[go: up one dir, main page]

WO2020196348A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2020196348A1
WO2020196348A1 PCT/JP2020/012534 JP2020012534W WO2020196348A1 WO 2020196348 A1 WO2020196348 A1 WO 2020196348A1 JP 2020012534 W JP2020012534 W JP 2020012534W WO 2020196348 A1 WO2020196348 A1 WO 2020196348A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil passage
oil
pressure
switching valve
hydraulic pressure
Prior art date
Application number
PCT/JP2020/012534
Other languages
English (en)
French (fr)
Inventor
智志 吉田
一輝 小嶋
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2020196348A1 publication Critical patent/WO2020196348A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This technology relates to a vehicle drive that has a cooler that cools the oil.
  • a vehicle drive device such as an automatic transmission or a hybrid drive device mounted on a vehicle is provided with a hydraulic control device for shifting and lubricating, and for cooling the oil used for the hydraulic control.
  • a cooler is provided (see, for example, Patent Document 1).
  • This Patent Document 1 includes a mechanical oil pump driven by a drive source and an electric oil pump driven independently as a hydraulic source, and is based on the hydraulic pressure generated by the oil pumps. When supplied as lubricating oil, the oil is cooled by a cooler, and then the cooled oil is supplied to the transmission mechanism to lubricate the transmission mechanism.
  • the starting clutch in the vehicle drive device that is engaged at the time of starting is slip-engaged in order to make the starting smooth, the amount of heat generated is particularly large at the time of starting.
  • the oil temperature is low and the oil viscosity is high, the pressure loss in the cooler becomes large, and in turn, the supply amount of the lubricating oil to the starting clutch may decrease.
  • the purpose is to provide the device.
  • the drive device for this vehicle is The starting friction engaging element that is engaged at the time of starting, A hydraulic pressure source that generates hydraulic pressure and With a cooler that cools the oil, A first lubricating oil passage that supplies lubricating oil to the starting friction engaging element, A first oil passage that supplies the hydraulic pressure of the hydraulic pressure source to the first lubricating oil passage via the cooler, and A second oil passage capable of communicating the upstream side of the first oil passage with respect to the cooler and the downstream side of the first oil passage with respect to the cooler so as to bypass the cooler.
  • the first solenoid valve capable of outputting the first signal pressure and A first switching valve that is interposed in the second oil passage and is switched between a communication state in which the second oil passage is communicated and a cutoff state in which the second oil passage is cut off by the first signal pressure. Equipped with.
  • lubricating oil can be supplied to the starting friction engaging element via the cooler through the first oil passage, but the first switching valve is brought into a communicating state.
  • the second oil passage bypasses the cooler to supply the lubricating oil to the starting friction engaging element, and it is possible to prevent a decrease in the supply amount of the lubricating oil.
  • the block diagram which shows the drive device for a vehicle which concerns on this embodiment The hydraulic circuit diagram which shows a part of the hydraulic pressure control device in the small lubrication state which concerns on 1st Embodiment.
  • the hybrid drive device 1 is suitable for use in, for example, an FR (front engine / rear drive) type vehicle, and the input shaft 1A is drive-connected to the engine 2 as a drive source. Further, the hybrid drive device 1 has a stator 3a and a rotor 3b inside the case 6, and power transmission between the rotary electric machine (motor generator) MG as a drive source, the engine 2, the motor MG, and the wheels 9. As an engine disengagement clutch that is arranged between the transmission mechanism 5 provided on the path, the engine 2 on the power transmission path, and the motor generator (hereinafter, simply referred to as a motor) MG, and can disengage the engine 2.
  • a motor motor generator
  • the clutch K0 and the motor MG and the transmission mechanism 5 on the power transmission path can connect and disconnect the power transmission between the engine 2 and the motor MG (that is, the drive source) and the transmission mechanism 5, especially the vehicle. It is provided with a starting clutch (starting friction engaging element, drive transmission clutch) WSC which is engaged at the time of starting, and a control unit (ECU) 31.
  • a starting clutch starting friction engaging element, drive transmission clutch
  • ECU control unit
  • the control unit 31 includes a CPU 32, a RAM 33 that temporarily stores data, and a ROM 34 that stores a processing program.
  • a control signal to each solenoid valve of the hydraulic control device 40, and a control unit of the engine 2 ( Various signals such as a control signal to (not shown) and a control signal to the motor MG are output from the output port.
  • the input port of the control unit 31 is configured to input detection signals from various sensors such as the hydraulic switch 62, which will be described later.
  • the drive is connected to the rotary shaft 1B which is drive-connected to the motor MG, and is also drive-connected to the engine 2 by engaging the clutch K0.
  • a mechanical oil pump 21 that is driven by at least one of the motor MG and the engine 2 is provided.
  • the rotating shaft 1B is rotatably supported by the bearing B1 with respect to the support wall 6a supported by the case 6.
  • a damper device or the like is usually provided between the engine 2 and the clutch K0 to absorb the pulsation of the engine 2 and transmit the rotation thereof.
  • the transmission mechanism (T / M) 5 is composed of a transmission mechanism capable of changing the transmission path based on the engagement state of a plurality of frictional engagement elements (clutch and brake) and achieving, for example, forward 6th speed and reverse speed. .. Further, a propeller shaft 8 is driven and connected to an output shaft (not shown) of the speed change mechanism 5, and the rotation output to the propeller shaft 8 is transmitted to the left and right wheels via a differential device or the like.
  • the speed change mechanism 5 may be, for example, a stepped speed change mechanism that achieves forward 3 to 5 speeds or forward 7 speeds or higher, and may be a belt type continuously variable transmission, a toroidal type continuously variable transmission, or the like. It may be a continuously variable transmission mechanism, that is, any transmission mechanism may be used.
  • the clutch K0, the motor MG, the start clutch WSC, and the transmission mechanism 5 are sequentially arranged from the engine 2 side to the wheel 9 side, and both the engine 2 and the motor MG, or the motor MG, or
  • the control unit (ECU) 31 controls the hydraulic control device 40 to engage the clutch K0 and the start clutch WSC, and the EV travels only with the driving force of the motor MG.
  • the clutch K0 is released to disconnect the transmission path between the engine 2 and the wheels 9.
  • the hybrid drive device 1 includes a mechanical oil pump (MOP) 21 and an electric oil pump (E-OP) 22 as hydraulic pressure generators for generating hydraulic pressure (primary pressure) used in the hydraulic pressure control device 40. It is equipped.
  • the mechanical oil pump 21 is provided so that a drive gear is driven and connected to the rotating shaft 1B. That is, the mechanical oil pump 21 is provided with the engine 2 and the motor MG when the clutch K0 is engaged. When the clutch K0 is released, the engine is rotationally driven in conjunction with the motor MG.
  • the electric oil pump 22 is configured to be electrically driven by an electric motor (not shown) independently of the mechanical oil pump 21, and is driven / stopped based on an electronic command from the control unit 31. Be controlled.
  • An oil temperature sensor 41 for detecting the oil temperature is provided inside the hydraulic pressure control device 40, and the detected oil temperature is output to the control unit 31.
  • the electric motor (not shown) that drives the electric oil pump 22 is used only for driving the electric oil pump 22, is completely independent of the transmission path between the engine 2 and the wheels 9, and does not transmit the driving force to the wheels 9. It is a thing.
  • FIGS. 2 to 4 showing a hydraulic control device 40 1, 2 a normal state (small lubrication state), FIG. 3 is large lubrication state, FIG. 4 shows a low-temperature state.
  • the hydraulic control device 40 1 roughly includes a primary regulator valve (regulator valve) 42, a secondary regulator valve 43, a solenoid valve (second solenoid valve) SRL1, and a solenoid valve (first solenoid valve) SRL2. , A first lubrication switching valve (second switching valve) 44, a second lubrication switching valve (first switching valve) 45, and the like are provided. Further, the hydraulic control device 40 1 is connected to the mechanical oil pump 21 and the electric oil pump 22 as a hydraulic pressure generating source with the hydraulic pressure is supplied, it is connected so as to communicate with the cooler 70.
  • the hydraulic control device 40 1, the first lubrication circuit (first lubricating oil passage) for supplying lubricating oil towards the starting clutch WSC as indicated by an arrow A in FIG. 1 81, the arrow C in FIG. 1
  • the second lubricating circuit (second lubricating oil passage) 82 that supplies lubricating oil toward the outer peripheral side of the motor MG, the clutch K0, the inner peripheral side of the motor MG, and the bearing as shown by arrow B in FIG.
  • Third lubrication circuit (third lubricating oil passage) 83 that supplies lubricating oil toward B1, and fourth lubrication that supplies lubricating oil toward each part of the speed change mechanism 5 as shown by arrow D in FIG. It is connected to the circuit (fourth lubricating oil passage) 84 so as to communicate with each other.
  • the line pressure PL adjusted by the primary regulator valve 42 becomes larger than the hydraulic pressure PEOP output by the electric oil pump 22. It is arranged so as to prevent the line pressure PL from flowing back to the electric oil pump 22. Further, the check ball 51 connected to the oil passage b1 is closed by a spring (not shown), and when the oil pressure of the oil passage b1 becomes equal to or higher than a predetermined pressure, the oil pressure of the oil passage b1 is released to remove the hydraulic pressure of the oil passage b1 so that the electric oil pump 22 The high pressure is prevented from acting on the electric oil pump 22, that is, the electric oil pump 22 is protected.
  • the mechanical oil pump 21 driven by the engine 2 or the motor MG sucks oil from the strainer 20 and opens the check ball 52 to open the oil passages a1, a2, a3 as a line pressure circuit.
  • the hydraulic pressure PMOP is generated in a4, a5, and a6, and the line pressure PL is adjusted in detail by the primary regulator valve 42 described later.
  • the check ball 52 prevents the hydraulic pressure PEOP from the electric oil pump 22 from flowing back to the mechanical oil pump 21 when the mechanical oil pump 21 is stopped, for example, when the vehicle is stopped during EV traveling. It is preventing.
  • the primary regulator valve 42 includes a spool 42p, a spring 42s that urges the spool 42p to one side, a feedback oil chamber 42a, a hydraulic oil chamber 42b, a discharge port 42c, and a pressure adjusting port 42d. ing.
  • Spool 42p of the primary regulator valve 42 for example a control pressure P SLT outputted from the linear solenoid valve SLT which is not shown in accordance with the throttle opening degree, and the urging force of the spring 42s, the feedback via the oil passage a3
  • the amount of communication (opening amount) between the pressure adjusting port 42d and the discharge port 42c is adjusted according to the feedback pressure fed back to the oil chamber 42a, and thereby the oil passages a1 to a6 connected to the pressure adjusting port 42d.
  • the hydraulic pressure is adjusted as the line pressure PL.
  • the line pressure PL regulated by the primary regulator valve 42 engages with each clutch (including the clutch K0 and the start clutch WSC) of the transmission mechanism 5 and each hydraulic servo of the brake via the oil passage a5.
  • the line pressure PL is also supplied to the modulator valve (not shown), and outputs the modulator pressure P MOD that suppresses the line pressure PL to the following constant pressure.
  • the hydraulic pressure discharged from the discharge port 42c of the primary regulator valve 42 is supplied to the oil passages c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, and particularly oil. is pressure regulated to a secondary pressure P SEC by being supplied from the road c4 to the secondary regulator valve 43.
