[go: up one dir, main page]

WO2020184480A1 - Method for manufacturing formed material, and forming metal mold - Google Patents

Method for manufacturing formed material, and forming metal mold Download PDF

Info

Publication number
WO2020184480A1
WO2020184480A1 PCT/JP2020/009850 JP2020009850W WO2020184480A1 WO 2020184480 A1 WO2020184480 A1 WO 2020184480A1 JP 2020009850 W JP2020009850 W JP 2020009850W WO 2020184480 A1 WO2020184480 A1 WO 2020184480A1
Authority
WO
WIPO (PCT)
Prior art keywords
push
hole
peripheral wall
compression
die
Prior art date
Application number
PCT/JP2020/009850
Other languages
French (fr)
Japanese (ja)
Inventor
修一 岩永
尚文 中村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021505050A priority Critical patent/JP7164009B2/en
Priority to CN202080019258.XA priority patent/CN113543903A/en
Publication of WO2020184480A1 publication Critical patent/WO2020184480A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor
    • B21D24/06Mechanically spring-loaded blank holders

Definitions

  • the present invention relates to a molding material manufacturing method for manufacturing a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion.
  • Non-Patent Document 1 a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion is manufactured by performing drawing processing. Is being done.
  • the body portion is formed by stretching the material metal plate, so that the thickness of the peripheral wall of the body portion is usually thinner than the material plate thickness.
  • the peripheral wall of the body is expected to have a performance as a shielding material to prevent magnetic leakage to the outside of the motor case. Further, depending on the structure of the motor, the performance of the stator as a back yoke is also expected from the peripheral wall.
  • the thickness of the material metal plate is selected to be thicker than the target thickness of the peripheral wall of the body in anticipation of a decrease in the thickness of the body. Will be done.
  • the plate thickness of the material metal plate is not always constant because it is affected by the manufacturing conditions and the like, and fluctuates within the allowable range of the plate thickness called the plate thickness tolerance.
  • the amount of plate thickness reduction in drawing may fluctuate due to changes in the mold state, variations in material characteristics, and the like.
  • the number of rotations of the rotor has been increased in order to improve the performance of the motor.
  • a slight deviation between the rotor and the motor case causes vibration and noise.
  • the inner diameter of the motor case may be required to have a highly accurate inner diameter roundness.
  • the body is finished and ironed to improve the roundness of the inner diameter.
  • the gap (clearance) between the die and the punch is set to be less than the material plate thickness of the body portion, and the material of the body portion is sandwiched from both the inner and outer sides by the die and the punch. Setting the clearance between the die and punch to be less than the material plate thickness of the body is called minus clearance.
  • Patent Document 2 even if the thickness of the material metal plate fluctuates or the mold conditions fluctuate, the thickness of the peripheral wall of the body before finishing ironing is controlled to control the increase or decrease of the plate thickness.
  • a molding material manufacturing method capable of maintaining the roundness of the inner diameter of the body with high accuracy by adjusting the thickness of the peripheral wall plate of the front body of the body is disclosed.
  • finish ironing with a negative clearance in other words, finish ironing to reduce the plate thickness of the body body, is performed to improve the accuracy of the roundness of the inner diameter.
  • the peripheral wall of the body is excessively thickened before finishing and ironing, the inflow of the body of the body into the gap between the die and the punch is hindered, and the body of the body or the peripheral wall of the body may be broken. ..
  • the material metal plate is a surface-treated steel plate having plating on its surface, the die and punch and the material may slide under high surface pressure, and plating slag may be generated.
  • the plating slag can cause deterioration of the appearance of the molded material.
  • galling may occur at the sliding portion between the die and the punch and the material, or the life of the mold may be shortened.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is a method for manufacturing a molding material and a molding material capable of improving the roundness of the inner diameter of a body portion without performing finish ironing. To provide a mold.
  • the molding material manufacturing method of the present invention is to manufacture a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion by performing multi-stage drawing on a material metal plate. It is a molding material manufacturing method including, and in a multi-stage drawing, a preliminary drawing in which a spare body having a body body is formed from a material metal plate, a die having a push-in hole, and a die having a push-in hole are inserted inside the body body. After pre-squeezing using a mold that includes a punch that pushes the body into the push hole and a pressurizing means that applies a compressive force along the depth direction of the body to the peripheral wall of the body.
  • It includes at least one compression squeeze, which forms the body by squeezing the body while applying compressive force to the body, and the push hole is a push hole at the entrance of the push hole. It has a tapered surface that extends in the circumferential direction of the indentation and is inclined with respect to the axial direction of the indentation hole so that the component of the compressive force is directed inward in the radial direction of the indentation hole. It is configured in.
  • the molding mold of the present invention is a molding mold for drawing a spare body having a body body, and is inserted into a die having a push-in hole and a body body. It is equipped with a punch that pushes the body into the push-in hole and a pressurizing means that applies a compressive force along the depth direction of the body to the peripheral wall of the body, while applying the compressive force to the body. It is configured to squeeze the body of the body, and the push-in hole extends in the circumferential direction of the push-in hole at the entrance of the push-in hole, and is tapered with respect to the axial direction of the push-in hole. It has a surface, and the tapered surface is configured so that the component force of the compressive force is directed inward in the radial direction of the push-in hole.
  • the component force of the compressive force is directed inward in the radial direction of the push hole due to the tapered surface, so that the peripheral wall of the body body is pushed by the punch during the compression drawing. It can be attached, and the body body or the inner peripheral surface of the body can be formed on the outer peripheral surface of the punch without any gap. As a result, the roundness of the inner diameter of the body can be improved without finishing and ironing.
  • FIG. 1 It is a perspective view which shows the molding material 1 manufactured by the molding material manufacturing method by Embodiment 1 of this invention. It is explanatory drawing which shows the molding material manufacturing method which manufactures the molding material of FIG. It is explanatory drawing which shows the mold used for the preliminary drawing of FIG. It is explanatory drawing which shows the preliminary drawing by the mold of FIG. It is explanatory drawing which shows the mold used for the 1st compression drawing of FIG. It is explanatory drawing which shows the 1st compression drawing by the die of FIG. It is a schematic diagram which showed the compressive force acting on the peripheral wall of the body body at the time of 1st to 3rd compression drawing.
  • FIG. 1 is a perspective view showing a molding material 1 manufactured by the molding material manufacturing method according to the first embodiment of the present invention.
  • the molding material 1 manufactured by the molding material manufacturing method of the present embodiment has a body portion 10 and a flange portion 11.
  • the body portion 10 is a tubular portion having a top wall 100 and a peripheral wall 101 extending from the outer edge of the top wall 100.
  • the top wall 100 may be called another way such as a bottom wall depending on the orientation in which the molding material 1 is used.
  • the body portion 10 is shown to have a perfect circular cross section in FIG. 1, the body portion 10 may have another shape such as an elliptical cross section or a square tubular shape.
  • the flange portion 11 is a plate portion formed at the end portion of the body portion 10 (the end portion of the peripheral wall 101).
  • FIG. 2 is an explanatory diagram showing a molding material manufacturing method for manufacturing the molding material 1 of FIG.
  • the molding material 1 is manufactured by performing multi-stage drawing on the flat plate-shaped material metal plate 2.
  • the multi-stage drawing includes a preliminary drawing and at least one compression drawing performed after the preliminary drawing.
  • compression first to third compression
  • the material metal plate 2 various steel plates can be used.
  • Preliminary drawing is a step of forming a spare body 20 having a body body 20a by processing the material metal plate 2.
  • the body portion 20a is a tubular body having a diameter wider than that of the body portion 10 of FIG. 1 and a shallow depth.
  • the depth direction of the body body 20a is defined by the extending direction (height direction) of the peripheral wall of the body body 20a.
  • the entire spare body 20 constitutes the body body 20a.
  • a body having a flange portion may be formed. In this case, the flange portion does not form the body body 20a.
  • the first to third compression throttles apply a compressive force 42a (see FIG. 5) along the depth direction of the body body 20a to the body body 20a while applying the body body 20a.
  • This is a step of forming the body portion 10 by squeezing. Squeezing the body body 20a means reducing the diameter of the body body 20a and increasing the depth of the body body 20a.
  • the spare body 20 after each compression drawing has a flange portion element body 20b that is inclined and extended with respect to the radial direction of the body portion element body 20a.
  • the flange portion body 20b extends along the tapered surface 44 provided on the die 40 used for each compression drawing, as will be described in detail later.
  • the reserve body 20 is subjected to restoric processing after the third compression drawing.
  • the wrist-like processing is a step of flattening the flange body 20b so that the flange body 20b extends along the radial direction of the body 20a or the body 10.
  • Restorative processing can be performed by sandwiching the flange portion element body 20b between a die having no tapered surface 44, which will be described later, and a lifter pad arranged so as to face the die.
  • the flange portion body 20b is processed while the peripheral wall diameter and height of the body portion 10 or the body portion body 20a are the same.
  • the spare body 20 becomes the molding material 1 after undergoing the rest-like processing.
  • the restorike may be omitted and the molding material 1 may be obtained by the third compression drawing. Good.
  • FIG. 3 is an explanatory view showing the mold 3 used for the preliminary drawing of FIG. 2
  • FIG. 4 is an explanatory view showing the preliminary drawing by the mold 3 of FIG.
  • the die 3 used for the preliminary drawing includes a die 30, a punch 31, and a cushion pad 32.
  • the die 30 is provided with a push-in hole 30a into which the material metal plate 2 is pushed together with the punch 31.
  • the peripheral wall surface of the push-in hole 30a and the lower surface of the die 30 extend orthogonally to each other, and the peripheral wall surface of the push-in hole 30a and the lower surface of the die 30 are formed by a curved die shoulder portion having a predetermined radius of curvature. Can be connected.
  • the die shoulder may be composed of a 90 degree arcuate surface. Further, the die shoulder portion defines the outer edge of the entrance of the push-in hole 30a.
  • the cushion pad 32 is arranged at the outer peripheral position of the punch 31 so as to face the end surface of the die 30.
  • the outer edge portion of the material metal plate 2 is not completely restrained by the die 30 and the cushion pad 32, and the outer edge portion of the material metal plate 2 is pulled out until it is released from the restraint of the die 30 and the cushion pad 32. .. All of the material metal plate 2 may be pushed into the push-in hole 30a together with the punch 31 and pulled out.
  • the drawing may be stopped at a depth at which the outer edge portion of the material metal plate 2 does not deviate from the restraint of the die 30 and the cushion pad 32.
  • FIG. 5 is an explanatory view showing the mold 4 used for the first compression drawing of FIG. 2
  • FIG. 6 is an explanatory view showing the first compression drawing of the mold 4 of FIG.
  • the die 4 used for the first compression drawing includes a die 40, a punch 41, and a lifter pad 42.
  • the die 40 is a member having a push-in hole 40a.
  • the punch 41 is a cylindrical body that is inserted into the body body 20a and pushes the body body 20a into the push-in hole 40a.
  • the push-in hole 40a has a tapered surface 44.
  • the tapered surface 44 is a surface that extends in the circumferential direction of the push hole 40a at the entrance of the push hole 40a and is inclined with respect to the axial direction of the push hole 40a.
  • the tapered surface 44 can be understood as the peripheral surface of a truncated cone whose bottom surface is arranged at the entrance of the push-in hole 40a.
  • the tapered surface 44 constitutes a plane that is inclined and extended with respect to the axial direction of the die 40.
  • the tapered surface 44 is provided so as to taper from the entrance of the push-in hole 40a toward the back.
  • the inlet of the push-in hole 40a is the opening of the push-in hole 40a on the punch 41 side. As shown in FIG. 5, in the embodiment in which the punch 41 is arranged below the die 40, the inlet of the push hole 40a can be understood as the lower opening of the push hole 40a.
  • the inner diameter 40b of the inlet of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a before compression drawing performed by using the die 40 having the push-in hole 40a. That is, in the mold 4 used for the first compression drawing shown in FIG. 5, the inlet inner diameter 40b of the push-in hole 40a is equal to or larger than the outer diameter of the peripheral wall of the body body 20a before the first compression drawing after the preliminary drawing. Has been done.
  • the difference between the inner diameter of the inlet 40b and the outer diameter of the peripheral wall of the body body 20a is preferably 3 times or more the plate thickness of the body body 20a.
  • the body body 20a is molded without coming off the taper outside even when the center is misaligned due to transportation or the like. Therefore, it is possible to reduce the possibility that the peripheral wall of the body body 20a is sandwiched between the lower surface of the die 40 and the lifter pad 42 and buckled due to the applied compressive force.
  • the inlet inner diameter 40b of the push-in hole 40a is preferably equal to or less than the outer diameter of the flange portion body 20b required after each drawing process is completed.
  • the lifter pad 42 is arranged at the outer peripheral position of the punch 41 so as to face the die 40.
  • the lifter pad 42 has a pad portion 420 and an urging portion 421 (support portion).
  • the pad portion 420 is an annular member arranged at an outer peripheral position of the punch 41 so as to face the die 40.
  • the urging portion 421 is arranged below the pad portion 420, and urges and supports the pad portion 420.
  • the urging portion 421 is configured so that the supporting force (urging force) that supports the pad portion 420 can be adjusted.
  • the body body 20a is placed on the pad portion 420. More specifically, the lower end of the peripheral wall of the body body 20a is placed on the pad portion 420.
  • the peripheral wall of the body 20a is sandwiched by the die 40 and the pad portion 420 when the die 40 is lowered.
  • the supporting force (compressive force by the lifter pad) of the urging portion 421 is along the depth direction of the body body 20a. It is applied to the body body 20a as a compressive force 42a. That is, the lifter pad 42 constitutes a pressurizing means for applying a compressive force 42a along the depth direction of the body body 20a to the body body 20a.
  • the bottom dead center of the pad portion 420 means a position where the descent of the pad portion 420 is mechanically restricted, and is defined by the structure of the urging portion 421 or the position of a member that regulates the descent of the pad portion 420. ..
  • the first compression drawing is performed so that the pad portion 420 does not bottom out.
  • the bearing capacity of the urging portion 421 is set as the compression force 42a during the first compression throttle. It acts on the body 20a. That is, in the first compression drawing, the body body 20a is squeezed while applying a compressive force 42a.
  • the compressive force 42a is adjusted by adjusting this bearing force.
  • the body body 20a can be squeezed without causing the body body 20a to be thinned.
