WO2020183734A1 - Quality determination device and quality determination method - Google Patents
Quality determination device and quality determination method Download PDFInfo
- Publication number
- WO2020183734A1 WO2020183734A1 PCT/JP2019/010710 JP2019010710W WO2020183734A1 WO 2020183734 A1 WO2020183734 A1 WO 2020183734A1 JP 2019010710 W JP2019010710 W JP 2019010710W WO 2020183734 A1 WO2020183734 A1 WO 2020183734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- work
- feature amount
- board
- component
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
Definitions
- This specification discloses a technique relating to a quality determination device and a quality determination method.
- the mounting device described in Patent Document 1 includes a control unit.
- the control unit analyzes the image of the electronic component captured by the imaging unit, acquires the data of the electronic component, and accumulates the data of the electronic component.
- the control unit statistics the accumulated data of the electronic components and sets the first allowable range based on the statistical result. Then, the control unit executes the quality determination of the electronic component based on the image of the electronic component based on both the allowable range of the first allowable range and the second allowable range set by the operator.
- the control unit When determining the quality of an electronic component based on the second permissible range, the control unit sets various electronic component data such as the thickness, length, and width of the electronic component for this type of electronic component data. Judgment is made based on whether or not it is within the allowable range. The operator can arbitrarily set various parameters such as the thickness, length, and width of the electronic component.
- the mounting device described in Patent Document 1 the operator needs to set various parameters such as the thickness, length, and width of the electronic component. Therefore, the mounting device described in Patent Document 1 cannot determine the quality of the electronic component based on the second permissible range for the parameters that have not been set, and there is a possibility of erroneous determination due to parameter omission. Further, if an attempt is made to reduce erroneous determination, the number of parameters to be set by the operator increases, and the parameter setting work becomes complicated.
- the present specification makes it possible to determine the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the imaging device of the substrate working machine. Disclose the device and the pass / fail judgment method.
- This specification discloses a quality determination device including a distribution acquisition unit and a quality determination unit.
- a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images.
- An image that is at least one image acquired after the reference image and is related to the reference image is used as the target image.
- the distribution acquisition unit extracts the reference feature amount, which is the feature amount of the entire image, for each image of the reference image, and acquires the feature amount distribution, which is the distribution of the plurality of extracted reference feature amounts. ..
- the pass / fail determination unit extracts the target feature amount, which is the feature amount of the entire image, for each image of the target image, and based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. It is determined whether or not the work on the substrate is good or bad when the target image is acquired.
- this specification discloses a quality determination method including a distribution acquisition process and a quality determination process.
- a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images.
- At least one image acquired after the reference image and related to the reference image is set as the target image.
- the distribution acquisition step extracts the reference feature amount, which is the feature amount of the entire image, for each image of the reference image, and acquires the feature amount distribution, which is the distribution of the plurality of extracted reference feature amounts. ..
- the target feature amount which is the feature amount of the entire image, is extracted for each image of the target image, and the target feature amount deviates from the feature area defined by the feature amount distribution based on the degree of deviation of the target feature amount. It is determined whether or not the work on the substrate is good or bad when the target image is acquired.
- the quality determination device can determine the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the imaging device of the substrate working machine. The same can be said for the pass / fail determination device for the pass / fail determination method.
- FIG. 5 is a schematic view showing an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14. It is a schematic diagram which shows an example of a feature amount distribution FD1. It is a histogram which shows an example of the relationship between the work result of the work on a substrate and the Mahalanobis distance MD1. It is a flowchart which shows an example of the control procedure by a change part 44. It is a flowchart which shows another example of the control procedure by a change part 44.
- Embodiment 1-1 Configuration example of the substrate work line WML
- a predetermined substrate work is performed on the substrate 90.
- the type and number of anti-board work machines WM constituting the anti-board work line WML are not limited.
- the board-to-board work line WML of this embodiment is a plurality (five) board-to-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5.
- the machine WM is provided, and the substrate 90 is conveyed in this order by a substrate conveying device (not shown).
- the printing machine WM1 prints solder on the substrate 90 at each mounting position of the plurality of parts 91.
- the printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1.
- the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1).
- the number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of parts 91.
- the reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering.
- the visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3.
- the board-to-board work line WML uses a plurality of (five) board-to-board work machines WM to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done.
- the work line to board WML includes, for example, a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
- a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
- the plurality of (five) anti-board work machines WM and the management device WMC constituting the anti-board work line WML are electrically connected by the communication unit LC.
- the communication unit LC can be connected to be communicable by wire, and can also be connected to be communicable by wireless.
- various communication methods can be adopted.
- a premises information communication network LAN: Local Area Network
- LAN Local Area Network
- the plurality (five) anti-board working machines WM can communicate with each other via the communication unit LC.
- the plurality (five) anti-board working machines WM can communicate with the management device WMC via the communication unit LC.
- the management device WMC controls a plurality of (five) anti-board work machines WM constituting the anti-board work line WML, and monitors the operating status of the anti-board work line WML.
- the management device WMC stores various control data for controlling a plurality of (five) anti-board working machines WM.
- the management device WMC transmits control data to each of a plurality (five) anti-board working machines WM. Further, each of the plurality (five) anti-board working machines WM transmits the operating status and the production status to the management device WMC.
- a data server 70 can be provided in the management device WMC.
- the data server 70 can store, for example, the acquired data acquired by the board-to-board work machine WM regarding the board-to-board work.
- various image data captured by the anti-board working machine WM are included in the acquired data.
- the record (log data) of the operating status acquired by the board working machine WM is included in the acquired data.
- the data server 70 can also store various production information related to the production of the substrate 90.
- component data such as information on the shape of each type of component 91, information on electrical characteristics, and information on how to handle the component 91 is included in the production information.
- the inspection results by inspection machines such as the print inspection machine WM2 and the appearance inspection machine WM5 are included in the production information.
- the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
- the substrate transfer device 11 is composed of, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction).
- the substrate 90 is a circuit board, and at least one of an electronic circuit and an electric circuit is formed.
- the board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine.
- the board transfer device 11 carries out the board 90 out of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
- the component supply device 12 supplies a plurality of components 91 mounted on the substrate 90.
- the component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90.
- Each of the plurality of feeders 121 is pitch-feeded with a carrier tape (not shown) in which the plurality of parts 91 are housed, so that the parts 91 can be collected at a supply position located on the tip side of the feeder 121.
- the component supply device 12 can also supply electronic components (for example, lead components) that are relatively large in size as compared with chip components and the like in a state of being arranged on the tray.
- the parts transfer device 13 includes a head drive device 131 and a moving table 132.
- the head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism.
- a mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown).
- the mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11.
- the holding member 30 for example, a suction nozzle or a chuck can be used.
- a known imaging device can be used for the component camera 14 and the substrate camera 15.
- the component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction).
- the component camera 14 can take an image of the component 91 held by the holding member 30 from below.
- the substrate camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward (vertically downward) in the Z-axis direction.
- the substrate camera 15 can image the substrate 90 from above.
- the component camera 14 and the substrate camera 15 perform imaging based on a control signal transmitted from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
- the control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit (both are not shown). Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16.
- the control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance.
- control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11.
- the control device 16 processes the image captured by the substrate camera 15 to recognize the positioning state of the substrate 90.
- control device 16 causes the holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 30.
- the control device 16 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91.
- the control device 16 moves the holding member 30 toward the upper side of the expected mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted.
- the planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
- the control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 30 in accordance with the mounting position.
- the control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90.
- the control device 16 executes a mounting process of mounting the plurality of components 91 on the substrate 90 by repeating the above pick-and-place cycle.
- the component mounting machine WM3 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91. ..
- the component 91 is held, such as the suitability of the component 91 and the holding posture of the component 91.
- the regular part 91 has a white circular shape, and the area of the part 91 (area of a circle) is a predetermined value.
- the component mounting machine WM3 sets only the color and area of the component 91 as determination conditions, for example, the color of the component 91 is white, the area is a predetermined value, but the external shape of the component 91 is quadrangular. , It is not possible to determine the suitability of the component 91. Further, if an attempt is made to reduce erroneous determination, the number of determination conditions to be set increases, and the work of setting the determination conditions becomes complicated.
- the quality determination device 40 determines the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the image pickup device 80 of the substrate work machine WM.
- the pass / fail determination device 40 includes a distribution acquisition unit 41 and a pass / fail determination unit 42 when regarded as a control block. It is preferable that the quality determination device 40 further includes at least one of a threshold value setting unit 43, a change unit 44, and an alternative determination unit 45. However, the quality determination device 40 includes a change unit 44 when the alternative determination unit 45 is provided.
- the quality determination device 40 of the present embodiment includes a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, a change unit 44, and an alternative determination unit 45.
- the quality determination device 40 of the present embodiment is provided in the control device 16 of the component mounting machine WM3, it can also be provided in another board-to-board work machine WM. Further, the quality determination device 40 can be provided outside the board working machine WM (for example, the management device WMC).
- Distribution acquisition unit 41 The distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1.
- the reference image BP1 refers to a plurality of images taken by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined work on the board 90 with the same type of imaging conditions for the same type of object in the work on the board.
- the image pickup device 80 is, for example, the component camera 14, and the object at this time is the component 91 held by the holding member 30.
- the board-to-board work is the holding work of the component 91.
- the reference image BP1 may be an image captured under the same imaging conditions for the component 91 having the same component type.
- the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. It should be noted that, for example, it is difficult to completely match the imaging conditions due to the influence of natural light or the like, so the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM (component mounting machine WM3).
- the reference image BP1 may be, for example, an image in which the region of each component 91 is extracted from one image simultaneously captured by the component camera 14 on a plurality of components 91 held by the rotary head or the line head. Further, the reference image BP1 may be an image obtained by sequentially capturing a plurality of parts 91 by the component camera 14. Further, the reference image BP1 may be an image in which these images are mixed.
- the image pickup device 80 may be, for example, a side camera (not shown) provided on the mounting head 20.
- the side camera is different from the component camera 14 in that the component 91 is imaged from the side surface side of the component 91, but the same can be said for the above.
- the image pickup device 80 may be, for example, the board camera 15.
- the object at this time is the substrate 90 positioned by the substrate transfer device 11.
- the board-to-board work is the positioning work of the board 90.
- the image pickup device 80 is a camera (not shown) provided in the appearance inspection machine WM5.
- the object at this time is the component 91 mounted on the substrate 90.
- the board-to-board work is the mounting work of the component 91 by the component mounting machine WM3.
- the image pickup device 80 is a camera (not shown) provided in the printing inspection machine WM2.
- the object at this time is the solder printed on the substrate 90.
- the board-to-board work is a solder printing work by the printing machine WM1.
- the substrate working machine WM, the image pickup apparatus 80, the object, and the substrate working are not limited.
- what has been described about the imaging conditions can be said in the same manner in any of the above cases.
- this specification describes a reference image BP1 in which the component camera 14 of the component mounting machine WM3 captures the component 91 held by the holding member 30.
- FIG. 4A is a bottom view showing an example of the component 91.
- FIG. 4B shows an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14.
- FIG. 4B a state in which a plurality of pixels constituting the image are arranged in a grid pattern is also shown.
- the component 91 is a chip resistor, a chip capacitor, or the like
- the component 91 includes an electrode region AR11 and an electrode region AR12, which are regions of the electrode portion, and a main body region AR13, which is a region of the main body portion.
- the electrode region AR11 and the electrode region AR12 are silver. Further, it is assumed that the main body region AR13 on the back surface (bottom surface) side of the component 91 is, for example, white, and the main body region AR13 on the front surface side of the component 91 is, for example, black. At this time, for example, if the holding member 30 mistakenly sucks the back surface (bottom surface) side of the component 91 (reversal of the component 91), the component camera 14 images the front surface side of the component 91.
- the electrode region AR11 and the electrode region AR12 are silver, and the main body region AR13 on the surface side is black. Therefore, the difference in brightness between these regions is that the holding member 30 adsorbs the surface side of the component 91. Compared with the case (in the normal adsorption state, the main body region AR13 to be imaged is white), it is larger. In this way, when at least one of the brightness and the color of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal adsorption state.
- the holding member 30 mistakenly sucks the end portion of the component 91 (standing suction of the component 91)
- the holding posture of the component 91 changes as compared with the normal suction state. Therefore, in the image, the electrode region AR11, The shapes (rectangular in FIG. 4B) of each of the electrode region AR12 and the main body region AR13 are deformed. Further, the area of each region of the component 91 changes as compared with the normal suction state. Further, the length of the outer circumference of each region of the component 91 changes as compared with the normal suction state.
- the characteristics of the entire image change as compared with the case of the normal suction state.
- the shape of each region is formed by at least one of the brightness and color of a plurality of pixels constituting the image.
- the inversion of the component 91 and the standing suction of the component 91 are examples of cases where the work result of the work on the substrate (in this case, the holding work of the component 91) is defective, and the cause of the defect is not limited to these.