  • the secondary regulator valve 43 is configured in substantially the same manner as the primary regulator valve 42, and includes a spool 43p, a spring 43s for urging the spool 43p to one side, a feedback oil chamber 43a, and a hydraulic oil chamber 43b. It is configured to have a pressure port 43c and a discharge port 43d.
  • Check ball 54 which is an example of a check valve, and more particularly when the hydraulic pressure P EOP of the electric oil pump 22 is switched first lubricating switching valve 44 as described later is supplied to the oil passage e2, c13, an oil passage The backflow from c12 to the secondary regulator valve 43 (downstream side to upstream side) is blocked. Further, the check ball 54 is located in the oil passages c1 to c13 of the lubricating oil flowing from the secondary regulator valve 43 toward the first lubrication circuit 81, and is arranged on the downstream side of the second lubrication circuit 82 to the fourth lubrication circuit 84.
  • the solenoid valve SRL1 is composed of, for example, a normally closed type and is configured to freely output the signal pressure P SL1 .
  • the above-mentioned modulator pressure P MOD is input, and a command from the control unit 31 is given.
  • the signal pressure P SRL1 is output to the hydraulic oil chamber 44a of the first lubrication switching valve 44 described later via the oil passage f1 by being controlled on by, and the signal pressure P SRL1 is not output by being controlled off. To do.
  • the solenoid valve SRL2 is composed of, for example, a normally closed type and is configured to freely output the signal pressure P SL2 .
  • the above-mentioned modulator pressure PMOD is input, and the control unit 31
  • the signal pressure P SRL2 is output to the hydraulic oil chamber 45a of the second lubrication switching valve 45 described later via the oil passage g1 by being controlled on by the command of, and the signal pressure P SRL2 is not controlled by being controlled off. Make it an output.
  • the first lubrication switching valve 44 includes a spool 44p, a spring (urging member) 44s that urges the spool 44p to one side, a hydraulic oil chamber 44a, an input port 44b, an output port 44d, and an input port 44c. And an output port 44e.
  • the second lubrication switching valve 45 includes a spool 45p, a spring (urging member) 45s that urges the spool 45p to one side, a hydraulic oil chamber 45a, an output port 45b, an input port 45c, and an input port 45d. And an output port 45e.
  • the second lubrication switching valve 45 is in the upper position (blocked state) in the figure in which the spool 45p is urged by the urging force of the spring 45s, the input port 45d and the output port 45e communicate with each other, and the input port 45c is shut off.
  • the modulator pressure PMOD is input to the input port 45d. Further, the output port 45e is connected to a hydraulic switch 62 that electrically outputs an ON signal to the control unit 31 when a hydraulic pressure equal to or higher than a predetermined pressure is input. Therefore, when the spool 45p is in the upper position in the drawing, the hydraulic switch 62 inputs the modulator pressure PMOD and detects whether or not the second lubrication switching valve 45 is in the lower position in the drawing. In particular, when the solenoid valve SRL2 is off-controlled and the hydraulic switch 62 does not output an on signal, the control unit 31 has an abnormality in which the spool 45p of the second lubrication switching valve 45 sticks to the lower position in the figure. The state will be detected.
  • the operation of the hydraulic control device 40 1.
  • the solenoid valve SRL1 and the solenoid valve SRL1 and the normal state are used. Both solenoid valves SRL2 are off-controlled, the first lubrication switching valve 44 is in the upper position in the figure, and the second lubrication switching valve 45 is also in the upper position in the figure, in the state shown in FIG.
  • the mechanical oil pump 21 When the engine 2 or the motor MG is driven, the mechanical oil pump 21 generates the hydraulic pressure PMOP toward the oil passage a1, and when the electric oil pump 22 is turned on and controlled.
  • the electric oil pump 22 generates a hydraulic pressure PEOP toward the oil passage b1, and the electric oil pump 22 passes through the oil passages b1 and b2, the input port 44c and the output port 44e of the first lubrication switching valve 44, and the oil passage a6. It communicates with the pressure adjusting port 42d of the primary regulator valve 42. That is, the line pressure PL is regulated by the primary regulator valve 42, and the secondary pressure P SEC is further regulated by the secondary regulator valve 43 based on one or both of the hydraulic pressure PMOP and the hydraulic pressure PEOP .
  • the control unit 31 determines the start of the vehicle, and supplies engagement pressure to the hydraulic servo of the start clutch WSC to engage the start clutch WSC.
  • the solenoid valve SRL2 is turned off and the solenoid valve SRL1 is turned on, and the spool 44p of the first lubrication switching valve 44 is switched to the lower position in the figure by the signal pressure P SRL1 .
  • the mechanical oil pump 21 is driven.
  • the secondary pressure PSEC is used as the lubrication pressure as described above, and the lubricating oil flowing based on the lubrication pressure passes through the cooler 70 and enters the second lubrication circuit 82, the third lubrication circuit 83, and the fourth lubrication circuit 84. Each is supplied.
  • the hydraulic pressure PEOP of the electric oil pump 22 input to the input port 44c is output from the output port 44d to the oil passage e2. It is supplied to the first lubrication circuit 81 via the oil passage c13.
  • the EOP is directly supplied to the first lubrication circuit 81, in other words, the hydraulic pressure P EOP larger than the secondary pressure P SEC becomes the lubrication pressure, and the lubrication pressure is applied to the first lubrication circuit 81 based on the secondary pressure P SEC.
  • Lubricating oil with a flow rate (second flow rate) larger than the flow rate (first flow rate) when supplying is supplied that is, the amount of lubricating oil supplied to the starting clutch WSC becomes a large flow rate state, and the slip is engaged at the time of starting. It is possible to sufficiently lubricate (cool) the starting clutch WSC, which is combined and generates a large amount of heat.
  • the check ball 54 Since the hydraulic pressure P EOP of the electric oil pump 22 is larger than that of the secondary pressure P SEC , the check ball 54 does not open, and the lubricating oil supplied by the hydraulic pressure P EOP of the electric oil pump 22 is supplied to the first lubrication circuit 81. It will be performed independently of the second lubrication circuit 82 to the fourth lubrication circuit 84.
  • the control unit 31 turns off the solenoid valve SRL1 and returns the spool 44p of the first lubrication switching valve 44 to the upper position in the drawing, and the first Lubricating oil is supplied to the lubricating circuits 81 to 84 through the cooler 70, and the hydraulic pressure PEOP of the electric oil pump 22 is also used as the main pressure of the line pressure PL and the secondary pressure P SEC. Will be.
  • the mechanical oil pump 21 is driven, but the electric oil pump 22 has a low oil temperature and a high oil viscosity. Therefore, it cannot be driven (when it is driven, the durability of the electric oil pump 22 is affected).
  • the second lubricant switching valve 45 Since the second lubricant switching valve 45 is switched to the lower position in the figure, the secondary pressure P SEC that is supplied to the oil passage c6 is supplied to the oil path e1 via the input port 45c and the output port 45b, further Since the first lubrication switching valve 44 is switched to the upper position in the drawing, it is supplied to the oil passage e2 via the input port 44b and the output port 44d, and is supplied to the first lubrication circuit 81 via the oil passage c13. Lubrication.
  • the second lubrication in the oil passages c1 to c13 as the first oil passage for supplying the hydraulic P MOP (secondary pressure P SEC ) of the mechanical oil pump 21 to the first lubrication circuit 81 via the cooler 70, the second lubrication.
  • the switching valve 45 By switching the switching valve 45, the lubricating oil is supplied through the oil passages c6, e1 and e2 as the second oil passage that communicates the upstream side (oil passage c5) and the downstream side (oil passage c13) of the cooler 70. It is supplied to the first lubrication circuit 81. Therefore, the second lubrication switching valve 45 is interposed in the oil passages c6, e1 and e2 as the second oil passage, and switches from the state of blocking the second oil passage to the state of communicating with the second oil passage.
  • the secondary pressure PSEC is supplied from the oil passage c7 to the oil passages c8 to c11 via the cooler 70, and the lubricating oil is also supplied to the second lubrication circuit 82 to the fourth lubrication circuit 84.
  • oil viscosity is high increases hydraulic losses, since the flow path resistance in the cooler 70 is large, lubrication pressure supplied based on the secondary pressure P SEC is often the oil passage c6 flows hardly flows through the oil passage c7 Therefore, the oil pressure of the oil passages c8 to c11 is lower than that of the oil passage c13, and the check ball 54 is closed.
  • the oil temperature is low, and the lubricating oil is supplied to the first lubricating circuit 81 by bypassing the cooler 70, as compared with the case where the lubricating oil is supplied to the first lubricating circuit 81 via the cooler 70, for example.
  • the lubricating oil is supplied to the first lubricating circuit 81 via the cooler 70, for example.
  • the control unit 31 turns off the solenoid valve SRL2, returns the spool 45p of the second lubrication switching valve 45 to the upper position in the drawing, and the first The lubricating oil is supplied to the lubricating circuits 81 to 84 through the cooler 70.
  • the secondary pressure PSEC can be supplied to the first lubrication circuit 81 when the oil temperature is low, but the oil temperature rises to normal temperature. In this case, it becomes difficult for the oil to flow into the cooler 70, and there is a possibility that the cooling of the oil temperature does not proceed, and there is a possibility that the supply of the lubricating oil to the second lubricating circuit 82 to the fourth lubricating circuit 84 also decreases. Further, when a large amount of lubricating oil flows through the first lubrication circuit 81 and the starting clutch WSC becomes excessively lubricated, the drag resistance of the starting clutch WSC increases, which hinders the improvement of the fuel efficiency of the vehicle.
  • the control unit 31 determines an abnormal state of the second lubrication switching valve 45 when the hydraulic switch 62 outputs an on signal even though the solenoid valve SRL2 is turned off, and the second lubrication switching is performed.
  • the solenoid valve SRL1 is turned on and the spool 44p of the first lubrication switching valve 44 is switched to the lower position in the drawing.
  • the space between the oil passage e1 and the oil passage e2 is cut off, the secondary pressure PSEC is prevented from flowing to the first lubrication circuit 81 as it is, and it is possible to allow the secondary pressure PSEC to flow to the cooler 70.
  • the hydraulic pressure PEOP of the electric oil pump 22 flows into the first lubrication circuit 81 (similar to the above-mentioned large lubrication state).
  • a large flow rate is not required for the first lubrication circuit 81, it can be dealt with by stopping the electric oil pump 22. In this case, it is preferable that the engine 2 is not stopped, that is, the mechanical oil pump 21 is always driven.
  • the cooler 70 is provided by the oil passages c7 to c13 by setting the second lubrication switching valve 45 to the upper position (disengaged state) in the drawing.
  • the lubricating oil can be supplied to the start clutch WSC via the oil passage c6, e1 and e2
  • the cooler 70 is bypassed by setting the second lubrication switching valve 45 to the lower position (communication state) in the figure.
  • Lubricating oil can be supplied to the starting clutch WSC, and it is possible to prevent a decrease in the supply amount of the lubricating oil.
  • Hydraulic control device 40 2 according to the second embodiment, as shown in FIG. 5, which was directly communicated with the second lubricant switching valve 45 oil passage c13 through the oil passage e1 from, in other words
  • the first lubrication switching valve 44 is not interposed in the oil passages c6, e1 and e2 as the second oil passage, as compared with the first embodiment. Therefore, when the spool 45p of the second lubrication switching valve 45 sticks to the lower position in the drawing, the secondary pressure PSEC remains supplied to the first lubrication circuit 81 without going through the cooler 70, but the first lubrication switching. Since the structure of the valve 44 can be simplified and the operation of the oil passage can be simplified, the cost can be reduced.
