WO2020184773A1 - Heat-dissipating plate - Google Patents
Heat-dissipating plate Download PDFInfo
- Publication number
- WO2020184773A1 WO2020184773A1 PCT/KR2019/003857 KR2019003857W WO2020184773A1 WO 2020184773 A1 WO2020184773 A1 WO 2020184773A1 KR 2019003857 W KR2019003857 W KR 2019003857W WO 2020184773 A1 WO2020184773 A1 WO 2020184773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- copper
- heat sink
- sink material
- molybdenum
- Prior art date
Links
- 239000010949 copper Substances 0.000 claims abstract description 187
- 229910052802 copper Inorganic materials 0.000 claims abstract description 92
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 83
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000011733 molybdenum Substances 0.000 claims abstract description 47
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 47
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 43
- 239000000956 alloy Substances 0.000 claims abstract description 43
- 239000010941 cobalt Substances 0.000 claims abstract description 36
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 36
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011651 chromium Substances 0.000 claims abstract description 24
- 238000009792 diffusion process Methods 0.000 claims abstract description 24
- 239000010936 titanium Substances 0.000 claims abstract description 24
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 239000010937 tungsten Substances 0.000 claims abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 12
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 156
- 230000017525 heat dissipation Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017315 Mo—Cu Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011185 multilayer composite material Substances 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8581—Means for heat extraction or cooling characterised by their material
Definitions
- the present invention relates to a heat sink material, and more particularly, as a heat sink material that can be suitably used for packaging of high-power devices, even if it is bonded to a device containing a ceramic material such as alumina (Al 2 O 3 ), good bonding is possible.
- a heat sink that has a coefficient of thermal expansion similar to that of ceramic materials, and at the same time exhibits high thermal conductivity that can quickly discharge a large amount of heat generated from a high-power device to the outside, and has excellent bonding strength between each layer forming a laminated structure. It is about ashes.
- a high-power amplifying device using a GaN-based compound semiconductor is attracting attention as a core technology in the field of information communication and defense.
- high-power semiconductor devices using GaN-based compound semiconductors include two-layer composite materials of tungsten (W)/copper (Cu), two-phase composite materials of copper (Cu) and molybdenum (Mo), and copper (Cu).
- W tungsten
- Cu copper
- Mo molybdenum
- Cu copper
- Cu-Mo Copper-molybdenum
- Cu-Mo copper-molybdenum alloy
- Cu copper-molybdenum alloy
- Cu copper-Mo alloy
- Cu copper
- a brazing bonding process with a ceramic material such as alumina (Al 2 O 3 ) is essential.
- a heat sink material consisting of an intermediate layer (second layer, fourth layer) and a core layer having a structure in which a copper (Cu) layer and a molybdenum (Mo) layer are alternately repeated along a direction parallel to the top and bottom of the heat sink material.
- the heat dissipation plate material of this structure is the same or similar to the thermal expansion coefficient of the ceramic material and exhibits excellent thermal conductivity of 400 W/mK or more, but there is a problem in that the number of manufacturing processes and process cost increase due to a complex structure.
- the interlayer bonding strength is excellent, exhibits excellent thermal conductivity in the thickness direction, and at the same time, the thermal expansion coefficient similar to that of the ceramic material in the plane direction perpendicular to the thickness direction Development of a heat sink material that can be implemented is required.
- the subject of the present invention is a heat sink material having a laminated structure, with excellent thermal conductivity of 300W/mK or more in the thickness direction, and a coefficient of thermal expansion of 7 ⁇ 10 -6 /K to 12 ⁇ 10 -6 /K in a plane direction perpendicular to the thickness direction. It is to provide a heat dissipating plate material that can implement and exhibit excellent bonding strength between each layer constituting the laminated structure.
- the present invention provides a first layer made of copper (Cu) or a copper (Cu) alloy, and is formed on the first layer, and is formed on the first layer, molybdenum (Mo), or molybdenum (Mo), tungsten (W ), chromium (Cr), titanium (Ti), beryllium (Be), and a second layer made of an alloy containing copper (Cu) and at least one component selected from, and formed on the second layer, and copper (Cu ) Or a third layer made of a copper (Cu) alloy, and formed on the third layer, molybdenum (Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium A fourth layer made of an alloy containing at least one component selected from (Be) and copper (Cu), and a fifth layer formed on the fourth layer and made of copper (Cu) or copper (Cu) alloy. And a cobalt (Co) diffusion layer formed at an
- the heat sink material according to an embodiment of the present invention is selected from a copper (Cu) layer, a molybdenum (Mo) layer or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium (Be).
- Cu copper
- Mo molybdenum
- Mo molybdenum
- Mo molybdenum
- W tungsten
- Cr chromium
- Ti titanium
- Be beryllium
- the heat sink material according to an embodiment of the present invention has excellent thermal conductivity of 300 W/mK or more (more preferably 350 W/mK or more) in the thickness direction, which was difficult to implement with a conventional five-layer stacked structure. Since it can implement the coefficient of thermal expansion in the plane direction in the range of -6 /K, it can be suitably used for packaging of high-power electronic devices or optical devices that generate more heat than general devices.
- the heat sink material according to an embodiment of the present invention does not have a complex structure such as a vertically erected lattice structure but has a simple stacked structure, the process is simple and manufacturing is easy.
- 1 is a view for explaining a thickness direction and a surface direction of a heat sink material.
- FIG. 2 is a view showing a laminated structure of a heat sink material according to an embodiment of the present invention.
- FIG. 3 shows the results of EDS (Energy Dispersive X-ray Spectrometer) analysis of the interface of the heat sink material manufactured according to an embodiment of the present invention.
- the heat dissipation plate material according to the present invention includes a first layer made of copper (Cu) or a copper (Cu) alloy, and is formed on the first layer, and includes molybdenum (Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and a second layer made of an alloy containing at least one component selected from beryllium (Be) and copper (Cu), and formed on the second layer, copper (Cu) or copper
- a fifth layer formed on the fourth layer and made of copper (Cu) or copper (Cu) alloy A cobalt (Co) diffusion layer is formed at an interface between the first layer
- the'thickness direction' means a direction perpendicular to the surface of the heat dissipating plate material, as shown in FIG. 1, and the'face direction' means a direction parallel to the surface of the plate material.
- the term'cobalt (Co) diffusion layer' refers to a first layer, a third layer, and a fifth layer made of copper (Cu) or a copper (Cu) alloy by diffusion of a cobalt (Co) element from the interface, and molybdenum ( Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti) and beryllium (Be), a second layer and a second layer made of an alloy containing copper (Cu) and at least one component selected from
- the cobalt (Co) is substantially higher at an analytical level compared to the cobalt (Co) content contained in the material constituting each layer because it is dissolved in the four layers of the base or exists in the form of a compound with the material constituting the base. It refers to the area representing the concentration.
- the heat sink material according to the present invention comprises a five-layer structure of a copper (Cu) layer/molybdenum (Mo) layer or an alloy layer/copper (Cu) layer/molybdenum (Mo) layer or an alloy layer/copper (Cu) layer.
- Cu copper
- Mo molybdenum
- Cu molybdenum
- a cobalt (Co) diffusion layer having a predetermined thickness is formed at the interface between the first layer, the third layer, and the fifth layer, and the second and fourth layers disposed therebetween, which will significantly improve the bonding strength between each layer. I can.
- the first layer, the third layer, and the fifth layer may be made of a copper (Cu) alloy containing 99% by weight or more of copper (Cu), as well as a copper (Cu) alloy containing various alloying elements.