- the chip resistor and the chip capacitor are examples of the component 91, and the component 91 is not limited thereto.
- the distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1.
- the outer edge of the reference image BP1 is aligned with the outer edge of the object (for example, one component 91).
- the feature amount of the entire image is preferably at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. Is.
- the distribution acquisition unit 41 can acquire the feature quantity distribution FD1 by, for example, a method known in multivariate analysis (for example, principal component analysis).
- FIG. 5 shows an example of the feature amount distribution FD1.
- the brightness and color of a plurality of pixels constituting the image shown in FIG. 4B, the shape formed by these (rectangle in the example shown in FIG. 4B), and the area of the shape are defined as the feature amount of the entire image.
- the plurality of points shown in the feature region FR1 of FIG. 5 image the reference feature amount BF1 of each image of the reference image BP1.
- the feature amount distribution FD1 can be represented by a two-dimensional feature region FR1 or a three-dimensional or higher feature region FR1.
- the feature region FR1 indicates the outer edge of a plurality of reference feature quantities BF1 and is also referred to as “unit space”.
- the work on the board by the board-to-board work machine WM usually has good work results, and the rate of poor work results is extremely low.
- the adsorption rate of the component 91 in the component mounting machine WM3 is extremely high. Therefore, even if the reference image BP1 includes an image when the work result of the work on the substrate is poor, the influence is small. Therefore, in the present specification, the work result of the work on the substrate when the reference image BP1 is acquired is treated as being good.
- the reference image BP1 may be limited to the image when the work result of the work on the substrate is good.
- the quality determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and is based on the degree of deviation of the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. Then, the quality of the work on the substrate when the target image OP1 is acquired is determined.
- the target image OP1 is at least one image acquired after the reference image BP1 and refers to an image related to the reference image BP1.
- the target image OP1 is related to the reference image BP1 when the acquisition conditions that can be defined by the substrate working machine WM match the acquisition of the reference image BP1, and the acquisition conditions are the type of the object and the type of the image pickup apparatus 80. , And, it is preferable to include at least the type of the object among the types of imaging conditions of the image pickup apparatus 80.
- the type of the object when the reference image BP1 is acquired (in the example shown in FIG. 4B, the component type of the part 91) and the type when the target image OP1 is acquired.
- the type of the object (part type of the part 91) must at least match. Further, if at least one of the type and imaging conditions of the imaging device 80 (component camera 14 in the example shown in FIG. 4B) is different, there is a possibility that the acquired image will be different even if the same object is imaged. is there. Therefore, it is preferable that at least one of the type of the image pickup apparatus 80 and the image pickup condition is the same.
- the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. Further, for example, since it is difficult to completely match the imaging conditions due to the influence of natural light or the like, the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM.
- the quality determination unit 42 can extract the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1 in the same manner as the distribution acquisition unit 41. Then, the quality determination unit 42 determines the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of the target feature amount OF1 with respect to the feature region FR1 defined by the feature amount distribution FD1.
- the quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using various known methods.
- the quality determination unit 42 can use, for example, a method such as a neural network, deep learning, or a support vector. Further, the quality determination unit 42 can also use a method such as the Mahalanobis Taguchi method or the subspace method.
- the Mahalanobis Taguchi method requires a smaller number of reference image BP1s corresponding to training data than an artificial intelligence method such as a neural network.
- the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one method of the Mahalanobis Taguchi method.
- the RT method Recognition Taguchi method
- the RT method is suitable for good / bad judgment using image data, and is suitable for use in the present embodiment.
- the quality determination unit 42 of the present embodiment determines the quality of the work on the substrate when the target image OP1 is acquired by the RT method.
- the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Specifically, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is good when the Mahalanobis distance MD1 is equal to or less than the predetermined threshold value TH1. Further, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is defective when the Mahalanobis distance MD1 is larger than the predetermined threshold value TH1.
- the main body region AR13 shown in FIG. 4B is white if the work result of the work on the substrate (in this case, the holding work of the component 91) is good (if it is in a normal suction state). is there.
- the color of the main body region AR13 is white in most of the images, for example, when the component 91 is inverted and the color of the main body region AR13 becomes black, the Mahalanobis distance MD1 shown in FIG. 5 is significantly increased. Therefore, the quality determination unit 42 can determine that the work result of the work on the board (holding work of the component 91) is defective. The same can be said for other features.
- Threshold setting unit 43 The threshold setting unit 43 sets the threshold TH1 of the Mahalanobis distance MD1. It is preferable that the threshold value setting unit 43 sets the threshold value TH1 by using the outlier information acquired by the Smirnov-Grabs test.
- the Smirnov-Grabs test detects outliers in a data when it follows a normal distribution.
- the threshold value setting unit 43 of the present embodiment detects an outlier by the Smirnov-Grabs test, and sets the outlier as the threshold value TH1 of the Mahalanobis distance MD1. As a result, the threshold value setting unit 43 can easily set the threshold value TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 is used when the pass / fail determination unit 42 determines that the work with the substrate is good and the actual work with the substrate is poor, and the threshold setting unit 43 determines that the work with the substrate is good.
- the threshold TH1 can be modified so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of.
- the quality determination unit 42 determines that the work on the substrate is good based on the target feature amount OF1 shown in FIG.
- the threshold setting unit 43 corrects the threshold TH1 so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of the target feature amount OF1.
- the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 uses the Mahalanobis of the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work with the substrate is defective and the actual work with the substrate is good, and determines that the work with the substrate is defective.
- the threshold TH1 can also be modified so that the threshold TH1 is larger than the distance MD1. In this case as well, the threshold setting unit 43 can optimize the threshold TH1 of the Mahalanobis distance MD1.
- the threshold value setting unit 43 uses the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work on the substrate is good when the number of times the work on the substrate is determined to be defective reaches a predetermined number of times.
- the threshold value TH1 can be corrected by the discriminant analysis method using the target feature amount OF1 used when the work on the substrate is judged to be defective.
- the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
- FIG. 6 is a histogram showing an example of the relationship between the work result of the work on the substrate and the Mahalanobis distance MD1.
- the horizontal axis of the figure shows the Mahalanobis distance MD1
- the vertical axis shows the frequency of the work result of the work on the substrate.
- the data D1 to the data D13 are the frequencies of the data when the work result of the work on the substrate is good.
- the data D14 to the data D23 are the frequencies of the data when the work result of the work on the substrate is defective.
- the work result of the work on the board shows the actual work result (good or bad).
- the holding work of the component 91 shown in FIG. 4A is good.
- the Mahalanobis distance MD1 is calculated based on the image (image shown in FIG. 4B) of the component 91 held by the holding member 30 taken by the component camera 14.
- the histogram shown in the figure can be obtained.
- the predetermined number of times is the number of data when the work result of the work on the board required in the discriminant analysis method is defective, and can be set arbitrarily.
- the threshold value setting unit 43 determines that the target feature amount OF1 used when the work with the board is good (data D1 to data D13) and the work with the board is bad (data D14 to data D23).
- the threshold value TH1 is corrected by the discriminant analysis method using the target feature amount OF1 used in.
- the threshold value TH1 has been modified by the discriminant analysis method.
- the methods themselves such as the Mahalanobis-Taguchi method, the RT method, the Smirnov-Grabs test, and the discriminant analysis method are known, and detailed description thereof is omitted in the present specification.
- the quality determination device 40 further includes a change unit 44.
- the change unit 44 switches the feature amount distribution FD1 used by the pass / fail determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. ..
- the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
- the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S11 shown in FIG. 7).
- the change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121.
- the changing unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the component 91 after the vendor change. (Step S12). Then, the control ends once.
- the control is temporarily terminated without executing the process shown in step S12.
- the pass / fail determination device 40 When the vendor of the component 91 supplied to the component mounting machine WM3 is changed and the feature quantity distribution FD1 matching the vendor-changed component 91 is not held by the pass / fail determination device 40, the pass / fail determination device 40 is changed. It is preferable that the unit 44 and the alternative determination unit 45 are further provided.
- the alternative determination unit 45 determines whether or not the work on the substrate is good or bad when the target image OP1 is acquired, based on whether or not the component feature amount PF1 which is the feature amount of the component 91 extracted from the target image OP1 satisfies a predetermined condition. To judge.
- the component feature quantity PF1 includes, for example, the external shape, external dimensions (width, depth, height), color, and the like of the component 91.
- the change unit 44 determines the quality of the work on the board by the alternative judgment unit 45 from the quality judgment of the work on the board by the quality judgment unit 42 at the timing when the vendor of the component 91 supplied to the component mounting machine WM3 is switched. It is preferable to switch to judgment. As a result, the quality determination device 40 can continue the quality determination of the work on the substrate.
- the distribution acquisition unit 41 acquires the feature quantity distribution FD1 based on the reference image BP1 that images the component 91 after the vendor change while the alternative determination unit 45 determines the quality of the work on the substrate. Suitable.
- the distribution acquisition unit 41 can acquire the feature amount distribution FD1 that matches the component 91 after the vendor change.
- the quality determination device 40 can determine the quality of the substrate work by the quality determination unit 42.
- the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S21 shown in FIG. 8).
- the change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121.
- the changing unit 44 switches from the quality judgment of the board work to the board by the quality judgment unit 42 to the quality judgment of the board work by the alternative judgment unit 45 (step). S22).
- the distribution acquisition unit 41 acquires the feature quantity distribution FD1 based on the reference image BP1 that images the component 91 after the vendor change while the alternative determination unit 45 determines the quality of the work on the substrate. (Step S23). Then, the control ends once.
- the changing unit 44 continues the quality determination of the board-to-board work by the quality determination unit 42 (step S24). Then, the control ends once.
- the pass / fail determination method includes a distribution acquisition step and a pass / fail determination step.
- the distribution acquisition step corresponds to the control performed by the distribution acquisition unit 41.
- the quality determination step corresponds to the control performed by the quality determination unit 42.
- the pass / fail determination method further includes at least one of a threshold setting step, a change step, and an alternative determination step.
- the pass / fail determination method includes a change process when an alternative determination process is provided.
- the threshold value setting step corresponds to the control performed by the threshold value setting unit 43.
- the change step corresponds to the control performed by the change unit 44.
- the alternative determination step corresponds to the control performed by the alternative determination unit 45.
- the quality determination device 40 can determine the quality of the work on the substrate based on the feature amount of each image of the reference image BP1 captured by the image pickup device 80 of the substrate work machine WM. The same can be said for the quality determination device 40 as for the quality determination method.
- 40 Good / bad judgment device, 41: Distribution acquisition unit, 42: Good / bad judgment unit, 43: Threshold setting unit, 44: Change unit, 45: Alternative judgment unit, 80: Imaging device, 90: Substrate, 91: Parts, BP1: Reference image, BF1: Reference feature amount, FD1: Feature amount distribution, FR1: Feature region, MD1: Mahalanobis distance, TH1: Threshold, OP1: Target image, OF1: Target feature amount, PF1: Part feature amount, WM: anti-board work machine, WM3: parts mounting machine.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Operations Research (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Supply And Installment Of Electrical Components (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
Abstract
This quality determination device is equipped with a distribution acquisition unit and a quality determination unit. An imaging device of a substrate work machine that performs prescribed substrate work on a substrate captures a plurality of images of the same type of object during said substrate work under the same type of imaging conditions, and said images are set as base images. At least one image acquired after the base images and associated with the base images is set as an object image. At such time, the distribution acquisition unit extracts, from each base image, a base feature amount that is an overall image feature amount, and acquires a feature amount distribution that is a distribution of the extracted plurality of base feature amounts. The quality determination unit extracts, from each object image, an object feature amount that is an overall image feature amount, and determines the quality of the substrate work at the time of object image acquisition on the basis of the degree of deviation of the object feature amount with respect to a feature region defined by the feature amount distribution.
Description
本明細書は、良否判定装置および良否判定方法に関する技術を開示する。
This specification discloses a technique relating to a quality determination device and a quality determination method.
特許文献1に記載の実装装置は、制御部を備えている。制御部は、撮像部によって撮像された電子部品の画像を解析し電子部品のデータを取得して、電子部品のデータを蓄積する。また、制御部は、蓄積された電子部品のデータを統計し、統計結果に基づいて第1の許容範囲を設定する。そして、制御部は、第1の許容範囲と、オペレータによって設定された第2の許容範囲との両方の許容範囲に基づいて、電子部品の画像に基づく電子部品の良否判定を実行する。
The mounting device described in Patent Document 1 includes a control unit. The control unit analyzes the image of the electronic component captured by the imaging unit, acquires the data of the electronic component, and accumulates the data of the electronic component. In addition, the control unit statistics the accumulated data of the electronic components and sets the first allowable range based on the statistical result. Then, the control unit executes the quality determination of the electronic component based on the image of the electronic component based on both the allowable range of the first allowable range and the second allowable range set by the operator.