  • FIG. 6 the hydraulic control device 40 1 similar to that of the hydraulic control device 40 3 is shown in simplified, the line pressure PL is shown with simplified to be pressure regulated by primary regulator valve 42, a secondary regulator Although the valve 43 is omitted, the oil passage c6 ⁇ c13 are those secondary pressure P SEC is supplied as well as lubrication pressure.
  • the hydraulic control device 403 has an oil passage by a check valve 145 as a switching valve instead of the second lubrication switching valve 45 in the first embodiment. It switches between a cut-off state and a communication state between c6 and the oil passage e1.
  • the check valve 145 includes a plate-shaped member 145B in which the through hole 145a is formed, a cup-shaped member 145P which is a cup-shaped member capable of closing the through hole 145a, and a cup-shaped member 145P.
  • a spring 145s that urges the spring 145s and a spring 145s are provided, and the signal pressure P SRL2 from the solenoid valve SRL2 is input to the inside of the cup-shaped member 145P so as to act in the same direction as the urging force of the spring 145s. Has been done.
  • the urging force of the spring 145s is when the secondary pressure P SEC in the oil passage c6 is entered into the through hole 145a, the smaller biasing force than the force cup 145P is receiving through the through-hole 145a It is set. Therefore, when the solenoid valve SRL2 is off-controlled and the signal pressure P SRL2 is not output and the secondary pressure P SEC is supplied to the oil passage c6, the cup-shaped member 145P is separated from the plate-shaped member 145B and the oil passage is separated. The secondary pressure P SEC flows through e1, and the communication state is established.
  • the cup-shaped member 145P is made into a plate-shaped member in combination with the urging force of the spring 145s. It comes into contact with 145B, closes the through hole 145a, and is in a shutoff state in which the oil passage c6 and the oil passage e1 are blocked from each other.
  • the communication state and the cutoff state can be switched by the on / off control of the solenoid valve SRL2, and the response is slower and the controllability is not good as compared with the second lubrication switching valve 45 in the first embodiment.
  • the structure having the same function as the second lubrication switching valve 45 in the first embodiment can be simplified, and the cost can be reduced.
  • the drive device (1) for this vehicle is The starting friction engaging element (WSC) that is engaged at the time of starting, Hydraulic pressure sources (21, 22) that generate hydraulic pressure and A cooler (70) that cools the oil and A first lubricating oil passage (81) for supplying lubricating oil to the starting friction engaging element (WSC),
  • the first oil passage (c1, c2, c3, c5, c7, c8, c12) that supplies the hydraulic pressure of the hydraulic pressure source (21,22) to the first lubricating oil passage (81) via the cooler (70).
  • a second oil passage capable of communicating with the downstream side of the cooler (70) of c1, c2, c3, c5, c7, c8, c12, c13).
  • the first solenoid valve (SRL2) capable of outputting the first signal pressure and A communication state that intervenes in the second oil passage (c6, e1, e2) and communicates with the second oil passage (c6, e1, e2) by the first signal pressure, and the second oil passage (c6).
  • E1, e2) are provided with a shutoff state and a first switching valve (45,145) that can be switched to.
  • the oil passages c1, c2, c3, c5, c7, c8, c12, and c13 supply the lubricating oil to the starting clutch WSC via the cooler 70.
  • the oil passages c6, e1 and e2 can bypass the cooler 70 and supply the lubricating oil to the starting clutch WSC. It is possible to prevent a decrease in the supply amount of
  • the first switching valve (45, 145) is switched to the shutoff state when the oil temperature is the first oil temperature, and is in the communication state when the oil temperature is the second oil temperature lower than the first oil temperature. It is switched to.
  • the start clutch WSC bypasses the cooler 70. Lubricating oil can be supplied to the vehicle, and a decrease in the supply amount of lubricating oil can be prevented.
  • the drive device (1) for this vehicle is A second lubricating oil passage (82, 83, 84) for supplying lubricating oil to a portion other than the starting friction engaging element (WSC), and A check that intervenes in the first oil passage (c1, c2, c3, c5, c7, c8, c12, c13) to allow lubricating oil to pass from the upstream side to the downstream side and block backflow from the downstream side to the upstream side.
  • the second lubricating oil passage (82, 83, 84) communicates on the upstream side of the check valve (54) in the first oil passage (c1, c2, c3, c5, c7, c8, c12, c13).
  • the first lubricating oil passage (81) and the second oil passage (c6, e1, e2) are the check valves in the first oil passage (c1, c2, c3, c5, c7, c8, c12, c13). It communicates on the downstream side of (54).
  • the second lubrication switching valve 45 or the check valve 145 is in a communicative state and the lubricating oil is supplied to the starting clutch WSC by bypassing the cooler 70, the second lubrication circuit 82 to 4 is used by the check ball 54.
  • Lubricating oil does not flow through the lubricating circuit 84, and a sufficient flow rate of the lubricating oil to the first lubricating circuit 81 (starting clutch WSC) can be secured.
  • the hydraulic pressure generation source is a mechanical oil pump (21) driven by a driving source that outputs a driving force for traveling of a vehicle, and an electric oil pump (21) that can be driven independently of the mechanical oil pump (21). 22) and A line pressure circuit (a1) that is connected to an engagement control hydraulic circuit (47) that controls the starting friction engagement element (WSC) and supplies a line pressure (PL) to the engagement control hydraulic circuit (47).
  • the hydraulic pressure source A regulator valve (42) that regulates the line pressure (PL) using hydraulic pressure as the original pressure, The second solenoid valve (SRL1) capable of outputting the second signal pressure and The first state in which the hydraulic pressure generated by the electric oil pump (22) is supplied to the line pressure circuits (a1, a2, a3, a4, a5, a6) by the second signal pressure, and the electric oil pump (22).
  • the oil pressure PEOP of the electric oil pump 22 is used as a line pressure circuit.
  • the hydraulic pressure PEOP of the electric oil pump 22 is directly supplied to the first lubrication circuit 81 (start clutch WSC). Can be done.
  • the second to fourth lubrication circuits 82 to 84 and the like are connected via the engagement circuit 47 (clutch and the like) and the secondary regulator valve 43.
  • the hydraulic pressure PEOP of the electric oil pump 22 that was also supplied can be directly supplied to the first lubrication circuit 81, and the amount of lubricating oil supplied to the starting clutch WSC is increased to a large flow state, especially at the time of starting. This makes it possible to sufficiently lubricate (cool) the starting clutch WSC, which is slip-engaged at the time of starting and generates a large amount of heat.
  • the drive device (1) for this vehicle is The second switching valve (44) is interposed between the first switching valve (45, 145) of the second oil passage (c6, e1, e2) and the first lubricating oil passage (81).
  • the hydraulic pressure supplied from the first switching valve (45, 145) in the communication state in the first state is communicated with the first lubricating oil passage (81), and the communication is performed in the second state.
  • the hydraulic pressure supplied from the first switching valve (45,145) in the state is cut off.
  • the line pressure PL to the first lubrication circuit 81 (starting clutch WSC) by the first lubrication switching valve 44 occurs. It is possible to flow a large amount of lubricating oil through the cooler 70, and it is possible to prevent the cooling of the oil by the cooler 70 from being stopped.
  • the first switching valve (45) includes a spool (45p), an urging member (45s) that urges the spool (45p) in one direction, and upstream of the second oil passage (c6, e1, e2).
  • the spool (45p) has an input port (45c) communicating with the side and an output port (45b) communicating with the downstream side of the second oil passage (c6, e1, e2) by the first signal pressure. ) Is switched to switch between the communication state and the cutoff state.
  • the communication state and the cutoff state of the input port 45c and the output port 45b can be switched by the spool 45p, and the controllability is improved as compared with the case where the second lubrication switching valve is configured by the check valve, for example. Can be done.
  • the first switching valve (145) includes a cup-shaped member (145P) and a plate-shaped member (145B) having a through hole (145a) communicating with the upstream side of the second oil passage (c6, e1, e2).
  • a urging member (145s) that urges the cup-shaped member (145P) so as to close the through hole (145a) of the plate-shaped member (145B), and the input of the first signal pressure causes the urging member (145s).
  • the cup-shaped member (145P) is pressed at a position that closes the through hole (145a) of the plate-shaped member (145B) to enter the blocking state, and the cup-shaped member (145P) is not input with the first signal pressure. Is pressed by the hydraulic pressure of the hydraulic pressure source, the cup-shaped member (145P) and the plate-shaped member (145B) are separated from each other, and the communication state is established.
  • the communication state and the cutoff state of the through hole 145a can be switched by the cup-shaped member 145P, and the cost can be reduced as compared with the case where the second lubrication switching valve is switched by the spool, for example.
  • the drive device (1) for this vehicle A rotary electric machine (MG) that outputs the driving force for driving the vehicle as a drive source, When engaged, the engine (2) as a drive source and the rotating electric machine (MG) are driven and connected, and when released, the engine (2) and the rotating electric machine (MG) are separated from each other.
  • a speed change mechanism (5) that shifts the rotation of the drive source (2, MG) and When engaged, the drive source (2, MG) and the transmission mechanism (5) are driven and connected, and when released, the drive source (2, MG) and the transmission mechanism (5) are disconnected. Equipped with a drive transmission clutch (WSC) to release The starting friction engaging element is the drive transmission clutch (WSC).
  • the starting clutch WSC is lubricated by bypassing the cooler 70. Oil can be supplied, and it is possible to prevent a decrease in the supply amount of lubricating oil.
  • a so-called parallel hybrid drive device 1 in which the drive rotation of the engine 2 and the motor MG is changed by the speed change mechanism 5 is used as an example.
  • the present invention is not limited to this, and any hybrid drive device such as a split type hybrid drive device may be used, and further, an automatic transmission that shifts the rotation of the engine 2 without a motor. It doesn't matter if there is.
  • a vehicle that idle-stops the engine 2 will be equipped with an electric oil pump for supplying hydraulic pressure to the automatic transmission during the idle-stop system.
  • the case where the second lubrication switching valve 45 having the spool 45p is used as the first switching valve will be described, and in the third embodiment, the first switching will be described.
  • the case where the check valve 145 having the cup-shaped member 145P is used as the valve has been described, but the present invention is not limited to these, and communication or blocking between the oil passage c6 as the second oil passage and the oil passage e1 is performed. Any switching valve that can be used will do.
  • the cooling oil 70 may be bypassed and the lubricating oil may be supplied to the starting clutch WSC depending on other conditions.
  • the lubricating oil may be supplied to the starting clutch WSC by bypassing the cooler 70 regardless of other conditions.
  • the hydraulic pressure PEOP of the electric oil pump 22 can be supplied to the start clutch WSC by switching the first lubrication switching valve 44, but the first lubrication has been described. Without providing the switching valve 44, the hydraulic pressure PEOP of the electric oil pump 22 is always supplied as the main pressure of the line pressure PL, and the flow rate of the lubricating oil to the start clutch WSC is small only by switching the second lubrication switching valve 45. And a large flow rate may be used.