- copper (Cu) may be included in an amount of 80% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more.
- the second and fourth layers are at least one selected from 5 to 40% by weight of copper (Cu) and the remaining molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium (Be). And, it may be made of an alloy containing inevitable impurities.
- inevitable impurities mean impurities that are unintentionally included in the manufacturing process of the alloy. In this way, when an alloy containing copper (Cu) is used, it is more preferable because it not only can obtain a low coefficient of thermal expansion while improving the bonding strength with the copper (Cu) layer, but also improve the thermal conductivity in the thickness direction. .
- the second and fourth layers are made of a molybdenum (Mo)-copper (Cu) alloy containing 60 to 95% by weight of molybdenum (Mo) and 5 to 40% by weight of copper (Cu), cobalt (Co ) Has a very high solubility with molybdenum (Mo) and copper (Cu), so it is advantageous for forming a cobalt (Co) diffusion layer and is more preferable for increasing interlayer bonding strength.
- the copper (Cu) content is less than 5% by weight, the thermal conductivity in the thickness direction may decrease, and if it is more than 40% by weight, it may be difficult to keep the coefficient of thermal expansion in the plane direction low, so it is preferable to maintain the above range.
- the content of cobalt (Co) contained in the entire heat sink material is less than 0.5% by weight, it is difficult to sufficiently improve the bonding strength because the diffusion layer is not sufficiently formed, and when the content of cobalt (Co) exceeds 5% by weight, the heat sink material Since it is difficult to adjust the coefficient of thermal expansion or thermal conductivity to a desired level, it is preferable to maintain the range of 0.5 to 5% by weight.
- the thickness of the cobalt (Co) diffusion layer must be 0.1 ⁇ m or more to obtain an effect of improving the bonding strength more than a certain level, and a large amount of cobalt (Co) or process time is required to form it to exceed 100 ⁇ m, but there is not much effect of improving additional bonding strength. It is preferably 100 ⁇ m or less. A more preferable thickness of the cobalt (Co) diffusion layer is 1 to 50 ⁇ m.
- cobalt (Co) diffusion layer there may be a cobalt (Co) layer in which cobalt (Co) exists as a single phase, and the cobalt (Co) single phase remains in a state in which the cobalt (Co) component is not completely diffused during the manufacturing process. It is a layer that does.
- the cobalt (Co) diffusion layer is preferably formed on both sides of the interface to improve the bonding strength.
- the thickness of the first, third and fifth layers is maintained in the range of 10 to 1000 ⁇ m
- the coefficient of thermal expansion in the surface direction of the heat sink material is maintained in the range of 12 ⁇ 10 -6 /K, and the thermal conductivity in the thickness direction is maintained. Since it can be implemented with 300W/mK or more, it is preferable to keep it in the above range.
- the thickness of the second and fourth layers is less than 10 ⁇ m, it is difficult to maintain the coefficient of thermal expansion in the plane direction in the range of 7 to 12 ⁇ 10 -6 /K, and when the thickness of the second layer and the fourth layer is more than 60 ⁇ m, the thermal conductivity in the thickness direction is 300 W/ Since it is difficult to implement more than mK, it is desirable to maintain it in the range of 10 ⁇ 60 ⁇ m.
- the coefficient of thermal expansion in the plane direction of the heat sink material is preferably 7 ⁇ 10 -6 /K to 12 ⁇ 10 -6 /K. If it is out of this range, when bonding or using a ceramic element This is because defects are likely to occur due to the difference in the coefficient of thermal expansion.
- the thermal conductivity in the thickness direction may be 300W/mK or more, and more preferably 350W/mK or more.
- the coefficient of thermal expansion in the plane direction through the heat sink material having the structure of the present invention is 7 ⁇ 10 -6 /K ⁇ 12 ⁇ 10 -6 /K Since it is difficult to achieve a thermal conductivity of 300W/mK or more in the thickness direction, it is preferable to keep the total thickness within the above range.
- the coefficient of thermal expansion in the plane direction is 7 ⁇ 10 -6 /K ⁇ 12 ⁇ 10 -6 / It is not easy to implement K, and if it exceeds 15%, since it is not easy to implement thermal conductivity in the thickness direction, it is preferable to maintain the range of 5 to 15%.
- FIG. 2 is a view showing a laminated structure of a heat sink material according to an embodiment of the present invention.
- the heat sink material 1 includes a first layer 10 made of copper (Cu), and formed on an upper surface of the first layer 10, and molybdenum (A second layer 20 made of a Mo)-copper (Cu) alloy, a third layer 30 formed on the upper surface of the second layer 20 and made of copper (Cu), and the third layer 30 A fourth layer 40 formed on the upper surface of the molybdenum (Mo)-copper (Cu) alloy, and a fifth layer 50 formed on the upper surface of the fourth layer 40 and formed of copper (Cu) It is made including.
- a first cobalt diffusion layer 60 (a region indicated by an oblique line in the drawing) is formed at the interface between the first layer 10 and the second layer 20 disposed between the third layer 30 and ,
- a second cobalt diffusion layer 70 (areas indicated by diagonal lines in the drawing) is formed at the interface with the fourth layer 40 disposed between the third layer 10 and the fifth layer 50. .
- the first layer 10 and the fifth layer 50 are made of copper (Cu) containing 99% by weight or more of copper (Cu), each having a thickness of about 200 ⁇ m
- the third layer ( 30) is made of copper (Cu) containing 99% by weight or more of copper (Cu) and has a thickness of about 600 ⁇ m
- the second layer 20 and the fourth layer 40 are each molybdenum (Mo)- It is made of a copper (Cu) alloy (Mo: 70% by weight, Cu: 30% by weight) and has a thickness of about 50 ⁇ m.
- the thickness of the first cobalt diffusion layer 60 and the second cobalt diffusion layer 70 is about 1 to 100 ⁇ m, and the thickness of the diffusion layer varies according to process conditions such as a process temperature and a cooling rate.
- the heat dissipation plate material 1 having the above structure was manufactured through the following process.
- a copper (Cu) plate having a thickness of about 200 ⁇ m, a length of 100 mm, and a width of 100 mm was prepared as a material for the first layer 10 and the fifth layer 50, and copper having a thickness of about 600 ⁇ m, a length of 100 mm, and a width of 100 mm.
- a (Cu) plate was prepared as a material for the third layer 30, and a molybdenum (Mo)-copper (Cu) alloy plate (Mo: 70% by weight, Cu: 30% by weight) having a thickness of about 50 ⁇ m, a length of 100 mm, and a width of 100 mm %) was prepared as a material for the second layer 20 and the fourth layer 40.
- a cobalt (Co) layer is deposited to a thickness of about 500 nm on the surfaces of the first layer 10, the third layer 30, and the fifth layer 50 using a sputtering method.
- the portion on which the cobalt (Co) layer was formed was laminated to have a structure as shown in FIG. 2 by contacting the second layer 20 and the fourth layer 40, and then bonded by pressure sintering. At this time, the sintering temperature was set to 900°C, and after sintering, it was cooled by cooling in a sintering furnace.
- the cobalt (Co) layer formed before pressure sintering does not exist in a single phase at the interface between the copper (Cu) layer made of copper (Cu) and the molybdenum (Mo)-copper (Cu) alloy layer. It can be seen that it is in a diffused state.
- the cobalt (Co) diffusion layer formed as described above may improve the bonding strength between the copper (Cu) layer and the molybdenum (Mo)-copper (Cu) alloy layer.