  • the plate thickness of the body body 20a that has passed through the first compression drawing can be adjusted. Further, in the first compression drawing, the peripheral wall of the body body 20a is pressed against the tapered surface 44 and is pushed into the depth of the pressing hole 40a along the tapered surface 44.
  • the lower surface of the lifter pad 42 is in a state where it can move up and down freely in the vertical direction without contacting the upper surface of the punch holder 43. This is because the lifter pad 42 does not bottom out, and the lifter pad 42 that is about to rise due to the urging force (compressive force of the lifter pad) of the die 40 and the urging portion 421 that has descended during processing is the body element. It is in a state of being balanced through the body 20a.
  • the second and third compression draws of FIG. 2 are performed using a die having the same configuration as the die 4 shown in FIGS. 5 and 6. However, the dimensions such as the inclination angle ⁇ of the die 40, the punch 41, and the tapered surface 44 are appropriately changed.
  • the body body 20a after the first compression drawing is squeezed while applying a compressive force 42a.
  • the body body 20a after the second compression drawing is squeezed while applying a compressive force 42a. After passing through these first to third compression draws, the body body 20a is designated as the body 10.
  • the inlet diameter of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a after the first compression drawing and before the second compression drawing.
  • the inlet diameter of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a before the third compression drawing after the second compression drawing.
  • FIG. 7 is a schematic view showing the compressive force acting on the peripheral wall of the body body 20a during the first to third compression drawing.
  • the compressive force 42a applied from the lifter pad 42 during the first to third compression drawing acts on the portion 46 before the diameter reduction in the depth direction of the body body 20a.
  • a compressive force 42b is generated along the tapered surface 44.
  • the compressive force 42b has a component in a direction orthogonal to the axial direction of the push-in hole 40a. That is, the component force of the compressive force 42b goes inward in the radial direction of the push-in hole 40a.
  • the inner peripheral wall of the body 20a or the body 10 after passing through the tapered surface 44 is the outer surface of the punch 41 located on the extension line of the tapered surface 44. Is pressed against.
  • the inner peripheral wall of the body 20a or the body 10 is formed without a gap with the outer surface of the punch 41, and the inner dimensions of the body 20a or the body 10 are the shape transferred from the shape of the punch 41. Become.
  • the roundness of the inner diameter of the body portion 10 can be satisfied without finishing ironing, and problems such as the generation of plating slag due to finishing ironing can be avoided.
  • the inclination angle ⁇ of the tapered surface 44 is small, it is necessary to design the die 40 vertically long in order to make the inlet inner diameter 40b of the push-in hole 40a equal to or larger than the peripheral wall outer diameter of the body body 20a before compression drawing. There is and it becomes long.
  • the inclination angle ⁇ of the tapered surface 44 is large, the inflow of the body body 20a into the inner side of the push-in hole 40a may be hindered, and the dimensional accuracy may decrease.
  • is determined so as to satisfy the relationship of the following equation (1). Is preferable. 20 ° ⁇ ⁇ ⁇ 60 ° ⁇ ⁇ ⁇ ⁇ Equation (1)
  • 20 ° ⁇ ⁇ even if the compressive force of the lifter pad 42 is increased, it is possible to prevent the plate thickness of the peripheral wall of the body portion from becoming excessively thick.
  • ⁇ ⁇ 60 ° the accuracy of the inner diameter dimension and the inner diameter roundness can be improved even when the compressive force by the lifter pad 42 is small.
  • the axial direction of the push-in hole 40a can be understood as the push-in direction of the body body 20a or the advance / retreat direction of the punch 41.
  • the value obtained by dividing the compressive force 42a applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as the compression pressure P (unit: N / mm 2 ) with respect to the axial direction of the push-in hole 40a.
  • P the compression pressure
  • the inclination angle of the tapered surface 44 is ⁇ (°)
  • P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to ⁇ .
  • the cross-sectional area of the peripheral wall of the body body 20a can be calculated by any method, but the average plate thickness of the peripheral wall of the body body 20a related to the height direction before each compression drawing is used. It may be calculated.
  • Example 2 Next, an example will be shown.
  • the present inventors compress a circular plate having a thickness of 1.8 mm, a plating adhesion amount of 90 g / m 2 , and a diameter of 116 mm, which is a cold-rolled ordinary steel sheet coated with Zn-Al-Mg, as a material metal plate 2.
  • the relationship between the magnitude of the force 42a and the average thickness (mm) of the peripheral wall of the body of the body 20a was investigated.
  • the inner diameter and the roundness of the inner diameter of various body elements 20a produced by changing the compressive force 42a in the compression drawing step and the normal wall thinning process in which no compressive force was applied (Comparative Example 1) were investigated.
  • the processing conditions at that time are shown in Table 1.
  • FIG. 8 is a graph showing the plate thickness distribution of the body portion 10 after the third compression drawing is completed, and shows the compression pressure applied by the lifter pad 42 during the first to third compression drawing and the peripheral wall plate thickness of the body portion 10. The relationship with the distribution is shown.
  • FIG. 9 is an explanatory view showing a plate thickness measurement position of FIG. In FIG. 8, the vertical axis is the peripheral wall plate thickness of the body portion 10 after the third compression drawing, and the horizontal axis is the plate thickness measurement position of the peripheral wall of the body portion 10. The compressive force at the time of the first to third compression drawing was constant, and the plate thickness was measured in a direction parallel to the material rolling direction.
  • the peripheral wall plate thickness of the body portion 10 increases as a whole as the compression pressure in the first to third compression drawing steps increases.
  • the compression pressure is 92 N / mm 2 or more
  • the material plate thickness (1.8 mm) or more is obtained except for the vicinity of the shoulder (measurement position: 5 mm position).
  • the plate thickness of the peripheral wall of the body except for the upper part is the clearance of the die (die 40 and punch) in the third compression drawing process.
  • the size of the mold gap of 41) has been reached.
  • FIG. 10 is a graph showing the relationship between the compression pressure applied by the lifter pad 42 in the first to third compression drawing steps and the inner diameter of the body portion 10 after the third compression drawing.
  • the inner diameter dimension measurement position is shown in FIG.
  • the product standard was 36.15 mm ⁇ 0.05 mm. It can be seen that the inner diameter of the body tends to decrease as the compression pressure increases, and when a compression pressure of 147 N / mm 2 or more is applied, the inner diameter becomes substantially equal to or less than the punch diameter at the time of the third drawing.
  • the inner diameter is smaller in the case of applying a compressive pressure of 55N / mm 2 ⁇ 129N / mm 2.
  • the small inner diameter means that the peripheral wall of the body portion 10 and the punch There is almost no gap, indicating that there is a gap between the peripheral wall of the body 10 and the die 40.
  • the difference between the inner diameter and the punch diameter that is, the clearance between the peripheral wall of the body 10 and the punch diameter is less than half by applying a compression pressure of 55 N / mm 2 , and the peripheral wall plate of the body 10 Even if the thickness is less than the mold clearance, the inner diameter standard can be satisfied.
  • FIG. 11 is a graph showing the relationship between the compression pressure applied by the lifter pad in the first to third compression drawing steps and the roundness of the inner diameter of the body after the third compression drawing.
  • the roundness of the inner diameter was measured using a contact-type three-dimensional coordinate measuring machine (SVA600A-C2 manufactured by Tokyo Seimitsu Co., Ltd.).
  • the molded product was non-destructive, and a carbide shaft stylus having a ball diameter of 4 mm was used.
  • the coordinates of 16 points are measured at a pitch of 22.5 degrees in the circumferential direction inside the body body 20a, and a circular body is extracted from these measurement points.
  • the roundness of the inner diameter was derived.
  • the roundness of the inner diameter means that the inner wall shape of the body body 20a at an arbitrary height in the depth direction is a circular shape, and when this circular shape is sandwiched between two concentric circles, the distance between the two concentric circles is the minimum. It is represented by the difference in radius of two circles when The product standard for roundness of the inner diameter is 0.02 mm or less.
  • a Zn-Al-Mg plated steel sheet having a plate thickness of 1.8 mm was used as in FIG. 8, and the compressive force at the time of the first to third compression drawing was kept constant.
  • the roundness of the inner diameter of 0 N / mm 2 without applying compressive force is 0.04 mm or more at the measurement positions of 15 mm and 30 mm, which is out of the product standard.
  • the compression pressure is 55 N / mm 2 or more
  • the roundness of the inner diameter is less than half at any compression pressure, which is 0.02 mm or less, which is the product standard. This is because the space between the material and the punch 41 is formed without a gap by applying a compression pressure of 55 N / mm 2 or more, and the inside of the peripheral wall of the body portion 10 transfers the punch shape and approaches a perfect circular shape.
  • Tables 2 to 6 are experimental results showing the moldable range in the present invention.
  • the material metal plate 2 a circular plate having a thickness of 1.8 mm, a plating adhesion amount of 90 g / m2, and a diameter of 116 mm, which was obtained by plating a cold-rolled ordinary steel sheet with Zn-Al-Mg, was used.
  • the inclination angle ⁇ of the tapered surface 44 with respect to the axial direction of the push-in hole 40a was changed from 20 ° to 70 °, and evaluated by the inner diameter dimension, the inner diameter roundness, the presence or absence of plating residue, and the presence or absence of breakage.
  • the product standard is that the inner diameter dimension is 36.15 ⁇ 0.05 mm and the inner diameter roundness is 0.02 mm or less, and if all the measurement positions (15 mm, 30 mm, 45 mm) in the depth direction satisfy the product standard, ⁇ , If even one place deviates from the product standard, it is indicated as x.
  • the presence or absence of breakage is the result of pressing the cylindrical processed product formed in the first to third compression drawing steps using a mold simulating a motor case.
  • those satisfying all the evaluation items are indicated by ⁇ in the evaluation column in the figure, and those that are out of order are indicated by ⁇ .
  • the compression pressure range by the moldable lifter pad 42 is the widest, and the lifter pad 42 of 55 N / mm 2 or more at the time of the first to third compression drawing
  • the inner diameter dimension and inner diameter roundness satisfy the product standard.
  • a compression pressure of 184 N / mm 2 or more was applied, the peripheral wall of the body became excessively thick with respect to the clearance of the simulated mold, and the inflow resistance of the peripheral wall of the body into the die increased, causing breakage at the top of the processed product. ..
  • the lower limit of the inclination angle ⁇ of the tapered surface 44 is preferably 20 °. However, when the inclination angle ⁇ of the tapered surface 44 is 20 °, it is necessary to design the mold to be vertically long.
  • the inclination angle ⁇ of the tapered surface 44 is large, the inflow of the peripheral wall of the body into the die 40 is hindered during the first to third compression drawing, and the peripheral wall of the body passes through the region 47 of the tapered surface 44. , It may be formed without contacting the side surface of the punch 41 on the extension line of the tapered surface 44. Therefore, in the range where the compressive force by the lifter pad 42 is small, the inner diameter dimension and the inner diameter roundness deviate from the product standard, and when the inclination angle ⁇ of the tapered surface 44 is 70 ° (Table 6), it deviates from the standard at any compression pressure. Was there. Therefore, the inclination angle ⁇ of the tapered surface 44 is preferably determined so as to satisfy the following equation (1).
  • FIG. 12 shows the moldable range shown in Tables 2 to 6, the inclination angle ⁇ of the tapered surface 44, and the compression pressure P (compressive force in the depth direction received from the lifter pad 42 in the cross-sectional area of the peripheral wall of the body body 20a. It is explanatory drawing which showed the relationship (value divided by). Items that satisfy all of the items are indicated by ⁇ in the figure, items with breakage or plating slag are indicated by ⁇ , and items whose inner diameter dimension or inner diameter roundness does not satisfy the product standard are indicated by ⁇ . From the result of FIG.
  • the value obtained by dividing the compressive force applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as P (unit: N / mm 2 ), and the axial direction of the push-in hole 40a.
  • P unit: N / mm 2
  • P the inclination angle of the tapered surface 44 with respect to the taper surface 44
  • P it is preferable to determine P so as to satisfy the relationship of the following equation (2) or equation (3) according to ⁇ . 55 ⁇ P ⁇ 0.99 ⁇ + 123 (20 ° ⁇ ⁇ 45 °) ... Equation (2) 2.47 ⁇ -56 ⁇ P ⁇ 0.99 ⁇ + 123 (45 ° ⁇ ⁇ 60 °) ... Equation (3)
  • the component force of the compressive force is directed inward in the radial direction of the push-in hole 40a due to the tapered surface 44, so that the peripheral wall of the body body 20a is formed during the compression drawing. It can be pressed against the punch 41, and the inner peripheral surface of the body 20a or the body 10 can be formed on the outer peripheral surface of the punch 41 without any gap.
  • the roundness of the inner diameter of the body portion 10 can be improved without finishing and ironing. Since no finishing ironing process is required, the load on the material surface and the mold is reduced, and it is possible to avoid the occurrence of plating slag and galling. This configuration is particularly useful in applications where highly accurate inner diameter roundness is required for molding materials such as motor cases.
  • is determined so as to satisfy the relationship of 20 ° ⁇ ⁇ ⁇ 60 °, so that the compression pressure by the lifter pad 42
  • is determined so as to satisfy the relationship of 20 ° ⁇ ⁇ ⁇ 60 °, so that the compression pressure by the lifter pad 42
  • the value obtained by dividing the compressive force applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as P (unit: N / mm 2 ), and the tapered surface 44 in the axial direction of the push-in hole 40a.
  • P unit: N / mm 2
  • P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to ⁇ , so that there is a problem such as breakage or plating slag. The occurrence can be avoided more reliably.
  • the compression pressure in the first to third compression drawing steps should be adjusted within an appropriate pressure range regardless of the thickness of the material metal plate. It is possible to perform drawing processing that satisfies the inner diameter roundness with high accuracy and stability.
  • the number of compression drawing processes may be appropriately changed according to the size of the molding material 1 and the required dimensional accuracy.
  • the supporting force for supporting the pad portion 420 has been described so as to be adjustable, but the supporting force for supporting the pad portion 420 may not be adjustable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Provided is a method for manufacturing a formed material, comprising manufacturing a formed material having a trunk portion and a flange portion by subjecting a raw-material metal plate to multi-stage drawing. The multi-stage drawing includes performing compressive drawing at least once for forming the trunk portion by drawing a trunk portion element while applying a compressive force to the trunk portion element using a metal mold which includes a die having a push-in hole, a punch, and a pressing means for applying a compressive force to the peripheral wall of the trunk portion element along a depth direction of the trunk portion element. The push-in hole has a tapered surface which extends in the circumferential direction of the push-in hole at the entry of the push-in hole, and which extends while being inclined with respect to the axial direction of the push-in hole. The push-in hole is configured such that component forces of the compressive force are directed toward radially inside of the push-in hole due to the tapered surface.

