WO2020196459A1 - 3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法 - Google Patents
3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法 Download PDFInfo
- Publication number
- WO2020196459A1 WO2020196459A1 PCT/JP2020/012855 JP2020012855W WO2020196459A1 WO 2020196459 A1 WO2020196459 A1 WO 2020196459A1 JP 2020012855 W JP2020012855 W JP 2020012855W WO 2020196459 A1 WO2020196459 A1 WO 2020196459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- lactone
- hydroxyadic
- aqueous solution
- hydroxyadipic
- Prior art date
Links
- BWEICTHJUIJQPH-UHFFFAOYSA-N 3-Hydroxyadipic acid 3,6-lactone Chemical compound OC(=O)CC1CCC(=O)O1 BWEICTHJUIJQPH-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 132
- 238000000605 extraction Methods 0.000 claims abstract description 115
- YVOMYDHIQVMMTA-UHFFFAOYSA-N 3-Hydroxyadipic acid Chemical compound OC(=O)CC(O)CCC(O)=O YVOMYDHIQVMMTA-UHFFFAOYSA-N 0.000 claims abstract description 96
- 239000002904 solvent Substances 0.000 claims abstract description 64
- 239000002253 acid Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000000243 solution Substances 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000012528 membrane Substances 0.000 claims description 132
- 239000000284 extract Substances 0.000 claims description 18
- 239000012466 permeate Substances 0.000 claims description 15
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- 150000002596 lactones Chemical class 0.000 claims description 5
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 abstract description 22
- 238000005191 phase separation Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 9
- 238000011084 recovery Methods 0.000 abstract description 5
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 102
- 239000012071 phase Substances 0.000 description 37
- 238000001728 nano-filtration Methods 0.000 description 31
- 239000000203 mixture Substances 0.000 description 30
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 20
- 229920002647 polyamide Polymers 0.000 description 17
- 238000000108 ultra-filtration Methods 0.000 description 17
- HPEKPJGPWNSAAV-UHFFFAOYSA-N 5-oxo-2,5-dihydro-2-furylacetic acid Chemical compound OC(=O)CC1OC(=O)C=C1 HPEKPJGPWNSAAV-UHFFFAOYSA-N 0.000 description 16
- 239000004952 Polyamide Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000001471 micro-filtration Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000008346 aqueous phase Substances 0.000 description 15
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 239000002346 layers by function Substances 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 9
- 238000001223 reverse osmosis Methods 0.000 description 9
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 8
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000006188 syrup Substances 0.000 description 6
- 235000020357 syrup Nutrition 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- 150000001734 carboxylic acid salts Chemical class 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- -1 Aromatic carboxylic acids Chemical class 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 235000008504 concentrate Nutrition 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 235000010338 boric acid Nutrition 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- QPILHXCDZYWYLQ-UHFFFAOYSA-N 2-nonyl-1,3-dioxolane Chemical compound CCCCCCCCCC1OCCO1 QPILHXCDZYWYLQ-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 101000851593 Homo sapiens Separin Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 102100036750 Separin Human genes 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- MZKGYNBHEYWDDG-UHFFFAOYSA-L [Ca+2].OC(CC(=O)[O-])CCC(=O)[O-] Chemical compound [Ca+2].OC(CC(=O)[O-])CCC(=O)[O-] MZKGYNBHEYWDDG-UHFFFAOYSA-L 0.000 description 2
- MFAZWSGXBWPBPK-UHFFFAOYSA-M [K+].OC(CC(=O)[O-])CCC(=O)O Chemical compound [K+].OC(CC(=O)[O-])CCC(=O)O MFAZWSGXBWPBPK-UHFFFAOYSA-M 0.000 description 2
- DDSLJBVTMGGXDJ-UHFFFAOYSA-M [Li+].OC(CC(=O)[O-])CCC(=O)O Chemical compound [Li+].OC(CC(=O)[O-])CCC(=O)O DDSLJBVTMGGXDJ-UHFFFAOYSA-M 0.000 description 2
- XEKPUBLPDSSTCU-UHFFFAOYSA-L [Li+].[Li+].OC(CC(=O)[O-])CCC(=O)[O-] Chemical compound [Li+].[Li+].OC(CC(=O)[O-])CCC(=O)[O-] XEKPUBLPDSSTCU-UHFFFAOYSA-L 0.000 description 2
- PRTBKIUSQBWDDG-UHFFFAOYSA-L [Mg+2].OC(CC(=O)[O-])CCC(=O)[O-] Chemical compound [Mg+2].OC(CC(=O)[O-])CCC(=O)[O-] PRTBKIUSQBWDDG-UHFFFAOYSA-L 0.000 description 2
- NLTGGDDUEMDVJH-UHFFFAOYSA-N [NH4+].OC(CC(=O)[O-])CCC(=O)O Chemical compound [NH4+].OC(CC(=O)[O-])CCC(=O)O NLTGGDDUEMDVJH-UHFFFAOYSA-N 0.000 description 2
- BUXFUGHJFZYTHI-UHFFFAOYSA-M [Na+].OC(CC(=O)[O-])CCC(=O)O Chemical compound [Na+].OC(CC(=O)[O-])CCC(=O)O BUXFUGHJFZYTHI-UHFFFAOYSA-M 0.000 description 2
- OMNXNZLLMZQNFN-UHFFFAOYSA-L [Na+].[Na+].OC(CC(=O)[O-])CCC(=O)[O-] Chemical compound [Na+].[Na+].OC(CC(=O)[O-])CCC(=O)[O-] OMNXNZLLMZQNFN-UHFFFAOYSA-L 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- WTJBQSFZAQBNJJ-UHFFFAOYSA-N azane 3-hydroxyhexanedioic acid Chemical compound N.N.OC(CCC(O)=O)CC(O)=O WTJBQSFZAQBNJJ-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical class [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- JDRMYOQETPMYQX-UHFFFAOYSA-N monomethyl succinate Chemical compound COC(=O)CCC(O)=O JDRMYOQETPMYQX-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 230000005501 phase interface Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- YFOOEYJGMMJJLS-UHFFFAOYSA-N 1,8-diaminonaphthalene Chemical compound C1=CC(N)=C2C(N)=CC=CC2=C1 YFOOEYJGMMJJLS-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ZGDMDBHLKNQPSD-UHFFFAOYSA-N 2-amino-5-(4-amino-3-hydroxyphenyl)phenol Chemical compound C1=C(O)C(N)=CC=C1C1=CC=C(N)C(O)=C1 ZGDMDBHLKNQPSD-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- BUSHXMAGCXKTRP-UHFFFAOYSA-N 3-methoxy-3-oxopropanoic acid;potassium Chemical compound [K].COC(=O)CC(O)=O BUSHXMAGCXKTRP-UHFFFAOYSA-N 0.000 description 1
- WKRCOZSCENDENK-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-yl)aniline Chemical compound C1=CC(N)=CC=C1C1=NC2=CC=CC=C2S1 WKRCOZSCENDENK-UHFFFAOYSA-N 0.000 description 1
- XZYQBYQGHHGXBC-UHFFFAOYSA-N 4-(1,3-benzoxazol-2-yl)aniline Chemical compound C1=CC(N)=CC=C1C1=NC2=CC=CC=C2O1 XZYQBYQGHHGXBC-UHFFFAOYSA-N 0.000 description 1
- VQFBXSRZSUJGOF-UHFFFAOYSA-N 4-(1h-benzimidazol-2-yl)aniline Chemical compound C1=CC(N)=CC=C1C1=NC2=CC=CC=C2N1 VQFBXSRZSUJGOF-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- 241001622810 Serratia grimesii Species 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- ZIXLDMFVRPABBX-UHFFFAOYSA-N alpha-methylcyclopentanone Natural products CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- HHLNCWUUIRFQIZ-UHFFFAOYSA-N dimethyl 2-(2-oxopentyl)propanedioate Chemical compound COC(=O)C(CC(CCC)=O)C(=O)OC HHLNCWUUIRFQIZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZQJAONQEOXOVNR-UHFFFAOYSA-N n,n-di(nonyl)nonan-1-amine Chemical compound CCCCCCCCCN(CCCCCCCCC)CCCCCCCCC ZQJAONQEOXOVNR-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- FCJSHPDYVMKCHI-UHFFFAOYSA-N phenyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 FCJSHPDYVMKCHI-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- ABVVEAHYODGCLZ-UHFFFAOYSA-N tridecan-1-amine Chemical compound CCCCCCCCCCCCCN ABVVEAHYODGCLZ-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/26—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D307/30—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/32—Oxygen atoms
- C07D307/33—Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
Definitions
- the present invention relates to a method for producing 3-hydroxyadic acid-3,6-lactone from an aqueous solution containing 3-hydroxyadipic acid.
