図である。図11本発明の第1実施態様に係る固体電池の変形例の模式的平面図である。 In the present invention, each of the metal terminals 2A and 2B has Za and Zb on the opposite sides of the end face electrodes 1A and 1B from the solid-state battery main body 10 in a cross-sectional view (and a plan view), as shown in FIGS. It supports the solid-state battery 100 (100A to 100I) (particularly the solid-state battery main body portion provided with the end face electrode) while protruding from the surface. In other words, each of the metal terminals 2A and 2B (particularly, the terminal body portions 20A and 20B described later) has end face electrodes (hereinafter, simply referred to as "connection end face electrodes") 1A and 1B to which the metal terminals are electrically connected. As a reference, the solid-state battery 100 (particularly the solid-state battery main body having end face electrodes) is supported on the substrate 3 while extending or projecting to Za, Zb on the opposite side of the solid-state battery main body 10. FIG. 10 is a schematic plan view of the solid-state battery according to the first embodiment of the present invention. FIG. 11 is a schematic plan view of a modified example of the solid-state battery according to the first embodiment of the present invention.
 金属端子2A,2Bの各々が、断面視(および平面視)において、固体電池本体部10とは反対側Za,Zbに張り出すとは、金属端子2A(または2B)(特に後述の端子本体部20A(または20B))が、接続端面電極1A(または1B)における固体電池10とは反対側Za(またはZb)に配置されつつ、少なくとも一部で、当該金属端子自体の厚みを超えて、反対側Za(またはZb)方向に延在または突出しているという意味である。 In cross-sectional view (and plan view), each of the metal terminals 2A and 2B projects to Za and Zb on the opposite side of the solid-state battery body 10 from the metal terminals 2A (or 2B) (particularly the terminal body described later). 20A (or 20B)) is located on the opposite side Za (or Zb) of the connection end face electrode 1A (or 1B) to the solid-state battery 10, but at least in part, beyond the thickness of the metal terminal itself. It means that it extends or protrudes in the side Za (or Zb) direction.
 金属端子2A,2Bの各々が固体電池100(特に端面電極を備えた固体電池本体部)を支持しているとは、金属端子2A,2Bの各々は基板3上で固体電池100(特に端面電極を備えた固体電池本体部)を保持しているという意味である。実装により金属端子2A,2Bの各々が基板3上で固体電池100(特に端面電極を備えた固体電池本体部)を支持しているとき、固体電池100(特に端面電極を備えた固体電池本体部)と基板3との電気的接続が達成されている限り、固体電池100(特に端面電極を備えた固体電池本体部)は外力により可動であってもよい。金属端子は、端面電極を介して、固体電池本体部を支持していてもよい。 The fact that each of the metal terminals 2A and 2B supports the solid-state battery 100 (particularly the solid-state battery main body having the end face electrode) means that each of the metal terminals 2A and 2B supports the solid-state battery 100 (particularly the end face electrode) on the substrate 3. It means that it holds the solid-state battery main body). When each of the metal terminals 2A and 2B supports the solid-state battery 100 (particularly the solid-state battery body having the end face electrodes) on the substrate 3, the solid-state battery 100 (particularly the solid-state battery body having the end face electrodes) is supported. ) And the substrate 3 are achieved, the solid-state battery 100 (particularly, the solid-state battery main body portion provided with the end face electrodes) may be movable by an external force. The metal terminal may support the solid-state battery main body portion via the end face electrode.
 金属端子2A,2Bの各々が固体電池本体部10とは反対側に張り出しながら、固体電池(特に端面電極を備えた固体電池本体部)を支持することにより、固体電池10(特に電極層)の体積の膨張および収縮(特に膨張)により生じる応力は、金属端子と基板との接続部に伝達されるまでに、金属端子の張り出し部(特に後述の端子本体部20A,20B)において緩和または低減される。このように上記応力が緩和または低減されるのは、当該応力が金属端子2(2A,2B)と基板3との接続部Jに伝達されるまでの伝達経路が長くなること、および金属端子の張り出し部(特に後述の端子本体部20A,20B)の変形により応力が吸収されることに基づくものと考えられる。その結果、金属端子2A,2Bにおける基板3との支持点Gへの上記応力の集中が抑制または緩和され、金属端子と基板との接続部の破壊を十分に抑制することができる。また、固体電池の膨張による隣接固体電池間での接触による固体電池の破壊および短絡を抑制することができる。 By supporting the solid-state battery (particularly the solid-state battery main body having the end face electrode) while each of the metal terminals 2A and 2B projects to the opposite side of the solid-state battery main body 10, the solid-state battery 10 (particularly the electrode layer) The stress generated by the expansion and contraction (particularly expansion) of the volume is relaxed or reduced in the overhanging portion of the metal terminal (particularly the terminal body portions 20A and 20B described later) before being transmitted to the connection portion between the metal terminal and the substrate. To. The stress is relaxed or reduced in this way because the transmission path until the stress is transmitted to the connection portion J between the metal terminal 2 (2A, 2B) and the substrate 3 becomes long, and the metal terminal It is considered that the stress is absorbed by the deformation of the overhanging portion (particularly, the terminal body portions 20A and 20B described later). As a result, the concentration of the stress on the support point G with the substrate 3 at the metal terminals 2A and 2B is suppressed or relaxed, and the destruction of the connection portion between the metal terminal and the substrate can be sufficiently suppressed. Further, it is possible to suppress the destruction and short circuit of the solid-state battery due to the contact between the adjacent solid-state batteries due to the expansion of the solid-state battery.
 例えば、金属端子2A,2B(特に後述の端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、1つ以上(例えば1つ~5つ)の屈曲部r、1つ以上(例えば1つ~5つ)の湾曲部sもしくは1つ以上(例えば1つ~5つ)の傾斜部t、またはそれらの組み合わせを有しながら、基板3上で固体電池100(特に端面電極を備えた固体電池本体部)を支持している。傾斜部tは、断面視において、固体電池100の底面Eに対して傾斜している部分である。傾斜部tは、断面視において、金属端子2A,2B(特に後述の端子本体部20A,20B)における接続端面電極側の端部を起点として、当該起点を通る底面Eに対する平行線を基準としたとき、上方向に傾斜していてもよいし、または下方向に傾斜していてもよい。金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、1つ以上(例えば1つ~5つ)の平行部p、および/または1つ以上(例えば1つ~5つ)の垂直部qをさらに有してもよい。平行部pは、断面視において、固体電池100の底面Eに対して平行な部分である。垂直部qは、断面視において、固体電池10の底面Eに対して垂直な部分である。 For example, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B described later) is one from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. More than (for example, 1 to 5) bent portions r, 1 or more (for example, 1 to 5) curved portions s, 1 or more (for example, 1 to 5) inclined portions t, or a combination thereof. Supports the solid-state battery 100 (particularly, the solid-state battery main body portion provided with the end face electrodes) on the substrate 3. The inclined portion t is a portion that is inclined with respect to the bottom surface E of the solid-state battery 100 in a cross-sectional view. In the cross-sectional view, the inclined portion t is based on a parallel line with respect to the bottom surface E passing through the starting point, starting from the end on the electrode side of the connecting end face of the metal terminals 2A and 2B (particularly, the terminal body portions 20A and 20B described later). When, it may be inclined upwards or downwards. Each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) has one or more (for example, 1) from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. It may further have one to five) parallel portions p and / or one or more (eg, one to five) vertical portions q. The parallel portion p is a portion parallel to the bottom surface E of the solid-state battery 100 in a cross-sectional view. The vertical portion q is a portion perpendicular to the bottom surface E of the solid-state battery 10 in a cross-sectional view.
