[go: up one dir, main page]

WO2020179593A1 - Solid fuel burner - Google Patents

Solid fuel burner Download PDF

Info

Publication number
WO2020179593A1
WO2020179593A1 PCT/JP2020/007934 JP2020007934W WO2020179593A1 WO 2020179593 A1 WO2020179593 A1 WO 2020179593A1 JP 2020007934 W JP2020007934 W JP 2020007934W WO 2020179593 A1 WO2020179593 A1 WO 2020179593A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
burner
gas
nozzle
solid fuel
Prior art date
Application number
PCT/JP2020/007934
Other languages
French (fr)
Japanese (ja)
Inventor
裕三 川添
嶺 聡彦
倉増 公治
佑介 越智
谷口 斉
恒輔 北風
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2021504008A priority Critical patent/JPWO2020179593A1/en
Priority to KR1020217031078A priority patent/KR20210134356A/en
Publication of WO2020179593A1 publication Critical patent/WO2020179593A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/01001Pulverised solid fuel burner with means for swirling the fuel-air mixture

Definitions

  • the present invention relates to a solid fuel burner that conveys and burns solid fuel, and particularly to a solid fuel burner suitable for fuel particles having a large particle size such as biomass particles.
  • Patent Document 1 Patent No. 5886031 specification: JP 5886031 B2
  • a swirl vane (16) is arranged in the flow path of the biomass fuel injection nozzle (11) to make a swirl flow, thereby making the fuel flow to the outer periphery. It is described to concentrate in part.
  • a swirl degree adjusting plate (17) is arranged on the downstream side of the swirl vanes (16) to adjust swirling of the fuel flow.
  • Patent Document 2 (patent No. 6231047 specification: JP 6231047 B2), a first swirler (6) for imparting swirl to the mixed fluid and a first swirler (at the center of the primary air nozzle (9)
  • the technique of providing the 2nd turning device (7) which gives a turning in the direction opposite to 6) is described.
  • the first swirler (6) strongly swirls the mixed fluid to move the solid fuel particles to the outer peripheral side of the primary air nozzle
  • the second swirler (7) moves the solid fuel particles to the outer peripheral side.
  • the swirl of the mixed fluid is weakened by imparting a swirl in the direction opposite to that of the one swirler (6). Therefore, while the solid fuel particles are concentrated around the flame stabilizer (10) installed in the opening of the burner, the mixed fluid with less swirling flows out from the opening to improve the ignitability.
  • Patent Document 3 US Patent Publication No. 2013/0305971: US 2013/0305971 A1
  • a spiral blade-shaped deflecting means (deflection means 17,18,19) is provided in a flow channel (flow channel 5)
  • a technique for concentrating fuel on the outer peripheral side of the flow channel 5 is described.
  • Patent Document 4 Choinese Patent Publication No. 101832551 gazette: CN 101832551A
  • a conical member (10) that moves the flow to the outer peripheral side is arranged upstream of the member (11) that imparts swirl. ..
  • the cone-shaped member (10) and the member (11) that imparts a turn are configured by rod-shaped members (19, 20) so that their axial positions can be adjusted.
  • Japanese Patent No. 5886031 ([0030]-[0031], FIGS. 1-3, 21) Japanese Patent No. 6231047 ([0048]-[0061], FIGS. 1-3, 21) U.S. Patent Publication No. 2013/0309571 ([0041]-[0043], Fig. 1) Chinese Patent Publication No. 101832551 ([0036]-[0038], FIG. 1)
  • the present invention has a technical problem of enabling switching between coal and biomass fuels while maintaining the risk of wear and ignitability.
  • the solid fuel burner of the invention is A fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace, A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas, A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
  • a solid fuel burner comprising: The fuel concentrator has a plurality of blades that give swirling to the mixed fluid, and is characterized in that the runout angle of the blades with respect to the burner axis direction is adjustable.
  • the invention according to claim 2 is the solid fuel burner according to claim 1.
  • the turning directions of the plurality of blade structures are opposite to each other, and the swing angle of the blades on at least the upstream side with respect to the flow direction of the mixed fluid is adjusted. It is characterized by being possible.
  • the invention according to claim 3 provides the solid fuel burner according to claim 1,
  • the fuel concentrator is configured to be movable along the burner axis direction.
  • the solid fuel burner of the invention is used.
  • a fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas, A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
  • a solid fuel burner comprising: The fuel concentrator has a plurality of blades that give a swirl to the mixed fluid, and is installed at two positions apart from the burner axial direction, and the swirling direction of each of the plurality of blade structures is opposite. The fuel concentrator is configured to be movable along the burner axis direction.
  • the invention according to claim 5 provides the solid fuel burner according to claim 4,
  • the fuel concentrator is characterized in that at least the runout angle of the blade on the upstream side with respect to the flow direction of the mixed fluid with respect to the burner axial direction is adjustable.
  • the invention according to claim 6 provides the solid fuel burner according to any one of claims 1 to 5, A shaft portion supporting the blade, A spraying device that sprays a cleaning gas toward the boundary between the blade and the shaft, It is characterized by having.
  • the invention according to claim 7 provides the solid fuel burner according to claim 6,
  • the spraying device having a spout for ejecting gas in the radial direction from the shaft portion and a gas guide member for guiding gas from the spout to a boundary portion between the blade and the shaft portion. It is characterized by having.
  • the deflection angle of the blade of the fuel concentrator can be adjusted, the deflection angle can be adjusted according to the fuel used, and the risk of wear and ignitability are maintained. At the same time, coal and biomass fuel can be switched and used.
  • At least the deflection angle of the blade on the upstream side can be adjusted, and the deflection of the blade on the upstream side can be adjusted according to the fuel used.
  • the angle can be adjusted and the swirl of the mixed fluid can be weakened by the blades on the downstream side. Therefore, the spread of the jet of the mixed fluid can be adjusted.
  • the position along the burner axial direction of the fuel concentrator can be adjusted according to the fuel used, and burnout You can deal with risks.
  • the fuel concentrator having the blades in the opposite directions is movable in the axial direction, the position in the axial direction can be adjusted according to the fuel used, and the fuel concentrator can be used against wear. Coal and biomass fuels can be switched and made available while maintaining risk and ignitability.
  • the deflection angle of at least the upstream blade can be adjusted, the deflection angle is adjusted according to the fuel used. Therefore, it is possible to deal with the risk of wear and the risk of ignitability and burnout.
  • the gas ejected from the ejection port is guided by the gas guide member, and the accumulation of fine particles is suppressed with a simple configuration. it can.
  • FIG. 1 is an overall explanatory diagram of a combustion system according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the solid fuel burner of the first embodiment.
  • 3A and 3B are explanatory views of a swing angle tilting mechanism of the blade of the fuel concentrator of the embodiment, FIG. 3A is a sectional view of a main part, FIG. 3B is an explanatory view of a high angle position, and FIG. ) Is an explanatory view of a low angle position.
  • FIG. 4 is an explanatory diagram of analysis results of the position of the downstream blade and the opening diameter for the coal fuel and the biomass fuel.
  • FIG. 5 is explanatory drawing of another form 1 of this invention.
  • 6A and 6B are explanatory views of another embodiment 2 of the present invention, FIG. 6A is a schematic view, and FIG. 6B is a partial detailed view.
  • FIG. 7 is an explanatory view of the gas guide member in the form shown in FIG.
  • FIG. 1 is an overall explanatory view of the combustion system according to the first embodiment of the present invention.
  • a biomass fuel solid fuel
  • a bunker fuel hopper
  • the biomass fuel of the bunker 4 is crushed by the mill (crusher) 5.
  • the crushed fuel is supplied to the solid fuel burner 7 of the boiler 6 through the fuel pipe 8 and burned.
  • a plurality of solid fuel burners 7 are installed in the boiler 6.
  • the exhaust gas discharged from the boiler 6 is denitrated by the denitration device 9.
  • the denitrated exhaust gas passes through the air preheater 10.
  • the air preheater 10 heat exchange between the air sent from the blower 11 and the exhaust gas is performed. Therefore, the temperature of the exhaust gas is lowered and the air from the blower 11 is heated.
  • Air from the blower 11 is supplied to the solid fuel burner 7 and the boiler 6 as combustion air through the air pipe 12.
  • the exhaust gas that has passed through the air preheater 10 is recovered in heat when passing through the gas gas heater (heat recovery device) 13, and is cooled down.
  • the exhaust gas that has passed through the gas gas heater (heat recovery device) 13 is recovered and removed by the dry dust collector 14.
  • the exhaust gas that has passed through the dry dust collector 14 is sent to the desulfurization device 15 to be desulfurized.
  • the exhaust gas that has passed through the desulfurization device 15 is collected and removed by the wet dust collector 16 such as dust in the exhaust gas.
  • the exhaust gas that has passed through the wet dust collector 16 is reheated by the gas gas heater (reheater) 17.
  • the exhaust gas that has passed through the gas gas heater (reheater) 17 is exhausted to the atmosphere from the chimney 18.
  • the mill 5 itself may have various conventionally known configurations, and is described in, for example, Japanese Unexamined Patent Publication No. 2010-242999, so detailed description thereof will be omitted.
  • FIG. 2 is an explanatory diagram of the solid fuel burner of the first embodiment.
  • 3A and 3B are explanatory views of a swing angle tilting mechanism of the blades of the fuel concentrator of the embodiment.
  • FIG. 3A is a sectional view of a main part
  • FIG. 3B is an explanatory view of a high angle position
  • FIG. ) Is an explanatory view of a low angle position.
  • the solid fuel burner 7 of the first embodiment has a fuel nozzle 21 through which a carrier gas flows.
  • the downstream end opening of the fuel nozzle 21 is provided in the wall surface (furnace wall, water tube wall) 23 of the furnace 22 of the boiler 6.
  • the fuel pipe 8 is connected to the upstream end.
  • the fuel nozzle 21 is formed in a hollow tubular shape, and a flow path 24 through which solid fuel (crushed biomass fuel and coal fuel) and a transport gas flow is formed inside the fuel nozzle 21.
  • An inner combustion gas nozzle (secondary combustion gas nozzle) 26 that ejects combustion air to the furnace 22 is installed on the outer periphery of the fuel nozzle 21. Further, an outer combustion gas nozzle (third combustion gas nozzle) 27 is installed on the outer peripheral side of the inner combustion gas nozzle 26. The combustion gas nozzles 26 and 27 eject the air from the wind box 28 into the furnace 22.
  • a guide vane 26a is formed at the downstream end of the inner combustion gas nozzle 26 so as to incline radially outward with respect to the center of the fuel nozzle 21 (the diameter increases toward the downstream side). ..
  • a throat portion 27a along the axial direction and an enlarged portion 27b parallel to the guide vane 26a are formed in the downstream portion of the outer combustion gas nozzle 27. Therefore, the combustion air ejected from the combustion gas nozzles 26 and 27 is ejected so as to diffuse from the center in the axial direction.
  • a flame stabilizer 31 is supported at the opening at the downstream end of the fuel nozzle 21.
  • the flame stabilizer 31 is formed with an inner peripheral projection 31a.
  • the inner peripheral side protrusions 31a are formed so as to project toward the center side of the fuel nozzle 21, and the inner peripheral side protrusions 31a are periodically arranged at intervals along the circumferential direction.
  • a tubular or rod-shaped central shaft member is provided so as to penetrate the collision plate 32a supported by the collision plate flange 21a of the fuel nozzle 21, whereby the fuel concentrator 34
  • the first swirler 41 on the upstream side and the second swirler 42 on the downstream side are supported.
  • the oil starting burner (oil gun) 32 is arranged so as to penetrate therethrough. The oil starting burner 32 is supported in a state of penetrating the collision plate 32a supported by the collision plate flange 21a of the fuel nozzle 21.
  • a protective cylinder 32 b for protecting the oil starting burner 32 is attached to the outer periphery of the oil starting burner 32.
  • a fuel concentrator 34 is supported on the outer periphery of the protective cylinder 32b.
  • an inner cylinder 35 arranged on the outer peripheral side of the protective cylinder 32b and an outer cylinder 36 arranged on the outer peripheral side of the inner cylinder 35 are arranged.
  • the outer cylinder 36 is supported by the collision plate 32a via a support (not shown). Therefore, the inner cylinder 35 is supported so as to be slidable in the axial direction with respect to the protection cylinder 32b of the oil starting burner 32 and the outer cylinder 36.
  • the outer cylinder 36 is not limited to the configuration supported by the collision plate, and it is possible to change the configuration such that the outer cylinder 36 is fixed to the oil starting burner 32 at a position outside the movable range of the inner cylinder 35.
  • a position adjusting rod 37 as an example of a position adjusting member is supported on the inner cylinder 35.
  • the position adjusting rod 37 is formed in a rod shape and extends parallel to the oil starting burner 32 toward the upstream side in the fluid flow direction.
  • the upstream portion of the position adjusting rod 37 penetrates the collision plate 32a and extends to the outside of the flow path 24.