- 3-Hydroxyadipic acid is a dicarboxylic acid having 6 carbon atoms having a hydroxyl group at the ⁇ -position.
- Patent Document 1 describes that 3-hydroxyadipic acid can be used as a raw material for ⁇ -caprolactam synthesis.
- Patent Document 2 states that 3-hydroxyadipic acid is synthesized by microbial fermentation and is obtained from the 3-hydroxyadipic acid-containing aqueous solution obtained at this time. It is stated that column chromatography, ion exchange chromatography, crystallization, distillation and the like can be used to recover 3-hydroxyadipic acid.
- Patent Document 3 states that when an aliphatic dicarboxylic acid such as 3-hydroxyadipic acid is recovered from an aqueous solution containing an aliphatic dicarboxylic acid, the aliphatic dicarboxylic acid is extracted into a solvent that is phase-separated from the aqueous solution. A method for recovering the acid is described.
- 3-hydroxyadipic acid-3,6-lactone is synthesized by adding sulfuric acid to a 3-hydroxyadipic acid-containing aqueous solution, evaporating and concentrating the aqueous solution, and then separating the aqueous solution by column chromatography.
- the method is described, and it is described that 3-hydroxyadic acid-3,6-lactone is also a raw material for ⁇ -caprolactam synthesis like 3-hydroxyadipic acid.
- No document is known that specifically discloses a method for recovering 3-hydroxyadic acid-3,6-lactone, but Patent Document 4 has a chemical structure similar to that of 3-hydroxyadic acid-3,6-lactone. There is a description about a method for recovering muconolactone.
- muconolactone is synthesized by microbial fermentation and muconolactone is recovered from the muconolactone-containing aqueous solution obtained at this time, hydrochloric acid is added to the muconolactone-containing aqueous solution and then ethyl acetate is used.
- a method for recovering muconolactone by extraction is described in.
- 3-hydroxyadipic acid When 3-hydroxyadipic acid is used as a raw material for ⁇ -caprolactam, according to Patent Document 1, it is possible to use 3-hydroxyadipic acid, which is a raw material for ⁇ -caprolactam synthesis, that is not contained in the solution. This is preferable because the type and reaction solvent can be appropriately selected.
- the methods described in Patent Document 2 as a method for recovering 3-hydroxyadipic acid, the method using column chromatography and ion exchange chromatography is not economical for large-scale treatment and is industrially disadvantageous.
- 3-hydroxyadipic acid has extremely high water solubility and boiling point, so that recovery by crystallization or distillation is also unsuitable.
- Patent Document 1 3-hydroxyadic acid-3,6-lactone can be synthesized from an aqueous solution of 3-hydroxyadipic acid, and this 3-hydroxyadic acid-3,6-lactone becomes a raw material for ⁇ -caprolactam synthesis. Therefore, the idea of recovering 3-hydroxyadic acid-3,6-lactone, which is equivalent as a raw material for ⁇ -caprolactam synthesis, can arise from the 3-hydroxyadipic acid-containing aqueous solution.
- the recovery method using column chromatography described in Patent Document 1 is not economical for large-scale treatment and is industrially disadvantageous.
- 3-hydroxyadipic acid-3,6-lactone and muconolactone have similar chemical structures but different physical properties (melting point, water solubility, etc.), so that the method for recovering muconolactone described in Patent Document 4 can be used. Therefore, it is clear that 3-hydroxyadipic acid-3,6-lactone cannot always be recovered efficiently. Thus, even if one recalls recovering the equivalent 3-hydroxyadic acid-3,6-lactone as a raw material for ⁇ -caprolactam synthesis from a 3-hydroxyadipic acid-containing aqueous solution, a method using an industrially advantageous extraction. There is no precedent for recovering 3-hydroxyadic acid-3,6-lactone from a 3-hydroxyadic acid-containing aqueous solution, and there is no known precedent that clearly suggests a method for implementing the same.
- the present invention is composed of the following (1) to (6).
- a method for producing 3-hydroxyadic acid-3,6-lactone which comprises the following steps (A) and (B).
- -Step of contacting a lactone-containing aqueous solution with an extraction solvent that phase-separates from the solution to obtain a 3-hydroxyadic acid-3,6-lactone extract (2) Further, 3-hydroxyadipine obtained from the above step (B).
- the method according to (1) which comprises the step (C) of removing the extraction solvent from the acid-3,6-lactone extract.
- (3) The method according to (1) or (2), wherein the pH of the 3-hydroxyadipic acid-containing aqueous solution and / or the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution is adjusted to 4.5 or less. .. (4) The method according to any one of (1) to (3), wherein the 3-hydroxyadipic acid-containing aqueous solution is a 3-hydroxyadipic acid fermented liquid.
- step (A) the cells and / or the cells and / or the cells and / or the cells and / or the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained from the 3-hydroxyadipic acid fermented solution and / or the 3-hydroxyadic acid fermented solution were obtained. / Or the method according to (4), comprising the step of removing the protein. (6) In the step (A), the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained from the 3-hydroxyadipic acid fermented solution is further passed through a nanofilter membrane and 3-hydroxy from the permeate side.
- the method according to (4) or (5) which comprises a step of recovering an aqueous solution containing adipic acid-3,6-lactone.
- 3-hydroxyadic acid-3,6-lactone which is a raw material for ⁇ -caprolactam synthesis, can be produced from an aqueous solution containing 3-hydroxyadipic acid by a method using an industrially advantageous extraction.
- Step (A) In the present invention, first, as step (A), an acid is added to a 3-hydroxyadipic acid-containing aqueous solution to obtain a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution.
- the 3-hydroxyadipic acid-containing aqueous solution means an aqueous solution in which 3-hydroxyadipic acid is dissolved.
- 3-Hydroxyadipic acid in the 3-hydroxyadipic acid-containing aqueous solution may be dissolved in water as a carboxylic acid or a salt thereof.
- the carboxylic acid salt include 3-hydroxyadipate monolithium salt, 3-hydroxyadipate dilithium salt, 3-hydroxyadipate monosodium salt, 3-hydroxyadipate disodium salt, and 3-hydroxyadipate monopotassium salt.
- 3-Hydroxyadic acid dipotassium salt 3-hydroxyadipate magnesium salt, 3-hydroxyadipate calcium salt, 3-hydroxyadipate monoammonium salt, 3-hydroxyadipate diammonium salt and the like. It may be a mixture of these different salts.
- a trace amount of 3-hydroxyadic acid-3,6-lactone may be spontaneously produced from 3-hydroxyadic acid. ..
- the 3-hydroxyadipic acid-containing aqueous solution used in the present invention may contain a trace amount of 3-hydroxyadipic acid-3,6-lactone thus produced.
- the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution is produced from a part or all of 3-hydroxyadic acid in the aqueous solution by adding an acid to the 3-hydroxyadic acid-containing aqueous solution. It means an aqueous solution in which -hydroxyadipic acid-3,6-lactone is dissolved.
- an aqueous solution containing both 3-hydroxyadipic acid and 3-hydroxyadicic acid-3,6-lactone is produced.
- the aqueous solution is a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution.
- 3-Hydroxyadic acid-3,6-lactone in an aqueous solution containing 3-hydroxyadic acid-3,6-lactone may be dissolved in water as a carboxylic acid or a salt thereof.
- the carboxylic acid salt include 3-hydroxyadic acid-3,6-lactone lithium salt, 3-hydroxyadic acid-3,6-lactone sodium salt, 3-hydroxyadic acid-3,6-lactone potassium salt, and 3 Examples thereof include -hydroxyadic acid-3,6-lactone magnesium salt, 3-hydroxyadic acid-3,6-lactone calcium salt, 3-hydroxyadic acid-3,6-lactone ammonium salt and the like. It may be a mixture of these different salts.
- 3-Hydroxyadic acid 3-hydroxyadipic acid in an aqueous solution containing -3,6-lactone may be dissolved in water as a carboxylic acid or a salt thereof.
- carboxylic acid salt include 3-hydroxyadipate monolithium salt, 3-hydroxyadipate dilithium salt, 3-hydroxyadipate monosodium salt, 3-hydroxyadipate disodium salt, and 3-hydroxyadipate monopotassium salt.
- 3-Hydroxyadic acid dipotassium salt 3-hydroxyadipate magnesium salt, 3-hydroxyadipate calcium salt, 3-hydroxyadipate monoammonium salt, 3-hydroxyadipate diammonium salt and the like. It may be a mixture of these different salts.
- the pH range in the step (A) is not particularly limited as long as it is less than pH 7, which is an acidic condition, but the lower the pH of the aqueous solution, the more the production of 3-hydroxyadic acid-3,6-lactone tends to be promoted. Therefore, although it is preferable, it is necessary to consider the corrosion of the device due to the low pH condition. Considering these factors, the pH is preferably 4.5 or less, more preferably 1.5 or more and 4.5 or less, and further preferably 2.0 or more and 4.0 or less.