第2の許容範囲に基づいて電子部品の良否判定を行う場合、制御部は、電子部品の厚さ、長さ、幅などの各種の電子部品データが、この種の電子部品データについて設定される許容範囲内に収まっているか否かによって判定する。オペレータは、電子部品の厚さ、長さ、幅などの各種のパラメータを任意に設定することができる。
When determining the quality of an electronic component based on the second permissible range, the control unit sets various electronic component data such as the thickness, length, and width of the electronic component for this type of electronic component data. Judgment is made based on whether or not it is within the allowable range. The operator can arbitrarily set various parameters such as the thickness, length, and width of the electronic component.
しかしながら、特許文献1に記載の実装装置では、オペレータが、電子部品の厚さ、長さ、幅などの各種のパラメータを設定する必要がある。そのため、特許文献1に記載の実装装置は、設定されていないパラメータについて、第2の許容範囲に基づく電子部品の良否判定を行うことができず、パラメータ漏れによる誤判定の可能性がある。また、誤判定を低減しようとすると、オペレータが設定すべきパラメータの数が増加し、パラメータの設定作業が煩雑になる。
However, in the mounting device described in Patent Document 1, the operator needs to set various parameters such as the thickness, length, and width of the electronic component. Therefore, the mounting device described in Patent Document 1 cannot determine the quality of the electronic component based on the second permissible range for the parameters that have not been set, and there is a possibility of erroneous determination due to parameter omission. Further, if an attempt is made to reduce erroneous determination, the number of parameters to be set by the operator increases, and the parameter setting work becomes complicated.
このような事情に鑑みて、本明細書は、対基板作業機の撮像装置によって撮像された各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断することが可能な良否判定装置および良否判定方法を開示する。
In view of such circumstances, the present specification makes it possible to determine the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the imaging device of the substrate working machine. Disclose the device and the pass / fail judgment method.
本明細書は、分布取得部と、良否判断部とを備える良否判定装置を開示する。ここで、基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とする。前記基準画像より後に取得される少なくとも一つの画像であって前記基準画像と関連する画像を対象画像とする。このとき、前記分布取得部は、前記基準画像の各画像について画像全体の特徴量である基準特徴量を抽出して、抽出された複数の前記基準特徴量の分布である特徴量分布を取得する。前記良否判断部は、前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する。
This specification discloses a quality determination device including a distribution acquisition unit and a quality determination unit. Here, a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images. An image that is at least one image acquired after the reference image and is related to the reference image is used as the target image. At this time, the distribution acquisition unit extracts the reference feature amount, which is the feature amount of the entire image, for each image of the reference image, and acquires the feature amount distribution, which is the distribution of the plurality of extracted reference feature amounts. .. The pass / fail determination unit extracts the target feature amount, which is the feature amount of the entire image, for each image of the target image, and based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. It is determined whether or not the work on the substrate is good or bad when the target image is acquired.
また、本明細書は、分布取得工程と、良否判断工程とを備える良否判定方法を開示する。ここで、基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とする。前記基準画像より後に取得される少なくとも一つの画像であって前記基準画像と関連する画像を対象画像とする。このとき、前記分布取得工程は、前記基準画像の各画像について画像全体の特徴量である基準特徴量を抽出して、抽出された複数の前記基準特徴量の分布である特徴量分布を取得する。前記良否判断工程は、前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する。
Further, this specification discloses a quality determination method including a distribution acquisition process and a quality determination process. Here, a plurality of images taken by the image pickup device of the board-to-board work machine that performs a predetermined work on the substrate with the same image-taking conditions for the same type of object in the board-to-board work are used as reference images. At least one image acquired after the reference image and related to the reference image is set as the target image. At this time, the distribution acquisition step extracts the reference feature amount, which is the feature amount of the entire image, for each image of the reference image, and acquires the feature amount distribution, which is the distribution of the plurality of extracted reference feature amounts. .. In the quality determination step, the target feature amount, which is the feature amount of the entire image, is extracted for each image of the target image, and the target feature amount deviates from the feature area defined by the feature amount distribution based on the degree of deviation of the target feature amount. It is determined whether or not the work on the substrate is good or bad when the target image is acquired.
上記の良否判定装置によれば、分布取得部および良否判断部を備えている。これにより、良否判定装置は、対基板作業機の撮像装置によって撮像された各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断することができる。良否判定装置について上述したことは、良否判定方法についても同様に言える。
According to the above-mentioned pass / fail judgment device, a distribution acquisition unit and a pass / fail judgment unit are provided. As a result, the quality determination device can determine the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the imaging device of the substrate working machine. The same can be said for the pass / fail determination device for the pass / fail determination method.
1.実施形態
1-1.対基板作業ラインWMLの構成例
対基板作業ラインWMLでは、基板90に所定の対基板作業を行う。対基板作業ラインWMLを構成する対基板作業機WMの種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWMLは、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WMを備えており、基板90は、基板搬送装置(図示略)によって、この順に搬送される。 1. 1. Embodiment 1-1. Configuration example of the substrate work line WML In the substrate work line WML, a predetermined substrate work is performed on thesubstrate 90. The type and number of anti-board work machines WM constituting the anti-board work line WML are not limited. As shown in FIG. 1, the board-to-board work line WML of this embodiment is a plurality (five) board-to-board work of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5. The machine WM is provided, and the substrate 90 is conveyed in this order by a substrate conveying device (not shown).
1-1.対基板作業ラインWMLの構成例
対基板作業ラインWMLでは、基板90に所定の対基板作業を行う。対基板作業ラインWMLを構成する対基板作業機WMの種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWMLは、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WMを備えており、基板90は、基板搬送装置(図示略)によって、この順に搬送される。 1. 1. Embodiment 1-1. Configuration example of the substrate work line WML In the substrate work line WML, a predetermined substrate work is performed on the
印刷機WM1は、基板90において、複数の部品91の各々の装着位置に、はんだを印刷する。印刷検査機WM2は、印刷機WM1によって印刷されたはんだの印刷状態を検査する。部品装着機WM3は、基板90(印刷機WM1によって印刷されたはんだの上)に複数の部品91を装着する。部品装着機WM3は、一つであっても良く、複数であっても良い。部品装着機WM3が複数設けられる場合は、複数の部品装着機WM3が分担して、複数の部品91を装着することができる。
The printing machine WM1 prints solder on the substrate 90 at each mounting position of the plurality of parts 91. The printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1. The component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1). The number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount the plurality of parts 91.
リフロー炉WM4は、部品装着機WM3によって複数の部品91が装着された基板90を加熱し、はんだを溶融させて、はんだ付けを行う。外観検査機WM5は、部品装着機WM3によって装着された複数の部品91の装着状態などを検査する。このように、対基板作業ラインWMLは、複数(5つ)の対基板作業機WMを用いて、基板90を順に搬送し、検査処理を含む生産処理を実行して基板製品900を生産することができる。なお、対基板作業ラインWMLは、例えば、機能検査機、バッファ装置、基板供給装置、基板反転装置、シールド装着装置、接着剤塗布装置、紫外線照射装置などの対基板作業機WMを必要に応じて備えることもできる。
The reflow furnace WM4 heats the substrate 90 on which a plurality of parts 91 are mounted by the parts mounting machine WM3, melts the solder, and performs soldering. The visual inspection machine WM5 inspects the mounting state of a plurality of parts 91 mounted by the component mounting machine WM3. In this way, the board-to-board work line WML uses a plurality of (five) board-to-board work machines WM to sequentially convey the boards 90 and execute a production process including an inspection process to produce the board product 900. Can be done. In addition, the work line to board WML includes, for example, a work machine WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device as necessary. You can also prepare.
対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMおよび管理装置WMCは、通信部LCによって電気的に接続されている。通信部LCは、有線によって通信可能に接続することができ、無線によって通信可能に接続することもできる。また、通信方法は、種々の方法をとり得る。本実施形態では、複数(5つ)の対基板作業機WMおよび管理装置WMCによって、構内情報通信網(LAN:Local Area Network)が構成されている。これにより、複数(5つ)の対基板作業機WMは、通信部LCを介して、互いに通信することができる。また、複数(5つ)の対基板作業機WMは、通信部LCを介して、管理装置WMCと通信することができる。
The plurality of (five) anti-board work machines WM and the management device WMC constituting the anti-board work line WML are electrically connected by the communication unit LC. The communication unit LC can be connected to be communicable by wire, and can also be connected to be communicable by wireless. In addition, various communication methods can be adopted. In the present embodiment, a premises information communication network (LAN: Local Area Network) is configured by a plurality of (five) anti-board work machines WM and management device WMC. As a result, the plurality (five) anti-board working machines WM can communicate with each other via the communication unit LC. Further, the plurality (five) anti-board working machines WM can communicate with the management device WMC via the communication unit LC.
管理装置WMCは、対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMの制御を行い、対基板作業ラインWMLの動作状況を監視する。管理装置WMCには、複数(5つ)の対基板作業機WMを制御する種々の制御データが記憶されている。管理装置WMCは、複数(5つ)の対基板作業機WMの各々に制御データを送信する。また、複数(5つ)の対基板作業機WMの各々は、管理装置WMCに動作状況および生産状況を送信する。
The management device WMC controls a plurality of (five) anti-board work machines WM constituting the anti-board work line WML, and monitors the operating status of the anti-board work line WML. The management device WMC stores various control data for controlling a plurality of (five) anti-board working machines WM. The management device WMC transmits control data to each of a plurality (five) anti-board working machines WM. Further, each of the plurality (five) anti-board working machines WM transmits the operating status and the production status to the management device WMC.
管理装置WMCには、例えば、データサーバ70を設けることができる。データサーバ70は、例えば、対基板作業機WMが対基板作業に関して取得した取得データを保存することができる。例えば、対基板作業機WMによって撮像された種々の画像データなどは、取得データに含まれる。対基板作業機WMによって取得された稼働状況の記録(ログデータ)などは、取得データに含まれる。
For example, a data server 70 can be provided in the management device WMC. The data server 70 can store, for example, the acquired data acquired by the board-to-board work machine WM regarding the board-to-board work. For example, various image data captured by the anti-board working machine WM are included in the acquired data. The record (log data) of the operating status acquired by the board working machine WM is included in the acquired data.
また、データサーバ70は、基板90の生産に関する種々の生産情報を保存することもできる。例えば、部品91の種類ごとの形状に関する情報、電気的特性に関する情報、部品91の取り扱い方法に関する情報などの部品データは、生産情報に含まれる。印刷検査機WM2、外観検査機WM5などの検査機による検査結果は、生産情報に含まれる。
The data server 70 can also store various production information related to the production of the substrate 90. For example, component data such as information on the shape of each type of component 91, information on electrical characteristics, and information on how to handle the component 91 is included in the production information. The inspection results by inspection machines such as the print inspection machine WM2 and the appearance inspection machine WM5 are included in the production information.
1-2.部品装着機WM3の構成例
部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。 1-2. Configuration example of the component mounting machine WM3 The component mounting machine WM3 mounts a plurality ofcomponents 91 on the substrate 90. As shown in FIG. 2, the component mounting machine WM3 includes a board transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a board camera 15, and a control device 16.
部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。 1-2. Configuration example of the component mounting machine WM3 The component mounting machine WM3 mounts a plurality of
基板搬送装置11は、例えば、ベルトコンベアなどによって構成され、基板90を搬送方向(X軸方向)に搬送する。基板90は、回路基板であり、電子回路および電気回路のうちの少なくとも一方が形成される。基板搬送装置11は、部品装着機WM3の機内に基板90を搬入し、機内の所定位置に基板90を位置決めする。基板搬送装置11は、部品装着機WM3による複数の部品91の装着処理が終了した後に、基板90を部品装着機WM3の機外に搬出する。
The substrate transfer device 11 is composed of, for example, a belt conveyor or the like, and conveys the substrate 90 in the transfer direction (X-axis direction). The substrate 90 is a circuit board, and at least one of an electronic circuit and an electric circuit is formed. The board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine. The board transfer device 11 carries out the board 90 out of the component mounting machine WM3 after the mounting process of the plurality of components 91 by the component mounting machine WM3 is completed.
部品供給装置12は、基板90に装着される複数の部品91を供給する。部品供給装置12は、基板90の搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。複数のフィーダ121の各々は、複数の部品91が収納されるキャリアテープ(図示略)をピッチ送りさせて、フィーダ121の先端側に位置する供給位置において部品91を採取可能に供給する。また、部品供給装置12は、チップ部品などと比べて比較的大型の電子部品(例えば、リード部品など)を、トレイ上に配置した状態で供給することもできる。
The component supply device 12 supplies a plurality of components 91 mounted on the substrate 90. The component supply device 12 includes a plurality of feeders 121 provided along the transport direction (X-axis direction) of the substrate 90. Each of the plurality of feeders 121 is pitch-feeded with a carrier tape (not shown) in which the plurality of parts 91 are housed, so that the parts 91 can be collected at a supply position located on the tip side of the feeder 121. Further, the component supply device 12 can also supply electronic components (for example, lead components) that are relatively large in size as compared with chip components and the like in a state of being arranged on the tray.