 具体例を例示する。
 例えば、図1および図2においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、この順に、1つの平行部p、1つの屈曲部rおよび1つの垂直部qを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。
A specific example will be illustrated.
For example, in FIGS. 1 and 2, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) is from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. By this time, the solid-state battery 10 (particularly the solid-state battery main body having end face electrodes) is supported on the substrate 3 while having one parallel portion p, one bent portion r, and one vertical portion q in this order. are doing.
 また例えば、図3~図5においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、全体として1つの傾斜部sを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。 Further, for example, in FIGS. 3 to 5, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) is from the end on the connection end face electrode (1A, 1B) side to the end on the substrate (3) side. The solid-state battery 10 (particularly, the solid-state battery main body portion provided with the end face electrodes) is supported on the substrate 3 while having one inclined portion s as a whole.
 また例えば、図6においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、この順に、1つの平行部p、1つの屈曲部r、1つの傾斜部t、1つの屈曲部r、1つの傾斜部t、1つの屈曲部r、1つの傾斜部t、1つの屈曲部r、および1つの傾斜部tを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。 Further, for example, in FIG. 6, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side. In this order, one parallel portion p, one bent portion r, one inclined portion t, one bent portion r, one inclined portion t, one bent portion r, one inclined portion t, and one bending. The solid-state battery 10 (particularly the solid-state battery main body portion provided with the end face electrodes) is supported on the substrate 3 while having a portion r and one inclined portion t.
 また例えば、図7においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、この順に、1つの傾斜部t、1つの屈曲部r、1つの傾斜部t、1つの屈曲部r、1つの傾斜部t、1つの屈曲部r、および1つの垂直部qを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。 Further, for example, in FIG. 7, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side. In this order, it has one inclined portion t, one bent portion r, one inclined portion t, one bent portion r, one inclined portion t, one bent portion r, and one vertical portion q. However, the solid-state battery 10 (particularly the solid-state battery main body provided with the end face electrodes) is supported on the substrate 3.
 また例えば、図8においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、この順に、連続する2つの湾曲部s、1つの屈曲部r、および1つの垂直部qを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。 Further, for example, in FIG. 8, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side. In this order, the solid-state battery 10 (particularly the solid-state battery main body having end face electrodes) is mounted on the substrate 3 while having two continuous curved portions s, one bent portion r, and one vertical portion q. I support it.
 また例えば、図9においては、金属端子2A,2B(特に端子本体部20A,20B)の各々は、接続端面電極(1A,1B)側の端部から基板(3)側の端部に至るまでに、この順に、1つの傾斜部t、1つの屈曲部r、および1つの傾斜部tを有しながら、基板3上で固体電池10(特に端面電極を備えた固体電池本体部)を支持している。 Further, for example, in FIG. 9, each of the metal terminals 2A and 2B (particularly the terminal body portions 20A and 20B) extends from the end portion on the connection end face electrode (1A, 1B) side to the end portion on the substrate (3) side. In this order, the solid-state battery 10 (particularly the solid-state battery main body having the end face electrode) is supported on the substrate 3 while having one inclined portion t, one bent portion r, and one inclined portion t. ing.
 金属端子2A,2Bの各々は、図1~図9に示すように、少なくとも端子本体部20A,20Bを含む。本発明において、金属端子2A,2Bの各々は、端子本体部20A,20Bの他に、端面電極側取付部21A,21Bおよび/または基板側取付部22A,22Bをさらに含むことが好ましい。例えば、金属端子2A,2Bの各々が端面電極側取付部21A,21Bをさらに含むことにより、当該金属端子を端面電極と、より強固に接続することができる。また例えば、金属端子2A,2Bの各々が基板側取付部をさらに含むことにより、当該金属端子を基板と、より強固に接続することができ、結果として、基板への固体電池のより強固な接続を達成することができる。 Each of the metal terminals 2A and 2B includes at least the terminal body portions 20A and 20B as shown in FIGS. 1 to 9. In the present invention, each of the metal terminals 2A and 2B preferably further includes end face electrode side mounting portions 21A and 21B and / or substrate side mounting portions 22A and 22B in addition to the terminal body portions 20A and 20B. For example, when each of the metal terminals 2A and 2B further includes the end face electrode side mounting portions 21A and 21B, the metal terminal can be more firmly connected to the end face electrode. Further, for example, when each of the metal terminals 2A and 2B further includes a substrate-side mounting portion, the metal terminal can be more firmly connected to the substrate, and as a result, a stronger connection of the solid-state battery to the substrate can be achieved. Can be achieved.
 金属端子2A,2Bの端子本体部20A,20Bの各々は、一端で接続端面電極1A,1B(好ましくは端面電極側取付部21A,21B)と接触して電気的に接続され、かつ他端で基板3と接触して電気的に接続される部材である。端子本体部20A,20Bの各々は、当該金属端子による基板上での固体電池(特に端面電極を備えた固体電池本体部)の支持機能と、基板と固体電池との電気的導通機能との両方の機能を主として担う部材である。 Each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is electrically connected in contact with the connection end face electrodes 1A and 1B (preferably end face electrode side mounting portions 21A and 21B) at one end, and at the other end. It is a member that comes into contact with the substrate 3 and is electrically connected. Each of the terminal body portions 20A and 20B has both a support function of a solid-state battery (particularly a solid-state battery body portion having an end face electrode) on a substrate by the metal terminal and an electrical conduction function between the substrate and the solid-state battery. It is a member that mainly plays the function of.
 金属端子2A,2Bの端面電極側取付部21A,21Bの各々は、断面視において、端子本体部20A,20Bの一端と電気的に接続されている、端面電極1A,1Bとの電気的接続のための部材である。端面電極側取付部21A,21Bは、その少なくとも一部(好ましくはその全体)において、断面視で、接続端面電極1A,1Bに沿って延在しており、端面電極側取付部21A,21Bと端面電極1A,1Bとの面同士の接続を達成する。その結果として、当該金属端子2A,2Bと端面電極1A,1Bとの間で、より強固な接続だけでなく、電気的導通がより良い接続が達成される。例えば、端面電極側取付部21A,21Bは、端面電極1A,1Bに対して、面接触により接続される。端面電極側取付部の端面電極への接続は、後述のように、リフロー法またはフロー法により達成されてよい。 Each of the end face electrode side mounting portions 21A and 21B of the metal terminals 2A and 2B is electrically connected to one end of the terminal body portions 20A and 20B in cross-sectional view, and is electrically connected to the end face electrodes 1A and 1B. It is a member for. The end face electrode side mounting portions 21A and 21B extend along the connecting end face electrodes 1A and 1B in cross-sectional view at least in a part thereof (preferably the whole), and the end face electrode side mounting portions 21A and 21B and the end face electrode side mounting portions 21A and 21B. Achieves face-to-face connection with the end face electrodes 1A and 1B. As a result, not only a stronger connection but also a better electrical continuity connection is achieved between the metal terminals 2A, 2B and the end face electrodes 1A, 1B. For example, the end face electrode side mounting portions 21A and 21B are connected to the end face electrodes 1A and 1B by surface contact. The connection of the end face electrode side mounting portion to the end face electrode may be achieved by a reflow method or a flow method as described later.