- the acid added to the 3-hydroxyadipic acid-containing aqueous solution is not particularly limited as long as the pH can be made acidic, but mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and boric acid, formic acid, acetic acid, propionic acid and the like are used. Organic acids can be preferably used.
- the reaction temperature in step (A) is not particularly limited, and although the higher the reaction temperature, the more 3-hydroxyadic acid-3,6-lactone is produced, the more the reaction temperature is too high, the more impurities are contained. There are concerns about generation and corrosion of the equipment. Considering these factors, the reaction temperature in the step (A) is preferably 5 ° C. or higher and 100 ° C. or lower, more preferably 10 ° C. or higher and 90 ° C. or lower, and more preferably 20 ° C. or higher and 80 ° C. or lower.
- the 3-hydroxyadipic acid-containing aqueous solution may be an aqueous solution containing 3-hydroxyadipic acid obtained in the process of chemically producing 3-hydroxyadic acid by an organic synthesis method known to those skilled in the art, and is open to the public. It may be a 3-hydroxyadipic acid fermented solution obtained in the process of producing 3-hydroxyadipic acid by microbial fermentation as disclosed in 2017/209102. It may also be prepared by adding organically or biologically synthesized 3-hydroxyadipic acid or a salt thereof to an aqueous solution.
- the 3-hydroxyadipic acid-containing aqueous solution is a 3-hydroxyadipic acid fermented liquid
- a 3-hydroxyadipic acid fermented solution or a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained by subjecting the fermented solution to the step (A) is microfiltered.
- a membrane (MF membrane) By passing through a membrane (MF membrane), a 3-hydroxyadipic acid-containing aqueous solution or a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution from which cells have been removed from the permeate side can be obtained.
- the 3-hydroxyadipic acid fermented solution or the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained by subjecting the fermented solution to the step (A) was centrifuged to settle the cells. By collecting the supernatant, a 3-hydroxyadipic acid-containing aqueous solution or a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution from which the cells have been removed can be obtained.
- a 3-hydroxyadipic acid fermented solution or an aqueous solution containing 3-hydroxyadic acid-3,6-lactone obtained by subjecting the fermented solution to the step (A) is ultrafiltered.
- a 3-hydroxyadipic acid-containing aqueous solution or a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution from which proteins have been removed from the permeate side can be obtained.
- the order in which the cells and / or proteins are removed is not particularly limited, but it is preferable to remove the cells having a large size first because clogging of the ultrafiltration membrane can be suppressed when removing the proteins.
- the 3-hydroxyadipic acid-containing aqueous solution is a 3-hydroxyadipic acid fermented liquid
- the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained in the step (A) is nanofiltered before being subjected to the step (B). It is preferable to communicate with the membrane (NF membrane).
- “passing through the nanofiltration membrane” means that an aqueous solution containing 3-hydroxyadic acid-3,6-lactone is passed through the nanofiltration membrane and contains 3-hydroxyadic acid-3,6-lactone from the permeate side. It means to recover the aqueous solution.
- step (B) the 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution was brought into contact with the extraction solvent by passing through the nanofilter membrane, and then the 3-hydroxyadiponic acid-3,6-lactone-containing aqueous solution was added.
- the formation of an insoluble phase (intermediate phase) containing a solid content at the phase interface of the extraction solvent is suppressed, and the phase separation between the 3-hydroxyadiponic acid-3,6-lactone-containing aqueous solution and the extraction solvent becomes rapid.
- Japanese Unexamined Patent Publication No. 62-277349 describes an ultrafiltration membrane (UF) in which molecules having a molecular weight of 1000 or less permeate the amino acid fermentation broth before extraction when the amino acids contained in the amino acid fermentation broth are extracted into an extraction solvent. It is described that phase separation between the amino acid fermentation broth and the extraction solvent occurs clearly and quickly by communicating with the membrane), but there is no description of using a nanofiltration membrane. Further, in Japanese Patent Application Laid-Open No. 2015-119738, when the aliphatic dicarboxylic acid contained in the aliphatic dicarboxylic acid fermented liquid is extracted into the extraction solvent, it is communicated to a microfiltration membrane (MF membrane) in the pre-extraction stage.
- MF membrane microfiltration membrane
- the membrane used for membrane filtration is preferably a precision filtration membrane and an ultrafiltration membrane, and more preferably a precision filtration membrane, but there is no description that a nanofiltration membrane is used. From these descriptions, as described in the Examples of the present application, the formation of the intermediate phase is suppressed in the step (B) by passing the aqueous solution of the carboxylic acid through the microfiltration membrane and the ultrafiltration membrane through the nanofiltration membrane. The effect of facilitating phase separation is not easily conceivable for those skilled in the art.
- a polymer material such as a cellulose acetate polymer, a polyamide, a polyester, a polyimide, or a vinyl polymer can be used, but a membrane composed of the above-mentioned one kind of material.
- the film may be a film containing a plurality of film materials.
- the membrane structure is formed on an asymmetric membrane having a dense layer on at least one surface of the membrane and having fine pores having a gradually larger pore diameter from the dense layer toward the inside of the membrane or the other surface, or on the dense layer of the asymmetric membrane. It may be either a composite membrane having a very thin functional layer formed of another material.
- the composite membrane for example, a composite membrane described in Japanese Patent Application Laid-Open No. 62-201606 in which a nanofiltration membrane made of a functional layer of polyamide is formed on a support membrane using polysulfone as a membrane material can be used.
- a composite film having a polyamide as a functional layer which has high pressure resistance, high water permeability, and high solute removal performance and has excellent potential, is preferable. Further, in order to maintain durability against operating pressure, high water permeability, and blocking performance, a structure in which polyamide is used as a functional layer and is held by a support made of a porous film or a non-woven fabric is preferable.
- carboxylic acid components of the monomer constituting polyamide include, for example, trimesic acid, benzophenone tetracarboxylic acid, trimesic acid, pyrrometic acid, isophthalic acid, terephthalic acid, and naphthalene.
- Aromatic carboxylic acids such as dicarboxylic acid, diphenylcarboxylic acid, and pyridinecarboxylic acid can be mentioned, but trimesic acid, isophthalic acid, terephthalic acid, or a mixture thereof is more preferable in consideration of solubility in a film-forming solvent.
- Preferred amine components of the monomers constituting the polyamide include m-phenylenediamine, p-phenylenediamine, benzidine, methylenebisdianiline, 4,4'-diaminobiphenyl ether, dianisidine, 3,3', 4-.
- a nanofilter membrane having a crosslinked diamine containing piperazine or piperidine as a monomer as a functional layer is preferably used because it has heat resistance and chemical resistance in addition to pressure resistance and durability. More preferably, it is a nanofiltration membrane containing the crosslinked piperazine polyamide or the crosslinked piperidine polyamide as a main component.
- the nanofiltration membrane having a polyamide containing piperazine polyamide as a functional layer include those described in JP-A-62-201606, and specific examples thereof include crosslinked piperazine polyamide semipermeable membranes manufactured by Toray Industries, Inc. Examples thereof include the transparent membrane UTC-60 and UTC-63.
- the nanofilter modules SU-210 and SU- of Toray Industries, Inc. including UTC-60 and UTC-63 having crosslinked piperazine polyamide as a functional layer. 220, SU-600, SU-610 can also be used. Further, NF-45, NF-90, NF-200, NF-400 of a filmtech nanofiltration membrane having a crosslinked piperazine polyamide as a functional layer, or NF99 of an Alpha Laval nanofiltration membrane having a polyamide as a functional layer. , NF97, NF99HF, GE Sepa, a nanofiltration membrane manufactured by GE Osmonics, which is a cellulose acetate-based nanofiltration membrane, and the like.
- the 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution may be filtered by a nanofiltration membrane under pressure.
- the filtration pressure is not particularly limited, but if it is lower than 0.1 MPa, the membrane permeation rate decreases, and if it is higher than 8 MPa, it affects the damage of the membrane. Therefore, it is preferably used in the range of 0.1 MPa or more and 8 MPa or less. It is more preferable to use it at 0.5 MPa or more and 7 MPa or less because the membrane permeation flux is high and 3-hydroxyadic acid and 3-hydroxyadic acid-3,6-lactone can be efficiently permeated.
- the filtration of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution by the nanofiltration membrane is performed by returning the non-permeated liquid to the raw water and repeatedly filtering the 3-hydroxyadipic acid and 3-hydroxyadipic acid.
- the recovery rate of -3,6-lactone can be improved.
- the nanofilter membrane contains 3-hydroxyadipic acid-3,6-lactone because the non-ionized (non-dissociated) substance in the solution is more permeable than the ionized (dissociated) substance.