部品移載装置13は、ヘッド駆動装置131および移動台132を備えている。ヘッド駆動装置131は、直動機構によって移動台132を、X軸方向およびY軸方向に移動可能に構成されている。移動台132には、クランプ部材(図示略)によって装着ヘッド20が着脱可能(交換可能)に設けられている。装着ヘッド20は、少なくとも一つの保持部材30を用いて、部品供給装置12によって供給される部品91を採取し保持して、基板搬送装置11によって位置決めされた基板90に部品91を装着する。保持部材30は、例えば、吸着ノズル、チャックなどを用いることができる。
The parts transfer device 13 includes a head drive device 131 and a moving table 132. The head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism. A mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown). The mounting head 20 uses at least one holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11. As the holding member 30, for example, a suction nozzle or a chuck can be used.
部品カメラ14および基板カメラ15は、公知の撮像装置を用いることができる。部品カメラ14は、光軸がZ軸方向の上向き(鉛直上方方向)になるように、部品装着機WM3の基台に固定されている。部品カメラ14は、保持部材30に保持されている部品91を下方から撮像することができる。基板カメラ15は、光軸がZ軸方向の下向き(鉛直下方方向)になるように、部品移載装置13の移動台132に設けられている。基板カメラ15は、基板90を上方から撮像することができる。部品カメラ14および基板カメラ15は、制御装置16から送出される制御信号に基づいて撮像を行う。部品カメラ14および基板カメラ15によって撮像された画像データは、制御装置16に送信される。
A known imaging device can be used for the component camera 14 and the substrate camera 15. The component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction). The component camera 14 can take an image of the component 91 held by the holding member 30 from below. The substrate camera 15 is provided on the moving table 132 of the component transfer device 13 so that the optical axis faces downward (vertically downward) in the Z-axis direction. The substrate camera 15 can image the substrate 90 from above. The component camera 14 and the substrate camera 15 perform imaging based on a control signal transmitted from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
制御装置16は、公知の演算装置および記憶装置を備えており、制御回路が構成されている(いずれも図示略)。制御装置16には、部品装着機WM3に設けられる各種センサから出力される情報、画像データなどが入力される。制御装置16は、制御プログラムおよび予め設定されている所定の装着条件などに基づいて、各装置に対して制御信号を送出する。
The control device 16 includes a known arithmetic unit and a storage device, and constitutes a control circuit (both are not shown). Information, image data, and the like output from various sensors provided in the component mounting machine WM3 are input to the control device 16. The control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance.
例えば、制御装置16は、基板搬送装置11によって位置決めされた基板90を基板カメラ15に撮像させる。制御装置16は、基板カメラ15によって撮像された画像を画像処理して、基板90の位置決め状態を認識する。また、制御装置16は、部品供給装置12によって供給された部品91を保持部材30に採取させ保持させて、保持部材30に保持されている部品91を部品カメラ14に撮像させる。制御装置16は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識する。
For example, the control device 16 causes the board camera 15 to image the board 90 positioned by the board transfer device 11. The control device 16 processes the image captured by the substrate camera 15 to recognize the positioning state of the substrate 90. Further, the control device 16 causes the holding member 30 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 30. The control device 16 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91.
制御装置16は、制御プログラムなどによって予め設定される装着予定位置の上方に向かって、保持部材30を移動させる。また、制御装置16は、基板90の位置決め状態、部品91の保持姿勢などに基づいて、装着予定位置を補正して、実際に部品91を装着する装着位置を設定する。装着予定位置および装着位置は、位置(X軸座標およびY軸座標)の他に回転角度を含む。
The control device 16 moves the holding member 30 toward the upper side of the expected mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, and the like, and sets the mounting position where the component 91 is actually mounted. The planned mounting position and the mounting position include the rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
制御装置16は、装着位置に合わせて、保持部材30の目標位置(X軸座標およびY軸座標)および回転角度を補正する。制御装置16は、補正された目標位置において補正された回転角度で保持部材30を下降させて、基板90に部品91を装着する。制御装置16は、上記のピックアンドプレースサイクルを繰り返すことによって、基板90に複数の部品91を装着する装着処理を実行する。
The control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 30 in accordance with the mounting position. The control device 16 lowers the holding member 30 at the corrected rotation angle at the corrected target position, and mounts the component 91 on the substrate 90. The control device 16 executes a mounting process of mounting the plurality of components 91 on the substrate 90 by repeating the above pick-and-place cycle.
1-3.良否判定装置40の構成例
例えば、既述したように、部品装着機WM3は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識している。このとき、例えば、画像から抽出される部品91についての特徴量(例えば、部品91の色、外形形状、面積など)に基づいて、部品91の適否、部品91の保持姿勢などの部品91の保持作業の良否を判定しようとすると、判定条件の漏れによる誤判定の可能性がある。 1-3. Configuration example of thequality determination device 40 For example, as described above, the component mounting machine WM3 processes the image captured by the component camera 14 to recognize the suitability of the component 91 and the holding posture of the component 91. .. At this time, for example, based on the feature amount (for example, the color, outer shape, area, etc.) of the component 91 extracted from the image, the component 91 is held, such as the suitability of the component 91 and the holding posture of the component 91. When trying to judge the quality of work, there is a possibility of erroneous judgment due to omission of judgment conditions.
例えば、既述したように、部品装着機WM3は、部品カメラ14によって撮像された画像を画像処理して、部品91の適否、部品91の保持姿勢を認識している。このとき、例えば、画像から抽出される部品91についての特徴量(例えば、部品91の色、外形形状、面積など)に基づいて、部品91の適否、部品91の保持姿勢などの部品91の保持作業の良否を判定しようとすると、判定条件の漏れによる誤判定の可能性がある。 1-3. Configuration example of the
例えば、正規の部品91は、白色の円形状であり、部品91の面積(円の面積)が所定値であったとする。このとき、部品装着機WM3が、部品91の色および面積のみを判定条件として設定すると、例えば、部品91の色は白色であり、面積は所定値であるが、外形形状が四角形の部品91について、部品91の不適を判定することができない。また、誤判定を低減しようとすると、設定すべき判定条件の数が増加し、判定条件の設定作業が煩雑になる。
For example, it is assumed that the regular part 91 has a white circular shape, and the area of the part 91 (area of a circle) is a predetermined value. At this time, if the component mounting machine WM3 sets only the color and area of the component 91 as determination conditions, for example, the color of the component 91 is white, the area is a predetermined value, but the external shape of the component 91 is quadrangular. , It is not possible to determine the suitability of the component 91. Further, if an attempt is made to reduce erroneous determination, the number of determination conditions to be set increases, and the work of setting the determination conditions becomes complicated.
そこで、本実施形態では、良否判定装置40を備えている。良否判定装置40は、対基板作業機WMの撮像装置80によって撮像された各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断する。良否判定装置40は、制御ブロックとして捉えると、分布取得部41と、良否判断部42とを備えている。良否判定装置40は、閾値設定部43、変更部44および代替判断部45のうちの少なくとも一つをさらに備えると好適である。但し、良否判定装置40は、代替判断部45を備えるときには、変更部44を備える。
Therefore, in the present embodiment, the quality determination device 40 is provided. The quality determination device 40 determines the quality of the work on the substrate based on the feature amount of the entire image of each image captured by the image pickup device 80 of the substrate work machine WM. The pass / fail determination device 40 includes a distribution acquisition unit 41 and a pass / fail determination unit 42 when regarded as a control block. It is preferable that the quality determination device 40 further includes at least one of a threshold value setting unit 43, a change unit 44, and an alternative determination unit 45. However, the quality determination device 40 includes a change unit 44 when the alternative determination unit 45 is provided.
図3に示すように、本実施形態の良否判定装置40は、分布取得部41と、良否判断部42と、閾値設定部43と、変更部44と、代替判断部45とを備えている。また、本実施形態の良否判定装置40は、部品装着機WM3の制御装置16に設けられているが、他の対基板作業機WMに設けることもできる。さらに、良否判定装置40は、対基板作業機WMの外部(例えば、管理装置WMCなど)に設けることもできる。
As shown in FIG. 3, the quality determination device 40 of the present embodiment includes a distribution acquisition unit 41, a quality determination unit 42, a threshold value setting unit 43, a change unit 44, and an alternative determination unit 45. Further, although the quality determination device 40 of the present embodiment is provided in the control device 16 of the component mounting machine WM3, it can also be provided in another board-to-board work machine WM. Further, the quality determination device 40 can be provided outside the board working machine WM (for example, the management device WMC).
1-3-1.分布取得部41
分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-3-1.Distribution acquisition unit 41
Thedistribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1. The reference image BP1 refers to a plurality of images taken by the image pickup device 80 of the board-to-board work machine WM that performs a predetermined work on the board 90 with the same type of imaging conditions for the same type of object in the work on the board.
分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。基準画像BP1は、基板90に所定の対基板作業を行う対基板作業機WMの撮像装置80が対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像をいう。 1-3-1.
The
対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、部品カメラ14であり、このときの対象物は、保持部材30に保持されている部品91である。この場合、対基板作業は、部品91の保持作業である。また、基準画像BP1は、部品種が同じ部品91について、同種の撮像条件で撮像された画像であれば良い。撮像条件には、例えば、光源の種類、光の照射方向、露光時間、絞り値などが含まれる。なお、例えば、自然光などの影響によって撮像条件を完全に一致させることは困難であるので、撮像条件は、対基板作業機WM(部品装着機WM3)によって規定可能な取得条件であれば良い。
When the anti-board working machine WM is the component mounting machine WM3, the image pickup device 80 is, for example, the component camera 14, and the object at this time is the component 91 held by the holding member 30. In this case, the board-to-board work is the holding work of the component 91. Further, the reference image BP1 may be an image captured under the same imaging conditions for the component 91 having the same component type. The imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. It should be noted that, for example, it is difficult to completely match the imaging conditions due to the influence of natural light or the like, so the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM (component mounting machine WM3).
基準画像BP1は、例えば、ロータリヘッドまたはラインヘッドによって保持されている複数の部品91を部品カメラ14が同時に撮像した一の画像から、各部品91の領域が抽出された画像であっても良い。また、基準画像BP1は、複数の部品91を部品カメラ14が順に撮像した画像であっても良い。さらに、基準画像BP1は、これらの画像が混在する画像であっても良い。
The reference image BP1 may be, for example, an image in which the region of each component 91 is extracted from one image simultaneously captured by the component camera 14 on a plurality of components 91 held by the rotary head or the line head. Further, the reference image BP1 may be an image obtained by sequentially capturing a plurality of parts 91 by the component camera 14. Further, the reference image BP1 may be an image in which these images are mixed.
なお、対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、装着ヘッド20に設けられる側方カメラ(図示略)であっても良い。側方カメラは、部品91の側面側から部品91を撮像する点で、部品カメラ14と異なるが、上述したことが同様に言える。
When the board-to-board working machine WM is the component mounting machine WM3, the image pickup device 80 may be, for example, a side camera (not shown) provided on the mounting head 20. The side camera is different from the component camera 14 in that the component 91 is imaged from the side surface side of the component 91, but the same can be said for the above.
また、対基板作業機WMが部品装着機WM3の場合、撮像装置80は、例えば、基板カメラ15であっても良い。このときの対象物は、基板搬送装置11によって位置決めされた基板90である。この場合、対基板作業は、基板90の位置決め作業である。さらに、対基板作業機WMが外観検査機WM5の場合、撮像装置80は、外観検査機WM5に設けられるカメラ(図示略)である。このときの対象物は、基板90に装着されている部品91である。この場合、対基板作業は、部品装着機WM3による部品91の装着作業である。
Further, when the board working machine WM is the component mounting machine WM3, the image pickup device 80 may be, for example, the board camera 15. The object at this time is the substrate 90 positioned by the substrate transfer device 11. In this case, the board-to-board work is the positioning work of the board 90. Further, when the substrate working machine WM is the appearance inspection machine WM5, the image pickup device 80 is a camera (not shown) provided in the appearance inspection machine WM5. The object at this time is the component 91 mounted on the substrate 90. In this case, the board-to-board work is the mounting work of the component 91 by the component mounting machine WM3.
また、対基板作業機WMが印刷検査機WM2の場合、撮像装置80は、印刷検査機WM2に設けられるカメラ(図示略)である。このときの対象物は、基板90に印刷されているはんだである。この場合、対基板作業は、印刷機WM1によるはんだの印刷作業である。このように、対基板作業機WM、撮像装置80、対象物および対基板作業は、限定されない。また、撮像条件について既述したことは、上述したいずれの場合も、同様に言える。本明細書は、説明の便宜上、部品装着機WM3の部品カメラ14が、保持部材30に保持されている部品91を撮像した基準画像BP1について記述されている。
Further, when the substrate working machine WM is the printing inspection machine WM2, the image pickup device 80 is a camera (not shown) provided in the printing inspection machine WM2. The object at this time is the solder printed on the substrate 90. In this case, the board-to-board work is a solder printing work by the printing machine WM1. As described above, the substrate working machine WM, the image pickup apparatus 80, the object, and the substrate working are not limited. Moreover, what has been described about the imaging conditions can be said in the same manner in any of the above cases. For convenience of explanation, this specification describes a reference image BP1 in which the component camera 14 of the component mounting machine WM3 captures the component 91 held by the holding member 30.