  • the position adjusting rod 37 may be installed so as to be built in a cylindrical or rod-shaped central shaft member, whereby wear damage due to collision of fuel particles can be avoided.
  • the fuel concentrator 34 has an upstream first swirler 41 and a downstream second swirler 42. 2 and 3, each of the swirlers 41 and 42 has a plurality of blades 41a and 42a that incline the oil starting burner 32 with respect to the axis.
  • the blades 42 a are fixedly supported on the outer peripheral surface of the outer cylinder 36.
  • the blade 41a is supported by the rotating shaft 43.
  • the rotating shaft 43 is rotatably supported on the outer surface of the inner cylinder 35.
  • the rotating shaft 43 penetrates the shaft passing portion 36a formed in the outer cylinder 36 and extending in the gas flow direction.
  • a cam portion 44 that projects radially outward is supported on the rotating shaft 43.
  • a pin 44a extending in parallel with the rotation shaft 43 is supported on the cam portion 44 (see FIG. 3A).
  • the pin 44a penetrates the guide groove 36b (see FIGS. 3B and 3C).
  • the guide groove 36b is formed in the outer cylinder 36, and is formed in an elongated hole shape capable of guiding the pin 44a.
  • the deflection angle of the blade 42a of the second swirler 42 is set to the opposite direction and the same angle as the deflection angle of the blade 41a at the low angle position.
  • the position adjusting rod 37 is pushed in. Therefore, the inner cylinder 35 moves to the downstream side in the fluid flow direction. Therefore, the swirlers 41 and 42 move to the downstream side in the axial direction (the side closer to the furnace 22). At this time, the blade 41a of the upstream first swirler 41 moves to the high angle position. Therefore, the deflection angle of the vanes 41a of the first swirler 41 becomes large.
  • the biomass fuel has a lower ignitability than coal, and it is desired to concentrate the fuel particles to enhance the ignitability. Therefore, in the first embodiment, the deflection angle of the blade 41a is increased to strengthen the swirling of the mixed fluid. Therefore, even if biomass fuel is used, the ignitability of the fuel can be improved.
  • the fuel concentrator 34 is moved to the downstream side, and the opening (maintenance) is opened before the fuel once moved to the outer peripheral side is reflected by the inner surface of the fuel nozzle 21 and moves to the inner peripheral side.
  • Easy to reach flamearm 31 Therefore, compared with the case where the fuel concentrator 34 is located on the upstream side, the ignitability and the fuel concentration effect are improved.
  • Biomass fuel has a larger average particle size and is inferior in ignitability as compared with coal fuel, so that the radiant heat received by the burner from the flame is smaller than that in the case of coal combustion.
  • the risk of burnout of the fuel concentrator 34 is lower than that at the time of coal combustion, and therefore the risk of burnout is suppressed even if the fuel concentrator 34 moves to the downstream side. Further, since the biomass fuel has a lower risk of wear than coal, even if the deflection angle of the blade 41a is increased, the adverse effect on the life is reduced.
  • the biomass fuel is an oxygen-containing fuel, and the amount of additional oxygen required after ignition is small. Therefore, the amount of air ejected from the outer peripheral secondary air nozzle (inner combustion gas nozzle 26) is reduced as compared with coal, and the amount of primary air that contributes to ignition is set to be larger by that amount.
  • a guide vane 26a is installed at the downstream end so that the air jet from the secondary air nozzle (inner combustion gas nozzle 26) forms a circulating flow having a large spread. ..
  • the amount of the secondary air is reduced and the amount of the primary air is set to be large, the spread of the jet flow ejected from the solid fuel burner 7 becomes relatively small.
  • the deflection angle of the first swirler 41 >(the deflection angle of the second swirler 42) is set. Therefore, the swirl strongly applied by the blade 41a on the upstream side is reduced on the downstream side, and the swirl is ejected while leaving the swirl. Therefore, the jet flow ejected from the solid fuel burner 7 is in a state in which the jet flow is effectively spread by swirling. Therefore, the spread of the jet flow is also prevented from being insufficient.
  • the position adjusting rod 37 is pulled out in the axial direction. Therefore, the swirlers 41, 42 move integrally in the axial upstream side (direction away from the furnace 22). Therefore, the blade 41a of the first swirler 41 moves to the low angle position, and the deflection angle becomes small. Therefore, the abrasion of the blades 41a due to the coal fuel is suppressed as compared with the case where the deflection angle is large. Further, since the ignitability of the coal fuel is higher than that of the biomass fuel, the ignitability can be sufficiently ensured even if the fuel concentrator 34 is on the upstream side or the turning is weak. On the other hand, since the burning risk of coal fuel is high, it is possible to reduce the burning risk of the fuel concentrator 34 located upstream, especially the risk of burning of the second swirler provided at the downstream furnace opening side. is there.
  • FIG. 4 is an explanatory diagram of analysis results of the position of the downstream blade and the opening diameter for the coal fuel and the biomass fuel.
  • FIG. 4 shows the maximum and intermediate L / D when the distance from the opening end of the fuel nozzle 21 to the installation reference position of the downstream blade 42a is L and the opening diameter of the fuel nozzle 21 is D for coal and biomass.
  • CFD Computational Fluid Dynamics
  • UBC ash
  • Medium unburned carbon Unburned Carbon
  • Coal has almost no effect of ⁇ on performance when L / D is between the minimum and intermediate (small sensitivity), but when L / D is maximum, the effect of ⁇ is large, and when the angle is maximum, the effect of ⁇ is large. Sufficient performance can be obtained, but performance decreases as the angle is reduced. Therefore, it is desirable to set the risk of flashback, wear, and accumulation to the minimum, that is, set L / D to the middle and ⁇ to the minimum.
  • biomass has a greater influence of ⁇ than any coal at any L/D (a high sensitivity), and a combination with a minimum L/D and a maximum ⁇ is sufficient for sufficient performance. desirable.
  • the biomass fuel and the coal fuel can be switched and used by operating the position adjusting rod 37, and at the time of use, there is a risk of wear, ignitability, and burnout. Can be suppressed.
  • both the runout angle adjustment and the axial position adjustment are possible by operating the position adjustment rod 37. Therefore, compared with the case where the members for adjusting the deflection angle and the position in the axial direction are respectively provided, the operation is easy, the number of parts is reduced, and the cost is reduced. It is desirable that the position adjusting rod 37 be provided with a protective cover as a measure against wear.
  • FIG. 5 is explanatory drawing of another form 1 of this invention.
  • the positions of the cam portion 44' and the guide groove 36b' are changed by 90 degrees, and the outer cylinder 36 is rotatable in the circumferential direction with respect to the oil starting burner 32. It is also possible to adopt a configuration in which the angle can be adjusted.
  • FIG. 6A and 6B are explanatory views of another mode 2 of the present invention.
  • FIG. 6A is a schematic view and FIG. 6B is a partial detailed view.
  • a gas supply pipe 101 is arranged between the outer circumference of the oil starting burner 32 and the inner cylinder 35.
  • the gas supply pipe 101 is supported while penetrating the collision plate 32a.
  • An oil starting burner 32 penetrates the inside of the gas supply pipe 101, and an inner cylinder 35 is movably supported on the outer surface along the gas flow direction.
  • the gas supply pipe 101 has a hollow interior, and is configured to allow a cleaning gas to pass therethrough.
  • a plurality of gas ejection ports 102 are formed on the outer surface corresponding to the movable range of the inner cylinder 35.
  • a gas source 103 that supplies a cleaning gas to the gas supply pipe 101 is arranged outside the collision plate 32 a.
  • the cleaning gas it is preferable to select a gas type that has little influence on the combustion of the solid fuel burner 7, and air, nitrogen (N 2 ) gas, or the like can be used.
  • the flow rate of the cleaning gas is preferably a flow rate that has little effect on the combustion of the solid fuel burner 7, and can be appropriately selected according to the specifications of the solid fuel burner 7. Therefore, as the gas source 103, any conventionally known configuration such as a fan for blowing air, a compressor, a gas cylinder and a valve can be adopted.
  • FIG. 7 is an explanatory view of the gas guide member in the form shown in FIG.
  • the gas guide member 104 is supported on the upstream side of the inner cylinder 35 with respect to the gas flow direction.
  • the gas guide member 104 is formed in a conical shape in which the outer diameter increases toward the downstream side in the gas flow direction.
  • the outer diameter of the gas supply pipe 101 is D1
  • the inner diameter of the upstream end of the gas guide member 104 is D2
  • the outer diameter of the downstream end of the gas guide member 104 is D3, and the block of the blade 41a.
  • the relationship of the following equation (1) is established.
  • Formula (1) If D3 is too large, the amount of fine particles such as pulverized coal colliding with the gas guide member 104 increases, so it is desirable that D3 has a value as close as possible to D4.
  • the gas ejected from the ejection port 102 is guided by the inner surface of the gas guide member 104 and is blown to the root portion 106 of the rotating shaft 43, that is, the range 106 including the boundary portion between the rotating shaft 43 and the blade 41a.
  • the gas is also blown to the upstream end portion 107 of the inner cylinder 35 and the corner portion 108 between the upstream end of the outer cylinder 36 and the inner cylinder 35.
  • the outer surface of the gas guide member 104 guides the pulverized coal or the like transferred from the upstream to the outside in the radial direction.
  • the spraying devices 101 to 104 of the present embodiment are configured by the members denoted by the reference signs 101 to 104.
  • the spraying devices 101 to 104 spray the gas to each part 106 to 108, and the accumulation of fine particles is suppressed. Therefore, it is possible to stably adjust the deflection angle of the blade 41a and the position in the gas flow direction for a long period of time.
  • the gas guide member 104 is configured to be integrally movable with the inner cylinder 35, and the positional relationship with the gas guide member 104 does not change even if the inner cylinder 35 moves. Therefore, the gas can be stably blown to the respective parts 106 to 108.
  • the ejection port 102 is formed so as to correspond to the moving range of the inner cylinder 35. Therefore, even if the inner cylinder 35 moves, the gas can be stably fed to the inner surface side of the gas guide member 104. Further, in this embodiment, the gas can be blown with the simple structure of the gas guide member 104, and the accumulation of fine particles can be suppressed.
  • one deflection rod 37 is used to adjust the deflection angle and the axial position is illustrated, but the invention is not limited to this. It is also possible to provide a member for adjusting the deflection angle and a member for adjusting the position in the axial direction, respectively.
  • the rotary shaft of the blades (fulcrum for adjusting the deflection angle) is installed in a double cylindrical inner cylinder that is slidable relative to each other, and a cam movable mechanism as shown in FIG. It is possible to adjust the deflection angle of the swirl vane by shifting the relative positional relationship between the cylinder and the outer cylinder or rotating one of the cylinders around the axis.
  • the axial position can be adjusted by sliding the inner cylinder and the outer cylinder integrally in the nozzle axial direction.
  • the relative rotation of the inner cylinder and the outer cylinder and the movement in the nozzle axis direction can be operated, for example, by providing rods respectively.
  • the fuel concentrator 34 may be configured to have only the function of moving in the nozzle axis direction, If it is not necessary to move the nozzle in the axial direction, it is possible to configure the configuration so that only the runout angle can be adjusted.
  • the fuel concentrator 34 has a first swirler 41 and a second swirler 42, but it is also possible to have only the first swirler 41 and three or more swirlers. It is also possible to adopt a configuration provided with.
  • the configurations of the spraying devices 101 to 104 are not limited to the illustrated configurations, and can be arbitrarily changed.
  • the shape of the gas guide member is not limited to a conical shape, and may be any shape such as a parabola shape or a polygonal pyramid shape.
  • the structure of the gas supply pipe 101 having a cylindrical tubular shape along the oil starting burner 32 has been illustrated, but the present invention is not limited to this.
  • the inner combustion gas nozzle 26 A configuration in which the pipe is extended from is particularly preferable.
  • the spraying devices 101 to 104 can be provided on both the upstream first swirler 41 and the downstream second swirler 42, or only on the upstream first swirler 41 side. Is also possible.
  • Solid fuel burner 21... Fuel nozzle, 22... furnace, 26, 27... Combustion gas nozzle, 34... Fuel concentrator, 41a... blades on the upstream side, 41a, 41b... blades, 43... Shaft, 101 to 104... Spraying device, 102... the spout, 104... Gas guide member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A fuel concentrator (34), which is provided toward the center of a fuel nozzle (21) and which imparts to a mixed fluid a velocity component away from the center of the fuel nozzle (21), is configured so as to have a plurality of blades (41a, 41b) that impart a swirl to the mixed fluid, and the deflection angle of the blade (41a) relative to the burner axial direction can be adjusted; thus, it is possible to switch between the use of coal and biomass fuel while maintaining ignitability and the risk of abrasion.