  • the one having the second lubrication circuit 82 to the fourth lubrication circuit 84 in addition to the first lubrication circuit 81 for supplying the lubricating oil to the starting clutch WSC has been described.
  • the configuration may include only one lubrication circuit 81, and any other lubrication portion may be used.
  • the oil that has passed through the cooler 70 is supplied to the second lubrication circuit 82, the third lubrication circuit 83, and the fourth lubrication circuit 84, respectively.
  • a modulator valve is provided between the cooler 70 and the second lubrication circuit 82 and the third lubrication circuit 83 to supply the lubrication pressure to be supplied to the second lubrication circuit 82 and the third lubrication circuit 83 (that is, the motor MG). It may be configured to remain constant.
  • This vehicle drive device can be used for an automatic transmission, a hybrid drive device, a vehicle transmission device, etc. mounted on a vehicle, and particularly supplies lubricating oil to a starting friction engaging element via a cooler. It is possible to use it, and it is suitable for those which are required to prevent a decrease in the supply amount of lubricating oil for the starting friction engaging element.
  • Vehicle drive device (hybrid drive device) 2 ... Engine 5 ... Transmission mechanism 21 ... Hydraulic oil source, mechanical oil pump 22 ... Hydraulic source, electric oil pump 42 ... Regulator valve (primary regulator valve) 44 ... Second switching valve (first lubrication switching valve) 45 ... 1st switching valve (2nd lubrication switching valve) 45b ... Output port 45c ... Input port 45p ... Spool 45s ... Biasing member (spring) 47 ... Hydraulic circuit for engagement control (engagement circuit) 54 ... Check valve (check ball) 70 ... Cooler 81 ... First lubrication oil passage (first lubrication circuit) 82 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • General Details Of Gearings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

ハイブリッド駆動装置には、発進時に係合される発進クラッチと、機械式オイルポンプ(21)及び電動オイルポンプ(22)と、油を冷却するクーラー(70)と、発進クラッチに潤滑油を供給する第1潤滑回路(81)とが備えられている。そして、油圧制御装置(40)に、油圧をクーラー(70)を介して第1潤滑回路(81)に供給する油路(c1,c2,c3,c5,c7,c8,c12,c13)と、クーラー(70)を迂回するように連通可能な油路(c6,e1,e2)と、該油路(c6,e1,e2)に介在し、かつ油路(c6,e1,e2)を連通する連通状態と、油路(c6,e1,e2)を遮断する遮断状態と、に切換えられる第2潤滑切換えバルブ(45)と、を備えた。

Description

車両用駆動装置
 この技術は、油を冷却するクーラーを有する車両用駆動装置に関する。
 例えば車両に搭載される自動変速機やハイブリッド駆動装置などの車両用駆動装置にあっては、変速や潤滑を行う油圧制御装置が備えられており、その油圧制御に用いられる油を冷却するためのクーラーが備えられている(例えば特許文献1参照)。この特許文献1のものは、油圧発生源として、駆動源により駆動される機械式オイルポンプと、独立して駆動される電動オイルポンプとを備えており、それらのオイルポンプで発生した油圧に基づき潤滑油として供給する際に、油をクーラーにより冷却した後、その冷却した油を変速機構に供給し、変速機構を潤滑するように構成されている。
特開2014-126081号公報
 ところで、車両用駆動装置にあって発進時に係合される発進用クラッチは、発進を滑らかにするためにスリップ係合されるため、特に発進時に発熱量が大きくなる。このような発進用クラッチの冷却効率を良好にするため、発進用クラッチに潤滑油を供給する油路にクーラーを介在させ、潤滑油を冷却してから供給することが考えられる。しかしながら、例えば油温が低くて油の粘性が高いと、クーラーにおける圧力損失が大きくなり、返って発進用クラッチに対する潤滑油の供給量が低下する虞がある。
 そこで、発進用摩擦係合要素にクーラーを介して潤滑油を供給することが可能でありながら、発進用摩擦係合要素に対する潤滑油の供給量低下の発生を防止することが可能な車両用駆動装置を提供することを目的とするものである。
 本車両用駆動装置は、
 発進時に係合される発進用摩擦係合要素と、
 油圧を発生させる油圧発生源と、
 油を冷却するクーラーと、
 前記発進用摩擦係合要素に潤滑油を供給する第1潤滑油路と、
 前記油圧発生源の油圧を前記クーラーを介して前記第1潤滑油路に供給する第1油路と、
 前記クーラーを迂回するように、前記第1油路の前記クーラーよりも上流側と前記第1油路の前記クーラーよりも下流側とを連通可能な第2油路と、
 第1信号圧を出力可能な第1ソレノイドバルブと、
 前記第2油路に介在し、かつ前記第1信号圧によって、前記第2油路を連通する連通状態と、前記第2油路を遮断する遮断状態と、に切換えられる第1切換えバルブと、を備えた。
 これにより、第1切換えバルブを遮断状態にすることで第1油路によってクーラーを介して発進用摩擦係合要素に潤滑油を供給できるものでありながら、第1切換えバルブを連通状態にすることで第2油路によってクーラーを迂回して発進用摩擦係合要素に潤滑油を供給でき、潤滑油の供給量低下の発生を防止することができる。
本実施の形態に係る車両用駆動装置を示すブロック図。 第1の実施の形態に係る小潤滑状態における油圧制御装置の一部を示す油圧回路図。 第1の実施の形態に係る大潤滑状態における油圧制御装置の一部を示す油圧回路図。 第1の実施の形態に係る低温潤滑状態における油圧制御装置の一部を示す油圧回路図。 第2の実施の形態に係る油圧制御装置の一部を模式的に示す油圧回路図。 第3の実施の形態に係る油圧制御装置の一部を模式的に示す油圧回路図。
 <第1の実施の形態>
 以下、第1の実施の形態を図1乃至図4を用いて説明する。まず、図1に沿って、車両用駆動装置の一例であるハイブリッド駆動装置1の概略構成について説明する。
 図1に示すように、ハイブリッド駆動装置1は、例えばFR(フロントエンジン・リヤドライブ)タイプの車両に用いて好適であり、駆動源としてのエンジン2に入力軸1Aが駆動連結されている。また、ハイブリッド駆動装置1は、ケース6の内部に、ステータ3a及びロータ3bを有する、駆動源としての回転電機(モータ・ジェネレータ)MGと、エンジン2及びモータMGと車輪9との間の動力伝達経路上に設けられる変速機構5と、動力伝達経路上のエンジン2とモータ・ジェネレータ(以下、単にモータという)MGとの間に配置され、エンジン2を切離すことが可能なエンジン切離しクラッチとしてのクラッチK0と、動力伝達経路上のモータMGと変速機構5との間に配置され、エンジン2及びモータMG(つまり駆動源)と変速機構5との動力伝達を接断可能であって、特に車両の発進時に係合される発進クラッチ(発進用摩擦係合要素、駆動伝達クラッチ)WSCと、制御部(ECU)31と、を備えている。
 制御部31は、CPU32と、データを一時的に記憶するRAM33と、処理プログラムを記憶するROM34と、を備えており、油圧制御装置40の各ソレノイドバルブへの制御信号、エンジン2の制御部(不図示)への制御信号、モータMGへの制御信号等、各種の信号を出力ポートから出力するようになっている。また、制御部31の入力ポートからは、後述する油圧スイッチ62等の各種センサからの検出信号が入力されるように構成されている。
 また、モータMGと発進クラッチWSCとの軸方向の間には、モータMGに駆動連結された回転軸1Bに駆動連結され、クラッチK0が係合されることによってエンジン2にも駆動連結されることで、モータMGとエンジン2との少なくとも一方で駆動される機械式オイルポンプ21が備えられている。また、回転軸1Bは、ケース6に支持された支持壁6aに対してベアリングB1によって回転自在に支持されている。なお、図示を省略したが、通常、エンジン2とクラッチK0との間には、エンジン2の脈動を吸収しつつその回転を伝達するダンパ装置等が備えられている。
 上記変速機構(T/M)5は、複数の摩擦係合要素(クラッチやブレーキ)の係合状態に基づき伝達経路を変更し、例えば前進6速段及び後進段を達成し得る変速機構からなる。また、変速機構5の図示を省略した出力軸にはプロペラシャフト8が駆動連結されており、プロペラシャフト8に出力された回転は、ディファレンシャル装置等を介して左右の車輪に伝達される。
 なお、変速機構5としては、例えば前進3~5速段や前進7速段以上を達成する有段変速機構であってもよく、また、ベルト式無段変速機、トロイダル式無段変速機などの無段変速機構であってもよく、つまりどのような変速機構であっても構わない。
 以上のようなハイブリッド駆動装置1は、エンジン2側から車輪9側に向かって、クラッチK0、モータMG、発進クラッチWSC、変速機構5が順次配置されており、エンジン2及びモータMGの両方、或いはエンジン2を駆動させて車両を走行させる場合には、制御部(ECU)31によって油圧制御装置40を制御してクラッチK0及び発進クラッチWSCを係合させ、モータMGの駆動力だけで走行するEV走行時には、クラッチK0を解放して、エンジン2と車輪9との伝達経路を切り離すようになっている。
 また、ハイブリッド駆動装置1には、油圧制御装置40において用いる油圧(元圧)を発生するための油圧発生源としての機械式オイルポンプ(MOP)21と電動オイルポンプ(E-OP)22とが備えられている。機械式オイルポンプ21は、上記回転軸1Bにドライブギヤが駆動連結するように備えられており、つまり、機械式オイルポンプ21は、クラッチK0が係合されている場合、エンジン2とモータMGとに連動して回転駆動され、クラッチK0が解放されている場合、モータMGに連動して回転駆動される。一方の電動オイルポンプ22は、機械式オイルポンプ21とは無関係に独立して不図示の電動モータで電動駆動し得るように構成されており、制御部31からの電子指令に基づき、駆動・停止制御される。なお、油圧制御装置40の内部には、油温を検出する油温センサ41が備えられており、検出した油温は制御部31に出力されるように構成されている。なお、電動オイルポンプ22を駆動する不図示の電動モータは、電動オイルポンプ22の駆動のみに用いられ、エンジン2と車輪9との伝達経路から完全に独立し、車輪9に駆動力を伝達しないものである。