Description

成形材製造方法および成形用金型Molding material manufacturing method and molding mold
 本発明は、筒状の胴部と胴部の端部に形成されたフランジ部とを有する成形材を製造するための成形材製造方法に関する。 The present invention relates to a molding material manufacturing method for manufacturing a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion.
 例えば下記の非特許文献1等に示されているように、絞り加工を行うことで、筒状の胴部と該胴部の端部に形成されたフランジ部とを有する成形材を製造することが行われている。絞り加工では、素材金属板を引き伸ばすことで胴部が形成されるので、通常、胴部の周壁の板厚は素材板厚よりも薄くなる。 For example, as shown in Non-Patent Document 1 and the like below, a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion is manufactured by performing drawing processing. Is being done. In the drawing process, the body portion is formed by stretching the material metal plate, so that the thickness of the peripheral wall of the body portion is usually thinner than the material plate thickness.
 例えば下記の特許文献1等に示されているモータケースとして、上記のような絞り加工により成形された成形材を用いる場合がある。この場合、胴部の周壁には、モータケース外への磁気漏洩を防ぐシールド材としての性能が期待される。また、モータの構造によっては、ステータのバックヨークとしての性能も周壁に期待される。 For example, as the motor case shown in Patent Document 1 and the like below, a molding material formed by drawing as described above may be used. In this case, the peripheral wall of the body is expected to have a performance as a shielding material to prevent magnetic leakage to the outside of the motor case. Further, depending on the structure of the motor, the performance of the stator as a back yoke is also expected from the peripheral wall.
 シールド材又はバックヨークとしての性能は、周壁が厚いほど良好となる。このため、上記のように絞り加工により成形材を製造する際には、胴部の板厚減少を見込んで、素材金属板の板厚は、目的とする胴部周壁の板厚よりも厚く選定される。しかし、素材金属板の板厚は、製造条件等の影響を受けるため常に一定ではなく、板厚公差と呼ばれる板厚の許容範囲内で変動する。また、金型状態の変化や材料特性のバラツキ等により、絞り加工における板厚減少量が変動することもある。 The thicker the peripheral wall, the better the performance as a shield material or back yoke. For this reason, when manufacturing the molded material by drawing as described above, the thickness of the material metal plate is selected to be thicker than the target thickness of the peripheral wall of the body in anticipation of a decrease in the thickness of the body. Will be done. However, the plate thickness of the material metal plate is not always constant because it is affected by the manufacturing conditions and the like, and fluctuates within the allowable range of the plate thickness called the plate thickness tolerance. In addition, the amount of plate thickness reduction in drawing may fluctuate due to changes in the mold state, variations in material characteristics, and the like.
 一方、近年、モータの高性能化のため、回転子の回転数の上昇が図られている。回転子とモータケースとの僅かなずれが振動及び騒音を生じさせる。モータの振動及び騒音を低減するために、モータケースの内径には高精度な内径真円度が求められることがある。 On the other hand, in recent years, the number of rotations of the rotor has been increased in order to improve the performance of the motor. A slight deviation between the rotor and the motor case causes vibration and noise. In order to reduce the vibration and noise of the motor, the inner diameter of the motor case may be required to have a highly accurate inner diameter roundness.
 そのため、通常は、多段絞り加工を終えた後の工程において、胴部に仕上げしごきを行って内径の真円度を向上させることが行われる。この仕上げしごきでは、ダイ及びパンチの隙間(クリアランス)を胴部の材料板厚未満に設定して、それらダイ及びパンチにより胴部の材料を内側と外側の両側から挟み込む。ダイ及びパンチのクリアランスを胴部の材料板厚未満に設定することを、マイナスクリアランスと呼ぶ。 Therefore, normally, in the process after finishing the multi-stage drawing process, the body is finished and ironed to improve the roundness of the inner diameter. In this finishing ironing, the gap (clearance) between the die and the punch is set to be less than the material plate thickness of the body portion, and the material of the body portion is sandwiched from both the inner and outer sides by the die and the punch. Setting the clearance between the die and punch to be less than the material plate thickness of the body is called minus clearance.
 下記の特許文献2等には、素材金属板の板厚が変動したり、金型条件が変動しても、仕上げしごき前の胴部周壁の板厚の増減をコントロールしたりして仕上げしごきの前の胴部素体の周壁板厚を調節することにより、胴部の内径真円度を高精度に維持することが可能な成形材製造方法が開示されている。この成形材製造方法では、マイナスクリアランスの仕上げしごき加工、言い換えると、胴部素体の板厚を減ずる仕上げしごき加工を行うことで内径真円度の高精度化を図っている。 According to Patent Document 2 and the like below, even if the thickness of the material metal plate fluctuates or the mold conditions fluctuate, the thickness of the peripheral wall of the body before finishing ironing is controlled to control the increase or decrease of the plate thickness. A molding material manufacturing method capable of maintaining the roundness of the inner diameter of the body with high accuracy by adjusting the thickness of the peripheral wall plate of the front body of the body is disclosed. In this molding material manufacturing method, finish ironing with a negative clearance, in other words, finish ironing to reduce the plate thickness of the body body, is performed to improve the accuracy of the roundness of the inner diameter.
特開2013-51765号公報Japanese Unexamined Patent Publication No. 2013-51765 特開2016-190245号公報Japanese Unexamined Patent Publication No. 2016-190245
 上記の成形材製造方法では、仕上げしごき加工を行うことにより、高精度な内径真円度を得ている。しかしながら、仕上げしごき前における胴部素体の周壁板厚制御の精度が低いとき、より具体的には胴部周壁を過剰に増肉したとき、以下の問題が生じることがある  In the above molding material manufacturing method, high-precision inner diameter roundness is obtained by finishing and ironing. However, when the accuracy of controlling the thickness of the peripheral wall plate of the body before finishing ironing is low, more specifically, when the peripheral wall of the body is excessively thickened, the following problems may occur.
 すなわち、仕上げしごき前に胴部周壁を過度に増肉したとき、ダイ及びパンチの隙間への胴部素体の流入が阻害され、胴部素体又は胴部の周壁に破断が生じることがある。
 また、素材金属板がその表面にめっきを有する表面処理鋼板である場合には、ダイ及びパンチと素材とが高面圧下で摺動され、めっき滓が発生する虞がある。めっき滓は、成形材の外観を悪化させる原因となり得る。
 さらに、ダイ及びパンチと素材との摺動部分におけるかじりの発生、又は金型寿命の低下を引き起こすことがある。しごき率及び仕上げしごきダイス肩半径に制限があり、成形限界が定められる。
That is, when the peripheral wall of the body is excessively thickened before finishing and ironing, the inflow of the body of the body into the gap between the die and the punch is hindered, and the body of the body or the peripheral wall of the body may be broken. ..
Further, when the material metal plate is a surface-treated steel plate having plating on its surface, the die and punch and the material may slide under high surface pressure, and plating slag may be generated. The plating slag can cause deterioration of the appearance of the molded material.
Further, galling may occur at the sliding portion between the die and the punch and the material, or the life of the mold may be shortened. There is a limit to the ironing ratio and the shoulder radius of the finishing ironing die, and the molding limit is set.
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、仕上げしごき加工を行わなくても、胴部の内径真円度を向上できる成形材製造方法及び成形用金型を提供することである。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is a method for manufacturing a molding material and a molding material capable of improving the roundness of the inner diameter of a body portion without performing finish ironing. To provide a mold.
 本発明の成形材製造方法は、素材金属板に対して多段絞りを行うことで、筒状の胴部と該胴部の端部に形成されたフランジ部とを有する成形材を製造することを含む成形材製造方法であって、多段絞りには、胴部素体を有する予備体を素材金属板から形成する予備絞りと、押込穴を有するダイと、胴部素体の内部に挿入されて胴部素体を押込穴に押込むパンチと、胴部素体の深さ方向に沿う圧縮力を胴部素体の周壁に加える加圧手段とを含む金型を用いて予備絞りの後に行われ、圧縮力を胴部素体に加えながら胴部素体を絞ることで胴部を形成する少なくとも1回の圧縮絞りと、が含まれており、押込穴は、押込穴の入口において押込穴の周方向に延在されるとともに、押込穴の軸方向に対して傾斜して延在されたテーパ面を有し、テーパ面により圧縮力の分力が押込穴の径方向内方に向かうように構成されている。 The molding material manufacturing method of the present invention is to manufacture a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion by performing multi-stage drawing on a material metal plate. It is a molding material manufacturing method including, and in a multi-stage drawing, a preliminary drawing in which a spare body having a body body is formed from a material metal plate, a die having a push-in hole, and a die having a push-in hole are inserted inside the body body. After pre-squeezing using a mold that includes a punch that pushes the body into the push hole and a pressurizing means that applies a compressive force along the depth direction of the body to the peripheral wall of the body. It includes at least one compression squeeze, which forms the body by squeezing the body while applying compressive force to the body, and the push hole is a push hole at the entrance of the push hole. It has a tapered surface that extends in the circumferential direction of the indentation and is inclined with respect to the axial direction of the indentation hole so that the component of the compressive force is directed inward in the radial direction of the indentation hole. It is configured in.
 本発明の成形用金型は、胴部素体を有する予備体に絞り加工を行うための成形用金型であって、押込穴を有するダイと、胴部素体の内部に挿入されて胴部素体を押込穴に押込むパンチと、胴部素体の深さ方向に沿う圧縮力を胴部素体の周壁に加える加圧手段とを備え、圧縮力を胴部素体に加えながら胴部素体を絞るように構成されており、押込穴は、押込穴の入口において押込穴の周方向に延在されるとともに、押込穴の軸方向に対して傾斜して延在されたテーパ面を有し、テーパ面により圧縮力の分力が押込穴の径方向内方に向かうように構成されている。 The molding mold of the present invention is a molding mold for drawing a spare body having a body body, and is inserted into a die having a push-in hole and a body body. It is equipped with a punch that pushes the body into the push-in hole and a pressurizing means that applies a compressive force along the depth direction of the body to the peripheral wall of the body, while applying the compressive force to the body. It is configured to squeeze the body of the body, and the push-in hole extends in the circumferential direction of the push-in hole at the entrance of the push-in hole, and is tapered with respect to the axial direction of the push-in hole. It has a surface, and the tapered surface is configured so that the component force of the compressive force is directed inward in the radial direction of the push-in hole.
 本発明の成形材製造方法及び成形用金型によれば、テーパ面により圧縮力の分力が押込穴の径方向内方に向かうので、圧縮絞り中に胴部素体の周壁をパンチに押付けることができ、胴部素体又は胴部の内周面をパンチの外周面に隙間なく成形できる。これにより、仕上げしごき加工を行わなくても、胴部の内径真円度を向上できる。 According to the molding material manufacturing method and the molding die of the present invention, the component force of the compressive force is directed inward in the radial direction of the push hole due to the tapered surface, so that the peripheral wall of the body body is pushed by the punch during the compression drawing. It can be attached, and the body body or the inner peripheral surface of the body can be formed on the outer peripheral surface of the punch without any gap. As a result, the roundness of the inner diameter of the body can be improved without finishing and ironing.
本発明の実施の形態1による成形材製造方法によって製造される成形材1を示す斜視図である。It is a perspective view which shows the molding material 1 manufactured by the molding material manufacturing method by Embodiment 1 of this invention. 図1の成形材を製造する成形材製造方法を示す説明図である。It is explanatory drawing which shows the molding material manufacturing method which manufactures the molding material of FIG. 図2の予備絞りに用いる金型を示す説明図である。It is explanatory drawing which shows the mold used for the preliminary drawing of FIG. 図3の金型による予備絞りを示す説明図である。It is explanatory drawing which shows the preliminary drawing by the mold of FIG. 図2の第1圧縮絞りに用いる金型を示す説明図である。It is explanatory drawing which shows the mold used for the 1st compression drawing of FIG. 図5の金型による第1圧縮絞りを示す説明図である。It is explanatory drawing which shows the 1st compression drawing by the die of FIG. 第1~第3圧縮絞り時に胴部素体の周壁に作用する圧縮力を示した模式図である。It is a schematic diagram which showed the compressive force acting on the peripheral wall of the body body at the time of 1st to 3rd compression drawing. 第1~第3圧縮絞り時にリフターパッドにより付与した圧縮力と胴部の周壁板厚分布との関係を示すグラフである。It is a graph which shows the relationship between the compressive force applied by the lifter pad at the time of the 1st to 3rd compression drawing, and the peripheral wall plate thickness distribution of the body part. 図8の板厚測定位置を示す説明図である。It is explanatory drawing which shows the plate thickness measurement position of FIG. 第1~第3圧縮絞り工程におけるリフターパッド42により付与した圧縮力と第3圧縮絞り後における胴部の内径との関係を示すグラフである。It is a graph which shows the relationship between the compressive force applied by the lifter pad 42 in the 1st to 3rd compression drawing steps, and the inner diameter of the body part after 3rd compression drawing. 第1~第3圧縮絞り工程におけるリフターパッドにより付与した圧縮力と第3圧縮絞り後の胴部内径真円度との関係を示すグラフである。It is a graph which shows the relationship between the compressive force applied by the lifter pad in the 1st to 3rd compression drawing steps, and the roundness of the inner diameter of the body part after the 3rd compression drawing. 表2~表6に示した成形可能範囲とテーパ面の傾斜角度θと圧縮圧力P(リフターパッドより受ける深さ方向の圧縮力を胴部素体の周壁の断面積で除した値)との関係を示した説明図である。The moldable range shown in Tables 2 to 6, the inclination angle θ of the tapered surface, and the compressive pressure P (the value obtained by dividing the compressive force in the depth direction received from the lifter pad by the cross-sectional area of the peripheral wall of the body). It is explanatory drawing which showed the relationship.
 以下、本発明を実施するための形態について、図面を参照して説明する。本発明は各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to each embodiment, and the components can be modified and embodied without departing from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in each embodiment. For example, some components may be removed from all the components shown in the embodiments. Furthermore, the components of different embodiments may be combined as appropriate.
 図1は、本発明の実施の形態1による成形材製造方法によって製造される成形材1を示す斜視図である。図1に示すように、本実施の形態の成形材製造方法によって製造される成形材1は、胴部10とフランジ部11とを有するものである。胴部10は、頂壁100と、頂壁100の外縁から延出された周壁101とを有する筒状部分である。頂壁100は、成形材1を用いる向きによっては底壁等の他の呼ばれ方をする場合もある。図1では胴部10は断面真円形を有するように示しているが、胴部10は、例えば断面楕円形や角筒形等の他の形状とされていてもよい。例えば頂壁100からさらに突出された突部を形成する等、頂壁100にさらに加工を加えることもできる。フランジ部11は、胴部10の端部(周壁101の端部)に形成された板部である。 FIG. 1 is a perspective view showing a molding material 1 manufactured by the molding material manufacturing method according to the first embodiment of the present invention. As shown in FIG. 1, the molding material 1 manufactured by the molding material manufacturing method of the present embodiment has a body portion 10 and a flange portion 11. The body portion 10 is a tubular portion having a top wall 100 and a peripheral wall 101 extending from the outer edge of the top wall 100. The top wall 100 may be called another way such as a bottom wall depending on the orientation in which the molding material 1 is used. Although the body portion 10 is shown to have a perfect circular cross section in FIG. 1, the body portion 10 may have another shape such as an elliptical cross section or a square tubular shape. Further processing can be applied to the top wall 100, for example, by forming a protrusion further protruding from the top wall 100. The flange portion 11 is a plate portion formed at the end portion of the body portion 10 (the end portion of the peripheral wall 101).