- the tester was tested at a constant strain rate (1mm/min) until the interface was fractured using a universal testing machine (AG-300kNX). Interfacial separation did not occur until testing to the maximum load. Through this, it was confirmed that the interlayer bonding strength of the heat sink material manufactured according to the embodiment of the present invention is very excellent.
- the thickness of the molybdenum (Mo)-copper (Cu) alloy layer which is disadvantageous in thermal conductivity in the heat sink material manufactured according to the present invention, is thin to about 50 ⁇ m, so that the thermal conductivity in the thickness direction can be increased.
- each plate is prepared and then bonded using a pressure sintering method, but it goes without saying that the laminated structure according to the present invention can be implemented by various methods such as plating and evaporation.
- Table 1 below shows the results of measuring the coefficient of thermal expansion in the surface direction and the thermal conductivity in the thickness direction of the heat sink material manufactured according to an embodiment of the present invention (average of the results obtained by selecting random 10 locations in the heat sink material). The results of measuring the thermal conductivity and coefficient of thermal expansion of and pure copper plates were compared.
- the coefficient of thermal expansion of the heat sink material according to the embodiment of the present invention represents a coefficient of thermal expansion of 10.9 ⁇ 10 -6 /K in the plane direction, and this value is an electronic device such as a semiconductor device or an optical device. It is similar to the coefficient of thermal expansion of the ceramic material constituting the device, and thus it is possible to reduce the problem of warping or peeling that occurs when these devices are mounted.
- the thermal conductivity in the thickness direction of the heat sink material according to the embodiment of the present invention is 350 W/
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
본 발명은 방열판재에 관한 것으로, 보다 상세하게는 고출력 소자의 패키징용에 적합하게 사용될 수 있는 방열판재로, 알루미나(Al2O3)와 같은 세라믹 소재를 포함하는 소자와 접합시키더라도 양호한 접합이 가능하도록 세라믹 소재와 유사한 수준의 열팽창계수를 가지고, 동시에 고출력 소자에서 발생하는 다량의 열을 신속하게 외부로 배출할 수 있는 높은 열전도도를 나타내며, 적층 구조를 형성하는 각 층간의 결합력이 매우 우수한 방열판재에 관한 것이다.The present invention relates to a heat sink material, and more particularly, as a heat sink material that can be suitably used for packaging of high-power devices, even if it is bonded to a device containing a ceramic material such as alumina (Al 2 O 3 ), good bonding is possible. A heat sink that has a coefficient of thermal expansion similar to that of ceramic materials, and at the same time exhibits high thermal conductivity that can quickly discharge a large amount of heat generated from a high-power device to the outside, and has excellent bonding strength between each layer forming a laminated structure. It is about ashes.
최근 정보통신 및 국방분야의 핵심기술로서 GaN계 화합물 반도체를 이용한 고출력 증폭소자가 주목을 받고 있다.Recently, a high-power amplifying device using a GaN-based compound semiconductor is attracting attention as a core technology in the field of information communication and defense.
이러한 고출력 전자소자나 광소자에서는 일반 소자에 비해 많은 열이 발생하고 이와 같이 발생한 다량의 열을 효율적으로 배출할 수 있는 패키징 기술이 필요하다.In such a high-power electronic device or optical device, a packaging technology capable of generating more heat than a general device and efficiently discharging a large amount of heat generated as such is required.
현재, GaN계 화합물 반도체를 활용한 고출력 반도체 소자에는, 텅스텐(W)/구리(Cu)의 2층 복합소재, 구리(Cu)와 몰리브덴(Mo)의 2상(phase) 복합소재, 구리(Cu)/구리-몰리브덴(Cu-Mo)합금/구리(Cu)의 3층 복합소재, 구리(Cu)/몰리브덴(Mo)/구리(Cu)/몰리브덴(Mo)/구리(Cu)의 다층 복합소재와 같이 비교적 양호한 열전도도와 낮은 열팽창계수를 갖는 금속기 복합판재가 사용되고 있다.Currently, high-power semiconductor devices using GaN-based compound semiconductors include two-layer composite materials of tungsten (W)/copper (Cu), two-phase composite materials of copper (Cu) and molybdenum (Mo), and copper (Cu). ) / Copper-molybdenum (Cu-Mo) alloy / copper (Cu) three-layer composite material, copper (Cu) / molybdenum (Mo) / copper (Cu) / molybdenum (Mo) / copper (Cu) multi-layer composite material As such, a metal-based composite plate having a relatively good thermal conductivity and a low coefficient of thermal expansion is used.
그런데 이들 복합판재의 두께방향으로의 열전도도는 최대 200 ~ 300W/mK 정도이고, 실제로 그 이상의 높은 열전도도를 구현하지 못하므로, 수백 와트급 파워 트랜지스터와 같은 소자에 적용하기 위한 새로운 방열 소재 혹은 방열 기판이 시장에서 시급히 요구되고 있다. 또한, 구리(Cu)/몰리브덴(Mo)/구리(Cu)/몰리브덴(Mo)/구리(Cu)의 다층 복합소재의 경우, 각 층간의 결합력이 낮은 문제점도 있다.However, since the thermal conductivity in the thickness direction of these composite plates is up to 200 ~ 300W/mK, and does not actually realize higher thermal conductivity, a new heat dissipation material or heat dissipation for application to devices such as hundreds of watt class power transistors. Substrates are urgently in demand in the market. In addition, in the case of a multi-layered composite material of copper (Cu)/molybdenum (Mo)/copper (Cu)/molybdenum (Mo)/copper (Cu), there is a problem in that the bonding strength between each layer is low.
한편, 반도체 소자를 제조하는 공정에는 알루미나(Al2O3)와 같은 세라믹 소재와의 브레이징 접합 공정이 필수적이다.Meanwhile, in the process of manufacturing a semiconductor device, a brazing bonding process with a ceramic material such as alumina (Al 2 O 3 ) is essential.
이와 같은 브레이징 접합 공정은 약 800℃ 이상의 고온에서 이루어지기 때문에, 금속 복합재 기판과 세라믹 소재 간의 열팽창계수의 차이에 의해, 브레이징 접합 과정에서 휨이나 파손이 발생하며, 이와 같은 휨이나 파손은 소자의 신뢰성에 치명적인 영향을 주게 된다.Since such a brazing bonding process is performed at a high temperature of about 800°C or higher, warpage or breakage occurs during the brazing bonding process due to the difference in the coefficient of thermal expansion between the metal composite substrate and the ceramic material. Such warpage or breakage is the reliability of the device. Will have a devastating effect on.
이러한 요구에 대응하기 위하여, 본 발명자들은 하기 특허문헌 2에 개시된 바와 같이, 구리(Cu)로 이루어진 커버층(제1층, 제5층)과, 구리(Cu)와 몰리브덴(Mo)의 합금으로 이루어진 중간층(제2층, 제4층)과, 방열판재의 상,하면에 평행한 방향을 따라 구리(Cu)층과 몰리브덴(Mo)층이 교호로 반복되는 구조를 가지는 코어층으로 이루어지는 방열판재를 제시하였는데, 이 구조의 방열판재는 세라믹 소재의 열팽창계수와 동일 내지 유사하면서도 400W/mK 이상의 우수한 열전도도를 나타내나, 복잡한 구조로 인해 제조 공정 수와 공정 비용이 증가하는 문제점이 있다.In order to cope with this demand, the present inventors use a cover layer (first layer, fifth layer) made of copper (Cu) and an alloy of copper (Cu) and molybdenum (Mo), as disclosed in Patent Document 2 below. A heat sink material consisting of an intermediate layer (second layer, fourth layer) and a core layer having a structure in which a copper (Cu) layer and a molybdenum (Mo) layer are alternately repeated along a direction parallel to the top and bottom of the heat sink material. It has been suggested that the heat dissipation plate material of this structure is the same or similar to the thermal expansion coefficient of the ceramic material and exhibits excellent thermal conductivity of 400 W/mK or more, but there is a problem in that the number of manufacturing processes and process cost increase due to a complex structure.
