[go: up one dir, main page]

WO2020183211A1 - Method for controlling internal combustion engine and device for controlling internal combustion engine - Google Patents

Method for controlling internal combustion engine and device for controlling internal combustion engine Download PDF

Info

Publication number
WO2020183211A1
WO2020183211A1 PCT/IB2019/000252 IB2019000252W WO2020183211A1 WO 2020183211 A1 WO2020183211 A1 WO 2020183211A1 IB 2019000252 W IB2019000252 W IB 2019000252W WO 2020183211 A1 WO2020183211 A1 WO 2020183211A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
temperature
injection valve
fuel injection
Prior art date
Application number
PCT/IB2019/000252
Other languages
French (fr)
Japanese (ja)
Inventor
菅野太一郎
坂田知弘
吉村太
岩渕良彦
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2019/000252 priority Critical patent/WO2020183211A1/en
Priority to JP2021504586A priority patent/JP7188554B2/en
Publication of WO2020183211A1 publication Critical patent/WO2020183211A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means

Definitions

  • the present invention relates to an internal combustion engine control method and an internal combustion engine control device.
  • Patent Document 1 in a so-called port injection type internal combustion engine that injects fuel into an intake port, the throttle valve is opened after the internal combustion engine is stopped, and the temperature of the fuel injection valve becomes a target temperature suitable for fuel atomization.
  • a technique for closing the throttle valve when it is determined that the fuel has been reached is disclosed.
  • This Patent Document 1 keeps the intake system warm while cooling the fuel injection valve when the internal combustion engine is stopped, and achieves both suppression of deposit generation at the tip of the fuel injection valve and fuel atomization at the time of restart.
  • Patent Document 1 focuses on suppressing the generation of deposit, the amount of fuel that wets the nozzle tip of the fuel injection valve when fuel is injected, that is, the fuel adhering to the nozzle tip of the fuel injection valve (Tip-). No consideration is given to wet).
  • the internal combustion engine has a fuel injection valve that directly injects fuel into the combustion chamber, and when the temperature of the nozzle tip of the fuel injection valve is a predetermined temperature, the fuel adhesion amount at the nozzle tip becomes the maximum value.
  • the temperature at the tip of the nozzle of the fuel injection valve is controlled so as to avoid a temperature range in which the amount of fuel adhered becomes the maximum value.
  • the internal combustion engine in an internal combustion engine, fuel is less likely to adhere to the nozzle tip of a fuel injection valve. Therefore, the internal combustion engine can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve.
  • Explanatory drawing which shows typically the correlation between the fuel adhesion amount index value F and the temperature Tinj of the nozzle tip of a fuel injection valve. Timing chart of the scene where the internal combustion engine restarts due to low battery SOC.
  • the characteristic figure which shows the correlation between the target number of exhaust fine particles X and the adhesion amount index value X 1 .
  • the characteristic figure which shows the correlation between the battery consumption index value X 4 and the operating time X 2 .
  • Characteristic diagram showing the correlation between the second exhaust particulate number PN2 and the battery consumption amount index value X 4.
  • the flowchart which shows an example of the control flow of an internal combustion engine.
  • FIG. 1 is an explanatory diagram schematically showing an outline of an internal combustion engine 1 to which the present invention is applied.
  • FIG. 1 shows only one cylinder for convenience, the internal combustion engine 1 may be a single cylinder or a multi-cylinder engine.
  • the internal combustion engine 1 is an in-cylinder direct injection spark-ignition internal combustion engine, which is mounted on a vehicle such as an automobile.
  • the internal combustion engine 1 is, for example, one that transmits the rotation of a crankshaft as a driving force to the drive wheels of a vehicle, or one dedicated to power generation mounted on a so-called series hybrid vehicle.
  • the internal combustion engine 1 has an intake passage 3 and an exhaust passage 4.
  • the intake passage 3 is connected to the combustion chamber 2 via an intake valve 5.
  • the exhaust passage 4 is connected to the combustion chamber 2 via an exhaust valve 6.
  • the exhaust passage 4 is provided with an exhaust purification catalyst 14 such as a three-way catalyst.
  • the exhaust gas purification catalyst 14 is, for example, a so-called underfloor catalyst located under the floor of a vehicle.
  • the internal combustion engine 1 includes a cylinder head 7, a cylinder block 8, a piston 10 that reciprocates in the cylinder 9 of the cylinder block 8, and a fuel injection valve 11 that directly injects fuel into the combustion chamber 2 inside the cylinder. And have.
  • the piston 10 is connected to a crankshaft (not shown) via a connecting rod 12.
  • the fuel injection valve 11 has a plurality of injection ports (not shown) at the tip of the nozzle. The fuel injected from the fuel injection valve 11 is ignited by the spark plug 13 in the combustion chamber 2.
  • the temperature Tinj at the tip of the nozzle can be raised by the heater 15.
  • the heater 15 is attached to, for example, the nozzle body 11a of the fuel injection valve 11.
  • the fuel injection amount of the fuel injection valve 11, the fuel injection timing of the fuel injection valve 11, the ignition timing of the spark plug 13, the pressure of the fuel supplied to the fuel injection valve 11, and the like are controlled by the control unit 21 as a control unit. ..
  • the control unit 21 is a well-known digital computer equipped with a CPU, ROM, RAM, and an input / output interface.
  • the control unit 21 includes an air flow meter 22 that detects the amount of intake air, a crank angle sensor 23 that detects the crank angle of the crank shaft, an accelerator opening sensor 24 that detects the amount of depression of the accelerator pedal, and a cooling water temperature of the internal combustion engine 1.
  • a water temperature sensor 25 for detecting an oil temperature sensor 26 for detecting the lubricating oil temperature of the internal combustion engine 1, a fuel pressure sensor 27 for detecting the fuel pressure Pfeel, and a temperature sensor for detecting the temperature Tinj at the tip of the nozzle of the fuel injection valve 11.
  • the detection signals of various sensors such as the nozzle tip temperature sensor 28 and the catalyst temperature sensor 29 that detects the catalyst temperature Tcat of the exhaust purification catalyst 14 are input.
  • the control unit 21 calculates the required load (engine load) of the internal combustion engine 1 using the detection value of the accelerator opening sensor 24.
  • control unit 21 can detect SOC (State Of Charge), which is the ratio of the remaining charge to the charge capacity of the battery 30 that supplies electric power to the heater 15. That is, the control unit 21 corresponds to the battery SOC detection unit.
  • SOC State Of Charge
  • the air flow meter 22 has, for example, a built-in temperature sensor and can detect the intake air temperature.
  • the crank angle sensor 23 can detect the engine speed of the internal combustion engine 1.
  • the fuel pressure sensor 27 detects the pressure of the fuel supplied to the fuel injection valve 11 (fuel pressure Pfuel). In the fuel injection valve 11, the higher the fuel pressure Pfeel, the higher the pressure of the injected fuel.
  • the nozzle tip temperature sensor 28 corresponds to the nozzle tip temperature detection unit.
  • the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 can be estimated from the electric resistance of the heater 15 by grasping the relationship between the electric resistance of the heater 15 and the temperature in advance. Further, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 can be estimated by a known method disclosed in Patent Document 1 and the like described above.
  • the control unit 21 optimally controls the fuel injection amount, fuel injection timing, ignition timing, etc. of the fuel injection valve 11 based on the detection signals of various sensors.
  • the control unit 21 controls ON / OFF of the heater 15 via the switch 31.
  • the switch 31 is arranged on the power line 32 that connects the battery 30 and the heater 15.
  • the switch 31 is opened and closed based on a control command from the control unit 21.
  • the heater 15 When electric power is supplied, the heater 15 generates heat and raises the temperature Tinj at the tip of the nozzle of the fuel injection valve 11.
  • the control unit 21 corresponds to a control unit that automatically stops the internal combustion engine 1 when a predetermined automatic stop condition is satisfied, and automatically restarts the internal combustion engine 1 when a predetermined automatic restart condition is satisfied.
  • the automatic stop conditions in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle are, for example, a state in which the accelerator pedal is not depressed, and the battery SOC of the battery 30 is predetermined. It is larger than the battery threshold SOC tv , the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined first catalyst temperature threshold T cat_tv1 and the like.
  • the internal combustion engine 1 automatically stops when all of these automatic stop conditions are satisfied.
  • the control unit 21 automatically stops the internal combustion engine 1 when all of these automatic stop conditions are satisfied during the operation of the internal combustion engine 1.
  • the conditions for automatic restart in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle are, for example, a state in which the accelerator pedal is depressed, and the battery SOC of the battery 30 is predetermined.
  • the battery threshold is SOC tv or less
  • the catalyst temperature T cat of the exhaust gas purification catalyst 14 is equal to or less than the predetermined first catalyst temperature threshold T cat_tv1 and the like.
  • the internal combustion engine 1 restarts when any of these automatic restart conditions is satisfied.
  • the control unit 21 restarts the internal combustion engine 1 when any of these automatic restart conditions is satisfied during the automatic stop of the internal combustion engine 1.
  • the internal combustion engine 1 that is automatically stopped restarts when the battery SOC of the battery 30 becomes equal to or less than the battery threshold SOC tv as a predetermined value.
  • an idle stop, a coast stop, and a sailing stop as automatic stops of the internal combustion engine 1 in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle.
  • Idle stop is implemented when the vehicle is temporarily stopped, for example, when the above automatic stop conditions are met. Further, the idle stop is released when any of the above-mentioned automatic restart conditions is satisfied, for example.
  • the coast stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the coast stop is canceled when any of the above-mentioned automatic restart conditions is satisfied, for example.
  • the coast stop is, for example, automatically stopping the internal combustion engine 1 during deceleration in a state where the brake pedal is depressed at a low vehicle speed.
  • Sailing stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the sailing stop is canceled when any of the above-mentioned automatic restart conditions is satisfied, for example.
  • the sailing stop is, for example, the automatic stop of the internal combustion engine 1 during coasting when the brake pedal is not depressed at a medium or high vehicle speed.
  • the automatic stop condition in the so-called series hybrid vehicle in which the internal combustion engine 1 is mounted for power generation is that, for example, the battery SOC of the battery 30 is larger than a predetermined battery threshold SOC tv during the operation of the internal combustion engine 1. ..
  • the automatic restart condition in a so-called series hybrid vehicle in which the internal combustion engine 1 is mounted for power generation is that when the internal combustion engine 1 is stopped while the hybrid vehicle is in operation, for example, the battery SOC of the battery 30 is set to the battery threshold SOC tv. It is as follows.
  • the fuel injection valve 11 injects fuel directly into the combustion chamber 2, the nozzle tip is easily affected by the flame during combustion. Therefore, in the internal combustion engine 1, reduction of exhaust fine particles (Particulate Matter) caused by fuel adhering to the nozzle tip of the fuel injection valve 11 becomes an issue.
  • the fuel adhering to the nozzle tip of the fuel injection valve 11 wets the outside of the nozzle tip of the fuel injection valve 11 during combustion among the fuel injected from the fuel injection valve 11. It is a fuel (Tip-wet).
  • the fuel adhering to the nozzle tip of the fuel injection valve 11 includes the fuel that has exuded from the inside of the nozzle tip of the fuel injection valve 11 to the outside after the fuel injection valve 11 is closed.
  • the tip of the valve body (not shown) of the fuel injection valve 11 is seated on the tapered surface (not shown) formed inside the nozzle body 11a, the sack portion is injected with the tip of the valve body (not shown). It is an internal space formed between the valve 11 and the injection port at the tip of the nozzle.
  • the fuel injection valve 11 injects fuel when the tip of the valve body (for example, a needle valve) of the fuel injection valve 11 is separated from the tapered surface of the nozzle body 11a.
  • the deposit in the present specification is a porous deposit in which a part of the injected fuel or the like is solidified.
  • the fuel injection valve 11 has more fuel around the injection port than in the previous cycle.
  • the fuel adhesion amount index value F which is an index (Tip-wet-INDEX) of the fuel adhesion amount at the nozzle tip of the fuel injection valve 11 when the fuel is injected, is the fuel injection valve 11
  • the temperature Tinj at the tip of the nozzle is the above-mentioned predetermined temperature A (for example, about 90 ° C.)
  • the maximum value is reached. That is, the wetting of the fuel injection valve 11 (fuel adhering to the nozzle tip) increases as the temperature Tinj of the nozzle tip of the fuel injection valve 11 rises, but decreases when the temperature exceeds a certain temperature range.
  • the temperature of the nozzle tip of the fuel injection valve 11 is tinj so as to avoid the temperature range where the fuel adhesion amount at the nozzle tip of the fuel injection valve 11 becomes the maximum value (peak) by utilizing this characteristic. To control.
  • the control unit 21 fuels the fuel injection valve 11.
  • the heater 15 is used to raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 to be higher than the predetermined temperature A.
  • control unit 21 has a temperature Tinj at the tip of the nozzle of the fuel injection valve 11 so as to avoid a temperature range in which the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 becomes the maximum value (peak) when the internal combustion engine 1 is started.
  • control unit that controls.
  • the internal combustion engine 1 makes it difficult for fuel to adhere to the nozzle tip of the fuel injection valve 11. Therefore, the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas caused by the fuel adhering to the tip of the nozzle of the fuel injection valve 11.
  • the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 does not change so as to straddle the temperature range where the amount of fuel adhering to the tip of the nozzle reaches the maximum value when the internal combustion engine 1 is automatically restarted. Therefore, in the internal combustion engine 1, fuel is less likely to adhere to the nozzle tip of the fuel injection valve 11.
  • the internal combustion engine 1 keeps the temperature Tinj at the tip of the nozzle higher than the predetermined temperature A until the internal combustion engine 1 stops. maintain.
  • the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 does not change so as to straddle the temperature range where the amount of fuel adhering to the tip of the nozzle becomes the maximum value. Therefore, the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve 11 at all times during combustion.
  • the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 becomes high due to the combustion. Therefore, the temperature Tinj at the tip of the nozzle does not operate the heater 15. Can be maintained at a temperature higher than the predetermined temperature A.