- 3-hydroxyadipic acid-3,6-lactone in the state of carboxylic acid instead of carboxylic acid salt increases, and it becomes easier to permeate through the nanofilter membrane.
- the pH is too low, there is a concern about corrosion of the device, which is industrially disadvantageous.
- the pH of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution that leads to the nanofiltration membrane is preferably adjusted to pH 4.5 or less, and is adjusted to pH 1.5 or more and 4.5 or less. It is more preferable that the pH is adjusted to 2.0 or more and 4.0 or less.
- the acid used for adjusting the pH of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution that is compatible with the nanofilter membrane is not particularly limited as long as the pH can be made acidic, but is preferable as the acid in step (A).
- Mineral acids such as sulfuric acid, hydrochloric acid, nitrate, phosphoric acid and boric acid used, and organic acids such as formic acid, acetic acid and propionic acid can be preferably used.
- step (B) the 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution obtained in step (A) is brought into contact with an extraction solvent that is phase-separated from the aqueous solution, and 3-hydroxyadipic acid-. Obtain a 3,6-lactone extract.
- the extraction solvent used in the step (B) is phase-separated from the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution obtained in the step (A) to extract 3-hydroxyadic acid-3,6-lactone. It is not particularly limited as long as it can be used, but is limited to an aliphatic hydrocarbon-based extraction solvent such as pentane, hexane and heptane, an aromatic hydrocarbon-based extraction solvent such as benzene, toluene and xylene, carbon tetrachloride, chloroform and dichloromethane.
- an aliphatic hydrocarbon-based extraction solvent such as pentane, hexane and heptane
- an aromatic hydrocarbon-based extraction solvent such as benzene, toluene and xylene, carbon tetrachloride, chloroform and dichloromethane.
- Chlorine-based extraction solvent such as trichloroethylene
- ester-based extraction solvent such as ethyl acetate and butyl acetate
- ketone-based extraction solvent such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone, dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether and the like.
- Ether-based extraction solvent butanol, hexanol, octanol, decanol, oleyl alcohol and other alcohol-based extraction solvents with 4 or more carbon atoms, chloroform / isopropanol mixed solution, dichloromethane / isopropanol mixed solution, ethyl acetate / isopropanol mixed solution and other isopropanol mixed systems
- Extraction solvent long-chain amine-based extraction solvent such as trioctylamine, trinonylamine, tridecylamine, alkylphosphine oxide-based extraction solvent such as tributylphosphine oxide, trioctylphosphine oxide, ammonium-based, imidazolium-based, phosphonium-based, Ionic liquid-based extraction solvents such as pyridinium-based, pyrrolidinium-based, and sulfonium-based solvents can be exemplified.
- the mixing ratio of isopropanol is preferably 40% by volume or less. If the proportion of isopropanol mixed is large, the phase separation property from the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution tends to decrease.
- the extraction temperature in the step (B) is not particularly limited, but is preferably in a temperature range in which the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution and the extraction solvent do not coagulate or boil, and from 3-hydroxyadic acid. From the viewpoint of facilitating the formation of 3-hydroxyadic acid-3,6-lactone, it is more preferably 5 ° C. or higher and 100 ° C. or lower, further preferably 10 ° C. or higher and 90 ° C. or lower, and 20 ° C. or higher and 80 ° C. It is particularly preferable that the temperature is below ° C.
- Adjusting the extraction temperature to these temperature ranges facilitates the transfer of 3-hydroxyadic acid-3,6-lactone from the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution to the extraction solvent, resulting in , 3-Hydroxyadic acid-3,6-lactone by tilting the chemical equilibrium between 3-hydroxyadic acid and 3-hydroxyadicic acid-3,6-lactone to 3-hydroxyadic acid-3,6-lactone.
- 3-Hydroxyadipic acid-3,6-lactone is easily produced from 3-hydroxyadipic acid contained in the contained aqueous solution.
- the pH of the 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution is not particularly limited as long as it is less than the acidic condition of pH 7, but it is not a carboxylic acid salt but a 3-hydroxyadipine in a carboxylic acid state. Acid-3,6-lactone tends to be more easily extracted into the extraction solvent, so a lower pH is preferable. On the other hand, if the pH is too low, there is a concern about corrosion of the device, which is industrially disadvantageous. From these viewpoints, the pH of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution in the step (B) is preferably adjusted to pH 4.5 or less, and is adjusted to pH 1.5 or more and 4.5 or less.
- the pH is adjusted to 2.0 or more and 4.0 or less.
- the pH of the aqueous solution By adjusting the pH of the aqueous solution to a low level in this way, the formation of 3-hydroxyadic acid-3,6-lactone from the unchanged 3-hydroxyadipic acid in the aqueous phase is also promoted as described above.
- the concentration of 3-hydroxyadic acid-3,6-lactone in the acid state is kept high, and the state of being easily extracted by the extraction solvent can be maintained.
- the acid used for adjusting the pH of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution to be used in the step (B) is not particularly limited as long as the pH can be made acidic, but in the step (A).
- Mineral acids such as sulfuric acid, hydrochloric acid, nitrate, phosphoric acid and boric acid, which are preferably used for pH adjustment, and organic acids such as formic acid, acetic acid and propionic acid can be preferably used.
- the concentration of 3-hydroxyadic acid-3,6-lactone in the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution to be used in step (B) is not particularly limited, but the higher the concentration, the higher the 3-hydroxyadipine. Acid-3,6-lactone tends to move easily to the extraction solvent. Specifically, it is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, further preferably 1% by weight or more, and particularly preferably 20% by weight or more. preferable.
- the method of increasing the concentration of the 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution is the evaporation concentration method for evaporating and removing water, and the reverse osmosis membrane for removing water by passing through a reverse osmosis membrane.
- a concentration method or a method in which these are combined can be used.
- the concentration of the 3-hydroxyadic acid-3,6-lactone-containing aqueous solution may be adjusted to a desired concentration by appropriately adjusting the concentration of the 3-hydroxyadipic acid-containing liquid used in the step (A).
- 3-Hydroxyadipine left in the extraction residue by contacting the extraction residue, which is the aqueous phase after the 3-hydroxyadic acid-3,6-lactone was extracted with the extraction solvent, with the fresh extraction solvent.
- the acid-3,6-lactone can be further recovered, and the recovery rate of 3-hydroxyadipic acid-3,6-lactone can be increased.
- the extract residual liquid having a sufficiently reduced concentration of 3-hydroxyadic acid-3,6-lactone may be used as water for preparing an aqueous solution containing 3-hydroxyadipic acid, or may be purged outside the system.
- Extraction can be performed by batch extraction, parallel flow multiple extraction, countercurrent multi-stage extraction, etc.
- a tower-type extraction device such as a mixer settler type extraction device, a perforated plate extraction tower, a pulsation tower, or a mixer settler tower can be used.
- Step (C) the step of removing the extraction solvent from the 3-hydroxyadic acid-3,6-lactone extract obtained from the step (B) is referred to as step (C).
- step (C) as a method for removing the extraction solvent from the 3-hydroxyadic acid-3,6-lactone extract, a method of evaporating and concentrating the extract solvent from the extract and 3-hydroxyadic acid-3 from the extract are used.
- a method of separating the extraction solvent by solid-liquid separation after precipitating 6-lactone, after contacting the extract with an aqueous solution to back-extract 3-hydroxyadic acid-3,6-lactone in the aqueous phase A general method such as a method of separating 3-hydroxyadipic acid-3,6-lactone and an extraction solvent by separating the aqueous phase can be used.
- the extraction solvent removed from the extract may be reused as it is as the extraction solvent in the step (B), or may be purified by distillation and then reused as the extraction solvent in the step (B).
- the amount of 3-hydroxyadic acid-3,6-lactone recovered is increased by recovering a small amount of 3-hydroxyadic acid-3,6-lactone contained in the extraction solvent. can do.
- a dilute 3-hydroxyadipic acid-3,6-lactone aqueous solution obtained by back-extracting the 3,6-lactone extract with water is passed through a back-penetration membrane (RO membrane) to form 3-hydroxyadipic acid and 3-hydroxyadipic acid. Hydroxyadiponic acid-3,6-lactone can be concentrated.
- transmitting to the reverse osmosis membrane means that the water is filtered through the reverse osmosis membrane, water is removed from the permeate side, and 3-hydroxyadic acid and 3-hydroxyadipic acid-3,6 are introduced from the non-permeate side.
- -It means to recover the aqueous solution with increased lactone concentration.
- the membrane material of the reverse osmosis membrane used in the present invention a polymer material such as a cellulose acetate-based polymer, a polyamide, a polyester, a polyimide, or a vinyl polymer, which is generally commercially available, can be used, and the one kind of material is used.