 次に、図2は、図1の成形材1を製造する成形材製造方法を示す説明図である。本発明の成形材製造方法は、平板状の素材金属板2に対して多段絞りを行うことで成形材1を製造する。多段絞りには、予備絞りと、この予備絞りの後に行われる少なくとも1回の圧縮絞りが含まれている。本実施の形態の成形材製造方法では、3回の圧縮(第1~第3圧縮)が行われる。素材金属板2としては、様々な鋼板を用いることができる。 Next, FIG. 2 is an explanatory diagram showing a molding material manufacturing method for manufacturing the molding material 1 of FIG. In the molding material manufacturing method of the present invention, the molding material 1 is manufactured by performing multi-stage drawing on the flat plate-shaped material metal plate 2. The multi-stage drawing includes a preliminary drawing and at least one compression drawing performed after the preliminary drawing. In the molding material manufacturing method of the present embodiment, compression (first to third compression) is performed three times. As the material metal plate 2, various steel plates can be used.
 予備絞りは、素材金属板2に加工を施すことで、胴部素体20aを有する予備体20を形成する工程である。胴部素体20aは、図1の胴部10よりも直径が広く、かつ深さが浅い筒状体である。胴部素体20aの深さ方向は、胴部素体20aの周壁の延在方向(高さ方向)によって規定される。本実施の形態では、予備体20の全体が胴部素体20aを構成している。但し、予備体20として、フランジ部を有するものを形成してもよい。この場合、フランジ部は胴部素体20aを構成しない。 Preliminary drawing is a step of forming a spare body 20 having a body body 20a by processing the material metal plate 2. The body portion 20a is a tubular body having a diameter wider than that of the body portion 10 of FIG. 1 and a shallow depth. The depth direction of the body body 20a is defined by the extending direction (height direction) of the peripheral wall of the body body 20a. In the present embodiment, the entire spare body 20 constitutes the body body 20a. However, as the spare body 20, a body having a flange portion may be formed. In this case, the flange portion does not form the body body 20a.
 第1~第3圧縮絞りは、後に詳しく説明するように、胴部素体20aの深さ方向に沿う圧縮力42a(図5参照)を胴部素体20aに加えながら胴部素体20aを絞ることで胴部10を形成する工程である。胴部素体20aを絞るとは、胴部素体20aの直径を縮めるとともに、胴部素体20aの深さをより深くすることを意味する。 As will be described in detail later, the first to third compression throttles apply a compressive force 42a (see FIG. 5) along the depth direction of the body body 20a to the body body 20a while applying the body body 20a. This is a step of forming the body portion 10 by squeezing. Squeezing the body body 20a means reducing the diameter of the body body 20a and increasing the depth of the body body 20a.
 各圧縮絞り後の予備体20は、胴部素体20aの径方向に対して傾斜して延在されたフランジ部素体20bを有している。フランジ部素体20bは、後に詳しく説明するように各圧縮絞りに用いられるダイ40に設けられたテーパ面44に沿って延在されている。本実施の形態の成形材製造方法では、第3圧縮絞り後に予備体20にリストライク加工が行われる。リストライク加工は、胴部素体20a又は胴部10の径方向に沿ってフランジ部素体20bが延在するように、平坦状にフランジ部素体20bを矯正する工程である。リストライク加工は後述のテーパ面44を有しないダイと、ダイと対向するよう配置されるリフターパッドとでフランジ部素体20bを挟み込むことで実施され得る。リストライク加工では、胴部10又は胴部素体20aの周壁径及び高さが同一のまま、フランジ部素体20bの加工が行われる。 The spare body 20 after each compression drawing has a flange portion element body 20b that is inclined and extended with respect to the radial direction of the body portion element body 20a. The flange portion body 20b extends along the tapered surface 44 provided on the die 40 used for each compression drawing, as will be described in detail later. In the molding material manufacturing method of the present embodiment, the reserve body 20 is subjected to restoric processing after the third compression drawing. The wrist-like processing is a step of flattening the flange body 20b so that the flange body 20b extends along the radial direction of the body 20a or the body 10. Restorative processing can be performed by sandwiching the flange portion element body 20b between a die having no tapered surface 44, which will be described later, and a lifter pad arranged so as to face the die. In the wrist-like processing, the flange portion body 20b is processed while the peripheral wall diameter and height of the body portion 10 or the body portion body 20a are the same.
 本実施の形態の成形材製造方法では、リストライク加工を経ることで予備体20が成形材1となる。しかしながら、例えばフランジ部11が胴部10の径方向に沿って傾斜して延在されていてもよい態様においては、リストライクが省略されて、第3圧縮絞りにより成形材1が得られてもよい。 In the molding material manufacturing method of the present embodiment, the spare body 20 becomes the molding material 1 after undergoing the rest-like processing. However, for example, in a mode in which the flange portion 11 may be inclined and extended along the radial direction of the body portion 10, the restorike may be omitted and the molding material 1 may be obtained by the third compression drawing. Good.
 次に、図3は図2の予備絞りに用いる金型3を示す説明図であり、図4は図3の金型3による予備絞りを示す説明図である。図3に示すように、予備絞りに用いる金型3には、ダイ30、パンチ31及びクッションパッド32が含まれている。ダイ30には、パンチ31とともに素材金属板2が押し込まれる押込穴30aが設けられている。押込穴30aの周壁面とダイ30の下面とは互いに直交して延在されており、これら押込穴30aの周壁面とダイ30の下面とは所定の曲率半径を有する曲面状のダイ肩部により接続され得る。ダイ肩部は、90度円弧面により構成され得る。また、ダイ肩部は、押込穴30aの入口外縁を画定する。クッションパッド32は、ダイ30の端面に対向するようにパンチ31の外周位置に配置されている。 Next, FIG. 3 is an explanatory view showing the mold 3 used for the preliminary drawing of FIG. 2, and FIG. 4 is an explanatory view showing the preliminary drawing by the mold 3 of FIG. As shown in FIG. 3, the die 3 used for the preliminary drawing includes a die 30, a punch 31, and a cushion pad 32. The die 30 is provided with a push-in hole 30a into which the material metal plate 2 is pushed together with the punch 31. The peripheral wall surface of the push-in hole 30a and the lower surface of the die 30 extend orthogonally to each other, and the peripheral wall surface of the push-in hole 30a and the lower surface of the die 30 are formed by a curved die shoulder portion having a predetermined radius of curvature. Can be connected. The die shoulder may be composed of a 90 degree arcuate surface. Further, the die shoulder portion defines the outer edge of the entrance of the push-in hole 30a. The cushion pad 32 is arranged at the outer peripheral position of the punch 31 so as to face the end surface of the die 30.
 図4の予備絞りでは、ダイ30及びクッションパッド32により素材金属板2の外縁部を完全には拘束せず、素材金属板2の外縁部がダイ30及びクッションパッド32の拘束から外れるところまで抜く。素材金属板2のすべてをパンチ31とともに押込穴30aに押し込んで抜いてもよい。上述のようにフランジ部を有する予備体20を形成する場合には、素材金属板2の外縁部がダイ30及びクッションパッド32の拘束から外れない深さで絞りを止めればよい。 In the preliminary drawing of FIG. 4, the outer edge portion of the material metal plate 2 is not completely restrained by the die 30 and the cushion pad 32, and the outer edge portion of the material metal plate 2 is pulled out until it is released from the restraint of the die 30 and the cushion pad 32. .. All of the material metal plate 2 may be pushed into the push-in hole 30a together with the punch 31 and pulled out. When the spare body 20 having the flange portion is formed as described above, the drawing may be stopped at a depth at which the outer edge portion of the material metal plate 2 does not deviate from the restraint of the die 30 and the cushion pad 32.
 次に、図5は図2の第1圧縮絞りに用いる金型4を示す説明図であり、図6は図5の金型4による第1圧縮絞りを示す説明図である。図5に示すように、第1圧縮絞りに用いる金型4には、ダイ40、パンチ41及びリフターパッド42が含まれている。ダイ40は、押込穴40aを有する部材である。パンチ41は、胴部素体20aの内部に挿入されて胴部素体20aを押込穴40aに押込む円柱体である。 Next, FIG. 5 is an explanatory view showing the mold 4 used for the first compression drawing of FIG. 2, and FIG. 6 is an explanatory view showing the first compression drawing of the mold 4 of FIG. As shown in FIG. 5, the die 4 used for the first compression drawing includes a die 40, a punch 41, and a lifter pad 42. The die 40 is a member having a push-in hole 40a. The punch 41 is a cylindrical body that is inserted into the body body 20a and pushes the body body 20a into the push-in hole 40a.
 押込穴40aは、テーパ面44を有している。テーパ面44は、押込穴40aの入口において押込穴40aの周方向に延在されるとともに、押込穴40aの軸方向に対して傾斜して延在された面である。テーパ面44は、押込穴40aの入口に底面が配置された円錐台の周面と理解することができる。ダイ40の軸方向に直交する方向の断面において、テーパ面44はダイ40の軸方向に対して傾斜して延在された平面を構成する。テーパ面44は、押込穴40aの入口から奥に向かって先細り状となるように設けられている。押込穴40aの入口は、パンチ41側の押込穴40aの開口である。図5に示すように、ダイ40の下方にパンチ41が配置される態様では、押込穴40aの入口は押込穴40aの下部開口と理解することができる。 The push-in hole 40a has a tapered surface 44. The tapered surface 44 is a surface that extends in the circumferential direction of the push hole 40a at the entrance of the push hole 40a and is inclined with respect to the axial direction of the push hole 40a. The tapered surface 44 can be understood as the peripheral surface of a truncated cone whose bottom surface is arranged at the entrance of the push-in hole 40a. In the cross section in the direction orthogonal to the axial direction of the die 40, the tapered surface 44 constitutes a plane that is inclined and extended with respect to the axial direction of the die 40. The tapered surface 44 is provided so as to taper from the entrance of the push-in hole 40a toward the back. The inlet of the push-in hole 40a is the opening of the push-in hole 40a on the punch 41 side. As shown in FIG. 5, in the embodiment in which the punch 41 is arranged below the die 40, the inlet of the push hole 40a can be understood as the lower opening of the push hole 40a.
 押込穴40aの入口内径40bは、その押込穴40aを有するダイ40を用いて行われる圧縮絞り前の胴部素体20aの周壁外径以上とされている。すなわち、図5に示す第1圧縮絞りに用いる金型4では、押込穴40aの入口内径40bは、予備絞り後であって、第1圧縮絞り前の胴部素体20aの周壁外径以上とされている。 The inner diameter 40b of the inlet of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a before compression drawing performed by using the die 40 having the push-in hole 40a. That is, in the mold 4 used for the first compression drawing shown in FIG. 5, the inlet inner diameter 40b of the push-in hole 40a is equal to or larger than the outer diameter of the peripheral wall of the body body 20a before the first compression drawing after the preliminary drawing. Has been done.
 入口内径40bと胴部素体20aの周壁外径との差は、その胴部素体20aの板厚の3倍以上であることが好ましい。このような寸法差を採ることで、搬送等により芯ずれが生じた場合においても胴部素体20aがテーパ外側へ外れることなく成形される。そのため、付与される圧縮力により胴部素体20aの周壁がダイ40の下面とリフターパッド42に挟まれ座屈する虞を低減できる。また、ダイ40が必要以上に長大となるのを防ぐため、押込穴40aの入口内径40bは、各絞り加工終了後に必要とされるフランジ部素体20bの外径以下が好ましい。 The difference between the inner diameter of the inlet 40b and the outer diameter of the peripheral wall of the body body 20a is preferably 3 times or more the plate thickness of the body body 20a. By taking such a dimensional difference, the body body 20a is molded without coming off the taper outside even when the center is misaligned due to transportation or the like. Therefore, it is possible to reduce the possibility that the peripheral wall of the body body 20a is sandwiched between the lower surface of the die 40 and the lifter pad 42 and buckled due to the applied compressive force. Further, in order to prevent the die 40 from becoming longer than necessary, the inlet inner diameter 40b of the push-in hole 40a is preferably equal to or less than the outer diameter of the flange portion body 20b required after each drawing process is completed.
 リフターパッド42は、ダイ40に対向するようにパンチ41の外周位置に配置されている。具体的には、リフターパッド42は、パッド部420及び付勢部421(支持部)を有している。パッド部420は、ダイ40に対向するようにパンチ41の外周位置に配置された環状部材である。付勢部421は、パッド部420の下部に配置されており、パッド部420を付勢支持している。付勢部421は、パッド部420を支持する支持力(付勢力)を調整できるように構成されている。パッド部420の上には、胴部素体20aが載置される。より具体的には、胴部素体20aの周壁の下端がパッド部420の上に載置される。胴部素体20aの周壁は、ダイ40が降下した際にダイ40及びパッド部420によって挟持される。このようにダイ40及びパッド部420によって胴部素体20aの周壁が挟持されることで、付勢部421の支持力(リフターパッドによる圧縮力)が胴部素体20aの深さ方向に沿う圧縮力42aとして胴部素体20aに加えられる。すなわち、リフターパッド42は、胴部素体20aの深さ方向に沿う圧縮力42aを胴部素体20aに加える加圧手段を構成する。 The lifter pad 42 is arranged at the outer peripheral position of the punch 41 so as to face the die 40. Specifically, the lifter pad 42 has a pad portion 420 and an urging portion 421 (support portion). The pad portion 420 is an annular member arranged at an outer peripheral position of the punch 41 so as to face the die 40. The urging portion 421 is arranged below the pad portion 420, and urges and supports the pad portion 420. The urging portion 421 is configured so that the supporting force (urging force) that supports the pad portion 420 can be adjusted. The body body 20a is placed on the pad portion 420. More specifically, the lower end of the peripheral wall of the body body 20a is placed on the pad portion 420. The peripheral wall of the body 20a is sandwiched by the die 40 and the pad portion 420 when the die 40 is lowered. By sandwiching the peripheral wall of the body body 20a between the die 40 and the pad portion 420 in this way, the supporting force (compressive force by the lifter pad) of the urging portion 421 is along the depth direction of the body body 20a. It is applied to the body body 20a as a compressive force 42a. That is, the lifter pad 42 constitutes a pressurizing means for applying a compressive force 42a along the depth direction of the body body 20a to the body body 20a.
 図6に示すように、第1圧縮絞りでは、ダイ40が降下することによりパンチ41とともに胴部素体20aが押込穴40aに押込まれて、胴部素体20aが絞られる。このとき、胴部素体20aには、ダイ40及びパッド部420によって胴部素体20aの周壁が挟持された後に、胴部素体20aの深さ方向に沿う圧縮力42aが加えられ続ける。すなわち、第1圧縮絞りでは、圧縮力42aを加えながら胴部素体20aを絞る。この第1圧縮絞りは、パッド部420が下死点に到達するまでの間に完了するように行われる。パッド部420の下死点とは、機械的にパッド部420の降下が制限される位置を意味し、付勢部421の構造又はパッド部420の降下を規制する部材の位置等により規定される。換言すると、第1圧縮絞りは、パッド部420が底付きしないように行われる。パッド部420が下死点に到達するまでの間に完了するように第1圧縮絞りが行われることで、第1圧縮絞りの間、付勢部421の支持力が圧縮力42aとして胴部素体20aに作用される。すなわち、第1圧縮絞りでは、圧縮力42aを加えながら胴部素体20aを絞る。上述のように支持力を調節できるように付勢部421が構成されているので、この支持力を調節することで圧縮力42aが調節される。圧縮力42aが所定の条件を満たす場合、胴部素体20aに減肉を生じさせることなく、胴部素体20aを絞ることができる。圧縮力42aを変化させることによって、第1圧縮絞りを経た胴部素体20aの板厚を調整することができる。また、第1圧縮絞りでは、胴部素体20aの周壁は、テーパ面44に押し当てられるとともに、テーパ面44に沿って押込穴40aの奥に押し込まれる。 As shown in FIG. 6, in the first compression drawing, when the die 40 is lowered, the body body 20a is pushed into the push-in hole 40a together with the punch 41, and the body body 20a is squeezed. At this time, after the peripheral wall of the body body 20a is sandwiched by the die 40 and the pad portion 420, the compressive force 42a along the depth direction of the body body 20a continues to be applied to the body body 20a. That is, in the first compression drawing, the body body 20a is squeezed while applying a compressive force 42a. This first compression drawing is performed so that the pad portion 420 is completed before reaching the bottom dead center. The bottom dead center of the pad portion 420 means a position where the descent of the pad portion 420 is mechanically restricted, and is defined by the structure of the urging portion 421 or the position of a member that regulates the descent of the pad portion 420. .. In other words, the first compression drawing is performed so that the pad portion 420 does not bottom out. By performing the first compression throttle so that the pad portion 420 is completed before reaching the bottom dead center, the bearing capacity of the urging portion 421 is set as the compression force 42a during the first compression throttle. It acts on the body 20a. That is, in the first compression drawing, the body body 20a is squeezed while applying a compressive force 42a. Since the urging portion 421 is configured so that the bearing force can be adjusted as described above, the compressive force 42a is adjusted by adjusting this bearing force. When the compressive force 42a satisfies a predetermined condition, the body body 20a can be squeezed without causing the body body 20a to be thinned. By changing the compressive force 42a, the plate thickness of the body body 20a that has passed through the first compression drawing can be adjusted. Further, in the first compression drawing, the peripheral wall of the body body 20a is pressed against the tapered surface 44 and is pushed into the depth of the pressing hole 40a along the tapered surface 44.