이에 따라, 보다 간단한 공정으로 제조할 수 있는 구조를 가지면서, 층간 결합력이 우수하고, 두께방향으로 우수한 열전도성을 나타내며, 동시에 상기 두께방향에 수직한 면방향으로 세라믹 소재와 유사한 수준의 열팽창계수를 구현할 수 있는 방열판재의 개발이 요구되고 있다.Accordingly, while having a structure that can be manufactured by a simpler process, the interlayer bonding strength is excellent, exhibits excellent thermal conductivity in the thickness direction, and at the same time, the thermal expansion coefficient similar to that of the ceramic material in the plane direction perpendicular to the thickness direction Development of a heat sink material that can be implemented is required.
본 발명의 과제는 적층 구조를 갖는 방열판재로 두께방향으로 300W/mK 이상의 우수한 열전도성과 함께 두께방향에 수직한 면방향으로 7×10-6/K ~ 12×10-6/K 수준의 열팽창계수를 구현할 수 있으면서 적층 구조를 구성하는 각 층간에 우수한 결합력을 나타내는 방열판재를 제공하는데 있다.The subject of the present invention is a heat sink material having a laminated structure, with excellent thermal conductivity of 300W/mK or more in the thickness direction, and a coefficient of thermal expansion of 7×10 -6 /K to 12×10 -6 /K in a plane direction perpendicular to the thickness direction. It is to provide a heat dissipating plate material that can implement and exhibit excellent bonding strength between each layer constituting the laminated structure.
상기 과제를 해결하기 위해 본 발명은, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제1층과, 상기 제1층 상에 형성되며, 몰리브덴(Mo), 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)를 포함하는 합금으로 이루어지는 제2층과, 상기 제2층 상에 형성되며, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제3층과, 상기 제3층 상에 형성되며, 몰리브덴(Mo), 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)를 포함하는 합금으로 이루어지는 제4층과, 상기 제4층 상에 형성되며, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제5층을 포함하고, 상기 제1층, 제3층 및 제5층과 이들 사이에 배치되는 제2층 및 제4층 사이의 계면에는 코발트(Co) 확산층이 형성되어 있는, 방열판재를 제공한다.In order to solve the above problems, the present invention provides a first layer made of copper (Cu) or a copper (Cu) alloy, and is formed on the first layer, and is formed on the first layer, molybdenum (Mo), or molybdenum (Mo), tungsten (W ), chromium (Cr), titanium (Ti), beryllium (Be), and a second layer made of an alloy containing copper (Cu) and at least one component selected from, and formed on the second layer, and copper (Cu ) Or a third layer made of a copper (Cu) alloy, and formed on the third layer, molybdenum (Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium A fourth layer made of an alloy containing at least one component selected from (Be) and copper (Cu), and a fifth layer formed on the fourth layer and made of copper (Cu) or copper (Cu) alloy. And a cobalt (Co) diffusion layer formed at an interface between the first layer, the third layer, and the fifth layer, and the second layer and the fourth layer disposed therebetween.
본 발명의 일 실시형태에 따른 방열판재는, 구리(Cu)층과, 몰리브덴(Mo)층 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)의 합금층으로 이루어진 적층 구조에 있어서, 각층의 계면에 형성된 코발트(Co) 확산층으로 인해, 적층 구조를 이루는 각 층간의 결합력이 현저하게 향상되어, 결합력 부족에 의한 층간 박리를 방지할 수 있다.The heat sink material according to an embodiment of the present invention is selected from a copper (Cu) layer, a molybdenum (Mo) layer or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium (Be). In a laminated structure consisting of an alloy layer of at least one component and copper (Cu), due to the cobalt (Co) diffusion layer formed at the interface of each layer, the bonding strength between the layers constituting the laminated structure is remarkably improved, due to insufficient bonding force. Delamination can be prevented.
또한, 본 발명의 일 실시형태에 따른 방열판재는, 종래의 5층 적층구조로 구현하기 어려웠던 두께방향으로 300W/mK 이상(보다 바람직하게는 350W/mK 이상)의 우수한 열전도도와 함께 7 ~ 12×10-6/K 범위의 면방향의 열팽창계수를 구현할 수 있어, 일반 소자에 비해 많은 열이 발생하는 고출력 전자소자나 광소자의 패키징에 적합하게 사용될 수 있다.In addition, the heat sink material according to an embodiment of the present invention has excellent thermal conductivity of 300 W/mK or more (more preferably 350 W/mK or more) in the thickness direction, which was difficult to implement with a conventional five-layer stacked structure. Since it can implement the coefficient of thermal expansion in the plane direction in the range of -6 /K, it can be suitably used for packaging of high-power electronic devices or optical devices that generate more heat than general devices.
또한, 본 발명의 일 실시형태에 따른 방열판재는 수직으로 세워지는 격자구조와 같은 복잡한 구조를 가지지 않고 단순한 적층구조를 가지므로, 공정이 단순하고 제조가 용이하다.In addition, since the heat sink material according to an embodiment of the present invention does not have a complex structure such as a vertically erected lattice structure but has a simple stacked structure, the process is simple and manufacturing is easy.
도 1은 방열판재의 두께방향과 면방향을 설명하기 위한 도면이다.1 is a view for explaining a thickness direction and a surface direction of a heat sink material.
도 2는 본 발명의 일 실시형태에 따른 방열판재의 적층 구조를 나타낸 도면이다.2 is a view showing a laminated structure of a heat sink material according to an embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따라 제조한 방열판재의 계면에 대한 EDS(Energy Dispersive X-ray Spectrometer) 분석 결과를 나타낸 것이다.3 shows the results of EDS (Energy Dispersive X-ray Spectrometer) analysis of the interface of the heat sink material manufactured according to an embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나 다음에 예시하는 본 발명의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments of the present invention exemplified below may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.
본 발명에 따른 방열판재는, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제1층과, 상기 제1층 상에 형성되며, 몰리브덴(Mo), 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)를 포함하는 합금으로 이루어지는 제2층과, 상기 제2층 상에 형성되며, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제3층과, 상기 제3층 상에 형성되며, 몰리브덴(Mo), 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)를 포함하는 합금으로 이루어지는 제4층과, 상기 제4층 상에 형성되며, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제5층을 포함하고, 상기 제1층, 제3층 및 제5층과 이들 사이에 배치되는 제2층 및 제4층 사이의 계면에는 코발트(Co) 확산층이 형성되어 있는 것을 특징으로 한다.The heat dissipation plate material according to the present invention includes a first layer made of copper (Cu) or a copper (Cu) alloy, and is formed on the first layer, and includes molybdenum (Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and a second layer made of an alloy containing at least one component selected from beryllium (Be) and copper (Cu), and formed on the second layer, copper (Cu) or copper A third layer made of a (Cu) alloy, and formed on the third layer, molybdenum (Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium (Be) A fourth layer made of an alloy containing at least one component selected from among and copper (Cu), and a fifth layer formed on the fourth layer and made of copper (Cu) or copper (Cu) alloy, A cobalt (Co) diffusion layer is formed at an interface between the first layer, the third layer and the fifth layer, and the second and fourth layers disposed therebetween.