- the film is not limited to the film composed of, and may be a film containing a plurality of film materials.
- an appropriate form such as a flat membrane type, a spiral type, or a hollow fiber type can be used.
- reverse osmosis membrane used in the present invention include, for example, polyamide-based reverse osmosis membranes (UTCs) SU-710, SU-720, SU-720F, SU-710L, SU-720L, and SU manufactured by Toray Industries, Inc.
- UTCs polyamide-based reverse osmosis membranes
- filtration by a reverse osmosis membrane is performed by applying pressure. If the filtration pressure is lower than 1 MPa, the membrane permeation rate decreases, and if it is higher than 8 MPa, it affects the damage to the membrane. Therefore, 1 MPa or more and 8 MPa
- the range is preferably as follows. Further, the filtration pressure is more preferably in the range of 1 MPa or more and 7 MPa or less, and further preferably in the range of 2 MPa or more and 6 MPa or less.
- HPLC analysis was performed under the following analytical conditions.
- Column 1 Synergy Polar-RP (manufactured by Phenomenex)
- Column 2 Synergy Hydro-RP (manufactured by Phenomenex)
- Column temperature 45 ° C
- Detection Electrical conductivity.
- PH analysis method A Horiba pH meter F-52 (manufactured by HORIBA, Ltd.) was used. For pH calibration, pH 4.01 standard solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), pH 6.86 standard solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), pH 9.18 standard solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used.
- Extraction rate (%) (1- (concentration of compound to be extracted in extraction residue) / (concentration of compound to be extracted before extraction)) x 100.
- the extraction solvents used in each reference example were diethyl ether (Reference Example 8), chloroform (Reference Example 9), dichloromethane (Reference Example 10), ethyl acetate (Reference Example 11), butyl acetate (Reference Example 12), and dichloromethane, respectively.
- / Isopropanol mixed solution (volume ratio 3/1) reference example 13
- 2-octanol reference example 14
- methyl isobutyl ketone reference example 15
- the extraction solvents used were all manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Table 2 shows the extraction rates of 3-hydroxyadic acid-3,6-lactone.
- Example 1 The 3-hydroxyadipic acid fermented solution obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Co., Ltd.), followed by an ultrafiltration membrane (fractionation). Using a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.), 100 L of 3-hydroxyadipic acid fermented liquid, which has a molecular weight of 10000; manufactured by Toray Co., Ltd., is concentrated 1000 times through a microfiltration membrane and an ultrafiltration membrane.
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Co., Ltd.
- Example 2 An experiment was carried out in the same manner as in Example 1 except that methyl isobutyl ketone was used as the extraction solvent instead of ethyl acetate, and 1.8 g of dark brown syrup-like 3-hydroxyadic acid-3,6-lactone was obtained (1.8 g). Extraction rate 80%). Further, as in Example 1, an intermediate phase containing a solid content was formed between the aqueous phase and the methyl isobutyl ketone phase.
- a step of adding an acid to a 3-hydroxyadipic acid-containing aqueous solution to obtain a 3-hydroxyadic acid-3,6-lactone-containing aqueous solution and a 3-hydroxyadicic acid-3,6-lactone-containing aqueous solution 3-Hydroxyadipic acid-3,6-lactone by a method including a step of contacting with an extraction solvent for phase separation with the aqueous solution to obtain a extraction residue and a 3-hydroxyadipic acid-3,6-lactone extract.
- a method including a step of contacting with an extraction solvent for phase separation with the aqueous solution to obtain a extraction residue and a 3-hydroxyadipic acid-3,6-lactone extract.
- the obtained permeate was a clear aqueous solution from which coloring components were removed.
- the 3-hydroxyadic acid concentration and 3-hydroxyadic acid-3,6-lactone concentration of the permeate were analyzed by HPLC, and the transmittance was calculated according to the following formula. Table 4 shows the calculation results of the transmittance.
- Transmittance (%) (compound concentration in permeate) / (compound concentration in raw water) x 100.
- Example 3 100 L of the 3-hydroxyadipic acid fermented solution obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.), followed by an ultrafiltration membrane (minutes). The molecular weight of the image was 10000; manufactured by Toray Industries, Inc.). Concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 4.0, and the mixture was stirred for 12 hours. The aqueous solution containing 3-hydroxyadic acid-3,6-lactone thus obtained was transferred to a raw water tank and passed through the nanofiltration membrane under the following nanofiltration membrane treatment condition 2.
- the non-permeated liquid was returned to the raw water tank, and if the amount of liquid was insufficient, pure water was added to the raw water tank to continue the nanofiltration membrane treatment, and the entire amount of 3-hydroxyadic acid-3,6-lactone was recovered to the permeated liquid side. ..
- the permeate of the nanofiltration membrane was concentrated to 100 mL using a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.), and concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 4.0.
- This 3-hydroxyadipic acid-3,6-lactone-containing aqueous solution was transferred to a glass separatory funnel (capacity: 500 mL), 100 mL of ethyl acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, and the mixture was shaken 60 times.
- Example 4 An experiment was carried out in the same manner as in Example 3 except that methyl isobutyl ketone was used as an extraction solvent instead of ethyl acetate, and 1.9 g of light yellow syrup-like 3-hydroxyadic acid-3,6-lactone was obtained. 3-Hydroxyadipic acid-3,6-lactone extraction rate 83%. In this extraction as well, the formation of an intermediate phase containing a solid content was hardly observed between the aqueous phase and the methyl isobutyl ketone phase, and the phase separation was extremely rapid within a dozen seconds.
- Example 5 The 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Subsequently, concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 4.0, and the mixture was stirred for 12 hours, and then passed through an ultrafiltration membrane (molecular weight cut off of 10000; manufactured by Toray Industries, Inc.). After that, concentration, extraction, and extraction solvent removal were carried out in the same manner as in Example 1 to obtain 0.4 g of 3-hydroxyadic acid-3,6-lactone in the form of a dark yellow syrup.
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.
- concentrated sulfuric acid manufactured by Sigma-Aldrich
- Example 6 The 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Subsequently, concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 4.0, and the mixture was stirred for 12 hours, and then passed through an ultrafiltration membrane (molecular weight cut off of 10000; manufactured by Toray Industries, Inc.).
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.
- concentrated sulfuric acid manufactured by Sigma-Aldrich
- Example 7 100 L of the 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 4.0, and the mixture was stirred for 12 hours, and then passed through an ultrafiltration membrane (molecular weight cut off of 10000; manufactured by Toray Industries, Inc.). The aqueous solution containing 3-hydroxyadic acid-3,6-lactone thus obtained was passed through the nanofiltration membrane under the nanofiltration membrane treatment condition 2.
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.
- Concentrated sulfuric acid manufactured by Sigma-Aldrich
- the permeate of the nanofiltration membrane is concentrated to 100 mL using a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.), and concentrated sulfuric acid (manufactured by Sigma-Aldrich) is added to adjust the pH to 4.0.
- the mixture was stirred at 80 ° C. for 12 hours.
- extraction and extraction solvent removal were carried out in the same manner as in Example 1 to obtain 1.2 g of 3-hydroxyadipic acid-3,6-lactone in a dark brown syrup.
- Example 8 100 L of the 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (a porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 2.0, and the mixture was stirred at 85 ° C. for 12 hours. The aqueous solution containing 3-hydroxyadic acid-3,6-lactone thus obtained was concentrated to 100 mL using a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.). After that, extraction and extraction solvent removal were carried out in the same manner as in Example 1 to obtain 3.0 g of dark orange 3-hydroxyadic acid-3,6-lactone.
- a microfiltration membrane a porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.
- Concentrated sulfuric acid
- Example 9 100 L of the 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 2.0, and the mixture was stirred at 85 ° C. for 12 hours, and then passed through an ultrafiltration membrane (molecular weight cut off of 10000; manufactured by Toray Industries, Inc.). After that, concentration, extraction, and extraction solvent removal were carried out in the same manner as in Example 8 to obtain 2.8 g of dark orange 3-hydroxyadic acid-3,6-lactone.
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.
- Concentrated sulfuric acid manufactured by Sigma-Aldrich
- Example 10 100 L of the 3-hydroxyadipic acid fermented liquid obtained in Reference Example 1 was passed through a microfiltration membrane (porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries, Inc.). Concentrated sulfuric acid (manufactured by Sigma-Aldrich) was added to adjust the pH to 2.0, and the mixture was stirred at 85 ° C. for 12 hours, and then passed through an ultrafiltration membrane (molecular weight cut off of 10000; manufactured by Toray Industries, Inc.). The aqueous solution containing 3-hydroxyadic acid-3,6-lactone thus obtained was passed through the nanofiltration membrane under the nanofiltration membrane treatment condition 2. Then, concentration, extraction, and extraction solvent removal were carried out in the same manner as in Example 8 to obtain 2.9 g of light orange 3-hydroxyadic acid-3,6-lactone.