  • control unit 21 permits the operation of the heater 15 when the internal combustion engine 1 is automatically restarted, but does not permit the operation of the heater 15 when the internal combustion engine 1 is not automatically restarted.
  • the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined second catalyst temperature threshold T cat_tv2 prior to the establishment of the automatic restart condition (starting condition) of the internal combustion engine 1.
  • the heater 15 is operated.
  • the second catalyst temperature threshold value T cat_tv2 is set as a temperature higher than the first catalyst temperature threshold value T cat_tv1 .
  • the second catalyst temperature threshold value T cat_tv2 is the temperature of the exhaust gas purification catalyst 14 that requires the operation of the heater 15.
  • control unit 21 does not operate the heater 15 if the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined second catalyst temperature threshold value T cat_tv2 .
  • the internal combustion engine 1 operates the heater 15 at an appropriate timing, so that the battery power consumed by the heater 15 can be minimized.
  • FIG. 3 is a timing chart of a scene in which the internal combustion engine 1 restarts due to a decrease in the battery SOC of the battery 30.
  • the time t1 in FIG. 3 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
  • the time t2 in FIG. 3 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
  • the battery SOC of the battery 30 becomes equal to or less than the battery threshold SOC tv at the timing of time t2, and the automatic restart condition of the internal combustion engine 1 is satisfied. Further, in the example of FIG. 3, since the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the second catalyst temperature threshold T cat_tv2 at the timing t2 when the automatic restart condition of the internal combustion engine 1 is satisfied, the heater The internal combustion engine 1 is started without operating the 15.
  • control unit 21 When the control unit 21 operates the heater 15, the control unit 21 calculates the operating time X 2 of the heater 15 according to the amount of fuel adhered to the tip of the nozzle of the fuel injection valve 11.
  • control unit 21 calculates the adhesion amount index value X 1 using the target number of exhaust gas particles X set according to the driving state of the vehicle.
  • the adhesion amount index value X 1 is an index value of the fuel adhesion amount adhering to the tip of the nozzle when the number of exhaust particles generated reaches the target number of exhaust particles X.
  • the adhesion amount index value X 1 is an index value set so as to increase as the target number of exhaust gas particles X increases, as shown by a broken line in FIG. 4, for example.
  • control unit 21 calculates the operating time X 2 of the heater 15 by using the adhesion amount index value X 1 .
  • the operating time X 2 of the heater 15 is set to become longer as the adhesion amount index value X 1 becomes smaller and shorter as the temperature Tinj at the nozzle tip of the fuel injection valve 11 becomes higher, as shown by a broken line in FIG. .. That is, in FIG. 5 would operate time X 2 of the heater 15 is calculated using the lower characteristic line higher temperature Tinj of the nozzle tip of the fuel injection valve 11. That is, in FIG. 5, the characteristic line used when calculating the operating time X 2 of the heater 15 from the adhesion amount index value X 1 is properly used according to the temperature Tinj of the nozzle tip of the fuel injection valve 11.
  • the operating time X 2 of the heater 15 is set so that when the temperature Tinj of the nozzle tip of the fuel injection valve 11 is higher than the predetermined temperature A, the temperature Tinj of the nozzle tip of the fuel injection valve 11 becomes shorter as the temperature Tinj becomes higher. ..
  • the operating time X 2 of the heater 15 is set so that at least the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is higher than the predetermined temperature A. Further, the operating time X 2 of the heater 15 can be set to “0” when the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is higher than the predetermined temperature A.
  • the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve 11.
  • the target number of exhaust particles X may be corrected according to the oil / water temperature of the internal combustion engine 1, the rotational load of the internal combustion engine 1, and the injection pressure of the fuel injection valve 11. More specifically, the target number of exhaust gas particles X may be corrected so that the oil / water temperature expected when the internal combustion engine 1 is restarted or the oil / water temperature when the heater 15 is operated becomes higher. The target number of exhaust fine particles X may be corrected so as to increase as the rotational load expected when the internal combustion engine 1 is restarted increases. The target number of exhaust fine particles X may be corrected so as to increase as the fuel injection pressure set when the internal combustion engine 1 is restarted increases.
  • control unit 21 may operate the heater 15 only when the total number of exhaust fine particles discharged during the operation of the internal combustion engine 1 is reduced by operating the heater 15.
  • the control unit 21 has a first exhaust particle number PN1 which is the number of exhaust particles expected to be reduced by operating the heater 15 when the internal combustion engine 1 is started when the internal combustion engine 1 is restarted, and a heater 15. This is compared with the number of second exhaust particles PN2, which is the number of exhaust particles that is expected to increase due to the earlier restart timing of the internal combustion engine 1 due to the operation of. Then, the control unit 21 may operate the heater 15 when the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2.
  • the internal combustion engine 1 When the electric power of the battery 30 is consumed by operating the heater 15, the internal combustion engine 1 lowers the battery SOC according to the consumed electric power, so that the timing of starting the next time is earlier by that amount. That is, when the internal combustion engine 1 uses electric power in the heater 15, the restart timing is accelerated.
  • the heater 15 when the heater 15 is operated at the time of starting the internal combustion engine 1, the total operating time is longer than when the heater 15 is not operated, and the amount of exhaust fine particles discharged increases by that amount.
  • control unit 21 compares the number of first exhaust particles PN1 that can be reduced by operating the heater 15 with the number of second exhaust particles PN2 that increases by operating the heater 15. Then, when the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2, the control unit 21 operates the heater 15 at the time of starting to raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11.
  • control unit 21 may allow the heater 15 to operate at the time of starting only when the total number of exhaust fine particles discharged during operation is reduced.
  • Control unit 21 calculates a first exhaust particulate number PN1 using deposition amount decrease index X 3 is a decrease in the adhesion amount index value X 1.
  • control unit 21 calculates the index value X 3 for the amount of decrease in the adhesion amount by using the operating time X 2 of the heater 15.
  • the adhesion amount reduction index value X 3 is an index value of the fuel adhesion reduction amount at the nozzle tip of the fuel injection valve 11 that is reduced by operating the heater 15.
  • the adhesion amount reduction index value X 3 is set to increase as the operating time X 2 of the heater 15 becomes longer.
  • control unit 21 calculates a first exhaust particulate number PN1 using deposition amount decrease index X 3.
  • the first exhaust particulate number PN1 for example, as shown by the broken line in FIG. 7, is set so that the adhesion amount decrease the index value X 3 increases as increases.
  • control unit 21 calculates the second exhaust fine particle number PN2 by using the battery consumption index value X 4 that correlates with the battery consumption.
  • the control unit 21 calculates the battery consumption index value X 4 by using the operating time X 2 of the heater 15.
  • the battery consumption index value X 4 is an index value that correlates with the operating time of the internal combustion engine 1 that has become longer due to the operation of the heater 15.
  • the battery consumption index value X 4 is set so as to increase as the operating time X 2 of the heater 15 increases, as shown by a broken line in FIG. 8, for example.
  • control unit 21 calculates the second exhaust particulate number PN2 using the battery consumed by the index value X 4.
  • the second exhaust fine particle number PN2 is set so as to increase as the battery consumption index value X 4 increases, as shown by a broken line in FIG. 9, for example.
  • the total number of exhaust particles discharged during operation can be calculated. It can be reliably suppressed.
  • the control unit 21 may set the second catalyst temperature threshold value T cat_tv2 according to the temperature decrease rate of the exhaust gas purification catalyst 14.
  • the exhaust gas purification catalyst 14 when the temperature decrease rate of the exhaust gas purification catalyst 14 is large, the exhaust gas purification catalyst 14 has a temperature Tinj at the tip of the nozzle of the fuel injection valve 11 before avoiding a temperature range in which the amount of fuel adhering to the tip of the nozzle becomes the maximum value.
  • the catalyst temperature T cat may be less than the first catalyst temperature threshold T cat_tv1 .
  • control unit 21 sets a second catalyst temperature threshold value T Cat_tv2 as a difference between the first catalyst temperature threshold value T Cat_tv1 as the temperature decreasing rate is increased and the second catalyst temperature threshold value T Cat_tv2 of the emission control catalyst 14 is increased To do.
  • the internal combustion engine 1 can raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 by the heater 15 before the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold T cat_tv1. It will be possible. That is, the internal combustion engine 1 can prevent the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 from straddling the temperature range in which the fuel adhesion amount becomes the maximum value at the time of starting.
  • the internal combustion engine 1 can suppress the deterioration of the catalyst purification performance due to the temperature drop of the exhaust purification catalyst 14 at the time of starting, and the increase of the exhaust fine particles in the exhaust caused by the fuel adhering to the nozzle tip of the fuel injection valve 11. Can be suppressed. That is, the internal combustion engine 1 can achieve both suppression of deterioration of the catalyst purification performance of the exhaust gas purification catalyst 14 and reduction of the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 at the time of starting.
  • FIG. 10 is a timing chart of the scene where the internal combustion engine 1 mounted on the vehicle traveling at low speed restarts. That is, FIG. 10 is a timing chart of a scene in which the internal combustion engine 1 restarts when the temperature decrease rate of the exhaust gas purification catalyst 14 is slow.
  • the time t1 in FIG. 10 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
  • the time t2 in FIG. 10 is the timing when the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the second catalyst temperature threshold value T cat_tv2 and the heater 15 operates.
  • the time t3 in FIG. 10 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
  • the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold value T cat_tv1 at the timing of time t3, and the automatic restart condition of the internal combustion engine 1 is satisfied.
  • the second catalyst temperature threshold value T cat_tv2 is set so that the difference ⁇ T cat_low, which is the difference from the first catalyst temperature threshold value T cat_tv1 , becomes small. ..
  • the difference ⁇ T cat_low is a value corresponding to the second catalyst temperature threshold value T cat_tv2 set when the vehicle travels at a low speed.
  • FIG. 11 is a timing chart showing a scene in which the internal combustion engine 1 mounted on the vehicle traveling at high speed restarts. That is, FIG. 11 is a timing chart of a scene in which the internal combustion engine 1 restarts when the temperature decrease rate of the exhaust gas purification catalyst 14 is high.
  • the time t1 in FIG. 11 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
  • the time t2 in FIG. 11 is the timing at which the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the second catalyst temperature threshold value T cat_tv2 and the heater 15 operates.
  • Time t3 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
  • the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold value T cat_tv1 at the timing of time t3, and the automatic restart condition of the internal combustion engine 1 is satisfied.
  • the second catalyst temperature threshold value T cat_tv2 is set so that the difference ⁇ T cat_high, which is the difference from the first catalyst temperature threshold value T cat_tv1 , becomes large. ..
  • the difference ⁇ T cat_high is a value corresponding to the second catalyst temperature threshold value Tcat_tv2 set when the vehicle travels at high speed.
  • the difference ⁇ T cat_high is a larger value than the difference ⁇ T cat_low .
  • FIG. 12 is a flowchart showing an example of the control flow of the internal combustion engine 1.
  • step S1 it is determined whether or not the internal combustion engine 1 is in a stopped state. If the internal combustion engine 1 is stopped, the process proceeds to step S2. If the internal combustion engine 1 is in operation, this routine ends.
  • step S2 it is determined whether or not the battery SOC of the battery 30 is larger than the battery threshold SOC tv . If the battery SOC is larger than the battery threshold SOC tv , the process proceeds to step S3. If the battery SOC is equal to or less than the battery threshold SOC tv , the process proceeds to step S9.
  • step S3 it is determined whether or not the catalyst temperature T cat of the exhaust gas purification catalyst 14 is less than the second catalyst temperature threshold T cat_tv2 .
  • step S3 if the catalyst temperature T cat is less than the second catalyst temperature threshold T cat_tv2 , the process proceeds to step S4.
  • step S3 if the catalyst temperature T cat is equal to or higher than the second catalyst temperature threshold T cat_tv2 , the current routine is terminated.
  • step S4 the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is detected.
  • step S5 the operating time X 2 of the heater 15 is calculated.
  • step S6 the number of first exhaust particles PN1 and the number of second exhaust particles PN2 are calculated, and the magnitude relationship between the two is compared. In step S6, if the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2, the process proceeds to step S7. In step S6, if the number of first exhaust particles PN1 is PN2 or less, the process proceeds to step S8.
  • step S7 actuating time X 2 operates the heater 15.
  • step S8 it is determined whether or not the catalyst temperature T cat of the exhaust gas purification catalyst 14 is less than the first catalyst temperature threshold value T cat_tv1 . In step S8, if the catalyst temperature T cat is less than the first catalyst temperature threshold T cat_tv1 , the process proceeds to step S9.
  • step S9 the internal combustion engine 1 is restarted.
  • the present invention is not limited to the above-mentioned examples, and various modifications can be made without departing from the spirit of the present invention.
  • the temperature Tinj of the nozzle tip of the fuel injection valve 11 is set. It may be controlled so as not to be higher than the predetermined temperature A.
  • the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is maintained at the predetermined temperature A or lower, the temperature range in which the amount of fuel adhering to the tip of the nozzle becomes the maximum value when the internal combustion engine 1 is automatically restarted is set. It does not change to straddle. Therefore, in the internal combustion engine 1, fuel is less likely to adhere to the nozzle tip of the fuel injection valve 11.
  • the above-described embodiment relates to a control method for the internal combustion engine 1 and a control device for the internal combustion engine 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