본 발명에 있어서, '두께방향'이란 도 1에 도시된 바와 같이 방열판재의 면에 수직한 방향을 의미하고, '면방향'이란 판재의 면에 평행한 방향을 의미한다.In the present invention, the'thickness direction' means a direction perpendicular to the surface of the heat dissipating plate material, as shown in FIG. 1, and the'face direction' means a direction parallel to the surface of the plate material.
또한, '코발트(Co) 확산층'이란, 계면으로부터 코발트(Co) 원소의 확산에 의하여, 구리(Cu) 또는 구리(Cu) 합금으로 이루어지는 제1층, 제3층 및 제5층과, 몰리브덴(Mo), 또는 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상의 성분과 구리(Cu)를 포함하는 합금으로 이루어지는 제2층 및 제4층의 기지에 고용되거나, 기지를 구성하는 물질과의 화합물 형태로 존재하여, 상기 각 층을 구성하는 물질에 포함된 코발트(Co) 함량에 비해 분석 가능한 수준에서 실질적으로 더 높은 코발트(Co)농도를 나타내는 영역을 의미한다.In addition, the term'cobalt (Co) diffusion layer' refers to a first layer, a third layer, and a fifth layer made of copper (Cu) or a copper (Cu) alloy by diffusion of a cobalt (Co) element from the interface, and molybdenum ( Mo), or molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti) and beryllium (Be), a second layer and a second layer made of an alloy containing copper (Cu) and at least one component selected from The cobalt (Co) is substantially higher at an analytical level compared to the cobalt (Co) content contained in the material constituting each layer because it is dissolved in the four layers of the base or exists in the form of a compound with the material constituting the base. It refers to the area representing the concentration.
본 발명에 따른 방열판재는 구리(Cu)층/몰리브덴(Mo)층 또는 합금층/구리(Cu)층/몰리브덴(Mo)층 또는 합금층/구리(Cu)층의 5층 구조를 포함하여 이루어지는데, 이와 같이 적어도 5층 구조를 형성함으로써, 열팽창계수가 작은 몰리브덴(Mo)층 또는 합금층을 통해 방열판재의 면방향의 열팽창계수를 7 ~ 12×10-6/K 수준으로 유지할 수 있다. 또한, 제1층, 제3층 및 제5층과 이들 사이에 배치되는 제2층 및 제4층간의 계면에는 소정 두께의 코발트(Co) 확산층이 형성되어 있어, 각 층간 접합력을 현저하게 향상시킬 수 있다.The heat sink material according to the present invention comprises a five-layer structure of a copper (Cu) layer/molybdenum (Mo) layer or an alloy layer/copper (Cu) layer/molybdenum (Mo) layer or an alloy layer/copper (Cu) layer. , By forming at least a five-layer structure in this way, the coefficient of thermal expansion in the plane direction of the heat sink material can be maintained at a level of 7 to 12×10 -6 /K through a molybdenum (Mo) layer or an alloy layer having a small coefficient of thermal expansion. In addition, a cobalt (Co) diffusion layer having a predetermined thickness is formed at the interface between the first layer, the third layer, and the fifth layer, and the second and fourth layers disposed therebetween, which will significantly improve the bonding strength between each layer. I can.
한편, 본 발명에서는 5층 적층 구조에 대해 설명하고 있으나, 5층 구조에 추가로 다른 층을 적층한 것을 포함하는 것으로 해석되어야 한다.Meanwhile, in the present invention, a five-layer stacked structure has been described, but it should be interpreted as including a stack of another layer in addition to the five-layered structure.
상기 제1층, 제3층 및 제5층은 구리(Cu) 99중량% 이상의 구리(Cu)는 물론, 다양한 합금 원소를 포함하는 구리(Cu) 합금으로 이루어질 수 있고, 구리(Cu) 합금의 경우 방열특성을 고려할 때, 구리(Cu)를 80중량% 이상, 바람직하게는 90중량% 이상, 보다 바람직하게는 95중량% 이상 포함할 수 있다.The first layer, the third layer, and the fifth layer may be made of a copper (Cu) alloy containing 99% by weight or more of copper (Cu), as well as a copper (Cu) alloy containing various alloying elements. When considering the heat dissipation characteristics, copper (Cu) may be included in an amount of 80% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more.
상기 제2층과 제4층은 구리(Cu) 5 ~ 40중량%와, 나머지 몰리브덴(Mo), 텅스텐(W), 크롬(Cr), 타이타늄(Ti) 및 베릴륨(Be) 중에서 선택된 1종 이상과, 불가피한 불순물을 포함하는 합금으로 이루어질 수 있다. 여기서, 불가피한 불순물이란 합금의 제조과정에서 의도하지 않게 포함된 불순물을 의미한다. 이와 같이, 구리(Cu)를 포함하는 합금을 사용할 경우, 구리(Cu)층과의 접합력을 향상시키면서 낮은 열팽창계수를 얻을 수 있을 뿐 아니라, 두께방향으로의 열전도도를 향상시킬 수 있어 보다 바람직하다.The second and fourth layers are at least one selected from 5 to 40% by weight of copper (Cu) and the remaining molybdenum (Mo), tungsten (W), chromium (Cr), titanium (Ti), and beryllium (Be). And, it may be made of an alloy containing inevitable impurities. Here, inevitable impurities mean impurities that are unintentionally included in the manufacturing process of the alloy. In this way, when an alloy containing copper (Cu) is used, it is more preferable because it not only can obtain a low coefficient of thermal expansion while improving the bonding strength with the copper (Cu) layer, but also improve the thermal conductivity in the thickness direction. .
특히, 상기 제2층과 제4층이 몰리브덴(Mo) 60 ~ 95중량%, 구리(Cu) 5 ~ 40중량%를 포함하는 몰리브덴(Mo)-구리(Cu) 합금으로 이루어질 경우, 코발트(Co)가 몰리브덴(Mo) 및 구리(Cu)와의 고용도가 상당히 있으므로, 코발트(Co) 확산층을 형성하는데 유리하여 층간 결합력을 높이는데 보다 바람직하다. 구리(Cu) 함량이 5중량% 미만이면 두께방향으로의 열전도도가 감소할 수 있고, 40중량% 초과이면 면방향의 열팽창계수를 낮게 유지하기 어려울 수 있기 때문에 상기 범위로 유지하는 것이 바람직하다.In particular, when the second and fourth layers are made of a molybdenum (Mo)-copper (Cu) alloy containing 60 to 95% by weight of molybdenum (Mo) and 5 to 40% by weight of copper (Cu), cobalt (Co ) Has a very high solubility with molybdenum (Mo) and copper (Cu), so it is advantageous for forming a cobalt (Co) diffusion layer and is more preferable for increasing interlayer bonding strength. If the copper (Cu) content is less than 5% by weight, the thermal conductivity in the thickness direction may decrease, and if it is more than 40% by weight, it may be difficult to keep the coefficient of thermal expansion in the plane direction low, so it is preferable to maintain the above range.