 金属端子2A,2Bの基板側取付部22A,22Bの各々は、断面視において、端子本体部20A,20Bの他端と電気的に接続されている、基板3との電気的接続のための部材である。基板側取付部22A,22Bは、その少なくとも一部(好ましくはその全体)において、断面視で、基板に沿って延在しており、基板側取付部と基板との面同士の接続を達成する。その結果として、当該金属端子2A,2Bと基板との間で、より強固な接続だけでなく、電気的導通がより良い接続が達成される。例えば、基板側取付部22A,22Bは、基板3に対して、面接触により接続される。基板側取付部の基板への接続は、後述のように、リフロー法またはフロー法により達成されてよい。 Each of the board- side mounting portions 22A and 22B of the metal terminals 2A and 2B is electrically connected to the other ends of the terminal body portions 20A and 20B in a cross-sectional view, and is a member for electrical connection with the substrate 3. Is. The board- side mounting portions 22A and 22B extend along the substrate in a cross-sectional view at least in a part thereof (preferably the whole), and achieve a connection between the surfaces of the substrate-side mounting portion and the substrate. .. As a result, not only a stronger connection but also a connection with better electrical conduction is achieved between the metal terminals 2A, 2B and the substrate. For example, the board- side mounting portions 22A and 22B are connected to the board 3 by surface contact. The connection of the board-side mounting portion to the board may be achieved by the reflow method or the flow method as described later.
 基板側取付部22A,22Bの各々は、断面視において、図1~図4および図6~図9に示すように、固体電池本体部10側の方向に延在しているが、図5に示すように、固体電池本体部10とは反対側の方向に延在していてもよい。金属端子と基板との接続部Jの破壊をより一層、十分に抑制する観点から、基板側取付部22A,22Bの各々は、断面視において、固体電池本体部10側の方向に延在していることが好ましい。 Each of the board- side mounting portions 22A and 22B extends in the direction of the solid-state battery main body portion 10 side as shown in FIGS. 1 to 4 and 6 to 9 in a cross-sectional view. As shown, it may extend in the direction opposite to that of the solid-state battery main body 10. From the viewpoint of further and sufficiently suppressing the destruction of the connection portion J between the metal terminal and the substrate, each of the substrate side mounting portions 22A and 22B extends in the direction of the solid-state battery main body portion 10 side in a cross-sectional view. It is preferable to have.
 端子本体部20A,20Bにおいて端面電極側取付部21A,21Bと接続する一端は、端面電極側取付部21A,21Bにおけるいずれの高さのところで、接続されていてもよい。固体電池体積の膨張および収縮(特に膨張)による応力をより一層、十分に緩和する観点から、端子本体部20A,20Bにおいて端面電極側取付部21A,21Bと接続する一端は、断面視において、図1~図9に示すように、固体電池100の底面Eを基準に、固体電池の高さyについて、端面電極側取付部21A,21Bにおける0.3×y以上の高さ、特に0.5×y以上の高さのところで、接続されていることが好ましい。同観点から、より好ましくは、端子本体部20A,20Bにおいて端面電極側取付部21A,21Bと接続する一端は、断面視において、図1~図9に示すように、固体電池100の底面Eを基準に、固体電池の高さyについて、端面電極側取付部21A,21Bにおけるyの高さのところ(すなわち端面電極側取付部21A,21Bの上端)で、接続されていることが好ましい。固体電池の高さyは通常、0.5mm以上10mm以下、特に1mm以上5mm以下である。 One end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B may be connected at any height of the end face electrode side mounting portions 21A and 21B. From the viewpoint of further and sufficiently relaxing the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume, one end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B is shown in cross-sectional view. As shown in FIGS. 1 to 9, the height y of the solid-state battery is 0.3 × y or more, particularly 0.5, at the end face electrode side mounting portions 21A and 21B, with reference to the bottom surface E of the solid-state battery 100. It is preferable that they are connected at a height of × y or more. From the same viewpoint, more preferably, one end of the terminal body portions 20A and 20B connected to the end face electrode side mounting portions 21A and 21B has a bottom surface E of the solid-state battery 100 as shown in FIGS. 1 to 9 in a cross-sectional view. As a reference, it is preferable that the height y of the solid-state battery is connected at the height y of the end face electrode side mounting portions 21A and 21B (that is, the upper ends of the end face electrode side mounting portions 21A and 21B). The height y of the solid-state battery is usually 0.5 mm or more and 10 mm or less, particularly 1 mm or more and 5 mm or less.
 金属端子2A,2Bの端子本体部20A,20Bの各々における基板側の支持点Gは、断面視において、基板3のいずれの位置に配置されてもよい。例えば、金属端子2A,2Bの端子本体部20A,20Bにおける基板側の支持点Gは、断面視において、図1~図8に示すように、接続端面電極1A,1Bについて、固体電池本体部10とは反対側に配置されてもよいし、または図9に示すように、固体電池本体部10側に配置されてもよい。固体電池体積の膨張および収縮(特に膨張)による応力をより一層、十分に緩和する観点から、金属端子2A,2Bの端子本体部20A,20Bにおける基板側の支持点Gは、断面視において、接続端面電極1A,1Bについて、固体電池本体部10とは反対側に配置されることが好ましい。金属端子2A,2Bの端子本体部20A,20Bにおける基板側の支持点Gとは、金属端子により基板上で固体電池(特に端面電極を備えた固体電池本体部)を支持したときに、端子本体部における基板と接触する点であり、上記した端子本体部20A,20Bの他端に相当する。 The support points G on the substrate side in each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B may be arranged at any position on the substrate 3 in a cross-sectional view. For example, the support points G on the substrate side of the terminal bodies 20A and 20B of the metal terminals 2A and 2B are the solid-state battery body 10 with respect to the connection end face electrodes 1A and 1B as shown in FIGS. 1 to 8 in a cross-sectional view. It may be arranged on the side opposite to that of the solid-state battery, or may be arranged on the solid-state battery main body 10 side as shown in FIG. From the viewpoint of further and sufficiently relaxing the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume, the support points G on the substrate side of the terminal body portions 20A and 20B of the metal terminals 2A and 2B are connected in a cross-sectional view. It is preferable that the end face electrodes 1A and 1B are arranged on the side opposite to the solid-state battery main body 10. The support point G on the substrate side of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is the terminal body when the solid-state battery (particularly the solid-state battery body portion having the end face electrode) is supported on the substrate by the metal terminal. This is the point where the portion comes into contact with the substrate, and corresponds to the other ends of the terminal body portions 20A and 20B described above.