An internal combustion engine (1) has a fuel injection valve (11) that directly injects fuel into a combustion room (2). In the fuel injection valve (11), a fuel attachment amount at a nozzle tip becomes a maximum value when a temperature (Tinj) of the nozzle tip is a prescribed temperature (A). In the internal combustion engine (1), the temperature (Tinj) of the nozzle tip of the fuel injection valve (11) is controlled so as to avoid a temperature range in which the fuel attachment amount becomes the maximum value during startup. As a result, the fuel is not easily attached to the nozzle tip of the fuel injection valve (11) in the internal combustion engine (1). Therefore, the internal combustion engine (1) can suppress an increase in exhaust fine particles in exhaust resulting from the fuel attached to the nozzle tip of the fuel injection valve (11).

Description

内燃機関の制御方法及び内燃機関の制御装置Internal combustion engine control method and internal combustion engine control device
 本発明は、内燃機関の制御方法及び内燃機関の制御装置に関する。 The present invention relates to an internal combustion engine control method and an internal combustion engine control device.
 例えば、特許文献1には、吸気ポートに燃料を噴射するいわゆるポート噴射式の内燃機関において、内燃機関の停止後にスロットル弁を開き、燃料噴射弁の温度が燃料の霧化に適した目標温度に到達したと判断されるとスロットル弁を閉じるようにした技術が開示されている。 For example, in Patent Document 1, in a so-called port injection type internal combustion engine that injects fuel into an intake port, the throttle valve is opened after the internal combustion engine is stopped, and the temperature of the fuel injection valve becomes a target temperature suitable for fuel atomization. A technique for closing the throttle valve when it is determined that the fuel has been reached is disclosed.
 この特許文献1は、内燃機関の停止時に燃料噴射弁を冷却しつつ、吸気系統を保温して、燃料噴射弁先端におけるデポジットの生成抑制と再始動時の燃料霧化を両立させている。 This Patent Document 1 keeps the intake system warm while cooling the fuel injection valve when the internal combustion engine is stopped, and achieves both suppression of deposit generation at the tip of the fuel injection valve and fuel atomization at the time of restart.
 しかしながら、特許文献1においては、デポジットの生成抑制に着目しているものの、燃料を噴射した際に燃料噴射弁のノズル先端を濡らす燃料量、すなわち燃料噴射弁のノズル先端に付着する燃料(Tip−wet)に関する考慮はなされていない。 However, although Patent Document 1 focuses on suppressing the generation of deposit, the amount of fuel that wets the nozzle tip of the fuel injection valve when fuel is injected, that is, the fuel adhering to the nozzle tip of the fuel injection valve (Tip-). No consideration is given to wet).
 また、特許文献1の前提となるポート噴射式内燃機関とは異なる温度域で燃料噴射弁が使用されることになる筒内直接噴射式内燃機関では、必ずしも燃料噴射弁を冷却することのみがデポジットの生成抑制に結びつかない虞がある。 Further, in the in-cylinder direct injection type internal combustion engine in which the fuel injection valve is used in a temperature range different from that of the port injection type internal combustion engine which is the premise of Patent Document 1, only cooling the fuel injection valve is necessarily a deposit. There is a risk that it will not lead to suppression of the production of.
 従って、燃焼室に燃料を直接噴射する燃料噴射弁の場合には、デポジットの生成抑制を図るために更なる改善の余地がある。 Therefore, in the case of a fuel injection valve that injects fuel directly into the combustion chamber, there is room for further improvement in order to suppress the generation of deposits.
特開2014−9674号公報Japanese Unexamined Patent Publication No. 2014-9674
 内燃機関は、燃焼室内に燃料を直接噴射する燃料噴射弁を有し、上記燃料噴射弁のノズル先端の温度が所定温度のときに当該ノズル先端の燃料付着量が極大値となるものであって、上記内燃機関の始動時に、上記燃料付着量が上記極大値となる温度域を避けるように、上記燃料噴射弁の上記ノズル先端の温度を制御する。 The internal combustion engine has a fuel injection valve that directly injects fuel into the combustion chamber, and when the temperature of the nozzle tip of the fuel injection valve is a predetermined temperature, the fuel adhesion amount at the nozzle tip becomes the maximum value. When the internal combustion engine is started, the temperature at the tip of the nozzle of the fuel injection valve is controlled so as to avoid a temperature range in which the amount of fuel adhered becomes the maximum value.
 本発明よれば、内燃機関は、燃料噴射弁のノズル先端に燃料が付着しにくくなる。そのため、内燃機関は、燃料噴射弁のノズル先端に付着した燃料に起因する排気中の排気微粒子の増加を抑制することができる。 According to the present invention, in an internal combustion engine, fuel is less likely to adhere to the nozzle tip of a fuel injection valve. Therefore, the internal combustion engine can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve.
本発明が適用される内燃機関の概略を模式的に示した説明図。An explanatory view schematically showing an outline of an internal combustion engine to which the present invention is applied. 燃料付着量指標値Fと燃料噴射弁のノズル先端の温度Tinjとの相関を模式的に示した説明図。Explanatory drawing which shows typically the correlation between the fuel adhesion amount index value F and the temperature Tinj of the nozzle tip of a fuel injection valve. バッテリSOC低下により内燃機関が再始動する場面のタイミングチャート。Timing chart of the scene where the internal combustion engine restarts due to low battery SOC. 目標排気微粒子数Xと付着量指標値Xとの相関を示す特性図。The characteristic figure which shows the correlation between the target number of exhaust fine particles X and the adhesion amount index value X 1 . 付着量指標値Xと作動時間Xとの相関を示す特性図。The characteristic figure which shows the correlation between the adhesion amount index value X 1 and the operation time X 2 . 付着量減少分指標値Xと作動時間Xとの相関を示す特性図。Characteristic diagram showing the correlation between the deposition amount decrease index X 3 and operating time X 2. 第1排気微粒子数PN1と付着量減少分指標値Xとの相関を示す特性図。Characteristic diagram showing the correlation between the deposition amount decrease index X 3 and the first exhaust particulate number PN1. バッテリ消費分指標値Xと作動時間Xとの相関を示す特性図。The characteristic figure which shows the correlation between the battery consumption index value X 4 and the operating time X 2 . 第2排気微粒子数PN2とバッテリ消費分指標値Xとの相関を示す特性図。Characteristic diagram showing the correlation between the second exhaust particulate number PN2 and the battery consumption amount index value X 4. 低速走行中の車両に搭載された内燃機関が再始動する場面のタイミングチャート。A timing chart of the scene where the internal combustion engine mounted on a vehicle running at low speed restarts. 高速走行中の車両に搭載された内燃機関が再始動する場面のタイミングチャート。A timing chart of the scene where the internal combustion engine mounted on a vehicle running at high speed restarts. 内燃機関の制御の流れの一例を示すフローチャート。The flowchart which shows an example of the control flow of an internal combustion engine.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される内燃機関1の概略を模式的に示した説明図である。なお、図1は、便宜上、1つの気筒についてのみ記しているが、内燃機関1は単気筒であっても多気筒であってもよい。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram schematically showing an outline of an internal combustion engine 1 to which the present invention is applied. Although FIG. 1 shows only one cylinder for convenience, the internal combustion engine 1 may be a single cylinder or a multi-cylinder engine.
 内燃機関1は、筒内直接噴射式火花点火内燃機関であって、自動車等の車両に搭載されるものである。内燃機関1は、例えば、クランクシャフトの回転を駆動力として車両の駆動輪に伝達するものや、いわゆるシリーズハイブリッド車両に搭載される発電専用のものである。 The internal combustion engine 1 is an in-cylinder direct injection spark-ignition internal combustion engine, which is mounted on a vehicle such as an automobile. The internal combustion engine 1 is, for example, one that transmits the rotation of a crankshaft as a driving force to the drive wheels of a vehicle, or one dedicated to power generation mounted on a so-called series hybrid vehicle.
 内燃機関1は、吸気通路3と排気通路4とを有している。吸気通路3は、吸気弁5を介して燃焼室2に接続されている。排気通路4は、排気弁6を介して燃焼室2に接続されている。排気通路4には、三元触媒等の排気浄化用触媒14が設けられている。排気浄化用触媒14は、例えば車両の床下に位置するいわゆる床下触媒である。 The internal combustion engine 1 has an intake passage 3 and an exhaust passage 4. The intake passage 3 is connected to the combustion chamber 2 via an intake valve 5. The exhaust passage 4 is connected to the combustion chamber 2 via an exhaust valve 6. The exhaust passage 4 is provided with an exhaust purification catalyst 14 such as a three-way catalyst. The exhaust gas purification catalyst 14 is, for example, a so-called underfloor catalyst located under the floor of a vehicle.
 また、内燃機関1は、シリンダヘッド7と、シリンダブロック8と、シリンダブロック8のシリンダ9内を往復動するピストン10と、筒内となる燃焼室2内に燃料を直接噴射する燃料噴射弁11と、を有している。 Further, the internal combustion engine 1 includes a cylinder head 7, a cylinder block 8, a piston 10 that reciprocates in the cylinder 9 of the cylinder block 8, and a fuel injection valve 11 that directly injects fuel into the combustion chamber 2 inside the cylinder. And have.
 ピストン10は、コネクティングロッド12を介して図示せぬクランクシャフトと連結されている。 The piston 10 is connected to a crankshaft (not shown) via a connecting rod 12.
 燃料噴射弁11は、ノズル先端に複数の噴射口(図示せず)を有している。燃料噴射弁11から噴射された燃料は、燃焼室2内で点火プラグ13により点火される。 The fuel injection valve 11 has a plurality of injection ports (not shown) at the tip of the nozzle. The fuel injected from the fuel injection valve 11 is ignited by the spark plug 13 in the combustion chamber 2.
 燃料噴射弁11は、ノズル先端の温度Tinjがヒータ15によって昇温させることが可能となっている。ヒータ15は、例えば、燃料噴射弁11のノズルボディ11aに取り付けられている。 In the fuel injection valve 11, the temperature Tinj at the tip of the nozzle can be raised by the heater 15. The heater 15 is attached to, for example, the nozzle body 11a of the fuel injection valve 11.
 燃料噴射弁11の燃料噴射量、燃料噴射弁11の燃料噴射時期、点火プラグ13の点火時期、燃料噴射弁11に供給される燃料の圧力等は、制御部としてのコントロールユニット21によって制御される。 The fuel injection amount of the fuel injection valve 11, the fuel injection timing of the fuel injection valve 11, the ignition timing of the spark plug 13, the pressure of the fuel supplied to the fuel injection valve 11, and the like are controlled by the control unit 21 as a control unit. ..
 コントロールユニット21は、CPU、ROM、RAM及び入出力インターフェースを備えた周知のデジタルコンピュータである。 The control unit 21 is a well-known digital computer equipped with a CPU, ROM, RAM, and an input / output interface.
 コントロールユニット21には、吸入空気量を検出するエアフローメータ22、クランクシャフトのクランク角を検出するクランク角センサ23、アクセルペダルの踏込量を検出するアクセル開度センサ24、内燃機関1の冷却水温度を検出する水温センサ25、内燃機関1の潤滑油温度を検出する油温センサ26、燃料圧力Pfuelを検出する燃料圧センサ27、燃料噴射弁11のノズル先端の温度Tinjを検出する温度センサとしてのノズル先端温度センサ28、排気浄化用触媒14の触媒温度Tcatを検出する触媒温度センサ29等の各種センサ類の検出信号が入力されている。 The control unit 21 includes an air flow meter 22 that detects the amount of intake air, a crank angle sensor 23 that detects the crank angle of the crank shaft, an accelerator opening sensor 24 that detects the amount of depression of the accelerator pedal, and a cooling water temperature of the internal combustion engine 1. As a water temperature sensor 25 for detecting, an oil temperature sensor 26 for detecting the lubricating oil temperature of the internal combustion engine 1, a fuel pressure sensor 27 for detecting the fuel pressure Pfeel, and a temperature sensor for detecting the temperature Tinj at the tip of the nozzle of the fuel injection valve 11. The detection signals of various sensors such as the nozzle tip temperature sensor 28 and the catalyst temperature sensor 29 that detects the catalyst temperature Tcat of the exhaust purification catalyst 14 are input.
 コントロールユニット21は、アクセル開度センサ24の検出値を用いて、内燃機関1の要求負荷(エンジン負荷)が算出する。 The control unit 21 calculates the required load (engine load) of the internal combustion engine 1 using the detection value of the accelerator opening sensor 24.
 また、コントロールユニット21は、ヒータ15に電力を供給するバッテリ30の充電容量に対する充電残量の比率であるSOC(State Of Charge)を検出可能となっている。つまり、コントロールユニット21は、バッテリSOC検出部に相当する。 Further, the control unit 21 can detect SOC (State Of Charge), which is the ratio of the remaining charge to the charge capacity of the battery 30 that supplies electric power to the heater 15. That is, the control unit 21 corresponds to the battery SOC detection unit.
 エアフローメータ22は、例えば、温度センサを内蔵したものであって、吸気温度を検出可能なものである。 The air flow meter 22 has, for example, a built-in temperature sensor and can detect the intake air temperature.
 クランク角センサ23は、内燃機関1の機関回転数を検出可能なものである。 The crank angle sensor 23 can detect the engine speed of the internal combustion engine 1.
 燃料圧センサ27は、燃料噴射弁11に供給される燃料の圧力(燃料圧力Pfuel)を検出するものである。燃料噴射弁11は、上記燃料圧力Pfuelが高くなるほど、噴射される燃料の圧力が高くなる。 The fuel pressure sensor 27 detects the pressure of the fuel supplied to the fuel injection valve 11 (fuel pressure Pfuel). In the fuel injection valve 11, the higher the fuel pressure Pfeel, the higher the pressure of the injected fuel.
 ノズル先端温度センサ28は、ノズル先端温度検出部に相当するものである。なお、燃料噴射弁11のノズル先端の温度Tinjは、例えば、ヒータ15の電気抵抗と温度との関係を事前に把握しておくことで、ヒータ15の電気抵抗から推定することも可能である。また、燃料噴射弁11のノズル先端の温度Tinjは、上述した特許文献1等に開示される既知の方法で推定することも可能である。 The nozzle tip temperature sensor 28 corresponds to the nozzle tip temperature detection unit. The temperature Tinj at the tip of the nozzle of the fuel injection valve 11 can be estimated from the electric resistance of the heater 15 by grasping the relationship between the electric resistance of the heater 15 and the temperature in advance. Further, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 can be estimated by a known method disclosed in Patent Document 1 and the like described above.
 コントロールユニット21は、各種センサ類の検出信号に基づいて、燃料噴射弁11の燃料噴射量、燃料噴射時期及び点火時期等を最適に制御している。 The control unit 21 optimally controls the fuel injection amount, fuel injection timing, ignition timing, etc. of the fuel injection valve 11 based on the detection signals of various sensors.
 コントロールユニット21は、スイッチ31を介してヒータ15のON/OFFを制御している。スイッチ31は、バッテリ30とヒータ15とを繋ぐ電力線32上に配置される。スイッチ31は、コントロールユニット21からの制御指令に基づいて開閉される。ヒータ15は、電力が供給されると発熱して燃料噴射弁11のノズル先端の温度Tinjを昇温させる。 The control unit 21 controls ON / OFF of the heater 15 via the switch 31. The switch 31 is arranged on the power line 32 that connects the battery 30 and the heater 15. The switch 31 is opened and closed based on a control command from the control unit 21. When electric power is supplied, the heater 15 generates heat and raises the temperature Tinj at the tip of the nozzle of the fuel injection valve 11.
 内燃機関1は、所定の自動停止条件が成立すると、燃料供給を停止して自動停止する。そして、内燃機関1は、自動停止中に所定の自動再始動条件が成立すると再始動する。つまり、コントロールユニット21は、所定の自動停止条件が成立すると内燃機関1を自動停止し、所定の自動再始動条件が成立すると内燃機関1を自動再始動する制御部に相当する。 When a predetermined automatic stop condition is satisfied, the internal combustion engine 1 stops the fuel supply and automatically stops. Then, the internal combustion engine 1 restarts when a predetermined automatic restart condition is satisfied during the automatic stop. That is, the control unit 21 corresponds to a control unit that automatically stops the internal combustion engine 1 when a predetermined automatic stop condition is satisfied, and automatically restarts the internal combustion engine 1 when a predetermined automatic restart condition is satisfied.
 内燃機関1がクランクシャフトの回転を駆動力として車両の駆動輪に伝達するような車両における自動停止条件は、例えば、アクセルペダルが踏み込まれていない状態であること、バッテリ30のバッテリSOCが所定のバッテリ閾値SOCtvよりも大きいこと、排気浄化用触媒14の触媒温度Tcatが所定の第1触媒温度閾値Tcat_tv1よりも高いこと等である。 The automatic stop conditions in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle are, for example, a state in which the accelerator pedal is not depressed, and the battery SOC of the battery 30 is predetermined. It is larger than the battery threshold SOC tv , the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined first catalyst temperature threshold T cat_tv1 and the like.
 内燃機関1は、これらの自動停止条件が全て成立した場合に自動停止する。換言すれば、コントロールユニット21は、内燃機関1の運転中にこれらの自動停止条件が全て成立すると内燃機関1を自動停止させる。 The internal combustion engine 1 automatically stops when all of these automatic stop conditions are satisfied. In other words, the control unit 21 automatically stops the internal combustion engine 1 when all of these automatic stop conditions are satisfied during the operation of the internal combustion engine 1.
 内燃機関1がクランクシャフトの回転を駆動力として車両の駆動輪に伝達するような車両における自動再始動条件は、例えば、アクセルペダルが踏み込まれた状態であること、バッテリ30のバッテリSOCが所定のバッテリ閾値SOCtv以下であること、排気浄化用触媒14の触媒温度Tcatが所定の第1触媒温度閾値Tcat_tv1以下であること等である。 The conditions for automatic restart in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle are, for example, a state in which the accelerator pedal is depressed, and the battery SOC of the battery 30 is predetermined. The battery threshold is SOC tv or less, the catalyst temperature T cat of the exhaust gas purification catalyst 14 is equal to or less than the predetermined first catalyst temperature threshold T cat_tv1 and the like.
 内燃機関1は、これらの自動再始動条件のいずれかが成立した場合に、再始動する。換言すれば、コントロールユニット21は、内燃機関1の自動停止中にこれらの自動再始動条件のいずれかが成立すると内燃機関1を再始動させる。例えば、自動停止中の内燃機関1は、バッテリ30のバッテリSOCが所定値としてのバッテリ閾値SOCtv以下になると再始動する。 The internal combustion engine 1 restarts when any of these automatic restart conditions is satisfied. In other words, the control unit 21 restarts the internal combustion engine 1 when any of these automatic restart conditions is satisfied during the automatic stop of the internal combustion engine 1. For example, the internal combustion engine 1 that is automatically stopped restarts when the battery SOC of the battery 30 becomes equal to or less than the battery threshold SOC tv as a predetermined value.
 なお、内燃機関1がクランクシャフトの回転を駆動力として車両の駆動輪に伝達するような車両における内燃機関1の自動停止として、例えば、アイドルストップ、コーストストップ及びセーリングストップがある。 Note that there are, for example, an idle stop, a coast stop, and a sailing stop as automatic stops of the internal combustion engine 1 in a vehicle in which the internal combustion engine 1 transmits the rotation of the crankshaft as a driving force to the drive wheels of the vehicle.
 アイドルストップは、車両の一時停止時に、例えば上記のような自動停止条件が成立した場合に実施される。また、アイドルストップは、例えば上記のような自動再始動条件のいずれかが成立すると解除される。 Idle stop is implemented when the vehicle is temporarily stopped, for example, when the above automatic stop conditions are met. Further, the idle stop is released when any of the above-mentioned automatic restart conditions is satisfied, for example.
 コーストストップは、車両の走行中に、例えば上記のような自動停止条件が成立した場合に実施される。また、コーストストップは、例えば上記のような自動再始動条件のいずれかが成立すると解除される。なお、コーストストップとは、例えば、低車速でブレーキペダルが踏み込まれた状態の減速中に内燃機関1を自動停止することである。 The coast stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the coast stop is canceled when any of the above-mentioned automatic restart conditions is satisfied, for example. The coast stop is, for example, automatically stopping the internal combustion engine 1 during deceleration in a state where the brake pedal is depressed at a low vehicle speed.
 セーリングストップは、車両の走行中に、例えば上記のような自動停止条件が成立した場合に実施される。また、セーリングストップは、例えば上記のような自動再始動条件のいずれかが成立した場合に解除される。なお、セーリングストップとは、例えば中高車速でブレーキペダルが踏まれていない惰性走行中に内燃機関1を自動停止することである。 Sailing stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the sailing stop is canceled when any of the above-mentioned automatic restart conditions is satisfied, for example. The sailing stop is, for example, the automatic stop of the internal combustion engine 1 during coasting when the brake pedal is not depressed at a medium or high vehicle speed.
 また、内燃機関1が発電用に搭載されたいわゆるシリーズハイブリッド車両における自動停止条件は、内燃機関1の運転中に、例えばバッテリ30のバッテリSOCが所定のバッテリ閾値SOCtvよりも大きいこと等である。 Further, the automatic stop condition in the so-called series hybrid vehicle in which the internal combustion engine 1 is mounted for power generation is that, for example, the battery SOC of the battery 30 is larger than a predetermined battery threshold SOC tv during the operation of the internal combustion engine 1. ..
 内燃機関1が発電用に搭載されたいわゆるシリーズハイブリッド車両における自動再始動条件は、当該ハイブリッド車両の運転中で内燃機関1が停止している際に、例えばバッテリ30のバッテリSOCがバッテリ閾値SOCtv以下であること等である。 The automatic restart condition in a so-called series hybrid vehicle in which the internal combustion engine 1 is mounted for power generation is that when the internal combustion engine 1 is stopped while the hybrid vehicle is in operation, for example, the battery SOC of the battery 30 is set to the battery threshold SOC tv. It is as follows.
 燃料噴射弁11は、燃焼室2に燃料を直接噴射するものであるため、ノズル先端が燃焼の際の火炎の影響を受けやすい。従って、内燃機関1においては、燃料噴射弁11のノズル先端に付着した燃料に起因する排気微粒子(Particulate Matter)の低減が課題となる。なお、本願明細書において、燃料噴射弁11のノズル先端に付着した燃料とは、燃料噴射弁11から噴射された燃料のうち、燃焼の際に燃料噴射弁11のノズル先端の外側を濡らしている燃料(Tip−wet)である。 Since the fuel injection valve 11 injects fuel directly into the combustion chamber 2, the nozzle tip is easily affected by the flame during combustion. Therefore, in the internal combustion engine 1, reduction of exhaust fine particles (Particulate Matter) caused by fuel adhering to the nozzle tip of the fuel injection valve 11 becomes an issue. In the specification of the present application, the fuel adhering to the nozzle tip of the fuel injection valve 11 wets the outside of the nozzle tip of the fuel injection valve 11 during combustion among the fuel injected from the fuel injection valve 11. It is a fuel (Tip-wet).
 この燃料噴射弁11のノズル先端に付着した燃料には、燃料噴射弁11のノズル先端の内側の図示せぬサック部内から燃料噴射弁11の閉弁後に外部に滲み出たものも含まれる。上記サック部は、燃料噴射弁11の弁体(図示せず)の先端がノズルボディ11aの内部に形成されたテーパ面(図示せず)に着座した際に、当該弁体の先端と燃料噴射弁11のノズル先端の噴射口との間に形成される内部空間である。燃料噴射弁11は、燃料噴射弁11の上記弁体(例えばニードル弁)の先端がノズルボディ11aの上記テーパ面から離間すると燃料を噴射する。 The fuel adhering to the nozzle tip of the fuel injection valve 11 includes the fuel that has exuded from the inside of the nozzle tip of the fuel injection valve 11 to the outside after the fuel injection valve 11 is closed. When the tip of the valve body (not shown) of the fuel injection valve 11 is seated on the tapered surface (not shown) formed inside the nozzle body 11a, the sack portion is injected with the tip of the valve body (not shown). It is an internal space formed between the valve 11 and the injection port at the tip of the nozzle. The fuel injection valve 11 injects fuel when the tip of the valve body (for example, a needle valve) of the fuel injection valve 11 is separated from the tapered surface of the nozzle body 11a.
 燃料噴射弁11のノズル先端にデポジットが付着していない初期状態では、燃料が噴射されると、燃料噴射弁11のノズル先端に噴射された燃料の一部が付着する。すなわち、燃料噴射弁11のノズル先端にデポジットが付着していない初期状態では、燃料が噴射されると、燃料噴射弁11のノズル先端が噴射された燃料の一部によって濡れた状態となる。 In the initial state where no deposit is attached to the nozzle tip of the fuel injection valve 11, when fuel is injected, a part of the injected fuel adheres to the nozzle tip of the fuel injection valve 11. That is, in the initial state in which no deposit is attached to the nozzle tip of the fuel injection valve 11, when fuel is injected, the nozzle tip of the fuel injection valve 11 becomes wet with a part of the injected fuel.
 燃料噴射弁11のノズル先端に付着している燃料は、燃焼の火炎により焼かれると、一部が噴射口周りでデポジットとなり堆積するとともに、残りが排気微粒子となってして排気中に放出される。ここで、本願明細書におけるデポジットとは、噴射された燃料等の一部が固形化した多孔質の堆積物である。 When the fuel adhering to the tip of the nozzle of the fuel injection valve 11 is burned by the flame of combustion, a part of the fuel becomes a deposit around the injection port and accumulates, and the rest becomes exhaust fine particles and is discharged into the exhaust. To. Here, the deposit in the present specification is a porous deposit in which a part of the injected fuel or the like is solidified.
 次のサイクルでは、燃料が噴射されると、同様に燃料噴射弁11のノズル先端に燃料が付着することになるが、デポジットに燃料がしみ込むことになる。そのため、燃料噴射弁11は、噴射口周りに直前のサイクルのときよりも多くの燃料が存在することなる。 In the next cycle, when fuel is injected, the fuel will adhere to the nozzle tip of the fuel injection valve 11 as well, but the fuel will soak into the deposit. Therefore, the fuel injection valve 11 has more fuel around the injection port than in the previous cycle.
 従って、燃焼室2に燃料噴射弁11で燃料を直接噴射する内燃機関1では、燃焼室2内に燃料を噴射して燃焼させる毎に、噴射口周りのデポジットの堆積量が増加するとともに、排気中の排気微粒子が増加する虞がある。 Therefore, in the internal combustion engine 1 in which the fuel is directly injected into the combustion chamber 2 by the fuel injection valve 11, the deposit amount around the injection port increases and the exhaust is exhausted each time the fuel is injected into the combustion chamber 2 and burned. There is a risk that the amount of exhaust particles inside will increase.
 ここで、燃料噴射弁11は、ノズル先端の温度Tinjが高いほど噴霧が広がるため、噴射口周りに燃料が広がりやすくなり、ノズル先端に燃料が付着しやすくなる。つまり、燃料噴射弁11は、噴射する燃料の温度が上昇するほど噴霧が広がるため、噴射口周りに燃料が広がりやすくなり、ノズル先端に燃料が付着しやすくなる。燃料噴射弁11は、ノズル先端の温度Tinjが高いほど噴射する燃料の温度が高くなる。 Here, in the fuel injection valve 11, the higher the temperature Tinj at the tip of the nozzle, the more the spray spreads, so that the fuel easily spreads around the injection port, and the fuel easily adheres to the tip of the nozzle. That is, in the fuel injection valve 11, the spray spreads as the temperature of the fuel to be injected rises, so that the fuel easily spreads around the injection port and the fuel easily adheres to the tip of the nozzle. The higher the temperature Tinj at the tip of the nozzle of the fuel injection valve 11, the higher the temperature of the fuel to be injected.
 そして、燃料噴射弁11は、噴射する燃料の噴霧の広がり(噴射角度)がさらに大きくなると、噴射された噴霧の気化性能が悪化する。 Then, when the spread (injection angle) of the fuel sprayed by the fuel injection valve 11 becomes larger, the vaporization performance of the injected fuel deteriorates.
 これは、燃料噴射弁11のノズル先端に形成された複数の噴射口から噴射された燃料噴霧が互いに干渉しあい、複数の噴霧が1本の太い噴霧となるためである。その結果、燃料噴射弁11のノズル先端の燃料付着量がさらに多くなる。 This is because the fuel sprays injected from the plurality of injection ports formed at the nozzle tips of the fuel injection valve 11 interfere with each other, and the plurality of sprays become one thick spray. As a result, the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 is further increased.
 しかしながら、燃料噴射弁11は、ノズル先端の温度Tinjが高温になるほど、燃料がノズル先端に付着しても蒸発しやすくなる。 However, the higher the temperature Tinj at the tip of the nozzle, the easier it is for the fuel injection valve 11 to evaporate even if the fuel adheres to the tip of the nozzle.
 すなわち、燃料噴射弁11のノズル先端の温度Tinjが所定温度A(例えば、概ね90℃)以上となる温度領域では、ノズル先端の温度Tinjが高くなるほど、ノズル先端の燃料付着量が減少する。 That is, in the temperature range where the temperature Tinj of the nozzle tip of the fuel injection valve 11 is a predetermined temperature A (for example, approximately 90 ° C.) or higher, the higher the temperature Tinj of the nozzle tip, the smaller the amount of fuel adhered to the nozzle tip.
 これは、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度A以上の高温となると、ノズル先端から蒸発する燃料量が、噴射の際にノズル先端の燃料付着量よりも多くなるためと考えられる。 It is considered that this is because when the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 becomes a high temperature of the predetermined temperature A or higher, the amount of fuel evaporated from the tip of the nozzle becomes larger than the amount of fuel adhering to the tip of the nozzle at the time of injection. Be done.
 つまり、燃料を噴射した際に燃料噴射弁11のノズル先端の燃料付着量の指標(Tip−wet−INDEX)である燃料付着量指標値Fは、図2に示すように、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度A(例えば、概ね90℃)のときに極大値となる。すなわち、燃料噴射弁11の濡れ(ノズル先端に付着した燃料)は、燃料噴射弁11のノズル先端の温度Tinjの上昇に伴い増加するが、ある温度域を超えると減少する。 That is, as shown in FIG. 2, the fuel adhesion amount index value F, which is an index (Tip-wet-INDEX) of the fuel adhesion amount at the nozzle tip of the fuel injection valve 11 when the fuel is injected, is the fuel injection valve 11 When the temperature Tinj at the tip of the nozzle is the above-mentioned predetermined temperature A (for example, about 90 ° C.), the maximum value is reached. That is, the wetting of the fuel injection valve 11 (fuel adhering to the nozzle tip) increases as the temperature Tinj of the nozzle tip of the fuel injection valve 11 rises, but decreases when the temperature exceeds a certain temperature range.
 そこで、本実施例では、この特性を利用して、燃料噴射弁11のノズル先端の燃料付着量が極大値(ピーク)となる温度域を避けるように、燃料噴射弁11のノズル先端の温度Tinjを制御する。 Therefore, in this embodiment, the temperature of the nozzle tip of the fuel injection valve 11 is tinj so as to avoid the temperature range where the fuel adhesion amount at the nozzle tip of the fuel injection valve 11 becomes the maximum value (peak) by utilizing this characteristic. To control.
 具体的には、コントロールユニット21は、自動停止した内燃機関1の自動再始動時に、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも低い場合には、燃料噴射弁11の燃料噴射開始までに、ヒータ15を用いて燃料噴射弁11のノズル先端の温度Tinjを上記所定温度Aよりも高くする。 Specifically, when the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is lower than the predetermined temperature A when the internal combustion engine 1 that has automatically stopped is automatically restarted, the control unit 21 fuels the fuel injection valve 11. By the start of injection, the heater 15 is used to raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 to be higher than the predetermined temperature A.
 つまり、コントロールユニット21は、内燃機関1の始動時に、燃料噴射弁11のノズル先端の燃料付着量が極大値(ピーク)となる温度域を避けるように、燃料噴射弁11のノズル先端の温度Tinjを制御する制御部に相当する。 That is, the control unit 21 has a temperature Tinj at the tip of the nozzle of the fuel injection valve 11 so as to avoid a temperature range in which the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 becomes the maximum value (peak) when the internal combustion engine 1 is started. Corresponds to the control unit that controls.
 これによって、内燃機関1は、燃料噴射弁11のノズル先端に燃料が付着しにくくなる。そのため、内燃機関1は、燃料噴射弁11のノズル先端に付着した燃料に起因する排気中の排気微粒子の増加を抑制することができる。 As a result, the internal combustion engine 1 makes it difficult for fuel to adhere to the nozzle tip of the fuel injection valve 11. Therefore, the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas caused by the fuel adhering to the tip of the nozzle of the fuel injection valve 11.
 また、燃料噴射弁11のノズル先端の温度Tinjは、内燃機関1の自動再始動時に、ノズル先端の燃料付着量が極大値となる温度域を跨ぐにように変化することはない。そのため、内燃機関1は、燃料噴射弁11のノズル先端に燃料が付着しにくくなる。 Further, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 does not change so as to straddle the temperature range where the amount of fuel adhering to the tip of the nozzle reaches the maximum value when the internal combustion engine 1 is automatically restarted. Therefore, in the internal combustion engine 1, fuel is less likely to adhere to the nozzle tip of the fuel injection valve 11.
 内燃機関1は、自動再始動時に燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aを超えると、ノズル先端の温度Tinjを内燃機関1が停止するまで上記所定温度Aよりも高い温度に維持する。 When the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 exceeds the predetermined temperature A at the time of automatic restart, the internal combustion engine 1 keeps the temperature Tinj at the tip of the nozzle higher than the predetermined temperature A until the internal combustion engine 1 stops. maintain.
 これによって、内燃機関1の燃焼中、燃料噴射弁11のノズル先端の温度Tinjは、ノズル先端の燃料付着量が極大値となる温度域を跨ぐにように変化することはない。そのため、内燃機関1は、燃焼中、常に燃料噴射弁11のノズル先端に付着した燃料に起因する排気中の排気微粒子の増加を抑制することができる。 なお、内燃機関1は、点火プラグ13による点火により燃焼が開始されると、燃焼により燃料噴射弁11のノズル先端の温度Tinjが高温となるため、ヒータ15を作動させずともノズル先端の温度Tinjを所定温度Aよりも高い温度に維持可能である。 As a result, during the combustion of the internal combustion engine 1, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 does not change so as to straddle the temperature range where the amount of fuel adhering to the tip of the nozzle becomes the maximum value. Therefore, the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve 11 at all times during combustion. When combustion of the internal combustion engine 1 is started by ignition by the spark plug 13, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 becomes high due to the combustion. Therefore, the temperature Tinj at the tip of the nozzle does not operate the heater 15. Can be maintained at a temperature higher than the predetermined temperature A.
 また、コントロールユニット21は、内燃機関1を自動再始動させる場合にはヒータ15の作動を許可するが、内燃機関1を自動再始動しない場合にはヒータ15の作動を許可しない。 Further, the control unit 21 permits the operation of the heater 15 when the internal combustion engine 1 is automatically restarted, but does not permit the operation of the heater 15 when the internal combustion engine 1 is not automatically restarted.
 詳述すると、コントロールユニット21は、例えば、内燃機関1の自動再始動条件(始動条件)の成立に先立って排気浄化用触媒14の触媒温度Tcatが所定の第2触媒温度閾値Tcat_tv2よりも低い値になるとヒータ15を作動させる。なお、第2触媒温度閾値Tcat_tv2は、第1触媒温度閾値Tcat_tv1よりも高い温度として設定される。第2触媒温度閾値Tcat_tv2は、ヒータ15の作動を要求する排気浄化用触媒14の温度である。 More specifically, in the control unit 21, for example, the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined second catalyst temperature threshold T cat_tv2 prior to the establishment of the automatic restart condition (starting condition) of the internal combustion engine 1. When the value becomes low, the heater 15 is operated. The second catalyst temperature threshold value T cat_tv2 is set as a temperature higher than the first catalyst temperature threshold value T cat_tv1 . The second catalyst temperature threshold value T cat_tv2 is the temperature of the exhaust gas purification catalyst 14 that requires the operation of the heater 15.
 また、コントロールユニット21は、排気浄化用触媒14の触媒温度Tcatが所定の第2触媒温度閾値Tcat_tv2よりも高ければ、ヒータ15を作動させない。 Further, the control unit 21 does not operate the heater 15 if the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the predetermined second catalyst temperature threshold value T cat_tv2 .
 これによって、内燃機関1は、適切なタイミングでヒータ15が作動するため、ヒータ15で消費されるバッテリの電力を必要最低限にすることができる。 As a result, the internal combustion engine 1 operates the heater 15 at an appropriate timing, so that the battery power consumed by the heater 15 can be minimized.
 図3は、バッテリ30のバッテリSOC低下により内燃機関1が再始動する場面のタイミングチャートである。 FIG. 3 is a timing chart of a scene in which the internal combustion engine 1 restarts due to a decrease in the battery SOC of the battery 30.
 図3中の時刻t1は、内燃機関1の自動停止条件が成立して内燃機関1が停止するタイミングである。 The time t1 in FIG. 3 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
 図3中の時刻t2は、内燃機関1の自動再始動条件が成立して内燃機関1が始動するタイミングである。 The time t2 in FIG. 3 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
 図3の例では、時刻t2のタイミングでバッテリ30のバッテリSOCがバッテリ閾値SOCtv以下となり内燃機関1の自動再始動条件が成立している。また、図3の例では、内燃機関1の自動再始動条件が成立している時刻t2のタイミングで排気浄化用触媒14の触媒温度Tcatが第2触媒温度閾値Tcat_tv2よりも高いため、ヒータ15を作動させることなく内燃機関1を始動している。 In the example of FIG. 3, the battery SOC of the battery 30 becomes equal to or less than the battery threshold SOC tv at the timing of time t2, and the automatic restart condition of the internal combustion engine 1 is satisfied. Further, in the example of FIG. 3, since the catalyst temperature T cat of the exhaust gas purification catalyst 14 is higher than the second catalyst temperature threshold T cat_tv2 at the timing t2 when the automatic restart condition of the internal combustion engine 1 is satisfied, the heater The internal combustion engine 1 is started without operating the 15.
 コントロールユニット21は、ヒータ15を作動する場合、燃料噴射弁11のノズル先端の燃料付着量に応じてヒータ15の作動時間Xを算出する。 When the control unit 21 operates the heater 15, the control unit 21 calculates the operating time X 2 of the heater 15 according to the amount of fuel adhered to the tip of the nozzle of the fuel injection valve 11.
 具体的には、コントロールユニット21は、車両の運転状態に応じて設定される目標排気微粒子数Xを用いて付着量指標値Xを算出する。付着量指標値Xは、発生する排気微粒子数が目標排気微粒子数Xとなるときにノズル先端に付着している燃料付着量の指標値である。 Specifically, the control unit 21 calculates the adhesion amount index value X 1 using the target number of exhaust gas particles X set according to the driving state of the vehicle. The adhesion amount index value X 1 is an index value of the fuel adhesion amount adhering to the tip of the nozzle when the number of exhaust particles generated reaches the target number of exhaust particles X.
 付着量指標値Xは、例えば図4に破線で示すように、目標排気微粒子数Xが大きくなるほど大きくなるよう設定される指標値である。 The adhesion amount index value X 1 is an index value set so as to increase as the target number of exhaust gas particles X increases, as shown by a broken line in FIG. 4, for example.
 そして、コントロールユニット21は、付着量指標値Xを用いてヒータ15の作動時間Xを算出する。 Then, the control unit 21 calculates the operating time X 2 of the heater 15 by using the adhesion amount index value X 1 .
 ヒータ15の作動時間Xは、例えば図5に破線で示すように、付着量指標値Xが小さくなるほど長くなり、燃料噴射弁11のノズル先端の温度Tinjが高くなるほど短くなるよう設定される。すなわち、図5においては、燃料噴射弁11のノズル先端の温度Tinjが高いほど下側の特性線を用いてヒータ15の作動時間Xが算出されることになる。つまり、図5においては、燃料噴射弁11のノズル先端の温度Tinjに応じて、付着量指標値Xからヒータ15の作動時間Xを算出する際に用いる特性線が使い分けられる。 The operating time X 2 of the heater 15 is set to become longer as the adhesion amount index value X 1 becomes smaller and shorter as the temperature Tinj at the nozzle tip of the fuel injection valve 11 becomes higher, as shown by a broken line in FIG. .. That is, in FIG. 5 would operate time X 2 of the heater 15 is calculated using the lower characteristic line higher temperature Tinj of the nozzle tip of the fuel injection valve 11. That is, in FIG. 5, the characteristic line used when calculating the operating time X 2 of the heater 15 from the adhesion amount index value X 1 is properly used according to the temperature Tinj of the nozzle tip of the fuel injection valve 11.
 また、ヒータ15の作動時間Xは、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも低い場合、燃料噴射弁11のノズル先端の温度Tinjが低くなるほど長くなるよう設定される。また、ヒータ15の作動時間Xは、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも高い場合、燃料噴射弁11のノズル先端の温度Tinjが高くなるほど短くなるよう設定される。 Further, operating time X 2 of the heater 15, when the temperature Tinj of the nozzle tip of the fuel injection valve 11 is lower than the predetermined temperature A, are set so that the temperature Tinj of the nozzle tip of the fuel injection valve 11 becomes longer as the lower .. Further, the operating time X 2 of the heater 15 is set so that when the temperature Tinj of the nozzle tip of the fuel injection valve 11 is higher than the predetermined temperature A, the temperature Tinj of the nozzle tip of the fuel injection valve 11 becomes shorter as the temperature Tinj becomes higher. ..
 なお、ヒータ15の作動時間Xは、少なくとも燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも高くなるように設定されている。また、ヒータ15の作動時間Xは、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも高い場合、「0」とすることも可能である。 The operating time X 2 of the heater 15 is set so that at least the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is higher than the predetermined temperature A. Further, the operating time X 2 of the heater 15 can be set to “0” when the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is higher than the predetermined temperature A.
 これによって、燃料噴射弁11は、ノズル先端の燃料付着量が低減される。そのため内燃機関1は、燃料噴射弁11のノズル先端に付着した燃料に起因する排気中の排気微粒子の増加を抑制することができる。 As a result, the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 is reduced. Therefore, the internal combustion engine 1 can suppress an increase in exhaust fine particles in the exhaust gas due to the fuel adhering to the tip of the nozzle of the fuel injection valve 11.
 なお、目標排気微粒子数Xは、内燃機関1の油水温、内燃機関1の回転負荷、燃料噴射弁11の噴射圧に応じて補正するようにしてもよい。詳述すると、目標排気微粒子数Xは、内燃機関1の再始動時に予想される油水温、もしくはヒータ15の作動時の油水温が高くなるほど小さくなるよう補正してもよい。目標排気微粒子数Xは、内燃機関1の再始動時に予想される回転負荷が大きくなるなるほど大きくなるよう補正してもよい。目標排気微粒子数Xは、内燃機関1の再始動時に設定される燃料噴射圧が大きくなるなるほど小さくなるよう補正してもよい。 The target number of exhaust particles X may be corrected according to the oil / water temperature of the internal combustion engine 1, the rotational load of the internal combustion engine 1, and the injection pressure of the fuel injection valve 11. More specifically, the target number of exhaust gas particles X may be corrected so that the oil / water temperature expected when the internal combustion engine 1 is restarted or the oil / water temperature when the heater 15 is operated becomes higher. The target number of exhaust fine particles X may be corrected so as to increase as the rotational load expected when the internal combustion engine 1 is restarted increases. The target number of exhaust fine particles X may be corrected so as to increase as the fuel injection pressure set when the internal combustion engine 1 is restarted increases.
 また、コントロールユニット21は、ヒータ15を作動することによって内燃機関1の運転中に排出されるトータルの排気微粒子の数が減少する場合に限ってヒータ15を作動するようにしてもよい。 Further, the control unit 21 may operate the heater 15 only when the total number of exhaust fine particles discharged during the operation of the internal combustion engine 1 is reduced by operating the heater 15.
 具体的には、コントロールユニット21は、内燃機関1の再始動時に、内燃機関1の始動時にヒータ15を作動させることによって減少が見込まれる排気微粒子数である第1排気微粒子数PN1と、ヒータ15の作動により内燃機関1の再始動のタイミングが早まることによって増加が見込まれる排気微粒子数である第2排気微粒子数PN2と、を比較する。そして、コントロールユニット21は、第1排気微粒子数PN1が第2排気微粒子数PN2よりも大きい場合に、ヒータ15を作動するようにしてもよい。 Specifically, the control unit 21 has a first exhaust particle number PN1 which is the number of exhaust particles expected to be reduced by operating the heater 15 when the internal combustion engine 1 is started when the internal combustion engine 1 is restarted, and a heater 15. This is compared with the number of second exhaust particles PN2, which is the number of exhaust particles that is expected to increase due to the earlier restart timing of the internal combustion engine 1 due to the operation of. Then, the control unit 21 may operate the heater 15 when the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2.
 内燃機関1は、ヒータ15を作動することによりバッテリ30の電力が消費されると、消費された電力分に応じてバッテリSOCが低下するため、その分次回始動するタイミングが早くなる。つまり、内燃機関1は、ヒータ15で電力を使用すると、再始動のタイミングが早まることになる。 When the electric power of the battery 30 is consumed by operating the heater 15, the internal combustion engine 1 lowers the battery SOC according to the consumed electric power, so that the timing of starting the next time is earlier by that amount. That is, when the internal combustion engine 1 uses electric power in the heater 15, the restart timing is accelerated.
 そのため、内燃機関1は、始動時にヒータ15を作動した場合、ヒータ15を作動させない場合に比べてトータルの運転時間が長くなり、その分だけ排気微粒子の排出量が増加することになる。 Therefore, when the heater 15 is operated at the time of starting the internal combustion engine 1, the total operating time is longer than when the heater 15 is not operated, and the amount of exhaust fine particles discharged increases by that amount.
 そこで、コントロールユニット21は、ヒータ15を作動することで低減できる第1排気微粒子数PN1と、ヒータ15を作動することで増加する第2排気微粒子数PN2と、を比較する。そして、コントロールユニット21は、第1排気微粒子数PN1が第2排気微粒子数PN2よりも大きい場合、始動時にヒータ15を作動して、燃料噴射弁11のノズル先端の温度Tinjを上昇させる。 Therefore, the control unit 21 compares the number of first exhaust particles PN1 that can be reduced by operating the heater 15 with the number of second exhaust particles PN2 that increases by operating the heater 15. Then, when the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2, the control unit 21 operates the heater 15 at the time of starting to raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11.
 つまり、コントロールユニット21は、トータルで運転中の排出される排気微粒子の数が減少する場合に限って、始動時にヒータ15の作動を許可するようにしてもよい。 That is, the control unit 21 may allow the heater 15 to operate at the time of starting only when the total number of exhaust fine particles discharged during operation is reduced.
 コントロールユニット21は、付着量指標値Xの減少分である付着量減少分指標値Xを用いて第1排気微粒子数PN1を算出する。 Control unit 21 calculates a first exhaust particulate number PN1 using deposition amount decrease index X 3 is a decrease in the adhesion amount index value X 1.
 具体的には、コントロールユニット21は、ヒータ15の作動時間Xを用いて付着量減少分指標値Xを算出する。付着量減少分指標値Xは、ヒータ15を作動させることで減少した燃料噴射弁11のノズル先端の燃料付着量の減少分の指標値である。 Specifically, the control unit 21 calculates the index value X 3 for the amount of decrease in the adhesion amount by using the operating time X 2 of the heater 15. The adhesion amount reduction index value X 3 is an index value of the fuel adhesion reduction amount at the nozzle tip of the fuel injection valve 11 that is reduced by operating the heater 15.
 付着量減少分指標値Xは、例えば図6に破線で示すように、ヒータ15の作動時間Xが長くなるほど大きくなるよう設定される。 As shown by a broken line in FIG. 6, for example, the adhesion amount reduction index value X 3 is set to increase as the operating time X 2 of the heater 15 becomes longer.
 そして、コントロールユニット21は、付着量減少分指標値Xを用いて第1排気微粒子数PN1を算出する。 Then, the control unit 21 calculates a first exhaust particulate number PN1 using deposition amount decrease index X 3.
 第1排気微粒子数PN1は、例えば図7に破線で示すように、付着量減少分指標値Xが大きくなるほど大きくなるよう設定される。 The first exhaust particulate number PN1, for example, as shown by the broken line in FIG. 7, is set so that the adhesion amount decrease the index value X 3 increases as increases.
 また、コントロールユニット21は、バッテリ消費量に相関するバッテリ消費分指標値Xを用いて第2排気微粒子数PN2を算出する。 Further, the control unit 21 calculates the second exhaust fine particle number PN2 by using the battery consumption index value X 4 that correlates with the battery consumption.
 具体的には、コントロールユニット21は、ヒータ15の作動時間Xを用いてバッテリ消費分指標値Xを算出する。バッテリ消費分指標値Xは、ヒータ15の作動により長くなった内燃機関1の運転時間と相関する指標値である。 Specifically, the control unit 21 calculates the battery consumption index value X 4 by using the operating time X 2 of the heater 15. The battery consumption index value X 4 is an index value that correlates with the operating time of the internal combustion engine 1 that has become longer due to the operation of the heater 15.
 バッテリ消費分指標値Xは、例えば図8に破線で示すように、ヒータ15の作動時間Xが長くなるほど大きくなるよう設定される。 The battery consumption index value X 4 is set so as to increase as the operating time X 2 of the heater 15 increases, as shown by a broken line in FIG. 8, for example.
 そして、コントロールユニット21は、バッテリ消費分指標値Xを用いて第2排気微粒子数PN2を算出する。 Then, the control unit 21 calculates the second exhaust particulate number PN2 using the battery consumed by the index value X 4.
 第2排気微粒子数PN2は、例えば図9に破線で示すように、バッテリ消費分指標値Xが大きくなるほど大きくなるよう設定される。 The second exhaust fine particle number PN2 is set so as to increase as the battery consumption index value X 4 increases, as shown by a broken line in FIG. 9, for example.
 このように、予想されるバッテリ30のバッテリ消費量(電力消費量)からトータルで運転中の排出される排気微粒子の数を推定することで、運転中の排出されるトータルの排気微粒子の数を確実に抑制することができる。 In this way, by estimating the total number of exhaust particles discharged during operation from the expected battery consumption (power consumption) of the battery 30, the total number of exhaust particles discharged during operation can be calculated. It can be reliably suppressed.
 コントロールユニット21は、排気浄化用触媒14の温度低下速度に応じて、第2触媒温度閾値Tcat_tv2を設定してもよい。 The control unit 21 may set the second catalyst temperature threshold value T cat_tv2 according to the temperature decrease rate of the exhaust gas purification catalyst 14.
 排気浄化用触媒14は、強い走行風を受けるほど、触媒温度Tcatの温度低下速度が速くなる。 The stronger the running wind is received by the exhaust gas purification catalyst 14, the faster the temperature decrease rate of the catalyst temperature Tcat becomes.
 つまり、排気浄化用触媒14の温度低下速度が大きい場合、排気浄化用触媒14は、燃料噴射弁11のノズル先端の温度Tinjがノズル先端の燃料付着量が極大値となる温度域を避ける前に、触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満となる虞がある。 That is, when the temperature decrease rate of the exhaust gas purification catalyst 14 is large, the exhaust gas purification catalyst 14 has a temperature Tinj at the tip of the nozzle of the fuel injection valve 11 before avoiding a temperature range in which the amount of fuel adhering to the tip of the nozzle becomes the maximum value. , The catalyst temperature T cat may be less than the first catalyst temperature threshold T cat_tv1 .
 そこで、コントロールユニット21は、排気浄化用触媒14の温度低下速度が大きくなるほど第1触媒温度閾値Tcat_tv1と第2触媒温度閾値Tcat_tv2との差が大きくなるよう第2触媒温度閾値Tcat_tv2を設定する。 Therefore, the control unit 21, sets a second catalyst temperature threshold value T Cat_tv2 as a difference between the first catalyst temperature threshold value T Cat_tv1 as the temperature decreasing rate is increased and the second catalyst temperature threshold value T Cat_tv2 of the emission control catalyst 14 is increased To do.
 これによって、内燃機関1は、排気浄化用触媒14の触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満になる前に、ヒータ15により燃料噴射弁11のノズル先端の温度Tinjを上昇させることが可能となる。つまり、内燃機関1は、燃料噴射弁11のノズル先端の温度Tinjが始動時に燃料付着量が極大値となる温度域を跨がないようにすることが可能となる。 As a result, the internal combustion engine 1 can raise the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 by the heater 15 before the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold T cat_tv1. It will be possible. That is, the internal combustion engine 1 can prevent the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 from straddling the temperature range in which the fuel adhesion amount becomes the maximum value at the time of starting.
 そのため、内燃機関1は、始動時に、排気浄化用触媒14の温度低下による触媒浄化性能の悪化を抑制できるとともに、燃料噴射弁11のノズル先端に付着した燃料に起因する排気中の排気微粒子の増加を抑制することができる。つまり、内燃機関1は、始動時に、排気浄化用触媒14の触媒浄化性能の悪化抑制と、燃料噴射弁11のノズル先端の燃料付着量の低減と、を両立することが可能となる。 Therefore, the internal combustion engine 1 can suppress the deterioration of the catalyst purification performance due to the temperature drop of the exhaust purification catalyst 14 at the time of starting, and the increase of the exhaust fine particles in the exhaust caused by the fuel adhering to the nozzle tip of the fuel injection valve 11. Can be suppressed. That is, the internal combustion engine 1 can achieve both suppression of deterioration of the catalyst purification performance of the exhaust gas purification catalyst 14 and reduction of the amount of fuel adhering to the tip of the nozzle of the fuel injection valve 11 at the time of starting.
 図10は、低速走行中の車両に搭載された内燃機関1が再始動する場面のタイミングチャートである。すなわち、図10は、排気浄化用触媒14の温度低下速度が遅いときに内燃機関1が再始動する場面のタイミングチャートである。 FIG. 10 is a timing chart of the scene where the internal combustion engine 1 mounted on the vehicle traveling at low speed restarts. That is, FIG. 10 is a timing chart of a scene in which the internal combustion engine 1 restarts when the temperature decrease rate of the exhaust gas purification catalyst 14 is slow.
 図10中の時刻t1は、内燃機関1の自動停止条件が成立して内燃機関1が停止するタイミングである。 The time t1 in FIG. 10 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
 図10中の時刻t2は、排気浄化用触媒14の触媒温度Tcatが第2触媒温度閾値Tcat_tv2未満となり、ヒータ15が作動するタイミングである。 The time t2 in FIG. 10 is the timing when the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the second catalyst temperature threshold value T cat_tv2 and the heater 15 operates.
 図10中の時刻t3は、内燃機関1の自動再始動条件が成立して内燃機関1が始動するタイミングである。 The time t3 in FIG. 10 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
 図10の例では、時刻t3のタイミングで排気浄化用触媒14の触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満となり内燃機関1の自動再始動条件が成立している。 In the example of FIG. 10, the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold value T cat_tv1 at the timing of time t3, and the automatic restart condition of the internal combustion engine 1 is satisfied.
 また、図10の例では車両が低速で走行しているので、第2触媒温度閾値Tcat_tv2は、第1触媒温度閾値Tcat_tv1との差である差分ΔTcat_lowが小さくなるように設定されている。差分ΔTcat_lowは、車両の低速走行時に設定される第2触媒温度閾値Tcat_tv2に対応した値である。 Further, in the example of FIG. 10, since the vehicle is traveling at a low speed, the second catalyst temperature threshold value T cat_tv2 is set so that the difference ΔT cat_low, which is the difference from the first catalyst temperature threshold value T cat_tv1 , becomes small. .. The difference ΔT cat_low is a value corresponding to the second catalyst temperature threshold value T cat_tv2 set when the vehicle travels at a low speed.
 図11は、高速走行中の車両に搭載された内燃機関1が再始動する場面を示すタイミングチャートである。すなわち、図11は、排気浄化用触媒14の温度低下速度が速いときに内燃機関1が再始動する場面のタイミングチャートである。 FIG. 11 is a timing chart showing a scene in which the internal combustion engine 1 mounted on the vehicle traveling at high speed restarts. That is, FIG. 11 is a timing chart of a scene in which the internal combustion engine 1 restarts when the temperature decrease rate of the exhaust gas purification catalyst 14 is high.
 図11中の時刻t1は、内燃機関1の自動停止条件が成立して内燃機関1が停止するタイミングである。 The time t1 in FIG. 11 is the timing at which the internal combustion engine 1 is stopped when the automatic stop condition of the internal combustion engine 1 is satisfied.
 図11中の時刻t2は、排気浄化用触媒14の触媒温度Tcatが第2触媒温度閾値Tcat_tv2未満となり、ヒータ15が作動するタイミングである。 The time t2 in FIG. 11 is the timing at which the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the second catalyst temperature threshold value T cat_tv2 and the heater 15 operates.
 時刻t3は、内燃機関1の自動再始動条件が成立して内燃機関1が始動するタイミングである。 Time t3 is the timing at which the internal combustion engine 1 is started when the automatic restart condition of the internal combustion engine 1 is satisfied.
 図11の例では、時刻t3のタイミングで排気浄化用触媒14の触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満となり内燃機関1の自動再始動条件が成立している。 In the example of FIG. 11, the catalyst temperature T cat of the exhaust gas purification catalyst 14 becomes less than the first catalyst temperature threshold value T cat_tv1 at the timing of time t3, and the automatic restart condition of the internal combustion engine 1 is satisfied.
 また、図11の例では車両が高速で走行しているので、第2触媒温度閾値Tcat_tv2は、第1触媒温度閾値Tcat_tv1との差である差分ΔTcat_highが大きくなるように設定されている。差分ΔTcat_highは、車両の高速走行時に設定される第2触媒温度閾値Tcat_tv2に対応した値である。差分ΔTcat_highは、差分ΔTcat_lowよりも大きな値となっている。 Further, in the example of FIG. 11, since the vehicle is traveling at high speed, the second catalyst temperature threshold value T cat_tv2 is set so that the difference ΔT cat_high, which is the difference from the first catalyst temperature threshold value T cat_tv1 , becomes large. .. The difference ΔT cat_high is a value corresponding to the second catalyst temperature threshold value Tcat_tv2 set when the vehicle travels at high speed. The difference ΔT cat_high is a larger value than the difference ΔT cat_low .
 図12は、内燃機関1の制御の流れの一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of the control flow of the internal combustion engine 1.
 ステップS1では、内燃機関1が停止した状態であるか否かを判定する。内燃機関1が停止した状態であればステップS2へ進む。内燃機関1が運転中であれば、今回のルーチンを終了する。 In step S1, it is determined whether or not the internal combustion engine 1 is in a stopped state. If the internal combustion engine 1 is stopped, the process proceeds to step S2. If the internal combustion engine 1 is in operation, this routine ends.
 ステップS2では、バッテリ30のバッテリSOCがバッテリ閾値SOCtvよりも大きいか否かを判定する。バッテリSOCがバッテリ閾値SOCtvよりも大きい場合には、ステップS3へ進む。バッテリSOCがバッテリ閾値SOCtv以下の場合には、ステップS9へ進む。 In step S2, it is determined whether or not the battery SOC of the battery 30 is larger than the battery threshold SOC tv . If the battery SOC is larger than the battery threshold SOC tv , the process proceeds to step S3. If the battery SOC is equal to or less than the battery threshold SOC tv , the process proceeds to step S9.
 ステップS3では、排気浄化用触媒14の触媒温度Tcatが第2触媒温度閾値Tcat_tv2未満であるか否かを判定する。ステップS3において、触媒温度Tcatが第2触媒温度閾値Tcat_tv2未満であればステップS4へ進む。ステップS3において、触媒温度Tcatが第2触媒温度閾値Tcat_tv2以上であれば、今回のルーチンを終了する。 In step S3, it is determined whether or not the catalyst temperature T cat of the exhaust gas purification catalyst 14 is less than the second catalyst temperature threshold T cat_tv2 . In step S3, if the catalyst temperature T cat is less than the second catalyst temperature threshold T cat_tv2 , the process proceeds to step S4. In step S3, if the catalyst temperature T cat is equal to or higher than the second catalyst temperature threshold T cat_tv2 , the current routine is terminated.
 ステップS4では、燃料噴射弁11のノズル先端の温度Tinjを検出する。 In step S4, the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is detected.
 ステップS5では、ヒータ15の作動時間Xを算出する。 In step S5, the operating time X 2 of the heater 15 is calculated.
 ステップS6では、第1排気微粒子数PN1と第2排気微粒子数PN2を算出し、両者の大小関係を比較する。ステップS6において、第1排気微粒子数PN1が第2排気微粒子数PN2よりも大きければステップS7へ進む。ステップS6において、第1排気微粒子数PN1が第2排気微粒子数PN2以下であればステップS8へ進む。 In step S6, the number of first exhaust particles PN1 and the number of second exhaust particles PN2 are calculated, and the magnitude relationship between the two is compared. In step S6, if the number of first exhaust particles PN1 is larger than the number of second exhaust particles PN2, the process proceeds to step S7. In step S6, if the number of first exhaust particles PN1 is PN2 or less, the process proceeds to step S8.
 ステップS7では、ヒータ15を作動時間X作動させる。 In step S7, actuating time X 2 operates the heater 15.
 ステップS8では、排気浄化用触媒14の触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満であるか否かを判定する。ステップS8において、触媒温度Tcatが第1触媒温度閾値Tcat_tv1未満であればステップS9へ進む。 In step S8, it is determined whether or not the catalyst temperature T cat of the exhaust gas purification catalyst 14 is less than the first catalyst temperature threshold value T cat_tv1 . In step S8, if the catalyst temperature T cat is less than the first catalyst temperature threshold T cat_tv1 , the process proceeds to step S9.
 ステップS9では、内燃機関1を再始動する。 In step S9, the internal combustion engine 1 is restarted.
 以上、本発明の具体的な実施例を説明してきたが、本発明は、上述した実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更が可能である。例えば、コントロールユニット21は、自動停止した内燃機関1の自動再始動時に、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも低い場合、燃料噴射弁11のノズル先端の温度Tinjが上記所定温度Aよりも高くならないように制御してもよい。 Although specific examples of the present invention have been described above, the present invention is not limited to the above-mentioned examples, and various modifications can be made without departing from the spirit of the present invention. For example, in the control unit 21, when the temperature Tinj of the nozzle tip of the fuel injection valve 11 is lower than the predetermined temperature A when the internal combustion engine 1 is automatically restarted, the temperature Tinj of the nozzle tip of the fuel injection valve 11 is set. It may be controlled so as not to be higher than the predetermined temperature A.
 このように、燃料噴射弁11のノズル先端の温度Tinjを上記所定温度A以下に維持することによっても、内燃機関1の自動再始動時に、ノズル先端の燃料付着量が極大値となる温度域を跨ぐにように変化することはない。そのため、内燃機関1は、燃料噴射弁11のノズル先端に燃料が付着しにくくなる。 In this way, even if the temperature Tinj at the tip of the nozzle of the fuel injection valve 11 is maintained at the predetermined temperature A or lower, the temperature range in which the amount of fuel adhering to the tip of the nozzle becomes the maximum value when the internal combustion engine 1 is automatically restarted is set. It does not change to straddle. Therefore, in the internal combustion engine 1, fuel is less likely to adhere to the nozzle tip of the fuel injection valve 11.
 なお、上述した実施例は、内燃機関1の制御方法及び内燃機関1の制御装置に関するものである。 The above-described embodiment relates to a control method for the internal combustion engine 1 and a control device for the internal combustion engine 1.

Claims (11)

  1.  燃焼室内に燃料を直接噴射する燃料噴射弁を有し、上記燃料噴射弁のノズル先端の温度が所定温度のときに当該ノズル先端の燃料付着量が極大値となる内燃機関の制御方法であって、
     上記内燃機関の始動時に、上記燃料付着量が上記極大値となる温度域を避けるように、上記燃料噴射弁の上記ノズル先端の温度を制御する内燃機関の制御方法。
    A control method for an internal combustion engine having a fuel injection valve that directly injects fuel into a combustion chamber, and when the temperature at the nozzle tip of the fuel injection valve is a predetermined temperature, the amount of fuel adhering to the nozzle tip becomes the maximum value. ,
    A control method for an internal combustion engine that controls the temperature at the tip of the nozzle of the fuel injection valve so as to avoid a temperature range in which the amount of fuel adhering to the maximum value is avoided when the internal combustion engine is started.
  2.  上記燃料噴射弁の上記ノズル先端の温度を昇温させることが可能なヒータと、
     上記ヒータに電力を供給するバッテリと、を有し、
     上記内燃機関の始動時に上記ノズル先端の温度が上記所定温度よりも低い場合、
     上記燃料噴射弁の燃料噴射開始までに、上記ヒータを用いて上記ノズル先端の温度を上記所定温度よりも高くする請求項1に記載の内燃機関の制御方法。
    A heater capable of raising the temperature of the nozzle tip of the fuel injection valve and
    It has a battery that supplies power to the heater.
    When the temperature at the tip of the nozzle is lower than the predetermined temperature when the internal combustion engine is started,
    The control method for an internal combustion engine according to claim 1, wherein the temperature at the tip of the nozzle is made higher than the predetermined temperature by using the heater by the start of fuel injection of the fuel injection valve.
  3.  上記内燃機関の始動時に上記ノズル先端の温度が上記所定温度を超えると、上記ノズル先端の温度を上記内燃機関が停止するまで上記所定温度よりも高い温度に維持する請求項2に記載の内燃機関の制御方法。 The internal combustion engine according to claim 2, wherein when the temperature of the nozzle tip exceeds the predetermined temperature when the internal combustion engine is started, the temperature of the nozzle tip is maintained at a temperature higher than the predetermined temperature until the internal combustion engine is stopped. Control method.
  4.  上記内燃機関を始動させる際には上記ヒータの作動を許可し、
     上記内燃機関を始動させない際には上記ヒータの作動を許可しない請求項2または3に記載の内燃機関の制御方法。
    When starting the internal combustion engine, the operation of the heater is permitted, and the operation of the heater is permitted.
    The method for controlling an internal combustion engine according to claim 2 or 3, wherein the operation of the heater is not permitted when the internal combustion engine is not started.
  5.  上記内燃機関の始動時に上記ヒータを作動させることによって減少が見込まれる排気微粒子数である第1排気微粒子数と、始動時に上記ヒータを作動させることで上記バッテリの電力が使われて当該内燃機関の始動のタイミングが早まることによって増加が見込まれる排気微粒子数である第2排気微粒子数と、を比較し、上記第1排気微粒子数が上記第2排気微粒子数よりも多い場合に、上記ヒータを作動させる請求項2~4のいずれかに記載の内燃機関の制御方法。 The number of first exhaust particles, which is the number of exhaust particles expected to decrease by operating the heater when the internal combustion engine is started, and the power of the battery by operating the heater at the time of starting are used to use the power of the internal combustion engine. The heater is operated when the number of the first exhaust particles is larger than the number of the second exhaust particles by comparing with the number of the second exhaust particles, which is the number of exhaust particles expected to increase due to the earlier start timing. The method for controlling an internal combustion engine according to any one of claims 2 to 4.
  6.  上記内燃機関は、排気浄化用触媒の温度が所定の第1触媒温度閾値よりも低くなると始動されるものであって、
     上記ヒータは、上記排気浄化用触媒の温度が上記第1触媒温度閾値よりも高い所定の第2触媒温度閾値よりも低くなると作動し、
     上記排気浄化用触媒の温度低下速度が大きくなるほど上記第1触媒温度閾値と上記第2触媒温度閾値との差が大きくなるよう上記第2触媒温度閾値を設定する請求項2~5のいずれかに記載の内燃機関の制御方法。
    The internal combustion engine is started when the temperature of the exhaust gas purification catalyst becomes lower than a predetermined first catalyst temperature threshold value.
    The heater operates when the temperature of the exhaust gas purification catalyst becomes lower than a predetermined second catalyst temperature threshold value higher than the first catalyst temperature threshold value.
    One of claims 2 to 5 for setting the second catalyst temperature threshold so that the difference between the first catalyst temperature threshold and the second catalyst temperature threshold becomes larger as the temperature decrease rate of the exhaust gas purification catalyst increases. The method for controlling an internal combustion engine described.
  7.  上記内燃機関が搭載される車両の車速が速くなるほど、上記第2触媒温度閾値を高く設定する請求項6に記載の内燃機関の制御方法。 The internal combustion engine control method according to claim 6, wherein the second catalyst temperature threshold value is set higher as the vehicle speed of the vehicle on which the internal combustion engine is mounted becomes faster.
  8.  上記燃料噴射弁の上記ノズル先端の上記燃料付着量を運転状態に応じて算出し、
     上記燃料付着量を用いて上記ヒータの作動時間を算出する請求項2~7のいずれかに記載の内燃機関の制御方法。
    The amount of fuel adhering to the tip of the nozzle of the fuel injection valve is calculated according to the operating condition.
    The control method for an internal combustion engine according to any one of claims 2 to 7, wherein the operating time of the heater is calculated using the fuel adhering amount.
  9.  上記燃料噴射弁の上記ノズル先端の温度が上記所定温度よりも低い場合、上記燃料噴射弁の上記ノズル先端の温度が低くなるほど、上記ヒータの作動時間を長くする請求項8に記載の内燃機関の制御方法。 The internal combustion engine according to claim 8, wherein when the temperature of the nozzle tip of the fuel injection valve is lower than the predetermined temperature, the operating time of the heater is lengthened as the temperature of the nozzle tip of the fuel injection valve becomes lower. Control method.
  10.  上記内燃機関の始動時に上記ノズル先端の温度が上記所定温度よりも低い場合、
     上記燃料噴射弁の上記ノズル先端の温度が上記所定温度よりも高くならないようにする請求項1に記載の内燃機関の制御方法。
    When the temperature at the tip of the nozzle is lower than the predetermined temperature when the internal combustion engine is started,
    The method for controlling an internal combustion engine according to claim 1, wherein the temperature at the tip of the nozzle of the fuel injection valve does not become higher than the predetermined temperature.
  11.  燃焼室に燃料を直接噴射し、ノズル先端の温度が所定温度のときに上記ノズル先端の燃料付着量が極大値となる燃料噴射弁と、
     内燃機関の始動時に、上記燃料付着量が上記極大値となる温度域を避けるように上記ノズル先端の温度を制御する制御部と、を有する内燃機関の制御装置。
    A fuel injection valve that injects fuel directly into the combustion chamber and maximizes the amount of fuel adhering to the nozzle tip when the nozzle tip temperature is a predetermined temperature.
    A control device for an internal combustion engine, comprising a control unit that controls the temperature at the tip of the nozzle so as to avoid a temperature range in which the amount of fuel adhering becomes the maximum value when the internal combustion engine is started.
PCT/IB2019/000252 2019-03-13 2019-03-13 Method for controlling internal combustion engine and device for controlling internal combustion engine WO2020183211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/000252 WO2020183211A1 (en) 2019-03-13 2019-03-13 Method for controlling internal combustion engine and device for controlling internal combustion engine
JP2021504586A JP7188554B2 (en) 2019-03-13 2019-03-13 Internal combustion engine control method and internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000252 WO2020183211A1 (en) 2019-03-13 2019-03-13 Method for controlling internal combustion engine and device for controlling internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020183211A1 true WO2020183211A1 (en) 2020-09-17

Family

ID=72427789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000252 WO2020183211A1 (en) 2019-03-13 2019-03-13 Method for controlling internal combustion engine and device for controlling internal combustion engine

Country Status (2)

Country Link
JP (1) JP7188554B2 (en)
WO (1) WO2020183211A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002933A (en) * 2003-06-13 2005-01-06 Suzuki Motor Corp Fuel heating control device for internal combustion engine
JP2005171889A (en) * 2003-12-11 2005-06-30 Toyota Motor Corp Fuel supply device
JP2009036031A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Direct injection engine and method of controlling the same
JP2014222052A (en) * 2013-05-14 2014-11-27 トヨタ自動車株式会社 Fuel injection device of internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305165B2 (en) 2003-12-19 2009-07-29 トヨタ自動車株式会社 Internal combustion engine
JP2010038000A (en) 2008-08-01 2010-02-18 Toyota Motor Corp Fuel supply apparatus
WO2017138144A1 (en) 2016-02-12 2017-08-17 日産自動車株式会社 Control method and control device of direct-injection type internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002933A (en) * 2003-06-13 2005-01-06 Suzuki Motor Corp Fuel heating control device for internal combustion engine
JP2005171889A (en) * 2003-12-11 2005-06-30 Toyota Motor Corp Fuel supply device
JP2009036031A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Direct injection engine and method of controlling the same
JP2014222052A (en) * 2013-05-14 2014-11-27 トヨタ自動車株式会社 Fuel injection device of internal combustion engine

Also Published As

Publication number Publication date
JP7188554B2 (en) 2022-12-13
JPWO2020183211A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP4557962B2 (en) Control device for internal combustion engine
US9441569B2 (en) Engine system and a method of operating a direct injection engine
KR101554468B1 (en) Method and apparatus for controlling internal combustion engine in stop / start operation
WO2016084188A1 (en) Internal combustion engine control device and control method
CN105189996B (en) The electric control unit and its method of internal combustion engine
JP4930637B2 (en) Fuel injection control device for internal combustion engine
JP2008232007A (en) Start control device for internal combustion engine
JP2006170173A (en) INTERNAL COMBUSTION ENGINE DEVICE, AUTOMOBILE MOUNTING THE SAME, AND METHOD FOR STOPPING INTERNAL COMBUSTION ENGINE
JP2009062863A (en) Control device for internal combustion engine
JP2008267293A (en) Internal combustion engine control system
JP5829838B2 (en) Engine brake control device
JP5249978B2 (en) Fuel injection control device for vehicle internal combustion engine
WO2020183211A1 (en) Method for controlling internal combustion engine and device for controlling internal combustion engine
US20180340478A1 (en) Cooling apparatus of internal combustion engine
JP2010071125A (en) Fuel injection control device for direct-injection internal combustion engine
JP2006144725A (en) Fuel injection control device for hybrid vehicle
JP7160177B2 (en) Internal combustion engine control method and internal combustion engine control device
JP4894815B2 (en) Fuel pressure control device for vehicle internal combustion engine
JP2021054200A (en) Control device of vehicle
JP2006266116A (en) Fuel injection control device for internal combustion engine
JP6070980B2 (en) Control device for internal combustion engine
JP7183444B2 (en) Vehicle control system and internal combustion engine control device
JP7160176B2 (en) Method for estimating the amount of adhering fuel on the nozzle tip of a fuel injection valve, method for controlling an internal combustion engine using the amount of adhering fuel on the tip of the nozzle of a fuel injection valve, and control of an internal combustion engine using the amount of adhering fuel on the tip of the nozzle of a fuel injection valve Device
JP2009257211A (en) Control system for internal combustion engine
CN114087075B (en) System and method for controlling the frequency of cylinder mode changes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918504

Country of ref document: EP

Kind code of ref document: A1