상기 방열판재 전체에 포함되는 코발트(Co)의 함량은 0.5중량% 미만일 경우, 확산층이 충분히 형성되지 않아 결합력을 충분히 향상시키기 어렵고, 코발트(Co)의 함량이 5중량%를 초과할 경우, 방열판재의 열팽창계수나 열전도도를 원하는 수준으로 맞추기 어렵기 때문에, 0.5 ~ 5중량%의 범위를 유지하는 것이 바람직하다.When the content of cobalt (Co) contained in the entire heat sink material is less than 0.5% by weight, it is difficult to sufficiently improve the bonding strength because the diffusion layer is not sufficiently formed, and when the content of cobalt (Co) exceeds 5% by weight, the heat sink material Since it is difficult to adjust the coefficient of thermal expansion or thermal conductivity to a desired level, it is preferable to maintain the range of 0.5 to 5% by weight.
상기 코발트(Co) 확산층의 두께는 일정 이상의 결합력 향상 효과를 얻기 위해서는 0.1㎛ 이상이어야 하고 100㎛를 초과하도록 형성하기 위해서는 다량의 코발트(Co) 또는 공정 시간이 필요함에 비해 추가적인 접합력 향상 효과는 많지 않으므로 100㎛ 이하가 바람직하다. 보다 바람직한 코발트(Co) 확산층의 두께는 1 ~ 50㎛이다.The thickness of the cobalt (Co) diffusion layer must be 0.1 μm or more to obtain an effect of improving the bonding strength more than a certain level, and a large amount of cobalt (Co) or process time is required to form it to exceed 100 μm, but there is not much effect of improving additional bonding strength. It is preferably 100 μm or less. A more preferable thickness of the cobalt (Co) diffusion layer is 1 to 50 μm.
상기 코발트(Co) 확산층의 내부에는 코발트(Co)가 단상으로 존재하는 코발트(Co)층이 존재할 수 있는데, 코발트(Co) 단상은 제조과정에서 코발트(Co) 성분이 완전히 확산되지 않은 상태로 잔존하는 층이다.Inside the cobalt (Co) diffusion layer, there may be a cobalt (Co) layer in which cobalt (Co) exists as a single phase, and the cobalt (Co) single phase remains in a state in which the cobalt (Co) component is not completely diffused during the manufacturing process. It is a layer that does.
상기 코발트(Co) 확산층은 계면의 양측에 모두 형성되는 것이 결합력 향상에 바람직하다.The cobalt (Co) diffusion layer is preferably formed on both sides of the interface to improve the bonding strength.
상기 제1층, 제3층 및 제5층의 두께는 10 ~ 1000㎛ 범위를 유지할 경우, 방열판재의 면방향의 열팽창계수를 12×10-6/K 범위로 유지하고, 두께방향의 열전도도를 300W/mK 이상으로 구현할 수 있기 때문에 상기 범위로 유지하는 것이 바람직하다.When the thickness of the first, third and fifth layers is maintained in the range of 10 to 1000 μm, the coefficient of thermal expansion in the surface direction of the heat sink material is maintained in the range of 12 × 10 -6 /K, and the thermal conductivity in the thickness direction is maintained. Since it can be implemented with 300W/mK or more, it is preferable to keep it in the above range.
상기 제2층과 제4층의 두께는 10㎛ 미만일 경우 면방향의 열팽창계수를 7 ~ 12×10-6/K 범위로 유지하기가 어렵고, 60㎛ 초과일 경우 두께방향의 열전도도를 300W/mK 이상으로 구현하기 어려우므로, 10 ~ 60㎛ 범위로 유지하는 것이 바람직하다.When the thickness of the second and fourth layers is less than 10 μm, it is difficult to maintain the coefficient of thermal expansion in the plane direction in the range of 7 to 12×10 -6 /K, and when the thickness of the second layer and the fourth layer is more than 60 μm, the thermal conductivity in the thickness direction is 300 W/ Since it is difficult to implement more than mK, it is desirable to maintain it in the range of 10 ~ 60㎛.
상기 방열판재 전체에 있어서, 몰리브덴(Mo)의 함량은 3중량% 미만일 경우, 면방향의 열팽창계수를 12×10-6/K 범위 아래로 구현하기 어렵고, 몰리브덴(Mo)의 함량이 15중량% 초과일 경우, 두께방향의 열전도도를 300W/mK 이상으로 구현하기 어렵기 때문에, 3 ~ 15중량% 범위로 유지하는 것이 바람직하고, 5 ~ 10중량% 범위로 유지하는 것이 면방향의 열팽창계수 및 열전도도의 측면에서 보다 바람직하다.In the entire heat sink material, when the content of molybdenum (Mo) is less than 3% by weight, it is difficult to implement the coefficient of thermal expansion in the surface direction below the range of 12×10 -6 /K, and the content of molybdenum (Mo) is 15% by weight. If it exceeds, it is difficult to implement the thermal conductivity in the thickness direction to 300W/mK or more, so it is preferable to maintain it in the range of 3 to 15% by weight, and to maintain it in the range of 5 to 10% by weight, the coefficient of thermal expansion in the surface direction and It is more preferable in terms of thermal conductivity.
상기 방열판재에 있어서, 방열판재의 면방향으로의 열팽창계수는 7×10-6/K ~ 12×10-6/K인 것이 바람직한데, 이 범위를 벗어날 경우, 세라믹 소자와의 접합 또는 사용 시에 열팽창계수의 차이로 인한 불량이 발생하기 쉽기 때문이다.In the heat sink material, the coefficient of thermal expansion in the plane direction of the heat sink material is preferably 7×10 -6 /K to 12×10 -6 /K. If it is out of this range, when bonding or using a ceramic element This is because defects are likely to occur due to the difference in the coefficient of thermal expansion.
상기 방열판재에 있어서, 두께방향으로의 열전도도는 300W/mK 이상이고, 보다 바람직하게는 350W/mK 이상일 수 있다.In the heat sink material, the thermal conductivity in the thickness direction may be 300W/mK or more, and more preferably 350W/mK or more.
상기 방열판재에 있어서, 전체 두께가 0.05mm 미만이거나 10mm를 초과할 경우, 본 발명 구조를 갖는 방열판재를 통해 면방향으로의 열팽창계수는 7×10-6/K ~ 12×10-6/K와 두께방향으로의 열전도도 300W/mK 이상을 구현하기 어렵기 때문에, 전체 두께는 상기 범위로 유지하는 것이 바람직하다.In the heat sink material, when the total thickness is less than 0.05 mm or exceeds 10 mm, the coefficient of thermal expansion in the plane direction through the heat sink material having the structure of the present invention is 7×10 -6 /K ~ 12×10 -6 /K Since it is difficult to achieve a thermal conductivity of 300W/mK or more in the thickness direction, it is preferable to keep the total thickness within the above range.
상기 방열판재에 있어서, 상기 제2층 및 제4층의 두께의 합이 전체 방열판재 두께의 5% 미만일 경우, 면방향으로의 열팽창계수는 7×10-6/K ~ 12×10-6/K를 구현하기 용이하지 않고, 15% 초과일 경우, 두께방향으로의 열전도도를 구현하기 용이하지 않으므로, 5 ~ 15%의 범위를 유지하는 것이 바람직하다.In the heat sink material, when the sum of the thicknesses of the second layer and the fourth layer is less than 5% of the total heat sink material thickness, the coefficient of thermal expansion in the plane direction is 7×10 -6 /K ~ 12×10 -6 / It is not easy to implement K, and if it exceeds 15%, since it is not easy to implement thermal conductivity in the thickness direction, it is preferable to maintain the range of 5 to 15%.