 金属端子2A,2Bの端子本体部20A,20Bの各々における基板側の支持点Gと、接続端面電極1A,1Bとの距離aは、特に限定されないが、固体電池体積の膨張および収縮(特に膨張)による応力をより一層、十分に緩和する観点から、固体電池幅寸法bに対して、0.5%以上であることが好ましく2.0%以上であることがより好ましい。距離aの上限値は特に限定されず、エネルギー密度の向上(例えば、スペースの有効利用)の観点から、距離aは10%以下であることが好ましく、5%以下であることがより好ましい。距離aは、断面視において固体電池の底面Eが規定される直線方向の距離である。固体電池の幅寸法bは通常、0.1mm以上50mm以下である。固体電池の奥行き寸法(図1~図9における紙面の表裏方向の寸法)は通常、0.1mm以上50mm以下である。 The distance a between the support point G on the substrate side and the connection end face electrodes 1A and 1B at each of the terminal body portions 20A and 20B of the metal terminals 2A and 2B is not particularly limited, but the expansion and contraction (particularly expansion) of the solid-state battery volume ) Is more preferably 0.5% or more and more preferably 2.0% or more with respect to the solid-state battery width dimension b from the viewpoint of further and sufficiently relaxing the stress. The upper limit of the distance a is not particularly limited, and from the viewpoint of improving the energy density (for example, effective use of space), the distance a is preferably 10% or less, and more preferably 5% or less. The distance a is a distance in the linear direction in which the bottom surface E of the solid-state battery is defined in a cross-sectional view. The width dimension b of the solid-state battery is usually 0.1 mm or more and 50 mm or less. The depth dimension of the solid-state battery (dimensions in the front and back directions of the paper surface in FIGS. 1 to 9) is usually 0.1 mm or more and 50 mm or less.
 端子本体部20A(または20B)と端面電極側取付部21A(または21B)との接続部は、断面視において、折り返し形状を有することが好ましい。ここで、折り返し形状とは、端子本体部20A(または20B)および端面電極側取付部21A(または21B)に対応する寸法を有する1つの部材を折り返すことにより形成される形状および形態のことである。当該接続部が折り返し形状を有することにより、端子本体部と端面電極側取付部とは、リフロー法およびフロー法等の接続方法を用いることなく、1つの部材を単に折り返すことにより形成されるため、それらの間の接続はより一層、強固となり、それらの間の電気的導通はより一層、良くなる。断面視において、例えば、図2~図4および図9に示すように、端子本体部20A(または20B)の一端と端面電極側取付部21A(または21B)の端部(すなわち上端)とが接続される場合、端子本体部20A(または20B)と端面電極側取付部21A(または21B)との接続部が折り返し形状を有することが可能である。この場合、端子本体部20A(または20B)の一端(端部)は、断面視において、固体電池の底面Eを基準に、固体電池の高さyについて、端面電極側取付部21A(または21B)におけるyの高さのところで、接続されている。 The connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B) preferably has a folded shape in cross-sectional view. Here, the folded shape is a shape and a form formed by folding back one member having dimensions corresponding to the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B). .. Since the connection portion has a folded shape, the terminal body portion and the end face electrode side mounting portion are formed by simply folding one member without using a connection method such as a reflow method or a flow method. The connections between them are even stronger and the electrical conduction between them is even better. In a cross-sectional view, for example, as shown in FIGS. 2 to 4 and 9, one end of the terminal body portion 20A (or 20B) and the end portion (that is, the upper end) of the end face electrode side mounting portion 21A (or 21B) are connected. When this is done, the connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B) can have a folded shape. In this case, one end (end) of the terminal body 20A (or 20B) is the end face electrode side mounting portion 21A (or 21B) with respect to the height y of the solid-state battery with reference to the bottom surface E of the solid-state battery in cross-sectional view. It is connected at the height of y in.
 端子本体部20A(または20B)と基板側取付部22A(または22B)との接続部は、図1~図9に示すように、断面視において、折り返し形状を有することが好ましい。ここで、折り返し形状とは、端子本体部20A(または20B)および基板側取付部22A(または22B)に対応する寸法を有する1つの部材を折り返すことにより形成される形状および形態のことである。当該接続部が折り返し形状を有することにより、端子本体部と基板側取付部とは、リフロー法およびフロー法等の接続方法を用いることなく、1つの部材を単に折り返すことにより形成されるため、それらの間の接続はより一層、強固となり、それらの間の電気的導通はより一層、良くなる。断面視において、端子本体部20A(または20B)の他端と基板側取付部22A(または22B)の端部とが接続される場合、端子本体部20A(または20B)と基板側取付部22A(または22B)との接続部が折り返し形状を有することが可能である。 As shown in FIGS. 1 to 9, the connection portion between the terminal body portion 20A (or 20B) and the substrate side mounting portion 22A (or 22B) preferably has a folded shape in cross-sectional view. Here, the folded shape is a shape and a form formed by folding back one member having dimensions corresponding to the terminal main body portion 20A (or 20B) and the substrate side mounting portion 22A (or 22B). Since the connection portion has a folded shape, the terminal body portion and the substrate side mounting portion are formed by simply folding back one member without using a connection method such as a reflow method or a flow method. The connections between them are even stronger and the electrical continuity between them is even better. When the other end of the terminal body 20A (or 20B) and the end of the board side mounting 22A (or 22B) are connected in a cross-sectional view, the terminal body 20A (or 20B) and the board side mounting 22A ( Alternatively, the connection portion with 22B) can have a folded shape.
 より好ましい実施態様においては、図2~図4および図9に示すように、端子本体部20A(または20B)と端面電極側取付部21A(または21B)との接続部、および端子本体部20A(または20B)と基板側取付部22A(または22B)との接続部は、断面視において、折り返し形状を有する。ここで、折り返し形状とは、端子本体部20A(または20B)、端面電極側取付部21A(または21B)および基板側取付部22A(または22B)に対応する寸法を有する1つの部材を折り返すことにより形成される形状および形態のことである。これらの接続部が折り返し形状を有することにより、端子本体部と端面電極側取付部および基板側取付部とは、リフロー法およびフロー法等の接続方法を用いることなく、1つの部材を単に折り返すことにより形成されるため、それらの間の接続はより一層、強固となり、それらの間の電気的導通はより一層、良くなる。断面視において、端子本体部20A(または20B)の一端(端部)と端面電極側取付部21A(または21B)の端部とが接続され、かつ端子本体部20A(または20B)の他端と基板側取付部22A(または22B)の端部とが接続されている場合、端子本体部20A(または20B)と端面電極側取付部21A(または21B)および基板側取付部22A(または22B)との接続部が折り返し形状を有することが可能である。 In a more preferred embodiment, as shown in FIGS. 2 to 4 and 9, a connection portion between the terminal body portion 20A (or 20B) and the end face electrode side mounting portion 21A (or 21B), and a terminal body portion 20A ( The connection portion between the 20B) and the substrate side mounting portion 22A (or 22B) has a folded shape in a cross-sectional view. Here, the folded shape is obtained by folding back one member having dimensions corresponding to the terminal body portion 20A (or 20B), the end face electrode side mounting portion 21A (or 21B), and the substrate side mounting portion 22A (or 22B). It is the shape and form formed. Since these connecting portions have a folded shape, the terminal body portion, the end face electrode side mounting portion, and the substrate side mounting portion simply fold back one member without using a connection method such as a reflow method or a flow method. The connections between them are even stronger and the electrical conduction between them is even better. In cross-sectional view, one end (end) of the terminal body 20A (or 20B) and the end of the end face electrode side mounting portion 21A (or 21B) are connected to each other and the other end of the terminal body 20A (or 20B). When the end of the board side mounting portion 22A (or 22B) is connected, the terminal body portion 20A (or 20B), the end face electrode side mounting portion 21A (or 21B), and the board side mounting portion 22A (or 22B) It is possible that the connecting portion of the above has a folded shape.
