WO2020184607A1 - アルカリ水電解方法及びアルカリ水電解用アノード - Google Patents
アルカリ水電解方法及びアルカリ水電解用アノード Download PDFInfo
- Publication number
- WO2020184607A1 WO2020184607A1 PCT/JP2020/010477 JP2020010477W WO2020184607A1 WO 2020184607 A1 WO2020184607 A1 WO 2020184607A1 JP 2020010477 W JP2020010477 W JP 2020010477W WO 2020184607 A1 WO2020184607 A1 WO 2020184607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkaline water
- water electrolysis
- anode
- nickel
- electrolytic
- Prior art date
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000003054 catalyst Substances 0.000 claims abstract description 67
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 39
- 239000002135 nanosheet Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 12
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 9
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 80
- 239000000758 substrate Substances 0.000 claims description 44
- 229910052759 nickel Inorganic materials 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- 239000001301 oxygen Substances 0.000 claims description 23
- 239000006185 dispersion Substances 0.000 claims description 21
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 9
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 15
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 24
- 229910052739 hydrogen Inorganic materials 0.000 description 24
- 239000001257 hydrogen Substances 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 13
- -1 platinum group metal oxide Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 3
- 229910003267 Ni-Co Inorganic materials 0.000 description 3
- 229910003262 Ni‐Co Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 241001479434 Agfa Species 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910020521 Co—Zn Inorganic materials 0.000 description 1
- 241000877463 Lanio Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910000306 iron group oxide Inorganic materials 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- HZPNKQREYVVATQ-UHFFFAOYSA-L nickel(2+);diformate Chemical compound [Ni+2].[O-]C=O.[O-]C=O HZPNKQREYVVATQ-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/085—Organic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
- C25B11/053—Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/056—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/029—Concentration
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/06—Electrolytic coating other than with metals with inorganic materials by anodic processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to an alkaline water electrolysis method and an anode for alkaline water electrolysis. Specifically, it has been realized that the catalytic activity of the anode for oxygen generation can be stably maintained for a long period of time by a simple means of supplying an electrolytic solution having a unique configuration common to the anode chamber and the cathode chamber constituting the electrolytic cell. As a result, even when electric power with large output fluctuations such as renewable energy is used as the power source, the electrolysis performance is less likely to deteriorate, and a technique capable of performing stable alkaline water electrolysis for a long period of time is provided. ..
- Hydrogen is a secondary energy that is suitable for storage and transportation and has a small environmental load, so there is a lot of interest in hydrogen energy systems that use hydrogen as an energy carrier.
- hydrogen is mainly produced by steam reforming of fossil fuels.
- water electrolysis from renewable energies such as solar power generation and wind power generation has become important among basic technologies. Water electrolysis is low cost and suitable for large scale, and is a powerful technology for hydrogen production.
- the current practical water electrolysis can be roughly divided into two.
- One is alkaline water electrolysis, and a high-concentration alkaline aqueous solution is used as the electrolyte.
- the other is solid polymer type water electrolysis, in which a solid polymer membrane (SPE) is used as the electrolyte.
- SPE solid polymer membrane
- the high-concentration alkaline aqueous solution becomes more conductive as the temperature rises, but also becomes more corrosive. Therefore, the upper limit of the operating temperature is suppressed to about 80 to 90 ° C. Due to the development of constituent materials and various piping materials for electrolytic cells that can withstand high-temperature and high-concentration alkaline aqueous solutions, low-resistance diaphragms, and electrodes with an expanded surface area and a catalyst, the electrolytic cell voltage has a current density of 0. It has improved to 2V or less at 6Acm- 2 .
- anode for alkaline water electrolysis
- a nickel-based material that is stable in a high-concentration alkaline aqueous solution
- the nickel-based anode has been used for several decades or more. It has been reported that it has a lifetime of (Non-Patent Documents 1 and 2).
- Non-Patent Documents 1 and 2 when renewable energy is used as a power source, severe conditions such as severe start / stop and load fluctuation often occur, and deterioration of the performance of the nickel-based anode has become a problem (Non-Patent Document 3).
- both the nickel oxide formation reaction and the produced nickel oxide reduction reaction proceed on the metal surface. Therefore, the desorption of the electrode catalyst formed on the metal surface is promoted along with these reactions.
- the electrolysis is stopped, and the nickel-based anode has a potential lower than the oxygen evolution potential (1.23 V vs. RHE) and is the opposite electrode (cathode) for hydrogen generation (cathode). It is maintained at a potential higher than 0.00V vs. RHE).
- electromotive force is generated by various chemical species, the anode potential is maintained low as the battery reaction progresses, and the reduction reaction of nickel oxide is promoted.
- the current generated by the battery reaction leaks through the piping connecting the cells in the case of an electrolytic cell in which a plurality of cells such as an anode chamber and a cathode chamber are combined.
- a measure to prevent such a current leak for example, there is a method of keeping a minute current flowing at the time of stopping.
- special power supply control is required, and oxygen and hydrogen are constantly generated, which causes a problem that excessive time and effort is required for operation management.
- anode catalyst for an oxygen generating anode conventionally used for alkaline water electrolysis
- a platinum group metal, a platinum group metal oxide, a valve metal oxide, an iron group oxide, a lanthanide group metal oxide, etc. Is being used.
- Other anode catalysts include nickel-based alloys such as Ni-Co and Ni-Fe; nickel with an expanded surface area; spinel-based Co 3 O 4 , NiCo 2 O 4 , perovskite-based LaCo O 3 , and LaNiO.
- Conductive oxides (ceramic materials) such as 3 ; noble metal oxides; oxides composed of lanthanide group metals and noble metals are also known (Non-Patent Document 3).
- an anode for alkaline water electrolysis in which a lithium-containing nickel oxide catalyst layer containing lithium and nickel in a predetermined molar ratio is formed on the surface of a nickel substrate (Patent Document). 1) and an anode for alkaline water electrolysis (Patent Document 2) in which a catalyst layer containing a nickel cobalt-based oxide and an iridium oxide or a ruthenium oxide is formed on the surface of a nickel substrate have been proposed.
- the present invention has been made in view of the problems of the prior art, and the subject thereof is even when a power source having a large output fluctuation such as renewable energy is used as a power source.
- An object of the present invention is to provide an electrode for electrolysis having excellent durability in which electrolysis performance is not easily deteriorated and excellent catalytic activity is stably maintained for a long period of time.
- the final subject of the present invention is that by using the above-mentioned excellent electrode for electrolysis, the electrolysis performance can be improved even when a power source having a large output fluctuation such as renewable energy is used as a power source. It is an object of the present invention to provide an operation method which is hard to deteriorate and can perform stable alkaline water electrolysis for a long period of time.