- a microfiltration membrane porous membrane having a pore diameter of 0.01 ⁇ m or more and less than 1 ⁇ m; manufactured by Toray Industries,
- 3-hydroxyadic acid-3,6- is not limited by the order of pH adjustment and heat treatment by acid addition, and the conditions such as pH and heating temperature after acid addition. It has been shown that lactones can be produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
(1)以下の工程(A)及び(B)を含む、3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法。
(A)3-ヒドロキシアジピン酸含有水溶液に酸を加え、3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を得る工程
(B)工程(A)より得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を、該溶液と相分離する抽出溶剤と接触させ、3-ヒドロキシアジピン酸-3,6-ラクトン抽出液を得る工程
(2)さらに前記工程(B)より得た3-ヒドロキシアジピン酸-3,6-ラクトン抽出液から、抽出溶剤を除去する工程(C)を含む、(1)に記載の方法。
(3)前記3-ヒドロキシアジピン酸含有水溶液及び/又は前記3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液のpHを4.5以下に調整する、(1)又は(2)に記載の方法。
(4)前記3-ヒドロキシアジピン酸含有水溶液が3-ヒドロキシアジピン酸発酵液である、(1)から(3)のいずれかに記載の方法。
(5)工程(A)にて、さらに前記3-ヒドロキシアジピン酸発酵液及び/又は前記3-ヒドロキシアジピン酸発酵液から得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液から菌体及び/又はタンパク質を除去する工程を含む、(4)に記載の方法。
(6)工程(A)にて、さらに前記3-ヒドロキシアジピン酸発酵液から得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液をナノ濾過膜に通じて、透過液側から3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を回収する工程を含む、(4)又は(5)に記載の方法。
本発明においては、まず工程(A)として3-ヒドロキシアジピン酸含有水溶液に酸を加え、3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を得る。
本発明においては、工程(B)として工程(A)で得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を、該水溶液と相分離する抽出溶剤と接触させ、3-ヒドロキシアジピン酸-3,6-ラクトン抽出液を得る。
本発明においては、前記工程(B)より得た3-ヒドロキシアジピン酸-3,6-ラクトン抽出液から抽出溶剤を除去する工程を、工程(C)とする。
本発明においては、工程(A)に供する3-ヒドロキシアジピン酸含有水溶液、工程(B)に供する3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液、工程(C)において3-ヒドロキシアジピン酸-3,6-ラクトン抽出液の水による逆抽出により得た希薄な3-ヒドロキシアジピン酸-3,6-ラクトン水溶液を逆浸透膜(RO膜)に通じることにより、3-ヒドロキシアジピン酸及び3-ヒドロキシアジピン酸-3,6-ラクトンを濃縮することができる。ここで「逆浸透膜に通じる」とは、逆浸透膜に通じて濾過し、透過液側から水を除去し、非透過液側から3-ヒドロキシアジピン酸及び3-ヒドロキシアジピン酸-3,6-ラクトン濃度が高められた水溶液を回収することを意味する。
HPLC分析は以下の分析条件により行った。
カラム1:Synergi Polar-RP (Phenomenex社製)
カラム2:Synergi Hydro-RP (Phenomenex社製)
カラム温度:45℃
移動相1:5mMギ酸水溶液/アセトニトリル=98/2(vol/vol)、1mL/min
移動相2:(5mM ギ酸、20mM Bis-Tris、0.1mM EDTA-2Na)水溶液/アセトニトリル=98/2(vol/vol)、1mL/min
検出:電気伝導度。
Horiba pHメーター F-52(株式会社堀場製作所製)を用いた。pH校正はpH4.01標準液(富士フイルム和光純薬株式会社製)、pH6.86標準液(富士フイルム和光純薬株式会社製)、pH9.18標準液(富士フイルム和光純薬株式会社製)を用いて行った。
国際公開2017/209102号の実施例14に記載のSerratia grimesii(NBRC13537)/pBBR1MCS-2::CgpcaF株を用いる方法に準じて、3-ヒドロキシアジピン酸発酵液100Lを調製した。上清をHPLCで分析した。3-ヒドロキシアジピン酸濃度は50mg/Lであった。
本発明の参考例8~19で使用した3-ヒドロキシアジピン酸-3,6-ラクトンは化学合成により準備した。まず、コハク酸モノメチルエステル13.2g(0.1mol)(富士フイルム和光純薬株式会社製)に超脱水テトラヒドロフラン1.5L(富士フイルム和光純薬株式会社製)を加え、攪拌しながらカルボニルジイミダゾール16.2g(0.1mol)(富士フイルム和光純薬株式会社製)添加し、窒素雰囲気下1時間室温で攪拌した。この懸濁液にマロン酸モノメチルエステルカリウム塩15.6g(0.1mol)及び塩化マグネシウム9.5g(0.1mol)を添加し、窒素雰囲気下1時間室温で攪拌した後、40℃で12時間攪拌した。反応終了後、1mol/L塩酸を0.05L加え、酢酸エチルにより抽出し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:5)で分離精製することで、純粋な3-オキソヘキサンジカルボン酸ジメチルエステル13.1gを得た。
参考例1で得た3-ヒドロキシアジピン酸発酵液を精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じて、続いて、限外濾過膜(分画分子量10000;東レ株式会社製)に通じ、精密濾過膜、限外濾過膜を通じた3-ヒドロキシアジピン酸発酵液100Lを、ロータリーエバポレーター(東京理化器械株式会社製)を用いて100倍に濃縮した濃縮液1Lを得た。この濃縮液10mLに濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整してから室温(25℃)で12時間撹拌し、上清をHPLCで分析した。3-ヒドロキシアジピン酸と3-ヒドロキシアジピン酸-3,6-ラクトンの濃度比(3-ヒドロキシアジピン酸-3,6-ラクトン/3-ヒドロキシアジピン酸)を表1に示す。
濃縮液のpHを2.0に調整した以外は、参考例3と同様に実験を行った。結果を表1に示す。
濃縮液のpHを1.0に調整した以外は、参考例3と同様に実験を行った。結果を表1に示す。
濃縮液のpHを2.0に調整し、70℃で3時間撹拌した以外は、参考例3と同様に実験を行った。結果を表1に示す。
濃縮液のpHを2.0に調整し、70℃で12時間撹拌した以外は、参考例3と同様に実験を行った。結果を表1に示す。
濃縮液に酸を加えなかった(pH6.5)以外は参考例3と同様に実験を行った。結果を表1に示す。
参考例2で調製した3-ヒドロキシアジピン酸-3,6-ラクトンを用いて、3-ヒドロキシアジピン酸-3,6-ラクトン初濃度200g/Lの3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液(pH2.1)を調製した。該水溶液0.5mLと種々の抽出溶剤0.5mLを2mLエッペンドルフチューブに添加し、キュートミキサーCM-1000(東京理化器械株式会社製)を用いて室温で1時間、1500rpmで振とうした。振とう後、抽残液である水相中の3-ヒドロキシアジピン酸-3,6-ラクトン濃度をHPLCにより測定し、以下の式に基づき抽出率を算出した。
3-ヒドロキシアジピン酸-3,6-ラクトン初濃度50g/Lの3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液(pH2.3)を用いること以外は、参考例10、11、13、15と同様に実験を行った(それぞれ参考例16、17、18、19)。3-ヒドロキシアジピン酸-3,6-ラクトンの抽出率を表2に示す。
参考例1で得た3-ヒドロキシアジピン酸発酵液を精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じて、続いて、限外濾過膜(分画分子量10000;東レ株式会社製)に通じ、精密濾過膜、限外濾過膜を通じた3-ヒドロキシアジピン酸発酵液100Lを、ロータリーエバポレーター(東京理化器械株式会社製)を用いて1000倍に濃縮した。この濃縮液に、濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.6に調整して12時間撹拌し、水を加えて3-ヒドロキシアジピン酸-3,6-ラクトン濃度を40.0g/Lに調整した3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を得た。この3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を用いて、参考例11と同様に、酢酸エチルを抽出溶剤として用いる抽出試験を行った。3-ヒドロキシアジピン酸-3,6-ラクトンの抽出率を表3に示す。
pHを4.6に調整するところを4.0に調整した以外は、参考例20と同様に実験を行った。結果を表3に示す。
酢酸エチルの代わりにメチルイソブチルケトンを抽出溶剤とした以外は、参考例20と同様に実験を行った。結果を表3に示す。
pHを4.0に調整した以外は、参考例22と同様に実験を行った。結果を表3に示す。
参考例20にてpHを4.6に調整するところで酸を加えずに得た3-ヒドロキシアジピン酸含有水溶液を用い、酢酸エチルの代わりにメチルイソブチルケトンを抽出溶剤とした以外は、参考例20と同様に実験を行った。3-ヒドロキシアジピン酸の抽出率を表3に示す。
参考例1で得た3-ヒドロキシアジピン酸発酵液を精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じて、続いて、限外濾過膜(分画分子量10000;東レ株式会社製)に通じ、精密濾過膜、限外濾過膜を通じた3-ヒドロキシアジピン酸発酵液100Lを、ロータリーエバポレーター(東京理化器械株式会社製)を用いて、1000倍に濃縮し、濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整して12時間撹拌した。この3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液をガラス製分液漏斗(容量500mL)に移し、酢酸エチル(富士フイルム和光純薬株式会社製)100mLを加えて60回振とうした。静置後、酢酸エチル相を回収し、抽残液にさらに酢酸エチル100mLを加えて60回振とうし、酢酸エチル相を回収した。同様の操作を繰り返し、合計1Lの酢酸エチルを用いて3-ヒドロキシアジピン酸-3,6-ラクトンの抽出を行った(抽出率90%)。酢酸エチル相を回収して得た3-ヒドロキシアジピン酸-3,6-ラクトン抽出液(約1L)をロータリーエバポレーターで濃縮することにより、抽出溶剤である酢酸エチルを除去し、濃茶色シロップ状の3-ヒドロキシアジピン酸-3,6-ラクトン2.1gを得た。