 金属端子2A,2Bは、固体電池100(特に端面電極を備えた固体電池本体部)を基板3上で支持するとき、断面視において、基板3と固体電池100との距離xが0となるような全長(高さ)を有していてもよいし、または当該距離xが固体電池100の高さyの1.0%以上となるような全長(高さ)を有していてもよい。金属端子2A,2Bは、固体電池100(特に端面電極を備えた固体電池本体部)を基板3上で支持するとき、断面視において、基板3と固体電池100(特に端面電極を備えた固体電池本体部)との距離xが固体電池100の高さyの1.0%以上、好ましくは5.0%以上となるような全長(高さ)を有していることが好ましい。このような距離xを確保することにより、固体電池100の体積が積層方向Lで膨張しても、固体電池100と基板3との腹うち(すなわち接触)による破壊を十部に抑制することができる。距離xの上限値は特に限定されず、エネルギー密度の向上(例えば、スペースの有効利用)の観点から、距離xは高さyの20.0%以下であることが好ましく、10.0%以下であることがより好ましい。 When the solid-state battery 100 (particularly the solid-state battery main body provided with the end face electrodes) is supported by the metal terminals 2A and 2B on the substrate 3, the distance x between the substrate 3 and the solid-state battery 100 becomes 0 in a cross-sectional view. The total length (height) may be large, or the total length (height) may be such that the distance x is 1.0% or more of the height y of the solid-state battery 100. When the solid-state battery 100 (particularly the solid-state battery main body having the end face electrode) is supported on the substrate 3, the metal terminals 2A and 2B show the substrate 3 and the solid-state battery 100 (particularly the solid-state battery having the end face electrode) in a cross-sectional view. It is preferable to have a total length (height) such that the distance x from the main body) is 1.0% or more, preferably 5.0% or more of the height y of the solid-state battery 100. By securing such a distance x, even if the volume of the solid-state battery 100 expands in the stacking direction L, the destruction of the solid-state battery 100 and the substrate 3 due to the abdomen (that is, contact) can be suppressed to ten parts. it can. The upper limit of the distance x is not particularly limited, and from the viewpoint of improving the energy density (for example, effective use of space), the distance x is preferably 20.0% or less of the height y, and 10.0% or less. Is more preferable.
 金属端子2A,2Bの各々は板状物であってもよいし、または棒状物であってもよい。固体電池体積の膨張および収縮(特に膨張)による応力をより一層、十分に緩和する観点から、金属端子2A,2Bの各々は板状物であることが好ましい。 Each of the metal terminals 2A and 2B may be a plate-shaped material or a rod-shaped material. From the viewpoint of further and sufficiently relaxing the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume, it is preferable that each of the metal terminals 2A and 2B is a plate-like material.
 金属端子2A,2Bの各々が板状物であるとは、例えば図10に示すように、金属端子2A,2Bの各々は、断面視の奥行き方向において、略同様の断面視形状を有するという意味である。図10は本発明の第1実施態様に係る固体電池の模式的平面図である。 The fact that each of the metal terminals 2A and 2B is a plate-like object means that, for example, as shown in FIG. 10, each of the metal terminals 2A and 2B has substantially the same cross-sectional view shape in the depth direction of the cross-sectional view. Is. FIG. 10 is a schematic plan view of the solid-state battery according to the first embodiment of the present invention.
 金属端子2A,2Bの各々が棒状物であるとは、例えば図11に示すように、金属端子2A,2Bの各々は棒形状を有するという意味である。図11は本発明の第1実施態様に係る固体電池の変形例の模式的平面図であって、第1実施態様に係る固体電池における金属端子2A,2Bが棒形状を有する場合の模式的平面図である。 The fact that each of the metal terminals 2A and 2B is a rod-shaped object means that each of the metal terminals 2A and 2B has a rod shape, for example, as shown in FIG. FIG. 11 is a schematic plan view of a modified example of the solid-state battery according to the first embodiment of the present invention, and is a schematic plan view when the metal terminals 2A and 2B in the solid-state battery according to the first embodiment have a rod shape. It is a figure.
 金属端子2A,2Bの厚みは、金属端子が固体電池(特に端面電極を備えた固体電池本体部)を十分に支持し、かつ固体電池体積の膨張および収縮(特に膨張)による応力を十分に緩和する限り、特に限定されない。金属端子2A,2Bの厚みは、固体電池(特に端面電極を備えた固体電池本体部)の支持および固体電池(特に固体電池本体部)の体積の膨張および収縮(特に膨張)による応力の緩和の観点から、好ましくは50μm以上、500μm以下であり、好ましくは100μm以上、300μm以下である。金属端子が棒形状を有する場合、断面視における当該棒形状の直径(または最大寸法)が上記厚みの範囲内であればよい。 The thickness of the metal terminals 2A and 2B is such that the metal terminals sufficiently support the solid-state battery (particularly the solid-state battery main body provided with the end face electrodes) and sufficiently relax the stress due to the expansion and contraction (particularly expansion) of the solid-state battery volume. As long as it does, it is not particularly limited. The thickness of the metal terminals 2A and 2B is such that the support of the solid-state battery (particularly the solid-state battery main body provided with the end face electrode) and the relaxation of stress due to the expansion and contraction (particularly expansion) of the volume of the solid-state battery (particularly the solid-state battery main body). From the viewpoint, it is preferably 50 μm or more and 500 μm or less, and preferably 100 μm or more and 300 μm or less. When the metal terminal has a rod shape, the diameter (or maximum dimension) of the rod shape in cross-sectional view may be within the range of the above thickness.
[固体電池の製造方法]
 本発明の固体電池100は、端面電極1(1A,1B)を有する固体電池本体部10の端面電極1(1A,1B)に金属端子2(2A,2B)を接続(または固定)することにより、製造することができる。本発明の固体電池は、例えば、図12に示すような固体電池100である。
[Manufacturing method of solid-state battery]
The solid-state battery 100 of the present invention connects (or fixes) the metal terminals 2 (2A, 2B) to the end face electrodes 1 (1A, 1B) of the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B). , Can be manufactured. The solid-state battery of the present invention is, for example, the solid-state battery 100 as shown in FIG.
 金属端子2は板材または棒材を切り出すことにより得ることができる。金属端子2が端子本体部、端面電極側取付部および基板側取付部を含む場合、これらの各部を相互に溶接により接続(または固定)することにより金属端子を得てもよいし、または上記したような各部に対応する寸法を有する部材を折り返すことにより金属端子を得てもよい。金属端子は、溶接または折り返し法を組み合わせて金属端子を得てもよい。 The metal terminal 2 can be obtained by cutting out a plate material or a bar material. When the metal terminal 2 includes a terminal body portion, an end face electrode side mounting portion, and a substrate side mounting portion, the metal terminals may be obtained by connecting (or fixing) these portions to each other by welding, or as described above. A metal terminal may be obtained by folding back a member having dimensions corresponding to each portion. The metal terminals may be obtained by combining welding or folding methods.