 ついで、第1の実施の形態に係る油圧制御装置40について図2乃至図4に沿って説明する。なお、図2乃至図4は油圧制御装置40を示す図で、図2は通常状態(小潤滑状態)、図3は大潤滑状態、図4は低温状態を示している。
 油圧制御装置40は、図2に示すように、大まかに、プライマリレギュレータバルブ(レギュレータバルブ)42、セカンダリレギュレータバルブ43、ソレノイドバルブ(第2ソレノイドバルブ)SRL1、ソレノイドバルブ(第1ソレノイドバルブ)SRL2、第1潤滑切換えバルブ(第2切換えバルブ)44、第2潤滑切換えバルブ(第1切換えバルブ)45等を備えて構成されている。また、油圧制御装置40は、油圧発生源としての機械式オイルポンプ21及び電動オイルポンプ22に接続されて油圧が供給されると共に、クーラー70に連通するように接続されている。さらに、油圧制御装置40は、図1中の矢印Aで示すように発進クラッチWSCに向けて潤滑油を供給する第1潤滑回路(第1潤滑油路)81、図1中の矢印Cに示すようにモータMGの外周側に向けて潤滑油を供給する第2潤滑回路(第2潤滑油路)82、図1中の矢印Bに示すようにクラッチK0とモータMGの内周側とベアリングB1とに向けて潤滑油を供給する第3潤滑回路(第3潤滑油路)83、図1中の矢印Dに示すように変速機構5の各部位に向けて潤滑油を供給する第4潤滑回路(第4潤滑油路)84に、それぞれ連通するように接続されている。
 詳細には、電動オイルポンプ22は、制御部31の指令によって駆動された際に、ストレーナ20から油を吸入して、油路b1,b2に油圧PEOPを発生させ、後述の第1潤滑切換えバルブ44の入力ポート44cに油圧PEOPを供給し、後述の第1潤滑切換えバルブ44のスプール44pが図中上位置にある場合は、出力ポート44eから油路a6,a4,a2を介してプライマリレギュレータバルブ42の調圧ポート42dに連通し、つまり電動オイルポンプ22が発生する油圧PEOPがライン圧回路に供給される。
 なお、油路b1と油路b2との間に介在するチェックボール53は、プライマリレギュレータバルブ42により調圧されるライン圧PLが、電動オイルポンプ22が出力する油圧PEOPよりも大きくなって、ライン圧PLが電動オイルポンプ22に逆流することを防止するように配設されている。また、油路b1に接続されたチェックボール51は、不図示のスプリングによって閉じられており、油路b1の油圧が所定圧以上となると、油路b1の油圧を抜くことで、電動オイルポンプ22に高圧が作用することを防止し、つまり電動オイルポンプ22の保護を図っている。
 一方、上述のようにエンジン2又はモータMGで駆動される機械式オイルポンプ21は、ストレーナ20から油を吸入して、チェックボール52を開いてライン圧回路としての油路a1,a2,a3,a4,a5,a6に油圧PMOPを発生させ、詳しくは後述するプライマリレギュレータバルブ42によりライン圧PLに調圧される。なお、チェックボール52は、例えばEV走行中の車両停車時のように、機械式オイルポンプ21が停止した場合に、電動オイルポンプ22からの油圧PEOPが機械式オイルポンプ21に逆流することを防止している。
 プライマリレギュレータバルブ42は、スプール42pと、該スプール42pを一方側に付勢するスプリング42sと、フィードバック油室42a、作動油室42b、排出ポート42cと、調圧ポート42dとを有して構成されている。該プライマリレギュレータバルブ42のスプール42pは、例えば図示を省略したリニアソレノイドバルブSLTからスロットル開度等に応じて出力される制御圧PSLTと、スプリング42sの付勢力と、油路a3を介してフィードバック油室42aにフィードバックされるフィードバック圧とに応じて、調圧ポート42dと、排出ポート42cとの連通量(開口量)が調整され、それによって調圧ポート42dに繋がる油路a1~a6の油圧をライン圧PLとして調圧する。
 このようにプライマリレギュレータバルブ42により調圧されたライン圧PLは、油路a5を介して変速機構5の各クラッチ(クラッチK0や発進クラッチWSCを含む)やブレーキのそれぞれの油圧サーボに係合圧を供給制御する係合制御用油圧回路としての係合回路(T/M circuit)47に供給され、制御部31により電子制御されるソレノイドバルブ等によって調圧制御されて、それぞれの油圧サーボに係合圧が供給されることで、各クラッチやブレーキの解放、スリップ係合、完全係合の状態に自在に制御される。なお、ライン圧PLは、不図示のモジュレータバルブにも供給され、当該ライン圧PLを一定圧以下に抑えたモジュレータ圧PMODを出力する。
 一方、プライマリレギュレータバルブ42の排出ポート42cから排出された油圧は、油路c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13に供給され、特に油路c4からセカンダリレギュレータバルブ43に供給されることによりセカンダリ圧PSECに調圧される。
 セカンダリレギュレータバルブ43は、上記プライマリレギュレータバルブ42と略々同様に構成され、スプール43pと、該スプール43pを一方側に付勢するスプリング43sと、フィードバック油室43aと、作動油室43bと、調圧ポート43cと、排出ポート43dとを有して構成されている。該セカンダリレギュレータバルブ43のスプール43pは、上記制御圧PSLTと、スプリング43sの付勢力と、油路c4を介してフィードバック油室43aにフィードバックされるフィードバック圧とに応じて、調圧ポート43cと、排出ポート43dとの連通量(開口量)が調整され、それによって調圧ポート43cに繋がる油路c1~c13の油圧をセカンダリ圧PSECとして調圧する。
 セカンダリレギュレータバルブ43の調圧ポート43cにより調圧されたセカンダリ圧PSECは、潤滑圧として、油路c6から後述の第2潤滑切換えバルブ45の入力ポート45cに供給されると共に、油路c7からクーラー70に供給され、さらにクーラー70により冷却されてからc8に供給され、油路c9を介して上記第4潤滑回路84に、油路c10を介して上記第3潤滑回路83に、油路c11を介して上記第2潤滑回路82に、油路c12,c13を介して上記第1潤滑回路81に、それぞれ供給される。
 チェックバルブの一例であるチェックボール54は、詳しくは後述するように第1潤滑切換えバルブ44が切換えられて電動オイルポンプ22の油圧PEOPが油路e2,c13に供給された際に、油路c12からセカンダリレギュレータバルブ43(下流側から上流側)への逆流を遮断する。また、チェックボール54は、セカンダリレギュレータバルブ43から第1潤滑回路81に向けて流れる潤滑油の油路c1~c13にあって、第2潤滑回路82~第4潤滑回路84よりも下流側に配置されていて、電動オイルポンプ22の油圧PEOPが油路e2,c13に供給された際に、第2潤滑回路82~第4潤滑回路84に流れることも防止している。なお、セカンダリレギュレータバルブ43の排出ポート43dから排出された油圧は、余剰圧として油路d1を介して機械式オイルポンプ21の吸入ポート(不図示)に戻され、機械式オイルポンプ21の駆動負荷を軽くし、エンジン2やモータMGの駆動負荷の低減を図って車両の燃費向上が図れている。
 一方、ソレノイドバルブSRL1は、例えばノーマルクローズタイプで構成されると共に信号圧PSL1を出力自在に構成されており、詳細には、上述のモジュレータ圧PMODを入力していて、制御部31の指令によってオン制御されることで信号圧PSRL1を、油路f1を介して後述の第1潤滑切換えバルブ44の作動油室44aに出力し、オフ制御されることで信号圧PSRL1を非出力にする。
 また同様に、ソレノイドバルブSRL2は、例えばノーマルクローズタイプで構成されると共に信号圧PSL2を出力自在に構成されており、詳細には、上述のモジュレータ圧PMODを入力していて、制御部31の指令によってオン制御されることで信号圧PSRL2を、油路g1を介して後述の第2潤滑切換えバルブ45の作動油室45aに出力し、オフ制御されることで信号圧PSRL2を非出力にする。
 第1潤滑切換えバルブ44は、スプール44pと、該スプール44pを一方側に付勢するスプリング(付勢部材)44sと、作動油室44aと、入力ポート44bと、出力ポート44dと、入力ポート44cと、出力ポート44eとを有して構成されている。第1潤滑切換えバルブ44は、スプリング44sの付勢力でスプール44pが付勢された図中上位置(第1状態)にあると、入力ポート44bと出力ポート44d、入力ポート44cと出力ポート44eがそれぞれ連通する。また、油路f1から信号圧PSRL1が入力されてスプール44pがスプリング44sの付勢力に打ち勝って図中下位置(第2状態)にあると、入力ポート44cと出力ポート44dが連通し、入力ポート44b、出力ポート44eが遮断される。
 第2潤滑切換えバルブ45は、スプール45pと、該スプール45pを一方側に付勢するスプリング(付勢部材)45sと、作動油室45aと、出力ポート45bと、入力ポート45cと、入力ポート45dと、出力ポート45eとを有して構成されている。第2潤滑切換えバルブ45は、スプリング45sの付勢力でスプール45pが付勢された図中上位置(遮断状態)にあると、入力ポート45dと出力ポート45eが連通し、入力ポート45cが遮断される。また、油路g1から信号圧PSRL2が入力されてスプール45pがスプリング45sの付勢力に打ち勝って図中下位置(連通状態)にあると、入力ポート45cと出力ポート45bが連通し、入力ポート45dが遮断される。
 上記入力ポート45dには、上記モジュレータ圧PMODが入力される。また、出力ポート45eには、所定圧以上の油圧が入力された際に制御部31に電気的にオン信号を出力する油圧スイッチ62が接続されている。従って、油圧スイッチ62は、スプール45pが図中上位置にある場合に、モジュレータ圧PMODを入力し、第2潤滑切換えバルブ45が図中下位置にあるか否かを検出する。特に、ソレノイドバルブSRL2がオフ制御されている際に、油圧スイッチ62がオン信号を出力していない場合は、制御部31が第2潤滑切換えバルブ45のスプール45pが図中下位置にスティックした異常状態を検出することになる。
 ついで、油圧制御装置40の動作について説明する。油温センサ41により検出された油温が常温(第1油温)であり、発進クラッチWSCが係合状態又は解放状態である場合(スリップ状態でない場合)は、通常状態として、ソレノイドバルブSRL1及びソレノイドバルブSRL2が両方ともオフ制御され、第1潤滑切換えバルブ44が図中上位置となり、第2潤滑切換えバルブ45も図中上位置となって、図2に示す状態となる。
 この通常状態では、エンジン2又はモータMGが駆動された場合には機械式オイルポンプ21が油圧PMOPを油路a1に向けて発生させ、また、電動オイルポンプ22がオン制御された場合には電動オイルポンプ22が油路b1に向けて油圧PEOPを発生させ、電動オイルポンプ22は、油路b1,b2、第1潤滑切換えバルブ44の入力ポート44c及び出力ポート44e、油路a6を介してプライマリレギュレータバルブ42の調圧ポート42dに連通する。つまり、油圧PMOPと油圧PEOPとの一方又は両方に基づき、プライマリレギュレータバルブ42でライン圧PLが調圧され、さらに、セカンダリレギュレータバルブ43でセカンダリ圧PSECが調圧される。
 上述のようにセカンダリ圧PSECが潤滑圧として油路c1~c13に対して供給されると、第2潤滑切換えバルブ45の入力ポート45cと出力ポート45bとが遮断されているため、潤滑圧に基づき流れる潤滑油は、クーラー70を通過し、第1潤滑回路81、第2潤滑回路82、第3潤滑回路83、第4潤滑回路84にそれぞれ供給される。なお、この状態は、後述の大流量状態に比して発進クラッチWSCに供給する潤滑油量が小さいので、小流量状態と言える。