Description

固体燃料バーナSolid fuel burner
 本発明は、固体燃料を搬送して燃焼させる固体燃料バーナに関し、特にバイオマス粒子のように粒径の大きな燃料粒子に適した固体燃料バーナに関する。 The present invention relates to a solid fuel burner that conveys and burns solid fuel, and particularly to a solid fuel burner suitable for fuel particles having a large particle size such as biomass particles.
 火力発電プラント等のボイラに用いられる固体燃料バーナの着火性の向上、火炎の安定性を高める方法としては、燃料濃度を高める、または燃料搬送気体の酸素濃度を上げる方法がある。 As a method of improving the ignitability of the solid fuel burner used in the boiler of a thermal power plant and the stability of the flame, there is a method of increasing the fuel concentration or increasing the oxygen concentration of the fuel carrier gas.
 例えば、特許文献1(特許第5886031号明細書:JP 5886031 B2)では、バイオマス燃料噴出ノズル(11)の流路中に旋回羽根(16)を配置して旋回流にすることで、燃料を外周部に濃縮することが記載されている。特許文献1では、旋回羽根(16)の下流側に旋回度調整板(17)を配置して、燃料流の旋回を調整している。 For example, in Patent Document 1 (Patent No. 5886031 specification: JP 5886031 B2), a swirl vane (16) is arranged in the flow path of the biomass fuel injection nozzle (11) to make a swirl flow, thereby making the fuel flow to the outer periphery. It is described to concentrate in part. In Patent Document 1, a swirl degree adjusting plate (17) is arranged on the downstream side of the swirl vanes (16) to adjust swirling of the fuel flow.
 特許文献2(特許第6231047号明細書:JP 6231047 B2)では、1次空気ノズル(9)の中心部に、混合流体に旋回を付与する第1旋回器(6)と、第1旋回器(6)とは逆向きの旋回を付与する第2旋回器(7)とを設ける技術が記載されている。特許文献2記載の技術では、第1旋回器(6)で混合流体に強い旋回をかけて、固体燃料粒子を1次空気ノズルの外周側に移動させると共に、第2旋回器(7)で第1旋回器(6)とは逆向きの旋回を付与することで混合流体の旋回を弱める。したがって、バーナの開口部に設置された保炎器(10)の周辺で固体燃料粒子が濃縮されつつ、旋回が少ない混合流体を開口部から流出させて着火性を向上させている。 In patent document 2 (patent No. 6231047 specification: JP 6231047 B2), a first swirler (6) for imparting swirl to the mixed fluid and a first swirler (at the center of the primary air nozzle (9) The technique of providing the 2nd turning device (7) which gives a turning in the direction opposite to 6) is described. In the technique described in Patent Document 2, the first swirler (6) strongly swirls the mixed fluid to move the solid fuel particles to the outer peripheral side of the primary air nozzle, and the second swirler (7) moves the solid fuel particles to the outer peripheral side. The swirl of the mixed fluid is weakened by imparting a swirl in the direction opposite to that of the one swirler (6). Therefore, while the solid fuel particles are concentrated around the flame stabilizer (10) installed in the opening of the burner, the mixed fluid with less swirling flows out from the opening to improve the ignitability.
 特許文献3(米国特許公開第2013/0305971号公報:US 2013/0305971 A1)には、流路(flow channel 5)に螺旋羽根状の偏向手段(deflection means 17,18,19)を設けて、流路(flow channel 5)の外周側に燃料を濃縮する技術が記載されている。 In Patent Document 3 (US Patent Publication No. 2013/0305971: US 2013/0305971 A1), a spiral blade-shaped deflecting means (deflection means 17,18,19) is provided in a flow channel (flow channel 5), A technique for concentrating fuel on the outer peripheral side of the flow channel 5 is described.
 特許文献4(中国特許公開第101832551号公報:CN 101832551 A)には、旋回を付与する部材(11)の上流側に流れを外周側に移動させる錐状の部材(10)が配置されている。特許文献4では、錐状の部材(10)や旋回を付与する部材(11)が、棒状の部材(19,20)により、軸方向の位置を調整可能に構成されている。 In Patent Document 4 (Chinese Patent Publication No. 101832551 gazette: CN 101832551A), a conical member (10) that moves the flow to the outer peripheral side is arranged upstream of the member (11) that imparts swirl. .. In Patent Document 4, the cone-shaped member (10) and the member (11) that imparts a turn are configured by rod-shaped members (19, 20) so that their axial positions can be adjusted.
特許第5886031号明細書([0030]-[0031]、図1-図3、図21)Japanese Patent No. 5886031 ([0030]-[0031], FIGS. 1-3, 21) 特許第6231047号明細書([0048]-[0061]、図1-図3、図21)Japanese Patent No. 6231047 ([0048]-[0061], FIGS. 1-3, 21) 米国特許公開第2013/0305971号公報([0041]-[0043]、Fig.1)U.S. Patent Publication No. 2013/0309571 ([0041]-[0043], Fig. 1) 中国特許公開第101832551号公報([0036]-[0038]、図1)Chinese Patent Publication No. 101832551 ([0036]-[0038], FIG. 1)
 温暖化対策等の社会的な要望から、特許文献1に記載の技術のように、バイオマス燃料を使用する固体燃料バーナが求められている。しかしながら、現状では、バイオマス燃料は供給が安定していない。したがって、燃料の調達の状況に応じて、石炭とバイオマスを切り換えて使用できることが望ましい。
 特許文献1~4に記載のバーナにおいて、混合流体に旋回を付与して燃料を外周側に濃縮することが行われている。ここで、石炭に比べて、バイオマス燃料は、旋回を付与する部材への衝突時の摩耗のリスクが低い。着火性は、石炭に比べて、バイオマス燃料の方が低く、焼損に対するリスクも低いという違いがある。
Due to social demands such as measures against global warming, a solid fuel burner using a biomass fuel is required as in the technique described in Patent Document 1. However, at present, the supply of biomass fuel is not stable. Therefore, it is desirable that coal and biomass can be switched and used according to the situation of fuel procurement.
In the burners described in Patent Documents 1 to 4, the mixed fluid is swirled to concentrate the fuel on the outer peripheral side. Here, as compared with coal, the biomass fuel has a lower risk of wear when colliding with a member that imparts a swirl. The ignitability of biomass fuel is lower than that of coal, and the risk of burnout is lower.
 したがって、単純に特許文献1に記載のバイオマス燃料用のバーナに石炭燃料を使用すると、摩耗のリスクが高いと共に、着火性は高いが焼損しやすい問題がある。逆に、特許文献2~4に記載の微粉炭用のバーナにバイオマス燃料を使用すると、摩耗しにくいが着火性が低い問題がある。 Therefore, if coal fuel is simply used for the burner for biomass fuel described in Patent Document 1, there is a high risk of wear and high ignitability, but there is a problem of easy burning. On the contrary, when biomass fuel is used in the burners for pulverized coal described in Patent Documents 2 to 4, there is a problem that it is hard to wear but has low ignitability.
 本発明は、摩耗に対するリスクや着火性を維持しつつ石炭とバイオマス燃料とを切り替えて使用可能にすることを技術的課題とする。 The present invention has a technical problem of enabling switching between coal and biomass fuels while maintaining the risk of wear and ignitability.
 前記技術的課題を解決するために、請求項1に記載の発明の固体燃料バーナは、
 固体燃料とその搬送気体の混合流体が流れ、火炉に向かって開口する燃料ノズルと、
 前記燃料ノズルの外周側に配置され、燃焼用気体を噴出させる燃焼用ガスノズルと、
 前記燃料ノズルの中心側に設けられ、前記燃料ノズルの中心から離れる向きの速度成分を前記混合流体に付与する燃料濃縮器と、
 を備えた固体燃料バーナであって、
 前記燃料濃縮器は、前記混合流体に旋回を与える複数の羽根を有し、前記羽根のバーナ軸方向に対する振れ角が調整可能に構成されたことを特徴とする。
In order to solve the technical problem, the solid fuel burner of the invention according to claim 1 is
A fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace,
A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas,
A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
A solid fuel burner comprising:
The fuel concentrator has a plurality of blades that give swirling to the mixed fluid, and is characterized in that the runout angle of the blades with respect to the burner axis direction is adjustable.
 請求項2に記載の発明は、請求項1に記載の固体燃料バーナにおいて、
 バーナ軸方向に対して離れた2箇所に設置すると共に、各々の複数の羽根構造の旋回方向が逆方向であり、前記混合流体の流れ方向に対して少なくとも上流側の羽根の前記振れ角が調整可能であることを特徴とする。
The invention according to claim 2 is the solid fuel burner according to claim 1.
In addition to being installed at two locations separated from the burner axis direction, the turning directions of the plurality of blade structures are opposite to each other, and the swing angle of the blades on at least the upstream side with respect to the flow direction of the mixed fluid is adjusted. It is characterized by being possible.
 請求項3に記載の発明は、請求項1に記載の固体燃料バーナにおいて、
 前記燃料濃縮器は、前記バーナ軸方向に沿って移動可能に構成されたことを特徴とする。
The invention according to claim 3 provides the solid fuel burner according to claim 1,
The fuel concentrator is configured to be movable along the burner axis direction.
 前記技術的課題を解決するために、請求項4に記載の発明の固体燃料バーナは、
 固体燃料とその搬送気体の混合流体が流れ、火炉に向かって開口する燃料ノズルと、
 前記燃料ノズルの外周側に配置され、燃焼用気体を噴出させる燃焼用ガスノズルと、
 前記燃料ノズルの中心側に設けられ、前記燃料ノズルの中心から離れる向きの速度成分を前記混合流体に付与する燃料濃縮器と、
 を備えた固体燃料バーナであって、
 前記燃料濃縮器は、前記混合流体に旋回を与える複数の羽根を有し、バーナ軸方向に対して離れた2箇所に設置すると共に、各々の複数の羽根構造の旋回方向が逆方向であり、
 前記燃料濃縮器は、前記バーナ軸方向に沿って移動可能に構成されたことを特徴とする。
In order to solve the technical problem, the solid fuel burner of the invention according to claim 4 is used.
A fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace,
A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas,
A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
A solid fuel burner comprising:
The fuel concentrator has a plurality of blades that give a swirl to the mixed fluid, and is installed at two positions apart from the burner axial direction, and the swirling direction of each of the plurality of blade structures is opposite.
The fuel concentrator is configured to be movable along the burner axis direction.
 請求項5に記載の発明は、請求項4に記載の固体燃料バーナにおいて、
 前記燃料濃縮器は、前記混合流体の流れ方向に対して少なくとも上流側の羽根の前記バーナ軸方向に対する振れ角が調整可能に構成されたことを特徴とする。
The invention according to claim 5 provides the solid fuel burner according to claim 4,
The fuel concentrator is characterized in that at least the runout angle of the blade on the upstream side with respect to the flow direction of the mixed fluid with respect to the burner axial direction is adjustable.
 請求項6に記載の発明は、請求項1ないし5のいずれかに記載の固体燃料バーナにおいて、
 前記羽根を支持する軸部と、
 前記羽根と軸部との境界部分に向けて清掃用の気体を吹き付ける吹付装置と、
 を備えたことを特徴とする。
The invention according to claim 6 provides the solid fuel burner according to any one of claims 1 to 5,
A shaft portion supporting the blade,
A spraying device that sprays a cleaning gas toward the boundary between the blade and the shaft,
It is characterized by having.
 請求項7に記載の発明は、請求項6に記載の固体燃料バーナにおいて、
 前記軸部から径方向に気体を噴出させる噴出口と、前記噴出口からの気体を前記羽根と軸部との境界部分に案内する気体ガイド部材と、を有する前記吹付装置、
 を備えたことを特徴とする。
The invention according to claim 7 provides the solid fuel burner according to claim 6,
The spraying device having a spout for ejecting gas in the radial direction from the shaft portion and a gas guide member for guiding gas from the spout to a boundary portion between the blade and the shaft portion.
It is characterized by having.
 請求項1に記載の発明によれば、燃料濃縮器の羽根の振れ角が調整可能であるので、使用する燃料に応じて振れ角を調整することができ、摩耗に対するリスクや着火性を維持しつつ石炭とバイオマス燃料とを切り替えて使用可能にすることができる。 According to the first aspect of the invention, since the deflection angle of the blade of the fuel concentrator can be adjusted, the deflection angle can be adjusted according to the fuel used, and the risk of wear and ignitability are maintained. At the same time, coal and biomass fuel can be switched and used.
 請求項2に記載の発明によれば、請求項1に記載の発明の効果に加えて、少なくとも上流側の羽根の振れ角が調整可能であり、使用する燃料に応じて上流側の羽根の振れ角を調整することができると共に、下流側の羽根で混合流体の旋回を弱めることができる。したがって、混合流体の噴流の広がりを調整することができる。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, at least the deflection angle of the blade on the upstream side can be adjusted, and the deflection of the blade on the upstream side can be adjusted according to the fuel used. The angle can be adjusted and the swirl of the mixed fluid can be weakened by the blades on the downstream side. Therefore, the spread of the jet of the mixed fluid can be adjusted.
 請求項3に記載の発明によれば、請求項1に記載の発明の効果に加えて、使用する燃料に応じて燃料濃縮器のバーナ軸方向に沿った位置を調整することができ、焼損のリスクに対応することができる。 According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, the position along the burner axial direction of the fuel concentrator can be adjusted according to the fuel used, and burnout You can deal with risks.
 請求項4に記載の発明によれば、互いに逆方向の羽根を有する燃料濃縮器が軸方向に移動可能であるので、使用する燃料に応じて軸方向の位置を調整することができ、摩耗に対するリスクや着火性を維持しつつ石炭とバイオマス燃料とを切り替えて使用可能にすることができる。 According to the invention described in claim 4, since the fuel concentrator having the blades in the opposite directions is movable in the axial direction, the position in the axial direction can be adjusted according to the fuel used, and the fuel concentrator can be used against wear. Coal and biomass fuels can be switched and made available while maintaining risk and ignitability.
 請求項5に記載の発明によれば、請求項4に記載の発明の効果に加えて、少なくとも上流側の羽根の振れ角が調整可能であるので、使用する燃料に応じて振れ角を調整することができ、摩耗に対するリスクや着火性、焼損に対するリスクに対応することができる。 According to the invention described in claim 5, in addition to the effect of the invention described in claim 4, since the deflection angle of at least the upstream blade can be adjusted, the deflection angle is adjusted according to the fuel used. Therefore, it is possible to deal with the risk of wear and the risk of ignitability and burnout.
 請求項6に記載の発明によれば、請求項1ないし5のいずれかに記載の発明の効果に加えて、羽根と軸部の境界部分に固体燃料の微粒子が堆積することを抑制できる。したがって、微粒子の堆積で振れ角の調整や燃料濃縮器の移動ができなくなることを抑制できる。 According to the invention described in claim 6, in addition to the effect of the invention described in any one of claims 1 to 5, it is possible to suppress the accumulation of fine particles of the solid fuel at the boundary between the blade and the shaft. Therefore, it is possible to prevent the runout angle from being adjusted and the fuel concentrator from being unable to move due to the accumulation of fine particles.