- anode constituting an electrolytic cell is an electrolytic solution in which a catalyst containing a hybrid cobalt hydroxide nanosheet (hereinafter, may be abbreviated as Co-NS) of a composite of a metal hydroxide and an organic substance is dispersed.
- Co-NS hybrid cobalt hydroxide nanosheet
- An alkaline water electrolysis method characterized in that it is supplied to a chamber and a cathode chamber and used in common for electrolysis in each chamber.
- An electrolytic solution in which a catalyst containing a hybrid cobalt hydroxide nanosheet (Co-NS) of a composite of a metal hydroxide and an organic substance is dispersed is supplied to an anode chamber and a cathode chamber constituting an electrolytic cell. , Used in common for electrolysis in each chamber, during operation, electrolytic precipitation of the Co-NS is performed in the electrolytic cell to form the catalyst layer on the surface constituting the oxygen generation anode.
- An alkaline water electrolysis method characterized by recovering and improving electrolytic performance by electrolytically depositing the Co-NS on the surface of a conductive substrate.
- the condition for electrolytically precipitating the Co-NS is that the conductive substrate is 1.2V to 1.8V vs.
- a Co-NS dispersion having a concentration of 10 to 100 g / L is used, and the concentration of the Co-NS dispersion added to the electrolytic solution is 0.1 to 1.
- the present invention provides the following anode for alkaline water electrolysis, which is useful when applied to the above alkaline water electrolysis method.
- a conductive substrate whose surface is made of nickel or a nickel-based alloy, and a composition formula Li x Ni 2-x O 2 (0.02 ⁇ x ⁇ 0.5) formed on the surface of the conductive substrate.
- An anode for alkaline water electrolysis which comprises a Co-NS catalyst layer and is provided with an oxygen generator.
- the electrolytic performance is less likely to deteriorate during the electrolytic operation, and excellent catalytic activity is stably maintained for a long period of time.
- an anode for alkaline water electrolysis (sometimes referred to as an anode for oxygen generation) that generates oxygen.
- An industrially useful alkaline water electrolysis method that does not easily deteriorate electrolysis performance and can perform stable alkaline water electrolysis for a long period of time even when power with large output fluctuations such as energy is used as the power source. Can be provided.
- NiFe-LDH NiFe-layered double hydroxide
- Ni x B catalyst nanopowder for the anode and cathode, respectively.
- the cell voltage decreased only when Ni x B was added to the cathode solution.
- a dense particle film was observed on the cathode, but no film formation was observed on the anode.
- Ni x B was only confirmed to have an effect as a cathode catalyst, and had no effect on the anode.
- the anode has an active catalyst layer, it has not been disclosed so far whether the catalytic effect as shown in the above-mentioned prior art can be expected.
- the dispersed self-repairing catalyst moves not only to the anode but also to the cathode, so that the influence on the cathode becomes an important problem.
- no particles have been reported that have an effect on both electrodes and function as a stable catalyst.
- Co-NS hybrid cobalt hydroxide nanosheet
- Co-NS a hybrid cobalt hydroxide nanosheet
- Acting as a catalyst and anticorrosion coating can greatly improve the durability of Ni-based anodes against potential fluctuations, and further, Co-NS does not particularly affect the active cathode and is electrolyzed. We found that it can be applied to cells.
- FIG. 1 is a cross-sectional view schematically showing an embodiment of an anode 10 for alkaline water electrolysis that generates oxygen used in the alkaline water electrolysis method of the present invention.
- the oxygen-evolving anode of the present embodiment includes a conductive substrate 2, an intermediate layer 4 formed on the surface of the conductive substrate 2, and a catalyst formed on the surface of the intermediate layer 4. It includes a layer 6.
- the details of the oxygen evolving anode used in the alkaline water electrolysis method of the present invention will be described with reference to the drawings.
- the conductive substrate 2 is a conductor for conducting electricity for electrolysis, and is a member having a function as a carrier for supporting the intermediate layer 4 and the catalyst layer 6. At least the surface of the conductive substrate 2 (the surface on which the intermediate layer 4 is formed) is made of nickel or a nickel-based alloy. That is, the conductive substrate 2 may be entirely formed of nickel or a nickel-based alloy, or only the surface may be formed of nickel or a nickel-based alloy. Specifically, the conductive substrate 2 may have a surface of a metal material such as iron, stainless steel, aluminum, or titanium coated with nickel or a nickel-based alloy by plating or the like.
- the thickness of the conductive substrate 2 is preferably 0.05 to 5 mm.
- the shape of the conductive substrate is preferably a shape having an opening for removing bubbles such as generated oxygen and hydrogen.
- an expanded mesh or a porous expanded mesh can be used as the conductive substrate 2.
- the aperture ratio of the conductive substrate is preferably 10 to 95%.
- the oxygen-evolving anode used in the alkaline water electrolysis method of the present invention can be obtained, for example, by forming the intermediate layer 4 and the catalyst layer 6 on the surface of the conductive substrate 2 described above as described below. .. (Pretreatment process) Before performing the steps of forming the intermediate layer 4 and the catalyst layer 6, it is preferable that the conductive substrate 2 is chemically etched in advance in order to remove contaminated particles such as metals and organic substances on the surface.
- the amount of consumption of the conductive substrate by the chemical etching treatment is preferably about 30 g / m 2 or more and 400 g / m 2 or less.
- the roughening treatment means include blasting treatment by spraying powder, etching treatment using a substrate-soluble acid, and plasma spraying.
- the intermediate layer 4 is a layer formed on the surface of the conductive substrate 2.
- the intermediate layer 4 suppresses corrosion of the conductive substrate 2 and stably fixes the catalyst layer 6 to the conductive substrate 2.
- the intermediate layer 4 also plays a role of rapidly supplying an electric current to the catalyst layer 6.
- the intermediate layer 4 may be formed of, for example, a lithium-containing nickel oxide represented by the composition formula Li x Ni 2-x O 2 (0.02 ⁇ x ⁇ 0.5). If x in the above composition formula is less than 0.02, the conductivity becomes insufficient. On the other hand, when x exceeds 0.5, the physical strength and chemical stability decrease.
- the intermediate layer 4 formed of the lithium-containing nickel oxide represented by the above composition formula has sufficient conductivity for electrolysis and exhibits excellent physical strength and chemical stability even when used for a long period of time. ..