[실시예][Example]
도 2는 본 발명의 일 실시형태에 따른 방열판재의 적층 구조를 나타낸 도면이다.2 is a view showing a laminated structure of a heat sink material according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 방열판재(1)는, 구리(Cu)로 이루어진 제1층(10)과, 상기 제1층(10)의 상면에 형성되며 몰리브덴(Mo)-구리(Cu) 합금으로 이루어진 제2층(20)과, 상기 제2층(20)의 상면에 형성되며 구리(Cu)로 이루어진 제3층(30)과, 상기 제3층(30)의 상면에 형성되며 몰리브덴(Mo)-구리(Cu) 합금으로 이루어진 제4층(40)과, 상기 제4층(40)의 상면에 형성되며 구리(Cu)로 이루어진 제5층(50)을 포함하여 이루어진다.As shown in FIG. 2, the
또한, 상기 제1층(10)과 제3층(30)의 사이에 배치되는 제2층(20)과의 계면에는 제1 코발트 확산층(60)(도면에 사선으로 표시된 영역)이 형성되어 있고, 상기 제3층(10)과 제5층(50)의 사이에 배치되는 제4층(40)과의 계면에는 제2 코발트 확산층(70)(도면에 사선으로 표시된 영역)이 각각 형성되어 있다.In addition, a first cobalt diffusion layer 60 (a region indicated by an oblique line in the drawing) is formed at the interface between the
이중에서, 상기 제1층(10)과 제5층(50)은 구리(Cu)를 99중량% 이상 함유하는 구리(Cu)로 이루어지고 그 두께는 각각 약 200㎛이며, 상기 제3층(30)은 구리(Cu)를 99중량% 이상 함유하는 구리(Cu)로 이루어지고 그 두께는 약 600㎛이며, 상기 제2층(20) 및 제4층(40)은 각각 몰리브덴(Mo)-구리(Cu) 합금(Mo: 70중량%, Cu: 30중량%)으로 이루어지며 그 두께는 약 50㎛이다. 상기 제1 코발트 확산층(60)과 제2 코발트 확산층(70)의 두께는 약 1 ~ 100㎛이며, 확산층의 두께는 공정 온도, 냉각 속도와 같은 공정 조건에 따라 달라진다.Among them, the
이상과 같은 구조를 갖는 방열판재(1)는 다음과 공정을 통해 제조하였다.The heat
먼저, 두께 약 200㎛, 길이 100mm, 폭 100mm의 구리(Cu) 판재를 제1층(10) 및 제5층(50)의 소재로 준비하였고, 두께 약 600㎛, 길이 100mm, 폭 100mm의 구리(Cu) 판재를 제3층(30)의 소재로 준비하였고, 두께 약 50㎛, 길이 100mm, 폭 100mm의 몰리브덴(Mo)-구리(Cu) 합금 판재(Mo: 70중량%, Cu: 30중량%)를 제2층(20) 및 제4층(40)의 소재로 준비하였다.First, a copper (Cu) plate having a thickness of about 200 μm, a length of 100 mm, and a width of 100 mm was prepared as a material for the
다음으로, 상기 제1층(10), 제3층(30), 제5층(50)의 표면에 스퍼터링 방법을 사용하여 코발트(Co)층을 약 500nm의 두께로 증착하여 형성한다.Next, a cobalt (Co) layer is deposited to a thickness of about 500 nm on the surfaces of the
상기 코발트(Co)층이 형성된 부분이 상기 제2층(20) 및 제4층(40)과 접하도록 하여 도 2와 같은 구조를 가지도록 적층한 후, 가압소결 방식으로 접합하였다. 이때 소결 온도는 900℃로 하였고, 소결 후에는 소결로 내에서 냉각시키는 방식으로 냉각하였다.The portion on which the cobalt (Co) layer was formed was laminated to have a structure as shown in FIG. 2 by contacting the
이와 같이 제조된 방열판재의 계면 상태를 EDS를 사용하여 성분 맵핑을 수행하였으며, 그 결과는 도 3과 같았다.Component mapping was performed using EDS for the interface state of the heat sink material prepared as described above, and the results were shown in FIG. 3.
도 3에서 확인되는 바와 같이, 구리(Cu)로 이루어진 구리(Cu)층과 몰리브덴(Mo)-구리(Cu) 합금층 간의 계면에는 가압소결 전에 형성한 코발트(Co)층이 단상으로 존재하지 않고 확산된 상태로 있음을 알 수 있다. 이와 같이 형성된 코발트(Co) 확산층은 구리(Cu)층과 몰리브덴(Mo)-구리(Cu) 합금층 간의 결합력을 향상시킬 수 있다.As shown in FIG. 3, the cobalt (Co) layer formed before pressure sintering does not exist in a single phase at the interface between the copper (Cu) layer made of copper (Cu) and the molybdenum (Mo)-copper (Cu) alloy layer. It can be seen that it is in a diffused state. The cobalt (Co) diffusion layer formed as described above may improve the bonding strength between the copper (Cu) layer and the molybdenum (Mo)-copper (Cu) alloy layer.
본 발명의 실시예에 따라 방열판재의 층간 접합력을 평가하기 위하여, 만능재료시험기(AG-300kNX)를 사용하여, 계면이 파단될 때까지 일정한 변형속도(1mm/min)로 시험한 결과, 당해 시험기의 최대 하중까지 테스할 때까지 계면 분리가 일어나지 않았다. 이를 통해, 본 발명의 실시예에 따라 제조된 방열판재의 층간 결합력이 매우 우수함이 확인되었다.In order to evaluate the interlayer bonding strength of the heat dissipating plate according to the embodiment of the present invention, the tester was tested at a constant strain rate (1mm/min) until the interface was fractured using a universal testing machine (AG-300kNX). Interfacial separation did not occur until testing to the maximum load. Through this, it was confirmed that the interlayer bonding strength of the heat sink material manufactured according to the embodiment of the present invention is very excellent.
또한, 본 발명의 실시예에 따라 제조된 방열판재에는 구리(Cu)층과 몰리브덴(Mo)-구리(Cu) 합금층 간의 열팽창계수의 차이로 인해, 구리(Cu)층에 강한 인장응력이 걸리는 팽창 상태가 되고, 이와 같이 인장응력이 걸린 상태에서 방열판재를 접합하는 공정(예를 들어, 브레이징 공정)에서 방열판재의 온도가 상승하면 응력이 해소되면서 이미 어느 정도 팽창된 상태의 구리(Cu)가 추가적으로 팽창하는 비율을 줄여 전체적으로 방열판재의 열팽창계수를 낮아지게 된다. 또한, 본 발명에 따라 제조된 방열판재에서 열전도도에 불리한 몰리브덴(Mo)-구리(Cu) 합금층의 두께는 각각 약 50㎛로 얇게 되어 있어 두께방향으로의 열전도도를 높일 수 있게 된다.In addition, due to the difference in the coefficient of thermal expansion between the copper (Cu) layer and the molybdenum (Mo)-copper (Cu) alloy layer in the heat sink material manufactured according to the embodiment of the present invention, a strong tensile stress is applied to the copper (Cu) layer. When the temperature of the heat sink material rises in the process of joining the heat sink material in the state of being in an expanded state and in such a state where tensile stress is applied (for example, a brazing process), the stress is relieved and the already expanded copper (Cu) is By reducing the rate of expansion, the coefficient of thermal expansion of the heat sink material is overall lowered. In addition, the thickness of the molybdenum (Mo)-copper (Cu) alloy layer, which is disadvantageous in thermal conductivity in the heat sink material manufactured according to the present invention, is thin to about 50 μm, so that the thermal conductivity in the thickness direction can be increased.