 請求項7に記載の発明によれば、請求項6に記載の発明の効果に加えて、噴出口から噴出された気体を気体ガイド部材で案内しており、簡単な構成で微粒子の堆積を抑制できる。 According to the invention of claim 7, in addition to the effect of the invention of claim 6, the gas ejected from the ejection port is guided by the gas guide member, and the accumulation of fine particles is suppressed with a simple configuration. it can.
図1は本発明の実施例1の燃焼システムの全体説明図である。FIG. 1 is an overall explanatory diagram of a combustion system according to a first embodiment of the present invention. 図2は実施例1の固体燃料バーナの説明図である。FIG. 2 is an explanatory diagram of the solid fuel burner of the first embodiment. 図3は実施例の燃料濃縮器の羽根の振れ角傾斜機構の説明図であり、図3(A)は要部断面図、図3(B)は高角度位置の説明図、図3(C)は低角度位置の説明図である。3A and 3B are explanatory views of a swing angle tilting mechanism of the blade of the fuel concentrator of the embodiment, FIG. 3A is a sectional view of a main part, FIG. 3B is an explanatory view of a high angle position, and FIG. ) Is an explanatory view of a low angle position. 図4は石炭燃料とバイオマス燃料とについて下流羽根の位置と開口径との解析結果の説明図である。FIG. 4 is an explanatory diagram of analysis results of the position of the downstream blade and the opening diameter for the coal fuel and the biomass fuel. 図5は本発明の別の形態1の説明図である。FIG. 5: is explanatory drawing of another form 1 of this invention. 図6は本発明の別の形態2の説明図であり、図6(A)は概略図、図6(B)は部分詳細図である。6A and 6B are explanatory views of another embodiment 2 of the present invention, FIG. 6A is a schematic view, and FIG. 6B is a partial detailed view. 図7は図6に示す形態における気体ガイド部材の説明図である。FIG. 7 is an explanatory view of the gas guide member in the form shown in FIG.
 次に図面を参照しながら、本発明の実施の形態の具体例(以下、実施例と記載する)を説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。 Next, specific examples of the embodiments of the present invention (hereinafter referred to as examples) will be described with reference to the drawings, but the present invention is not limited to the following examples. In the following description using the drawings, illustrations other than the members necessary for the description are appropriately omitted for easy understanding.
 図1は本発明の実施例1の燃焼システムの全体説明図である。
 図1において、火力発電所等で使用される実施例1の燃焼システム(燃焼装置)1では、バイオマス燃料(固体燃料)がバンカ(燃料ホッパ)4に収容されている。バンカ4のバイオマス燃料は、ミル(粉砕機)5で粉砕される。粉砕された燃料は、ボイラ(火炉)6の固体燃料バーナ7に燃料配管8を通じて供給されて、燃焼される。なお、固体燃料バーナ7は、ボイラ6に複数設置されている。
FIG. 1 is an overall explanatory view of the combustion system according to the first embodiment of the present invention.
In FIG. 1, in a combustion system (combustion apparatus) 1 of Example 1 used in a thermal power plant or the like, a biomass fuel (solid fuel) is contained in a bunker (fuel hopper) 4. The biomass fuel of the bunker 4 is crushed by the mill (crusher) 5. The crushed fuel is supplied to the solid fuel burner 7 of the boiler 6 through the fuel pipe 8 and burned. A plurality of solid fuel burners 7 are installed in the boiler 6.
 ボイラ6から排出された排ガスは、脱硝装置9で脱硝される。脱硝された排ガスは、空気予熱器10を通過する。空気予熱器10では、ブロア11から送られた空気と排ガスとの熱交換が行われる。したがって、排ガスが低温化されると共に、ブロア11からの空気が加熱される。ブロア11からの空気は、空気配管12を通じて、固体燃料バーナ7およびボイラ6に燃焼用空気として供給される。
 空気予熱器10を通過した排ガスは、ガスガスヒータ(熱回収器)13を通過する際に熱が回収されて低温化する。
The exhaust gas discharged from the boiler 6 is denitrated by the denitration device 9. The denitrated exhaust gas passes through the air preheater 10. In the air preheater 10, heat exchange between the air sent from the blower 11 and the exhaust gas is performed. Therefore, the temperature of the exhaust gas is lowered and the air from the blower 11 is heated. Air from the blower 11 is supplied to the solid fuel burner 7 and the boiler 6 as combustion air through the air pipe 12.
The exhaust gas that has passed through the air preheater 10 is recovered in heat when passing through the gas gas heater (heat recovery device) 13, and is cooled down.
 ガスガスヒータ(熱回収器)13を通過した排ガスは、乾式集塵機14で排ガス中の塵等が回収、除去される。
 乾式集塵機14を通過した排ガスは、脱硫装置15に送られて脱硫される。
 脱硫装置15を通過した排ガスは、湿式集塵機16で排ガス中の塵等が回収、除去される。
 湿式集塵機16を通過した排ガスは、ガスガスヒータ(再加熱器)17で再加熱される。
 ガスガスヒータ(再加熱器)17を通過した排ガスは、煙突18から大気に排気される。
 なお、ミル5自体の構成は、従来公知の種々の構成を使用可能であり、例えば、特開2010-242999号公報等に記載されているので詳細な説明は省略する。
The exhaust gas that has passed through the gas gas heater (heat recovery device) 13 is recovered and removed by the dry dust collector 14.
The exhaust gas that has passed through the dry dust collector 14 is sent to the desulfurization device 15 to be desulfurized.
The exhaust gas that has passed through the desulfurization device 15 is collected and removed by the wet dust collector 16 such as dust in the exhaust gas.
The exhaust gas that has passed through the wet dust collector 16 is reheated by the gas gas heater (reheater) 17.
The exhaust gas that has passed through the gas gas heater (reheater) 17 is exhausted to the atmosphere from the chimney 18.
The mill 5 itself may have various conventionally known configurations, and is described in, for example, Japanese Unexamined Patent Publication No. 2010-242999, so detailed description thereof will be omitted.
 図2は実施例1の固体燃料バーナの説明図である。
 図3は実施例の燃料濃縮器の羽根の振れ角傾斜機構の説明図であり、図3(A)は要部断面図、図3(B)は高角度位置の説明図、図3(C)は低角度位置の説明図である。
 図2において、実施例1の固体燃料バーナ7は、搬送気体が流れる燃料ノズル21を有する。燃料ノズル21の下流端の開口は、ボイラ6の火炉22の壁面(火炉壁、水管壁)23に設けられている。燃料ノズル21は、燃料配管8が上流端に接続される。燃料ノズル21は中空の筒状に形成されており、燃料ノズル21の内部には、固体燃料(粉砕されたバイオマス燃料及び石炭燃料)と搬送気体とが流れる流路24が形成されている。
FIG. 2 is an explanatory diagram of the solid fuel burner of the first embodiment.
3A and 3B are explanatory views of a swing angle tilting mechanism of the blades of the fuel concentrator of the embodiment. FIG. 3A is a sectional view of a main part, FIG. 3B is an explanatory view of a high angle position, and FIG. ) Is an explanatory view of a low angle position.
In FIG. 2, the solid fuel burner 7 of the first embodiment has a fuel nozzle 21 through which a carrier gas flows. The downstream end opening of the fuel nozzle 21 is provided in the wall surface (furnace wall, water tube wall) 23 of the furnace 22 of the boiler 6. In the fuel nozzle 21, the fuel pipe 8 is connected to the upstream end. The fuel nozzle 21 is formed in a hollow tubular shape, and a flow path 24 through which solid fuel (crushed biomass fuel and coal fuel) and a transport gas flow is formed inside the fuel nozzle 21.
 燃料ノズル21の外周には、燃焼用空気を火炉22に噴出する内側燃焼用ガスノズル(2次燃焼用ガスノズル)26が設置されている。また、内側燃焼用ガスノズル26の外周側には、外側燃焼用ガスノズル(3次燃焼用ガスノズル)27が設置されている。各燃焼用ガスノズル26,27は、ウインドボックス(風箱)28からの空気を火炉22内に向けて噴出する。実施例1では、内側燃焼用ガスノズル26の下流端には、燃料ノズル21の中心に対して径方向外側に傾斜(下流側に行くに連れて径が拡大)するガイドベーン26aが形成されている。また、外側燃焼用ガスノズル27の下流部には、軸方向に沿ったスロート部27aと、ガイドベーン26aに平行する拡大部27bとが形成されている。したがって、各燃焼用ガスノズル26,27から噴出された燃焼用空気は、軸方向の中心から拡散するように噴出される。 An inner combustion gas nozzle (secondary combustion gas nozzle) 26 that ejects combustion air to the furnace 22 is installed on the outer periphery of the fuel nozzle 21. Further, an outer combustion gas nozzle (third combustion gas nozzle) 27 is installed on the outer peripheral side of the inner combustion gas nozzle 26. The combustion gas nozzles 26 and 27 eject the air from the wind box 28 into the furnace 22. In the first embodiment, a guide vane 26a is formed at the downstream end of the inner combustion gas nozzle 26 so as to incline radially outward with respect to the center of the fuel nozzle 21 (the diameter increases toward the downstream side). .. Further, a throat portion 27a along the axial direction and an enlarged portion 27b parallel to the guide vane 26a are formed in the downstream portion of the outer combustion gas nozzle 27. Therefore, the combustion air ejected from the combustion gas nozzles 26 and 27 is ejected so as to diffuse from the center in the axial direction.
 また、燃料ノズル21の下流端の開口部には、保炎器31が支持されている。図2において、保炎器31には、内周側突起31aが形成されている。内周側突起31aは、燃料ノズル21の中心側に向けて突出して形成されている、また、内周側突起31aは、周方向に沿って間隔をあけて周期的に配置されている。
 燃料ノズル21の流路断面の中心部には、筒状ないし棒状の中心軸部材を燃料ノズル21の衝突板フランジ21aに支持された衝突板32aを貫通するように設け、これにより燃料濃縮器34としての上流側の第1旋回器41と、下流側の第2旋回器42とを支持する。
 図2、図3に示す例では、油起動バーナ(オイルガン)32が貫通して配置されている。油起動バーナ32は、燃料ノズル21の衝突板フランジ21aに支持された衝突板32aに貫通した状態で支持されている。
A flame stabilizer 31 is supported at the opening at the downstream end of the fuel nozzle 21. In FIG. 2, the flame stabilizer 31 is formed with an inner peripheral projection 31a. The inner peripheral side protrusions 31a are formed so as to project toward the center side of the fuel nozzle 21, and the inner peripheral side protrusions 31a are periodically arranged at intervals along the circumferential direction.
At the center of the cross section of the flow path of the fuel nozzle 21, a tubular or rod-shaped central shaft member is provided so as to penetrate the collision plate 32a supported by the collision plate flange 21a of the fuel nozzle 21, whereby the fuel concentrator 34 The first swirler 41 on the upstream side and the second swirler 42 on the downstream side are supported.
In the example shown in FIGS. 2 and 3, the oil starting burner (oil gun) 32 is arranged so as to penetrate therethrough. The oil starting burner 32 is supported in a state of penetrating the collision plate 32a supported by the collision plate flange 21a of the fuel nozzle 21.
 油起動バーナ32の外周には、油起動バーナ32を保護する保護筒32bが装着されている。保護筒32bの外周には、燃料濃縮器34が支持されている。燃料濃縮器34は、保護筒32bの外周側に配置された内筒35と、内筒35の外周側に配置された外筒36が配置されている。外筒36は図示しない支持体を介して衝突板32aに支持されている。したがって、内筒35は、油起動バーナ32の保護筒32bおよび外筒36に対して軸方向にスライド移動可能に支持されている。なお、外筒36は衝突板に支持される構成に限定されず、内筒35の移動可能な範囲外の位置で油起動バーナ32に固定される構成とすること等の変更も可能である。
 図2において、内筒35には、位置調整部材の一例としての位置調整ロッド37が支持されている。位置調整ロッド37は、棒状に形成されており、油起動バーナ32に並行して流体流れ方向上流側に向けて延びている。位置調整ロッド37の上流部は、衝突板32aを貫通して流路24の外部まで延びている。
 なお、位置調整ロッド37は、筒状ないし棒状の中心軸部材に内蔵するように設置しても良く、それにより燃料粒子の衝突による摩耗損傷を回避できる。
A protective cylinder 32 b for protecting the oil starting burner 32 is attached to the outer periphery of the oil starting burner 32. A fuel concentrator 34 is supported on the outer periphery of the protective cylinder 32b. In the fuel concentrator 34, an inner cylinder 35 arranged on the outer peripheral side of the protective cylinder 32b and an outer cylinder 36 arranged on the outer peripheral side of the inner cylinder 35 are arranged. The outer cylinder 36 is supported by the collision plate 32a via a support (not shown). Therefore, the inner cylinder 35 is supported so as to be slidable in the axial direction with respect to the protection cylinder 32b of the oil starting burner 32 and the outer cylinder 36. The outer cylinder 36 is not limited to the configuration supported by the collision plate, and it is possible to change the configuration such that the outer cylinder 36 is fixed to the oil starting burner 32 at a position outside the movable range of the inner cylinder 35.
In FIG. 2, a position adjusting rod 37 as an example of a position adjusting member is supported on the inner cylinder 35. The position adjusting rod 37 is formed in a rod shape and extends parallel to the oil starting burner 32 toward the upstream side in the fluid flow direction. The upstream portion of the position adjusting rod 37 penetrates the collision plate 32a and extends to the outside of the flow path 24.
The position adjusting rod 37 may be installed so as to be built in a cylindrical or rod-shaped central shaft member, whereby wear damage due to collision of fuel particles can be avoided.
 図2において、燃料濃縮器34は、上流側の第1旋回器41と、下流側の第2旋回器42とを有する。図2、図3において、各旋回器41,42は、油起動バーナ32を軸に対して傾斜する複数の羽根41a,42aを有する。実施例1では、下流側の第2旋回器42では、羽根42aは外筒36の外周面に固定支持されている。 In FIG. 2, the fuel concentrator 34 has an upstream first swirler 41 and a downstream second swirler 42. 2 and 3, each of the swirlers 41 and 42 has a plurality of blades 41a and 42a that incline the oil starting burner 32 with respect to the axis. In the first embodiment, in the second swirler 42 on the downstream side, the blades 42 a are fixedly supported on the outer peripheral surface of the outer cylinder 36.
 図3において、上流側の第1旋回器41では、羽根41aは、回転軸43に支持されている。回転軸43は内筒35の外面に回転可能に支持されている。回転軸43は、外筒36に形成されたガス流れ方向に延びる軸通過部36aを貫通している。回転軸43には、径方向の外側に突出するカム部44が支持されている。カム部44には回転軸43に平行して延びるピン44aが支持されている(図3(A)参照)。ピン44aは、ガイド溝36bを貫通している(図3(B)、図3(C)参照)。ガイド溝36bは、外筒36に形成されており、ピン44aをガイド可能な長孔状に形成されている。 In FIG. 3, in the first swirl 41 on the upstream side, the blade 41a is supported by the rotating shaft 43. The rotating shaft 43 is rotatably supported on the outer surface of the inner cylinder 35. The rotating shaft 43 penetrates the shaft passing portion 36a formed in the outer cylinder 36 and extending in the gas flow direction. A cam portion 44 that projects radially outward is supported on the rotating shaft 43. A pin 44a extending in parallel with the rotation shaft 43 is supported on the cam portion 44 (see FIG. 3A). The pin 44a penetrates the guide groove 36b (see FIGS. 3B and 3C). The guide groove 36b is formed in the outer cylinder 36, and is formed in an elongated hole shape capable of guiding the pin 44a.
 したがって、実施例1の燃料濃縮器34では、位置調整ロッド37が軸方向に挿入または引き出される操作がされると、内筒35が軸方向に移動する。これに応じて、ピン44aがガイド溝36bに接触してカム部44が回転し、回転軸43が回転する。したがって、羽根41aが、図3(C)で示す低角度位置と、図3(B)で示す高角度位置との間で移動する。
 なお、実施例1では、第2旋回器42の羽根42aの振れ角は、低角度位置における羽根41aの振れ角に対して、逆向きで且つ同じ角度に設定されている。
Therefore, in the fuel concentrator 34 of the first embodiment, when the position adjusting rod 37 is inserted or pulled out in the axial direction, the inner cylinder 35 moves in the axial direction. In response to this, the pin 44a comes into contact with the guide groove 36b, the cam portion 44 rotates, and the rotating shaft 43 rotates. Therefore, the blade 41a moves between the low angle position shown in FIG. 3(C) and the high angle position shown in FIG. 3(B).
In the first embodiment, the deflection angle of the blade 42a of the second swirler 42 is set to the opposite direction and the same angle as the deflection angle of the blade 41a at the low angle position.
 前記構成を備えた実施例1の固体燃料バーナ7では、使用される燃料がバイオマス燃料の場合、位置調整ロッド37が押し込まれる。したがって、内筒35が流体の流れ方向の下流側に移動する。したがって、各旋回器41,42が軸方向の下流側(火炉22に近づく側)に移動する。
 また、この時、上流側の第1旋回器41の羽根41aが高角度位置に移動する。したがって、第1旋回器41の羽根(ベーン)41aの振れ角が大きくなる。
 ここで、バイオマス燃料は、石炭よりも着火性が低く、燃料粒子を濃縮して着火性を高めたい。したがって、実施例1では、羽根41aの振れ角を大きくして、混合流体の旋回を強くしている。よって、バイオマス燃料を使用しても、燃料の着火性を向上させることができる。
In the solid fuel burner 7 of the first embodiment having the above configuration, when the fuel used is biomass fuel, the position adjusting rod 37 is pushed in. Therefore, the inner cylinder 35 moves to the downstream side in the fluid flow direction. Therefore, the swirlers 41 and 42 move to the downstream side in the axial direction (the side closer to the furnace 22).
At this time, the blade 41a of the upstream first swirler 41 moves to the high angle position. Therefore, the deflection angle of the vanes 41a of the first swirler 41 becomes large.
Here, the biomass fuel has a lower ignitability than coal, and it is desired to concentrate the fuel particles to enhance the ignitability. Therefore, in the first embodiment, the deflection angle of the blade 41a is increased to strengthen the swirling of the mixed fluid. Therefore, even if biomass fuel is used, the ignitability of the fuel can be improved.
 また、実施例1では、燃料濃縮器34が下流側に移動しており、一度外周側に移動した燃料が燃料ノズル21の内面で反射されて内周側に移動する前に、開口部(保炎器31)に到達しやすい。よって、燃料濃縮器34が上流側に位置する場合に比べて、着火性、燃料の濃縮効果が向上している。
 バイオマス燃料では、石炭燃料と比較して、平均粒径が大きく、着火性に劣るので、バーナが当該火炎から受ける輻射熱が石炭燃焼の場合のそれと比較して小さい。
 従って、石炭燃焼時と比較して、燃料濃縮器34の焼損に対するリスクが低いので、燃料濃縮器34が下流側に移動しても焼損のリスクは抑制される。
 また、バイオマス燃料は、石炭よりも摩耗のリスクが低いので、羽根41aの振れ角を大きくしても、寿命に対する悪影響は少なくなっている。
Further, in the first embodiment, the fuel concentrator 34 is moved to the downstream side, and the opening (maintenance) is opened before the fuel once moved to the outer peripheral side is reflected by the inner surface of the fuel nozzle 21 and moves to the inner peripheral side. Easy to reach flamearm 31). Therefore, compared with the case where the fuel concentrator 34 is located on the upstream side, the ignitability and the fuel concentration effect are improved.
Biomass fuel has a larger average particle size and is inferior in ignitability as compared with coal fuel, so that the radiant heat received by the burner from the flame is smaller than that in the case of coal combustion.
Therefore, the risk of burnout of the fuel concentrator 34 is lower than that at the time of coal combustion, and therefore the risk of burnout is suppressed even if the fuel concentrator 34 moves to the downstream side.
Further, since the biomass fuel has a lower risk of wear than coal, even if the deflection angle of the blade 41a is increased, the adverse effect on the life is reduced.
 また、バイオマス燃料は、含酸素燃料であり、着火した後は追加の必要酸素量が少ない。よって、外周の2次空気ノズル(内側燃焼用ガスノズル26)から噴出させる空気量を石炭に比べて絞り、その分着火に寄与する1次空気の量を多めに設定する。ここで、実施例1では、2次空気ノズル(内側燃焼用ガスノズル26)からの空気噴流は大きな広がりを持った循環流が形成されるように、下流端部にガイドベーン26aが設置されている。しかし、2次空気の量を絞り、1次空気の量を多めに設定すると、固体燃料バーナ7から噴出する噴流の広がりは相対的に小さくなる。
 これに対して、実施例1では、バイオマス燃料を使用する場合に、(第1旋回器41の振れ角)>(第2旋回器42の振れ角)に設定されている。したがって、上流側の羽根41aで強めに付与した旋回を下流側で低減し、且つ、旋回を残した状態で噴出させる。よって、固体燃料バーナ7から噴出される噴流は、旋回による広がりが効いた状態となる。したがって、噴流の広がりが不足することも防止される。
Further, the biomass fuel is an oxygen-containing fuel, and the amount of additional oxygen required after ignition is small. Therefore, the amount of air ejected from the outer peripheral secondary air nozzle (inner combustion gas nozzle 26) is reduced as compared with coal, and the amount of primary air that contributes to ignition is set to be larger by that amount. Here, in the first embodiment, a guide vane 26a is installed at the downstream end so that the air jet from the secondary air nozzle (inner combustion gas nozzle 26) forms a circulating flow having a large spread. .. However, when the amount of the secondary air is reduced and the amount of the primary air is set to be large, the spread of the jet flow ejected from the solid fuel burner 7 becomes relatively small.
On the other hand, in the first embodiment, when the biomass fuel is used, (the deflection angle of the first swirler 41)>(the deflection angle of the second swirler 42) is set. Therefore, the swirl strongly applied by the blade 41a on the upstream side is reduced on the downstream side, and the swirl is ejected while leaving the swirl. Therefore, the jet flow ejected from the solid fuel burner 7 is in a state in which the jet flow is effectively spread by swirling. Therefore, the spread of the jet flow is also prevented from being insufficient.
 また、実施例1の固体燃料バーナ7では、石炭(微粉炭)燃料が使用される場合には、位置調整ロッド37が軸方向に引き出される。したがって、各旋回器41,42は軸方向の上流側(火炉22から離れる方向)に一体的に移動する。したがって、第1旋回器41の羽根41aは低角度位置に移動し、振れ角が小さくなる。
 したがって、羽根41aの石炭燃料による摩耗が、振れ角が大きい場合に比べて抑制される。また、石炭燃料では、着火性はバイオマス燃料よりも高いため、燃料濃縮器34が上流側であったり、旋回が弱くても十分に着火性は確保可能である。一方で、石炭燃料では焼損リスクが高いので、燃料濃縮器34が上流側に位置することでその焼損リスク、特に下流の火炉開口部側に設けられた第2旋回器の焼損リスクを低減可能である。
Further, in the solid fuel burner 7 of the first embodiment, when the coal (pulverized coal) fuel is used, the position adjusting rod 37 is pulled out in the axial direction. Therefore, the swirlers 41, 42 move integrally in the axial upstream side (direction away from the furnace 22). Therefore, the blade 41a of the first swirler 41 moves to the low angle position, and the deflection angle becomes small.
Therefore, the abrasion of the blades 41a due to the coal fuel is suppressed as compared with the case where the deflection angle is large. Further, since the ignitability of the coal fuel is higher than that of the biomass fuel, the ignitability can be sufficiently ensured even if the fuel concentrator 34 is on the upstream side or the turning is weak. On the other hand, since the burning risk of coal fuel is high, it is possible to reduce the burning risk of the fuel concentrator 34 located upstream, especially the risk of burning of the second swirler provided at the downstream furnace opening side. is there.
 さらに、実施例1では、石炭燃料の場合で、(第1旋回器41の振れ角)=(第2旋回器42の振れ角)となっている。石炭燃料の場合に噴流に旋回成分が残っていると噴流が拡散して広がりすぎ、循環流が形成されなくなる恐れがある。循環流が形成されなくなるとNOx低減効果が低下する問題がある。これに対して、実施例1では、石炭燃料では、上流側の第1旋回器41で付与された旋回が、下流側の第2旋回器42で相殺される。したがって、実施例1では、石炭燃料の場合における噴流の広がりすぎを抑制でき、NOx低減効果を維持できる。 Further, in the first embodiment, in the case of coal fuel, (deflection angle of first swirler 41)=(deflection angle of second swirler 42). In the case of coal fuel, if swirling components remain in the jet, the jet may diffuse and spread too much, and a circulating flow may not be formed. When the circulation flow is not formed, there is a problem that the NOx reduction effect is reduced. On the other hand, in the first embodiment, in the coal fuel, the swirl imparted by the upstream first swirler 41 is offset by the downstream second swirler 42. Therefore, in the first embodiment, it is possible to prevent the jet flow from spreading too much in the case of coal fuel and maintain the NOx reduction effect.
 図4は石炭燃料とバイオマス燃料とについて下流羽根の位置と開口径との解析結果の説明図である。
 図4は、石炭とバイオマスとについて、燃料ノズル21の開口端から下流羽根42aの設置基準位置までの距離をLとし、燃料ノズル21の開口径をDとしたときのL/Dを最大、中間、最小の3通り、それぞれについて羽根の角度θを最大、中間、最小の3通り、計9通りについて、数値解析(CFD: Computational Fluid Dynamics)に基づく火炉出口のNOxの低減効果と、UBC(灰中未燃分:Unburned Carbon )とを求め、これを「性能」として相対評価し、点数化して表すとともに、逆火、摩耗、堆積の各リスクについても点数化し、最も好ましいL/Dとθの組合せを求めたものである。
FIG. 4 is an explanatory diagram of analysis results of the position of the downstream blade and the opening diameter for the coal fuel and the biomass fuel.
FIG. 4 shows the maximum and intermediate L / D when the distance from the opening end of the fuel nozzle 21 to the installation reference position of the downstream blade 42a is L and the opening diameter of the fuel nozzle 21 is D for coal and biomass. , The minimum 3 types, the maximum, middle, and minimum blade angles θ for each of the 9 types, the NOx reduction effect of the reactor outlet based on numerical analysis (CFD: Computational Fluid Dynamics) and the UBC (ash) Medium unburned carbon (Unburned Carbon) is obtained, and this is relatively evaluated as "performance" and expressed as a score. At the same time, each risk of flashback, wear, and accumulation is also scored, and the most preferable L / D and θ are It is a combination obtained.
 石炭はL/Dが最小と中間のときは、性能に及ぼすθの影響が殆ど無い(感度が小さい)がL/Dが最大のときは、θの影響が大きく表れ、角度最大のときは、十分な性能が得られるが、角度を小さくしていくに従い、性能が低下してくる。従って、逆火、摩耗、堆積の各リスクが最も小さくなるケース、即ち、L/Dを中間、θを最小に設定することが望ましい。
 これに対し、バイオマスは、いずれのL/Dでも石炭に比べ、θの影響が大きく表れ(感度が大きい)性能を十分なものとするにはL/Dを最小、θを最大とする組合せが望ましい。そして、当該組合せでも石炭に比べ、各リスクは小さく抑制されるので、この組み合わせに設定することが望ましい。
 このように燃料種によって、性能とリスク面とで総合的に評価される望ましいL/Dとθとの組合せが異なるのに対し、本発明によれば、両者を適切な条件に設定可能である。
Coal has almost no effect of θ on performance when L / D is between the minimum and intermediate (small sensitivity), but when L / D is maximum, the effect of θ is large, and when the angle is maximum, the effect of θ is large. Sufficient performance can be obtained, but performance decreases as the angle is reduced. Therefore, it is desirable to set the risk of flashback, wear, and accumulation to the minimum, that is, set L / D to the middle and θ to the minimum.
On the other hand, biomass has a greater influence of θ than any coal at any L/D (a high sensitivity), and a combination with a minimum L/D and a maximum θ is sufficient for sufficient performance. desirable. Since each risk is suppressed to be smaller than that of coal even with the combination, it is desirable to set this combination.
As described above, the desirable combination of L/D and θ that is comprehensively evaluated in terms of performance and risk differs depending on the fuel type, but according to the present invention, both can be set to appropriate conditions. ..
 したがって、実施例1の固体燃料バーナ7では、位置調整ロッド37を操作することで、バイオマス燃料と石炭燃料を切り替えて使用することができると共に、使用時に、摩耗に対するリスクや着火性、焼損のリスクが上昇することを抑制できる。
 特に、実施例1では、位置調整ロッド37の操作で、振れ角の調整と軸方向の位置調整の両方が可能となっている。したがって、振れ角と軸方向の位置調整を行う部材をそれぞれ設ける場合に比べて、操作が容易であると共に、部品点数も削減されてコストも削減される。
 なお、位置調整ロッド37には、摩耗対策のために保護カバーを設けることが望ましい。
Therefore, in the solid fuel burner 7 of the first embodiment, the biomass fuel and the coal fuel can be switched and used by operating the position adjusting rod 37, and at the time of use, there is a risk of wear, ignitability, and burnout. Can be suppressed.
In particular, in the first embodiment, both the runout angle adjustment and the axial position adjustment are possible by operating the position adjustment rod 37. Therefore, compared with the case where the members for adjusting the deflection angle and the position in the axial direction are respectively provided, the operation is easy, the number of parts is reduced, and the cost is reduced.
It is desirable that the position adjusting rod 37 be provided with a protective cover as a measure against wear.
 図5は本発明の別の形態1の説明図である。
 図5において、カム部44′やガイド溝36b′の位置を90度ずらした位置に変更すると共に、外筒36を油起動バーナ32に対して周方向に回転可能とすることで、羽根41aの角度調整が可能な構成とすることも可能である。
FIG. 5: is explanatory drawing of another form 1 of this invention.
In FIG. 5, the positions of the cam portion 44' and the guide groove 36b' are changed by 90 degrees, and the outer cylinder 36 is rotatable in the circumferential direction with respect to the oil starting burner 32. It is also possible to adopt a configuration in which the angle can be adjusted.