- the thickness of the intermediate layer 4 is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the thickness of the intermediate layer is less than 0.01 ⁇ m, the above-mentioned functions cannot be sufficiently obtained. On the other hand, even if the thickness of the intermediate layer is more than 100 ⁇ m, the voltage loss due to the resistance in the intermediate layer becomes large and the above-mentioned function is not exhibited, and there is a case where it is slightly disadvantageous in terms of manufacturing cost and the like.
- an aqueous precursor solution containing lithium ions and nickel ions is coated on the surface of the conductive substrate 2.
- the intermediate layer 4 is formed by a so-called thermal decomposition method.
- an aqueous precursor solution of the intermediate layer is prepared.
- the precursor containing a lithium component known precursors such as lithium nitrate, lithium carbonate, lithium chloride, lithium hydroxide and lithium carboxylate can be used. Examples of lithium carboxylate include lithium formate and lithium acetate.
- the precursor containing a nickel component known precursors such as nickel nitrate, nickel carbonate, nickel chloride, and nickel carboxylate can be used.
- nickel carboxylate examples include nickel formate and nickel acetate.
- the heat treatment temperature when forming the intermediate tank 4 by the thermal decomposition method can be appropriately set.
- the heat treatment temperature is preferably 450 ° C. or higher and 600 ° C. or lower. It is more preferable that the temperature is 450 ° C. or higher and 550 ° C. or lower.
- the decomposition temperature of lithium nitrate is about 430 ° C
- the decomposition temperature of nickel acetate is about 373 ° C.
- the heat treatment temperature is higher than 600 ° C.
- the conductive substrate 2 is likely to be oxidized, the electrode resistance is increased, and the voltage loss may be increased.
- the heat treatment time may be appropriately set in consideration of the reaction rate, productivity, oxidation resistance of the catalyst layer surface, and the like.
- the thickness of the formed intermediate layer 4 can be controlled by appropriately setting the number of times the aqueous solution is applied in the above-mentioned coating step.
- the coating and drying of the aqueous solution may be repeated layer by layer to form the uppermost layer, and then the whole may be heat-treated, or the coating and heat treatment (pretreatment) of the aqueous solution may be repeated layer by layer to form the uppermost layer.
- the whole may be heat treated.
- the pretreatment temperature and the overall heat treatment temperature may be the same or different.
- the pretreatment time is preferably shorter than the total heat treatment time.
- the oxygen-evolving anode used in the alkaline water electrolysis method of the present invention preferably has a form in which a catalyst layer 6 composed of a catalyst component peculiar to the outermost surface of the conductive substrate 2 is formed.
- the hybrid cobalt hydroxide nanosheet which is a composite of a metal hydroxide and an organic substance, which is a catalyst component used in the present invention and characterizes the present invention, is easily produced, for example, as follows. be able to. First, an aqueous solution of a tripod-type ligand (Tris-NH 2 ) and an aqueous solution of CoCl 2 were mixed at room temperature and reacted at 80 ° C. for 24 hours. Then, the reaction product was vacuum-filtered and washed with pure water twice, and dried again at 80 ° C. to obtain a powdery layered structure of Co-Tris-NH 2 .
- Tris-NH 2 tripod-type ligand
- CoCl 2 aqueous solution of CoCl 2
- Co-NS has a layered Co-Tris-NH two- molecular structure having a tripod type ligand, and a bluesite layer in which Tris molecules are covalently immobilized. Consists of. Modification with Tris-NH 2 enhances the ability of layered cobalt hydroxide to exfoliate and disperse in the electrolyte. It is confirmed from the TEM image and the AFM image that the molecular structure of Co-NS obtained above is in the form of nanosheets having a thickness of about 1.3 nm and a lateral size in the range of 10 to 100 nm. did.
- the size of the nanosheet is preferably a length (major axis) in the range of 10 to 100 nm. If it is more than this, the efficiency of electrolytic precipitation is lowered, and it may be difficult to improve the overvoltage and the repair effect, which is not preferable.
- a method for forming the catalyst layer 6 containing Co-NS will be described.
- a 1.0 M aqueous solution of KOH was used as the electrolytic solution.
- a potential cyclic operation (-0.5 to 0.5 V vs. RHE, 200 mVs -1 , 200 cycles) is performed.
- the Co-NS dispersion having a concentration of 10 to 100 g / L obtained as described above is used, for example, when a Co-NS dispersion having a concentration of 50 g / L is used, the electrolytic solution is used.
- Co-NS is added to the electrode surface by electrolysis (0.5 to 1.8 V vs. RHE, 200 mV / s, 200 cycles) with an electrolytic solution mixed at a ratio of about 0.8 mL / L, and a hydroxide layer. Dispersibility was reduced by oxidation of the surface organic group and electrolysis of the surface organic group, and the mixture was deposited on the electrode surface.
- the concentration of the Co-NS powder added to the electrolytic solution is preferably in the range of 0.1 to 5 mL / L. If the concentration is higher than this, the dispersion becomes insufficient and uniform precipitation may not be obtained in electrolysis, which is not preferable. Further, if the concentration is lower than this, a sufficient amount cannot be obtained within a practical time in the precipitation by electrolysis.
- the conductive substrate was 1.2V to 1.8V vs. It is preferable to keep it within the potential range of RHE. The precipitation reaction does not proceed at 1.2 V or less, and when it is 1.8 V or more, oxygen evolution proceeds at the same time and precipitation is inhibited, which is not preferable.
- the cathode and the diaphragm are not particularly limited and are conventional.
- the one used for alkaline water electrolysis may be used as appropriate. These will be described below.
- Cathode As the cathode, it is preferable to select and use a substrate made of a material capable of withstanding alkaline water electrolysis and a catalyst having a small cathode overvoltage.
- a nickel substrate or a nickel substrate coated with an active cathode can be used. Examples of the shape of the cathode substrate include a plate-like shape, an expanded mesh, a porous expanded mesh, and the like.
- the cathode material examples include porous nickel having a large surface area and Ni—Mo-based materials.
- Ni—Mo-based materials Ni-Al, Ni-Zn , Ni-Co-Zn Raney nickel based material, such as; the like Ti 2 Ni such hydrogen storage alloy material; Ni-S sulfide-based materials such as.
- the catalyst those having properties such as low hydrogen overvoltage, high short-circuit stability, and high poisoning resistance are preferable.
- metals such as platinum, palladium, ruthenium and iridium, and oxides thereof are preferable.
- any conventionally known membrane such as asbestos, a non-woven fabric, an ion exchange membrane, a polymer porous membrane, and a composite membrane of an inorganic substance and an organic polymer can be used.