 ついで、油温が常温であって、発進クラッチWSCをスリップ係合させて車両を発進する場合について図3を用いて説明する。油温センサ41により検出されている油温が常温であり、制御部31が車両の発進を判断し、発進クラッチWSCの油圧サーボに係合圧を供給して該発進クラッチWSCを係合させる際には、ソレノイドバルブSRL2がオフ制御されると共にソレノイドバルブSRL1がオン制御され、信号圧PSRL1によって第1潤滑切換えバルブ44のスプール44pが図中下位置に切換えられる。なお、この際はエンジン2又はモータMGの駆動力によって車両を発進させるため、機械式オイルポンプ21は駆動されていることになる。
 この状態では、上述のようにセカンダリ圧PSECを潤滑圧とし、潤滑圧に基づき流れる潤滑油は、クーラー70を通過し、第2潤滑回路82、第3潤滑回路83、第4潤滑回路84にそれぞれ供給される。一方で、第1潤滑切換えバルブ44のスプール44pは図中下位置に切換えられているため、入力ポート44cに入力される電動オイルポンプ22の油圧PEOPは、出力ポート44dから油路e2に出力され、油路c13を介して第1潤滑回路81に供給される。これにより、油路a6に供給されて係合回路47(クラッチ等)やセカンダリレギュレータバルブ43を介して第2~第4潤滑回路82~84等にも供給されていた電動オイルポンプ22の油圧PEOPが、直接的に第1潤滑回路81に供給され、言い換えると、セカンダリ圧PSECよりも大きい油圧PEOPが潤滑圧となって、第1潤滑回路81にセカンダリ圧PSECに基づき潤滑圧を供給する場合の流量(第1流量)よりも多い流量(第2流量)の潤滑油が供給され、つまり発進クラッチWSCに供給する潤滑油量が大流量状態となって、発進時にあってスリップ係合されて大きく発熱する発進クラッチWSCを十分に潤滑(冷却)することが可能となる。
 なお、セカンダリ圧PSECよりも電動オイルポンプ22の油圧PEOPが大きいため、チェックボール54が開かず、電動オイルポンプ22の油圧PEOPによる潤滑油の供給は、第1潤滑回路81に対して第2潤滑回路82~第4潤滑回路84とは独立して行われることになる。
 なお、発進クラッチWSCのスリップ係合が終了し、係合状態となると、制御部31はソレノイドバルブSRL1をオフ制御し、第1潤滑切換えバルブ44のスプール44pを図中上位置に戻し、第1潤滑回路81~第4潤滑回路84に対する潤滑油の供給はクーラー70を介して行われることになり、また、電動オイルポンプ22の油圧PEOPもライン圧PL及びセカンダリ圧PSECの元圧として用いられることになる。
 次に、油温が低温であって、発進クラッチWSCをスリップ係合させて車両を発進する場合について図4を用いて説明する。油温センサ41により検出されている油温が低温であり、制御部31が車両の発進を判断し、発進クラッチWSCの油圧サーボに係合圧を供給して該発進クラッチWSCを係合させる際には、ソレノイドバルブSRL1がオフ制御されると共にソレノイドバルブSRL2がオン制御され、信号圧PSRL2によって第2潤滑切換えバルブ45のスプール45pが図中下位置に切換えられる。
 なお、この際はエンジン2又はモータMGの駆動力によって車両を発進させるため、機械式オイルポンプ21は駆動されていることになるが、電動オイルポンプ22は油温が低くて油の粘性が高いために駆動できない(駆動すると電動オイルポンプ22の耐久性に影響がある)状態である。
 この状態では、電動オイルポンプ22が停止されているため、機械式オイルポンプ21の油圧PMOPに基づきライン圧PL及びセカンダリ圧PSECが調圧される。この際、電動オイルポンプ22は停止されているので、油路a6、第1潤滑切換えバルブ44を介して油路b2にライン圧PLが供給されるが、チェックボール53によって電動オイルポンプ22にライン圧PLが逆流することはない。
 第2潤滑切換えバルブ45が図中下位置に切換えられているため、油路c6に供給されているセカンダリ圧PSECは、入力ポート45c及び出力ポート45bを介して油路e1に供給され、さらに、第1潤滑切換えバルブ44が図中上位置に切換えられているため、入力ポート44b及び出力ポート44dを介して油路e2に供給され、油路c13を介して第1潤滑回路81に供給される。言い換えると、機械式オイルポンプ21の油圧PMOP(セカンダリ圧PSEC)をクーラー70を介して第1潤滑回路81に供給する第1油路としての油路c1~c13にあって、第2潤滑切換えバルブ45を切換えることで、クーラー70の上流側(油路c5)と下流側(油路c13)とを連通する第2油路としての油路c6,e1,e2を介して、潤滑油を第1潤滑回路81に供給する。従って、第2潤滑切換えバルブ45は、第2油路としての油路c6,e1,e2に介在し、その第2油路を遮断する状態から連通する状態に切換えることになる。
 一方、油路c7からクーラー70を介して油路c8~c11にもセカンダリ圧PSECが供給され、第2潤滑回路82~第4潤滑回路84にも潤滑油が供給されるが、クーラー70において油の粘性が高いために油圧損失が大きく、クーラー70における流路抵抗が大きいため、セカンダリ圧PSECに基づき供給される潤滑圧は、油路c6に多くが流れ、油路c7には流れ難くなるため、油路c8~c11の油圧は油路c13よりも低くなり、チェックボール54が閉じた状態となる。これにより、油温が低温であって、例えばクーラー70を介して第1潤滑回路81に潤滑油を供給する場合に比して、クーラー70を迂回して第1潤滑回路81に潤滑油を供給することで、発進クラッチWSCのスリップ係合中にあって、第1潤滑回路81に十分な潤滑油を供給することが可能となる。
 なお、発進クラッチWSCのスリップ係合が終了し、係合状態となると、制御部31はソレノイドバルブSRL2をオフ制御し、第2潤滑切換えバルブ45のスプール45pを図中上位置に戻し、第1潤滑回路81~第4潤滑回路84に対する潤滑油の供給はクーラー70を介して行われることになる。
 続いて、第2潤滑切換えバルブ45のスプール45pが図中下位置にスティックした異常状態となった場合について説明する。第2潤滑切換えバルブ45のスプール45pが図中下位置のままとなると、油温が低温である場合は、セカンダリ圧PSECを第1潤滑回路81に供給できるが、油温が上昇して常温となった場合に、クーラー70に油が流れ難くなり、油温の冷却が進まない虞が生じると共に、第2潤滑回路82~第4潤滑回路84に対する潤滑油の供給も低下する虞が生じる。また、第1潤滑回路81に多量の潤滑油が流れて発進クラッチWSCが潤滑過多となると、発進クラッチWSCの引き摺り抵抗が大きくなり、車両の燃費向上の妨げとなる。
 そこで、制御部31は、ソレノイドバルブSRL2をオフ制御したにも拘らず、油圧スイッチ62がオン信号を出力している場合に、第2潤滑切換えバルブ45の異常状態を判定し、第2潤滑切換えバルブ45によって油路c6と油路e1とを遮断する代わりに、ソレノイドバルブSRL1をオン制御して、第1潤滑切換えバルブ44のスプール44pを図中下位置に切換える。これにより、油路e1と油路e2との間が遮断され、セカンダリ圧PSECがそのまま第1潤滑回路81に流れることを防止し、クーラー70に流れるようにすることが可能となる。なお、第1潤滑切換えバルブ44のスプール44pが図中上位置となると、電動オイルポンプ22の油圧PEOPが第1潤滑回路81に流れることになるが(上述の大潤滑状態と同様の状態となるが)、第1潤滑回路81に対して大きな流量が不要な場合には、電動オイルポンプ22を停止することで対応することができる。この場合は、エンジン2を停止せず、つまり機械式オイルポンプ21を常時駆動しておくことが好ましい。
 以上説明したように、第1の実施の形態に係るハイブリッド駆動装置1にあっては、第2潤滑切換えバルブ45を図中上位置(遮断状態)にすることで油路c7~c13によってクーラー70を介して発進クラッチWSCに潤滑油を供給できるものでありながら、第2潤滑切換えバルブ45を図中下位置(連通状態)にすることで油路c6,e1,e2によってクーラー70を迂回して発進クラッチWSCに潤滑油を供給でき、潤滑油の供給量低下の発生を防止することができる。
 <第2の実施の形態>
 ついで、上記第1の実施の形態を一部変更した第2の実施の形態について図5を用いて説明する。なお、本第2の実施の形態の説明においては、第1の実施の形態と同様な部分に同符号を付して、その説明を省略する。また、図5においては、油圧制御装置40と同様の油圧制御装置40を簡易化して示しており、ライン圧PLはプライマリレギュレータバルブ42によって調圧されることを簡易化して示し、セカンダリレギュレータバルブ43は省略しているが、油路c6~c13には、同様に潤滑圧としてセカンダリ圧PSECが供給されるものである。
 本第2の実施の形態に係る油圧制御装置40は、図5に示すように、第2潤滑切換えバルブ45から油路e1を介して油路c13にそのまま連通させたものであり、言い換えると、第1の実施の形態に比して、第2油路としての油路c6,e1,e2に第1潤滑切換えバルブ44が介在していないものである。そのため、第2潤滑切換えバルブ45のスプール45pが図中下位置にスティックした場合、セカンダリ圧PSECがクーラー70を介さずに第1潤滑回路81に供給されるままとなるが、第1潤滑切換えバルブ44の構造を簡易化することができ、かつ油路の取り回しも簡易化できるため、コストダウンを図ることができるものである。
 なお、これ以外の構成、作用、及び効果は、第1の実施の形態と同様であるので、その説明を省略する。
 <第3の実施の形態>
 ついで、上記第1の実施の形態を一部変更した第3の実施の形態について図6を用いて説明する。なお、本第3の実施の形態の説明においても、第1の実施の形態と同様な部分に同符号を付して、その説明を省略する。また、図6においても、油圧制御装置40と同様の油圧制御装置40を簡易化して示しており、ライン圧PLはプライマリレギュレータバルブ42によって調圧されることを簡易化して示し、セカンダリレギュレータバルブ43は省略しているが、油路c6~c13には、同様に潤滑圧としてセカンダリ圧PSECが供給されるものである。
 本第3の実施の形態に係る油圧制御装置40は、図6に示すように、第1の実施の形態における第2潤滑切換えバルブ45に代えて、切換えバルブとしてのチェックバルブ145によって油路c6と油路e1との遮断状態と連通状態とを切換えるものである。
 詳細には、チェックバルブ145は、貫通孔145aが形成された板状部材145Bと、貫通孔145aを閉塞可能なカップ状の部材であるカップ状部材145Pと、カップ状部材145Pを板状部材145Bに向けて付勢するスプリング145sと、を備えており、カップ状部材145Pの内部にソレノイドバルブSRL2からの信号圧PSRL2を入力させて、スプリング145sの付勢力と同方向に作用させるように構成されている。
 詳示には、スプリング145sの付勢力は、油路c6のセカンダリ圧PSECが貫通孔145aに入力された際、貫通孔145aを介してカップ状部材145Pが受圧する力よりも小さい付勢力に設定されている。従って、ソレノイドバルブSRL2がオフ制御されて信号圧PSRL2が非出力の状態で、セカンダリ圧PSECが油路c6に供給されると、カップ状部材145Pが板状部材145Bから離間し、油路e1にセカンダリ圧PSECが流れる連通状態となる。一方、ソレノイドバルブSRL2が制御部31によりオン制御され、信号圧PSRL2がカップ状部材145Pの内部に入力されると、スプリング145sの付勢力と相俟って、カップ状部材145Pを板状部材145Bに当接させ、貫通孔145aを閉塞して、油路c6と油路e1との間を遮断する遮断状態となる。
 このように、ソレノイドバルブSRL2のオンオフ制御で連通状態と遮断状態とを切換えることができ、第1の実施の形態における第2潤滑切換えバルブ45に比してレスポンスは遅くなり制御性は良好でなくなるが、第1の実施の形態における第2潤滑切換えバルブ45と同様の機能を有する構造を簡易にすることができ、コストダウンを図ることができる。
 なお、これ以外の構成、作用、及び効果は、第1の実施の形態と同様であるので、その説明を省略する。
 [第1乃至第3の実施の形態のまとめ]
 本車両用駆動装置(1)は、
 発進時に係合される発進用摩擦係合要素(WSC)と、
 油圧を発生させる油圧発生源(21,22)と、
 油を冷却するクーラー(70)と、
 前記発進用摩擦係合要素(WSC)に潤滑油を供給する第1潤滑油路(81)と、
 前記油圧発生源(21,22)の油圧を前記クーラー(70)を介して前記第1潤滑油路(81)に供給する第1油路(c1,c2,c3,c5,c7,c8,c12,c13)と、