 図6は本発明の別の形態2の説明図であり、図6(A)は概略図、図6(B)は部分詳細図である。
 図6において、油起動バーナ32の外周と内筒35との間に、気体供給管101が配置されている。気体供給管101は、衝突板32aに貫通した状態で支持されている。気体供給管101は、内部を油起動バーナ32が貫通しており、外表面に内筒35がガス流れ方向に沿って移動可能に支持されている。
 気体供給管101は、内部が中空に形成されており、清掃用の気体が通過可能に構成されている。気体供給管101には、内筒35が移動可能な範囲に対応して、外表面に、気体の噴出口102が複数形成されている。
6A and 6B are explanatory views of another mode 2 of the present invention. FIG. 6A is a schematic view and FIG. 6B is a partial detailed view.
In FIG. 6, a gas supply pipe 101 is arranged between the outer circumference of the oil starting burner 32 and the inner cylinder 35. The gas supply pipe 101 is supported while penetrating the collision plate 32a. An oil starting burner 32 penetrates the inside of the gas supply pipe 101, and an inner cylinder 35 is movably supported on the outer surface along the gas flow direction.
The gas supply pipe 101 has a hollow interior, and is configured to allow a cleaning gas to pass therethrough. In the gas supply pipe 101, a plurality of gas ejection ports 102 are formed on the outer surface corresponding to the movable range of the inner cylinder 35.
 衝突板32aの外部には、気体供給管101に清掃用の気体を供給する気体源103が配置されている。清掃用の気体としては、固体燃料バーナ7の燃焼への影響が少ないガス種を選択することが好ましく、空気や窒素(N)ガス等を使用可能である。なお、清掃用の気体の流量は、固体燃料バーナ7の燃焼への影響が少ない流量とすることが好ましく、固体燃料バーナ7の仕様に応じて適宜選択可能である。したがって、気体源103としては、送風用のファンやコンプレッサー、ガスボンベとバルブ等、従来公知の任意の構成を採用可能である。 A gas source 103 that supplies a cleaning gas to the gas supply pipe 101 is arranged outside the collision plate 32 a. As the cleaning gas, it is preferable to select a gas type that has little influence on the combustion of the solid fuel burner 7, and air, nitrogen (N 2 ) gas, or the like can be used. The flow rate of the cleaning gas is preferably a flow rate that has little effect on the combustion of the solid fuel burner 7, and can be appropriately selected according to the specifications of the solid fuel burner 7. Therefore, as the gas source 103, any conventionally known configuration such as a fan for blowing air, a compressor, a gas cylinder and a valve can be adopted.
 図7は図6に示す形態における気体ガイド部材の説明図である。
 図6において、ガス流れ方向に対して、内筒35の上流側には、気体ガイド部材104が支持されている。気体ガイド部材104は、ガス流れ方向の下流側に行くにつれて外径が大きくなる円錐状に形成されている。図7において、本形態では、気体供給管101の外径をD1とし、気体ガイド部材104の上流端の内径をD2として、気体ガイド部材104の下流端の外径をD3とし、羽根41aのブロック(=外筒36)の外径をD4とした場合に、以下の式(1)の関係が成立するように構成されている。
D3>D4>D2>D1 …式(1)
 なお、D3は大きすぎると、気体ガイド部材104に微粉炭等の微粒子が衝突する量が多くなるため、D3はD4にできるだけ近い値とすることが望ましい。
FIG. 7 is an explanatory view of the gas guide member in the form shown in FIG.
In FIG. 6, the gas guide member 104 is supported on the upstream side of the inner cylinder 35 with respect to the gas flow direction. The gas guide member 104 is formed in a conical shape in which the outer diameter increases toward the downstream side in the gas flow direction. In FIG. 7, in the present embodiment, the outer diameter of the gas supply pipe 101 is D1, the inner diameter of the upstream end of the gas guide member 104 is D2, the outer diameter of the downstream end of the gas guide member 104 is D3, and the block of the blade 41a. When the outer diameter of (= outer cylinder 36) is D4, the relationship of the following equation (1) is established.
D3>D4>D2>D1... Formula (1)
If D3 is too large, the amount of fine particles such as pulverized coal colliding with the gas guide member 104 increases, so it is desirable that D3 has a value as close as possible to D4.
 したがって、噴出口102から噴出した気体は、気体ガイド部材104の内面で案内されて、回転軸43の根元部分106、すなわち、回転軸43と羽根41aの境界部を含む範囲106に吹き付けられる。なお、本形態では、内筒35の上流端の部分107や外筒36の上流端と内筒35の角の部分108にも気体が吹き付けられる。
 なお、気体ガイド部材104の外面は、上流から移送されてきた微粉炭等が径方向の外側に案内される。
 前記各符号101~104を付した各部材により、本形態の吹付装置101~104が構成されている。
Therefore, the gas ejected from the ejection port 102 is guided by the inner surface of the gas guide member 104 and is blown to the root portion 106 of the rotating shaft 43, that is, the range 106 including the boundary portion between the rotating shaft 43 and the blade 41a. In this embodiment, the gas is also blown to the upstream end portion 107 of the inner cylinder 35 and the corner portion 108 between the upstream end of the outer cylinder 36 and the inner cylinder 35.
The outer surface of the gas guide member 104 guides the pulverized coal or the like transferred from the upstream to the outside in the radial direction.
The spraying devices 101 to 104 of the present embodiment are configured by the members denoted by the reference signs 101 to 104.
(別の形態2の作用)
 図6、図7に示す形態では、吹付装置101~104により、振れ角が調整可能な羽根41aの根元部分106や、ガス流れ方向に移動可能な内筒35の上流端部分107、内筒35との境界部分である外筒36の上流端部分108に気体が吹き付けられる。
 根元部分106に気体が吹き付けられない構成では、固体燃料バーナ7の仕様に伴って、微粉炭等の微粒子が経時的に堆積していくことがある。微粒子が堆積したり固着すると、羽根41aの根元部分に微粒子が詰まった状態となるため、羽根41aの振れ角が調整できなくなる恐れがある。また、各部107,108に微粒子が詰まると、内筒35をガス流れ方向に移動させることができなくなる恐れもある。
(Operation of another mode 2)
In the embodiment shown in FIGS. 6 and 7, the root portions 106 of the blades 41a whose swing angles can be adjusted by the spraying devices 101 to 104, the upstream end portion 107 of the inner cylinder 35 which is movable in the gas flow direction, and the inner cylinder 35. The gas is blown to the upstream end portion 108 of the outer cylinder 36, which is the boundary portion with the.
In a configuration in which gas is not sprayed on the root portion 106, fine particles such as pulverized coal may accumulate over time according to the specifications of the solid fuel burner 7. If the fine particles are accumulated or fixed, the root portion of the blade 41a is clogged with the fine particles, so that the runout angle of the blade 41a may not be adjustable. Further, if the respective parts 107 and 108 are clogged with fine particles, there is a possibility that the inner cylinder 35 cannot be moved in the gas flow direction.
 これらに対して、本形態では、吹付装置101~104で、各部106~108に気体を吹き付けており、微粒子の堆積が抑制される。したがって、羽根41aの振れ角の調整やガス流れ方向の位置の調整を長期に渡って安定して行うことが可能となる。
 なお、本形態では気体ガイド部材104は内筒35と一体的に移動可能に構成されており、内筒35が移動しても気体ガイド部材104との位置関係は変わらない。したがって、各部106~108に安定して気体を吹き付けることができる。
On the other hand, in the present embodiment, the spraying devices 101 to 104 spray the gas to each part 106 to 108, and the accumulation of fine particles is suppressed. Therefore, it is possible to stably adjust the deflection angle of the blade 41a and the position in the gas flow direction for a long period of time.
In this embodiment, the gas guide member 104 is configured to be integrally movable with the inner cylinder 35, and the positional relationship with the gas guide member 104 does not change even if the inner cylinder 35 moves. Therefore, the gas can be stably blown to the respective parts 106 to 108.
 また、本形態では噴出口102が内筒35の移動範囲に対応して形成されている。よって、内筒35が移動しても安定して気体ガイド部材104の内面側に気体を送り込むことができる。
 さらに、本形態では、気体ガイド部材104という簡単な構成で、気体を吹き付けることができ、微粒子の堆積を抑制できる。
Further, in the present embodiment, the ejection port 102 is formed so as to correspond to the moving range of the inner cylinder 35. Therefore, even if the inner cylinder 35 moves, the gas can be stably fed to the inner surface side of the gas guide member 104.
Further, in this embodiment, the gas can be blown with the simple structure of the gas guide member 104, and the accumulation of fine particles can be suppressed.
(他の変更例)
 以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲で、種々の変更を行うことが可能である。
 例えば、上流側の羽根41aのみ振れ角を調整可能とする構成を例示したが、下流側の羽根42aの振れ角も調整可能とすることも可能である。
 また、2次燃焼用ガスノズル26と3次燃焼用ガスノズル27を有する2段の燃焼用ガスノズル26,27の構成を例示したが、これに限定されず、燃焼用ガスノズルは1段または3段以上とすることも可能である。
(Other examples of changes)
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. It is possible.
For example, although the configuration in which the deflection angle of only the upstream blade 41a can be adjusted has been illustrated, the deflection angle of the downstream blade 42a can also be adjustable.
Further, the configuration of the two-stage combustion gas nozzles 26 and 27 having the secondary combustion gas nozzle 26 and the tertiary combustion gas nozzle 27 has been illustrated, but the configuration is not limited to this, and the combustion gas nozzle is one stage or three stages or more. It is also possible to do so.
 さらに、振れ角の調整と軸方向の位置の調整を、1つの位置調整ロッド37で行う構成を例示したがこれに限定されない。振れ角の調整用の部材と軸方向の位置調整用の部材をそれぞれ設けることも可能である。例えば、互いにスライド移動可能な二重の円筒の内筒に羽根の回転軸(振れ角調整の支点)を設置し、外筒に図5に示すようなカムの可動機構を設けた構成とし、内筒と外筒の相対的な位置関係をずらしたり、いずれかの筒を軸回りに回転移動させることで、旋回羽根の振れ角度の調整を行うことが可能である。そして、内筒と外筒を一体的にノズル軸方向へスライドさせれば軸方向の位置の調整も可能である。なお、内筒と外筒の相対的な回転と、ノズル軸方向への移動は、例えば、それぞれロッドを設けることで操作可能である。そして、使用する燃料種や設計、仕様等に応じて、振れ角の調整が必要ない場合は、燃料濃縮器34がノズル軸方向へ移動する機能のみを有する構成とすることも可能であるし、ノズル軸方向への移動が必要ない場合は、振れ角の調整のみが可能な構成とすることも可能である。 Further, the configuration in which one deflection rod 37 is used to adjust the deflection angle and the axial position is illustrated, but the invention is not limited to this. It is also possible to provide a member for adjusting the deflection angle and a member for adjusting the position in the axial direction, respectively. For example, the rotary shaft of the blades (fulcrum for adjusting the deflection angle) is installed in a double cylindrical inner cylinder that is slidable relative to each other, and a cam movable mechanism as shown in FIG. It is possible to adjust the deflection angle of the swirl vane by shifting the relative positional relationship between the cylinder and the outer cylinder or rotating one of the cylinders around the axis. The axial position can be adjusted by sliding the inner cylinder and the outer cylinder integrally in the nozzle axial direction. Note that the relative rotation of the inner cylinder and the outer cylinder and the movement in the nozzle axis direction can be operated, for example, by providing rods respectively. Then, depending on the type of fuel to be used, design, specifications, etc., when it is not necessary to adjust the deflection angle, the fuel concentrator 34 may be configured to have only the function of moving in the nozzle axis direction, If it is not necessary to move the nozzle in the axial direction, it is possible to configure the configuration so that only the runout angle can be adjusted.
 また、燃料濃縮器34として、第1旋回器41と第2旋回器42とを有する構成が望ましいが、第1旋回器41のみの構成とすることも可能であるし、3つ以上の旋回器を備えた構成とすることも可能である。 Further, it is desirable that the fuel concentrator 34 has a first swirler 41 and a second swirler 42, but it is also possible to have only the first swirler 41 and three or more swirlers. It is also possible to adopt a configuration provided with.
 図6、図7に示す形態において、吹付装置101~104の構成は例示した構成に限定されず、任意に変更可能である。例えば、気体ガイド部材の形状は、円錐状に限定されず、放物面(パラボラ)状、多角錐状等、任意の形態とすることも可能である。また、気体供給管101を油起動バーナ32に沿った円筒管状の構成を例示したが、これに限定されない。例えば、内側燃焼用ガスノズル26から流路24を横切るように配管を延ばして空気を供給する形態とすることも可能である。特に、油起動バーナ32が設けられておらず、第1旋回器41と第2旋回器42とがガス流れ方向に延びるスピンドル状の部材で接続されているような構成では、内側燃焼用ガスノズル26から配管を延ばす構成は特に好適である。さらに、吹付装置101~104は、上流側の第1旋回器41と下流側の第2旋回器42の両方に設けることも可能であるし、上流側の第1旋回器41側のみとすることも可能である。 In the modes shown in FIGS. 6 and 7, the configurations of the spraying devices 101 to 104 are not limited to the illustrated configurations, and can be arbitrarily changed. For example, the shape of the gas guide member is not limited to a conical shape, and may be any shape such as a parabola shape or a polygonal pyramid shape. Further, the structure of the gas supply pipe 101 having a cylindrical tubular shape along the oil starting burner 32 has been illustrated, but the present invention is not limited to this. For example, it is also possible to extend the pipe from the inner combustion gas nozzle 26 so as to cross the flow path 24 to supply air. In particular, in the configuration in which the oil starting burner 32 is not provided and the first swirler 41 and the second swirler 42 are connected by a spindle-shaped member extending in the gas flow direction, the inner combustion gas nozzle 26 A configuration in which the pipe is extended from is particularly preferable. Further, the spraying devices 101 to 104 can be provided on both the upstream first swirler 41 and the downstream second swirler 42, or only on the upstream first swirler 41 side. Is also possible.
7…固体燃料バーナ、
21…燃料ノズル、
22…火炉、
26,27…燃焼用ガスノズル、
34…燃料濃縮器、
41a…上流側の羽根、
41a,41b…羽根、
43…軸部、
101~104…吹付装置、
102…噴出口、
104…気体ガイド部材。
7... Solid fuel burner,
21... Fuel nozzle,
22... furnace,
26, 27... Combustion gas nozzle,
34... Fuel concentrator,
41a... blades on the upstream side,
41a, 41b... blades,
43... Shaft,
101 to 104... Spraying device,
102... the spout,
104... Gas guide member.