 加工中、リフターパッド42の下面は、パンチホルダー43の上面に当接することなく、上下方向に対して上下自在に移動可能な状態にある。これは、リフターパッド42がいわゆる底突きしておらず、加工中、下降してきたダイ40と付勢部421の付勢力(リフターパッドによる圧縮力)により上昇しようとしているリフターパッド42が胴部素体20aを介してバランスしている状態である。 During processing, the lower surface of the lifter pad 42 is in a state where it can move up and down freely in the vertical direction without contacting the upper surface of the punch holder 43. This is because the lifter pad 42 does not bottom out, and the lifter pad 42 that is about to rise due to the urging force (compressive force of the lifter pad) of the die 40 and the urging portion 421 that has descended during processing is the body element. It is in a state of being balanced through the body 20a.
 図2の第2及び第3圧縮絞りは、図5及び図6に示す金型4と同様の構成を有する金型を用いて行われる。但し、ダイ40、パンチ41及びテーパ面44の傾斜角度θ等の寸法は適宜変更される。第2圧縮絞りでは、圧縮力42aを加えながら、第1圧縮絞り後の胴部素体20aを絞る。また、第3圧縮絞りでは、圧縮力42aを加えながら、第2圧縮絞り後の胴部素体20aを絞る。これらの第1~第3圧縮絞りを経て、胴部素体20aが胴部10とされる。第2圧縮絞りに用いる金型4では、押込穴40aの入口径は、第1圧縮絞り後であって、第2圧縮絞り前の胴部素体20aの周壁外径以上とされている。同様に、第3圧縮絞りに用いる金型4では、押込穴40aの入口径は、第2圧縮絞り後であって、第3圧縮絞り前の胴部素体20aの周壁外径以上とされている。 The second and third compression draws of FIG. 2 are performed using a die having the same configuration as the die 4 shown in FIGS. 5 and 6. However, the dimensions such as the inclination angle θ of the die 40, the punch 41, and the tapered surface 44 are appropriately changed. In the second compression drawing, the body body 20a after the first compression drawing is squeezed while applying a compressive force 42a. Further, in the third compression drawing, the body body 20a after the second compression drawing is squeezed while applying a compressive force 42a. After passing through these first to third compression draws, the body body 20a is designated as the body 10. In the mold 4 used for the second compression drawing, the inlet diameter of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a after the first compression drawing and before the second compression drawing. Similarly, in the mold 4 used for the third compression drawing, the inlet diameter of the push-in hole 40a is set to be equal to or larger than the outer diameter of the peripheral wall of the body body 20a before the third compression drawing after the second compression drawing. There is.
 図7は、第1~第3圧縮絞り時に胴部素体20aの周壁に作用する圧縮力を示した模式図である。第1~第3圧縮絞り中に、リフターパッド42から付与される圧縮力42aは、縮径前の部分46については胴部素体20aの深さ方向に作用する。その一方、胴部素体20aの周壁がテーパ面44に押し当てられている部分では、テーパ面44に沿った圧縮力42bが発生する。この圧縮力42bは、押込穴40aの軸方向に直交する方向の成分を有する。すなわち、圧縮力42bの分力は、押込穴40aの径方向内方に向かう。 FIG. 7 is a schematic view showing the compressive force acting on the peripheral wall of the body body 20a during the first to third compression drawing. The compressive force 42a applied from the lifter pad 42 during the first to third compression drawing acts on the portion 46 before the diameter reduction in the depth direction of the body body 20a. On the other hand, at the portion where the peripheral wall of the body body 20a is pressed against the tapered surface 44, a compressive force 42b is generated along the tapered surface 44. The compressive force 42b has a component in a direction orthogonal to the axial direction of the push-in hole 40a. That is, the component force of the compressive force 42b goes inward in the radial direction of the push-in hole 40a.
 径方向内方に向かう圧縮力42aの分力により、テーパ面44を通過した後の胴部素体20a又は胴部10の内周壁は、テーパ面44の延長線上に位置するパンチ41の外側面に押し当てられる。これにより、胴部素体20a又は胴部10の内周壁がパンチ41の外側面と隙間なく成形され、胴部素体20a又は胴部10の内側の寸法はパンチ41の形状を転写した形状となる。その結果、仕上げしごきを行わずとも胴部10の内径真円度を満足し、仕上げしごき加工によるめっき滓の発生等の不具合を回避することができる。 Due to the component force of the compressive force 42a inward in the radial direction, the inner peripheral wall of the body 20a or the body 10 after passing through the tapered surface 44 is the outer surface of the punch 41 located on the extension line of the tapered surface 44. Is pressed against. As a result, the inner peripheral wall of the body 20a or the body 10 is formed without a gap with the outer surface of the punch 41, and the inner dimensions of the body 20a or the body 10 are the shape transferred from the shape of the punch 41. Become. As a result, the roundness of the inner diameter of the body portion 10 can be satisfied without finishing ironing, and problems such as the generation of plating slag due to finishing ironing can be avoided.
 なお、テーパ面44の傾斜角度θが小さく、テーパ面44が急峻であるほど、押込穴40aの奥側への胴部素体20aの流入は促進される。しかしながら、テーパ面44の傾斜角度θが小さいとき、押込穴40aの入口内径40bを圧縮絞り前の胴部素体20aの周壁外径以上とするためには、ダイ40を上下に長く設計する必要があり長大となる。一方、テーパ面44の傾斜角度θが大きいとき、押込穴40aの奥側への胴部素体20aの流入が阻害され、寸法精度が低下する可能性がある。 The smaller the inclination angle θ of the tapered surface 44 and the steeper the tapered surface 44, the more the inflow of the body body 20a into the inner side of the push-in hole 40a is promoted. However, when the inclination angle θ of the tapered surface 44 is small, it is necessary to design the die 40 vertically long in order to make the inlet inner diameter 40b of the push-in hole 40a equal to or larger than the peripheral wall outer diameter of the body body 20a before compression drawing. There is and it becomes long. On the other hand, when the inclination angle θ of the tapered surface 44 is large, the inflow of the body body 20a into the inner side of the push-in hole 40a may be hindered, and the dimensional accuracy may decrease.
 後に具体的に説明するように、押込穴40aの軸方向に対するテーパ面44の傾斜角度をθ(°)としたとき、以下の式(1)の関係を満たすようにθが決定されていることが好ましい。
 20°≦θ≦60° ・・・・・式(1)
 20°≦θであることで、リフターパッド42による圧縮力が大きくなったとしても、胴部周壁の板厚が過度に厚くなることを回避することができる。一方、θ≦60°であることで、リフターパッド42による圧縮力が小さい場合でも、内径寸法及び内径真円度の精度を向上できる。なお、押込穴40aの軸方向は、胴部素体20aの押込み方向、又はパンチ41の進退方向と理解することができる。
As will be specifically described later, when the inclination angle of the tapered surface 44 with respect to the axial direction of the push-in hole 40a is θ (°), θ is determined so as to satisfy the relationship of the following equation (1). Is preferable.
20 ° ≤ θ ≤ 60 ° ・ ・ ・ ・ ・ Equation (1)
By setting 20 ° ≦ θ, even if the compressive force of the lifter pad 42 is increased, it is possible to prevent the plate thickness of the peripheral wall of the body portion from becoming excessively thick. On the other hand, when θ ≦ 60 °, the accuracy of the inner diameter dimension and the inner diameter roundness can be improved even when the compressive force by the lifter pad 42 is small. The axial direction of the push-in hole 40a can be understood as the push-in direction of the body body 20a or the advance / retreat direction of the punch 41.
 また、胴部素体20aに付加される圧縮力42aを胴部素体20aの周壁の断面積で除した値を圧縮圧力P(単位:N/mm2)とし、押込穴40aの軸方向に対するテーパ面44の傾斜角度をθ(°)としたとき、θに応じて、以下の式(2)又は式(3)の関係を満たすようにPが決定されていることが好ましい。なお、胴部素体20aの周壁の断面積は、任意の方法により算出することができるが、出各圧縮絞り前の高さ方向に係る胴部素体20aの周壁の平均板厚を用いて算出してよい。
 55 ≦P≦ 0.99θ+123 (20°≦θ≦45°) ・・・・・式(2)
 2.47θ-56 ≦P≦ 0.99θ+123 (45°<θ≦60°) ・・・・・式(3)
 このようにPが決定されていることにより、破断又はめっき滓等の不具合の発生をより確実に回避できる。
Further, the value obtained by dividing the compressive force 42a applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as the compression pressure P (unit: N / mm 2 ) with respect to the axial direction of the push-in hole 40a. When the inclination angle of the tapered surface 44 is θ (°), it is preferable that P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to θ. The cross-sectional area of the peripheral wall of the body body 20a can be calculated by any method, but the average plate thickness of the peripheral wall of the body body 20a related to the height direction before each compression drawing is used. It may be calculated.
55 ≤ P ≤ 0.99 θ + 123 (20 ° ≤ θ ≤ 45 °) ・ ・ ・ ・ ・ Equation (2)
2.47 θ-56 ≤ P ≤ 0.99 θ + 123 (45 ° <θ ≤ 60 °) ・ ・ ・ ・ ・ Equation (3)
By determining P in this way, it is possible to more reliably avoid the occurrence of defects such as breakage or plating slag.
(実施例)
 次に、実施例を示す。本発明者らは、普通鋼の冷延鋼板にZn-Al-Mgめっきが施された厚さ1.8mm、めっき付着量90g/m2、直径116mmの円形板を素材金属板2として、圧縮力42aの大きさと、胴部素体20aの胴部周壁平均板厚(mm)との関係を調査した。また、圧縮力を与えない通常減肉加工(比較例1)と、圧縮絞り工程の圧縮力42aを変化させて作製した種々の胴部素体20aの内径と内径真円度とを調査した。その時の加工条件を表1に示す。
(Example)
Next, an example will be shown. The present inventors compress a circular plate having a thickness of 1.8 mm, a plating adhesion amount of 90 g / m 2 , and a diameter of 116 mm, which is a cold-rolled ordinary steel sheet coated with Zn-Al-Mg, as a material metal plate 2. The relationship between the magnitude of the force 42a and the average thickness (mm) of the peripheral wall of the body of the body 20a was investigated. In addition, the inner diameter and the roundness of the inner diameter of various body elements 20a produced by changing the compressive force 42a in the compression drawing step and the normal wall thinning process in which no compressive force was applied (Comparative Example 1) were investigated. The processing conditions at that time are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図8は、第3圧縮絞りが終了した後の胴部10の板厚分布を示すグラフであり、第1~第3圧縮絞り時にリフターパッド42により付与した圧縮圧力と胴部10の周壁板厚分布との関係を示す。図9は、図8の板厚測定位置を示す説明図である。図8では、第3圧縮絞り後の胴部10の周壁板厚を縦軸とし、胴部10の周壁の板厚測定位置を横軸としている。なお、第1~第3圧縮絞り時の圧縮力は一定とし、板厚測定については素材圧延方向に対し平行となる方向を測定した。 FIG. 8 is a graph showing the plate thickness distribution of the body portion 10 after the third compression drawing is completed, and shows the compression pressure applied by the lifter pad 42 during the first to third compression drawing and the peripheral wall plate thickness of the body portion 10. The relationship with the distribution is shown. FIG. 9 is an explanatory view showing a plate thickness measurement position of FIG. In FIG. 8, the vertical axis is the peripheral wall plate thickness of the body portion 10 after the third compression drawing, and the horizontal axis is the plate thickness measurement position of the peripheral wall of the body portion 10. The compressive force at the time of the first to third compression drawing was constant, and the plate thickness was measured in a direction parallel to the material rolling direction.
 図8に示すように、第1~第3圧縮絞り工程における圧縮圧力が大きくなるにつれて胴部10の周壁板厚は全体的に増大する。圧縮圧力が92N/mm2以上では肩部近傍(測定位置:5mm位置)を除いて素材板厚(1.8mm)以上となる。また、圧縮圧力を147N/mm2以上とすることで、上部(測定位置:5mm~10mm位置)を除いて胴部周壁の板厚は第3圧縮絞り工程の金型のクリアランス(ダイ40とパンチ41の金型隙間の大きさ)に達している。 As shown in FIG. 8, the peripheral wall plate thickness of the body portion 10 increases as a whole as the compression pressure in the first to third compression drawing steps increases. When the compression pressure is 92 N / mm 2 or more, the material plate thickness (1.8 mm) or more is obtained except for the vicinity of the shoulder (measurement position: 5 mm position). In addition, by setting the compression pressure to 147 N / mm 2 or more, the plate thickness of the peripheral wall of the body except for the upper part (measurement position: 5 mm to 10 mm position) is the clearance of the die (die 40 and punch) in the third compression drawing process. The size of the mold gap of 41) has been reached.
 図10は、第1~第3圧縮絞り工程におけるリフターパッド42により付与した圧縮圧力と第3圧縮絞り後における胴部10の内径との関係を示すグラフである。内径寸法測定位置は図9に示す。素材金属板2は、図8と同様に板厚1.8mmのZn-Al-Mgめっき鋼板を用い、第1~第3圧縮絞り時の圧縮圧力は一定とした。また、製品規格は36.15mm±0.05mmとした。圧縮圧力が高くなるにつれて胴部内径は小さくなる傾向にあり、147N/mm2以上の圧縮圧力を付与すると、実質的に内径は第3絞り時のパンチ径以下となることが分かる。これは、図8にて示した、胴部10の周壁板厚が上部(測定位置:5mm~10mm位置)を除いて第3圧縮絞り工程の金型のクリアランスに達する圧縮圧力と一致している。このことから、第1~第3圧縮絞り工程において147N/mm2以上の圧縮圧力を付与すると、胴部10の周壁板厚が増肉し金型内に素材が充填されることで、胴部10の周壁がパンチとダイに隙間無く成形されるため内径が小さくなる。 FIG. 10 is a graph showing the relationship between the compression pressure applied by the lifter pad 42 in the first to third compression drawing steps and the inner diameter of the body portion 10 after the third compression drawing. The inner diameter dimension measurement position is shown in FIG. As the material metal plate 2, a Zn-Al-Mg plated steel sheet having a plate thickness of 1.8 mm was used as in FIG. 8, and the compression pressure at the time of the first to third compression drawing was kept constant. The product standard was 36.15 mm ± 0.05 mm. It can be seen that the inner diameter of the body tends to decrease as the compression pressure increases, and when a compression pressure of 147 N / mm 2 or more is applied, the inner diameter becomes substantially equal to or less than the punch diameter at the time of the third drawing. This is consistent with the compression pressure shown in FIG. 8 where the peripheral wall plate thickness of the body portion 10 reaches the mold clearance in the third compression drawing step except for the upper part (measurement position: 5 mm to 10 mm position). .. From this, when a compression pressure of 147 N / mm 2 or more is applied in the first to third compression drawing steps, the thickness of the peripheral wall plate of the body 10 is increased and the material is filled in the mold, so that the body is filled. Since the peripheral wall of 10 is formed on the punch and the die without a gap, the inner diameter is reduced.