図4Aは、部品91の一例を示す底面図である。図4Bは、保持部材30に保持されている図4Aに示す部品91を、部品カメラ14によって撮像した画像の一例を示している。図4Bでは、画像を構成する複数の画素が格子状に配置されている様子が合わせて図示されている。例えば、部品91がチップ抵抗器、チップコンデンサなどの場合、部品91は、電極部の領域である電極領域AR11および電極領域AR12と、本体部の領域である本体領域AR13とを備えている。
FIG. 4A is a bottom view showing an example of the component 91. FIG. 4B shows an example of an image of the component 91 shown in FIG. 4A held by the holding member 30 taken by the component camera 14. In FIG. 4B, a state in which a plurality of pixels constituting the image are arranged in a grid pattern is also shown. For example, when the component 91 is a chip resistor, a chip capacitor, or the like, the component 91 includes an electrode region AR11 and an electrode region AR12, which are regions of the electrode portion, and a main body region AR13, which is a region of the main body portion.
電極領域AR11および電極領域AR12は、銀色である。また、部品91の裏面(底面)側の本体領域AR13は、例えば、白色であり、部品91の表面側の本体領域AR13は、例えば、黒色であるとする。このときに、例えば、保持部材30が部品91の裏面(底面)側を誤って吸着すると(部品91の反転)、部品カメラ14は、部品91の表面側を撮像する。
The electrode region AR11 and the electrode region AR12 are silver. Further, it is assumed that the main body region AR13 on the back surface (bottom surface) side of the component 91 is, for example, white, and the main body region AR13 on the front surface side of the component 91 is, for example, black. At this time, for example, if the holding member 30 mistakenly sucks the back surface (bottom surface) side of the component 91 (reversal of the component 91), the component camera 14 images the front surface side of the component 91.
この場合、電極領域AR11および電極領域AR12は、銀色であり、表面側の本体領域AR13は、黒色であるので、これらの領域の輝度の差は、保持部材30が部品91の表面側を吸着する場合(正規の吸着状態であり、撮像される本体領域AR13は、白色)と比べて、大きくなる。このように、画像における部品91の輝度および色のうちの少なくとも一方が変化すると、画像全体の特徴が、正規の吸着状態のときと比べて変化する。
In this case, the electrode region AR11 and the electrode region AR12 are silver, and the main body region AR13 on the surface side is black. Therefore, the difference in brightness between these regions is that the holding member 30 adsorbs the surface side of the component 91. Compared with the case (in the normal adsorption state, the main body region AR13 to be imaged is white), it is larger. In this way, when at least one of the brightness and the color of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal adsorption state.
また、例えば、保持部材30が部品91の端部を誤って吸着すると(部品91の立ち吸着)、部品91の保持姿勢が正規の吸着状態と比べて変化するので、画像において、電極領域AR11、電極領域AR12および本体領域AR13の各領域の形状(図4Bでは、長方形)が変形する。また、部品91の各領域の面積が正規の吸着状態と比べて変化する。さらに、部品91の各領域の外周の長さが正規の吸着状態と比べて変化する。
Further, for example, if the holding member 30 mistakenly sucks the end portion of the component 91 (standing suction of the component 91), the holding posture of the component 91 changes as compared with the normal suction state. Therefore, in the image, the electrode region AR11, The shapes (rectangular in FIG. 4B) of each of the electrode region AR12 and the main body region AR13 are deformed. Further, the area of each region of the component 91 changes as compared with the normal suction state. Further, the length of the outer circumference of each region of the component 91 changes as compared with the normal suction state.
このように、画像における部品91の形状および形状の面積のうちの少なくとも一方が変化すると、画像全体の特徴が、正規の吸着状態のときと比べて変化する。なお、各領域の形状は、画像を構成する複数の画素の輝度および色のうちの少なくとも一方によって形成される。また、部品91の反転、部品91の立ち吸着は、対基板作業(この場合、部品91の保持作業)の作業結果が不良の場合の一例であり、不良の要因は、これらに限定されない。また、チップ抵抗器、チップコンデンサは、部品91の一例であり、部品91は、これらに限定されない。
In this way, when at least one of the shape and the area of the shape of the component 91 in the image changes, the characteristics of the entire image change as compared with the case of the normal suction state. The shape of each region is formed by at least one of the brightness and color of a plurality of pixels constituting the image. Further, the inversion of the component 91 and the standing suction of the component 91 are examples of cases where the work result of the work on the substrate (in this case, the holding work of the component 91) is defective, and the cause of the defect is not limited to these. Further, the chip resistor and the chip capacitor are examples of the component 91, and the component 91 is not limited thereto.
上述したように、対基板作業の作業結果が不良のときには、画像全体の特徴が、作業結果が良好のときと比べて変化する。そこで、分布取得部41は、基準画像BP1の各画像について画像全体の特徴量である基準特徴量BF1を抽出して、抽出された複数の基準特徴量BF1の分布である特徴量分布FD1を取得する。図4Bに示すように、基準画像BP1の外縁は、対象物(例えば、一つの部品91)の外縁と一致させる。また、既述したように、画像全体の特徴量は、画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状および当該形状の面積のうちの少なくとも一つであると好適である。
As described above, when the work result of the work on the board is poor, the characteristics of the entire image change as compared with when the work result is good. Therefore, the distribution acquisition unit 41 extracts the reference feature amount BF1 which is the feature amount of the entire image for each image of the reference image BP1 and acquires the feature amount distribution FD1 which is the distribution of the extracted plurality of reference feature amounts BF1. To do. As shown in FIG. 4B, the outer edge of the reference image BP1 is aligned with the outer edge of the object (for example, one component 91). Further, as described above, the feature amount of the entire image is preferably at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. Is.
分布取得部41は、例えば、多変量解析において公知の方法(例えば、主成分分析など)によって、特徴量分布FD1を取得することができる。図5は、特徴量分布FD1の一例を示している。同図は、図4Bに示す画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状(図4Bに示す例では、長方形)および当該形状の面積を画像全体の特徴量としたときの特徴量分布FD1の一例を示している。
The distribution acquisition unit 41 can acquire the feature quantity distribution FD1 by, for example, a method known in multivariate analysis (for example, principal component analysis). FIG. 5 shows an example of the feature amount distribution FD1. In the figure, the brightness and color of a plurality of pixels constituting the image shown in FIG. 4B, the shape formed by these (rectangle in the example shown in FIG. 4B), and the area of the shape are defined as the feature amount of the entire image. An example of the feature amount distribution FD1 at the time of
また、図5の特徴領域FR1に図示されている複数の点は、基準画像BP1の各画像の基準特徴量BF1をイメージしている。同図に示すように、特徴量分布FD1は、二次元の特徴領域FR1によって表すこともでき、三次元以上の特徴領域FR1によって表すこともできる。特徴領域FR1は、複数の基準特徴量BF1の外縁を示しており、「単位空間」ともいう。
Further, the plurality of points shown in the feature region FR1 of FIG. 5 image the reference feature amount BF1 of each image of the reference image BP1. As shown in the figure, the feature amount distribution FD1 can be represented by a two-dimensional feature region FR1 or a three-dimensional or higher feature region FR1. The feature region FR1 indicates the outer edge of a plurality of reference feature quantities BF1 and is also referred to as “unit space”.
なお、対基板作業機WMによる対基板作業は、通常、作業結果が良好であり、作業結果が不良の割合は、極めて低い。例えば、部品装着機WM3における部品91の吸着率は、極めて高い。そのため、対基板作業の作業結果が不良のときの画像が基準画像BP1に含まれていても、その影響は少ない。そこで、本明細書では、基準画像BP1を取得したときの対基板作業の作業結果は、良好であるとして取り扱っている。良否判定装置40による判定精度を向上させるためには、基準画像BP1は、対基板作業の作業結果が良好のときの画像に限定すると良い。
Note that the work on the board by the board-to-board work machine WM usually has good work results, and the rate of poor work results is extremely low. For example, the adsorption rate of the component 91 in the component mounting machine WM3 is extremely high. Therefore, even if the reference image BP1 includes an image when the work result of the work on the substrate is poor, the influence is small. Therefore, in the present specification, the work result of the work on the substrate when the reference image BP1 is acquired is treated as being good. In order to improve the determination accuracy by the quality determination device 40, the reference image BP1 may be limited to the image when the work result of the work on the substrate is good.
1-3-2.良否判断部42
良否判断部42は、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出して、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。 1-3-2. Good /bad judgment unit 42
Thequality determination unit 42 extracts the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1, and is based on the degree of deviation of the target feature amount OF1 with respect to the feature area FR1 defined by the feature amount distribution FD1. Then, the quality of the work on the substrate when the target image OP1 is acquired is determined.
良否判断部42は、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出して、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。 1-3-2. Good /
The
対象画像OP1は、基準画像BP1より後に取得される少なくとも一つの画像であって基準画像BP1と関連する画像をいう。対象画像OP1は、対基板作業機WMによって規定可能な取得条件が基準画像BP1を取得したときと一致するときに基準画像BP1と関連し、取得条件は、対象物の種類、撮像装置80の種類、および、撮像装置80の撮像条件の種類のうちの少なくとも対象物の種類を含むと好適である。
The target image OP1 is at least one image acquired after the reference image BP1 and refers to an image related to the reference image BP1. The target image OP1 is related to the reference image BP1 when the acquisition conditions that can be defined by the substrate working machine WM match the acquisition of the reference image BP1, and the acquisition conditions are the type of the object and the type of the image pickup apparatus 80. , And, it is preferable to include at least the type of the object among the types of imaging conditions of the image pickup apparatus 80.
基準画像BP1と対象画像OP1を比較するためには、基準画像BP1を取得したときの対象物の種類(図4Bに示す例では、部品91の部品種)と、対象画像OP1を取得したときの対象物の種類(部品91の部品種)とが少なくとも一致している必要がある。また、撮像装置80(図4Bに示す例では、部品カメラ14)の種類および撮像条件のうちの少なくとも一方が異なると、同一の対象物を撮像しても取得した画像に差異が生じる可能性がある。そのため、撮像装置80の種類および撮像条件のうちの少なくとも一方が一致していると良い。
In order to compare the reference image BP1 and the target image OP1, the type of the object when the reference image BP1 is acquired (in the example shown in FIG. 4B, the component type of the part 91) and the type when the target image OP1 is acquired. The type of the object (part type of the part 91) must at least match. Further, if at least one of the type and imaging conditions of the imaging device 80 (component camera 14 in the example shown in FIG. 4B) is different, there is a possibility that the acquired image will be different even if the same object is imaged. is there. Therefore, it is preferable that at least one of the type of the image pickup apparatus 80 and the image pickup condition is the same.
なお、基準画像BP1について既述したように、撮像条件には、例えば、光源の種類、光の照射方向、露光時間、絞り値などが含まれる。また、例えば、自然光などの影響によって撮像条件を完全に一致させることは困難であるので、撮像条件は、対基板作業機WMによって規定可能な取得条件であれば良い。
As described above for the reference image BP1, the imaging conditions include, for example, the type of light source, the irradiation direction of light, the exposure time, the aperture value, and the like. Further, for example, since it is difficult to completely match the imaging conditions due to the influence of natural light or the like, the imaging conditions may be any acquisition conditions that can be specified by the substrate working machine WM.
良否判断部42は、分布取得部41と同様にして、対象画像OP1の各画像について画像全体の特徴量である対象特徴量OF1を抽出することができる。そして、良否判断部42は、特徴量分布FD1によって規定される特徴領域FR1に対する対象特徴量OF1の外れ度合いに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。
The quality determination unit 42 can extract the target feature amount OF1 which is the feature amount of the entire image for each image of the target image OP1 in the same manner as the distribution acquisition unit 41. Then, the quality determination unit 42 determines the quality of the work on the substrate when the target image OP1 is acquired, based on the degree of deviation of the target feature amount OF1 with respect to the feature region FR1 defined by the feature amount distribution FD1.
良否判断部42は、公知の種々の方法を用いて、対象画像OP1を取得したときの対基板作業の良否を判断することができる。良否判断部42は、例えば、ニューラルネットワーク、ディープラーニング、サポートベクターなどの手法を用いることができる。また、良否判断部42は、マハラノビス・タグチ法、部分空間法などの手法を用いることもできる。マハラノビス・タグチ法は、ニューラルネットワークなどの人工知能的な手法と比べて、学習データに相当する基準画像BP1の数が少なく済む。
The quality determination unit 42 can determine the quality of the work on the substrate when the target image OP1 is acquired by using various known methods. The quality determination unit 42 can use, for example, a method such as a neural network, deep learning, or a support vector. Further, the quality determination unit 42 can also use a method such as the Mahalanobis Taguchi method or the subspace method. The Mahalanobis Taguchi method requires a smaller number of reference image BP1s corresponding to training data than an artificial intelligence method such as a neural network.