- a hydrophilic inorganic material such as a calcium phosphate compound or calcium fluoride
- an organic binding material such as polysulfone, polypropylene, and polyvinylidene fluoride
- a film-forming mixture of granular inorganic hydrophilic substances such as antimony and zirconium oxides and hydroxides and organic binders such as fluorocarbon polymers, polysulfone, polypropylene, polyvinyl chloride, and polyvinyl butyral.
- organic binders such as fluorocarbon polymers, polysulfone, polypropylene, polyvinyl chloride, and polyvinyl butyral.
- An ion-permeable polymer having a stretched organic fiber cloth embedded therein can be used.
- a high-concentration alkaline aqueous solution can be electrolyzed by using an alkaline water electrolysis cell having an oxygen-evolving anode as a component, which is characteristic of the present invention.
- an aqueous solution of an alkali metal hydroxide such as potassium hydroxide (KOH) and sodium hydroxide (NaOH) is preferable.
- the concentration of the alkaline aqueous solution is preferably 1.5% by mass or more and 40% by mass or less.
- the concentration of the alkaline aqueous solution is 15% by mass or more and 40% by mass or less, the electric conductivity is large and the power consumption can be suppressed, which is more preferable. Further, in consideration of cost, corrosiveness, viscosity, operability, etc., the concentration of the alkaline aqueous solution is preferably 20% by mass or more and 30% by mass or less.
- the catalyst layer 6 of the anode can be formed before being incorporated into the electrolytic cell.
- a nanosheet (Co-NS) containing the above-mentioned nanosheet (Co-NS) as a forming component of the catalyst layer 6 characteristic of the present invention is added to a common electrolytic solution supplied to the anode chamber and the cathode chamber constituting the electrolytic cell. By suspending and starting electrolysis in that state, the catalyst component can be precipitated on the anode.
- the alkaline water electrolysis technique of the present invention is used, the performance of the electrolytic cell whose performance has deteriorated due to operation can be recovered without the trouble of disassembling the electrolytic cell, which is practical and has an industrial merit. Is extremely large.
- a 50 g / L Co-NS dispersion obtained by the same method as described above is mixed with the pretreated electrolytic solution at a ratio of 0.8 mL / L. (1.68 V vs. RHE, 4 hours) was electrolyzed.
- Co-NS is oxidized on the electrode surface, the dispersibility is lowered by the oxidation of the hydroxide layer of Co-NS and the oxidative decomposition of the surface organic groups, and Co-NS is deposited on the electrode surface.
- a catalyst layer was formed. This anode was designated as "Ni-Co-NS".
- FIG. 4 shows the change in activity during catalyst layer formation in Ni-Co-NS performed above.
- the catalyst layer forming operation consisting of the potential sweep was repeated, the oxygen evolution overvoltage gradually decreased and became almost constant after 8 times. From this, it is considered that the anode Ni-Co-NS has a catalyst layer made of Co-NS capable of exhibiting a good function on the Ni surface.
- FIG. 5 shows the potential fluctuation cycle dependence of the oxygen evolution overvoltage in the accelerated deterioration test performed on the anode Ni-Co-NS obtained above. As shown in Examination Example 1 in FIG. 5, the overvoltage of Ni—Co-NS was constant at about 370 mV, and no deterioration due to the potential cycle was observed.
- Example 2 In the same manner as in Study Example 1, an anode was prepared by electrolyzing using an electrolytic solution in which a Co-NS dispersion solution was dissolved. In this example, electrolysis by cyclic voltammetry (-0.7 to 0.5 V vs. RHE, 500 mVs -1 , 2000 cycles) was repeated 21 times, and a potential fluctuation of up to 40,000 times was applied.
- FIG. 6 shows changes in hydrogen evolution and oxygen evolution overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles.
- 100 mA / cm 2 with respect to the number of potential cycles.
- the cathode as shown in FIG. 6, the magnitude of the overvoltage was 0.40 to 0.45 V regardless of the presence or absence of Co-NS, based on the results of Study Example 2 and Comparative Study Example 4 described later. It was found that there was no effect on the cathode of Co-NS dispersed in the electrolytic solution.
- FIG. 7 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles. As shown in FIG. 7, the overvoltage gradually decreased from 0.46V to 0.37V.
- FIG. 7 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles. As shown in FIG. 7, Barre-Pt gradually increased the overvoltage from 0.4V to 0.5V.
- FIG. 7 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles. As shown in FIG. 7, the overvoltage was stable at about 0.43V.
- FIG. 7 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles.
- the overvoltage of the Ni cathode was 0.4V to 0.45V, and the addition of the Co-NS dispersion liquid as seen in Study Example 4 had no effect.
- Example 5 A test was conducted and evaluated in the same manner as in Study Example 2 except that an active cathode having a catalyst composed of a composite oxide of Ru and Pr was used on the surface.
- FIG. 8 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles. As shown in FIG. 8, the overvoltage of the active cathode was maintained at about 75 mV.
- FIG. 8 shows the change in hydrogen generation overvoltage at
- 100 mA / cm 2 with respect to the number of potential cycles.
- the overvoltage of the active cathode decreased to about 60 mV at the initial stage, but maintained about 75 mV thereafter, and after 40,000 times, it was almost the same as that of Study Example 5.
- Example 1 As an anode substrate, a nickel expanded mesh (10 cm ⁇ 10 cm, LW ⁇ 3.7 SW ⁇ 0.9 ST ⁇ 0.8 T) obtained by immersing in 17.5 mass% hydrochloric acid near the boiling point for 6 minutes and performing a chemical etching treatment was used. Using. This expanded mesh was blasted (0.3 MPa) with 60 mesh alumina particles, then immersed in 20% by mass hydrochloric acid, and chemically etched near the boiling point for 6 minutes. An aqueous solution containing a component serving as a precursor of a lithium-containing nickel oxide was applied with a brush to the surface of the anode substrate after the chemical etching treatment, and then dried at 80 ° C. for 15 minutes.
- a 25% by mass KOH aqueous solution prepared by adding a Co-NS dispersion liquid similar to that used in Study Example 1 at a ratio of 1 mL / L was used as an electrolytic solution and supplied to the anode chamber and cathode chamber constituting the electrolytic cell to generate a current density. Electrolysis was performed at 6 kA / m 2 for 6 hours each. Next, the anode and cathode were short-circuited (0 kA / m 2 ), the temperature was lowered, and the mixture was stopped for 15 hours. Then, a shutdown test was conducted in which the operation from electrolysis to stop was one cycle. As a result, it was confirmed that it was stable at a predetermined voltage in 20 tests.