 前記クーラー(70)を迂回するように、前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)の前記クーラー(70)よりも上流側と前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)の前記クーラー(70)よりも下流側とを連通可能な第2油路(c6,e1,e2)と、
 第1信号圧を出力可能な第1ソレノイドバルブ(SRL2)と、
 前記第2油路(c6,e1,e2)に介在し、かつ前記第1信号圧によって、前記第2油路(c6,e1,e2)を連通する連通状態と、前記第2油路(c6,e1,e2)を遮断する遮断状態と、に切換えられる第1切換えバルブ(45,145)と、を備えた。
 これにより、第2潤滑切換えバルブ45又はチェックバルブ145を遮断状態にすることで油路c1,c2,c3,c5,c7,c8,c12,c13によってクーラー70を介して発進クラッチWSCに潤滑油を供給できるものでありながら、第2潤滑切換えバルブ45又はチェックバルブ145を連通状態にすることで油路c6,e1,e2によってクーラー70を迂回して発進クラッチWSCに潤滑油を供給でき、潤滑油の供給量低下の発生を防止することができる。
 また、本車両用駆動装置(1)は、
 前記第1切換えバルブ(45,145)は、油温が第1油温の場合に前記遮断状態に切換えられ、油温が前記第1油温よりも低い第2油温の場合に前記連通状態に切換えられる。
 これにより、油温が第1油温(常温)よりも低い第2油温(低温)の場合、特に電動オイルポンプ22を駆動できないような低温の場合に、クーラー70を迂回して発進クラッチWSCに潤滑油を供給でき、潤滑油の供給量低下の発生を防止することができる。
 また、本車両用駆動装置(1)は、
 前記発進用摩擦係合要素(WSC)以外の部位に潤滑油を供給する第2潤滑油路(82,83,84)と、
 前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)に介在し、上流側から下流側へ潤滑油を通過させると共に下流側から上流側への逆流を遮断するチェックバルブ(54)と、を備え、
 前記第2潤滑油路(82,83,84)は、前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)における前記チェックバルブ(54)よりも上流側で連通し、
 前記第1潤滑油路(81)及び前記第2油路(c6,e1,e2)は、前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)における前記チェックバルブ(54)よりも下流側で連通する。
 これにより、第2潤滑切換えバルブ45又はチェックバルブ145を連通状態にして、クーラー70を迂回して発進クラッチWSCに潤滑油を供給する際に、チェックボール54によって、第2潤滑回路82~第4潤滑回路84に潤滑油が流れることがなく、第1潤滑回路81(発進クラッチWSC)への潤滑油の流量を十分に確保することができる。
 また、本車両用駆動装置(1)は、
 前記油圧発生源は、車両の走行用駆動力を出力する駆動源により駆動される機械式オイルポンプ(21)と、前記機械式オイルポンプ(21)とは独立して駆動可能な電動オイルポンプ(22)と、を有し、
 前記発進用摩擦係合要素(WSC)を制御する係合制御用油圧回路(47)に接続され、前記係合制御用油圧回路(47)にライン圧(PL)を供給するライン圧回路(a1,a2,a3,a4,a5,a6)と、
 前記ライン圧回路(a1,a2,a3,a4,a5,a6)及び前記第1油路(c1,c2,c3,c5,c7,c8,c12,c13)に接続すると共に、前記油圧発生源の油圧を元圧として前記ライン圧(PL)に調圧するレギュレータバルブ(42)と、
 第2信号圧を出力可能な第2ソレノイドバルブ(SRL1)と、
 前記第2信号圧によって、前記電動オイルポンプ(22)により発生した油圧を前記ライン圧回路(a1,a2,a3,a4,a5,a6)に供給する第1状態と、前記電動オイルポンプ(22)により発生した油圧を前記第1潤滑油路(81)に供給する第2状態と、に切換えられる第2切換えバルブ(44)と、を備える。
 これにより、第1潤滑切換えバルブ44を切換えることで、第1潤滑回路81(発進クラッチWSC)への潤滑流量が少量で足りる場合に電動オイルポンプ22の油圧PEOPをライン圧回路としての油路a6に供給したり、第1潤滑回路81(発進クラッチWSC)への潤滑流量が多く必要な場合に電動オイルポンプ22の油圧PEOPを直接的に第1潤滑回路81(発進クラッチWSC)へ供給したりすることができる。このため、第1潤滑切換えバルブ44を第1状態から第2状態に切換えることで、係合回路47(クラッチ等)やセカンダリレギュレータバルブ43を介して第2~第4潤滑回路82~84等にも供給されていた電動オイルポンプ22の油圧PEOPが、直接的に第1潤滑回路81に供給することができ、特に発進時にあって、発進クラッチWSCに供給する潤滑油量を大流量状態にすることができて、発進時にあってスリップ係合されて大きく発熱する発進クラッチWSCを十分に潤滑(冷却)することが可能となる。
 また、本車両用駆動装置(1)は、
 前記第2切換えバルブ(44)は、前記第2油路(c6,e1,e2)の前記第1切換えバルブ(45,145)と前記第1潤滑油路(81)との間に介在し、前記第1状態の際に前記連通状態にある前記第1切換えバルブ(45,145)から供給された油圧を前記第1潤滑油路(81)に連通し、前記第2状態の際に前記連通状態にある前記第1切換えバルブ(45,145)から供給された油圧を遮断する。
 これにより、仮に第2潤滑切換えバルブ45又はチェックバルブ145が連通状態のままとなる異常が発生したとしても、第1潤滑切換えバルブ44によって第1潤滑回路81(発進クラッチWSC)へのライン圧PLを遮断することができ、クーラー70に多くの潤滑油を流すことが可能となって、クーラー70による油の冷却が進まなくなることを防ぐことができる。
 また、本車両用駆動装置(1)は、
 前記第1切換えバルブ(45)は、スプール(45p)と、前記スプール(45p)を一方向に付勢する付勢部材(45s)と、前記第2油路(c6,e1,e2)の上流側に連通する入力ポート(45c)と、前記第2油路(c6,e1,e2)の下流側に連通する出力ポート(45b)と、を有し、前記第1信号圧により前記スプール(45p)の位置が切換えられることで前記連通状態と前記遮断状態とが切換えられる。
 これにより、スプール45pによって入力ポート45cと出力ポート45bとの連通状態と遮断状態とを切換えることができ、例えば第2潤滑切換えバルブをチェックバルブで構成した場合よりも、制御性を良好にすることができる。
 また、本車両用駆動装置(1)は、
 前記第1切換えバルブ(145)は、カップ状部材(145P)と、前記第2油路(c6,e1,e2)の上流側に連通する貫通孔(145a)を有する板状部材(145B)と、前記板状部材(145B)の貫通孔(145a)を塞ぐように前記カップ状部材(145P)を付勢する付勢部材(145s)と、を有し、前記第1信号圧の入力により前記カップ状部材(145P)が前記板状部材(145B)の貫通孔(145a)を塞ぐ位置で押圧されることで前記遮断状態となり、前記第1信号圧の非入力により前記カップ状部材(145P)が前記油圧発生源の油圧に押圧されることで前記カップ状部材(145P)と前記板状部材(145B)とが離反して前記連通状態となる。
 これにより、カップ状部材145Pによって貫通孔145aの連通状態と遮断状態とを切換えることができ、例えば第2潤滑切換えバルブをスプールで切換えるように構成した場合よりも、コストダウンを図ることができる。
 そして、本車両用駆動装置(1)は、
 駆動源として車両の走行用駆動力を出力する回転電機(MG)と、
 係合された際に駆動源としてのエンジン(2)と前記回転電機(MG)とを駆動連結し、解放された際に前記エンジン(2)と前記回転電機(MG)とを切離すエンジン切離しクラッチ(K0)と、
 前記駆動源(2,MG)の回転を変速する変速機構(5)と、
 係合された際に前記駆動源(2,MG)と前記変速機構(5)とを駆動連結し、解放された際に前記駆動源(2,MG)と前記変速機構(5)とを切離す駆動伝達クラッチ(WSC)と、を備え、
 前記発進用摩擦係合要素は、前記駆動伝達クラッチ(WSC)である。
 これにより、エンジン2及びモータMGの駆動力を発進時にスリップ係合して伝達する発進クラッチWSCに対し、潤滑油が多く必要な場合であっても、クーラー70を迂回して発進クラッチWSCに潤滑油を供給でき、潤滑油の供給量低下の発生を防止することができる。
 [他の実施の形態の可能性]
 なお、以上説明した第1乃至第3の実施の形態においては、車両用駆動装置として、エンジン2とモータMGとの駆動回転を変速機構5で変速する、いわゆるパラレル式のハイブリッド駆動装置1を一例に説明したが、これに限らず、例えばスプリット式のハイブリッド駆動装置など、どのようなハイブリッド駆動装置であってもよく、さらには、モータを備えずにエンジン2の回転を変速する自動変速機であっても構わない。特にエンジン2のアイドルストップを行う車両にあっては、アイドルストップ中に自動変速機に油圧を供給するための電動オイルポンプを搭載することになる。
 また、本第1及び第2の実施の形態においては、第1切換えバルブとしてスプール45pを有する第2潤滑切換えバルブ45を用いた場合を説明し、第3の実施の形態においては、第1切換えバルブとしてカップ状部材145Pを有するチェックバルブ145を用いた場合を説明したが、これらに限らず、第2油路としての油路c6と油路e1との間を連通したり遮断したりすることができる切換えバルブであれば、どのようなものでも構わない。
 また、第1乃至第3の実施の形態においては、油温が低温となり電動オイルポンプ22が駆動できない場合にクーラー70を迂回して潤滑油を発進クラッチWSCに供給するものを説明したが、これに限らず、例えばバッテリの残量が少なく電動オイルポンプ22を駆動できない場合など、他の条件に応じてクーラー70を迂回して潤滑油を発進クラッチWSCに供給するようにしてもよく、さらには、例えば発進クラッチWSCをスリップ係合して潤滑油の流量が多く必要な場合には他の条件に拘らずクーラー70を迂回して潤滑油を発進クラッチWSCに供給するようにしてもよい。
 また、第1乃至第3の実施の形態においては、第1潤滑切換えバルブ44の切換えによって電動オイルポンプ22の油圧PEOPを発進クラッチWSCに供給することができるものを説明したが、第1潤滑切換えバルブ44を備えずに、電動オイルポンプ22の油圧PEOPを常にライン圧PLの元圧として供給し、第2潤滑切換えバルブ45の切換えだけで発進クラッチWSCへの潤滑油の流量を小流量と大流量とに切換えるものであってもよい。
 また、第1乃至第3の実施の形態においては、発進クラッチWSCに潤滑油を供給する第1潤滑回路81以外に第2潤滑回路82~第4潤滑回路84を有するものを説明したが、第1潤滑回路81だけを備える構成であってもよく、また、他の潤滑部位は、どのようなものであってもいい。
 また、第1乃至第3の実施の形態において、クーラー70を通過させた油を第2潤滑回路82、第3潤滑回路83、第4潤滑回路84にそれぞれ供給されるものを説明したが、これに限らず、クーラー70と第2潤滑回路82及び第3潤滑回路83との間にモジュレータバルブを備えて、第2潤滑回路82及び第3潤滑回路83(つまりモータMG)に供給する潤滑圧を一定に保つように構成してもよい。
 本車両用駆動装置は、車両に搭載される自動変速機、ハイブリッド駆動装置、車両用伝動装置等に用いることが可能であり、特に発進用摩擦係合要素にクーラーを介して潤滑油を供給することが可能で、発進用摩擦係合要素に対する潤滑油の供給量低下の発生を防止することが求められるものに用いて好適である。
1…車両用駆動装置(ハイブリッド駆動装置)
2…エンジン
5…変速機構
21…油圧発生源、機械式オイルポンプ
22…油圧発生源、電動オイルポンプ
42…レギュレータバルブ(プライマリレギュレータバルブ)
44…第2切換えバルブ(第1潤滑切換えバルブ)
45…第1切換えバルブ(第2潤滑切換えバルブ)
45b…出力ポート
45c…入力ポート
45p…スプール
45s…付勢部材(スプリング)
47…係合制御用油圧回路(係合回路)
54…チェックバルブ(チェックボール)
70…クーラー
81…第1潤滑油路(第1潤滑回路)
82…第2潤滑油路(第2潤滑回路)
83…第2潤滑油路(第3潤滑回路)