한편, 본 발명의 실시예에서는 각각의 판재를 준비한 후 가압소결 방식을 사용하여 접합하였으나, 도금, 증착법과 같은 다양한 방법으로 본 발명에 따른 적층 구조를 구현할 수 있음은 물론이다.On the other hand, in the embodiment of the present invention, each plate is prepared and then bonded using a pressure sintering method, but it goes without saying that the laminated structure according to the present invention can be implemented by various methods such as plating and evaporation.
아래 표 1은 본 발명의 실시예에 따라 제조한 방열판재의 면방향의 열팽창계수와, 두께방향의 열전도도(방열판재에서 임의의 10군데를 선정하여 측정한 결과를 평균한 값)를 측정한 결과와 순구리 판재의 열전도도와 열팽창계수를 측정한 결과를 비교한 것이다.Table 1 below shows the results of measuring the coefficient of thermal expansion in the surface direction and the thermal conductivity in the thickness direction of the heat sink material manufactured according to an embodiment of the present invention (average of the results obtained by selecting random 10 locations in the heat sink material). The results of measuring the thermal conductivity and coefficient of thermal expansion of and pure copper plates were compared.
상기 표 1에서 확인되는 바와 같이, 본 발명의 실시예에 따른 방열판재의 열팽창계수는 면방향에 있어서, 10.9×10-6/K의 열팽창계수를 나타내는데, 이러한 값은 반도체 소자나 광소자와 같은 전자소자를 구성하는 세라믹 물질의 열팽창계수와 유사하여, 이들 소자의 실장 시에 발생하는 휨이나 박리의 문제를 줄일 수 있다.또한, 본 발명의 실시예에 따른 방열판재의 두께 방향의 열전도도는 350W/mK를 초과하는 수준인데, 이는 구리로만 이루어진 판재(비교예)에 근접할 정도로 우수하여, 발열량이 많은 고출력 소자의 방열판재용으로도 적용될 수 있는 수준이다.As can be seen in Table 1, the coefficient of thermal expansion of the heat sink material according to the embodiment of the present invention represents a coefficient of thermal expansion of 10.9×10 -6 /K in the plane direction, and this value is an electronic device such as a semiconductor device or an optical device. It is similar to the coefficient of thermal expansion of the ceramic material constituting the device, and thus it is possible to reduce the problem of warping or peeling that occurs when these devices are mounted. In addition, the thermal conductivity in the thickness direction of the heat sink material according to the embodiment of the present invention is 350 W/ The level exceeds mK, which is excellent enough to be close to a plate made of copper only (Comparative Example), and can be applied as a heat dissipation plate material of a high-power device with a large amount of heat generated.
[부호의 설명][Explanation of code]
1: 방열판재1: heat sink material
10: 제1층(Cu층)10: first layer (Cu layer)
20: 제2층(Mo-Cu층)20: second layer (Mo-Cu layer)
30: 제3층(Cu층)30: third layer (Cu layer)
40: 제4층(Mo-Cu층)40: fourth layer (Mo-Cu layer)
50: 제5층(Cu층)50: 5th layer (Cu layer)
60: 제1 코발트 확산층60: first cobalt diffusion layer
70: 제2 코발트 확산층70: second cobalt diffusion layer
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0027446 | 2019-03-11 | ||
KR20190027446 | 2019-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184773A1 true WO2020184773A1 (en) | 2020-09-17 |
Family
ID=72426133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/003857 WO2020184773A1 (en) | 2019-03-11 | 2019-04-02 | Heat-dissipating plate |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102263934B1 (en) |
WO (1) | WO2020184773A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102685109B1 (en) * | 2021-12-13 | 2024-07-15 | 주식회사 더굿시스템 | Composite and heat dissipation parts |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011366A (en) * | 2009-06-30 | 2011-01-20 | Sumitomo Electric Ind Ltd | Method of manufacturing metal laminated structure |
JP2013077666A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Ltd | Wiring material, and semiconductor module using the same |
KR20150133312A (en) * | 2014-05-19 | 2015-11-30 | (주)메탈라이프 | Cladding material and method for manufacturing the same, and heat sink using the cladding material |
KR20180097021A (en) * | 2017-02-22 | 2018-08-30 | 주식회사 더굿시스템 | Heat sink plate |
JP2019029631A (en) * | 2016-08-31 | 2019-02-21 | Jfe精密株式会社 | Heat radiation plate and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016127197A (en) | 2015-01-07 | 2016-07-11 | 新日鉄住金マテリアルズ株式会社 | Heat dissipation board |
-
2019
- 2019-04-02 WO PCT/KR2019/003857 patent/WO2020184773A1/en active Application Filing
- 2019-11-22 KR KR1020190151437A patent/KR102263934B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011366A (en) * | 2009-06-30 | 2011-01-20 | Sumitomo Electric Ind Ltd | Method of manufacturing metal laminated structure |
JP2013077666A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Ltd | Wiring material, and semiconductor module using the same |
KR20150133312A (en) * | 2014-05-19 | 2015-11-30 | (주)메탈라이프 | Cladding material and method for manufacturing the same, and heat sink using the cladding material |
JP2019029631A (en) * | 2016-08-31 | 2019-02-21 | Jfe精密株式会社 | Heat radiation plate and manufacturing method thereof |
KR20180097021A (en) * | 2017-02-22 | 2018-08-30 | 주식회사 더굿시스템 | Heat sink plate |
Also Published As
Publication number | Publication date |
---|---|
KR102263934B1 (en) | 2021-06-14 |
KR20200109234A (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018047988A1 (en) | Heat dissipation plate material for high output device | |
US6129993A (en) | Heat spreader and method of making the same | |
US9968012B2 (en) | Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate | |
US20110017496A1 (en) | Power module substrate having heatsink, method for manufacturing the same, power module having heatsink, and power module substrate | |
KR101679104B1 (en) | Heat sink for electronic device, and process for production thereof | |
US9095062B2 (en) | Power module substrate, power module, and method for manufacturing power module substrate | |
EP0422558A2 (en) | Ceramic substrate used for fabricating electric or electronic circuit | |
WO2020184772A1 (en) | Heat sink plate | |
JPH09312361A (en) | Composite material for electronic component and its manufacture | |
JP2023527668A (en) | Carrier substrate and carrier substrate manufacturing method | |
EP3780087A1 (en) | Method of manufacturing bonded body for insulating circuit board, and bonded body for insulating circuit board | |
WO2020184773A1 (en) | Heat-dissipating plate | |
US11285701B2 (en) | Heat sink plate | |
WO2020149587A1 (en) | Radiation board | |
KR20190041383A (en) | Heat sink plate | |
US5613181A (en) | Co-sintered surface metallization for pin-join, wire-bond and chip attach | |
TWI759745B (en) | Metal foil with carrier, and method of using and manufacturing the same | |
JP2011238892A (en) | Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module | |
US12089342B2 (en) | Insulated circuit board | |
WO2022039441A1 (en) | Power module and manufacturing method therefor | |
WO2024144121A1 (en) | Ceramic substrate for power module and power module comprising same | |
JPH09312364A (en) | Composite material for electronic component and its manufacture | |
WO2021261805A1 (en) | Hybrid base plate and manufacturing method therefor | |
JPH09283657A (en) | Circuit board and manufacture thereof | |
US6429381B1 (en) | High density interconnect multichip module stack and fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19919449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19919449 Country of ref document: EP Kind code of ref document: A1 |