- Example 1 The same test as that performed in Example 1 was carried out in the same electrolytic cell used in Example 1 without adding Co-NS to the electrolytic solution supplied to the anode chamber and the cathode chamber constituting the electrolytic cell. .. As a result, the cell voltage gradually increased as the number of stops increased, confirming the superiority in the configuration of Example 1.
- the oxygen-evolving anode that characterizes the present invention is suitable as, for example, an anode for alkaline water electrolysis that constitutes an electrolysis facility or the like that uses electric power with large output fluctuations such as renewable energy as a power source.
- electrolysis in which a common hybrid cobalt hydroxide nanosheet (Co-NS), which is a catalyst component of an anode, is dispersed in an anode chamber and a cathode chamber constituting an electrolytic cell according to the present invention.
- Co-NS common hybrid cobalt hydroxide nanosheet
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
[1]金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(以下、Co-NSと略す場合がある)を含んでなる触媒を分散させた電解液を、電解セルを構成するアノード室とカソード室に供給し、各室での電解に共通して用いることを特徴とするアルカリ水電解方法。
[3]前記Co-NSが、10~100nmの大きさの層状の分子構造を有する[1]又は[2]に記載のアルカリ水電解方法。
[4]前記Co-NSを電解析出させる条件が、前記導電性基体を、1.2V~1.8V vs.RHEの電位範囲に保持することである[2]又は[3]に記載のアルカリ水電解方法。
[5]前記Co-NSを分散させた電解液として、濃度が10~100g/LであるCo-NS分散液を用い、該Co-NS分散液の電解液への添加濃度が0.1~5mL/Lの範囲内になるように調製する[1]~[4]のいずれかに記載のアルカリ水電解方法。
[6]表面がニッケル又はニッケル基合金からなる導電性基体と、前記導電性基体の表面上に形成された、組成式LixNi2-xO2(0.02≦x≦0.5)で表されるリチウム含有ニッケル酸化物からなる中間層と、前記中間層の表面上に形成された、金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(Co-NS)を含んでなるCo-NS触媒層と、を備えてなる酸素発生を行うことを特徴とするアルカリ水電解用アノード。
図1は、本発明のアルカリ水電解方法で用いる酸素発生を行うアルカリ水電解用アノード10の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の酸素発生用アノードは、導電性基体2と、導電性基体2の表面上に形成された中間層4と、中間層4の表面上に形成された触媒層6とを備える。以下、本発明のアルカリ水電解方法で用いる酸素発生用アノードの詳細につき、図面を参照しつつ説明する。
導電性基体2は、電気分解のための電気を通すための導電体であり、中間層4及び触媒層6を担持する担体としての機能を有する部材である。導電性基体2の少なくとも表面(中間層4が形成される面)は、ニッケル又はニッケル基合金で形成されている。すなわち、導電性基体2は、全体がニッケル又はニッケル基合金で形成されていてもよく、表面のみがニッケル又はニッケル基合金で形成されていてもよい。具体的に、導電性基体2は、例えば、鉄、ステンレス、アルミニウム、チタン等の金属材料の表面に、めっき等によりニッケル又はニッケル基合金のコーティングが施されたものであってもよい。
(前処理工程)
中間層4、触媒層6の形成工程を行う前に、表面の金属や有機物などの汚染粒子を除去するために、導電性基体2を予め化学エッチング処理することが好ましい。化学エッチング処理による導電性基体の消耗量は、30g/m2以上、400g/m2以下程度とすることが好ましい。また、中間層との密着力を高めるために、導電性基体の表面を予め粗面化処理することが好ましい。粗面化処理の手段としては、粉末を吹き付けるブラスト処理や、基体可溶性の酸を用いたエッチング処理や、プラズマ溶射などが挙げられる。
中間層4は、導電性基体2の表面上に形成される層である。中間層4は、導電性基体2の腐食等を抑制するとともに、触媒層6を導電性基体2に安定的に固着させる。また、中間層4は、触媒層6に電流を速やかに供給する役割も果たす。中間層4は、例えば、組成式LixNi2-xO2(0.02≦x≦0.5)で表されるリチウム含有ニッケル酸化物で形成するとよい。上記組成式中のxが0.02未満であると、導電性が不十分になる。一方、xが0.5を超えると物理的強度及び化学的安定性が低下する。上記組成式で表されるリチウム含有ニッケル酸化物で形成された中間層4は、電解に十分な導電性を有するとともに、長期間使用した場合でも、優れた物理的強度及び化学的安定性を示す。
塗布工程では、リチウムイオン及びニッケルイオンを含有する前駆体水溶液を導電性基体2の表面に塗布する。中間層4は、いわゆる熱分解法によって形成される。熱分解法により中間層を形成するに際しては、まず、中間層の前駆体水溶液を調製する。リチウム成分を含む前駆体としては、硝酸リチウム、炭酸リチウム、塩化リチウム、水酸化リチウム、カルボン酸リチウムなど公知の前駆体を使用することができる。カルボン酸リチウムとしては、ギ酸リチウムや酢酸リチウムが挙げられる。ニッケル成分を含む前駆体としては、硝酸ニッケル、炭酸ニッケル、塩化ニッケル、カルボン酸ニッケルなど公知の前駆体を使用することができる。カルボン酸ニッケルとしては、ギ酸ニッケルや酢酸ニッケルが挙げられる。特に、前駆体としてカルボン酸リチウム及びカルボン酸ニッケルの少なくとも一方を用いることにより、後述するように低温で焼成した場合であっても緻密な中間層を形成することができるので特に好ましい。
本発明のアルカリ水電解方法で用いる酸素発生用アノードは、導電性基体2の最表面に特有の触媒成分からなる触媒層6を形成した形態とすることが好ましい。このように構成し、アルカリ水電解に適用することで、本発明の優れた効果を発現できる。以下、本発明において、効果的で有用な触媒層について説明する。
本発明で使用し、本発明を特徴づける触媒成分である、金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(Co-NS)は、例えば、下記のようにして簡便に製造することができる。まず、三脚型配位子(Tris-NH2)水溶液と、CoCl2水溶液とを室温で混合し、80℃で24時間反応させた。その後、反応生成物を、真空ろ過と2度の純水洗浄を行い、再度80℃で乾燥して、粉末の、層状構造のCo-Tris-NH2を得た。この粉末50mgをイオン交換水1mLに分散させ、超音波処理により、濃度50g/LのCo-NS分散液を得た。本発明で用いるCo-NSを分散させた電解液には、上記したような製造方法で得た「Co-NS分散液」を添加して、適宜な添加濃度になるように調製した電解液を用いた。
Co-NSを含んでなる触媒層6の形成方法について述べる。電解液として1.0MのKOH水溶液を用いた。触媒層を形成する導電性基体2の表面を清浄化するために、電解液中にて電位操作を行うことが好ましい。例えば、電位サイクリック操作(-0.5~0.5V vs.RHE、200mVs-1、200サイクル)を行う。その後、先に述べたようにして得た10~100g/Lの濃度のCo-NS分散液を用い、例えば、50g/Lの濃度のCo-NS分散液を用いる場合であれば、電解液に0.8mL/L程度の割合で混合した電解液で、(0.5~1.8V vs.RHE、200mV/s、200サイクル)の電解により、電極表面でCo-NSを、水酸化物層の酸化や、表面有機基の酸化分解により分散性を低下させ、電極表面に堆積させた。
[カソード]
カソードとしては、アルカリ水電解に耐え得る材料製の基体と、陰極過電圧が小さい触媒とを選択して用いることが好ましい。カソード基体としては、ニッケル基体、又はニッケル基体に活性陰極を被覆形成したものを用いることができる。カソード基体の形状としては、板状の他、エクスパンドメッシュや、多孔質エクスパンドメッシュなどを挙げることができる。
電解用隔膜としては、アスベスト、不織布、イオン交換膜、高分子多孔膜、及び無機物質と有機高分子の複合膜など、従来公知のものをいずれも用いることができる。具体的には、リン酸カルシウム化合物やフッ化カルシウム等の親水性無機材料と、ポリスルホン、ポリプロピレン、及びフッ化ポリビニリデン等の有機結合材料との混合物に、有機繊維布を内在させたイオン透過性隔膜を用いることができる。また、アンチモンやジルコニウムの酸化物及び水酸化物等の粒状の無機性親水性物質と、フルオロカーボン重合体、ポリスルホン、ポリプロピレン、ポリ塩化ビニル、及びポリビニルブチラール等の有機性結合剤とのフィルム形成性混合物に、伸張された有機性繊維布を内在させたイオン透過性隔膜を用いることができる。
前記アノードの触媒層6は、電解セルに組み込む前に形成することができる。本発明のアルカリ水電解方法は、電解セルを構成するアノード室とカソード室に供給する共通の電解液に、前記した本発明を特徴づける触媒層6の形成成分としたナノシート(Co-NS)を懸濁させ、その状態で電解を開始することで、触媒成分をアノードに析出させることができる。このため、本発明のアルカリ水電解の技術を用いれば、運転によって性能の低下した電解セルの性能回復が、電解セル解体の手間なく行うことができるので、実用的であり、その工業上のメリットは極めて大きい。
まず、本発明を特徴づける触媒成分であるCo-NSを、電解液に分散させて電解した場合における電解表面への堆積の状態と、その効果についての検討を行った。比較のために、上記ナノシートを用いない場合についても、同様の試験を行った。
電解操作は、フッ素樹脂であるPFA製の三電極セルを用いて行った。作用極に沸騰塩酸で6分間エッチングしたNiワイヤー、参照極に可逆水素電極(RHE)、対極にNiコイル、電解液に1.0MのKOH水溶液250mLをそれぞれ用いて、30±1℃で実施した。まず、上記電解液にCo-NS分散液を加えずに、前処理として、サイクリックボルタンメトリー(0.5~1.5V vs.RHE、200mVs-1、200サイクル)を行った。本例では、電解液として、先に説明したと同様の方法で得た50g/LのCo-NS分散液を、上記前処理をした電解液に0.8mL/Lの割合で混合したものを用い、(1.68V vs.RHE、4時間)の電解を行った。この操作により、電極表面でCo-NSが酸化されて、Co-NSの水酸化物層の酸化や表面有機基の酸化分解により分散性を低下させ、電極表面にCo-NSを堆積させて、触媒層を形成した。このアノードを「Ni-Co-NS」とした。
上記と同様にして、電解液に特に触媒を添加しない実験を行った。図5に示したように、この場合、アノード触媒はNiのみであるが、当初の過電圧は370mVでNi-Co-NSと同等であったが、サイクルの経過と共に過電圧が大幅に増加し、10000サイクル以降では約550mVであった。
電解液に、触媒として0.66MのCo(NO3)2溶液を0.2mL加えたものをNi-Co(NO3)2とし、検討例1で行ったと同様の実験をした。図5に示したように、Ni-Co(NO3)2では、過電圧は420mVから460mVへと緩やかに上昇した。このことから、ニッケル電極表面に自発的に形成される水酸化ニッケルも高活性な電極触媒であるが、電位変動に伴うニッケルの酸化還元反応により、β相からα相への転移や、水和酸化物への変化を生じ、活性を失ったと推定される。
検討例1と同様の方法でNi表面にCo-NSからなる触媒層を形成させたアノードを用い、Co-NSを添加しない電解液で加速劣化試験を実施したときの、酸素発生過電圧の電位変動サイクル依存性を調べた。図5に示したように、初期の過電圧は370mV程度であったが、徐々に400mVまで増加したことが確認された。
検討例1と同様に、Co-NS分散液を溶解させた電解液を用い、電解することでアノードを作製した。本例では、サイクリックボルタンメトリー(-0.7~0.5V vs.RHE、500mVs-1、2000サイクル)での電解を21回繰り返し、40000回までの電位変動を負荷した。
Niアノードを用いて、検討例2と同様に試験を実施した結果を図6中に示した。図6に示した通り、電位サイクル数に対して、アノードの過電圧の増加が確認できた。
検討例1で行ったと同様に、電解液にCo-NS分散液を溶解させ、白金板(Bare-Pt)を用いて、検討例2と同様の条件で電解試験を行って評価した。図7に、電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図7に示した通り、過電圧が徐々に0.46Vから0.37Vに低下した。
白金線(Bare-Pt)を用いて、電解液にCo-NS分散液を溶解させずに、検討例2と同様の条件で試験を実施した。図7に、電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図7に示した通り、Bare-Ptは、過電圧が徐々に増加し、0.4Vから0.5Vに増加した。
電解液にCo-NS分散液を溶解させ、Niカソードを用いて検討例2と同様の条件で試験を行い、評価した。図7に、電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図7に示した通り、過電圧は0.43V程度で安定した。
Niカソードを用いて、電解液にCo-NS分散液を溶解させずに、検討例2と同様の条件で試験を実施した。図7に、電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図7に示した通り、Niカソードの過電圧は0.4Vから0.45Vであり、検討例4でみられた、Co-NS分散液の添加による効果はなかった。
表面にRuとPrの複合酸化物からなる触媒を形成した活性カソードを用いたこと以外は検討例2と同様にして、試験を行い評価した。図8に、電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図8に示した通り、活性カソードの過電圧は、75mV程度を維持した。
検討例5の活性カソードを用いて、電解液にCo-NS分散液を溶解させずに、検討例5と同様の試験を実施した。図8に電位サイクル数に対する|i|=100mA/cm2での水素発生過電圧の変化を示した。図8に示した通り、活性カソードの過電圧は、初期は60mV程度まで減少したが、その後75mV程度を維持し、40000回後では検討例5とほぼ同程度であった。
アノード基体として、17.5質量%塩酸中に沸点近傍で6分間浸漬して化学エッチング処理を行った、ニッケルエクスパンドメッシュ(10cm×10cm、LW×3.7SW×0.9ST×0.8T)を用いた。このエクスパンドメッシュを、60メッシュのアルミナ粒子でブラスト処理(0.3MPa)した後、20質量%塩酸に浸漬し、沸点近傍で、6分間化学エッチング処理した。化学エッチング処理後の陽極基体の表面に、リチウム含有ニッケル酸化物の前駆体となる成分を含んだ水溶液を刷毛で塗布した後、80℃で15分間乾燥させた。次いで、大気雰囲気下、600℃で15分間熱処理した。上記した水溶液の塗布から熱処理までの処理を20回繰り返して、アノード基体の表面上に中間層(組成:Li0.5Ni1.5O2)が形成された中間体を得た。
電解セルを構成するアノード室とカソード室に供給する電解液に、Co-NSを添加せずに、実施例1で用いたと同様の電解セルで、実施例1で行ったと同様の試験を行った。その結果、停止回数の増加とともにセル電圧も徐々に増加したことから、実施例1の構成における優位性が確認された。
4:中間層
6:触媒層
10:アルカリ水電解用アノード
Claims (6)
- 金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(Co-NS)を含んでなる触媒を分散させた電解液を、電解セルを構成するアノード室とカソード室に供給し、各室での電解に共通して用いることを特徴とするアルカリ水電解方法。