酢酸エチルの代わりにメチルイソブチルケトンを抽出溶剤として用いた以外は、実施例1と同様に実験を行い、濃茶色シロップ状の3-ヒドロキシアジピン酸-3,6-ラクトン1.8gを得た(抽出率80%)。また、実施例1と同様に水相とメチルイソブチルケトン相の間に固形分を含む中間相が生じた。
参考例1で得た3-ヒドロキシアジピン酸発酵液1Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じて、続いて、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。その後、濃硫酸(シグマ-アルドリッチ社製)を用いてpHを4.0に調整し、12時間撹拌した。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を原水タンクに移し、以下のナノ濾過膜処理条件1にてナノ濾過膜に通じた。得られた透過液は着色成分が除去され、清澄な水溶液であった。透過液の3-ヒドロキシアジピン酸濃度及び3-ヒドロキシアジピン酸-3,6-ラクトン濃度をHPLCで分析し、以下の式に従って透過率を算出した。透過率の算出結果を表4に示す。
分離膜:UTC-63(東レ株式会社製)
膜分離装置:“SEPA”(登録商標)CF-II(GE W&PT社製)
操作温度:25℃
濾過圧:0.21~2.03MPa。
酸を加えずに得た3-ヒドロキシアジピン酸含有水溶液を用いた以外は、参考例24~27と同様に実験を行った。3-ヒドロキシアジピン酸透過率の算出結果を表4に示す。なお、3-ヒドロキシアジピン酸-3,6-ラクトンは生成していないため透過率を算出する対象に該当しない。
参考例1で得た3-ヒドロキシアジピン酸発酵液100Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じて、続いて、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整し、12時間撹拌した。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を原水タンクに移し、以下のナノ濾過膜処理条件2にてナノ濾過膜に通じた。非透過液は原水タンクに戻し、液量が不足すれば純水を原水タンクに加えてナノ濾過膜処理を継続し、3-ヒドロキシアジピン酸-3,6-ラクトン全量を透過液側に回収した。
分離膜:UTC-63(東レ株式会社製)
膜分離装置:“SEPA”(登録商標)CF-II(GE W&PT社製)
操作温度:25℃
濾過圧:0.5MPa。
酢酸エチルの代わりにメチルイソブチルケトンを抽出溶剤として用いた以外は、実施例3と同様に実験を行い、薄黄色シロップ状の3-ヒドロキシアジピン酸-3,6-ラクトン1.9gを得た。3-ヒドロキシアジピン酸-3,6-ラクトン抽出率83%。この抽出においても、水相とメチルイソブチルケトン相の間に固形分を含む中間相の形成はほぼ観察されず、十数秒以内で極めて速やかに相分離した。
参考例1で得た3-ヒドロキシアジピン酸発酵液を精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。続いて、濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整して12時間撹拌した後、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。以降は実施例1と同様に濃縮、抽出、抽出溶剤除去を行い、濃黄色シロップ状の3-ヒドロキシアジピン酸-3,6-ラクトン0.4gを得た。
参考例1で得た3-ヒドロキシアジピン酸発酵液を精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。続いて、濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整して12時間撹拌した後、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液100Lをロータリーエバポレーター(東京理化器械株式会社製)を用いて、100mLになるまで濃縮し、濃硫酸(シグマ-アルドリッチ社製)を加えてpHを3.5に調整してから70℃で3時間撹拌した。その後、実施例1と同様に抽出、抽出溶剤除去を行い、黄褐色シロップの3-ヒドロキシアジピン酸-3,6-ラクトン2.5gを得た。
参考例1で得た3-ヒドロキシアジピン酸発酵液100Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。濃硫酸(シグマ-アルドリッチ社製)を加えてpHを4.0に調整して12時間撹拌した後、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を前記ナノ濾過膜処理条件2にてナノ濾過膜に通じた。
参考例1で得た3-ヒドロキシアジピン酸発酵液100Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。濃硫酸(シグマ-アルドリッチ社製)を加えてpHを2.0に調整して85℃で12時間撹拌した。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液をロータリーエバポレーター(東京理化器械株式会社製)を用いて、100mLになるまで濃縮した。その後は実施例1と同様に抽出、抽出溶剤除去を行い、濃橙色の3-ヒドロキシアジピン酸-3,6-ラクトン3.0gを得た。
参考例1で得た3-ヒドロキシアジピン酸発酵液100Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。濃硫酸(シグマ-アルドリッチ社製)を加えてpHを2.0に調整して85℃で12時間撹拌した後、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。その後は実施例8と同様に濃縮、抽出、抽出溶剤除去を行い、濃橙色の3-ヒドロキシアジピン酸-3,6-ラクトン2.8gを得た。
参考例1で得た3-ヒドロキシアジピン酸発酵液100Lを精密濾過膜(細孔径0.01μm以上1μm未満の多孔性膜;東レ株式会社製)に通じた。濃硫酸(シグマ-アルドリッチ社製)を加えてpHを2.0に調整して85℃で12時間撹拌した後、限外濾過膜(分画分子量10000;東レ株式会社製)に通じた。こうして得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を前記ナノ濾過膜処理条件2にてナノ濾過膜に通じた。その後、実施例8と同様に濃縮、抽出、抽出溶剤除去を行い、薄橙色の3-ヒドロキシアジピン酸-3,6-ラクトン2.9gを得た。
Claims (6)
- 以下の工程(A)及び(B)を含む、3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法。
(A)3-ヒドロキシアジピン酸含有水溶液に酸を加え、3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を得る工程
(B)工程(A)より得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を、該溶液と相分離する抽出溶剤と接触させ、3-ヒドロキシアジピン酸-3,6-ラクトン抽出液を得る工程 - さらに前記工程(B)より得た3-ヒドロキシアジピン酸-3,6-ラクトン抽出液から抽出溶剤を除去する工程(C)を含む、請求項1に記載の方法。
- 前記3-ヒドロキシアジピン酸含有水溶液及び/又は前記3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液のpHを4.5以下に調整する、請求項1又は2に記載の方法。
- 前記3-ヒドロキシアジピン酸含有水溶液が3-ヒドロキシアジピン酸発酵液である、請求項1から3のいずれか1項に記載の方法。
- 工程(A)にて、さらに前記3-ヒドロキシアジピン酸発酵液及び/又は前記3-ヒドロキシアジピン酸発酵液から得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液から菌体及び/又はタンパク質を除去する工程を含む、請求項4に記載の方法。
- 工程(A)にて、さらに前記3-ヒドロキシアジピン酸発酵液から得た3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液をナノ濾過膜に通じて、透過液側から3-ヒドロキシアジピン酸-3,6-ラクトン含有水溶液を回収する工程を含む、請求項4又は5に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20777505.7A EP3950680A4 (en) | 2019-03-25 | 2020-03-24 | PROCESS FOR THE PREPARATION OF 3-HYDROXYADIPYNIC ACID-3,6-LACTON |
US17/439,782 US11760739B2 (en) | 2019-03-25 | 2020-03-24 | Method of producing 3-hydroxyadipic acid-3,6-lactone |
JP2020546510A JP7567479B2 (ja) | 2019-03-25 | 2020-03-24 | 3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法 |
CN202080021801.XA CN113574052A (zh) | 2019-03-25 | 2020-03-24 | 3-羟基己二酸-3,6-内酯的制造方法 |
BR112021018398A BR112021018398A2 (pt) | 2019-03-25 | 2020-03-24 | Método de produção de ácido 3-hidroxiadípico-3,6-lactona |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019056708 | 2019-03-25 | ||
JP2019-056708 | 2019-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196459A1 true WO2020196459A1 (ja) | 2020-10-01 |
Family
ID=72609882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012855 WO2020196459A1 (ja) | 2019-03-25 | 2020-03-24 | 3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11760739B2 (ja) |
EP (1) | EP3950680A4 (ja) |
JP (1) | JP7567479B2 (ja) |
CN (1) | CN113574052A (ja) |
BR (1) | BR112021018398A2 (ja) |
WO (1) | WO2020196459A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368768A (en) * | 1976-12-01 | 1978-06-19 | Teijin Ltd | Preparation of gamma-lactone |
JPS62201606A (ja) | 1985-09-20 | 1987-09-05 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JPS62277349A (ja) | 1986-05-16 | 1987-12-02 | ヘンケル・コ−ポレイション | アミノ酸の回収方法 |
JP2010095450A (ja) * | 2008-10-14 | 2010-04-30 | Toray Ind Inc | モノカルボン酸の製造方法 |