 一方、リフターパッド42による圧縮力を付与しない0N/mm2における内径と比較し、55N/mm2~129N/mm2の圧縮圧力を付与した場合においても内径が小さくなっている。図8にて示したように、この場合の胴部10の周壁板厚は第3圧縮絞り工程の金型のクリアランス以下であるため、内径が小さいということは胴部10の周壁-パンチ間の隙間はほとんど無く、胴部10の周壁-ダイ40間に隙間が生じていることを示している。測定位置が15mmの箇所においては55N/mm2の圧縮圧力の付与によって内径とパンチ径の差、つまり胴部10の周壁とパンチ径の隙間が半分以下となっており、胴部10の周壁板厚が金型クリアランス以下であっても内径規格を満足することができる。 On the other hand, compared to the inner diameter of the 0N / mm 2 without applying a compressive force by the lifter pads 42, the inner diameter is smaller in the case of applying a compressive pressure of 55N / mm 2 ~ 129N / mm 2. As shown in FIG. 8, since the peripheral wall plate thickness of the body portion 10 in this case is equal to or less than the clearance of the die in the third compression drawing step, the small inner diameter means that the peripheral wall of the body portion 10 and the punch There is almost no gap, indicating that there is a gap between the peripheral wall of the body 10 and the die 40. At the measurement position of 15 mm, the difference between the inner diameter and the punch diameter, that is, the clearance between the peripheral wall of the body 10 and the punch diameter is less than half by applying a compression pressure of 55 N / mm 2 , and the peripheral wall plate of the body 10 Even if the thickness is less than the mold clearance, the inner diameter standard can be satisfied.
 図11は、第1~第3圧縮絞り工程におけるリフターパッドにより付与した圧縮圧力と第3圧縮絞り後の胴部内径真円度との関係を示すグラフである。内径真円度は接触式の三次元座標測定機(東京精密製、SVA600A-C2)を用いて測定した。成形品は非破壊とし、ボール径が4mmである超硬シャフトスタイラスを使用した。胴部素体20aの深さ方向に対する任意の高さにおいて、胴部素体20aの内側を周方向に22.5度ピッチで16点の座標を測定し、これらの測定点から円形形体を抽出し内径真円度を導出した。なお、内径真円度とは胴部素体20aの深さ方向に対する任意の高さの内壁形状を円形形体として、この円形形体を二つの同心円で挟んだとき、同心二円の間隔が最小となる場合の二円の半径差で表される。また、内径真円度の製品規格は0.02mm以下とした。素材金属板2は、図8と同様に板厚1.8mmのZn-Al-Mgめっき鋼板を用い、第1~第3圧縮絞り時の圧縮力は一定とした。 FIG. 11 is a graph showing the relationship between the compression pressure applied by the lifter pad in the first to third compression drawing steps and the roundness of the inner diameter of the body after the third compression drawing. The roundness of the inner diameter was measured using a contact-type three-dimensional coordinate measuring machine (SVA600A-C2 manufactured by Tokyo Seimitsu Co., Ltd.). The molded product was non-destructive, and a carbide shaft stylus having a ball diameter of 4 mm was used. At an arbitrary height with respect to the depth direction of the body body 20a, the coordinates of 16 points are measured at a pitch of 22.5 degrees in the circumferential direction inside the body body 20a, and a circular body is extracted from these measurement points. The roundness of the inner diameter was derived. The roundness of the inner diameter means that the inner wall shape of the body body 20a at an arbitrary height in the depth direction is a circular shape, and when this circular shape is sandwiched between two concentric circles, the distance between the two concentric circles is the minimum. It is represented by the difference in radius of two circles when The product standard for roundness of the inner diameter is 0.02 mm or less. As the material metal plate 2, a Zn-Al-Mg plated steel sheet having a plate thickness of 1.8 mm was used as in FIG. 8, and the compressive force at the time of the first to third compression drawing was kept constant.
 圧縮力を付与しない0N/mm2の内径真円度は、測定位置が15mm、30mmの箇所において0.04mm以上であり製品規格を外れている。これに対して、圧縮圧力を55N/mm2以上付与した場合の内径真円度はいずれの圧縮圧力においても半分以下であり、製品規格である0.02mm以下となっている。これは、55N/mm2以上の圧縮圧力を付与することで素材とパンチ41の間が隙間無く成形され、胴部10の周壁の内側がパンチ形状を転写し真円形状に近付いたためである。 The roundness of the inner diameter of 0 N / mm 2 without applying compressive force is 0.04 mm or more at the measurement positions of 15 mm and 30 mm, which is out of the product standard. On the other hand, when the compression pressure is 55 N / mm 2 or more, the roundness of the inner diameter is less than half at any compression pressure, which is 0.02 mm or less, which is the product standard. This is because the space between the material and the punch 41 is formed without a gap by applying a compression pressure of 55 N / mm 2 or more, and the inside of the peripheral wall of the body portion 10 transfers the punch shape and approaches a perfect circular shape.
 表2~表6は、本発明における成形可能範囲を示す実験結果である。素材金属板2には、普通鋼の冷延鋼板にZn-Al-Mgめっきが施された厚さ1.8mm、めっき付着量90g/m2、直径116mmの円形板を使用した。押込穴40aの軸方向に対するテーパ面44の傾斜角度θを20°から70°まで変化させ、内径寸法、内径真円度、めっきかす発生の有無および破断の有無で評価した。内径寸法は36.15±0.05mm、内径真円度は0.02mm以下を製品規格とし、深さ方向の各測位置(15mm、30mm、45mm)全てで製品規格を満足した場合は○、一箇所でも製品規格を外れた場合は×と示す。破断の有無については、第1~第3圧縮絞り工程で成形した円筒状の加工品を、モータケースを模擬した金型を用いてプレス加工を行った際の結果である。成形可否については、各評価項目を全て満足するものを図中の評価欄に○で、1つでも外れたものを×でそれぞれ示している。 Tables 2 to 6 are experimental results showing the moldable range in the present invention. As the material metal plate 2, a circular plate having a thickness of 1.8 mm, a plating adhesion amount of 90 g / m2, and a diameter of 116 mm, which was obtained by plating a cold-rolled ordinary steel sheet with Zn-Al-Mg, was used. The inclination angle θ of the tapered surface 44 with respect to the axial direction of the push-in hole 40a was changed from 20 ° to 70 °, and evaluated by the inner diameter dimension, the inner diameter roundness, the presence or absence of plating residue, and the presence or absence of breakage. The product standard is that the inner diameter dimension is 36.15 ± 0.05 mm and the inner diameter roundness is 0.02 mm or less, and if all the measurement positions (15 mm, 30 mm, 45 mm) in the depth direction satisfy the product standard, ○, If even one place deviates from the product standard, it is indicated as x. The presence or absence of breakage is the result of pressing the cylindrical processed product formed in the first to third compression drawing steps using a mold simulating a motor case. Regarding the propriety of molding, those satisfying all the evaluation items are indicated by ○ in the evaluation column in the figure, and those that are out of order are indicated by ×.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 テーパ面44の傾斜角度θが45°の場合(表4)に、成形可能なリフターパッド42による圧縮圧力範囲が最も広く、第1~第3圧縮絞り時に55N/mm2以上のリフターパッド42による圧縮圧力を付与することで、内径寸法および内径真円度は製品規格を満足する。184N/mm2以上の圧縮圧力を付与した場合、胴部周壁が模擬金型のクリアランスに対して過度に厚くなり胴部周壁のダイ内への流入抵抗が大きくなり加工品頂部で破断が生じた。 When the inclination angle θ of the tapered surface 44 is 45 ° (Table 4), the compression pressure range by the moldable lifter pad 42 is the widest, and the lifter pad 42 of 55 N / mm 2 or more at the time of the first to third compression drawing By applying compression pressure, the inner diameter dimension and inner diameter roundness satisfy the product standard. When a compression pressure of 184 N / mm 2 or more was applied, the peripheral wall of the body became excessively thick with respect to the clearance of the simulated mold, and the inflow resistance of the peripheral wall of the body into the die increased, causing breakage at the top of the processed product. ..
 テーパ面44の傾斜角度θが成形可能範囲に及ぼす影響について、テーパ面44の傾斜角度θが小さい場合は、第1~第3圧縮絞り時にダイ40内への胴部周壁の流入が促進され胴部周壁の板厚が厚くなる。そのためリフターパッド42による圧縮力が大きくなると板厚が過度に厚くなり、金型と胴部周壁の面圧が大きくなる。このとき、めっき滓が発生し、胴部周壁のダイ40内への流入抵抗が大きくなり、頂壁100及びその近傍で破断を生じ易くなる。そこで、テーパ面44の傾斜角度θの下限は20°とすることが好ましい。但し、テーパ面44の傾斜角度θが20°の場合は金型を上下に長く設計する必要がある。 Regarding the effect of the inclination angle θ of the tapered surface 44 on the moldable range, when the inclination angle θ of the tapered surface 44 is small, the inflow of the peripheral wall of the body portion into the die 40 is promoted during the first to third compression drawing, and the body The thickness of the peripheral wall becomes thicker. Therefore, when the compressive force of the lifter pad 42 becomes large, the plate thickness becomes excessively thick, and the surface pressure of the mold and the peripheral wall of the body becomes large. At this time, plating slag is generated, the inflow resistance of the peripheral wall of the body into the die 40 is increased, and breakage is likely to occur in the top wall 100 and its vicinity. Therefore, the lower limit of the inclination angle θ of the tapered surface 44 is preferably 20 °. However, when the inclination angle θ of the tapered surface 44 is 20 °, it is necessary to design the mold to be vertically long.
 一方、テーパ面44の傾斜角度θが大きい場合は、第1~第3圧縮絞り時にダイ40内への胴部周壁の流入が阻害され、胴部周壁がテーパ面44の領域47を通過した後、テーパ面44の延長線上にあるパンチ41の側面に接触することなく成形されることが生じる。そのため、リフターパッド42による圧縮力が小さい範囲では、内径寸法および内径真円度が製品規格から外れ、テーパ面44の傾斜角度θが70°(表6)ではいずれの圧縮圧力においても規格から外れていた。このため、テーパ面44の傾斜角度θは、以下の式(1)を満たすように決定されることが好ましい。 On the other hand, when the inclination angle θ of the tapered surface 44 is large, the inflow of the peripheral wall of the body into the die 40 is hindered during the first to third compression drawing, and the peripheral wall of the body passes through the region 47 of the tapered surface 44. , It may be formed without contacting the side surface of the punch 41 on the extension line of the tapered surface 44. Therefore, in the range where the compressive force by the lifter pad 42 is small, the inner diameter dimension and the inner diameter roundness deviate from the product standard, and when the inclination angle θ of the tapered surface 44 is 70 ° (Table 6), it deviates from the standard at any compression pressure. Was there. Therefore, the inclination angle θ of the tapered surface 44 is preferably determined so as to satisfy the following equation (1).
20°≦θ≦60° ・・・・・式(1) 20 ° ≤ θ ≤ 60 ° ... Equation (1)
 図12は、表2~表6に示した成形可能範囲とテーパ面44の傾斜角度θと圧縮圧力P(リフターパッド42より受ける深さ方向の圧縮力を胴部素体20aの周壁の断面積で除した値)の関係を示した説明図である。各項目を全て満足するものを図中○で、破断又はめっき滓が生じたものを×で、内径寸法又は内径真円度が製品規格を満足していなかったものを▲でそれぞれ示している。図12の結果から、胴部素体20aに付加される圧縮力を胴部素体20aの周壁の断面積で除した値をP(単位:N/mm2)とし、押込穴40aの軸方向に対するテーパ面44の傾斜角度をθ(°)としたとき、θに応じて、以下の式(2)又は式(3)の関係を満たすようにPを決定することが好ましい。
 55≦P≦0.99θ+123 (20°≦θ≦45°) ・・・・・式(2)
 2.47θ-56≦P≦0.99θ+123 (45°<θ≦60°) ・・・・・式(3)
FIG. 12 shows the moldable range shown in Tables 2 to 6, the inclination angle θ of the tapered surface 44, and the compression pressure P (compressive force in the depth direction received from the lifter pad 42 in the cross-sectional area of the peripheral wall of the body body 20a. It is explanatory drawing which showed the relationship (value divided by). Items that satisfy all of the items are indicated by ○ in the figure, items with breakage or plating slag are indicated by ×, and items whose inner diameter dimension or inner diameter roundness does not satisfy the product standard are indicated by ▲. From the result of FIG. 12, the value obtained by dividing the compressive force applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as P (unit: N / mm 2 ), and the axial direction of the push-in hole 40a. When the inclination angle of the tapered surface 44 with respect to the taper surface 44 is θ (°), it is preferable to determine P so as to satisfy the relationship of the following equation (2) or equation (3) according to θ.
55 ≤ P ≤ 0.99 θ + 123 (20 ° ≤ θ ≤ 45 °) ... Equation (2)
2.47 θ-56 ≤ P ≤ 0.99 θ + 123 (45 ° <θ ≤ 60 °) ... Equation (3)
 このような成形材製造方法及び成形用金型によれば、テーパ面44により圧縮力の分力が押込穴40aの径方向内方に向かうので、圧縮絞り中に胴部素体20aの周壁をパンチ41に押付けることができ、胴部素体20a又は胴部10の内周面をパンチ41の外周面に隙間なく成形できる。これにより、仕上げしごき加工を行わなくても、胴部10の内径真円度を向上できる。仕上げしごき加工を必要としないため、素材表面や金型への負荷が低減し、めっき滓の発生やかじりの発生を回避することが可能となる。本構成は、モータケース等の成形材の高精度な内径真円度が求められる適用対象において特に有用である。 According to such a molding material manufacturing method and a molding die, the component force of the compressive force is directed inward in the radial direction of the push-in hole 40a due to the tapered surface 44, so that the peripheral wall of the body body 20a is formed during the compression drawing. It can be pressed against the punch 41, and the inner peripheral surface of the body 20a or the body 10 can be formed on the outer peripheral surface of the punch 41 without any gap. As a result, the roundness of the inner diameter of the body portion 10 can be improved without finishing and ironing. Since no finishing ironing process is required, the load on the material surface and the mold is reduced, and it is possible to avoid the occurrence of plating slag and galling. This configuration is particularly useful in applications where highly accurate inner diameter roundness is required for molding materials such as motor cases.
 また、押込穴40aの軸方向に対するテーパ面44の傾斜角度をθ(°)としたとき、20°≦θ≦60°の関係を満たすようにθが決定されるので、リフターパッド42による圧縮圧力が大きくなったとしても、胴部周壁の板厚が過度に厚くなることを回避することができるとともに、リフターパッド42による圧縮圧力が小さい場合でも、内径寸法及び内径真円度の精度を向上できる。 Further, when the inclination angle of the tapered surface 44 with respect to the axial direction of the push-in hole 40a is θ (°), θ is determined so as to satisfy the relationship of 20 ° ≤ θ ≤ 60 °, so that the compression pressure by the lifter pad 42 However, it is possible to prevent the plate thickness of the peripheral wall of the body from becoming excessively thick, and it is possible to improve the accuracy of the inner diameter dimension and the inner diameter roundness even when the compression pressure by the lifter pad 42 is small. ..
 また、胴部素体20aに付加される圧縮力を胴部素体20aの周壁の断面積で除した値をP(単位:N/mm2)とし、押込穴40aの軸方向に対するテーパ面44の傾斜角度をθ(°)としたとき、θに応じて、以下の式(2)または式(3)の関係を満たすようにPが決定されているので、破断又はめっき滓等の不具合の発生をより確実に回避できる。
 55 ≦P≦ 0.99θ+123 (20°≦θ≦45°) ・・・・・式(2)
 2.47θ-56 ≦P≦ 0.99θ+123 (45°<θ≦60°) ・・・・・式(3)
Further, the value obtained by dividing the compressive force applied to the body body 20a by the cross-sectional area of the peripheral wall of the body body 20a is defined as P (unit: N / mm 2 ), and the tapered surface 44 in the axial direction of the push-in hole 40a. When the inclination angle of is θ (°), P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to θ, so that there is a problem such as breakage or plating slag. The occurrence can be avoided more reliably.
55 ≤ P ≤ 0.99 θ + 123 (20 ° ≤ θ ≤ 45 °) ・ ・ ・ ・ ・ Equation (2)
2.47 θ-56 ≤ P ≤ 0.99 θ + 123 (45 ° <θ ≤ 60 °) ・ ・ ・ ・ ・ Equation (3)
 また、パッド部420を支持する支持力を調節できるように構成されているので、素材金属板の板厚によらず第1~第3圧縮絞り工程の圧縮圧力を適正圧力範囲内に合わせこむことができ、安定して高精度な内径真円度を満足する絞り加工を行うことができる。 Further, since the bearing force that supports the pad portion 420 can be adjusted, the compression pressure in the first to third compression drawing steps should be adjusted within an appropriate pressure range regardless of the thickness of the material metal plate. It is possible to perform drawing processing that satisfies the inner diameter roundness with high accuracy and stability.
 なお、実施の形態では圧縮絞り加工を3回行うように説明しているが、圧縮絞り加工の回数は成形材1の大きさや要求される寸法精度に応じて適宜変更してよい。 Although it is explained that the compression drawing process is performed three times in the embodiment, the number of compression drawing processes may be appropriately changed according to the size of the molding material 1 and the required dimensional accuracy.
 また、実施の形態では、パッド部420を支持する支持力を調節できるように説明したが、パッド部420を支持する支持力が調整可能とされていなくてもよい。 Further, in the embodiment, the supporting force for supporting the pad portion 420 has been described so as to be adjustable, but the supporting force for supporting the pad portion 420 may not be adjustable.