- 金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(Co-NS)を含んでなる触媒を分散させた電解液を、電解セルを構成するアノード室とカソード室に供給し、各室での電解に共通して用い、運転中に、前記Co-NSの電解析出を前記電解セル内にて行い、酸素発生用アノードを構成する、表面に前記触媒層を形成してなる導電性基体の表面に、前記Co-NSを電解析出させることで、電解性能を回復、向上させることを特徴とするアルカリ水電解方法。
- 前記Co-NSが、10~100nmの大きさの層状の分子構造を有する請求項1又は2に記載のアルカリ水電解方法。
- 前記Co-NSを電解析出させる条件が、前記導電性基体を、1.2V~1.8V vs.RHEの電位範囲に保持することである請求項2又は3に記載のアルカリ水電解方法。
- 前記Co-NSを分散させた電解液として、濃度が10~100g/LであるCo-NS分散液を用い、該Co-NS分散液の電解液への添加濃度が0.1~5mL/Lの範囲内になるように調製する請求項1~4のいずれか1項に記載のアルカリ水電解方法。
- 表面がニッケル又はニッケル基合金からなる導電性基体と、
前記導電性基体の表面上に形成された、組成式LixNi2-xO2(0.02≦x≦0.5)で表されるリチウム含有ニッケル酸化物からなる中間層と、
前記中間層の表面上に形成された、金属水酸化物と有機物との複合体のハイブリッド水酸化コバルトナノシート(Co-NS)を含んでなる触媒層と、
を備えてなる酸素発生を行うことを特徴とするアルカリ水電解用アノード。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021505102A JP6984837B2 (ja) | 2019-03-12 | 2020-03-11 | アルカリ水電解方法及びアルカリ水電解用アノード |
KR1020217030131A KR102373090B1 (ko) | 2019-03-12 | 2020-03-11 | 알칼리 수전해 방법 및 알칼리 수전해용 애노드 |
EP20769871.3A EP3940117B1 (en) | 2019-03-12 | 2020-03-11 | Alkaline water electrolysis method and alkaline water electrolysis anode |
CN202080020021.3A CN113544313B (zh) | 2019-03-12 | 2020-03-11 | 碱性水电解方法和碱性水电解用阳极 |
CA3133201A CA3133201C (en) | 2019-03-12 | 2020-03-11 | Alkaline water electrolysis method and alkaline water electrolysis anode |
US17/433,474 US11390958B2 (en) | 2019-03-12 | 2020-03-11 | Alkaline water electrolysis method and alkaline water electrolysis anode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019045008 | 2019-03-12 | ||
JP2019-045008 | 2019-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184607A1 true WO2020184607A1 (ja) | 2020-09-17 |
Family
ID=72426102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010477 WO2020184607A1 (ja) | 2019-03-12 | 2020-03-11 | アルカリ水電解方法及びアルカリ水電解用アノード |
Country Status (7)
Country | Link |
---|---|
US (1) | US11390958B2 (ja) |
EP (1) | EP3940117B1 (ja) |
JP (1) | JP6984837B2 (ja) |
KR (1) | KR102373090B1 (ja) |
CN (1) | CN113544313B (ja) |
CA (1) | CA3133201C (ja) |
WO (1) | WO2020184607A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182385A1 (ja) * | 2020-03-09 | 2021-09-16 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
WO2023095406A1 (ja) * | 2021-11-25 | 2023-06-01 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
WO2023119779A1 (ja) | 2021-12-24 | 2023-06-29 | 国立大学法人横浜国立大学 | 水溶液電解方法 |
WO2024063051A1 (ja) * | 2022-09-20 | 2024-03-28 | 国立大学法人東北大学 | アルカリ水電解システム、アルカリ水電解方法、及び水素の製造方法 |
CN118256951A (zh) * | 2024-05-24 | 2024-06-28 | 中国科学院合肥物质科学研究院 | 铱单原子@富氧空位氢氧化镍纳米片及其制备方法和应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114525530B (zh) * | 2022-02-24 | 2024-07-02 | 合肥综合性国家科学中心能源研究院(安徽省能源实验室) | 一种无负载液流电解水制氢方法及装置 |
CN114941161B (zh) * | 2022-06-08 | 2023-12-22 | 中国石油大学(华东) | 一种α/β混合相镍铁层状双氢氧化物材料的制备及其应用 |
CN115874193A (zh) * | 2022-11-15 | 2023-03-31 | 江苏天合绿色氢能源科技有限公司 | 碱性水电解制氢用的电解系统、方法以及电解槽 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015086420A (ja) | 2013-10-29 | 2015-05-07 | 国立大学法人横浜国立大学 | アルカリ水電解用陽極 |
CN106563450A (zh) * | 2016-11-05 | 2017-04-19 | 北京理工大学 | 一种用于析氧反应的alpha相氢氧化钴纳米片的制备方法 |
WO2017167373A1 (en) * | 2016-03-31 | 2017-10-05 | Siemens Aktiengesellschaft | A technique for in-situ anode activation by a cathode in an alkaline water electrolytic cell |
JP2017190476A (ja) | 2016-04-12 | 2017-10-19 | デノラ・ペルメレック株式会社 | アルカリ水電解用陽極及びアルカリ水電解用陽極の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992278A (en) * | 1975-09-15 | 1976-11-16 | Diamond Shamrock Corporation | Electrolysis cathodes having a melt-sprayed cobalt/zirconium dioxide coating |
FI118159B (fi) * | 2005-10-21 | 2007-07-31 | Outotec Oyj | Menetelmä elektrokatalyyttisen pinnan muodostamiseksi elektrodiin ja elektrodi |
EP2647430B1 (en) * | 2012-04-05 | 2015-07-08 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for preparing a catalyst mediating H2 evolution, said catalyst and uses thereof |