JP2012000059A (ja) | 2010-06-17 | 2012-01-05 | Toyota Industries Corp | ムコノラクトン、β−ケトアジピン酸及び/又はレブリン酸の発酵生産 |
JP2012115237A (ja) | 2010-12-03 | 2012-06-21 | Mitsubishi Chemicals Corp | 脂肪族ジカルボン酸の製造方法 |
JP2012528885A (ja) * | 2009-06-04 | 2012-11-15 | ゲノマチカ, インク. | 発酵ブロスの成分を分離する方法 |
JP2015119738A (ja) | 2009-10-07 | 2015-07-02 | 三菱化学株式会社 | コハク酸の製造方法 |
WO2016068108A1 (ja) | 2014-10-30 | 2016-05-06 | 東レ株式会社 | ε-カプロラクタムの製造方法 |
WO2016199856A1 (ja) | 2015-06-10 | 2016-12-15 | 東レ株式会社 | 3-ヒドロキシアジピン酸の製造方法 |
JP2017051117A (ja) * | 2015-09-08 | 2017-03-16 | Jnc株式会社 | 発酵生成物の分離精製法 |
WO2017209102A1 (ja) | 2016-05-31 | 2017-12-07 | 東レ株式会社 | 3-ヒドロキシアジピン酸の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150259311A1 (en) * | 2014-03-12 | 2015-09-17 | Samsung Electronics Co., Ltd. | Method of producing lactone from hydroxycarboxylic acid or dicarboxylic acid in aqueous solution |
WO2017011407A2 (en) * | 2015-07-10 | 2017-01-19 | The Regents Of The University Of California | Producing adipic acid and related compounds using hybrid polyketide synthases |
WO2018105572A1 (ja) * | 2016-12-06 | 2018-06-14 | 東レ株式会社 | ε-カプロラクタムの製造方法 |
-
2020
- 2020-03-24 JP JP2020546510A patent/JP7567479B2/ja active Active
- 2020-03-24 EP EP20777505.7A patent/EP3950680A4/en active Pending
- 2020-03-24 BR BR112021018398A patent/BR112021018398A2/pt unknown
- 2020-03-24 WO PCT/JP2020/012855 patent/WO2020196459A1/ja unknown
- 2020-03-24 US US17/439,782 patent/US11760739B2/en active Active
- 2020-03-24 CN CN202080021801.XA patent/CN113574052A/zh active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368768A (en) * | 1976-12-01 | 1978-06-19 | Teijin Ltd | Preparation of gamma-lactone |
JPS62201606A (ja) | 1985-09-20 | 1987-09-05 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JPS62277349A (ja) | 1986-05-16 | 1987-12-02 | ヘンケル・コ−ポレイション | アミノ酸の回収方法 |
JP2010095450A (ja) * | 2008-10-14 | 2010-04-30 | Toray Ind Inc | モノカルボン酸の製造方法 |
JP2012528885A (ja) * | 2009-06-04 | 2012-11-15 | ゲノマチカ, インク. | 発酵ブロスの成分を分離する方法 |
JP2015119738A (ja) | 2009-10-07 | 2015-07-02 | 三菱化学株式会社 | コハク酸の製造方法 |
JP2012000059A (ja) | 2010-06-17 | 2012-01-05 | Toyota Industries Corp | ムコノラクトン、β−ケトアジピン酸及び/又はレブリン酸の発酵生産 |
JP2012115237A (ja) | 2010-12-03 | 2012-06-21 | Mitsubishi Chemicals Corp | 脂肪族ジカルボン酸の製造方法 |
WO2016068108A1 (ja) | 2014-10-30 | 2016-05-06 | 東レ株式会社 | ε-カプロラクタムの製造方法 |
WO2016199856A1 (ja) | 2015-06-10 | 2016-12-15 | 東レ株式会社 | 3-ヒドロキシアジピン酸の製造方法 |
JP2017051117A (ja) * | 2015-09-08 | 2017-03-16 | Jnc株式会社 | 発酵生成物の分離精製法 |
WO2017209102A1 (ja) | 2016-05-31 | 2017-12-07 | 東レ株式会社 | 3-ヒドロキシアジピン酸の製造方法 |
Non-Patent Citations (5)
Title |
---|
ALLAN, R. D. ET AL.: "Synthesis of Analogues of GABA. IX 5-(Aminomethyl)-3-hydroxyfuran-2(5H)- one", AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 36, no. 5, 1983, pages 977 - 981, XP055744041 * |
CAPRARO, HANS-GEORG ET AL.: "Synthesis and biological activity of 2-lactony penems", JOURNAL OF ANTIBIOTICS, vol. 41, no. 6, 1988, pages 759 - 770, XP055744042 * |
HAGEN, A. ET AL.: "Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid", ACS SYNTHETIC BIOLOGY, vol. 5, no. 1, 2016, pages 21 - 27, XP055365472, DOI: 10.1021/acssynbio.5b00153 * |
See also references of EP3950680A4 |
YOSHINORI KATO , TOSHI WAKABAYSHI : "A convenient synthesis of y- carboxymethylbutanolide", SYNTHETIC COMMUNICATIONS, vol. 7, no. 2, 1977, pages 125 - 130, XP009530737, DOI: 10.1080/00397917708050722 * |
Also Published As
Publication number | Publication date |
---|---|
JP7567479B2 (ja) | 2024-10-16 |
CN113574052A (zh) | 2021-10-29 |
US20220185786A1 (en) | 2022-06-16 |
EP3950680A4 (en) | 2022-11-30 |
JPWO2020196459A1 (ja) | 2020-10-01 |
US11760739B2 (en) | 2023-09-19 |
EP3950680A1 (en) | 2022-02-09 |
BR112021018398A2 (pt) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5782674B2 (ja) | ジアミンおよびポリアミドの製造方法 | |
US8957249B2 (en) | Process for removing, isolating and purifying dicarboxylic acids | |
US9422220B2 (en) | Method for purifying carboxylic acids from fermentation broths | |
TW201031603A (en) | Process for the recovery of betaines from electrodialysis waste streams | |
US20170080391A1 (en) | Highly efficient reverse osmosis filter | |
JP6050895B2 (ja) | 1,4−ジアミノブタンの精製方法、該方法によって精製された1,4−ジアミノブタン、及びそれから製造されるポリアミド | |
JP7567479B2 (ja) | 3-ヒドロキシアジピン酸-3,6-ラクトンの製造方法 | |
JP7651861B2 (ja) | カルボン酸の製造方法 | |
US3544455A (en) | Itaconic acid purification process using reverse osmosis | |
JP2010095450A (ja) | モノカルボン酸の製造方法 | |
AU2005336975B2 (en) | Process for recovery and purification of lactic acid | |
WO2021060334A1 (ja) | アセトインの製造方法 | |
JPH0657719B2 (ja) | α−L−アスパルチル−L−フエニルアラニンメチルエステルの回収方法 | |
JP6599870B2 (ja) | 水性混合物からのジカルボン酸の分離方法 | |
JP3243877B2 (ja) | ピルビン酸またはその塩の単離法 | |
JP2024521504A (ja) | 発酵液から目的の化合物を得る方法 | |
KR101030759B1 (ko) | 4-히드록시부탄산 염 수용액으로부터 4-히드록시부탄산을회수하는 방법 | |
TW201544460A (zh) | 純工廠廢水的純化及回收 | |
TH89975B (th) | กรรมวิธีสำหรับการนำกรดอินทรีย์กลับคืนและการทำให้บริสุทธิ์ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020546510 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20777505 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021018398 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2020777505 Country of ref document: EP Effective date: 20211025 |
|
ENP | Entry into the national phase |
Ref document number: 112021018398 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210916 |