84…第2潤滑油路(第4潤滑回路)
145…第1切換えバルブ(第2潤滑切換えバルブ)
145B…板状部材
145P…カップ状部材
145a…貫通孔
145s…付勢部材(スプリング)
K0…エンジン切離しクラッチ(クラッチ)
MG…回転電機(モータ)
PL…ライン圧
SRL1…第2ソレノイドバルブ(ソレノイドバルブ)
SRL2…第1ソレノイドバルブ(ソレノイドバルブ)
WSC…発進用摩擦係合要素、駆動伝達クラッチ(発進クラッチ)
a1,a2,a3,a4,a5,a6…ライン圧回路(油路)
c1,c2,c3,c5,c7,c8,c12,c13…第1油路
c6,e1,e2…第2油路

Claims (8)

  1.  発進時に係合される発進用摩擦係合要素と、
     油圧を発生させる油圧発生源と、
     油を冷却するクーラーと、
     前記発進用摩擦係合要素に潤滑油を供給する第1潤滑油路と、
     前記油圧発生源の油圧を前記クーラーを介して前記第1潤滑油路に供給する第1油路と、
     前記クーラーを迂回するように、前記第1油路の前記クーラーよりも上流側と前記第1油路の前記クーラーよりも下流側とを連通可能な第2油路と、
     第1信号圧を出力可能な第1ソレノイドバルブと、
     前記第2油路に介在し、かつ前記第1信号圧によって、前記第2油路を連通する連通状態と、前記第2油路を遮断する遮断状態と、に切換えられる第1切換えバルブと、を備えた、
     車両用駆動装置。
  2.  前記第1切換えバルブは、油温が第1油温の場合に前記遮断状態に切換えられ、油温が前記第1油温よりも低い第2油温の場合に前記連通状態に切換えられる、
     請求項1に記載の車両用駆動装置。
  3.  前記発進用摩擦係合要素以外の部位に潤滑油を供給する第2潤滑油路と、
     前記第1油路に介在し、上流側から下流側へ潤滑油を通過させると共に下流側から上流側への逆流を遮断するチェックバルブと、を備え、
     前記第2潤滑油路は、前記第1油路における前記チェックバルブよりも上流側で連通し、
     前記第1潤滑油路及び前記第2油路は、前記第1油路における前記チェックバルブよりも下流側で連通する、
     請求項1または2に記載の車両用駆動装置。
  4.  前記油圧発生源は、車両の走行用駆動力を出力する駆動源により駆動される機械式オイルポンプと、前記機械式オイルポンプとは独立して駆動可能な電動オイルポンプと、を有し、
     前記発進用摩擦係合要素を制御する係合制御用油圧回路に接続され、前記係合制御用油圧回路にライン圧を供給するライン圧回路と、
     前記ライン圧回路及び前記第1油路に接続すると共に、前記油圧発生源の油圧を元圧として前記ライン圧に調圧するレギュレータバルブと、
     第2信号圧を出力可能な第2ソレノイドバルブと、
     前記第2信号圧によって、前記電動オイルポンプにより発生した油圧を前記ライン圧回路に供給する第1状態と、前記電動オイルポンプにより発生した油圧を前記第1潤滑油路に供給する第2状態と、に切換えられる第2切換えバルブと、を備える、
     請求項3に記載の車両用駆動装置。
  5.  前記第2切換えバルブは、前記第2油路の前記第1切換えバルブと前記第1潤滑油路との間に介在し、前記第1状態の際に前記連通状態にある前記第1切換えバルブから供給された油圧を前記第1潤滑油路に連通し、前記第2状態の際に前記連通状態にある前記第1切換えバルブから供給された油圧を遮断する、
     請求項4に記載の車両用駆動装置。
  6.  前記第1切換えバルブは、スプールと、前記スプールを一方向に付勢する付勢部材と、前記第2油路の上流側に連通する入力ポートと、前記第2油路の下流側に連通する出力ポートと、を有し、前記第1信号圧により前記スプールの位置が切換えられることで前記連通状態と前記遮断状態とが切換えられる、
     請求項1ないし5のいずれか1項に記載の車両用駆動装置。
  7.  前記第1切換えバルブは、カップ状部材と、前記第2油路の上流側に連通する貫通孔を有する板状部材と、前記板状部材の貫通孔を塞ぐように前記カップ状部材を付勢する付勢部材と、を有し、前記第1信号圧の入力により前記カップ状部材が前記板状部材の貫通孔を塞ぐ位置で押圧されることで前記遮断状態となり、前記第1信号圧の非入力により前記カップ状部材が前記油圧発生源の油圧に押圧されることで前記カップ状部材と前記板状部材とが離反して前記連通状態となる、
     請求項1ないし5のいずれか1項に記載の車両用駆動装置。
  8.  駆動源として車両の走行用駆動力を出力する回転電機と、
     係合された際に駆動源としてのエンジンと前記回転電機とを駆動連結し、解放された際に前記エンジンと前記回転電機とを切離すエンジン切離しクラッチと、
     前記駆動源の回転を変速する変速機構と、
     係合された際に前記駆動源と前記変速機構とを駆動連結し、解放された際に前記駆動源と前記変速機構とを切離す駆動伝達クラッチと、を備え、
     前記発進用摩擦係合要素は、前記駆動伝達クラッチである、
     請求項1ないし7のいずれか1項に記載の車両用駆動装置。
PCT/JP2020/012534 2019-03-28 2020-03-19 車両用駆動装置 WO2020196348A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064935A JP2020165461A (ja) 2019-03-28 2019-03-28 車両用駆動装置
JP2019-064935 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196348A1 true WO2020196348A1 (ja) 2020-10-01

Family

ID=72611997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012534 WO2020196348A1 (ja) 2019-03-28 2020-03-19 車両用駆動装置

Country Status (2)

Country Link
JP (1) JP2020165461A (ja)
WO (1) WO2020196348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379352A (zh) * 2020-10-22 2022-04-22 马自达汽车株式会社 车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116783103A (zh) * 2021-03-16 2023-09-19 株式会社爱信 车用驱动装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046156A (ja) * 1998-07-28 2000-02-18 Nissan Motor Co Ltd 車両用自動変速機の作動油冷却装置
JP2000205301A (ja) * 1999-01-12 2000-07-25 Mitsubishi Motors Corp オイル供給装置
JP2007211968A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 車両用ロックアップクラッチ付流体伝動装置の油圧制御装置
JP2009133362A (ja) * 2007-11-29 2009-06-18 Aisin Aw Co Ltd 自動変速機の油圧制御装置
US20090188767A1 (en) * 2008-01-26 2009-07-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hydraulic system of a clutch of a motor vehicle transmission
JP2014073740A (ja) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd 車両制御装置
JP2018096381A (ja) * 2016-12-07 2018-06-21 アイシン・エィ・ダブリュ株式会社 駆動伝達装置及び車両用駆動伝達装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046156A (ja) * 1998-07-28 2000-02-18 Nissan Motor Co Ltd 車両用自動変速機の作動油冷却装置
JP2000205301A (ja) * 1999-01-12 2000-07-25 Mitsubishi Motors Corp オイル供給装置
JP2007211968A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 車両用ロックアップクラッチ付流体伝動装置の油圧制御装置
JP2009133362A (ja) * 2007-11-29 2009-06-18 Aisin Aw Co Ltd 自動変速機の油圧制御装置
US20090188767A1 (en) * 2008-01-26 2009-07-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hydraulic system of a clutch of a motor vehicle transmission
JP2014073740A (ja) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd 車両制御装置
JP2018096381A (ja) * 2016-12-07 2018-06-21 アイシン・エィ・ダブリュ株式会社 駆動伝達装置及び車両用駆動伝達装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379352A (zh) * 2020-10-22 2022-04-22 马自达汽车株式会社 车辆
EP3988362A1 (en) * 2020-10-22 2022-04-27 Mazda Motor Corporation Vehicle
CN114379352B (zh) * 2020-10-22 2023-06-02 马自达汽车株式会社 车辆

Also Published As

Publication number Publication date
JP2020165461A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6048576B2 (ja) 油供給装置
CN107178611B (zh) 车辆用控制装置
CN105190108B (zh) 车辆的油压控制装置
JP6036277B2 (ja) 車両用伝動装置
JP2007205371A (ja) 自動変速機の制御装置
WO2020196348A1 (ja) 車両用駆動装置
CN113382904B (zh) 车辆用驱动装置
JP4385752B2 (ja) 変速機の潤滑装置
JP6532595B2 (ja) 油圧制御装置
US8342997B2 (en) Hydraulic control device for automatic transmission
US20120283901A1 (en) Control system for hybrid vehicle
JP7131419B2 (ja) 車両用駆動装置の油圧制御装置及びハイブリッド車両
JP7420531B2 (ja) 車両
JP7456064B2 (ja) 車両用駆動装置
JP4862830B2 (ja) 流体伝動装置用の制御装置
JP7336497B2 (ja) 車両用駆動装置の油圧回路
JP2020163983A (ja) 車両用駆動装置
JP2015197148A (ja) 車両用駆動装置の油圧制御装置
WO2022209384A1 (ja) 車両用駆動装置
JP6943203B2 (ja) 油供給装置
JP2022145970A (ja) 車両用駆動装置
JP2015017624A (ja) 車両用潤滑装置
JP2015145689A (ja) 車両用伝動装置の油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778336

Country of ref document: EP

Kind code of ref document: A1