CN109852992B (zh) * | 2019-01-25 | 2020-04-28 | 浙江大学 | 一种高效电催化全分解水纳米片阵列电极及其制备方法和应用 |
-
2020
- 2020-03-11 JP JP2021505102A patent/JP6984837B2/ja active Active
- 2020-03-11 CN CN202080020021.3A patent/CN113544313B/zh active Active
- 2020-03-11 CA CA3133201A patent/CA3133201C/en active Active
- 2020-03-11 KR KR1020217030131A patent/KR102373090B1/ko active Active
- 2020-03-11 WO PCT/JP2020/010477 patent/WO2020184607A1/ja unknown
- 2020-03-11 US US17/433,474 patent/US11390958B2/en active Active
- 2020-03-11 EP EP20769871.3A patent/EP3940117B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015086420A (ja) | 2013-10-29 | 2015-05-07 | 国立大学法人横浜国立大学 | アルカリ水電解用陽極 |
WO2017167373A1 (en) * | 2016-03-31 | 2017-10-05 | Siemens Aktiengesellschaft | A technique for in-situ anode activation by a cathode in an alkaline water electrolytic cell |
JP2017190476A (ja) | 2016-04-12 | 2017-10-19 | デノラ・ペルメレック株式会社 | アルカリ水電解用陽極及びアルカリ水電解用陽極の製造方法 |
CN106563450A (zh) * | 2016-11-05 | 2017-04-19 | 北京理工大学 | 一种用于析氧反应的alpha相氢氧化钴纳米片的制备方法 |
Non-Patent Citations (6)
Title |
---|
C.T.BOWEN, INT.J.HYDROGEN ENERGY, vol. 9, 1984, pages 59 |
E. VENTOSA ET AL., ANGEW. CHEM. INT. ED., vol. 56, 2017, pages 8573 |
P.W.T.LU, S.SRINIVASAN, J.ELECTROCHEM.SOC., vol. 125, 1978, pages 1416 |
S . MITSUSHIMA ET AL., ELECTROCATALYSIS, vol. 8, 2017, pages 422 |
See also references of EP3940117A4 |
Y. KURODA ET AL., CHEM. EUR. J., vol. 23, 2017, pages 5032 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182385A1 (ja) * | 2020-03-09 | 2021-09-16 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
JP2021139027A (ja) * | 2020-03-09 | 2021-09-16 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
US11692276B2 (en) | 2020-03-09 | 2023-07-04 | De Nora Permelec Ltd | Alkaline water electrolysis method, and anode for alkaline water electrolysis |
JP7474436B2 (ja) | 2020-03-09 | 2024-04-25 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
WO2023095406A1 (ja) * | 2021-11-25 | 2023-06-01 | デノラ・ペルメレック株式会社 | アルカリ水電解方法及びアルカリ水電解用アノード |
WO2023119779A1 (ja) | 2021-12-24 | 2023-06-29 | 国立大学法人横浜国立大学 | 水溶液電解方法 |
KR20240121291A (ko) | 2021-12-24 | 2024-08-08 | 고쿠리츠다이가쿠호진 요코하마 고쿠리츠다이가쿠 | 수용액 전해 방법 |
WO2024063051A1 (ja) * | 2022-09-20 | 2024-03-28 | 国立大学法人東北大学 | アルカリ水電解システム、アルカリ水電解方法、及び水素の製造方法 |
JP7529340B1 (ja) | 2022-09-20 | 2024-08-06 | 国立大学法人東北大学 | アルカリ水電解システム、アルカリ水電解方法、及び水素の製造方法 |
CN118256951A (zh) * | 2024-05-24 | 2024-06-28 | 中国科学院合肥物质科学研究院 | 铱单原子@富氧空位氢氧化镍纳米片及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP6984837B2 (ja) | 2021-12-22 |
EP3940117B1 (en) | 2025-01-01 |
US11390958B2 (en) | 2022-07-19 |
CA3133201A1 (en) | 2020-09-17 |
KR102373090B1 (ko) | 2022-03-10 |
KR20210118970A (ko) | 2021-10-01 |
EP3940117A1 (en) | 2022-01-19 |
CA3133201C (en) | 2022-01-25 |
CN113544313B (zh) | 2022-06-03 |
EP3940117A4 (en) | 2023-09-06 |
JPWO2020184607A1 (ja) | 2021-10-21 |
US20220136115A1 (en) | 2022-05-05 |
CN113544313A (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6984837B2 (ja) | アルカリ水電解方法及びアルカリ水電解用アノード | |
CN115244220B (zh) | 碱性水电解方法及碱性水电解用阳极 | |
JP7273024B2 (ja) | 電解用電極及びその製造方法 | |
JP6889446B2 (ja) | アルカリ水電解用陽極の製造方法及びアルカリ水電解用陽極 | |
JP2015086420A (ja) | アルカリ水電解用陽極 | |
WO2022080465A1 (ja) | アルカリ水電解用アノード及びその製造方法 | |
WO2022080466A1 (ja) | アルカリ水電解用アノード及びその製造方法 | |
WO2022025208A1 (ja) | アルカリ水電解用アノード及びその製造方法 | |
TWI858988B (zh) | 電解用陽極及其製造方法 | |
WO2023095406A1 (ja) | アルカリ水電解方法及びアルカリ水電解用アノード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20769871 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505102 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3133201 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217030131 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020769871 Country of ref document: EP Effective date: 20211012 |