Claims (8)

  1.  素材金属板に対して多段絞りを行うことで、筒状の胴部と該胴部の端部に形成されたフランジ部とを有する成形材を製造することを含む成形材製造方法であって、
     前記多段絞りには、
     胴部素体を有する予備体を前記素材金属板から形成する予備絞りと、
     押込穴を有するダイと、前記胴部素体の内部に挿入されて前記胴部素体を前記押込穴に押込むパンチと、前記胴部素体の深さ方向に沿う圧縮力を前記胴部素体の周壁に加える加圧手段とを含む金型を用いて前記予備絞りの後に行われ、前記圧縮力を前記胴部素体に加えながら前記胴部素体を絞ることで前記胴部を形成する少なくとも1回の圧縮絞りと、
     が含まれており、
     前記押込穴は、前記押込穴の入口において前記押込穴の周方向に延在されるとともに、前記押込穴の軸方向に対して傾斜して延在されたテーパ面を有し、前記テーパ面により前記圧縮力の分力が前記押込穴の径方向内方に向かうように構成されている
     成形材製造方法。
    A molding material manufacturing method including manufacturing a molding material having a tubular body portion and a flange portion formed at an end portion of the body portion by performing multi-stage drawing on a material metal plate.
    For the multi-stage aperture,
    A preliminary drawing that forms a spare body having a body body from the material metal plate, and
    A die having a push-in hole, a punch inserted inside the body of the body to push the body into the push-hole, and a compressive force along the depth direction of the body of the body are applied to the body. The body is squeezed by squeezing the body while applying the compressive force to the body, which is performed after the preliminary drawing using a mold including a pressurizing means applied to the peripheral wall of the body. With at least one compression squeeze to form
    Is included,
    The push-in hole extends in the circumferential direction of the push-in hole at the entrance of the push-in hole, and also has a tapered surface extending in an inclined direction with respect to the axial direction of the push-in hole, and the tapered surface extends. A molding material manufacturing method in which the component force of the compressive force is configured to be directed inward in the radial direction of the push-in hole.
  2.  前記押込穴の入口内径は、該押込穴を有する前記ダイを用いて行われる圧縮絞り前の前記胴部素体の周壁外径以上とされており、
     前記押込穴の軸方向に対する前記テーパ面の傾斜角度をθ(°)としたとき、以下の式(1)の関係を満たすようにθが決定されている
     20°≦θ≦60° ・・・・・式(1)
     請求項1に記載の成形材製造方法。
    The inner diameter of the inlet of the push-in hole is equal to or larger than the outer diameter of the peripheral wall of the body body before compression drawing performed by using the die having the push-in hole.
    When the inclination angle of the tapered surface with respect to the axial direction of the push-in hole is θ (°), θ is determined so as to satisfy the relationship of the following equation (1) 20 ° ≤ θ ≤ 60 ° ...・ ・ Equation (1)
    The molding material manufacturing method according to claim 1.
  3.  前記胴部素体に付加される前記圧縮力を前記胴部素体の周壁の断面積で除した値を圧縮圧力P(単位:N/mm2)とし、前記押込穴の軸方向に対する前記テーパ面の傾斜角度をθ(°)としたとき、
     θに応じて、以下の式(2)または式(3)の関係を満たすようにPが決定されている
     55 ≦P≦ 0.99θ+123 (20°≦θ≦45°) ・・・・・式(2)
     2.47θ-56 ≦P≦ 0.99θ+123 (45°<θ≦60°) ・・・・・式(3)
     請求項1又は請求項2に記載の成形材製造方法。
    The value obtained by dividing the compressive force applied to the body of the body by the cross-sectional area of the peripheral wall of the body of the body is defined as the compression pressure P (unit: N / mm 2 ), and the taper with respect to the axial direction of the push-in hole. When the inclination angle of the surface is θ (°)
    P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to θ. 55 ≤ P ≤ 0.99 θ + 123 (20 ° ≤ θ ≤ 45 °) (2)
    2.47 θ-56 ≤ P ≤ 0.99 θ + 123 (45 ° <θ ≤ 60 °) ・ ・ ・ ・ ・ Equation (3)
    The molding material manufacturing method according to claim 1 or 2.
  4.  前記加圧手段は、前記ダイに対向するように前記パンチの外周位置に配置されて前記胴部素体の周壁の下端が載置されるパッド部と、前記パッド部を下方から支持するとともに前記パッド部を支持する支持力を調節できるように構成された付勢部とを有するリフターパッドであり、
     前記少なくとも1回の圧縮絞りは、前記パッド部が下死点に到達するまでの間に完了するように行われ、
     前記胴部素体の圧縮絞りが行われる際に前記支持力が前記圧縮力として前記胴部素体に作用する、
     請求項1から請求項3までのいずれか1項に記載の成形材製造方法。
    The pressurizing means is arranged at an outer peripheral position of the punch so as to face the die, and supports the pad portion on which the lower end of the peripheral wall of the body of the body is placed and the pad portion from below. It is a lifter pad having an urging portion configured so that the supporting force for supporting the pad portion can be adjusted.
    The at least one compression drawing is performed so that the pad portion is completed before reaching bottom dead center.
    When the compression drawing of the body body is performed, the bearing force acts on the body body as the compression force.
    The molding material manufacturing method according to any one of claims 1 to 3.
  5.  胴部素体を有する予備体に絞り加工を行うための成形用金型であって、
     押込穴を有するダイと、
     前記胴部素体の内部に挿入されて前記胴部素体を前記押込穴に押込むパンチと、
     前記胴部素体の深さ方向に沿う圧縮力を前記胴部素体の周壁に加える加圧手段と
     を備え、
     前記圧縮力を前記胴部素体に加えながら前記胴部素体を絞るように構成されており、
     前記押込穴は、前記押込穴の入口において前記押込穴の周方向に延在されるとともに、前記押込穴の軸方向に対して傾斜して延在されたテーパ面を有し、前記テーパ面により前記圧縮力の分力が前記押込穴の径方向内方に向かうように構成されている
     成形用金型。
    A molding die for drawing a spare body having a body body.
    With a die with a push-in hole
    A punch that is inserted inside the body and pushes the body into the push-in hole.
    It is provided with a pressurizing means for applying a compressive force along the depth direction of the body body to the peripheral wall of the body body.
    It is configured to squeeze the body while applying the compressive force to the body.
    The push-in hole extends in the circumferential direction of the push-in hole at the entrance of the push-in hole, and also has a tapered surface extending in an inclined direction with respect to the axial direction of the push-in hole, and the tapered surface extends. A molding die configured so that the component force of the compressive force is directed inward in the radial direction of the push-in hole.
  6.  前記押込穴の入口内径は、該押込穴を有する前記ダイを用いて行われる圧縮絞り前の前記胴部素体の周壁外径以上とされており、
     前記押込穴の軸方向に対する前記テーパ面の傾斜角度をθ(°)としたとき、以下の式(1)の関係を満たすようにθが決定されている
     20°≦θ≦60° ・・・・・式(1)
     請求項5に記載の成形用金型。
    The inner diameter of the inlet of the push-in hole is equal to or larger than the outer diameter of the peripheral wall of the body body before compression drawing performed by using the die having the push-in hole.
    When the inclination angle of the tapered surface with respect to the axial direction of the push-in hole is θ (°), θ is determined so as to satisfy the relationship of the following equation (1) 20 ° ≤ θ ≤ 60 ° ...・ ・ Equation (1)
    The molding die according to claim 5.
  7.  前記胴部素体に付加される前記圧縮力を前記胴部素体の周壁の断面積で除した値を圧縮圧力P(単位:N/mm2)とし、前記押込穴の軸方向に対する前記テーパ面の傾斜角度をθ(°)としたとき、
     θに応じて、以下の式(2)または式(3)の関係を満たすようにPが決定されている
     55 ≦P≦ 0.99θ+123 (20°≦θ≦45°) ・・・・・式(2)
     2.47θ-56 ≦P≦ 0.99θ+123 (45°<θ≦60°) ・・・・・式(3)
     請求項5又は請求項6に記載の成形用金型。
    The value obtained by dividing the compressive force applied to the body of the body by the cross-sectional area of the peripheral wall of the body of the body is defined as the compression pressure P (unit: N / mm 2 ), and the taper with respect to the axial direction of the push-in hole. When the inclination angle of the surface is θ (°)
    P is determined so as to satisfy the relationship of the following equation (2) or equation (3) according to θ. 55 ≤ P ≤ 0.99 θ + 123 (20 ° ≤ θ ≤ 45 °) (2)
    2.47 θ-56 ≤ P ≤ 0.99 θ + 123 (45 ° <θ ≤ 60 °) ・ ・ ・ ・ ・ Equation (3)
    The molding die according to claim 5 or 6.
  8.  前記加圧手段は、前記ダイに対向するように前記パンチの外周位置に配置されて前記胴部素体の周壁の下端が載置されるパッド部と、前記パッド部を下方から支持するとともに前記パッド部を支持する支持力を調節できるように構成された付勢部とを有するリフターパッドであり、
     前記少なくとも1回の圧縮絞りは、前記パッド部が下死点に到達するまでの間に完了するように行われ、
     前記胴部素体の圧縮絞りが行われる際に前記支持力が前記圧縮力として前記胴部素体に作用する、
     請求項5から請求項7までのいずれか1項に記載の成形用金型。
    The pressurizing means is arranged at an outer peripheral position of the punch so as to face the die, and supports the pad portion on which the lower end of the peripheral wall of the body of the body is placed and the pad portion from below, and the above-mentioned. It is a lifter pad having an urging portion configured so that the supporting force for supporting the pad portion can be adjusted.
    The at least one compression drawing is performed so that the pad portion is completed before reaching bottom dead center.
    When the compression drawing of the body body is performed, the bearing force acts on the body body as the compression force.
    The molding die according to any one of claims 5 to 7.
PCT/JP2020/009850 2019-03-14 2020-03-06 Method for manufacturing formed material, and forming metal mold WO2020184480A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505050A JP7164009B2 (en) 2019-03-14 2020-03-06 Molding material manufacturing method and mold for molding
CN202080019258.XA CN113543903A (en) 2019-03-14 2020-03-06 Manufacturing method of molding material and mold for molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-047819 2019-03-14
JP2019047819 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184480A1 true WO2020184480A1 (en) 2020-09-17