 金属端子2を得るためのリフロー法とは、リフローはんだ付け法のことであり、予め、常温で部品に塗布しておいたはんだを、後で加熱して溶融して、はんだによる接続を達成する方法である。 The reflow method for obtaining the metal terminal 2 is a reflow soldering method, in which the solder previously applied to the parts at room temperature is later heated and melted to achieve solder connection. The method.
 金属端子2を得るためのフロー法とは、熱で溶かしたはんだを噴流させて部品に塗布し、はんだによる接続を達成する方法である。 The flow method for obtaining the metal terminal 2 is a method in which solder melted by heat is jetted and applied to a component to achieve a connection by solder.
 金属端子2の固体電池本体部10への接続方法(または固定方法)としては、金属端子2と固体電池本体部10との電気的接続および相互の固定を達成できる限り特に限定されず、例えば、上記した金属端子を得るためのリフロー法およびフロー法と同様の方法を採用することができる。 The method of connecting (or fixing) the metal terminal 2 to the solid-state battery body 10 is not particularly limited as long as electrical connection and mutual fixing between the metal terminal 2 and the solid-state battery body 10 can be achieved, for example. A method similar to the reflow method and the flow method for obtaining the metal terminals described above can be adopted.
 例えば、リフロー法を採用して金属端子2の固体電池本体部10への接続および固定を達成する場合、詳しくは、まず、ペースト状またはクリーム状の金属ペースト、例えば銅ペーストを、金属端子2または固体電池本体部10の少なくとも一方に塗布する。次いで、ペーストを乾燥後、金属端子2と固体電池本体部10とを、これらの間には金属ペースト、例えば銅ペーストを介在させた状態で、金属ペーストの焼結が進行する温度で加熱する。これにより、金属ペーストが焼結することで、接続および固定が達成される。金属ペーストは、外部端子と同様の組成のペーストを用いることが好ましい。 For example, when the reflow method is adopted to achieve the connection and fixing of the metal terminal 2 to the solid-state battery body 10, specifically, first, a paste-like or cream-like metal paste, for example, a copper paste is applied to the metal terminal 2 or It is applied to at least one of the solid-state battery main body 10. Next, after the paste is dried, the metal terminal 2 and the solid-state battery main body 10 are heated at a temperature at which the sintering of the metal paste proceeds with a metal paste, for example, a copper paste interposed between them. This sinters the metal paste to achieve connection and fixation. As the metal paste, it is preferable to use a paste having the same composition as that of the external terminal.
(端面電極1(1A,1B)を有する固体電池本体部10の製造方法)
 端面電極1(1A,1B)を有する固体電池本体部10は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。以下、印刷法を採用する場合について詳しく説明するが、当該方法に限定されないことは明らかである。
(Manufacturing method of solid-state battery main body 10 having end face electrodes 1 (1A, 1B))
The solid-state battery main body 10 having the end face electrodes 1 (1A, 1B) can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. Hereinafter, the case where the printing method is adopted will be described in detail, but it is clear that the method is not limited to this method.
 端面電極1(1A,1B)を有する固体電池本体部10の製造方法は、
 未焼成積層体を印刷法により形成する工程;および
 未焼成積層体を焼成する工程
を含む。
The method for manufacturing the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B) is as follows.
The step of forming the unfired laminate by a printing method; and the step of firing the unfired laminate are included.
・未焼成積層体の形成工程
 本工程では、正極層用ペースト、負極層用ペースト、固体電解質層用ペースト、端面電極用ペースト等の数種類のペーストをインクとして用いて、基材上に、所定構造の未焼成積層体を印刷法により形成する。保護層用ペーストをさらに用いてもよい。なお、端面電極以外の層および部材を積層した積層体を印刷法により形成し、得られた積層体(すなわち積層構造)の端面に、端面電極をディップ法等の塗布法により形成してもよい。端面電極は、その一部または全部を、スパッタ法および/または蒸着法などの気相法により形成してもよい。
-Step of forming an unfired laminate In this step, several types of pastes such as a positive electrode layer paste, a negative electrode layer paste, a solid electrolyte layer paste, and an end face electrode paste are used as ink to form a predetermined structure on a substrate. The unfired laminate of No. 1 is formed by a printing method. A protective layer paste may be further used. A laminate in which layers and members other than the end face electrodes are laminated may be formed by a printing method, and an end face electrode may be formed on the end face of the obtained laminate (that is, a laminated structure) by a coating method such as a dip method. .. The end face electrode may be partially or wholly formed by a vapor phase method such as a sputtering method and / or a vapor deposition method.
 各ペーストは、上記した正極活物質、負極活物質、電子伝導性材料、固体電解質材料、接合性材料、および焼結助剤からなる群から選択される各層(部材)の所定の構成材料と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって作製することができる。 Each paste contains a predetermined constituent material of each layer (member) selected from the group consisting of the above-mentioned positive electrode active material, negative electrode active material, electron conductive material, solid electrolyte material, bonding material, and sintering aid. It can be produced by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent.
 ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂などの高分子化合物を用いることができる。
 溶剤は上記有機材料を溶解可能な限り特に限定されず、例えば、トルエン、エタノールなどを用いることができる。
The organic material contained in the paste is not particularly limited, but polymer compounds such as polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, and polyvinyl alcohol resin can be used.
The solvent is not particularly limited as long as the organic material can be dissolved, and for example, toluene, ethanol and the like can be used.
 湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。 Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
 基材は、未焼成積層体を支持可能な限り特に限定されず、例えば、ポリエチレンテレフタレート等の高分子材を用いることができる。なお、未焼成積層体を基材上に保持したまま焼成工程に供する場合には、基材は焼成温度に対する耐熱性を有するものを使用する。 The base material is not particularly limited as long as it can support the unfired laminate, and for example, a polymer material such as polyethylene terephthalate can be used. When the unfired laminate is used in the firing step while being held on the substrate, the substrate used is one having heat resistance to the firing temperature.
 印刷に際しては、所定の厚みおよびパターン形状で印刷層を順次、積層し、所定の固体電池の構造に対応する未焼成積層体を基材上に形成する。詳しくは、所定の積層構造の固体電池本体部10を製造する場合、例えば、最下位から最上位にかけて、所定の厚みに分割して、複数の印刷層を順次、所定のパターン形状にて積層する。各印刷層の形成に際しては、乾燥処理(すなわち、溶剤の蒸発処理)が行われる。 At the time of printing, printing layers are sequentially laminated with a predetermined thickness and pattern shape, and an unfired laminate corresponding to a predetermined solid-state battery structure is formed on the base material. Specifically, when manufacturing the solid-state battery main body 10 having a predetermined laminated structure, for example, the solid-state battery main body 10 is divided into a predetermined thickness from the lowest to the highest, and a plurality of print layers are sequentially laminated in a predetermined pattern shape. .. When forming each print layer, a drying treatment (that is, a solvent evaporation treatment) is performed.