そこで、良否判断部42は、特徴領域FR1からのマハラノビス距離MD1が所定の閾値TH1を超えるか否かに基づいて、対基板作業の良否を判断すると好適である。また、良否判断部42は、マハラノビス・タグチ法の一手法であるRT法によって、対基板作業の良否を判断すると好適である。RT法(Recognition Taguchi method)は、画像データを用いた良否判断に適しており、本実施形態に用いると好適である。
Therefore, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Further, it is preferable that the quality determination unit 42 determines the quality of the work on the substrate by the RT method, which is one method of the Mahalanobis Taguchi method. The RT method (Recognition Taguchi method) is suitable for good / bad judgment using image data, and is suitable for use in the present embodiment.
本実施形態の良否判断部42は、RT法によって、対象画像OP1を取得したときの対基板作業の良否を判断する。良否判断部42は、特徴領域FR1からのマハラノビス距離MD1が所定の閾値TH1を超えるか否かに基づいて、対基板作業の良否を判断する。具体的には、良否判断部42は、マハラノビス距離MD1が所定の閾値TH1以下のときに、対象画像OP1を取得したときの対基板作業の作業結果を良好と判断する。また、良否判断部42は、マハラノビス距離MD1が所定の閾値TH1より大きいときに、対象画像OP1を取得したときの対基板作業の作業結果を不良と判断する。
The quality determination unit 42 of the present embodiment determines the quality of the work on the substrate when the target image OP1 is acquired by the RT method. The quality determination unit 42 determines the quality of the work on the substrate based on whether or not the Mahalanobis distance MD1 from the feature region FR1 exceeds a predetermined threshold value TH1. Specifically, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is good when the Mahalanobis distance MD1 is equal to or less than the predetermined threshold value TH1. Further, the quality determination unit 42 determines that the work result of the work on the substrate when the target image OP1 is acquired is defective when the Mahalanobis distance MD1 is larger than the predetermined threshold value TH1.
既述したように、例えば、図4Bに示す本体領域AR13は、対基板作業(この場合、部品91の保持作業)の作業結果が良好であれば(正規の吸着状態であれば)、白色である。大多数の画像において本体領域AR13の色が白色のときに、例えば、部品91の反転が生じて、本体領域AR13の色が黒色になると、図5に示すマハラノビス距離MD1は、著しく増加する。よって、良否判断部42は、対基板作業(部品91の保持作業)の作業結果を不良と判断することができる。上述したことは、他の特徴量についても同様に言える。
As described above, for example, the main body region AR13 shown in FIG. 4B is white if the work result of the work on the substrate (in this case, the holding work of the component 91) is good (if it is in a normal suction state). is there. When the color of the main body region AR13 is white in most of the images, for example, when the component 91 is inverted and the color of the main body region AR13 becomes black, the Mahalanobis distance MD1 shown in FIG. 5 is significantly increased. Therefore, the quality determination unit 42 can determine that the work result of the work on the board (holding work of the component 91) is defective. The same can be said for other features.
1-3-3.閾値設定部43
閾値設定部43は、マハラノビス距離MD1の閾値TH1を設定する。閾値設定部43は、スミルノフ・グラブス検定によって取得された外れ値情報を用いて、閾値TH1を設定すると好適である。スミルノフ・グラブス検定は、データが正規分布に従うときに、データに含まれる外れ値を検出する。本実施形態の閾値設定部43は、スミルノフ・グラブス検定によって外れ値を検出し、当該外れ値をマハラノビス距離MD1の閾値TH1として設定する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を容易に設定することができる。 1-3-3.Threshold setting unit 43
Thethreshold setting unit 43 sets the threshold TH1 of the Mahalanobis distance MD1. It is preferable that the threshold value setting unit 43 sets the threshold value TH1 by using the outlier information acquired by the Smirnov-Grabs test. The Smirnov-Grabs test detects outliers in a data when it follows a normal distribution. The threshold value setting unit 43 of the present embodiment detects an outlier by the Smirnov-Grabs test, and sets the outlier as the threshold value TH1 of the Mahalanobis distance MD1. As a result, the threshold value setting unit 43 can easily set the threshold value TH1 of the Mahalanobis distance MD1.
閾値設定部43は、マハラノビス距離MD1の閾値TH1を設定する。閾値設定部43は、スミルノフ・グラブス検定によって取得された外れ値情報を用いて、閾値TH1を設定すると好適である。スミルノフ・グラブス検定は、データが正規分布に従うときに、データに含まれる外れ値を検出する。本実施形態の閾値設定部43は、スミルノフ・グラブス検定によって外れ値を検出し、当該外れ値をマハラノビス距離MD1の閾値TH1として設定する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を容易に設定することができる。 1-3-3.
The
また、閾値設定部43は、良否判断部42によって対基板作業が良好と判断され且つ実際の対基板作業が不良のときに、当該対基板作業を良好と判断したときに用いた対象特徴量OF1のマハラノビス距離MD1より閾値TH1が小さくなるように、閾値TH1を修正することができる。
Further, the threshold value setting unit 43 is used when the pass / fail determination unit 42 determines that the work with the substrate is good and the actual work with the substrate is poor, and the threshold setting unit 43 determines that the work with the substrate is good. The threshold TH1 can be modified so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of.
例えば、図5に示す対象特徴量OF1に基づいて、良否判断部42が対基板作業を良好と判断したとする。実際の対基板作業が不良のときに、閾値設定部43は、当該対象特徴量OF1のマハラノビス距離MD1より閾値TH1が小さくなるように、閾値TH1を修正する。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
For example, it is assumed that the quality determination unit 42 determines that the work on the substrate is good based on the target feature amount OF1 shown in FIG. When the actual work on the substrate is poor, the threshold setting unit 43 corrects the threshold TH1 so that the threshold TH1 is smaller than the Mahalanobis distance MD1 of the target feature amount OF1. As a result, the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
閾値設定部43は、良否判断部42によって対基板作業が不良と判断され且つ実際の対基板作業が良好のときに、当該対基板作業を不良と判断したときに用いた対象特徴量OF1のマハラノビス距離MD1より閾値TH1が大きくなるように、閾値TH1を修正することもできる。この場合も、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
The threshold value setting unit 43 uses the Mahalanobis of the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work with the substrate is defective and the actual work with the substrate is good, and determines that the work with the substrate is defective. The threshold TH1 can also be modified so that the threshold TH1 is larger than the distance MD1. In this case as well, the threshold setting unit 43 can optimize the threshold TH1 of the Mahalanobis distance MD1.
また、閾値設定部43は、良否判断部42によって対基板作業が不良と判断された回数が所定回数に達したときに、対基板作業を良好と判断したときに用いた対象特徴量OF1と、対基板作業を不良と判断したときに用いた対象特徴量OF1とを使用して判別分析法によって閾値TH1を修正することができる。これにより、閾値設定部43は、マハラノビス距離MD1の閾値TH1を適正化することができる。
Further, the threshold value setting unit 43 uses the target feature amount OF1 used when the pass / fail determination unit 42 determines that the work on the substrate is good when the number of times the work on the substrate is determined to be defective reaches a predetermined number of times. The threshold value TH1 can be corrected by the discriminant analysis method using the target feature amount OF1 used when the work on the substrate is judged to be defective. As a result, the threshold value setting unit 43 can optimize the threshold value TH1 of the Mahalanobis distance MD1.
図6は、対基板作業の作業結果とマハラノビス距離MD1との関係の一例を示すヒストグラムである。同図の横軸は、マハラノビス距離MD1を示し、縦軸は、対基板作業の作業結果の度数を示している。データD1~データD13は、対基板作業の作業結果が良好のときのデータの度数である。データD14~データD23は、対基板作業の作業結果が不良のときのデータの度数である。
FIG. 6 is a histogram showing an example of the relationship between the work result of the work on the substrate and the Mahalanobis distance MD1. The horizontal axis of the figure shows the Mahalanobis distance MD1, and the vertical axis shows the frequency of the work result of the work on the substrate. The data D1 to the data D13 are the frequencies of the data when the work result of the work on the substrate is good. The data D14 to the data D23 are the frequencies of the data when the work result of the work on the substrate is defective.
対基板作業の作業結果は、実際の作業結果(良否)を示している。例えば、図4Aに示す部品91の保持作業が良好であったとする。このときに、保持部材30に保持されている部品91を部品カメラ14によって撮像した画像(図4Bに示す画像)に基づいて、マハラノビス距離MD1を算出する。これにより、マハラノビス距離MD1に対応する距離において、対基板作業の作業結果が良好のときのデータが一つ取得される。これを繰り返すことにより、同図に示すヒストグラムが得られる。
The work result of the work on the board shows the actual work result (good or bad). For example, it is assumed that the holding work of the component 91 shown in FIG. 4A is good. At this time, the Mahalanobis distance MD1 is calculated based on the image (image shown in FIG. 4B) of the component 91 held by the holding member 30 taken by the component camera 14. As a result, at a distance corresponding to the Mahalanobis distance MD1, one data is acquired when the work result of the work on the substrate is good. By repeating this, the histogram shown in the figure can be obtained.
所定回数は、判別分析法において必要な対基板作業の作業結果が不良のときのデータ数であり、任意に設定することができる。良否判断部42によって対基板作業が不良と判断された回数が所定回数に達すると、対基板作業の作業結果が不良のときのデータが所定数、蓄積する。このとき、閾値設定部43は、対基板作業を良好と判断したとき(データD1~データD13)に用いた対象特徴量OF1と、対基板作業を不良と判断したとき(データD14~データD23)に用いた対象特徴量OF1とを使用して判別分析法によって閾値TH1を修正する。図6に示す閾値TH1は、判別分析法によって閾値TH1が修正されたことを示している。なお、マハラノビス・タグチ法、RT法、スミルノフ・グラブス検定、判別分析法などの手法自体は、公知であり、本明細書では、これらの詳細な説明が省略されている。
The predetermined number of times is the number of data when the work result of the work on the board required in the discriminant analysis method is defective, and can be set arbitrarily. When the number of times that the quality determination unit 42 determines that the work on the substrate is defective reaches a predetermined number of times, a predetermined number of data when the work result of the work on the substrate is defective is accumulated. At this time, the threshold value setting unit 43 determines that the target feature amount OF1 used when the work with the board is good (data D1 to data D13) and the work with the board is bad (data D14 to data D23). The threshold value TH1 is corrected by the discriminant analysis method using the target feature amount OF1 used in. The threshold value TH1 shown in FIG. 6 indicates that the threshold value TH1 has been modified by the discriminant analysis method. The methods themselves such as the Mahalanobis-Taguchi method, the RT method, the Smirnov-Grabs test, and the discriminant analysis method are known, and detailed description thereof is omitted in the present specification.
1-3-4.変更部44および代替判断部45
部品91の部品種が同じであっても、ベンダ(製造メーカ)が異なると、部品91の外形形状、外形寸法、色などが若干異なる場合がある。そこで、良否判定装置40は、変更部44をさらに備えていると好適である。 1-3-4.Change unit 44 and alternative judgment unit 45
Even if the component type of thecomponent 91 is the same, if the vendor (manufacturer) is different, the external shape, external dimensions, color, etc. of the component 91 may be slightly different. Therefore, it is preferable that the quality determination device 40 further includes a change unit 44.
部品91の部品種が同じであっても、ベンダ(製造メーカ)が異なると、部品91の外形形状、外形寸法、色などが若干異なる場合がある。そこで、良否判定装置40は、変更部44をさらに備えていると好適である。 1-3-4.
Even if the component type of the
変更部44は、部品装着機WM3に供給される部品91のベンダが切り替わるタイミングで、良否判断部42が使用する特徴量分布FD1を、ベンダ変更後の部品91に合致する特徴量分布FD1に切り替える。但し、部品装着機WM3に供給される部品91のベンダが変更され、且つ、ベンダ変更後の部品91に合致する特徴量分布FD1を良否判定装置40が保持しているものとする。これにより、良否判断部42は、部品91のベンダの変更に関わらず、適切な特徴量分布FD1を用いて、対基板作業の良否を判断することができる。
The change unit 44 switches the feature amount distribution FD1 used by the pass / fail determination unit 42 to the feature amount distribution FD1 that matches the part 91 after the vendor change at the timing when the vendor of the part 91 supplied to the component mounting machine WM3 is switched. .. However, it is assumed that the vendor of the component 91 supplied to the component mounting machine WM3 is changed, and the feature quantity distribution FD1 that matches the vendor-changed component 91 is held by the quality determination device 40. As a result, the quality determination unit 42 can determine the quality of the work on the substrate by using the appropriate feature amount distribution FD1 regardless of the change of the vendor of the component 91.
具体的には、変更部44は、部品91のベンダが切り替わるタイミングであるか否かを判断する(図7に示すステップS11)。変更部44は、例えば、フィーダ121の識別情報などから、部品91のベンダが切り替わるタイミングを知得することができる。ベンダの切り替わりタイミングのとき(ステップS11で「Yes」の場合)、変更部44は、良否判断部42が使用する特徴量分布FD1を、ベンダ変更後の部品91に合致する特徴量分布FD1に切り替える(ステップS12)。そして、制御は、一旦、終了する。ベンダの切り替わりタイミングでないとき(ステップS11で「No」の場合)、ステップS12に示す処理を実行しないで、制御は、一旦、終了する。
Specifically, the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S11 shown in FIG. 7). The change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121. At the vendor switching timing (in the case of “Yes” in step S11), the changing unit 44 switches the feature amount distribution FD1 used by the quality determination unit 42 to the feature amount distribution FD1 that matches the component 91 after the vendor change. (Step S12). Then, the control ends once. When it is not the vendor switching timing (when “No” in step S11), the control is temporarily terminated without executing the process shown in step S12.
部品装着機WM3に供給される部品91のベンダが変更され、且つ、ベンダ変更後の部品91に合致する特徴量分布FD1を良否判定装置40が保持していない場合、良否判定装置40は、変更部44と、代替判断部45とをさらに備えていると好適である。代替判断部45は、対象画像OP1から抽出される部品91についての特徴量である部品特徴量PF1が所定条件を満たすか否かに基づいて、対象画像OP1を取得したときの対基板作業の良否を判断する。部品特徴量PF1には、例えば、部品91の外形形状、外形寸法(幅、奥行、高さ)、色などが含まれる。
When the vendor of the component 91 supplied to the component mounting machine WM3 is changed and the feature quantity distribution FD1 matching the vendor-changed component 91 is not held by the pass / fail determination device 40, the pass / fail determination device 40 is changed. It is preferable that the unit 44 and the alternative determination unit 45 are further provided. The alternative determination unit 45 determines whether or not the work on the substrate is good or bad when the target image OP1 is acquired, based on whether or not the component feature amount PF1 which is the feature amount of the component 91 extracted from the target image OP1 satisfies a predetermined condition. To judge. The component feature quantity PF1 includes, for example, the external shape, external dimensions (width, depth, height), color, and the like of the component 91.
また、この場合、変更部44は、部品装着機WM3に供給される部品91のベンダが切り替わるタイミングで、良否判断部42による対基板作業の良否判断から、代替判断部45による対基板作業の良否判断に切り替えると好適である。これにより、良否判定装置40は、対基板作業の良否判断を継続することができる。
Further, in this case, the change unit 44 determines the quality of the work on the board by the alternative judgment unit 45 from the quality judgment of the work on the board by the quality judgment unit 42 at the timing when the vendor of the component 91 supplied to the component mounting machine WM3 is switched. It is preferable to switch to judgment. As a result, the quality determination device 40 can continue the quality determination of the work on the substrate.
さらに、分布取得部41は、代替判断部45による対基板作業の良否判断が行われている間に、ベンダ変更後の部品91を撮像した基準画像BP1に基づいて、特徴量分布FD1を取得すると好適である。これにより、分布取得部41は、ベンダ変更後の部品91に合致する特徴量分布FD1を取得することができる。なお、分布取得部41がベンダ変更後の部品91に合致する特徴量分布FD1を取得した後は、良否判定装置40は、良否判断部42による対基板作業の良否判断を行うことができる。
Further, when the distribution acquisition unit 41 acquires the feature quantity distribution FD1 based on the reference image BP1 that images the component 91 after the vendor change while the alternative determination unit 45 determines the quality of the work on the substrate. Suitable. As a result, the distribution acquisition unit 41 can acquire the feature amount distribution FD1 that matches the component 91 after the vendor change. After the distribution acquisition unit 41 acquires the feature quantity distribution FD1 that matches the component 91 after the vendor change, the quality determination device 40 can determine the quality of the substrate work by the quality determination unit 42.
具体的には、変更部44は、部品91のベンダが切り替わるタイミングであるか否かを判断する(図8に示すステップS21)。変更部44は、例えば、フィーダ121の識別情報などから、部品91のベンダが切り替わるタイミングを知得することができる。ベンダの切り替わりタイミングのとき(ステップS21で「Yes」の場合)、変更部44は、良否判断部42による対基板作業の良否判断から、代替判断部45による対基板作業の良否判断に切り替える(ステップS22)。
Specifically, the change unit 44 determines whether or not it is the timing when the vendor of the component 91 is switched (step S21 shown in FIG. 8). The change unit 44 can know the timing at which the vendor of the component 91 is switched from, for example, the identification information of the feeder 121. At the vendor switching timing (in the case of “Yes” in step S21), the changing unit 44 switches from the quality judgment of the board work to the board by the quality judgment unit 42 to the quality judgment of the board work by the alternative judgment unit 45 (step). S22).
また、分布取得部41は、代替判断部45による対基板作業の良否判断が行われている間に、ベンダ変更後の部品91を撮像した基準画像BP1に基づいて、特徴量分布FD1を取得する(ステップS23)。そして、制御は、一旦、終了する。ベンダの切り替わりタイミングでないとき(ステップS21で「No」の場合)、変更部44は、良否判断部42による対基板作業の良否判断を継続させる(ステップS24)。そして、制御は、一旦、終了する。
Further, the distribution acquisition unit 41 acquires the feature quantity distribution FD1 based on the reference image BP1 that images the component 91 after the vendor change while the alternative determination unit 45 determines the quality of the work on the substrate. (Step S23). Then, the control ends once. When it is not the vendor switching timing (in the case of “No” in step S21), the changing unit 44 continues the quality determination of the board-to-board work by the quality determination unit 42 (step S24). Then, the control ends once.
2.良否判定方法
良否判定装置40について既述したことは、良否判定方法についても同様に言える。具体的には、良否判定方法は、分布取得工程と、良否判断工程とを備える。分布取得工程は、分布取得部41が行う制御に相当する。良否判断工程は、良否判断部42が行う制御に相当する。また、良否判定方法は、閾値設定工程、変更工程および代替判断工程のうちの少なくとも一つをさらに備えると好適である。但し、良否判定方法は、代替判断工程を備えるときには、変更工程を備える。閾値設定工程は、閾値設定部43が行う制御に相当する。変更工程は、変更部44が行う制御に相当する。代替判断工程は、代替判断部45が行う制御に相当する。 2. 2. Pass / Fail Judgment Method The same applies to the pass / fail determination method as described above for the pass /fail determination device 40. Specifically, the pass / fail determination method includes a distribution acquisition step and a pass / fail determination step. The distribution acquisition step corresponds to the control performed by the distribution acquisition unit 41. The quality determination step corresponds to the control performed by the quality determination unit 42. Further, it is preferable that the pass / fail determination method further includes at least one of a threshold setting step, a change step, and an alternative determination step. However, the pass / fail determination method includes a change process when an alternative determination process is provided. The threshold value setting step corresponds to the control performed by the threshold value setting unit 43. The change step corresponds to the control performed by the change unit 44. The alternative determination step corresponds to the control performed by the alternative determination unit 45.
良否判定装置40について既述したことは、良否判定方法についても同様に言える。具体的には、良否判定方法は、分布取得工程と、良否判断工程とを備える。分布取得工程は、分布取得部41が行う制御に相当する。良否判断工程は、良否判断部42が行う制御に相当する。また、良否判定方法は、閾値設定工程、変更工程および代替判断工程のうちの少なくとも一つをさらに備えると好適である。但し、良否判定方法は、代替判断工程を備えるときには、変更工程を備える。閾値設定工程は、閾値設定部43が行う制御に相当する。変更工程は、変更部44が行う制御に相当する。代替判断工程は、代替判断部45が行う制御に相当する。 2. 2. Pass / Fail Judgment Method The same applies to the pass / fail determination method as described above for the pass /
3.実施形態の効果の一例
良否判定装置40によれば、分布取得部41および良否判断部42を備えている。これにより、良否判定装置40は、対基板作業機WMの撮像装置80によって撮像された基準画像BP1の各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断することができる。良否判定装置40について上述したことは、良否判定方法についても同様に言える。 3. 3. An example of the effect of the embodiment According to thequality determination device 40, the distribution acquisition unit 41 and the quality determination unit 42 are provided. As a result, the quality determination device 40 can determine the quality of the work on the substrate based on the feature amount of each image of the reference image BP1 captured by the image pickup device 80 of the substrate work machine WM. The same can be said for the quality determination device 40 as for the quality determination method.
良否判定装置40によれば、分布取得部41および良否判断部42を備えている。これにより、良否判定装置40は、対基板作業機WMの撮像装置80によって撮像された基準画像BP1の各画像の画像全体の特徴量に基づいて、対基板作業の良否を判断することができる。良否判定装置40について上述したことは、良否判定方法についても同様に言える。 3. 3. An example of the effect of the embodiment According to the
40:良否判定装置、41:分布取得部、42:良否判断部、
43:閾値設定部、44:変更部、45:代替判断部、
80:撮像装置、90:基板、91:部品、
BP1:基準画像、BF1:基準特徴量、FD1:特徴量分布、
FR1:特徴領域、MD1:マハラノビス距離、TH1:閾値、
OP1:対象画像、OF1:対象特徴量、PF1:部品特徴量、
WM:対基板作業機、WM3:部品装着機。 40: Good / bad judgment device, 41: Distribution acquisition unit, 42: Good / bad judgment unit,
43: Threshold setting unit, 44: Change unit, 45: Alternative judgment unit,
80: Imaging device, 90: Substrate, 91: Parts,
BP1: Reference image, BF1: Reference feature amount, FD1: Feature amount distribution,
FR1: Feature region, MD1: Mahalanobis distance, TH1: Threshold,
OP1: Target image, OF1: Target feature amount, PF1: Part feature amount,
WM: anti-board work machine, WM3: parts mounting machine.
43:閾値設定部、44:変更部、45:代替判断部、
80:撮像装置、90:基板、91:部品、
BP1:基準画像、BF1:基準特徴量、FD1:特徴量分布、
FR1:特徴領域、MD1:マハラノビス距離、TH1:閾値、
OP1:対象画像、OF1:対象特徴量、PF1:部品特徴量、
WM:対基板作業機、WM3:部品装着機。 40: Good / bad judgment device, 41: Distribution acquisition unit, 42: Good / bad judgment unit,
43: Threshold setting unit, 44: Change unit, 45: Alternative judgment unit,
80: Imaging device, 90: Substrate, 91: Parts,
BP1: Reference image, BF1: Reference feature amount, FD1: Feature amount distribution,
FR1: Feature region, MD1: Mahalanobis distance, TH1: Threshold,
OP1: Target image, OF1: Target feature amount, PF1: Part feature amount,
WM: anti-board work machine, WM3: parts mounting machine.
Claims (13)
- 基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とし、前記基準画像より後に取得される少なくとも一つの画像であって前記基準画像と関連する画像を対象画像とするとき、
前記基準画像の各画像について画像全体の特徴量である基準特徴量を抽出して、抽出された複数の前記基準特徴量の分布である特徴量分布を取得する分布取得部と、
前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する良否判断部と、
を備える良否判定装置。 A plurality of images taken by an image pickup device of a board-to-board work machine that performs a predetermined work-to-board work on a substrate with the same type of object under the same image-taking conditions in the work with the board are used as reference images, and are acquired after the reference image. When at least one image and an image related to the reference image is used as the target image,
A distribution acquisition unit that extracts a reference feature amount that is a feature amount of the entire image for each image of the reference image and acquires a feature amount distribution that is a distribution of the plurality of extracted reference feature amounts.
For each image of the target image, the target feature amount, which is the feature amount of the entire image, was extracted, and the target image was acquired based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. The quality judgment unit that determines the quality of the work on the board at the time,
A pass / fail judgment device. - 前記画像全体の特徴量は、画像を構成する複数の画素の輝度および色、並びに、これらによって形成される形状および前記形状の面積のうちの少なくとも一つである請求項1に記載の良否判定装置。 The quality determination device according to claim 1, wherein the feature amount of the entire image is at least one of the brightness and color of a plurality of pixels constituting the image, the shape formed by these, and the area of the shape. ..
- 前記対象画像は、前記対基板作業機によって規定可能な取得条件が前記基準画像を取得したときと一致するときに前記基準画像と関連し、
前記取得条件は、前記対象物の種類、前記撮像装置の種類、および、前記撮像装置の撮像条件の種類のうちの少なくとも前記対象物の種類を含む請求項1または請求項2に記載の良否判定装置。 The target image is associated with the reference image when the acquisition conditions that can be defined by the substrate working machine match the acquisition of the reference image.