Family

ID=72427504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009850 WO2020184480A1 (en) 2019-03-14 2020-03-06 Method for manufacturing formed material, and forming metal mold

Country Status (4)

Country Link
JP (1) JP7164009B2 (en)
CN (1) CN113543903A (en)
TW (1) TWI813862B (en)
WO (1) WO2020184480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916735A (en) * 2021-02-02 2021-06-08 中国航发长春控制科技有限公司 Filter screen assembly closing device and method for closing filter screen assembly by using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092021A (en) * 1983-10-25 1985-05-23 Sumitomo Light Metal Ind Ltd Ironing method of metallic material
JPH03221218A (en) * 1989-11-13 1991-09-30 Toyo Seikan Kaisha Ltd Re-drawing method for cup with flange
JP2016000427A (en) * 2014-05-19 2016-01-07 日新製鋼株式会社 Molding material manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL181914C (en) * 1977-07-05 1900-01-01 Toyo Seikan Kaisha Ltd DEVICE FOR MANUFACTURE OF DRAWN OBJECTS.
US5209099A (en) * 1985-03-15 1993-05-11 Weirton Steel Corporation Draw-process methods, systems and tooling for fabricating one-piece can bodies
JP3518004B2 (en) * 1994-12-19 2004-04-12 株式会社デンソー End face cutting method for annular workpiece and end face forming die used for the end face cutting method
US6038910A (en) * 1998-12-30 2000-03-21 Can Industry Products, Inc. Method and apparatus for forming tapered metal container bodies
JP4761786B2 (en) * 2005-02-15 2011-08-31 大和製罐株式会社 Method of manufacturing tapered can having annular thick part on side wall
JP2006305599A (en) * 2005-04-28 2006-11-09 Honda Motor Co Ltd Method and apparatus for forming bevel gear by forging
CN203599340U (en) * 2013-12-17 2014-05-21 陕西宝成航空仪表有限责任公司 Large-diameter drawing die device of single acting press
US10456820B2 (en) * 2016-03-03 2019-10-29 Nippon Steel Nisshin Co., Ltd. Method for manufacturing molded member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092021A (en) * 1983-10-25 1985-05-23 Sumitomo Light Metal Ind Ltd Ironing method of metallic material
JPH03221218A (en) * 1989-11-13 1991-09-30 Toyo Seikan Kaisha Ltd Re-drawing method for cup with flange
JP2016000427A (en) * 2014-05-19 2016-01-07 日新製鋼株式会社 Molding material manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916735A (en) * 2021-02-02 2021-06-08 中国航发长春控制科技有限公司 Filter screen assembly closing device and method for closing filter screen assembly by using same
CN112916735B (en) * 2021-02-02 2022-09-27 中国航发长春控制科技有限公司 Filter screen assembly closing device and method for closing filter screen assembly by using same

Also Published As

Publication number Publication date
TWI813862B (en) 2023-09-01
JP7164009B2 (en) 2022-11-01
CN113543903A (en) 2021-10-22
TW202039113A (en) 2020-11-01
JPWO2020184480A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
KR101581652B1 (en) Formed material manufacturing method
KR101920609B1 (en) Molding material manufacturing method
KR102001328B1 (en) Press forming method and tool of press forming
WO2020184480A1 (en) Method for manufacturing formed material, and forming metal mold
WO2013047009A1 (en) Method and device for manufacturing cup-shaped component
JP6242363B2 (en) Molding material manufacturing method
JP6516126B2 (en) Sizing method for ring-like sintered body
JP2017113769A (en) Molding method of flat ring and device thereof
US10786843B2 (en) Method of manufacturing molded material, and said molded material
JP6303028B2 (en) Material for hot upsetting forging
JP4706521B2 (en) U press apparatus and U press method
JP2021122838A (en) Molding material manufacturing method
JP6961895B2 (en) Manufacturing method of ring-shaped sintered body and sizing mold
JP7004839B2 (en) Machining tools and burnishing equipment
JP7356027B2 (en) forging equipment
US20230241662A1 (en) Burring processing method, method for manufacturing burring processed product, burring processing mold, burring processing device, and burring processed product
EP4082684A1 (en) Method of manufacturing ring-rolled element
JP7081329B2 (en) Installed parts and their manufacturing methods and equipment
JP2022069709A (en) Manufacturing method for tubular component
WO2018088228A1 (en) Method for designing thrust needle bearing, thrust needle bearing, and method for manufacturing thrust needle bearing
CN118635314A (en) Roundness correction device and roundness correction method for rim part of aluminum alloy wheel hub blank
CN110774030A (en) Thin-wall part clamping structure, thin-wall part clamping method and application
JPH0138574B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770078

Country of ref document: EP

Kind code of ref document: A1