 未焼成積層体を形成した後は、未焼成積層体を基材から剥離して、焼成工程に供してもよいし、または未焼成積層体を基材上に保持したまま焼成工程に供してもよい。 After forming the unfired laminate, the unfired laminate may be peeled off from the base material and subjected to a firing step, or the unfired laminate may be subjected to a firing step while being held on the substrate. Good.
・焼成工程
 未焼成積層体を焼成に付す。焼成は、酸素ガスを含む窒素ガス雰囲気中で、例えば500℃にて有機材料を除去した後、窒素ガス雰囲気中で例えば550℃~1000℃で加熱することで実施する。焼成は通常、積層方向L(場合によっては積層方向Lおよび当該積層方向Lに対する垂直方向M)で未焼成積層体を加圧しながら行ってもよい。加圧力は特に限定されず、例えば、1kg/cm以上1000kg/cm以下、特に5kg/cm以上500kg/cm以下であってよい。
-Baking process The unfired laminate is subjected to firing. Firing is carried out by removing the organic material in a nitrogen gas atmosphere containing oxygen gas, for example, at 500 ° C., and then heating in a nitrogen gas atmosphere, for example, at 550 ° C. to 1000 ° C. Firing may usually be performed while pressurizing the unfired laminate in the stacking direction L (in some cases, the stacking direction L and the direction M perpendicular to the stacking direction L). The pressing force is not particularly limited, and may be, for example, 1 kg / cm 2 or more and 1000 kg / cm 2 or less, particularly 5 kg / cm 2 or more and 500 kg / cm 2 or less.
[固体電池の態様]
 本発明の固体電池は、様々な態様で流通し得る。
[Aspect of solid-state battery]
The solid-state battery of the present invention can be distributed in various modes.
 例えば、本発明の固体電池は、基板3に実装されている固体電池(例えば、図1~図9に示すような固体電池100A~100I)として流通してもよいし、または実装前において、端面電極1(1A,1B)に金属端子2(2A,2B)が接続(または固定)されている固体電池(例えば、図12に示すような固体電池100)として流通してもよい。図12は、本発明の固体電池(例えば、本発明の第1実施態様に係る固体電池)が流通するときの一例を示す模式的断面図である。 For example, the solid-state battery of the present invention may be distributed as a solid-state battery mounted on the substrate 3 (for example, solid-state batteries 100A to 100I as shown in FIGS. 1 to 9), or the end face before mounting. It may be distributed as a solid-state battery (for example, a solid-state battery 100 as shown in FIG. 12) in which a metal terminal 2 (2A, 2B) is connected (or fixed) to an electrode 1 (1A, 1B). FIG. 12 is a schematic cross-sectional view showing an example when the solid-state battery of the present invention (for example, the solid-state battery according to the first embodiment of the present invention) is distributed.
 また例えば、本発明の固体電池は、実装前において、金属端子2(2A,2B)が未だ接続(または固定)されていない固体電池と金属端子2(2A,2B)との固体電池セット(例えば、図13に示すような金属端子2(2A,2B)と、端面電極1(1A,1B)を有する固体電池本体部10とのセット)として流通してもよい。図13は、本発明の金属端子(例えば、本発明の第1実施態様に係る固体電池の金属端子)が流通するときの一例を示す模式的断面図である。 Further, for example, the solid-state battery of the present invention is a solid-state battery set (for example,) of a solid-state battery to which the metal terminals 2 (2A, 2B) are not yet connected (or fixed) and the metal terminals 2 (2A, 2B) before mounting. , A set of the metal terminals 2 (2A, 2B) as shown in FIG. 13 and the solid-state battery main body 10 having the end face electrodes 1 (1A, 1B)) may be distributed. FIG. 13 is a schematic cross-sectional view showing an example when the metal terminal of the present invention (for example, the metal terminal of the solid-state battery according to the first embodiment of the present invention) is distributed.
 本発明の一実施形態に係る固体電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネーなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The solid-state battery according to the embodiment of the present invention can be used in various fields where storage is expected. Although only an example, the solid-state battery according to the embodiment of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, smart watches, laptop computers, digital cameras, activities, etc. Electric / electronic equipment field or mobile equipment field including small electronic devices such as meter, arm computer, electronic paper, RFID tag, card type electronic money), home / small industrial application (for example, electric tool, golf cart, home) For use / nursing / industrial robots), large industrial applications (eg forklifts, elevators, bay port cranes), transportation systems (eg hybrid cars, electric cars, buses, trains, electrically power assisted bicycles, electric (Fields such as motorcycles), power system applications (for example, various power generation, road conditioners, smart grids, general household installation type power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (dose management) It can be used in fields such as systems), IoT fields, and space / deep sea applications (for example, fields such as space probes and submersible research vessels).
  1:1A:1B:端面電極
  2:2A:2B:金属端子
  3:基板
  10:固体電池本体部
  20:20A:20B:端子本体部
  21:21A:21B:端面電極側取付部
  22:22A:22B:基板側取付部
  100:固体電池
1: 1A: 1B: End face electrode 2: 2A: 2B: Metal terminal 3: Substrate 10: Solid-state battery body 20: 20A: 20B: Terminal body 21: 21A: 21B: End face electrode side mounting 22: 22A: 22B : Board side mounting part 100: Solid-state battery

Claims (14)

  1.  固体電池本体部および2つの端面電極を含む固体電池であって、
     前記固体電池は前記2つの端面電極の各々に電気的に接続されている金属端子を有し、
     前記金属端子は、断面視において前記固体電池本体部とは反対側に張り出しながら、前記端面電極を備えた前記固体電池本体部を支持している、固体電池。
    A solid-state battery including a solid-state battery body and two end face electrodes.
    The solid-state battery has metal terminals that are electrically connected to each of the two end face electrodes.
    A solid-state battery in which the metal terminal supports the solid-state battery main body provided with the end face electrode while projecting to the side opposite to the solid-state battery main body in a cross-sectional view.
  2.  前記金属端子は、
     前記端面電極を備えた前記固体電池本体部を支持する端子本体部;
     断面視において前記端子本体部の一端と電気的に接続されている端面電極側取付部;および
     断面視において前記端子本体部の他端と電気的に接続されている基板側取付部を含む、請求項1に記載の固体電池。
    The metal terminal is
    A terminal body that supports the solid-state battery body with the end face electrodes;
    Claims include an end face electrode-side mounting portion that is electrically connected to one end of the terminal body in cross-section; and a substrate-side mounting that is electrically connected to the other end of the terminal body in cross-section. Item 1. The solid-state battery according to item 1.
  3.  前記金属端子の前記端子本体部は、断面視において、1つ以上の屈曲部r、1つ以上の湾曲部sもしくは1つ以上の傾斜部t、またはそれらの組み合わせを有する、請求項2に記載の固体電池。 The terminal body portion of the metal terminal has one or more bent portions r, one or more curved portions s, one or more inclined portions t, or a combination thereof in a cross-sectional view. Solid-state battery.