Claims (7)

  1.  固体燃料とその搬送気体の混合流体が流れ、火炉に向かって開口する燃料ノズルと、
     前記燃料ノズルの外周側に配置され、燃焼用気体を噴出させる燃焼用ガスノズルと、
     前記燃料ノズルの中心側に設けられ、前記燃料ノズルの中心から離れる向きの速度成分を前記混合流体に付与する燃料濃縮器と、
     を備えた固体燃料バーナであって、
     前記燃料濃縮器は、前記混合流体に旋回を与える複数の羽根を有し、前記羽根のバーナ軸方向に対する振れ角が調整可能に構成されたことを特徴とする固体燃料バーナ。
    A fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace,
    A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas,
    A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
    A solid fuel burner comprising:
    The solid fuel burner is characterized in that the fuel concentrator has a plurality of blades that swirl the mixed fluid, and the deflection angle of the blade with respect to the burner axis direction is adjustable.
  2.  バーナ軸方向に対して離れた2箇所に設置すると共に、各々の複数の羽根構造の旋回方向が逆方向であり、前記混合流体の流れ方向に対して少なくとも上流側の羽根の前記振れ角が調整可能であることを特徴とする請求項1に記載の固体燃料バーナ。 The blades are installed at two locations apart from the burner axial direction, and the swirling directions of the plurality of blade structures are opposite to each other, and the deflection angle of the blades at least upstream with respect to the flow direction of the mixed fluid is adjusted. Solid fuel burner according to claim 1, characterized in that it is possible.
  3.  前記燃料濃縮器は、前記バーナ軸方向に沿って移動可能に構成されたことを特徴とする請求項1に記載の固体燃料バーナ。 The solid fuel burner according to claim 1, wherein the fuel concentrator is configured to be movable along the burner axial direction.
  4.  固体燃料とその搬送気体の混合流体が流れ、火炉に向かって開口する燃料ノズルと、
     前記燃料ノズルの外周側に配置され、燃焼用気体を噴出させる燃焼用ガスノズルと、
     前記燃料ノズルの中心側に設けられ、前記燃料ノズルの中心から離れる向きの速度成分を前記混合流体に付与する燃料濃縮器と、
     を備えた固体燃料バーナであって、
     前記燃料濃縮器は、前記混合流体に旋回を与える複数の羽根を有し、バーナ軸方向に対して離れた2箇所に設置すると共に、各々の複数の羽根構造の旋回方向が逆方向であり、
     前記燃料濃縮器は、前記バーナ軸方向に沿って移動可能に構成されたことを特徴とする固体燃料バーナ。
    A fuel nozzle in which a mixed fluid of solid fuel and its carrier gas flows and opens toward the furnace,
    A combustion gas nozzle arranged on the outer peripheral side of the fuel nozzle to eject a combustion gas,
    A fuel concentrator provided on the center side of the fuel nozzle and imparting a velocity component in a direction away from the center of the fuel nozzle to the mixed fluid.
    A solid fuel burner comprising:
    The fuel concentrator has a plurality of blades that give a swirl to the mixed fluid, and is installed at two positions apart from the burner axial direction, and the swirling direction of each of the plurality of blade structures is opposite.
    The solid fuel burner, wherein the fuel concentrator is configured to be movable along the burner axial direction.
  5.  前記燃料濃縮器は、前記混合流体の流れ方向に対して少なくとも上流側の羽根の前記バーナ軸方向に対する振れ角が調整可能に構成されたことを特徴とする請求項4に記載の固体燃料バーナ。 The solid fuel burner according to claim 4, wherein the fuel concentrator is configured so that a deflection angle of at least an upstream blade with respect to the flow direction of the mixed fluid with respect to the burner axial direction can be adjusted.
  6.  前記羽根を支持する軸部と、
     前記羽根と軸部との境界部分に向けて清掃用の気体を吹き付ける吹付装置と、
     を備えたことを特徴とする請求項1ないし5のいずれかに記載の固体燃料バーナ。
    A shaft portion supporting the blade,
    A spraying device that sprays a cleaning gas toward the boundary between the blade and the shaft,
    The solid fuel burner according to any one of claims 1 to 5, further comprising:
  7.  前記軸部から径方向に気体を噴出させる噴出口と、前記噴出口からの気体を前記羽根と軸部との境界部分に案内する気体ガイド部材と、を有する前記吹付装置、
     を備えたことを特徴とする請求項6に記載の固体燃料バーナ。
    The spraying device having a spout for ejecting gas in the radial direction from the shaft portion and a gas guide member for guiding gas from the spout to a boundary portion between the blade and the shaft portion.
    The solid fuel burner according to claim 6, further comprising:
PCT/JP2020/007934 2019-03-01 2020-02-27 Solid fuel burner WO2020179593A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021504008A JPWO2020179593A1 (en) 2019-03-01 2020-02-27 Solid fuel burner
KR1020217031078A KR20210134356A (en) 2019-03-01 2020-02-27 solid fuel burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/008014 WO2020178880A1 (en) 2019-03-01 2019-03-01 Solid fuel burner
JPPCT/JP2019/008014 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179593A1 true WO2020179593A1 (en) 2020-09-10

Family

ID=72337950

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/008014 WO2020178880A1 (en) 2019-03-01 2019-03-01 Solid fuel burner
PCT/JP2020/007934 WO2020179593A1 (en) 2019-03-01 2020-02-27 Solid fuel burner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008014 WO2020178880A1 (en) 2019-03-01 2019-03-01 Solid fuel burner

Country Status (4)

Country Link
JP (1) JPWO2020179593A1 (en)
KR (1) KR20210134356A (en)
TW (1) TW202102799A (en)
WO (2) WO2020178880A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024042828A (en) * 2022-09-16 2024-03-29 三菱重工業株式会社 Coal ammonia mixed fuel combustion boiler control device, coal ammonia mixed fuel combustion boiler control method, and coal ammonia mixed fuel combustion boiler control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231047B2 (en) * 1977-04-25 1987-07-06 Tokyo Shibaura Electric Co
JP2756098B2 (en) * 1995-07-14 1998-05-25 川崎重工業株式会社 Pulverized coal burner
JPH11118105A (en) * 1997-10-20 1999-04-30 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
CN101832551A (en) * 2010-06-18 2010-09-15 上海交通大学 Adjustable center weak swirl pulverized coal burner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886031B2 (en) 2011-12-26 2016-03-16 川崎重工業株式会社 Biomass fuel combustion method
JP5799875B2 (en) 2012-03-29 2015-10-28 三菱マテリアル株式会社 Ball end mill
DE102012007884A1 (en) 2012-04-23 2013-10-24 Babcock Borsig Steinmüller Gmbh Burner for dust and / or particulate fuels with variable swirl
JP6231047B2 (en) * 2015-06-30 2017-11-15 三菱日立パワーシステムズ株式会社 Solid fuel burner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231047B2 (en) * 1977-04-25 1987-07-06 Tokyo Shibaura Electric Co
JP2756098B2 (en) * 1995-07-14 1998-05-25 川崎重工業株式会社 Pulverized coal burner
JPH11118105A (en) * 1997-10-20 1999-04-30 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
CN101832551A (en) * 2010-06-18 2010-09-15 上海交通大学 Adjustable center weak swirl pulverized coal burner

Also Published As

Publication number Publication date
KR20210134356A (en) 2021-11-09
TW202102799A (en) 2021-01-16
WO2020178880A1 (en) 2020-09-10
JPWO2020179593A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
RU2672216C2 (en) Combustor burner arrangement
US7665458B2 (en) Overfire air tube damper for boiler and method for regulating overfire air
CN107429911B (en) Burner and boiler
JPH0250011A (en) Coal, petroleum or gas burning burner
MXPA04011343A (en) Low nox combustion.
JPH0820047B2 (en) Low NOx short flame burner
KR20100061471A (en) Solid-fuel burner, combustion device using solid-fuel burner, and method of operating the combustion device
KR100674247B1 (en) After-air nozzles for two-stage boilers, two-stage boilers using the same, and boilers and combustion methods
WO2009113237A1 (en) Burner for fine powder fuel
WO2020179593A1 (en) Solid fuel burner
JP2008202836A (en) Pulverized coal burner
JP6056409B2 (en) Biomass burner
JP3009370B2 (en) Pulverized coal burner, pulverized coal boiler and pulverized coal combustion method
EP3026338B1 (en) A combustion system for a boiler
CN206540120U (en) Burner
JP6904074B2 (en) Burner
US5535686A (en) Burner for tangentially fired boiler
CN101963352A (en) Double rotational flow powdered coal burner
JPH0225083B2 (en)
JPH04214102A (en) Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner
WO2016158473A1 (en) Combustion burner and boiler
WO2020152867A1 (en) Solid fuel burner and combustion device
AU2002238385B2 (en) Burner for the combustion of particulate fuel
KR20120049276A (en) Pulverized coal boiler
EP3896337A1 (en) Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031078

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20765590

Country of ref document: EP

Kind code of ref document: A1