The quality determination according to claim 1 or 2, wherein the acquisition condition includes at least the type of the object, the type of the imaging device, and the type of the imaging condition of the imaging device. apparatus. - 前記良否判断部は、前記特徴領域からのマハラノビス距離が所定の閾値を超えるか否かに基づいて、前記対基板作業の良否を判断する請求項1~請求項3のいずれか一項に記載の良否判定装置。 The quality determination unit according to any one of claims 1 to 3, wherein the quality determination unit determines the quality of the work on the substrate based on whether or not the Mahalanobis distance from the feature region exceeds a predetermined threshold value. Pass / fail judgment device.
- 前記良否判断部は、マハラノビス・タグチ法の一手法であるRT法によって、前記対基板作業の良否を判断する請求項4に記載の良否判定装置。 The quality determination device according to claim 4, wherein the quality determination unit determines the quality of the work on the substrate by the RT method, which is a method of the Mahalanobis Taguchi method.
- 前記マハラノビス距離の前記閾値を設定する閾値設定部をさらに備える請求項4または請求項5に記載の良否判定装置。 The pass / fail determination device according to claim 4 or 5, further comprising a threshold setting unit for setting the threshold value of the Mahalanobis distance.
- 前記閾値設定部は、スミルノフ・グラブス検定によって取得された外れ値情報を用いて、前記閾値を設定する請求項6に記載の良否判定装置。 The pass / fail determination device according to claim 6, wherein the threshold value setting unit sets the threshold value by using outlier information acquired by the Smirnov-Grabs test.
- 前記閾値設定部は、前記良否判断部によって前記対基板作業が良好と判断され且つ実際の前記対基板作業が不良のときに、当該対基板作業を良好と判断したときに用いた前記対象特徴量の前記マハラノビス距離より前記閾値が小さくなるように、前記閾値を修正する請求項6または請求項7に記載の良否判定装置。 The threshold setting unit is the target feature amount used when the quality determination unit determines that the work with the substrate is good and the actual work with the substrate is poor, and the work with the substrate is judged to be good. The pass / fail determination device according to claim 6 or 7, wherein the threshold value is modified so that the threshold value is smaller than the Mahalanobis distance.
- 前記閾値設定部は、前記良否判断部によって前記対基板作業が不良と判断された回数が所定回数に達したときに、前記対基板作業を良好と判断したときに用いた前記対象特徴量と、前記対基板作業を不良と判断したときに用いた前記対象特徴量とを使用して判別分析法によって前記閾値を修正する請求項6または請求項7に記載の良否判定装置。 The threshold value setting unit includes the target feature amount used when the pass-to-board work is judged to be good when the number of times the board-to-board work is judged to be defective reaches a predetermined number of times. The quality determination device according to claim 6 or 7, wherein the threshold value is corrected by a discriminant analysis method using the target feature amount used when the work on the substrate is determined to be defective.
- 前記対基板作業機は、基板に前記対象物である部品を装着する部品装着機であり、
前記部品装着機に供給される前記部品のベンダが変更され且つベンダ変更後の前記部品に合致する前記特徴量分布を保持するときに、
前記部品装着機に供給される前記部品のベンダが切り替わるタイミングで、前記良否判断部が使用する前記特徴量分布を、ベンダ変更後の前記部品に合致する前記特徴量分布に切り替える変更部をさらに備える請求項1~請求項9のいずれか一項に記載の良否判定装置。 The board-to-board working machine is a component mounting machine that mounts the component that is the object on the board.
When the vendor of the component supplied to the component mounting machine is changed and the feature quantity distribution that matches the component after the vendor change is maintained.
Further provided is a changing unit that switches the feature amount distribution used by the quality determination unit to the feature amount distribution that matches the component after the vendor change at the timing when the vendor of the component supplied to the component mounting machine is switched. The quality determination device according to any one of claims 1 to 9. - 前記対基板作業機は、基板に前記対象物である部品を装着する部品装着機であり、
前記部品装着機に供給される前記部品のベンダが変更され且つベンダ変更後の前記部品に合致する前記特徴量分布を保持しないときに、
前記対象画像から抽出される前記部品についての特徴量である部品特徴量が所定条件を満たすか否かに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する代替判断部と、
前記部品装着機に供給される前記部品のベンダが切り替わるタイミングで、前記良否判断部による前記対基板作業の良否判断から、前記代替判断部による前記対基板作業の良否判断に切り替える変更部と、
をさらに備える請求項1~請求項9のいずれか一項に記載の良否判定装置。 The board-to-board working machine is a component mounting machine that mounts the component that is the object on the board.
When the vendor of the component supplied to the component mounting machine is changed and the feature quantity distribution that matches the component after the vendor change is not maintained.
An alternative determination unit that determines the quality of the work on the substrate when the target image is acquired, based on whether or not the component feature amount, which is the feature amount of the component extracted from the target image, satisfies a predetermined condition. When,
At the timing when the vendor of the component supplied to the component mounting machine is switched, the change unit that switches from the quality judgment of the work with the board by the quality determination unit to the quality judgment of the work with the board by the alternative judgment unit.
The pass / fail determination device according to any one of claims 1 to 9, further comprising. - 前記分布取得部は、前記代替判断部による前記対基板作業の良否判断が行われている間に、ベンダ変更後の前記部品を撮像した前記基準画像に基づいて、前記特徴量分布を取得する請求項11に記載の良否判定装置。 The distribution acquisition unit obtains the feature amount distribution based on the reference image obtained by imaging the component after the vendor change while the alternative determination unit determines the quality of the work on the substrate. Item 11. The quality determination device according to item 11.
- 基板に所定の対基板作業を行う対基板作業機の撮像装置が前記対基板作業において同種の対象物について同種の撮像条件で撮像した複数の画像を基準画像とし、前記基準画像より後に取得される少なくとも一つの画像であって前記基準画像と関連する画像を対象画像とするとき、
前記基準画像の各画像について画像全体の特徴量である基準特徴量を抽出して、抽出された複数の前記基準特徴量の分布である特徴量分布を取得する分布取得工程と、
前記対象画像の各画像について画像全体の特徴量である対象特徴量を抽出して、前記特徴量分布によって規定される特徴領域に対する前記対象特徴量の外れ度合いに基づいて、前記対象画像を取得したときの前記対基板作業の良否を判断する良否判断工程と、
を備える良否判定方法。 A plurality of images taken by an image pickup device of a board-to-board work machine that performs a predetermined work-to-board work on a substrate with the same type of object under the same image-taking conditions in the work with the board are used as reference images, and are acquired after the reference image. When at least one image and an image related to the reference image is used as the target image,
A distribution acquisition step of extracting a reference feature amount which is a feature amount of the entire image for each image of the reference image and acquiring a feature amount distribution which is a distribution of a plurality of the extracted reference feature amounts.
For each image of the target image, the target feature amount, which is the feature amount of the entire image, was extracted, and the target image was acquired based on the degree of deviation of the target feature amount with respect to the feature area defined by the feature amount distribution. The quality judgment process for judging the quality of the above-mentioned work on the board, and
A pass / fail judgment method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/010710 WO2020183734A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
JP2021505478A JP7153126B2 (en) | 2019-03-14 | 2019-03-14 | Pass/Fail Judgment Device and Pass/Fail Judgment Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/010710 WO2020183734A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020183734A1 true WO2020183734A1 (en) | 2020-09-17 |
Family
ID=72426675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010710 WO2020183734A1 (en) | 2019-03-14 | 2019-03-14 | Quality determination device and quality determination method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7153126B2 (en) |
WO (1) | WO2020183734A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08254501A (en) * | 1995-03-16 | 1996-10-01 | Hitachi Denshi Ltd | Appearance inspection method and device |
JP2005252451A (en) * | 2004-03-02 | 2005-09-15 | Sony Corp | Image quality inspection method and image quality inspection apparatus |
JP2005253685A (en) * | 2004-03-11 | 2005-09-22 | Konica Minolta Medical & Graphic Inc | Diagnostic imaging support device and program |
JP2006292725A (en) * | 2005-03-17 | 2006-10-26 | Omron Corp | Substrate inspection device, its inspection logic setting method, and inspection logic setting device |
JP2007139621A (en) * | 2005-11-18 | 2007-06-07 | Omron Corp | Determination device, control program of determination device, and recording medium recording control program of determination device |
JP2011058926A (en) * | 2009-09-09 | 2011-03-24 | Ricoh Elemex Corp | Method and device for inspecting image |
JP2013140040A (en) * | 2011-12-28 | 2013-07-18 | Keyence Corp | Visual inspection device, visual inspection method and computer program |
JP2013168538A (en) * | 2012-02-16 | 2013-08-29 | Fuji Mach Mfg Co Ltd | Board appearance inspection machine and board appearance inspection method |
JP2013172062A (en) * | 2012-02-22 | 2013-09-02 | Sony Corp | Mounting device, electronic component quality determination method, program and board manufacturing method |
JP2014230146A (en) * | 2013-05-23 | 2014-12-08 | 富士ゼロックス株式会社 | Image evaluation method, image evaluation device and image evaluation program |
JP2017111625A (en) * | 2015-12-16 | 2017-06-22 | 三菱重工業株式会社 | Quality monitoring system and quality monitoring method |
-
2019
- 2019-03-14 JP JP2021505478A patent/JP7153126B2/en active Active
- 2019-03-14 WO PCT/JP2019/010710 patent/WO2020183734A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08254501A (en) * | 1995-03-16 | 1996-10-01 | Hitachi Denshi Ltd | Appearance inspection method and device |
JP2005252451A (en) * | 2004-03-02 | 2005-09-15 | Sony Corp | Image quality inspection method and image quality inspection apparatus |
JP2005253685A (en) * | 2004-03-11 | 2005-09-22 | Konica Minolta Medical & Graphic Inc | Diagnostic imaging support device and program |
JP2006292725A (en) * | 2005-03-17 | 2006-10-26 | Omron Corp | Substrate inspection device, its inspection logic setting method, and inspection logic setting device |
JP2007139621A (en) * | 2005-11-18 | 2007-06-07 | Omron Corp | Determination device, control program of determination device, and recording medium recording control program of determination device |
JP2011058926A (en) * | 2009-09-09 | 2011-03-24 | Ricoh Elemex Corp | Method and device for inspecting image |
JP2013140040A (en) * | 2011-12-28 | 2013-07-18 | Keyence Corp | Visual inspection device, visual inspection method and computer program |
JP2013168538A (en) * | 2012-02-16 | 2013-08-29 | Fuji Mach Mfg Co Ltd | Board appearance inspection machine and board appearance inspection method |
JP2013172062A (en) * | 2012-02-22 | 2013-09-02 | Sony Corp | Mounting device, electronic component quality determination method, program and board manufacturing method |
JP2014230146A (en) * | 2013-05-23 | 2014-12-08 | 富士ゼロックス株式会社 | Image evaluation method, image evaluation device and image evaluation program |
JP2017111625A (en) * | 2015-12-16 | 2017-06-22 | 三菱重工業株式会社 | Quality monitoring system and quality monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JP7153126B2 (en) | 2022-10-13 |
JPWO2020183734A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015136669A1 (en) | Image processing device and substrate production system | |
JP2014072409A (en) | Component inspection method and device | |
WO2022064585A1 (en) | Picking possibility determination device and picking possibility determination method | |
JP2009094283A (en) | Method of producing mounting board, surface mounting machine, and mounting board production control device | |
JP6472873B2 (en) | Parts inspection machine and parts placement machine | |
JP4308588B2 (en) | Surface mount machine | |
JP6648252B2 (en) | Image processing system and image processing method | |
JP6734868B2 (en) | Image processing apparatus and image processing method for substrate | |
US20210161044A1 (en) | Recognition device | |
WO2017081773A1 (en) | Image processing device and image processing method for base plate | |
JP4852456B2 (en) | Mounting line and mounting method | |
WO2020183734A1 (en) | Quality determination device and quality determination method | |
JP2003347794A (en) | Method and apparatus for taking out electronic circuit component | |
US20220151120A1 (en) | Correction amount calculating device and correction amount calculating method | |
JP6904978B2 (en) | Parts mounting machine | |
JP6728501B2 (en) | Image processing system and component mounter | |
US10813261B2 (en) | Mounting device, setting device, mounting system, mounting method, and setting method | |
JP7473735B2 (en) | Foreign object detection device and foreign object detection method | |
JP7153127B2 (en) | Pass/Fail Judgment Device and Pass/Fail Judgment Method | |
WO2017212566A1 (en) | Component mounting system | |
JP6855597B2 (en) | Working machine and polarity judgment method | |
JP4800161B2 (en) | Electronic component mounting method and apparatus | |
WO2024232049A1 (en) | Production assistance device and production assistance method | |
JP7142169B2 (en) | Image data management device and image data management method | |
JP2015173152A (en) | Component recognition device, component transfer device and component mounting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918975 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505478 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918975 Country of ref document: EP Kind code of ref document: A1 |