  4.  前記金属端子の前記端子本体部における基板側の支持点Gは、断面視において、該金属端子が電気的に接続される前記端面電極について、前記固体電池本体部とは反対側に配置される、請求項2または3に記載の固体電池。 The support point G on the substrate side of the terminal body of the metal terminal is arranged on the side opposite to the solid-state battery body of the end face electrode to which the metal terminal is electrically connected in a cross-sectional view. The solid-state battery according to claim 2 or 3.
  5.  前記金属端子の前記端子本体部における基板側の支持点Gと、該金属端子が電気的に接続される前記端面電極との距離aは、前記固体電池幅寸法bに対して、0.5%以上である、請求項4に記載の固体電池。 The distance a between the support point G on the substrate side of the metal terminal and the end face electrode to which the metal terminal is electrically connected is 0.5% with respect to the solid-state battery width dimension b. The solid-state battery according to claim 4, which is the above.
  6.  前記端子本体部の前記一端は、断面視において、前記固体電池の底面を基準に、前記固体電池の高さyについて、前記端面電極側取付部における0.3×y以上の高さのところで、接続されている、請求項2~5のいずれかに記載の固体電池。 In a cross-sectional view, the one end of the terminal body portion has a height y of the solid-state battery at a height of 0.3 × y or more at the end face electrode side mounting portion with reference to the bottom surface of the solid-state battery. The solid-state battery according to any one of claims 2 to 5, which is connected.
  7.  前記端子本体部と前記端面電極側取付部との接続部は、断面視において、折り返し形状を有している、請求項2~6のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 2 to 6, wherein the connection portion between the terminal body portion and the end face electrode side mounting portion has a folded shape in a cross-sectional view.
  8.  前記端子本体部と前記基板側取付部との接続部は、断面視において、折り返し形状を有している、請求項2~7のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 2 to 7, wherein the connection portion between the terminal body portion and the substrate side mounting portion has a folded shape in a cross-sectional view.
  9.  前記金属端子は、前記端面電極を備えた前記固体電池本体部を基板上で支持するとき、断面視において、前記基板と前記固体電池本体部との距離xが、前記固体電池の高さyの1.0%以上となるように、前記端面電極を備えた前記固体電池本体部を支持している、請求項1~8のいずれかに記載の固体電池。 When the solid-state battery main body provided with the end face electrodes of the metal terminal is supported on the substrate, the distance x between the substrate and the solid-state battery main body is the height y of the solid-state battery in a cross-sectional view. The solid-state battery according to any one of claims 1 to 8, wherein the solid-state battery main body provided with the end face electrodes is supported so as to have a content of 1.0% or more.
  10.  前記金属端子は板状物である、請求項1~9のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 9, wherein the metal terminal is a plate-like material.
  11.  前記金属端子は、断面視において、50μm以上、500μm以下の厚みを有する、請求項1~10のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 10, wherein the metal terminal has a thickness of 50 μm or more and 500 μm or less in a cross-sectional view.
  12.  前記固体電池は、正極層、負極層および前記正極層と前記負極層との間に介在する固体電解質層を含む、請求項1~11のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 1 to 11, wherein the solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
  13.  前記正極層および前記負極層はリチウムイオンを吸蔵放出可能な層となっている、請求項12に記載の固体電池。 The solid-state battery according to claim 12, wherein the positive electrode layer and the negative electrode layer are layers capable of storing and releasing lithium ions.
  14.  前記正極層、前記負極層、前記固体電解質層および前記端面電極は、相互に、焼結体同士の一体焼結をなしている、請求項12または13に記載の固体電池。 The solid-state battery according to claim 12 or 13, wherein the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the end face electrode are integrally sintered with each other.
PCT/JP2020/007846 2019-03-29 2020-02-26 Solid state battery WO2020202928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067756 2019-03-29
JP2019-067756 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202928A1 true WO2020202928A1 (en) 2020-10-08

Family

ID=72668590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007846 WO2020202928A1 (en) 2019-03-29 2020-02-26 Solid state battery

Country Status (1)

Country Link
WO (1) WO2020202928A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114155A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
WO2022230901A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid battery package

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550774U (en) * 1991-12-07 1993-07-02 株式会社ユアサコーポレーション Battery holder for printed circuit board and printed circuit board
JPH06231796A (en) * 1993-02-05 1994-08-19 Tdk Corp Layered type cell and manufacture thereof
JPH07220754A (en) * 1994-02-07 1995-08-18 Tdk Corp Layer built lithium secondary battery
JPH1140454A (en) * 1997-07-23 1999-02-12 Murata Mfg Co Ltd Ceramic electronic parts
JP2003242958A (en) * 2002-02-20 2003-08-29 Kyocera Corp Lithium battery
JP2004179091A (en) * 2002-11-28 2004-06-24 Kyocera Corp Stacked battery
JP2008192486A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Leaded battery
JP2012094783A (en) * 2010-10-28 2012-05-17 Tdk Corp Electronic component
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550774U (en) * 1991-12-07 1993-07-02 株式会社ユアサコーポレーション Battery holder for printed circuit board and printed circuit board
JPH06231796A (en) * 1993-02-05 1994-08-19 Tdk Corp Layered type cell and manufacture thereof
JPH07220754A (en) * 1994-02-07 1995-08-18 Tdk Corp Layer built lithium secondary battery
JPH1140454A (en) * 1997-07-23 1999-02-12 Murata Mfg Co Ltd Ceramic electronic parts
JP2003242958A (en) * 2002-02-20 2003-08-29 Kyocera Corp Lithium battery
JP2004179091A (en) * 2002-11-28 2004-06-24 Kyocera Corp Stacked battery
JP2008192486A (en) * 2007-02-06 2008-08-21 Hitachi Maxell Ltd Leaded battery
JP2012094783A (en) * 2010-10-28 2012-05-17 Tdk Corp Electronic component
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114155A1 (en) * 2020-11-27 2022-06-02 株式会社村田製作所 Solid-state battery and method for manufacturing solid-state battery
WO2022230901A1 (en) * 2021-04-26 2022-11-03 株式会社村田製作所 Solid battery package
JPWO2022230901A1 (en) * 2021-04-26 2022-11-03
JP7639898B2 (en) 2021-04-26 2025-03-05 株式会社村田製作所 Solid-state battery packaging

Similar Documents

Publication Publication Date Title
JP7484999B2 (en) Solid-state battery
JP7047934B2 (en) Solid state battery
US12107215B2 (en) Solid-state battery
US20220006068A1 (en) Solid-state battery
JPWO2020110666A1 (en) Solid state battery
JP7120318B2 (en) solid state battery
JP2015220103A (en) Power storage device, electronic device using the same, and power storage unit
US20220021024A1 (en) Solid-state battery
WO2020202928A1 (en) Solid state battery
US12034124B2 (en) Solid state battery comprising a concavoconvex shape
US20210210790A1 (en) Solid-state battery
US12368184B2 (en) Solid state battery
JP7279818B2 (en) solid state battery
US20230163434A1 (en) Solid state battery
JP7416073B2 (en) Solid state battery manufacturing method and solid state battery
JP7509195B2 (en) Solid-state battery
JP7259938B2 (en) solid state battery
WO2021256519A1 (en) Solid-state battery
CN115362589A (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP